06.08.2013 Views

7. Consequences of the Hahn-Banach theorems - Aarhus Universitet

7. Consequences of the Hahn-Banach theorems - Aarhus Universitet

7. Consequences of the Hahn-Banach theorems - Aarhus Universitet

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Klaus Thomsen matkt@imf.au.dk<br />

Institut for Matematiske Fag<br />

Det Naturvidenskabelige Fakultet<br />

<strong>Aarhus</strong> <strong>Universitet</strong><br />

September 2005<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


We read in W. Rudin: Functional Analysis<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


We read in W. Rudin: Functional Analysis<br />

Covering Chapter 3, from page 59 up to 63.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(The corollary on p. 59) Let X be a locally convex topological<br />

vector space. Then X ∗ separates <strong>the</strong> points <strong>of</strong> X, i.e. when x = y<br />

in X <strong>the</strong>re is a l ∈ X ∗ such that l(x) = l(y).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(The corollary on p. 59) Let X be a locally convex topological<br />

vector space. Then X ∗ separates <strong>the</strong> points <strong>of</strong> X, i.e. when x = y<br />

in X <strong>the</strong>re is a l ∈ X ∗ such that l(x) = l(y).<br />

Pro<strong>of</strong>.<br />

Apply <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> separation <strong>the</strong>orem, Theorem 3.4 b), with<br />

A = {x} and B = {y}.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.5) Let X be a locally convex topological vector space<br />

and M ⊆ X a subspace. If x0 ∈ X is NOT in <strong>the</strong> closure M <strong>the</strong>re is<br />

a functional l ∈ X ∗ such that l(M) = {0} and l (x0) = 1.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.5) Let X be a locally convex topological vector space<br />

and M ⊆ X a subspace. If x0 ∈ X is NOT in <strong>the</strong> closure M <strong>the</strong>re is<br />

a functional l ∈ X ∗ such that l(M) = {0} and l (x0) = 1.<br />

Pro<strong>of</strong>.<br />

Apply <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> separation <strong>the</strong>orem, Theorem 3.4 b), with<br />

A = M and B = {x0} to obtain L ∈ X ∗ and γ ∈ R such that<br />

Re L(M) < γ < Re L(x0).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.5) Let X be a locally convex topological vector space<br />

and M ⊆ X a subspace. If x0 ∈ X is NOT in <strong>the</strong> closure M <strong>the</strong>re is<br />

a functional l ∈ X ∗ such that l(M) = {0} and l (x0) = 1.<br />

Pro<strong>of</strong>.<br />

Apply <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> separation <strong>the</strong>orem, Theorem 3.4 b), with<br />

A = M and B = {x0} to obtain L ∈ X ∗ and γ ∈ R such that<br />

Re L(M) < γ < Re L(x0).<br />

Since 0 ∈ M we conclude that γ > 0. Set l = L(x0) −1 L.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.6) Let X be a locally convex topological vector space<br />

and M ⊆ X a subspace. If f : M → Φ is a continuous linear<br />

functional on M, <strong>the</strong>re is an l ∈ X ∗ such that l|M = f .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.6) Let X be a locally convex topological vector space<br />

and M ⊆ X a subspace. If f : M → Φ is a continuous linear<br />

functional on M, <strong>the</strong>re is an l ∈ X ∗ such that l|M = f .<br />

Pro<strong>of</strong>.<br />

We may assume that f is not identically 0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.6) Let X be a locally convex topological vector space<br />

and M ⊆ X a subspace. If f : M → Φ is a continuous linear<br />

functional on M, <strong>the</strong>re is an l ∈ X ∗ such that l|M = f .<br />

Pro<strong>of</strong>.<br />

We may assume that f is not identically 0.<br />

Set<br />

M0 = {x ∈ M : f (x) = 0}.<br />

and choose x0 ∈ M such that f (x0) = 1.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.6) Let X be a locally convex topological vector space<br />

and M ⊆ X a subspace. If f : M → Φ is a continuous linear<br />

functional on M, <strong>the</strong>re is an l ∈ X ∗ such that l|M = f .<br />

Pro<strong>of</strong>.<br />

We may assume that f is not identically 0.<br />

Set<br />

M0 = {x ∈ M : f (x) = 0}.<br />

and choose x0 ∈ M such that f (x0) = 1.<br />

Then x0 /∈ M0: See <strong>the</strong> next slide!<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Remember that M is equipped with <strong>the</strong> relative topology inherited<br />

from X. Since f : M → Φ is continuous with respect to this<br />

topology, M0 = f −1 ({0}) is closed in that topology.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Remember that M is equipped with <strong>the</strong> relative topology inherited<br />

from X. Since f : M → Φ is continuous with respect to this<br />

topology, M0 = f −1 ({0}) is closed in that topology.<br />

This means that M\M0 = M ∩ W for some open set W <strong>of</strong> X.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Remember that M is equipped with <strong>the</strong> relative topology inherited<br />

