06.08.2013 Views

subregular nilpotent representations of lie algebras in prime ...

subregular nilpotent representations of lie algebras in prime ...

subregular nilpotent representations of lie algebras in prime ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

G.5. We have quite generally for all ; 2 C0 and all simple L <strong>in</strong> C<br />

T QL ' M<br />

(QL0)m(L;L0 )<br />

where L 0 runs over representatives <strong>of</strong> simple modules <strong>in</strong> C and<br />

L 0<br />

m(L; L 0 ) = dim Hom(T QL;L 0 ) = dim Hom(QL;T L 0 )=[T L 0 : L]: (2)<br />

Lemma: Let 2 C 0<br />

0 ,let be a short simple root with 2 J( ). Then we have<br />

Pro<strong>of</strong> : Set = $ , .We claim that<br />

63<br />

(1)<br />

n( )Q 2P 0 : (3)<br />

Q ' T Q : (4)<br />

Then the claim follows from G.3(2) and Lemma G.4. In order to get (4), we use<br />

(1) and (2): If L 0 is a simple module <strong>in</strong> C with T L 0 6=0,then 2 (L 0 ), hence<br />

L 0 ' L or L 0 ' L 0. It rema<strong>in</strong>s to recall that T L ' L and T L 0 ' L 0 by<br />

G.1.<br />

Remark: Let 2 C 0 0 ,let be a long simple root with 2 J( ). One gets similarly,<br />

us<strong>in</strong>g Remark G.4 <strong>in</strong>stead <strong>of</strong> Lemma G.4 that n( )Q 2P0 or n( )(Q ;1 +Q ;2 ) 2<br />

P 0 .<br />

G.6. Recall the <strong>in</strong>tegers m from D.6(3).<br />

Theorem: Let 2 C 0 we have<br />

0 . Suppose that all roots <strong>in</strong> R have the same length. Then<br />

[Q0 : L0]=jW j: (1)<br />

and<br />

for all 2 J( ) and<br />

for all ; 2 J( ).<br />

[Q : L 0]=[Q 0 : L ]=jW j m (2)<br />

[Q : L ]=jW j m m (3)<br />

Pro<strong>of</strong> : Wemay assume that (b + ) = 0. Lemma G.5 and G.4(1) imply that we<br />

can apply G.3(5) to all simple modules L and L 0 <strong>in</strong> C .Wehave<br />

jW ( + pX)j = jW j (4)<br />

by C.1. So the claim follows from [Z ( ):L ]=m (see F.5) and [Z ( ):L 0 ]=1<br />

(see C.2).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!