06.08.2013 Views

structural geology, propagation mechanics and - Stanford School of ...

structural geology, propagation mechanics and - Stanford School of ...

structural geology, propagation mechanics and - Stanford School of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

σ<br />

b<br />

33<br />

1+<br />

ν b =<br />

2<br />

G<br />

G<br />

b<br />

s<br />

( 1−ν<br />

)<br />

b<br />

⎧<br />

⎨<br />

⎩<br />

∞ ∞ ( σ −σ )<br />

22<br />

2<br />

( 1−ν<br />

s )<br />

( 1+<br />

ν )<br />

33<br />

s<br />

G<br />

G<br />

b<br />

s<br />

∞ ∞ ( σ + σ )<br />

22<br />

33<br />

∞ ⎡<br />

+ σ11⎢<br />

⎣<br />

2ν<br />

b<br />

G<br />

−<br />

( 1+<br />

ν ) G ( 1+<br />

ν )<br />

b<br />

b<br />

s<br />

2ν<br />

s<br />

s<br />

⎤⎫<br />

⎥⎬<br />

−<br />

⎦⎭<br />

where the subscripts “b” <strong>and</strong> “s” denote the elastic parameters <strong>of</strong> the b<strong>and</strong> <strong>and</strong><br />

surrounding s<strong>and</strong>stone, respectively.<br />

The state <strong>of</strong> stress at the point adjacent to <strong>and</strong> immediately outside the tip <strong>of</strong> the<br />

model b<strong>and</strong> along the x2-axis can now be obtained from the conditions <strong>of</strong> displacement<br />

<strong>and</strong> traction continuity at the interface:<br />

σ = σ<br />

(5a)<br />

t<br />

22<br />

t<br />

11<br />

b<br />

11<br />

b<br />

22<br />

t b<br />

ε = ε , ε = ε<br />

(5b)<br />

33<br />

33<br />

where the superscript “t” refers to the values just outside the tip. In the second equation<br />

<strong>of</strong> (5b), ε33 t can be replaced by ε33 ∞ from the second equation <strong>of</strong> (1b). Again, the elasticity<br />

relations can be used to eliminate the elastic strains <strong>and</strong> yield expressions for the stresses<br />

at the tip <strong>of</strong> the b<strong>and</strong> in terms <strong>of</strong> the uniform stresses inside, the elastic constants <strong>and</strong> the<br />

nonzero plastic strain component ε11 p :<br />

σ<br />

G<br />

ν<br />

⎛ G<br />

⎜ −<br />

⎝<br />

⎞<br />

⎟<br />

⎠<br />

G<br />

ν −ν<br />

t s b s b s s b s b<br />

s p<br />

11 = σ 11 + σ 22 1 σ kk<br />

ε11<br />

Gb<br />

( 1 ν s ) ⎜ G ⎟<br />

+<br />

+<br />

(6a)<br />

−<br />

b Gb<br />

( 1−ν<br />

s )( 1+<br />

ν b ) ( 1−ν<br />

s )<br />

σ = σ<br />

(6b)<br />

σ<br />

t<br />

22<br />

G<br />

b<br />

22<br />

ν<br />

⎛ G<br />

⎜ −<br />

⎝<br />

⎞<br />

⎟<br />

⎠<br />

G<br />

ν −ν<br />

t s b s b s s b s b<br />

s p<br />

33 = σ 33 + σ 22 1 σ kk<br />

ν sε11<br />

Gb<br />

( 1 ν s ) ⎜ G ⎟<br />

+<br />

+<br />

(6c)<br />

−<br />

b Gb<br />

( 1−ν<br />

s )( 1+<br />

ν b ) ( 1−ν<br />

s )<br />

By substituting (4) into (6), expressions for the stresses at the tip in terms <strong>of</strong> the<br />

remote values also can be derived. It can be seen from (6) that, for given values <strong>of</strong> the<br />

elastic parameters <strong>and</strong> remote stresses, σ11 t <strong>and</strong> σ33 t are linear functions <strong>of</strong> ε11 p , with<br />

slopes <strong>of</strong> 2Gs/(1-νs) <strong>and</strong> [2Gs/(1-νs)] νs, respectively, while σ22 t remains constant. In fact,<br />

for ε11 p > 10 -3 <strong>and</strong> any realistic range <strong>of</strong> elastic parameters <strong>and</strong> remote stresses, the final<br />

63<br />

2G<br />

2G<br />

(4c)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!