from X. Since f : M → Φ is continuous with respect to this<br />

topology, M0 = f −1 ({0}) is closed in that topology.<br />

This means that M\M0 = M ∩ W for some open set W <strong>of</strong> X.<br />

Then<br />

W ∩ M0 = W ∩ M ∩ M0 = (M\M0) ∩ M0 = ∅.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Remember that M is equipped with <strong>the</strong> relative topology inherited<br />

from X. Since f : M → Φ is continuous with respect to this<br />

topology, M0 = f −1 ({0}) is closed in that topology.<br />

This means that M\M0 = M ∩ W for some open set W <strong>of</strong> X.<br />

Then<br />

W ∩ M0 = W ∩ M ∩ M0 = (M\M0) ∩ M0 = ∅.<br />

This means that M0 ⊆ W c and it follows that M0 ⊆ W c .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Remember that M is equipped with <strong>the</strong> relative topology inherited<br />

from X. Since f : M → Φ is continuous with respect to this<br />

topology, M0 = f −1 ({0}) is closed in that topology.<br />

This means that M\M0 = M ∩ W for some open set W <strong>of</strong> X.<br />

Then<br />

W ∩ M0 = W ∩ M ∩ M0 = (M\M0) ∩ M0 = ∅.<br />

This means that M0 ⊆ W c and it follows that M0 ⊆ W c .<br />

Since x0 ∈ M\M0 = M ∩ W, we conclude that x0 /∈ M, as asserted.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

By Theorem 3.5 <strong>the</strong>re is a l ∈ X ∗ such that l(M0) = {0} and<br />

l(x0) = 1.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

By Theorem 3.5 <strong>the</strong>re is a l ∈ X ∗ such that l(M0) = {0} and<br />

l(x0) = 1.<br />

Let x ∈ M. Then x − f (x)x0 ∈ M0 (since<br />

f (−f (x)x0) = f (x) − f (x)f (x0) = 0), and hence<br />

l(x − f (x)x0) = 0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

By Theorem 3.5 <strong>the</strong>re is a l ∈ X ∗ such that l(M0) = {0} and<br />

l(x0) = 1.<br />

Let x ∈ M. Then x − f (x)x0 ∈ M0 (since<br />

f (−f (x)x0) = f (x) − f (x)f (x0) = 0), and hence<br />

l(x − f (x)x0) = 0.<br />

It follows that l(x) = f (x).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.7) Let X be a locally convex topological vector space.<br />

Let B ⊆ X be a convex, balanced and closed subset. Let<br />

x0 ∈ X \B. There is an l ∈ X ∗ such that |l(x)| ≤ 1 for all x ∈ B<br />

while l(x0) > 1.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.7) Let X be a locally convex topological vector space.<br />

Let B ⊆ X be a convex, balanced and closed subset. Let<br />

x0 ∈ X \B. There is an l ∈ X ∗ such that |l(x)| ≤ 1 for all x ∈ B<br />

while l(x0) > 1.<br />

Pro<strong>of</strong>.<br />

It follows from Theorem 3.4 b) that <strong>the</strong>re are a Λ0 ∈ X ∗ and a real<br />

number γ ∈ R such that<br />

for all b ∈ B.<br />

ReΛ0(x0) < γ < ReΛ0(b)<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Theorem<br />

(Theorem 3.7) Let X be a locally convex topological vector space.<br />

Let B ⊆ X be a convex, balanced and closed subset. Let<br />

x0 ∈ X \B. There is an l ∈ X ∗ such that |l(x)| ≤ 1 for all x ∈ B<br />

while l(x0) > 1.<br />

Pro<strong>of</strong>.<br />

It follows from Theorem 3.4 b) that <strong>the</strong>re are a Λ0 ∈ X ∗ and a real<br />

number γ ∈ R such that<br />

ReΛ0(x0) < γ < ReΛ0(b)<br />

for all b ∈ B.<br />

Since 0 ∈ B we see that γ < 0. Set Λ00 = 1<br />

γ Λ0, and note that<br />

Re Λ00(x0) > 1 > Re Λ00(b), b ∈ B. (1)<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Because Λ00 is linear, it follows easily that Λ00(B) is convex and<br />

balanced since B is. It is <strong>the</strong>n easy to see (!!) that <strong>the</strong>re is an<br />

r ≥ 0 such that<br />

{z ∈ C : |z| < r} ⊆ Λ00(B) ⊆ {z ∈ C : |z| ≤ r}.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Because Λ00 is linear, it follows easily that Λ00(B) is convex and<br />

balanced since B is. It is <strong>the</strong>n easy to see (!!) that <strong>the</strong>re is an<br />

r ≥ 0 such that<br />

{z ∈ C : |z| < r} ⊆ Λ00(B) ⊆ {z ∈ C : |z| ≤ r}.<br />

Note that r ≤ 1 by (1), and that<br />

for all b ∈ B.<br />

|Λ00(b)| ≤ r ≤ 1 < ReΛ00(x0) (2)<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


<strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems<br />

Pro<strong>of</strong>.<br />

Because Λ00 is linear, it follows easily that Λ00(B) is convex and<br />

balanced since B is. It is <strong>the</strong>n easy to see (!!) that <strong>the</strong>re is an<br />

r ≥ 0 such that<br />

{z ∈ C : |z| < r} ⊆ Λ00(B) ⊆ {z ∈ C : |z| ≤ r}.<br />

Note that r ≤ 1 by (1), and that<br />

|Λ00(b)| ≤ r ≤ 1 < ReΛ00(x0) (2)<br />

for all b ∈ B.<br />

Choose α ∈ C such that |α| = 1 and αΛ00(x0) = |Λ00(x0)|. Set<br />

Λ = αΛ00, note that<br />

for all b ∈ B.<br />

Λ(x0) ≥ ReΛ00(x0) > 1 ≥ |Λ00(b)| = |Λ(b)|<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Let X be a real or complex vector space, and M a collection <strong>of</strong><br />

lineat functionals X → Φ.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Let X be a real or complex vector space, and M a collection <strong>of</strong><br />

lineat functionals X → Φ.<br />

The sets <strong>of</strong> <strong>the</strong> form<br />

{y ∈ X : |l(y) − l(x)| < ǫ} (3)<br />

where x ∈ X,ǫ > 0 and l ∈ M vary, is a subbase for a topology on<br />

X,<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Let X be a real or complex vector space, and M a collection <strong>of</strong><br />

lineat functionals X → Φ.<br />

The sets <strong>of</strong> <strong>the</strong> form<br />

{y ∈ X : |l(y) − l(x)| < ǫ} (3)<br />

where x ∈ X,ǫ > 0 and l ∈ M vary, is a subbase for a topology on<br />

X,<br />

namely <strong>the</strong> topology where a subset <strong>of</strong> X is open if and only if it is<br />

<strong>the</strong> union <strong>of</strong> sets which are <strong>the</strong> intersection <strong>of</strong> a finite collection <strong>of</strong><br />

such sets.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Let X be a real or complex vector space, and M a collection <strong>of</strong><br />

lineat functionals X → Φ.<br />

The sets <strong>of</strong> <strong>the</strong> form<br />

{y ∈ X : |l(y) − l(x)| < ǫ} (3)<br />

where x ∈ X,ǫ > 0 and l ∈ M vary, is a subbase for a topology on<br />

X,<br />

namely <strong>the</strong> topology where a subset <strong>of</strong> X is open if and only if it is<br />

<strong>the</strong> union <strong>of</strong> sets which are <strong>the</strong> intersection <strong>of</strong> a finite collection <strong>of</strong><br />

such sets.<br />

This will be called <strong>the</strong> M-topology <strong>of</strong> X.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Lemma<br />

The M-topology is Hausdorff if and only if M separates <strong>the</strong> points<br />

<strong>of</strong> X.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Lemma<br />

The M-topology is Hausdorff if and only if M separates <strong>the</strong> points<br />

<strong>of</strong> X.<br />

Pro<strong>of</strong>.<br />

Let x0,y0 ∈ X, x0 = y0. If <strong>the</strong> M-topology is Hausdorff <strong>the</strong>re are<br />

open set U,V such that x0 ∈ U,y0 ∈ V and U ∩ V = ∅.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Lemma<br />

The M-topology is Hausdorff if and only if M separates <strong>the</strong> points<br />

<strong>of</strong> X.<br />

Pro<strong>of</strong>.<br />

Let x0,y0 ∈ X, x0 = y0. If <strong>the</strong> M-topology is Hausdorff <strong>the</strong>re are<br />

open set U,V such that x0 ∈ U,y0 ∈ V and U ∩ V = ∅.<br />

We may assume that U and V are intersections <strong>of</strong> finite collections<br />

<strong>of</strong> sets <strong>of</strong> <strong>the</strong> form (3).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Lemma<br />

The M-topology is Hausdorff if and only if M separates <strong>the</strong> points<br />

<strong>of</strong> X.<br />

Pro<strong>of</strong>.<br />

Let x0,y0 ∈ X, x0 = y0. If <strong>the</strong> M-topology is Hausdorff <strong>the</strong>re are<br />

open set U,V such that x0 ∈ U,y0 ∈ V and U ∩ V = ∅.<br />

We may assume that U and V are intersections <strong>of</strong> finite collections<br />

<strong>of</strong> sets <strong>of</strong> <strong>the</strong> form (3).<br />

