06.08.2013 Views

RB Special Report 290, The Potential Impacts of Climate Change on ...

RB Special Report 290, The Potential Impacts of Climate Change on ...

RB Special Report 290, The Potential Impacts of Climate Change on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Transportati<strong>on</strong> Research Board<br />

<str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

<strong>on</strong> U.S. Transportati<strong>on</strong><br />

Prepublicati<strong>on</strong> Copy • Uncorrected Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s


TRANSPORTATION RESEARCH BOARD<br />

2008 EXECUTIVE COMMITTEE*<br />

Chair: Debra L. Miller, Secretary, Kansas Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Topeka<br />

Vice Chair: Adib K. Kanafani, Cahill Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Berkeley<br />

Executive Director: Robert E. Skinner, Jr., Transportati<strong>on</strong> Research Board<br />

J. Barry Barker, Executive Director, Transit Authority <str<strong>on</strong>g>of</str<strong>on</strong>g> River City, Louisville, Kentucky<br />

Allen D. Biehler, Secretary, Pennsylvania Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Harrisburg<br />

John D. Bowe, President, Americas Regi<strong>on</strong>, APL Limited, Oakland, California<br />

Larry L. Brown, Sr., Executive Director, Mississippi Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Jacks<strong>on</strong><br />

Deborah H. Butler, Executive Vice President, Planning, and CIO, Norfolk Southern Corporati<strong>on</strong>, Norfolk, Virginia<br />

William A. V. Clark, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Geography, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Los Angeles<br />

David S. Ekern, Commissi<strong>on</strong>er, Virginia Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Richm<strong>on</strong>d<br />

Nicholas J. Garber, Henry L. Kinnier Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Virginia, Charlottesville<br />

Jeffrey W. Hamiel, Executive Director, Metropolitan Airports Commissi<strong>on</strong>, Minneapolis, Minnesota<br />

Edward A. (Ned) Helme, President, Center for Clean Air Policy, Washingt<strong>on</strong>, D.C.<br />

Will Kempt<strong>on</strong>, Director, California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Sacramento<br />

Susan Martinovich, Director, Nevada Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Cars<strong>on</strong> City<br />

Michael D. Meyer, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil and Envir<strong>on</strong>mental Engineering, Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Atlanta (Past<br />

Chair, 2006)<br />

Michael R. Morris, Director <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, North Central Texas Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Governments, Arlingt<strong>on</strong><br />

Neil J. Pedersen, Administrator, Maryland State Highway Administrati<strong>on</strong>, Baltimore<br />

Pete K. Rahn, Director, Missouri Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Jeffers<strong>on</strong> City<br />

Sandra Rosenbloom, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Planning, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ariz<strong>on</strong>a, Tucs<strong>on</strong><br />

Tracy L. Rosser, Vice President, Corporate Traffic, Wal-Mart Stores, Inc., Bent<strong>on</strong>ville, Arkansas<br />

Rosa Clausell Rountree, Executive Director, Georgia State Road and Tollway Authority, Atlanta<br />

Henry G. (Gerry) Schwartz, Jr., Chairman (retired), Jacobs/Sverdrup Civil, Inc., St. Louis, Missouri<br />

C. Michael Walt<strong>on</strong>, Ernest H. Cockrell Centennial Chair in Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Texas, Austin (Past Chair, 1991)<br />

Linda S. Wats<strong>on</strong>, CEO, LYNX–Central Florida Regi<strong>on</strong>al Transportati<strong>on</strong> Authority, Orlando (Past Chair, 2007)<br />

Steve Williams, Chairman and CEO, Maverick Transportati<strong>on</strong>, Inc., Little Rock, Arkansas<br />

Thad Allen (Adm., U.S. Coast Guard), Commandant, U.S. Coast Guard, Washingt<strong>on</strong>, D.C. (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Joseph H. Boardman, Administrator, Federal Railroad Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Rebecca M. Brewster, President and COO, American Transportati<strong>on</strong> Research Institute, Smyrna, Georgia (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Paul R. Brubaker, Administrator, Research and Innovative Technology Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

George Bugliarello, Chancellor, Polytechnic University <str<strong>on</strong>g>of</str<strong>on</strong>g> New York, Brooklyn; Foreign Secretary, Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Engineering, Washingt<strong>on</strong>, D.C. (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

J. Richard Capka, Administrator, Federal Highway Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Sean T. C<strong>on</strong>naught<strong>on</strong>, Administrator, Maritime Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

LeRoy Gishi, Chief, Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian Affairs, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interior, Washingt<strong>on</strong>, D.C. (ex<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Edward R. Hamberger, President and CEO, Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American Railroads, Washingt<strong>on</strong>, D.C. (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

John H. Hill, Administrator, Federal Motor Carrier Safety Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

John C. Horsley, Executive Director, American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and Transportati<strong>on</strong> Officials, Washingt<strong>on</strong>, D.C.<br />

(ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Carl T. Johns<strong>on</strong>, Administrator, Pipeline and Hazardous Materials Safety Administrati<strong>on</strong>, U.S Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>,<br />

Washingt<strong>on</strong>, D.C. (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

J. Edward Johns<strong>on</strong>, Director, Applied Science Directorate, Nati<strong>on</strong>al Aer<strong>on</strong>autics and Space Administrati<strong>on</strong>, John C. Stennis<br />

Space Center, Mississippi (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

William W. Millar, President, American Public Transportati<strong>on</strong> Associati<strong>on</strong>, Washingt<strong>on</strong>, D.C. (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio) (Past Chair, 1992)<br />

Nicole R. Nas<strong>on</strong>, Administrator, Nati<strong>on</strong>al Highway Traffic Safety Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Jeffrey N. Shane, Under Secretary for Policy, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

James S. Simps<strong>on</strong>, Administrator, Federal Transit Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Robert A. Sturgell, Acting Administrator, Federal Aviati<strong>on</strong> Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

Robert L. Van Antwerp (Lt. General, U.S. Army), Chief <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers and Commanding General, U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Engineers, Washingt<strong>on</strong>, D.C. (ex <str<strong>on</strong>g>of</str<strong>on</strong>g>ficio)<br />

* Membership as <str<strong>on</strong>g>of</str<strong>on</strong>g> March 2008.


Transportati<strong>on</strong> Research Board<br />

<str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

<strong>on</strong> U.S. Transportati<strong>on</strong><br />

Committee <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and U.S. Transportati<strong>on</strong><br />

Transportati<strong>on</strong> Research Board<br />

Divisi<strong>on</strong> <strong>on</strong> Earth and Life Studies<br />

Transportati<strong>on</strong> Research Board<br />

Washingt<strong>on</strong>, D.C.<br />

2008<br />

www.T<str<strong>on</strong>g>RB</str<strong>on</strong>g>.org


Transportati<strong>on</strong> Research Board <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g><br />

Subscriber Category<br />

1B energy and envir<strong>on</strong>ment<br />

Transportati<strong>on</strong> Research Board publicati<strong>on</strong>s are available by ordering individual publicati<strong>on</strong>s<br />

directly from the T<str<strong>on</strong>g>RB</str<strong>on</strong>g> Business Office, through the Internet at www.T<str<strong>on</strong>g>RB</str<strong>on</strong>g>.org or nati<strong>on</strong>alacademies.org/trb,<br />

or by annual subscripti<strong>on</strong> through organizati<strong>on</strong>al or individual affiliati<strong>on</strong> with<br />

T<str<strong>on</strong>g>RB</str<strong>on</strong>g>. Affiliates and library subscribers are eligible for substantial discounts. For further<br />

informati<strong>on</strong>, c<strong>on</strong>tact the Transportati<strong>on</strong> Research Board Business Office, 500 Fifth Street, NW,<br />

Washingt<strong>on</strong>, DC 20001 (teleph<strong>on</strong>e 202-334-3213; fax 202-334-2519; or e-mail<br />

T<str<strong>on</strong>g>RB</str<strong>on</strong>g>sales@nas.edu).<br />

Copyright 2008 by the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences. All rights reserved.<br />

Printed in the United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America.<br />

NOTICE: <str<strong>on</strong>g>The</str<strong>on</strong>g> project that is the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> this report was approved by the Governing Board <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Nati<strong>on</strong>al Research Council, whose members are drawn from the councils <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, and the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> the committee resp<strong>on</strong>sible for the report were chosen for their special competencies<br />

and with regard for appropriate balance.<br />

This report has been reviewed by a group <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals with diverse perspectives and<br />

technical expertise according to the procedures approved by a <str<strong>on</strong>g>Report</str<strong>on</strong>g> Review Committee<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> members <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Engineering, and the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine.<br />

This report was sp<strong>on</strong>sored by the Transportati<strong>on</strong> Research Board, the Nati<strong>on</strong>al<br />

Cooperative Highway Research Program, the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, the Transit<br />

Cooperative Research Program, the U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, and the U.S. Army<br />

Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers.<br />

Library <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>gress Cataloging-in-Publicati<strong>on</strong> Data<br />

Informati<strong>on</strong> will be provided in the printed publicati<strong>on</strong>.<br />

ISBN XXXXXXXX


<str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences is a private, n<strong>on</strong>pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it, self-perpetuating society <str<strong>on</strong>g>of</str<strong>on</strong>g> distinguished scholars<br />

engaged in scientific and engineering research, dedicated to the furtherance <str<strong>on</strong>g>of</str<strong>on</strong>g> science and technology and to their<br />

use for the general welfare. On the authority <str<strong>on</strong>g>of</str<strong>on</strong>g> the charter granted to it by the C<strong>on</strong>gress in 1863, the Academy<br />

has a mandate that requires it to advise the federal government <strong>on</strong> scientific and technical matters. Dr. Ralph J.<br />

Cicer<strong>on</strong>e is president <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering was established in 1964, under the charter <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sciences, as a parallel organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> outstanding engineers. It is aut<strong>on</strong>omous in its administrati<strong>on</strong> and in the<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its members, sharing with the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences the resp<strong>on</strong>sibility for advising the<br />

federal government. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering also sp<strong>on</strong>sors engineering programs aimed at<br />

meeting nati<strong>on</strong>al needs, encourages educati<strong>on</strong> and research, and recognizes the superior achievements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

engineers. Dr. Charles M. Vest is president <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine was established in 1970 by the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences to secure the services<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eminent members <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>s in the examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> policy matters pertaining to the health <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the public. <str<strong>on</strong>g>The</str<strong>on</strong>g> Institute acts under the resp<strong>on</strong>sibility given to the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences by its<br />

c<strong>on</strong>gressi<strong>on</strong>al charter to be an adviser to the federal government and, <strong>on</strong> its own initiative, to identify issues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

medical care, research, and educati<strong>on</strong>. Dr. Harvey V. Fineberg is president <str<strong>on</strong>g>of</str<strong>on</strong>g> the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Research Council was organized by the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences in 1916 to associate the<br />

broad community <str<strong>on</strong>g>of</str<strong>on</strong>g> science and technology with the Academy’s purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> furthering knowledge and advising<br />

the federal government. Functi<strong>on</strong>ing in accordance with general policies determined by the Academy, the<br />

Council has become the principal operating agency <str<strong>on</strong>g>of</str<strong>on</strong>g> both the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences and the Nati<strong>on</strong>al<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering in providing services to the government, the public, and the scientific and engineering<br />

communities. <str<strong>on</strong>g>The</str<strong>on</strong>g> Council is administered jointly by both the Academies and the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine. Dr. Ralph<br />

