06.08.2013 Views

structural geology, propagation mechanics and - Stanford School of ...

structural geology, propagation mechanics and - Stanford School of ...

structural geology, propagation mechanics and - Stanford School of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Comparison <strong>of</strong> the two approaches establishes the formal equivalence <strong>of</strong> the very<br />

eccentric ellipsoidal inclusion with the embedded layer.<br />

With the x1-axis normal to the layer—i.e. corresponding to the short axis <strong>of</strong> the<br />

inclusion (Figure 2.11a)—Cocco <strong>and</strong> Rice (2002) note that εij b = εij ∞ if neither i nor j is 1<br />

<strong>and</strong> σij b = σij ∞ if either i or j is 1, where the superscripts “b” <strong>and</strong> “∞” denote values <strong>of</strong><br />

stress (σ) <strong>and</strong> strain (ε) inside the model b<strong>and</strong> (layer/inclusion) <strong>and</strong> in the far field,<br />

respectively. The relations <strong>of</strong> particular relevance here are<br />

σ b<br />

ε b<br />

∞<br />

11 = σ 11<br />

∞<br />

22 = ε 22<br />

(1a)<br />

∞<br />

, ε ε<br />

(1b)<br />

b<br />

33 = 33<br />

Hooke’s law for the linear elastic relation between strain <strong>and</strong> stress is<br />

1 ⎧ ν ⎫<br />

ε ij = ⎨σ<br />

ij − σ kkδ<br />

ij ⎬<br />

2G<br />

⎩ 1+<br />

ν ⎭<br />

where the repeated index denotes summation, <strong>and</strong> δij =1 if i = j, <strong>and</strong> 0 if i ≠ j. The remote<br />

stresses <strong>and</strong> strains are related by (2). In the b<strong>and</strong>, (2) relates the stresses to the elastic<br />

strains. The total strain inside the b<strong>and</strong> is given by<br />

b total b elastic p<br />

[ ε ] [ ε ] + ε<br />

ij<br />

= (3)<br />

ij<br />

ij<br />

where εij p denotes the plastic strain representing compaction within the b<strong>and</strong>, which<br />

equals zero unless i = j = 1 as stipulated in the field-based conceptual model. Equations<br />

(1), (2) <strong>and</strong> (3) can be combined to eliminate the elastic strains <strong>and</strong> yield expressions for<br />

the stresses inside the model b<strong>and</strong> in terms <strong>of</strong> the far-field stresses <strong>and</strong> elastic constants:<br />

σ b<br />

σ<br />

∞<br />

11 = σ 11<br />

b<br />

22<br />

1+<br />

ν b =<br />

2<br />

G<br />

G<br />

b<br />

s<br />

( 1−ν<br />

)<br />

b<br />

⎧<br />

⎨<br />

⎩<br />

∞ ∞ ( σ −σ )<br />

22<br />

2<br />

( 1−ν<br />

s )<br />

( 1+<br />

ν )<br />

33<br />

s<br />

G<br />

G<br />

b<br />

s<br />

∞ ∞ ( σ + σ )<br />

22<br />

33<br />

∞ ⎡<br />

+ σ11⎢<br />

⎣<br />

62<br />

2ν<br />

b<br />

G<br />

−<br />

( 1+<br />

ν ) G ( 1+<br />

ν )<br />

b<br />

b<br />

s<br />

2ν<br />

s<br />

s<br />

⎤⎫<br />

⎥⎬<br />

+<br />

⎦⎭<br />

(2)<br />

(4a)<br />

(4b)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!