It follows that <strong>the</strong>re is a set <strong>of</strong> <strong>the</strong> form (3) which contains x0 but<br />

not y0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Lemma<br />

The M-topology is Hausdorff if and only if M separates <strong>the</strong> points<br />

<strong>of</strong> X.<br />

Pro<strong>of</strong>.<br />

Let x0,y0 ∈ X, x0 = y0. If <strong>the</strong> M-topology is Hausdorff <strong>the</strong>re are<br />

open set U,V such that x0 ∈ U,y0 ∈ V and U ∩ V = ∅.<br />

We may assume that U and V are intersections <strong>of</strong> finite collections<br />

<strong>of</strong> sets <strong>of</strong> <strong>the</strong> form (3).<br />

It follows that <strong>the</strong>re is a set <strong>of</strong> <strong>the</strong> form (3) which contains x0 but<br />

not y0.<br />

I.e.<br />

x0 ∈ {y ∈ X : |l(y) − l(x)| < ǫ}<br />

while |l(y0) − l(x)| ≥ ǫ for some x ∈ X,l ∈ M and some ǫ > 0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Lemma<br />

The M-topology is Hausdorff if and only if M separates <strong>the</strong> points<br />

<strong>of</strong> X.<br />

Pro<strong>of</strong>.<br />

Let x0,y0 ∈ X, x0 = y0. If <strong>the</strong> M-topology is Hausdorff <strong>the</strong>re are<br />

open set U,V such that x0 ∈ U,y0 ∈ V and U ∩ V = ∅.<br />

We may assume that U and V are intersections <strong>of</strong> finite collections<br />

<strong>of</strong> sets <strong>of</strong> <strong>the</strong> form (3).<br />

It follows that <strong>the</strong>re is a set <strong>of</strong> <strong>the</strong> form (3) which contains x0 but<br />

not y0.<br />

I.e.<br />

x0 ∈ {y ∈ X : |l(y) − l(x)| < ǫ}<br />

while |l(y0) − l(x)| ≥ ǫ for some x ∈ X,l ∈ M and some ǫ > 0.<br />

Then l(x0) = l(y0), and we conclude that M separates <strong>the</strong> points<br />

<strong>of</strong> X.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, assume that M separates <strong>the</strong> points <strong>of</strong> X. Let<br />

x0,y0 ∈ X, x0 = y0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, assume that M separates <strong>the</strong> points <strong>of</strong> X. Let<br />

x0,y0 ∈ X, x0 = y0.<br />

There is <strong>the</strong>n a functional l ∈ M such that l(x0) = l(y0).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, assume that M separates <strong>the</strong> points <strong>of</strong> X. Let<br />

x0,y0 ∈ X, x0 = y0.<br />

There is <strong>the</strong>n a functional l ∈ M such that l(x0) = l(y0).<br />

Set ǫ = 1/2 |l(x0) − l(y0)| > 0, and note that<br />

x0 ∈ {y ∈ X : |l(y) − l(x0)| < ǫ} ,<br />

y0 ∈ {y ∈ X : |l(y) − l(y0)| < ǫ} .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, assume that M separates <strong>the</strong> points <strong>of</strong> X. Let<br />

x0,y0 ∈ X, x0 = y0.<br />

There is <strong>the</strong>n a functional l ∈ M such that l(x0) = l(y0).<br />

Set ǫ = 1/2 |l(x0) − l(y0)| > 0, and note that<br />

Since<br />

x0 ∈ {y ∈ X : |l(y) − l(x0)| < ǫ} ,<br />

y0 ∈ {y ∈ X : |l(y) − l(y0)| < ǫ} .<br />

{y ∈ X : |l(y) − l(y0)| < ǫ} ∩ {y ∈ X : |l(y) − l(x0)| < ǫ} = ∅,<br />

<strong>the</strong> pro<strong>of</strong> is complete.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Theorem<br />

Theorem 3.10. Let X be a vector space and X ′ a separating vector<br />

space <strong>of</strong> linear functional on X. Then <strong>the</strong> X ′ -topology makes X a<br />

locally convex topological vector space whose dual is X ′ .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Theorem<br />

Theorem 3.10. Let X be a vector space and X ′ a separating vector<br />

space <strong>of</strong> linear functional on X. Then <strong>the</strong> X ′ -topology makes X a<br />

locally convex topological vector space whose dual is X ′ .<br />

The pro<strong>of</strong> is based on <strong>the</strong> following lemma <strong>of</strong> independent interest:<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Theorem<br />

Theorem 3.10. Let X be a vector space and X ′ a separating vector<br />

space <strong>of</strong> linear functional on X. Then <strong>the</strong> X ′ -topology makes X a<br />

locally convex topological vector space whose dual is X ′ .<br />

The pro<strong>of</strong> is based on <strong>the</strong> following lemma <strong>of</strong> independent interest:<br />