J. Cicer<strong>on</strong>e and Dr. Charles M. Vest are chair and vice chair, respectively, <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Research Council.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Transportati<strong>on</strong> Research Board is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> six major divisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Research Council. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

missi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Research Board is to provide leadership in transportati<strong>on</strong> innovati<strong>on</strong> and progress<br />

through research and informati<strong>on</strong> exchange, c<strong>on</strong>ducted within a setting that is objective, interdisciplinary, and<br />

multimodal. <str<strong>on</strong>g>The</str<strong>on</strong>g> Board’s varied activities annually engage about 7,000 engineers, scientists, and other<br />

transportati<strong>on</strong> researchers and practiti<strong>on</strong>ers from the public and private sectors and academia, all <str<strong>on</strong>g>of</str<strong>on</strong>g> whom<br />

c<strong>on</strong>tribute their expertise in the public interest. <str<strong>on</strong>g>The</str<strong>on</strong>g> program is supported by state transportati<strong>on</strong> departments,<br />

federal agencies including the comp<strong>on</strong>ent administrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, and other<br />

organizati<strong>on</strong>s and individuals interested in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong>. www.T<str<strong>on</strong>g>RB</str<strong>on</strong>g>.org<br />

www.nati<strong>on</strong>al-academies.org


Committee <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and U.S. Transportati<strong>on</strong><br />

Henry G. Schwartz, Jr. (Chair), Sverdrup/Jacobs Civil, Inc. (retired), St. Louis, Missouri<br />

Alan C. Clark, Houst<strong>on</strong>-Galvest<strong>on</strong> Area Council, Houst<strong>on</strong>, Texas<br />

G. Edward Dickey, Loyola College, Baltimore, Maryland<br />

George C. Eads, CRA Internati<strong>on</strong>al, Washingt<strong>on</strong>, D.C.<br />

Robert E. Gallamore, <str<strong>on</strong>g>The</str<strong>on</strong>g> Gallamore Group, Rehoboth Beach, Delaware<br />

Genevieve Giuliano, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Southern California, Los Angeles<br />

William J. Gutowski, Jr., Iowa State University, Ames, Iowa<br />

Randall H. Iwasaki, California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Sacramento<br />

Klaus H. Jacob, Columbia University, Palisades, New York<br />

Thomas R. Karl, Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong>, Asheville, North Carolina<br />

Robert J. Lempert, <str<strong>on</strong>g>The</str<strong>on</strong>g> Rand Corporati<strong>on</strong>, Santa M<strong>on</strong>ica, California<br />

Luisa Paiew<strong>on</strong>sky, Massachusetts Highway Department, Bost<strong>on</strong>, Massachusetts<br />

S. George H. Philander, Princet<strong>on</strong> University, Princet<strong>on</strong>, New Jersey (through December 2006)<br />

Christopher R. Zeppie, <str<strong>on</strong>g>The</str<strong>on</strong>g> Port Authority <str<strong>on</strong>g>of</str<strong>on</strong>g> New York and New Jersey, New York City<br />

Nati<strong>on</strong>al Research Council Staff<br />

Nancy P. Humphrey, Study Director, Transportati<strong>on</strong> Research Board<br />

Amanda C. Staudt, Senior Program Officer, Divisi<strong>on</strong> <strong>on</strong> Earth and Life Studies (through<br />

February 28, 2007)


Divisi<strong>on</strong> <strong>on</strong> Earth and Life Studies <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Research Committee<br />

Ant<strong>on</strong>io J. Busalacchi, Jr., University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland, College Park, Chair<br />

Ana P. Barros, Duke University, Durham, North Carolina<br />

Cecilia Bitz, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Seattle<br />

James A. Coakley, Jr., Oreg<strong>on</strong> State University, Corvallis<br />

Gabriele Hegerl, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh, Edinburgh, United Kingdom<br />

Henry D. Jacoby, Massachusetts Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Cambridge<br />

Anth<strong>on</strong>y C. Janetos, Pacific Northwest Nati<strong>on</strong>al Laboratory/University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland, College<br />

Park<br />

Robert J. Lempert, RAND Corporati<strong>on</strong>, Santa M<strong>on</strong>ica, California<br />

Roger B. Lukas, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Hawaii, H<strong>on</strong>olulu<br />

Linda O. Mearns, Nati<strong>on</strong>al Center for Atmospheric Research, Boulder, Colorado<br />

Gerald A. Meehl, Nati<strong>on</strong>al Center for Atmospheric Research, Boulder, Colorado<br />

Joyce E. Penner, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, Ann Arbor<br />

Richard Richels, Electric Power Research Institute, Washingt<strong>on</strong>, DC<br />

Taro Takahashi, Lam<strong>on</strong>t-Doherty Earth Observatory, Palisades, New York<br />

L<strong>on</strong>nie G. Thomps<strong>on</strong>, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ohio State University, Columbus


L<br />

Preface<br />

eading scientists <strong>on</strong> the Intergovernmental Panel for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> published their fourth<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge about climate change and its impacts in spring 2007.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y reached c<strong>on</strong>sensus that human activity is resp<strong>on</strong>sible for many observed climate changes,<br />

particularly the warming temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the last several decades, and c<strong>on</strong>cluded that there is a<br />

need for far more extensive adaptati<strong>on</strong> than is currently occurring to reduce vulnerability to<br />

future climate changes. In September 2007, the Nati<strong>on</strong>al Research Council (NRC) released a<br />

report examining the U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program, which oversees federal research <strong>on</strong><br />

climate change in the United States. <str<strong>on</strong>g>The</str<strong>on</strong>g> report noted that understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical climate<br />

system has progressed rapidly, but that the use <str<strong>on</strong>g>of</str<strong>on</strong>g> this knowledge to support decisi<strong>on</strong> making,<br />

manage risks, and engage stakeholders is inadequate.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> transportati<strong>on</strong> sector is a good case in point. Little c<strong>on</strong>sensus exists am<strong>on</strong>g<br />

transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als that climate change is occurring or warrants acti<strong>on</strong> now. Addressing<br />

climate change requires an examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plausible future scenarios, a l<strong>on</strong>g-term perspective,<br />

the capacity to deal with uncertain and changing informati<strong>on</strong>, and resp<strong>on</strong>ses that may extend<br />

bey<strong>on</strong>d jurisdicti<strong>on</strong>al boundaries and transportati<strong>on</strong> modal resp<strong>on</strong>sibilities. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are significant<br />

challenges for transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als. This report is intended to help illuminate the nature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest relevance for U.S. transportati<strong>on</strong> and to<br />

suggest appropriate adaptati<strong>on</strong> strategies and organizati<strong>on</strong>al resp<strong>on</strong>ses.<br />

This study was requested by the Executive Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Research<br />

Board (T<str<strong>on</strong>g>RB</str<strong>on</strong>g>) and was c<strong>on</strong>ducted with the Divisi<strong>on</strong> <strong>on</strong> Earth and Life Studies (DELS). It was<br />

funded by a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> organizati<strong>on</strong>s, including T<str<strong>on</strong>g>RB</str<strong>on</strong>g>, the Nati<strong>on</strong>al Cooperative Highway<br />

Research Program, the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (US DOT), the Transit Cooperative<br />

Research Program, the U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, and the U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Engineers. T<str<strong>on</strong>g>RB</str<strong>on</strong>g> and DELS formed a committee <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 members comprising experts in climate<br />

science, meteorology, transportati<strong>on</strong> planning and engineering, transportati<strong>on</strong> operati<strong>on</strong>s and<br />

maintenance, risk analysis, and ec<strong>on</strong>omics to c<strong>on</strong>duct the study. 1 <str<strong>on</strong>g>The</str<strong>on</strong>g> committee was chaired by<br />

Henry G. Schwartz, Jr., retired president and chairman <str<strong>on</strong>g>of</str<strong>on</strong>g> Sverdrup/Jacobs Civil, Inc., and<br />

member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering.<br />

To carry out its charge, the committee reviewed the literature in the field, requested<br />

numerous briefings, commissi<strong>on</strong>ed five papers to explore various aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> U.S. transportati<strong>on</strong>, and held a 1-day c<strong>on</strong>ference to explore these issues<br />

with a broader audience. <str<strong>on</strong>g>The</str<strong>on</strong>g> commissi<strong>on</strong>ed papers provided the committee with important<br />

informati<strong>on</strong> <strong>on</strong> various aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> first<br />

paper, by Thomas C. Peters<strong>on</strong>, Marjorie McGuirk, Andrew H. Horvitz, and Tamara Houst<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong> and Michael F. Wehner <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lawrence<br />

Berkeley Nati<strong>on</strong>al Laboratory, helped set the stage by identifying the climate factors <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest<br />

relevance for transportati<strong>on</strong>, summarizing current understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> projected climate changes for<br />

various U.S. regi<strong>on</strong>s, and describing potential impacts <strong>on</strong> transportati<strong>on</strong>. A paper by Michael D.<br />

Meyer <str<strong>on</strong>g>of</str<strong>on</strong>g> the School <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil and Envir<strong>on</strong>mental Engineering at the Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology examines the role <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> design standards in light <str<strong>on</strong>g>of</str<strong>on</strong>g> potential impacts<br />

1 George Philander, a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, participated as a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the committee<br />

through 2006, when he resigned because <str<strong>on</strong>g>of</str<strong>on</strong>g> extended foreign travel and new commitments.<br />

vii


viii <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

from climate change. A third paper, by Stephen C. Lockwood <str<strong>on</strong>g>of</str<strong>on</strong>g> Pars<strong>on</strong>s Brinckerh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, reviews<br />

operati<strong>on</strong>al strategies for addressing climate change. A fourth paper, by Lance R. Grenzeback <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Cambridge Systematics, Inc., and Andrew Lukmann <str<strong>on</strong>g>of</str<strong>on</strong>g> the Massachusetts Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology—a case study <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> sector’s resp<strong>on</strong>se to and recovery from<br />

Hurricanes Katrina and Rita—examines the vulnerabilities and strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

transportati<strong>on</strong> modes in the event <str<strong>on</strong>g>of</str<strong>on</strong>g> a shock to the system. A final paper, by James A. Dewar<br />

and Martin Wachs <str<strong>on</strong>g>of</str<strong>on</strong>g> the RAND Corporati<strong>on</strong>, 2 provides a survey <str<strong>on</strong>g>of</str<strong>on</strong>g> approaches to decisi<strong>on</strong><br />

making under uncertainty, drawing <strong>on</strong> examples from other sectors and suggesting possible new<br />

approaches for transportati<strong>on</strong> planning and decisi<strong>on</strong> making.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> papers were reviewed by the committee and discussants at a 1-day c<strong>on</strong>ference (see<br />

next paragraph) and revised by the authors. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are listed in Appendix C. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

length and printing costs, the papers are available <strong>on</strong>ly in electr<strong>on</strong>ic form. <str<strong>on</strong>g>The</str<strong>on</strong>g> reader is<br />

cauti<strong>on</strong>ed that the interpretati<strong>on</strong>s and c<strong>on</strong>clusi<strong>on</strong>s c<strong>on</strong>tained in the papers are those <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

authors. <str<strong>on</strong>g>The</str<strong>on</strong>g> key findings endorsed by the committee appear in the body <str<strong>on</strong>g>of</str<strong>on</strong>g> the report.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> committee recognizes that five papers cannot cover the full range <str<strong>on</strong>g>of</str<strong>on</strong>g> issues facing the<br />

transportati<strong>on</strong> sector as it begins to c<strong>on</strong>sider the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. Thus, a<br />

c<strong>on</strong>ference was held midway through the study to examine the papers with a broader audience <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate scientists and academicians and practiti<strong>on</strong>ers from all transportati<strong>on</strong> modes, and to<br />

engage the transportati<strong>on</strong> community in particular in c<strong>on</strong>sidering the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change. Each paper was presented and critiqued by a commentator, followed by discussi<strong>on</strong> from<br />

the authors and invited participants. <str<strong>on</strong>g>The</str<strong>on</strong>g> workshop c<strong>on</strong>cluded with a summary by two<br />

rapporteurs⎯<strong>on</strong>e from the climate science and <strong>on</strong>e from the transportati<strong>on</strong> community. Of the<br />

