06.08.2013 Views

subregular nilpotent representations of lie algebras in prime ...

subregular nilpotent representations of lie algebras in prime ...

subregular nilpotent representations of lie algebras in prime ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

12<br />

B.5. Proposition: Suppose that and belong to the same facet with respect<br />

to Wp. Then T L is simple for each simple module L <strong>in</strong> C . The functor T<br />

<strong>in</strong>duces a bijection from the isomorphism classes <strong>of</strong> simple modules <strong>in</strong> C to the<br />

isomorphism classes <strong>of</strong> simple modules <strong>in</strong> C ; the <strong>in</strong>verse is <strong>in</strong>duced byT .<br />

Pro<strong>of</strong> : Consider a composition series<br />

Z ( )=Mr Mr,1 M1 M0 =0<br />

<strong>of</strong> Z ( ). The exactness <strong>of</strong> T and B.4(1) yield a cha<strong>in</strong> <strong>of</strong> submodules<br />

Z ( ) ' T Mr T Mr,1 T M1 T M0 =0:<br />

Each T Mi=T Mi,1 ' T (Mi=Mi,1) is non-zero by Lemma B.4. It follows that<br />

the length <strong>of</strong> Z ( ) is greater than or equal to the length <strong>of</strong> Z ( ). By symmetry<br />

we get also the reversed <strong>in</strong>equality. Therefore both modules have the same<br />

length. This imp<strong>lie</strong>s that all T (Mi=Mi+1) are simple, hence the rst claim <strong>of</strong> the<br />

proposition.<br />

We getby symmetry: If L 0 is simple <strong>in</strong> C , then also T L 0 is simple. It follows<br />

that T T L is simple for all L simple <strong>in</strong> C .Wehave by adjo<strong>in</strong>tness<br />

Homg(T T L; L) ' Homg(T L; T L) 6= 0;<br />

hence T T L ' L (both modules be<strong>in</strong>g simple). We get by symmetry: T T L 0 '<br />

L 0 for all L 0 simple <strong>in</strong> C . The second claim follows.<br />

B.6. Let I be a subset <strong>of</strong> the set <strong>of</strong> simple roots. Let PI be the correspond<strong>in</strong>g<br />

parabolic subgroup <strong>of</strong> G and pI its Lie algebra. So pI is the direct sum <strong>of</strong> b + and<br />

the g with 0<br />

and =2 RI) annihilates each Z ;I( ). Considered as a module over gI ' pI=n I ,<br />

each Z ;I( ) identi es with the correspond<strong>in</strong>g baby Verma module for U (gI).<br />

The Weyl group WI <strong>of</strong> RI identi es with the subgroup <strong>of</strong> W generated by<br />

the s with 2 I; similarly for the correspond<strong>in</strong>g a ne Weyl group WI;p. The<br />

group GI aga<strong>in</strong> satis es (B1) and (B2); for (B2) note that ZRI = ZI is a direct<br />

summand <strong>of</strong> ZR. We de ne categories C(I) <strong>of</strong> nite dimensional U (gI){modules

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!