Lemma<br />

Let l1,l2,... ,ln and l be linear functional on <strong>the</strong> vector space X.<br />

The following are equivalent:<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Theorem<br />

Theorem 3.10. Let X be a vector space and X ′ a separating vector<br />

space <strong>of</strong> linear functional on X. Then <strong>the</strong> X ′ -topology makes X a<br />

locally convex topological vector space whose dual is X ′ .<br />

The pro<strong>of</strong> is based on <strong>the</strong> following lemma <strong>of</strong> independent interest:<br />

Lemma<br />

Let l1,l2,... ,ln and l be linear functional on <strong>the</strong> vector space X.<br />

The following are equivalent:<br />

(a) There are scalars α1,α2,... ,αn such that<br />

l = α1l1 + α2l2 + · · · + αnln.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Theorem<br />

Theorem 3.10. Let X be a vector space and X ′ a separating vector<br />

space <strong>of</strong> linear functional on X. Then <strong>the</strong> X ′ -topology makes X a<br />

locally convex topological vector space whose dual is X ′ .<br />

The pro<strong>of</strong> is based on <strong>the</strong> following lemma <strong>of</strong> independent interest:<br />

Lemma<br />

Let l1,l2,... ,ln and l be linear functional on <strong>the</strong> vector space X.<br />

The following are equivalent:<br />

(a) There are scalars α1,α2,... ,αn such that<br />

l = α1l1 + α2l2 + · · · + αnln.<br />

(b) There is a γ > 0 such that |l(x)| ≤ γ max1≤i≤n |li(x)| for all<br />

x ∈ X.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Theorem<br />

Theorem 3.10. Let X be a vector space and X ′ a separating vector<br />

space <strong>of</strong> linear functional on X. Then <strong>the</strong> X ′ -topology makes X a<br />

locally convex topological vector space whose dual is X ′ .<br />

The pro<strong>of</strong> is based on <strong>the</strong> following lemma <strong>of</strong> independent interest:<br />

Lemma<br />

Let l1,l2,... ,ln and l be linear functional on <strong>the</strong> vector space X.<br />

The following are equivalent:<br />

(a) There are scalars α1,α2,... ,αn such that<br />

l = α1l1 + α2l2 + · · · + αnln.<br />

(b) There is a γ > 0 such that |l(x)| ≤ γ max1≤i≤n |li(x)| for all<br />

x ∈ X.<br />

(c) For all x ∈ X, l1(x) = l2(x) = · · · = ln(x) = 0 ⇒ l(x) = 0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(<strong>of</strong> lemma): (a) ⇒ (b):<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(<strong>of</strong> lemma): (a) ⇒ (b):<br />

Set γ = n max1≤i≤n |αi|. Then<br />

|l(x)| ≤ |α1| |l1(x)| + |α2| |l2(x)| + · · · + |αn| |ln(x)|<br />

≤ n max<br />

1≤i≤n |αi| max<br />

1≤i≤n |li(x)| = γ max<br />

1≤i≤n |li(x)| .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(<strong>of</strong> lemma): (a) ⇒ (b):<br />

Set γ = n max1≤i≤n |αi|. Then<br />

|l(x)| ≤ |α1| |l1(x)| + |α2| |l2(x)| + · · · + |αn| |ln(x)|<br />

≤ n max<br />

1≤i≤n |αi| max<br />

1≤i≤n |li(x)| = γ max<br />

1≤i≤n |li(x)| .<br />

(b) ⇒ (c): This is trivial!<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(c) ⇒ (a): Define π : X → Φ n such that<br />

π(x) = (l1(x),l2(x),... ,ln(x)).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(c) ⇒ (a): Define π : X → Φ n such that<br />

π(x) = (l1(x),l2(x),... ,ln(x)).<br />

It follows from (c) that we can define l0 : π(X) → Φ such that<br />

l0 (π(x)) = l(x).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(c) ⇒ (a): Define π : X → Φ n such that<br />

π(x) = (l1(x),l2(x),... ,ln(x)).<br />

It follows from (c) that we can define l0 : π(X) → Φ such that<br />

l0 (π(x)) = l(x).<br />

Let P : Φ n → π(X) be a linear projection such that P (Φ n ) = π(X).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(c) ⇒ (a): Define π : X → Φ n such that<br />

π(x) = (l1(x),l2(x),... ,ln(x)).<br />

It follows from (c) that we can define l0 : π(X) → Φ such that<br />

l0 (π(x)) = l(x).<br />

Let P : Φ n → π(X) be a linear projection such that P (Φ n ) = π(X).<br />

Then F = l0 ◦ P : Φ n → Φ is a linear map such that<br />

F ◦ π(x) = l0 ◦ P ◦ π(x) = l0 (π(x)) = l(x).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(c) ⇒ (a): Define π : X → Φ n such that<br />