144 individuals invited to the c<strong>on</strong>ference, 51 attended. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir names and affiliati<strong>on</strong>s, al<strong>on</strong>g with<br />

the c<strong>on</strong>ference agenda, can be found in Appendix D. <str<strong>on</strong>g>The</str<strong>on</strong>g> commentary and critiques <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>ference participants were c<strong>on</strong>sidered in both finalizing the authored papers and preparing this<br />

final report.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> committee also supplemented its expertise with briefings at its meetings from a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> experts. In particular, the committee would like to thank Eric J. Barr<strong>on</strong>, distinguished<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> geosciences and dean <str<strong>on</strong>g>of</str<strong>on</strong>g> the College <str<strong>on</strong>g>of</str<strong>on</strong>g> Earth and Mineral Sciences at Pennsylvania<br />

State University (now at the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Texas at Austin), who provided the committee with an<br />

overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific c<strong>on</strong>sensus <strong>on</strong> climate change, c<strong>on</strong>tinuing uncertainties, and<br />

implicati<strong>on</strong>s for transportati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee would also like to thank Michael Sav<strong>on</strong>is, team<br />

leader for air quality at the Federal Highway Administrati<strong>on</strong> (FHWA), and Joanne Potter, senior<br />

associate at Cambridge Systematics, Inc., for their briefing <strong>on</strong> the Gulf Coast Study sp<strong>on</strong>sored by<br />

the US DOT and the U.S. Geological Survey—an in-depth look at the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change in this vulnerable regi<strong>on</strong>; Paul Pisano, team leader at FHWA, for his presentati<strong>on</strong><br />

<strong>on</strong> the U.S. Surface Weather Research Program; Ian Buckle, director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Center for Civil<br />

Engineering Earthquake Research at the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nevada at Reno, for his briefing <strong>on</strong> the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> earthquake standards and the relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> this effort to the revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> design standards to address the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change; Mark<br />

Hinsdale, assistant vice president, Capacity Management and Network Planning, at CSX<br />

Corporati<strong>on</strong>, for his overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricane Katrina <strong>on</strong> rail infrastructure; and<br />

Lourdes Maurice, chief scientific and technical advisor for envir<strong>on</strong>ment, and Mohan Gupta,<br />

operati<strong>on</strong>s research analyst, at the Federal Aviati<strong>on</strong> Administrati<strong>on</strong> for their overview <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> the aviati<strong>on</strong> system.<br />

2 <str<strong>on</strong>g>The</str<strong>on</strong>g> authors both work for the RAND Corporati<strong>on</strong>, but the report was prepared by the authors as individuals.


Preface ix<br />

This report has been reviewed in draft form by individuals chosen for their diverse<br />

perspectives and technical expertise, in accordance with procedures approved by the NRC’s<br />

<str<strong>on</strong>g>Report</str<strong>on</strong>g> Review Committee. <str<strong>on</strong>g>The</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this independent review is to provide candid and<br />

critical comments that assist the authors and the NRC in making the published report as sound as<br />

possible and to ensure that the report meets instituti<strong>on</strong>al standards for objectivity, evidence, and<br />

resp<strong>on</strong>siveness to the study charge. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the review comments and draft manuscript<br />

remain c<strong>on</strong>fidential to protect the integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> the deliberative process. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee wishes to<br />

thank the following individuals for their participati<strong>on</strong> in the review <str<strong>on</strong>g>of</str<strong>on</strong>g> this report: John J.<br />

Boland, Johns Hopkins University (retired) Baltimore, Maryland; William R. Black, Indiana<br />

University, Bloomingt<strong>on</strong>; Virginia Burkett, U.S. Geological Survey, Many, Louisiana; Isaac M.<br />

Held, Princet<strong>on</strong> University, Princet<strong>on</strong>, New Jersey; George M. Hornberger, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Virginia, Charlottesville; Roger E. Kaspers<strong>on</strong>, Clark University, Worcester, Massachusetts;<br />

Margaret A. LeM<strong>on</strong>e, Nati<strong>on</strong>al Center for Atmospheric Research, Boulder, Colorado; Ananth<br />

Prasad, Florida Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Tallahasee; and Michael J. Scott, Pacific<br />

Northwest Nati<strong>on</strong>al Laboratory, Richland, Washingt<strong>on</strong>.<br />

Although the reviewers listed above provided many c<strong>on</strong>structive comments and<br />

suggesti<strong>on</strong>s, they were not asked to endorse the committee’s c<strong>on</strong>clusi<strong>on</strong>s or recommendati<strong>on</strong>s,<br />

nor did they see the final draft <str<strong>on</strong>g>of</str<strong>on</strong>g> the report before its release. <str<strong>on</strong>g>The</str<strong>on</strong>g> review <str<strong>on</strong>g>of</str<strong>on</strong>g> this report was<br />

overseen by Susan Hans<strong>on</strong>, Clark University, Worcester, Massachusetts, and C. Michael Walt<strong>on</strong>,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Texas at Austin. Appointed by the NRC, they were resp<strong>on</strong>sible for making certain<br />

that an independent examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the report was carried out in accordance with instituti<strong>on</strong>al<br />

procedures and that all review comments were carefully c<strong>on</strong>sidered. Resp<strong>on</strong>sibility for the final<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> this report rests entirely with the authoring committee and the instituti<strong>on</strong>.<br />

Nancy P. Humphrey <str<strong>on</strong>g>of</str<strong>on</strong>g> T<str<strong>on</strong>g>RB</str<strong>on</strong>g>, together with Amanda C. Staudt <str<strong>on</strong>g>of</str<strong>on</strong>g> DELS, managed the<br />

study. 3 Ms. Humphrey drafted major porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the final report under the guidance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

committee and the supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Stephen R. Godwin, director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Studies and <str<strong>on</strong>g>Special</str<strong>on</strong>g><br />

Programs Divisi<strong>on</strong> at T<str<strong>on</strong>g>RB</str<strong>on</strong>g>, and Chris Elfring, program director at DELS. Ms. Staudt drafted<br />

Chapter 2, which provides an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the current state <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge about climate change<br />

and its potential impacts; committee members Thomas R. Karl and William J. Gutowski, Jr.,<br />

made substantial revisi<strong>on</strong>s. Committee member George C. Eads wrote Appendix B, which<br />

summarizes the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport-related greenhouse gas emissi<strong>on</strong>s to climate change and<br />

reviews potential strategies for mitigating these impacts. Suzanne Schneider, associate executive<br />

director <str<strong>on</strong>g>of</str<strong>on</strong>g> T<str<strong>on</strong>g>RB</str<strong>on</strong>g>, managed the report review process. <str<strong>on</strong>g>Special</str<strong>on</strong>g> appreciati<strong>on</strong> is expressed to R<strong>on</strong>a<br />

Briere, who edited the report. Jennifer Weeks and Norman Solom<strong>on</strong> prepared the final<br />

manuscript and the commissi<strong>on</strong>ed papers for posting, under the supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Javy Awan,<br />

Director <str<strong>on</strong>g>of</str<strong>on</strong>g> Publicati<strong>on</strong>s. Amelia Mathis assisted with meeting arrangements and<br />

communicati<strong>on</strong>s with committee members, Laura Toth helped with c<strong>on</strong>ference arrangements,<br />

and Alisa Decatur provided word processing support for preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the final manuscript.<br />

3 Ms. Staudt left DELS in February 2007 to join the World Wildlife Federati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>reafter, Ian Kraucunas and<br />

Curtis Marshall <str<strong>on</strong>g>of</str<strong>on</strong>g> DELS provided assistance with the study.


C<strong>on</strong>tents<br />

Summary.........................................................................................................................................1<br />

1 Introducti<strong>on</strong>......................................................................................................................15<br />

Study Charge, Scope, and Audience..................................................................................16<br />

Why <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Matters............................................................................................19<br />

Study Approach and Key Issues ........................................................................................21<br />

Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Report</str<strong>on</strong>g>.................................................................................................24<br />

2 Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> .....................................................................................27<br />

Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> Global <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>.................................................................................27<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s Relevant to U.S. Transportati<strong>on</strong> ............................................................37<br />

Findings..............................................................................................................................56<br />

3 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> ............................................................61<br />

Vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> System to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>........................................61<br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> by Transportati<strong>on</strong> Mode........................................................................64<br />

Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Assessments for Particular Areas or Regi<strong>on</strong>s...................................................70<br />

Findings..............................................................................................................................84<br />

Annex 3-1: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s and <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>............................88<br />

4 Challenges to Resp<strong>on</strong>se....................................................................................................95<br />

Decisi<strong>on</strong> Making in the Transportati<strong>on</strong> Sector ..................................................................95<br />

Challenges Posed by <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> .............................................................................100<br />

A Decisi<strong>on</strong> Framework for Addressing <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> ................................................103<br />

Findings............................................................................................................................106<br />

Annex 4-1: Applying Probabilistic Risk Assessment to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

and Transportati<strong>on</strong> ...........................................................................................................109<br />

5 Meeting the Challenges..................................................................................................113<br />

Adaptati<strong>on</strong> Strategies.......................................................................................................113<br />

Crosscutting Issues...........................................................................................................124<br />

Findings............................................................................................................................129<br />

Annex 5-1A: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong>,<br />

and Adaptati<strong>on</strong> Opti<strong>on</strong>s ...................................................................................................133<br />

Annex 5-1B: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong>,<br />

and Adaptati<strong>on</strong> Opti<strong>on</strong>s ...................................................................................................139<br />

Annex 5-1C: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong>,<br />

and Adaptati<strong>on</strong> Opti<strong>on</strong>s ...................................................................................................142


6 Summing Up...................................................................................................................145<br />

Which <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s Are Most Relevant for U.S. Transportati<strong>on</strong>?...........................145<br />

How Will <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Affect U.S. Transportati<strong>on</strong>? .................................................146<br />

How Should Transportati<strong>on</strong> Decisi<strong>on</strong> Makers Resp<strong>on</strong>d?................................................147<br />

What Data and Decisi<strong>on</strong> Support Tools Are Needed?.....................................................149<br />

Which Adaptati<strong>on</strong> Strategies Make Sense? .....................................................................151<br />

What Acti<strong>on</strong>s and Research Are Needed to Prepare for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>? .....................157<br />

Appendix A Detailed Statement <str<strong>on</strong>g>of</str<strong>on</strong>g> Task ...............................................................................159<br />

Appendix B C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas<br />

Emissi<strong>on</strong>s and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies .......................................161<br />

Appendix C List <str<strong>on</strong>g>of</str<strong>on</strong>g> Commissi<strong>on</strong>ed Papers and Authors .....................................................207<br />

Appendix D C<strong>on</strong>ference Agenda and Participant List ........................................................209<br />

Study Committee Biographical Informati<strong>on</strong>...........................................................................213


T<br />

Summary<br />

he world’s leading climate scientists have reached c<strong>on</strong>sensus that human activity in the form<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gas (GHG) emissi<strong>on</strong>s is warming the planet in ways that will have pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound<br />

and unsettling impacts <strong>on</strong> natural resources, energy use, ecosystems, ec<strong>on</strong>omic activity, and<br />

potentially quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life. <str<strong>on</strong>g>The</str<strong>on</strong>g> earth’s climate is always in a state <str<strong>on</strong>g>of</str<strong>on</strong>g> flux, but what is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern<br />

today is the rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change and the unabated c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human activity to its<br />

occurrence. Many studies have already examined the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong><br />

broad sectors <str<strong>on</strong>g>of</str<strong>on</strong>g> the ec<strong>on</strong>omy, such as agriculture and forestry, but few have studied the impacts<br />

<strong>on</strong> transportati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> primary focus <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is <strong>on</strong> the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change 1 for the<br />

infrastructure and operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. transportati<strong>on</strong>. 2 <str<strong>on</strong>g>The</str<strong>on</strong>g> report provides transportati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als with an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific c<strong>on</strong>sensus <strong>on</strong> those current and future climate<br />

changes <str<strong>on</strong>g>of</str<strong>on</strong>g> particular relevance to U.S. transportati<strong>on</strong>, including the limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> present<br />

scientific understanding as to their precise timing, magnitude, and geographic locati<strong>on</strong>; identifies<br />

potential impacts <strong>on</strong> U.S. transportati<strong>on</strong> and adaptati<strong>on</strong> opti<strong>on</strong>s; and <str<strong>on</strong>g>of</str<strong>on</strong>g>fers recommendati<strong>on</strong>s for<br />

both research and acti<strong>on</strong>s that can be taken to prepare for climate change. <str<strong>on</strong>g>The</str<strong>on</strong>g> report also<br />

summarizes previous work <strong>on</strong> strategies for reducing transportati<strong>on</strong>-related emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

dioxide (CO2)—the primary GHG—that c<strong>on</strong>tribute to climate change, a relatively wellresearched<br />

area (see Appendix B).<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change will have significant impacts <strong>on</strong> transportati<strong>on</strong>, affecting the way U.S.<br />

transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als plan, design, c<strong>on</strong>struct, operate, and maintain infrastructure.<br />

Decisi<strong>on</strong>s taken today, particularly those related to the redesign and retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting <str<strong>on</strong>g>of</str<strong>on</strong>g> existing or the<br />

locati<strong>on</strong> and design <str<strong>on</strong>g>of</str<strong>on</strong>g> new transportati<strong>on</strong> infrastructure, will affect how well the system adapts<br />

to climate change far into the future. Focusing <strong>on</strong> the problem now should help avoid costly<br />

future investments and disrupti<strong>on</strong>s to operati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> primary objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is to<br />

provide guidance for transportati<strong>on</strong> decisi<strong>on</strong> makers <strong>on</strong> how best to proceed.<br />

CLIMATE CHANGES OF GREATEST RELEVANCE FOR U.S. TRANSPORTATION<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is not just a problem for the future. Recent global climate changes, such as<br />

warming temperatures and rising sea levels, likely reflect the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s released<br />

into the atmosphere over the past century. Even if drastic measures were taken today to stabilize<br />

or totally eliminate GHG emissi<strong>on</strong>s, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change would c<strong>on</strong>tinue to be<br />

experienced, and U.S. transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als would have to adapt to their c<strong>on</strong>sequences.<br />

1 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change refers to a statistically significant variati<strong>on</strong> in either the mean state <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate or its variability<br />

over an extended period, typically decades or l<strong>on</strong>ger, that can be attributed to either natural causes or human<br />

activity. Weather refers to the familiar hour-by-hour, day-by-day changes in temperature, cloudiness, precipitati<strong>on</strong>,<br />

and other atmospheric phenomena.<br />

2 In this report, infrastructure refers to both transportati<strong>on</strong> networks (e.g., road and rail systems) and facilities (e.g.,<br />

bridges, tunnels, ports). All modes <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> are covered─highways (including bridges and tunnels), rail<br />

(including private rail lines and public transportati<strong>on</strong>), marine and air transportati<strong>on</strong>, and pipelines.<br />

1


2 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Based <strong>on</strong> current knowledge, climate scientists have identified five climate changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particular importance to transportati<strong>on</strong> and estimated the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> their occurrence during<br />

the twenty-first century (detailed in Box S-1):<br />

BOX S-1<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Greatest Relevance for U.S. Transportati<strong>on</strong><br />

Increases in very hot days and heat waves. It is highly likely (greater than 90 percent<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence) that heat extremes and heat waves will c<strong>on</strong>tinue to become more<br />

intense, l<strong>on</strong>ger lasting, and more frequent in most regi<strong>on</strong>s during the twenty-first century. In<br />

2007, for example, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> having five summer days at or above 43.3 o C (110 o F) in<br />

Dallas is about 2 percent. In 25 years, this probability increases to 5 percent; in 50 years, to<br />

25 percent; and by 2099, to 90 percent.<br />

Increases in Arctic temperatures. Arctic warming is virtually certain (greater than 99<br />

percent probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence), as temperature increases are expected to be greatest over<br />

land and at most high northern latitudes. As much as 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the upper layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

permafrost could thaw under more pessimistic emissi<strong>on</strong> scenarios. <str<strong>on</strong>g>The</str<strong>on</strong>g> greatest temperature<br />

increases in North America are projected to occur in the winter in northern parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska and<br />

Canada as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> feedback effects <str<strong>on</strong>g>of</str<strong>on</strong>g> shortened periods <str<strong>on</strong>g>of</str<strong>on</strong>g> snow cover. By the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

twenty-first century, projected warming could range from as much as 10.0 o C (18.0 o F) in the<br />

winter to as little as 2.0 o C (3.6 o F) in the summer in the northernmost areas. On an annual<br />

mean temperature basis for the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> North America, projected warming ranges from 3.0 o to<br />

5.0 o C (5.4 o to 9.0 o F), with smaller values near the coasts.<br />

Rising sea levels. It is virtually certain (greater than 99 percent probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence)<br />

that sea levels will c<strong>on</strong>tinue to rise in the twenty-first century as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal expansi<strong>on</strong><br />

and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mass from ice sheets. <str<strong>on</strong>g>The</str<strong>on</strong>g> projected global range in sea level rise is from 0.18 m<br />

(7.1 in) to 0.59 m (23.2 in) by 2099, but the rise will not be geographically uniform. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Atlantic and Gulf Coasts should experience a rise near the global mean, the West Coast a<br />

slightly lower rise, and the Arctic Coast a rise <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 0.1 m (3.9 in). <str<strong>on</strong>g>The</str<strong>on</strong>g>se estimates do not<br />

include subsidence in the Gulf and uplift al<strong>on</strong>g the New England Coast. Nor do the global<br />

projecti<strong>on</strong>s include the full effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increased melting <str<strong>on</strong>g>of</str<strong>on</strong>g> the Greenland and Antarctic ice<br />

masses because current understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> these effects is too limited to permit projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

upper bound <strong>on</strong> sea level rise.<br />

Increases in intense precipitati<strong>on</strong> events. It is highly likely (greater than 90 percent<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence) that intense precipitati<strong>on</strong> events will c<strong>on</strong>tinue to become more<br />

frequent in widespread areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

Increases in hurricane intensity. Increased tropical storm intensities, with larger peak wind<br />

speeds and more intense precipitati<strong>on</strong>, are projected as likely (greater than 66 percent<br />

(c<strong>on</strong>tinued)


Summary 3<br />

Box S-1 (c<strong>on</strong>tinued)<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence). No robust projecti<strong>on</strong>s c<strong>on</strong>cerning the annual global number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tropical storms has yet emerged from modeling studies, but more detailed analyses focused <strong>on</strong><br />

the Atlantic Ocean suggest no significant increases in the annual number <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic tropical<br />

storms.<br />

Note: <str<strong>on</strong>g>The</str<strong>on</strong>g> primary sources for these data are the 2007 Intergovernmental Panel for <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Summary for Policymakers <strong>on</strong> the Physical Science Basis (C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working<br />

Group I to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g>), the Peters<strong>on</strong> et al. 2006 paper commissi<strong>on</strong>ed for<br />

this study (see Appendix C), numerous other sources that can be found in Chapter 2 (see<br />

Table 2-1 and the text discussing each <str<strong>on</strong>g>of</str<strong>on</strong>g> these impacts), and the committee’s own<br />

assessments about the certainty <str<strong>on</strong>g>of</str<strong>on</strong>g> some impacts, based <strong>on</strong> the literature.<br />

• Increases in very hot days and heat waves<br />

• Increases in Arctic temperatures<br />

• Rising sea levels<br />

• Increases in intense precipitati<strong>on</strong> events<br />

• Increases in hurricane intensity<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists have the greatest c<strong>on</strong>fidence in projected changes in mean temperature<br />

and other climate factors at the global or c<strong>on</strong>tinental scale; c<strong>on</strong>fidence in these projecti<strong>on</strong>s<br />

diminishes as the geographic scale is reduced. Nevertheless, climate scientists are now able to<br />

project climate changes for large subc<strong>on</strong>tinental regi<strong>on</strong>s, such as the eastern United States—a<br />

scale better suited to transportati<strong>on</strong> infrastructure, which is regi<strong>on</strong>al and local. Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future climate are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten shown as gradual changes, such as the rise in global temperatures<br />

projected over this century. However, these changes are unlikely to be experienced in such a<br />

smooth manner because those induced by human activity will be amplified in some years by<br />

naturally fluctuating c<strong>on</strong>diti<strong>on</strong>s, reflected in potentially sudden and dramatic changes at the<br />

regi<strong>on</strong>al or local level. For example, many climate scientists cauti<strong>on</strong> that warming temperatures<br />

may trigger weather extremes and surprises, such as more rapid melting <str<strong>on</strong>g>of</str<strong>on</strong>g> the Arctic sea ice or<br />

more rapid rises in sea levels than are projected by current models.<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> past several decades <str<strong>on</strong>g>of</str<strong>on</strong>g> historical regi<strong>on</strong>al climate patterns<br />

comm<strong>on</strong>ly used by transportati<strong>on</strong> planners to guide their operati<strong>on</strong>s and<br />

investments may no l<strong>on</strong>ger be a reliable guide for future plans. In particular,<br />

future climate will include new classes (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude and frequency) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weather and climate extremes, 3 such as record rainfall and record heat waves,<br />

not experienced in modern times as human-induced changes are superimposed<br />

<strong>on</strong> the climate’s natural variability.<br />

3 <str<strong>on</strong>g>The</str<strong>on</strong>g> exact threshold for what is classified as an extreme varies from <strong>on</strong>e analysis to another, but an extreme event<br />

would normally be as, or rarer than, the top or bottom 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> all occurrences. For the purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this report,<br />

all tornadoes and hurricanes are c<strong>on</strong>sidered extreme.