π(x) = (l1(x),l2(x),... ,ln(x)).<br />

It follows from (c) that we can define l0 : π(X) → Φ such that<br />

l0 (π(x)) = l(x).<br />

Let P : Φ n → π(X) be a linear projection such that P (Φ n ) = π(X).<br />

Then F = l0 ◦ P : Φ n → Φ is a linear map such that<br />

F ◦ π(x) = l0 ◦ P ◦ π(x) = l0 (π(x)) = l(x).<br />

Recall from linear algebra that <strong>the</strong> linear map F : Φ n → Φ is <strong>of</strong> <strong>the</strong><br />

form<br />

F(x1,x2,... ,xn) = α1x1 + α2x2 + · · · + αnxn.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

(c) ⇒ (a): Define π : X → Φ n such that<br />

π(x) = (l1(x),l2(x),... ,ln(x)).<br />

It follows from (c) that we can define l0 : π(X) → Φ such that<br />

l0 (π(x)) = l(x).<br />

Let P : Φ n → π(X) be a linear projection such that P (Φ n ) = π(X).<br />

Then F = l0 ◦ P : Φ n → Φ is a linear map such that<br />

F ◦ π(x) = l0 ◦ P ◦ π(x) = l0 (π(x)) = l(x).<br />

Recall from linear algebra that <strong>the</strong> linear map F : Φ n → Φ is <strong>of</strong> <strong>the</strong><br />

form<br />

F(x1,x2,... ,xn) = α1x1 + α2x2 + · · · + αnxn.<br />

It follows that<br />

l(x) = F ◦ π(x) = F (l1(x),l2(x),... ,ln(x))<br />

= α1l1(x) + α2l2(x) + · · · + αnln(x), x ∈ X.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 3.10. Almost by definition, <strong>the</strong> open sets in<br />

X ′ -topology are <strong>the</strong> sets that are unions <strong>of</strong> sets <strong>of</strong> <strong>the</strong> form<br />

l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn),<br />

where each li ∈ X ′ and Vi is an open subset <strong>of</strong> <strong>the</strong> scalars Φ.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 3.10. Almost by definition, <strong>the</strong> open sets in<br />

X ′ -topology are <strong>the</strong> sets that are unions <strong>of</strong> sets <strong>of</strong> <strong>the</strong> form<br />

l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn),<br />

where each li ∈ X ′ and Vi is an open subset <strong>of</strong> <strong>the</strong> scalars Φ.<br />

To show that X is a topological vector space in <strong>the</strong> X ′ -topology we<br />

check first that <strong>the</strong> vector space operations are continuous.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 3.10. Almost by definition, <strong>the</strong> open sets in<br />

X ′ -topology are <strong>the</strong> sets that are unions <strong>of</strong> sets <strong>of</strong> <strong>the</strong> form<br />

l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn),<br />

where each li ∈ X ′ and Vi is an open subset <strong>of</strong> <strong>the</strong> scalars Φ.<br />

To show that X is a topological vector space in <strong>the</strong> X ′ -topology we<br />

check first that <strong>the</strong> vector space operations are continuous.<br />

To show that addition is continuous, let U be an X ′ -open set. We<br />

must show that<br />

is X ′ -open in X × X.<br />

R = {(x,y) ∈ X × X : x + y ∈ U} (4)<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Let (x ′ ,y ′ ) be an element <strong>of</strong> R. It suffices to show that <strong>the</strong>re are<br />

X ′ -open sets S,T such that (x ′ ,y ′ ) ∈ S × T ⊆ R. To this end<br />

note that <strong>the</strong>re are pairs (li,Vi),i = 1,2,... ,n, such that li ∈ X ′ ,<br />

Vi ⊆ Φ is open and<br />

x ′ + y ′ ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Let (x ′ ,y ′ ) be an element <strong>of</strong> R. It suffices to show that <strong>the</strong>re are<br />

X ′ -open sets S,T such that (x ′ ,y ′ ) ∈ S × T ⊆ R. To this end<br />

note that <strong>the</strong>re are pairs (li,Vi),i = 1,2,... ,n, such that li ∈ X ′ ,<br />

Vi ⊆ Φ is open and<br />

x ′ + y ′ ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U.<br />

In particular, li(x ′ ) + li(y ′ ) ∈ Vi,i = 1,2,... ,n. Since <strong>the</strong> vector<br />

space operations are continuous on Φ, <strong>the</strong>re are open sets Si,Ti in<br />

Φ such that li(x ′ ) ∈ Si,li(y ′ ) ∈ Ti and Si + Ti ⊆ Vi,i = 1,2,... ,n.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Let (x ′ ,y ′ ) be an element <strong>of</strong> R. It suffices to show that <strong>the</strong>re are<br />