4 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

POTENTIAL IMPACTS ON TRANSPORTATION<br />

Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als are keenly aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> weather <strong>on</strong> system performance.<br />

Transportati<strong>on</strong> infrastructure was designed for typical weather patterns, reflecting local climate<br />

and incorporating assumpti<strong>on</strong>s about a reas<strong>on</strong>able range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures and precipitati<strong>on</strong> levels.<br />

Finding: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change will affect transportati<strong>on</strong> primarily through increases<br />

in several types <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and climate extremes, such as very hot days; intense<br />

precipitati<strong>on</strong> events; intense hurricanes; drought; and rising sea levels, coupled<br />

with storm surges and land subsidence. <str<strong>on</strong>g>The</str<strong>on</strong>g> impacts will vary by mode <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> and regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the country, but they will be widespread and costly<br />

in both human and ec<strong>on</strong>omic terms and will require significant changes in the<br />

planning, design, c<strong>on</strong>structi<strong>on</strong>, operati<strong>on</strong>, and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong><br />

systems.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> infrastructure will be affected most by those climate changes that cause envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s to extend outside the range for which the system was designed (see Table S-1 for<br />

illustrative impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> key climate changes).<br />

Finding: <str<strong>on</strong>g>Potential</str<strong>on</strong>g>ly, the greatest impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change for North<br />

America’s transportati<strong>on</strong> systems will be flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal roads, railways,<br />

transit systems, and runways because <str<strong>on</strong>g>of</str<strong>on</strong>g> global rising sea levels, coupled with<br />

storm surges and exacerbated in some locati<strong>on</strong>s by land subsidence.<br />

Fully 53 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. populati<strong>on</strong> now lives in counties with coastal regi<strong>on</strong>s, many am<strong>on</strong>g<br />

the most densely populated in the nati<strong>on</strong>. As retirement magnets and tourist destinati<strong>on</strong>s with<br />

rapidly growing ec<strong>on</strong>omies, coastal communities will c<strong>on</strong>tinue to experience development<br />

pressures, increasing the exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> people and businesses to harm from extreme weather. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Atlantic and Gulf Coasts are particularly vulnerable because they have already experienced high<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong>, land subsidence, and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> wetlands. Seven <str<strong>on</strong>g>of</str<strong>on</strong>g> the 10 largest U.S. ports (by<br />

t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic), as well as significant oil and gas producti<strong>on</strong> facilities, are located <strong>on</strong> the Gulf<br />

Coast, an area whose vulnerability to disrupti<strong>on</strong> and damage was amply dem<strong>on</strong>strated during the<br />

2005 tropical storm seas<strong>on</strong>. Sea level rise and coastal flooding also pose risks for the East Coast,<br />

as well as the Pacific Northwest and parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the California Coast.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure to climate change will extend bey<strong>on</strong>d<br />

coastal areas. For example, watersheds supplying water to the St. Lawrence Seaway and the<br />

Great Lakes, as well as the Upper Midwest river system, are likely to experience drier<br />

c<strong>on</strong>diti<strong>on</strong>s, resulting in lower water levels and reduced capacity to ship agricultural and other<br />

bulk commodities, although a l<strong>on</strong>ger shipping seas<strong>on</strong> could <str<strong>on</strong>g>of</str<strong>on</strong>g>fset some <str<strong>on</strong>g>of</str<strong>on</strong>g> the adverse ec<strong>on</strong>omic<br />

effects. Thawing permafrost in Alaska is already creating settlement and land subsidence<br />

problems for roads, rail lines, runways, and pipelines. Higher temperature extremes (mainly heat<br />

waves) in some U.S. regi<strong>on</strong>s could lead to more frequent buckling <str<strong>on</strong>g>of</str<strong>on</strong>g> pavements and<br />

misalignment <str<strong>on</strong>g>of</str<strong>on</strong>g> rail lines. More severe weather events with intense precipitati<strong>on</strong> could increase<br />

the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> extensive flooding events, such as the storms that plagued the Midwest during the<br />

1993 flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mississippi and Missouri River system, the Chicago area in 1996, and the<br />

Houst<strong>on</strong> regi<strong>on</strong> during Tropical Storm Allis<strong>on</strong> in 2001. Flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> a waterway system can


Summary 5<br />

knock out barge operati<strong>on</strong>s <strong>on</strong> the river itself, rail operati<strong>on</strong>s <strong>on</strong> rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way adjacent to the<br />

river, and even highway approaches to bridges crossing flooded rivers.<br />

Not all climate change impacts will be negative. For example, the marine transportati<strong>on</strong><br />

sector could benefit from more open seas in the Arctic, creating new and shorter shipping routes<br />

and reducing transport time and costs. In cold regi<strong>on</strong>s, expected temperature rises, particularly<br />

decreases in very cold days and later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al freezes and earlier <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al<br />

thaws, could mean reduced costs <str<strong>on</strong>g>of</str<strong>on</strong>g> snow and ice c<strong>on</strong>trol for departments <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> and<br />

safer travel c<strong>on</strong>diti<strong>on</strong>s for passenger vehicles and freight.<br />

Recommendati<strong>on</strong> 1: Federal, state and local governments, in collaborati<strong>on</strong><br />

with owners and operators <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure, such as ports and airports,<br />

and private railroad and pipeline companies, should inventory critical<br />

transportati<strong>on</strong> infrastructure in light <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change projecti<strong>on</strong>s to<br />

determine whether, when, and where projected climate changes in their<br />

regi<strong>on</strong>s might be c<strong>on</strong>sequential.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se inventories would need to be updated periodically as new scientific knowledge about<br />

climate change becomes available. This would be a relatively low-cost activity because a large<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the necessary informati<strong>on</strong> and tools (e.g., geographic informati<strong>on</strong> systems [GIS]) is<br />

likely to be available. <str<strong>on</strong>g>The</str<strong>on</strong>g> inventorying process itself should also help identify with greater<br />

precisi<strong>on</strong> the data needed from climate scientists <strong>on</strong> transportati<strong>on</strong>-relevant climate changes.<br />

DECISION FRAMEWORK<br />

Transportati<strong>on</strong> decisi<strong>on</strong> makers have an opportunity now to prepare for projected climate<br />

changes.<br />

Finding: Public authorities and <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials at various governmental levels and<br />

executives <str<strong>on</strong>g>of</str<strong>on</strong>g> private companies are c<strong>on</strong>tinually making short- and l<strong>on</strong>g-term<br />

investment decisi<strong>on</strong>s that have implicati<strong>on</strong>s for how the transportati<strong>on</strong> system<br />

will resp<strong>on</strong>d to climate change in the near and l<strong>on</strong>g terms.<br />

Recommendati<strong>on</strong> 2: State and local governments and private<br />

infrastructure providers should incorporate climate change into their l<strong>on</strong>gterm<br />

capital improvement plans, facility designs, maintenance practices,<br />

operati<strong>on</strong>s, and emergency resp<strong>on</strong>se plans.<br />

Taking measures now to evaluate and protect the most vulnerable infrastructure should pay <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

by diminishing near-term maintenance expenditures and reducing the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> catastrophic failure,<br />

with its toll <strong>on</strong> human life and ec<strong>on</strong>omic activity (see Box S-2, which presents a six-step<br />

approach for determining appropriate investment priorities). Such measures might include<br />

strengthening or elevating some coastal roads, rail lines, and bridges, particularly those that serve<br />

as evacuati<strong>on</strong> routes or upgrading parallel routes where they are available. In the l<strong>on</strong>ger term,<br />

relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way further inland or installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costly storm barrier systems to protect


TABLE S-1 <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s and Illustrative <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong><br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Operati<strong>on</strong>s Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Infrastructure<br />

Increases in very hot days • Impact <strong>on</strong> lift-<str<strong>on</strong>g>of</str<strong>on</strong>g>f load limits at high-altitude or hot- • <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal expansi<strong>on</strong> <strong>on</strong> bridge expansi<strong>on</strong> joints and<br />

and heat waves<br />

weather airports with insufficient runway lengths, paved surfaces<br />

resulting in flight cancellati<strong>on</strong>s and/or limits <strong>on</strong> payload • C<strong>on</strong>cerns regarding pavement integrity (e.g., s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening),<br />

(i.e., weight restricti<strong>on</strong>s)<br />

traffic-related rutting, migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid asphalt<br />

• Limits <strong>on</strong> periods <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> activity due to health<br />

and safety c<strong>on</strong>cerns<br />

• Rail-track deformities<br />

Increases in Arctic<br />

temperatures<br />

Rising sea levels, combined<br />

with storm surges<br />

Increases in intense<br />

precipitati<strong>on</strong> events<br />

More frequent str<strong>on</strong>g<br />

hurricanes (Category 4–5)<br />

• L<strong>on</strong>ger ocean transport seas<strong>on</strong> and more ice-free ports in<br />

northern regi<strong>on</strong>s<br />

• Possible availability <str<strong>on</strong>g>of</str<strong>on</strong>g> a northern sea route or a<br />

northwest passage<br />

• More frequent interrupti<strong>on</strong>s to coastal and low-lying<br />

roadway travel and rail service due to storm surges<br />

• More severe storm surges, requiring evacuati<strong>on</strong> and/or<br />

changes in development patterns<br />

• <str<strong>on</strong>g>Potential</str<strong>on</strong>g> for closure or restricti<strong>on</strong>s at several <str<strong>on</strong>g>of</str<strong>on</strong>g> the top<br />

50 airports that lie in coastal z<strong>on</strong>es, affecting service to<br />

the highest-density populati<strong>on</strong>s in the United States<br />

• Increases in weather-related delays and traffic<br />

disrupti<strong>on</strong>s<br />

• Increased flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> routes<br />

• Increases in airline delays due to c<strong>on</strong>vective weather<br />

• More frequent interrupti<strong>on</strong>s in air service<br />

• More frequent and potentially more extensive<br />

emergency evacuati<strong>on</strong>s<br />

• More debris <strong>on</strong> roads and rail lines, interrupting travel<br />

and shipping<br />

• Thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost, causing subsidence <str<strong>on</strong>g>of</str<strong>on</strong>g> roads, rail<br />

beds, bridge supports (cave-in), pipelines, and runway<br />

foundati<strong>on</strong>s<br />

• Shorter seas<strong>on</strong> for ice roads<br />

• Inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> roads, rail lines, and airport runways in<br />

coastal areas<br />

• More frequent or severe flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> underground<br />

tunnels and low-lying infrastructure<br />

• Erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road base and bridge supports<br />