X ′ -open sets S,T such that (x ′ ,y ′ ) ∈ S × T ⊆ R. To this end<br />

note that <strong>the</strong>re are pairs (li,Vi),i = 1,2,... ,n, such that li ∈ X ′ ,<br />

Vi ⊆ Φ is open and<br />

x ′ + y ′ ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U.<br />

In particular, li(x ′ ) + li(y ′ ) ∈ Vi,i = 1,2,... ,n. Since <strong>the</strong> vector<br />

space operations are continuous on Φ, <strong>the</strong>re are open sets Si,Ti in<br />

Φ such that li(x ′ ) ∈ Si,li(y ′ ) ∈ Ti and Si + Ti ⊆ Vi,i = 1,2,... ,n.<br />

Set<br />

and<br />

S = l −1<br />

1 (S1) ∩ l −2<br />

2 (S2) ∩ · · · ∩ l −1<br />

n (Sn)<br />

T = l −1<br />

1 (T1) ∩ l −2<br />

2 (T2) ∩ · · · ∩ l −1<br />

n (Tn).<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Then S,T are X ′ -open and (x ′ ,y ′ ) ∈ S × T since li(x ′ ) ∈ Si and<br />

li(y ′ ) ∈ Ti,i = 1,2,... ,n.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Then S,T are X ′ -open and (x ′ ,y ′ ) ∈ S × T since li(x ′ ) ∈ Si and<br />

li(y ′ ) ∈ Ti,i = 1,2,... ,n.<br />

Fur<strong>the</strong>rmore, if s ∈ S,t ∈ T, we see that<br />

li(s + t) = li(s) + li(t) ∈ Si + Ti ⊆ Vi,<br />

proving that S + T ⊆ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U. I.e.<br />

S × T ⊆ R.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Then S,T are X ′ -open and (x ′ ,y ′ ) ∈ S × T since li(x ′ ) ∈ Si and<br />

li(y ′ ) ∈ Ti,i = 1,2,... ,n.<br />

Fur<strong>the</strong>rmore, if s ∈ S,t ∈ T, we see that<br />

li(s + t) = li(s) + li(t) ∈ Si + Ti ⊆ Vi,<br />

proving that S + T ⊆ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U. I.e.<br />

S × T ⊆ R.<br />

The pro<strong>of</strong> that scalar multiplication is also continuous is left to <strong>the</strong><br />

reader. See ’Noter og kommentarer’.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

In order to conclude that τ ′ makes X into a topological vector<br />

space it remains now only to show that every one-point set {x} in<br />

X is closed. This goes as follows:<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

In order to conclude that τ ′ makes X into a topological vector<br />

space it remains now only to show that every one-point set {x} in<br />

X is closed. This goes as follows:<br />

For each y = x <strong>the</strong>re is an element ly ∈ X ′ such that ly(x) = ly(y).<br />

This is because X ′ separates points by assumption. It follows that<br />

{x} c = <br />

{z ∈ X : ly(z) = ly(x)} .<br />

y∈{x} c<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

In order to conclude that τ ′ makes X into a topological vector<br />

space it remains now only to show that every one-point set {x} in<br />

X is closed. This goes as follows:<br />

For each y = x <strong>the</strong>re is an element ly ∈ X ′ such that ly(x) = ly(y).<br />

This is because X ′ separates points by assumption. It follows that<br />

{x} c = <br />

{z ∈ X : ly(z) = ly(x)} .<br />

Since<br />

y∈{x} c<br />

{z ∈ X : ly(z) = ly(x)} = l −1<br />

y (Φ\{ly(x)}) ,<br />

we see that {x} c is X ′ -open.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

X is locally convex: Consider an X ′ -open set U such that 0 ∈ U.<br />

There are <strong>the</strong>n pairs (li,Vi),i = 1,2,... ,n, such that<br />

0 ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U,<br />

where li ∈ X ′ and <strong>the</strong> Vi’s are open in Φ.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

X is locally convex: Consider an X ′ -open set U such that 0 ∈ U.<br />

There are <strong>the</strong>n pairs (li,Vi),i = 1,2,... ,n, such that<br />

0 ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U,<br />

where li ∈ X ′ and <strong>the</strong> Vi’s are open in Φ.<br />

Note that 0 = li(0) ∈ Vi for all i. Since Φ is a locally convex<br />

topological space, <strong>the</strong>re are open and convex neighborhoods Wi <strong>of</strong><br />

0 in Φ such that Wi ⊆ Vi.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

X is locally convex: Consider an X ′ -open set U such that 0 ∈ U.<br />

There are <strong>the</strong>n pairs (li,Vi),i = 1,2,... ,n, such that<br />

0 ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U,<br />

where li ∈ X ′ and <strong>the</strong> Vi’s are open in Φ.<br />

Note that 0 = li(0) ∈ Vi for all i. Since Φ is a locally convex<br />

topological space, <strong>the</strong>re are open and convex neighborhoods Wi <strong>of</strong><br />