• Reduced clearance under bridges<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in harbor and port facilities to accommodate<br />

higher tides and storm surges<br />

• Increases in flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> roadways, rail lines,<br />

subterranean tunnels, and runways<br />

• Increases in road washout, damages to rail-bed support<br />

structures, and landslides and mudslides that damage<br />

roadways and tracks<br />

• Increases in scouring <str<strong>on</strong>g>of</str<strong>on</strong>g> pipeline roadbeds and damage<br />

to pipelines<br />

• Greater probability <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure failures<br />

• Increased threat to stability <str<strong>on</strong>g>of</str<strong>on</strong>g> bridge decks<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> harbor infrastructure from wave damage and<br />

storm surges


Summary 7<br />

BOX S-2<br />

Decisi<strong>on</strong> Framework for Transportati<strong>on</strong> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als to Use in<br />

Addressing <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong> Infrastructure<br />

1. Assess how climate changes are likely to impact various regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the country and<br />

modes <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong>.<br />

2. Inventory transportati<strong>on</strong> infrastructure essential to maintaining network performance<br />

in light <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change projecti<strong>on</strong>s to determine whether, when, and where the<br />

impacts could be c<strong>on</strong>sequential.<br />

3. Analyze adaptati<strong>on</strong> opti<strong>on</strong>s to assess the trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs between making the infrastructure<br />

more robust and the costs involved. C<strong>on</strong>sider m<strong>on</strong>itoring as an opti<strong>on</strong>.<br />

4. Determine investment priorities, taking into c<strong>on</strong>siderati<strong>on</strong> the criticality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infrastructure comp<strong>on</strong>ents, as well as opportunities for multiple benefits (e.g.,<br />

c<strong>on</strong>gesti<strong>on</strong> relief, removal <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> route bottlenecks).<br />

5. Develop and implement a program <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> strategies for the near and l<strong>on</strong>g<br />

terms.<br />

6. Periodically assess the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> strategies and repeat steps 1–5.<br />

selected areas (e.g., parts <str<strong>on</strong>g>of</str<strong>on</strong>g> New York City or Miami) might be c<strong>on</strong>sidered. Prudent choices<br />

today could avoid some <str<strong>on</strong>g>of</str<strong>on</strong>g> these costs.<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> significant costs <str<strong>on</strong>g>of</str<strong>on</strong>g> redesigning and retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting transportati<strong>on</strong><br />

infrastructure to adapt to potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change suggest the need<br />

for more strategic, risk-based approaches to investment decisi<strong>on</strong>s.<br />

Traditi<strong>on</strong>ally, transportati<strong>on</strong> decisi<strong>on</strong> makers have not taken full advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative, riskbased<br />

approaches that incorporate uncertainty and probabilistic assessments in making<br />

investment and design decisi<strong>on</strong>s. Nor will past trends provide a reliable guide for future plans<br />

and designs as they relate to climate.<br />

Recommendati<strong>on</strong> 3: Transportati<strong>on</strong> planners and engineers should use<br />

more probabilistic investment analyses and design approaches that<br />

incorporate techniques for trading <str<strong>on</strong>g>of</str<strong>on</strong>g>f the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> making the<br />

infrastructure more robust against the ec<strong>on</strong>omic costs <str<strong>on</strong>g>of</str<strong>on</strong>g> failure. At a more<br />

general level, these techniques could also be used to communicate these<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs to policy makers who make investment decisi<strong>on</strong>s and authorize<br />

funding.


8 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

One model is the California Seismic Retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it Program, which uses a risk-based approach for<br />

analyzing vulnerability to earthquakes and the criticality <str<strong>on</strong>g>of</str<strong>on</strong>g> highway bridges to determine<br />

priorities for retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting and replacement. Adapting such techniques to address climate change<br />

will require c<strong>on</strong>tinuing educati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> current planners and engineers and training <str<strong>on</strong>g>of</str<strong>on</strong>g> future<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als. It will also require educating policy makers to gain their support, and may well<br />

necessitate new eligibility criteria in funding programs and new funding sources so the<br />

investments identified by the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these techniques can be made.<br />

DATA AND DECISION SUPPORT TOOLS<br />

Transportati<strong>on</strong> decisi<strong>on</strong> makers note that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most difficult aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> addressing climate<br />

change is obtaining the relevant informati<strong>on</strong> in the form needed for planning and design<br />

purposes. Specifically, as noted earlier, climate change is understood with greatest c<strong>on</strong>fidence as<br />

a global phenomen<strong>on</strong>, while transportati<strong>on</strong> planners need local and regi<strong>on</strong>al climate projecti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y also need a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how projected climate changes, such as changes in<br />

temperature and precipitati<strong>on</strong>, will affect the envir<strong>on</strong>ment (e.g., soil moisture, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f) in which<br />

the infrastructure is situated, which will vary from regi<strong>on</strong> to regi<strong>on</strong>.<br />

Finding: Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lack sufficiently detailed<br />

informati<strong>on</strong> about expected climate changes and their timing to take<br />

appropriate acti<strong>on</strong>.<br />

Simply put, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als, climate scientists, hydrologist, and others have not<br />

communicated well.<br />

Recommendati<strong>on</strong> 4: <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Oceanic and Atmospheric<br />

Administrati<strong>on</strong>, the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (US DOT), the U.S.<br />

Geological Survey, and other relevant agencies should work together to<br />

institute a process for better communicati<strong>on</strong> am<strong>on</strong>g transportati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als, climate scientists, and other relevant scientific disciplines,<br />

and establish a clearinghouse for transportati<strong>on</strong>-relevant climate change<br />

informati<strong>on</strong>.<br />

All pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>s should benefit from the collaborati<strong>on</strong>. Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als would be<br />

encouraged to define with greater precisi<strong>on</strong> the climate data needed to make better transportati<strong>on</strong><br />

decisi<strong>on</strong>s, such as temperature and precipitati<strong>on</strong> thresholds at finer-grained geographic scales or<br />

climate c<strong>on</strong>diti<strong>on</strong>s that would create unacceptable performance outcomes. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists<br />

would be challenged to elaborate <strong>on</strong> the possibilities and limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> projecting the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change at the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic specificity that are most useful for transportati<strong>on</strong><br />

planners. And hydrologists and others would be challenged to c<strong>on</strong>sider how the envir<strong>on</strong>ment<br />

would influence these effects and their impacts <strong>on</strong> transportati<strong>on</strong> infrastructure.<br />

Finding: Better decisi<strong>on</strong> support tools are also needed to assist transportati<strong>on</strong><br />

decisi<strong>on</strong> makers.


Summary 9<br />

Recommendati<strong>on</strong> 5: Ongoing and planned research at federal and state<br />

agencies and universities that provide climate data and decisi<strong>on</strong> support<br />

tools should include the needs <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> decisi<strong>on</strong> makers.<br />

For example, the research program <str<strong>on</strong>g>of</str<strong>on</strong>g> the US DOT Center for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and<br />

Envir<strong>on</strong>mental Forecasting could be charged with expanding its existing research program in this<br />

area and provided the necessary funding. Needed tools include highly accurate digital elevati<strong>on</strong><br />

maps in coastal areas for forecasting the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding and storm surge heights; GIS that can<br />

be used to map the locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> critical infrastructure, overlaid with informati<strong>on</strong> <strong>on</strong> climate<br />

change effects (e.g., sea level rise, permafrost melt); greater use <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios that include climate<br />

change in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-range regi<strong>on</strong>al transportati<strong>on</strong> plans to pinpoint likely<br />

vulnerabilities and ways to address them; and better network models for examining the<br />

systemwide effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> critical transportati<strong>on</strong> infrastructure links.<br />

ADAPTATION OPTIONS<br />

Numerous studies have examined ways <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigating the transportati<strong>on</strong> sector’s c<strong>on</strong>tributi<strong>on</strong> to<br />

global warming from GHG emissi<strong>on</strong>s. Far less attenti<strong>on</strong> has been paid to the potential impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> U.S. transportati<strong>on</strong> and how transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als can best adapt to<br />

climate changes that are already occurring and will c<strong>on</strong>tinue to occur into the foreseeable future,<br />

even if drastic mitigati<strong>on</strong> measures were taken today.<br />

Operati<strong>on</strong>al Resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> extremes and abrupt changes, such storms and precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> increased intensity, will<br />

require near-term operati<strong>on</strong>al resp<strong>on</strong>ses from transportati<strong>on</strong> providers. U.S. transportati<strong>on</strong><br />

providers already address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> weather <strong>on</strong> transportati<strong>on</strong> system operati<strong>on</strong>s in a diverse<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic c<strong>on</strong>diti<strong>on</strong>s. For example, snow and ice c<strong>on</strong>trol accounts for about 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

annual highway operating budgets in the northern U.S. states. Likewise, hurricane planning has<br />

become a major focus <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> operati<strong>on</strong>s in the Gulf Coast states, where transportati<strong>on</strong><br />

providers are forging close relati<strong>on</strong>ships with emergency resp<strong>on</strong>ders to handle severe weather<br />

events.<br />

As climate changes induce new extremes, operati<strong>on</strong>al resp<strong>on</strong>ses are likely to become<br />

more routine and proactive than today’s approach <str<strong>on</strong>g>of</str<strong>on</strong>g> treating severe weather <strong>on</strong> an ad hoc,<br />

emergency basis. For example, if hurricanes increase in intensity, as is likely to be the case,<br />

establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> routes and use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>traflow operati<strong>on</strong>s may become as<br />

comm<strong>on</strong>place as the current use <str<strong>on</strong>g>of</str<strong>on</strong>g> snow emergency routes in the Northeast and Midwest. More<br />

accurate and timely weather predicti<strong>on</strong> and communicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> storm warnings in real time to<br />

those potentially in harm’s way will become more important.<br />

Finding: Projected increases in extreme weather and climate underscore the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> emergency resp<strong>on</strong>se plans in vulnerable locati<strong>on</strong>s, and require<br />

that transportati<strong>on</strong> providers work more closely with weather forecasters and


10 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

emergency planners and assume a greater role in evacuati<strong>on</strong> planning and<br />

emergency resp<strong>on</strong>se.<br />

Recommendati<strong>on</strong> 6: Transportati<strong>on</strong> agencies and service providers should<br />

build <strong>on</strong> the experience in those locati<strong>on</strong>s where transportati<strong>on</strong> is well<br />

integrated into emergency resp<strong>on</strong>se and evacuati<strong>on</strong> plans.<br />

M<strong>on</strong>itoring and Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

M<strong>on</strong>itoring infrastructure c<strong>on</strong>diti<strong>on</strong>s, particularly the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme climate changes, <str<strong>on</strong>g>of</str<strong>on</strong>g>fers<br />

an alternative to preventive retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting or rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some facilities. In Alaska, for<br />

example, the Alyeska Pipeline company c<strong>on</strong>stantly m<strong>on</strong>itors the right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way <str<strong>on</strong>g>of</str<strong>on</strong>g> the Trans-<br />