0 in Φ such that Wi ⊆ Vi.<br />

Since <strong>the</strong> li’s are linear, l −1<br />

1 (W1) ∩ l −2<br />

2 (W2) ∩ · · · ∩ l −1<br />

n (Wn) is<br />

convex.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

X is locally convex: Consider an X ′ -open set U such that 0 ∈ U.<br />

There are <strong>the</strong>n pairs (li,Vi),i = 1,2,... ,n, such that<br />

0 ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U,<br />

where li ∈ X ′ and <strong>the</strong> Vi’s are open in Φ.<br />

Note that 0 = li(0) ∈ Vi for all i. Since Φ is a locally convex<br />

topological space, <strong>the</strong>re are open and convex neighborhoods Wi <strong>of</strong><br />

0 in Φ such that Wi ⊆ Vi.<br />

Since <strong>the</strong> li’s are linear, l −1<br />

1 (W1) ∩ l −2<br />

2 (W2) ∩ · · · ∩ l −1<br />

n (Wn) is<br />

convex.<br />

Since l −1<br />

1 (W1) ∩ l −2<br />

2 (W2) ∩ · · · ∩ l −1<br />

n (Wn) is X ′ -open and<br />

0 ∈ l −1<br />

1 (W1) ∩ l −2<br />

2 (W2) ∩ · · · ∩ l −1<br />

n (Wn) ⊆ U,<br />

we have shown that X is locally convex in <strong>the</strong> X ′ -topology.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

To prove that X ∗ = X ′ , note first that every element <strong>of</strong> X ′ is<br />

continuous with respect to <strong>the</strong> X ′ -topology, proving that X ′ ⊆ X ∗ .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

To prove that X ∗ = X ′ , note first that every element <strong>of</strong> X ′ is<br />

continuous with respect to <strong>the</strong> X ′ -topology, proving that X ′ ⊆ X ∗ .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, let Λ ∈ X ∗ . Then Λ −1 ({z ∈ Φ : |z| < 1}) is X ′ open<br />

and contains 0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, let Λ ∈ X ∗ . Then Λ −1 ({z ∈ Φ : |z| < 1}) is X ′ open<br />

and contains 0.<br />

There are <strong>the</strong>refore pairs (li,Vi),i = 1,2,... ,n, such that<br />

0 ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U,<br />

where li ∈ X ′ and <strong>the</strong> Vi’s are open in Φ.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, let Λ ∈ X ∗ . Then Λ −1 ({z ∈ Φ : |z| < 1}) is X ′ open<br />

and contains 0.<br />

There are <strong>the</strong>refore pairs (li,Vi),i = 1,2,... ,n, such that<br />

0 ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U,<br />

where li ∈ X ′ and <strong>the</strong> Vi’s are open in Φ.<br />

Note that 0 ∈ Vi for all i. It follows <strong>the</strong>n that Λ(x) = 0 when<br />

x ∈ ker l1 ∩ ker l2 ∩ · · · ∩ ker ln. Indeed, if li(x) = 0 for all i, we see<br />

that<br />

tx ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U<br />

for all t ∈ Φ, which implies that |t||Λ(x)| = |Λ(tx)| < 1 for all<br />

t ∈ Φ. This is only possible when Λ(x) = 0.<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems


Weak vector space topologies<br />

Pro<strong>of</strong>.<br />

Conversely, let Λ ∈ X ∗ . Then Λ −1 ({z ∈ Φ : |z| < 1}) is X ′ open<br />

and contains 0.<br />

There are <strong>the</strong>refore pairs (li,Vi),i = 1,2,... ,n, such that<br />

0 ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U,<br />

where li ∈ X ′ and <strong>the</strong> Vi’s are open in Φ.<br />

Note that 0 ∈ Vi for all i. It follows <strong>the</strong>n that Λ(x) = 0 when<br />

x ∈ ker l1 ∩ ker l2 ∩ · · · ∩ ker ln. Indeed, if li(x) = 0 for all i, we see<br />

that<br />

tx ∈ l −1<br />

1 (V1) ∩ l −2<br />

2 (V2) ∩ · · · ∩ l −1<br />

n (Vn) ⊆ U<br />

for all t ∈ Φ, which implies that |t||Λ(x)| = |Λ(tx)| < 1 for all<br />

t ∈ Φ. This is only possible when Λ(x) = 0.<br />

Now Lemma 3.9 implies that<br />

Λ ∈ Span{l1,l2,...,ln} ⊆ X ′ .<br />

Klaus Thomsen <strong>7.</strong> <strong>Consequences</strong> <strong>of</strong> <strong>the</strong> <strong>Hahn</strong>-<strong>Banach</strong> <strong>the</strong>orems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!