Alaska Pipeline System to spot land subsidence problems, particularly al<strong>on</strong>g the 800 miles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pipeline elevated <strong>on</strong> vertical supports. Alaskan engineers also closely m<strong>on</strong>itor bridge supports<br />

that are experiencing damage from earlier winter run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f and increased stream flow. In the<br />

future, sensors and other smart technologies could be embedded in the infrastructure to m<strong>on</strong>itor<br />

climate c<strong>on</strong>diti<strong>on</strong>s and impacts.<br />

Finding: Greater use <str<strong>on</strong>g>of</str<strong>on</strong>g> technology would enable infrastructure providers to<br />

m<strong>on</strong>itor climate changes and receive advance warning <str<strong>on</strong>g>of</str<strong>on</strong>g> potential failures due<br />

to water levels and currents, wave acti<strong>on</strong>, winds, and temperatures exceeding<br />

what the infrastructure was designed to withstand.<br />

Recommendati<strong>on</strong> 7: Federal and academic research programs should<br />

encourage the development and implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itoring technologies<br />

that could provide advance warning <str<strong>on</strong>g>of</str<strong>on</strong>g> pending failures due to the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weather and climate extremes <strong>on</strong> major transportati<strong>on</strong> facilities.<br />

Sharing <str<strong>on</strong>g>of</str<strong>on</strong>g> Best Practices<br />

As the climate changes, many U.S. locati<strong>on</strong>s will experience new climate-induced weather<br />

patterns.<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> geographic extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States—from Alaska to Florida<br />

and from Maine to Hawaii—and its diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and climate c<strong>on</strong>diti<strong>on</strong>s<br />

can provide a laboratory for identifying best practices and sharing informati<strong>on</strong><br />

as the climate changes.<br />

Recommendati<strong>on</strong> 8: <str<strong>on</strong>g>The</str<strong>on</strong>g> American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and<br />

Transportati<strong>on</strong> Officials (AASHTO), the Federal Highway Administrati<strong>on</strong>,<br />

the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American Railroads, the American Public<br />

Transportati<strong>on</strong> Associati<strong>on</strong>, the American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Port Authorities,<br />

the Airport Operators Council, associati<strong>on</strong>s for oil and gas pipelines, and<br />

other relevant transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al and research organizati<strong>on</strong>s<br />

should develop a mechanism to encourage sharing <str<strong>on</strong>g>of</str<strong>on</strong>g> best practices for<br />

addressing the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.


Summary 11<br />

This effort should build <strong>on</strong> existing technology transfer mechanisms, such as AASHTO’s<br />

technology-sharing program. Technology should be defined broadly to include probabilistic<br />

decisi<strong>on</strong>-making tools, as well as m<strong>on</strong>itoring technologies, new materials, and operating and<br />

maintenance strategies.<br />

Design <str<strong>on</strong>g>Change</str<strong>on</strong>g>s<br />

Envir<strong>on</strong>mental factors are integral to the design <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure. C<strong>on</strong>diti<strong>on</strong>s such<br />

as temperature, freeze–thaw cycles, and durati<strong>on</strong> and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> determine<br />

subsurface and foundati<strong>on</strong> design, choice <str<strong>on</strong>g>of</str<strong>on</strong>g> materials, and drainage capacity. Engineers,<br />

however, have given little thought to whether current design standards are sufficient to<br />

accommodate climate change. For example, will drainage capacity be adequate for expected<br />

increases in intense precipitati<strong>on</strong> events? Many infrastructure comp<strong>on</strong>ents are currently<br />

designed for the 100-year storm—an event <str<strong>on</strong>g>of</str<strong>on</strong>g> such severity that it occurs, <strong>on</strong> average, <strong>on</strong>ce in<br />

100 years. But projecti<strong>on</strong>s indicate that what is today’s 100-year precipitati<strong>on</strong> event is likely to<br />

occur every 50 or perhaps even every 20 years by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the current century. What new<br />

materials might be needed when very hot temperatures and heat waves become more frequent?<br />

Are infrastructure comp<strong>on</strong>ents sufficiently str<strong>on</strong>g to withstand the forces <str<strong>on</strong>g>of</str<strong>on</strong>g> larger and more<br />

frequent storm surges and more powerful wave acti<strong>on</strong>, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> which were vividly<br />

dem<strong>on</strong>strated when Hurricane Katrina simply lifted bridge decks <str<strong>on</strong>g>of</str<strong>on</strong>g>f their supporting structures?<br />

Finding: Reevaluating, developing, and regularly updating design standards<br />

for transportati<strong>on</strong> infrastructure to address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change will<br />

require a broad-based research and testing program and a substantial<br />

implementati<strong>on</strong> effort.<br />

Developing c<strong>on</strong>sensus standards is a time-c<strong>on</strong>suming process. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in design<br />

practices tend to be incremental, and building to higher standards must be weighed against the<br />

cost involved. Thus there is a need for a selective, risk-based approach to making changes in<br />

standards that focuses first <strong>on</strong> l<strong>on</strong>g-lived facilities, such as bridges and large culverts. A good<br />

model is the c<strong>on</strong>gressi<strong>on</strong>ally mandated Nati<strong>on</strong>al Earthquake Hazard Reducti<strong>on</strong> Program, begun<br />

in 1977, which established a research effort and a coordinati<strong>on</strong> mechanism designed to reduce<br />

the risks to life and property from earthquakes through standards that would afford different<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> protecti<strong>on</strong> for different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> risk. If a similar program is to be launched to address<br />

climate change in a timely manner, it should be initiated so<strong>on</strong>.<br />

Recommendati<strong>on</strong> 9: US DOT should take a leadership role, al<strong>on</strong>g with<br />

those pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al organizati<strong>on</strong>s in the forefr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> civil engineering<br />

practice across all modes, to initiate immediately a federally funded,<br />

multiagency research program for <strong>on</strong>going reevaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing and<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> new design standards as progress is made in understanding<br />

future climate c<strong>on</strong>diti<strong>on</strong>s and the opti<strong>on</strong>s available for addressing them. A<br />

research plan and cost proposal should be developed for submissi<strong>on</strong> to<br />

C<strong>on</strong>gress for authorizati<strong>on</strong> and funding <str<strong>on</strong>g>of</str<strong>on</strong>g> this program.


12 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> initial focus should be <strong>on</strong> essential links in transportati<strong>on</strong> networks, particularly those<br />

vulnerable to climate change in coastal or other low-lying areas in riverside locati<strong>on</strong>s.<br />

Recommendati<strong>on</strong> 10: In the short term, state and federally funded<br />

transportati<strong>on</strong> infrastructure rehabilitati<strong>on</strong> projects in highly vulnerable<br />

locati<strong>on</strong>s should be rebuilt to higher standards, and greater attenti<strong>on</strong><br />

should be paid to the provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> redundant power and communicati<strong>on</strong>s<br />

systems to ensure rapid restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> services in the event<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> failure.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate design standards to accommodate climate change is <strong>on</strong>ly<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> several possible adaptati<strong>on</strong> strategies.<br />

Finding: Federal agencies have not focused generally <strong>on</strong> adaptati<strong>on</strong> in<br />

addressing climate change.<br />

Recommendati<strong>on</strong> 11: US DOT should take the lead in developing an<br />

interagency working group focused <strong>on</strong> adaptati<strong>on</strong>.<br />

This initiative would not necessarily require new funding bey<strong>on</strong>d that recommended above.<br />

Better collaborati<strong>on</strong> am<strong>on</strong>g agencies could help focus attenti<strong>on</strong> <strong>on</strong> adaptati<strong>on</strong> issues and shape<br />

existing research programs.<br />

Transportati<strong>on</strong> Planning and Land Use C<strong>on</strong>trols<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most effective strategies for reducing the risks <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change is to avoid placing<br />

people and infrastructure in vulnerable locati<strong>on</strong>s. Transportati<strong>on</strong> planners currently c<strong>on</strong>sider<br />

expected land use patterns when forecasting future travel demand and infrastructure needs.<br />

However, they rarely questi<strong>on</strong> whether such development is desirable, much less what effects<br />

climate change might have <strong>on</strong> the provisi<strong>on</strong> and development <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure in vulnerable<br />

locati<strong>on</strong>s. In part, this situati<strong>on</strong> stems from governance arrangements. States, regi<strong>on</strong>al<br />

authorities, and the private sector are resp<strong>on</strong>sible for large-scale transportati<strong>on</strong> investment<br />

decisi<strong>on</strong>s, but local governments and a few states c<strong>on</strong>trol land use decisi<strong>on</strong>s through<br />

comprehensive plans, z<strong>on</strong>ing ordinances, permitting, and building codes.<br />

Finding: Transportati<strong>on</strong> planners are not currently required to c<strong>on</strong>sider<br />

climate change impacts and their effects <strong>on</strong> infrastructure investments,<br />

particularly in vulnerable locati<strong>on</strong>s.<br />

Recommendati<strong>on</strong> 12: Federal planning regulati<strong>on</strong>s should require that<br />

climate change be included as a factor in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> public-sector,<br />

l<strong>on</strong>g-range transportati<strong>on</strong> plans; eliminate any percepti<strong>on</strong> that such plans<br />

should be limited to 20–30 years; and require collaborati<strong>on</strong> in plan<br />

development with agencies resp<strong>on</strong>sible for land use, envir<strong>on</strong>mental<br />

protecti<strong>on</strong>, and natural resource management to foster more integrated<br />

transportati<strong>on</strong>–land use decisi<strong>on</strong> making.


Summary 13<br />

Current surface transportati<strong>on</strong> legislati<strong>on</strong> encourages such collaborati<strong>on</strong>. During reauthorizati<strong>on</strong>,<br />

requiring transportati<strong>on</strong> planners to both c<strong>on</strong>sider climate change and collaborate with land use<br />

planners in the preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> public-sector, l<strong>on</strong>g-range plans could go a l<strong>on</strong>g way toward putting<br />

these issues <strong>on</strong> the table. At the same time, any strategy employing land use c<strong>on</strong>trols to address<br />

climate change would need to build c<strong>on</strong>sensus am<strong>on</strong>g key decisi<strong>on</strong> makers in transportati<strong>on</strong> and<br />

land use, probably at the regi<strong>on</strong>al level—a challenging propositi<strong>on</strong>.<br />

Insurance<br />

Finding: Locally c<strong>on</strong>trolled land use planning, which is typical throughout the<br />

country, has too limited a perspective to account for the broadly shared risks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change.<br />

Private insurers may be able to accomplish what government cannot in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> land use c<strong>on</strong>trol.<br />

Some major insurers, for example, are refusing to write new or renew existing homeowners’<br />

policies in areas already vulnerable to hurricanes and other severe storms, which could intensify<br />

in a warming climate. Florida, Texas, Louisiana, Mississippi, Hawaii, New York City, and L<strong>on</strong>g<br />

Island are am<strong>on</strong>g the areas affected thus far. Some states have stepped up to become insurers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

last resort for coastal homes and businesses, but the high costs <str<strong>on</strong>g>of</str<strong>on</strong>g> providing coverage are unlikely<br />

to be sustainable. Moreover, the provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insurance in hazard-pr<strong>on</strong>e areas that is not<br />

actuarially based is bad public policy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> federal government is the insurer <str<strong>on</strong>g>of</str<strong>on</strong>g> last resort for homeowners in specially<br />

designated flood hazard areas. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Flood Insurance Program <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Emergency<br />

Management Agency (FEMA) provides homeowners with below-cost insurance. In return, the<br />

local community must adopt and enforce floodplain management measures, including building<br />

code ordinances for new c<strong>on</strong>structi<strong>on</strong> and rebuilding after a disaster, to reduce flood damage.<br />

Critics c<strong>on</strong>tend that in practice, the program has resulted in more development than would<br />

otherwise have occurred in these areas. Moreover, the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> flood insurance rate maps<br />

(FIRMs) used to determine program eligibility is woefully inadequate, despite a mapping<br />

modernizati<strong>on</strong> program. Flood hazard area boundaries are keyed to the 100-year storm, and base<br />

elevati<strong>on</strong> data are inadequate.<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Flood Insurance Program and the FIRMs used to<br />

determine program eligibility do not take climate change into account.<br />

Recommendati<strong>on</strong> 13: FEMA should reevaluate the risk reducti<strong>on</strong><br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Flood Insurance Program and the FIRMs,<br />

particularly in view <str<strong>on</strong>g>of</str<strong>on</strong>g> projected increases in intense precipitati<strong>on</strong> and<br />

storms. At a minimum, updated flood z<strong>on</strong>e maps that account for sea level<br />

rise (incorporating land subsidence) should be a priority in coastal areas.<br />

New Organizati<strong>on</strong>al Arrangements<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change do not follow modal, corporate, or jurisdicti<strong>on</strong>al boundaries, yet<br />

decisi<strong>on</strong> making in the transportati<strong>on</strong> sector is structured around these boundaries.<br />

Transportati<strong>on</strong> planning is c<strong>on</strong>ducted primarily at the regi<strong>on</strong>al level, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten through a bottom-up


14 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

process that starts with local jurisdicti<strong>on</strong>s. Railroads, trucking, and waterborne commerce are<br />

largely private enterprises with varying levels <str<strong>on</strong>g>of</str<strong>on</strong>g> federal participati<strong>on</strong>. Thus, existing<br />

instituti<strong>on</strong>al arrangements are not well suited to addressing climate change. Some models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cross-jurisdicti<strong>on</strong>al cooperati<strong>on</strong> exist, such as regi<strong>on</strong>al authorities for specific facilities (e.g., the<br />

Alameda Corridor) and multistate emergency resp<strong>on</strong>se agreements. In additi<strong>on</strong>, there are models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> state-mandated regi<strong>on</strong>al authorities, as is the case for regi<strong>on</strong>al air quality improvement<br />

authorities. Organizati<strong>on</strong>al arrangements suited to addressing the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change may<br />

require state or federal acti<strong>on</strong>.<br />

Finding: Current instituti<strong>on</strong>al arrangements for transportati<strong>on</strong> planning and<br />

operati<strong>on</strong>s were not organized to address climate change and may not be<br />

adequate for the purpose.<br />

Recommendati<strong>on</strong> 14: Incentives incorporated in federal and state<br />

legislati<strong>on</strong> should be c<strong>on</strong>sidered as a means <str<strong>on</strong>g>of</str<strong>on</strong>g> addressing and mitigating<br />

the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change through regi<strong>on</strong>al and multistate efforts.<br />

For example, states could use updated FIRMs or their own state maps to identify geographic<br />

areas vulnerable to climate change and craft policies for restricting transportati<strong>on</strong> investments<br />

and limiting insurance in these locati<strong>on</strong>s.<br />

CONCLUDING THOUGHTS<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> committee finds compelling scientific evidence that climate change is occurring, and that it<br />

will trigger new, extreme weather events and could possibly lead to surprises, such as more rapid<br />

than expected rises in sea levels or temperature changes. Every mode <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> will be<br />

affected as climate change poses new and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten unfamiliar challenges to infrastructure providers.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> committee urges that the transportati<strong>on</strong> community start now to c<strong>on</strong>fr<strong>on</strong>t these challenges.<br />

A str<strong>on</strong>g federal role is needed to implement many <str<strong>on</strong>g>of</str<strong>on</strong>g> the committee’s recommendati<strong>on</strong>s<br />

that require broad-based acti<strong>on</strong> or regulati<strong>on</strong>, such as creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a clearinghouse for informati<strong>on</strong><br />

<strong>on</strong> transportati<strong>on</strong> and climate change, the research program to reevaluate existing and develop<br />

new design standards for addressing climate change, creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an interagency working group<br />

<strong>on</strong> adaptati<strong>on</strong>, changes in federal regulati<strong>on</strong>s regarding l<strong>on</strong>g-range planning guidelines and<br />

infrastructure rehabilitati<strong>on</strong> requirements, and reevaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Flood Insurance<br />

Program.<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the committee’s recommendati<strong>on</strong>s, however, need not await federal acti<strong>on</strong>.<br />

Local governments and private infrastructure providers can begin to identify critical<br />

infrastructure that is particularly vulnerable to climate change. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al organizati<strong>on</strong>s can<br />

begin to amass examples <str<strong>on</strong>g>of</str<strong>on</strong>g> best practice, and planners and climate scientists at local universities<br />

and research institutes can begin to collaborate <strong>on</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

likely transportati<strong>on</strong>-related climate changes and the data needed to analyze their impacts. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

most important step, however, is for transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als to acknowledge that the time<br />

has come to c<strong>on</strong>fr<strong>on</strong>t the challenges posed by climate change, and to incorporate the most current<br />

scientific knowledge into the planning, design, c<strong>on</strong>structi<strong>on</strong>, operati<strong>on</strong>, and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> systems.


C<br />

1<br />

Introducti<strong>on</strong><br />

limate scientists are projecting changes in the global climate with potentially pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound<br />

impacts <strong>on</strong> agriculture and forest productivity, ecosystems, water resources, and energy, as<br />

well as related socioec<strong>on</strong>omic effects. 1 Increases in annual, globally averaged mean<br />

temperatures, in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> warm days and nights over mid- and high-latitude land areas, and<br />

in temperature and precipitati<strong>on</strong> extremes all are projected to occur with a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>fidence 2 during the twenty-first century. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes will bring about the retreat <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice<br />

and the thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> glaciers and ice caps, particularly at high northern latitudes; rising sea levels;<br />

and greater flooding and higher storm surges al<strong>on</strong>g vulnerable coastal and riverine areas. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

finer the geographic resoluti<strong>on</strong> and the l<strong>on</strong>ger the temporal projecti<strong>on</strong>s, the greater are the<br />

uncertainties surrounding estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate change. <str<strong>on</strong>g>The</str<strong>on</strong>g> respective roles <str<strong>on</strong>g>of</str<strong>on</strong>g> human and<br />

natural causes in these changes have now been well established (IPCC 2007b).<br />

Numerous studies have examined the link between climate change and the transportati<strong>on</strong><br />

sector. <str<strong>on</strong>g>The</str<strong>on</strong>g>se studies have been c<strong>on</strong>ducted primarily from the perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong>’s<br />

c<strong>on</strong>tributi<strong>on</strong> to global warming through the burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, which releases carb<strong>on</strong> dioxide<br />

(CO2) and other greenhouse gases (GHGs) to the atmosphere. 3 CO2 from combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil<br />

fuels is the largest source <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. GHG emissi<strong>on</strong>s. In 2005, the most recent year for which data<br />

are available, the transportati<strong>on</strong> sector accounted for 33 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. CO2 emissi<strong>on</strong>s from<br />

fossil fuel combusti<strong>on</strong>, 4 exceeded <strong>on</strong>ly by electricity generati<strong>on</strong> by the electric power industry at<br />

41 percent (EPA 2007, Table 3-7). 5 CO2 emissi<strong>on</strong>s from U.S. transportati<strong>on</strong> activities are<br />

expected to increase over the next several decades, primarily as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> growth in road travel,<br />

fueled by populati<strong>on</strong> and ec<strong>on</strong>omic growth (World Business Council for Sustainable<br />

1 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change refers to a statistically significant variati<strong>on</strong> in either the mean state <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate or its variability<br />

over an extended period, typically decades or l<strong>on</strong>ger, that can be attributed to either natural causes or human activity<br />

(IPCC 2007a). This definiti<strong>on</strong> is drawn from the Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC), which was<br />

jointly established by the World Meteorological Organizati<strong>on</strong> and the United Nati<strong>on</strong>s Envir<strong>on</strong>ment Programme in<br />

1988 to assess the available scientific and socioec<strong>on</strong>omic informati<strong>on</strong> <strong>on</strong> climate change and its impacts and <strong>on</strong><br />

opti<strong>on</strong>s for mitigating those impacts and developing adaptive resp<strong>on</strong>ses.<br />

2 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists express uncertainty in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> ways. To encourage greater uniformity in communicating<br />

uncertainty, lead authors <str<strong>on</strong>g>of</str<strong>on</strong>g> the IPCC Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> were provided guidance <strong>on</strong> how to treat issues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

uncertainty and statistical c<strong>on</strong>fidence in a c<strong>on</strong>sistent manner (IPCC 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> term “high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fidence”<br />

means c<strong>on</strong>sistency across model projecti<strong>on</strong>s and/or c<strong>on</strong>sistency with theory and/or changes in the mean. See<br />

Chapter 2 for a more detailed discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty.<br />

3 CO2 and other GHGs allow sunlight to enter and prevent heat from leaving the earth’s atmosphere─the so-called<br />

greenhouse effect, loosely analogous to the operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a greenhouse window. Higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 and<br />

other GHGs than occur naturally trap excess heat in the atmosphere and warm the earth’s surface (Staudt et al.<br />

2005).<br />

4 Emissi<strong>on</strong>s from combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both aviati<strong>on</strong> and marine internati<strong>on</strong>al bunker fuels (i.e., fuel loaded <strong>on</strong> transport<br />

vehicles in the United States but c<strong>on</strong>sumed in internati<strong>on</strong>al operati<strong>on</strong>s) are excluded from this total. See Appendix<br />

B for a more detailed discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> sector’s c<strong>on</strong>tributi<strong>on</strong> in general, and the U.S. c<strong>on</strong>tributi<strong>on</strong> in<br />

particular, to worldwide GHG emissi<strong>on</strong>s, particularly emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 from fuel combusti<strong>on</strong>.<br />

5 <str<strong>on</strong>g>The</str<strong>on</strong>g> total is larger if emissi<strong>on</strong>s from the extracti<strong>on</strong>, producti<strong>on</strong>, and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuels and from the<br />

manufacture, distributi<strong>on</strong>, and disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> vehicles are summed to produce a total life-cycle emissi<strong>on</strong>s<br />

estimate (see the discussi<strong>on</strong> in Appendix B).<br />

15


16 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Development 2004). However, these emissi<strong>on</strong>s are likely to be regulated. In a landmark<br />

decisi<strong>on</strong> in April 2007 (Massachusetts et al., Petiti<strong>on</strong>ers, v. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency et<br />

al.), the U.S. Supreme Court ruled that the U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency has the<br />

authority under the Clean Air Act to regulate GHG emissi<strong>on</strong>s, and that CO2 can be c<strong>on</strong>strued as<br />

an air pollutant under the statute.<br />

Far less attenti<strong>on</strong> has been paid to the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate changes for U.S.<br />

transportati<strong>on</strong> infrastructure and operati<strong>on</strong>s. 67 For example, projected rising sea levels, flooding,<br />

and storm surges could swamp marine terminal facilities, airport runways near coastlines,<br />

subway and railroad tunnel entrances, and roads and bridges in low-lying coastal areas. Across<br />

the northern porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tiguous United States, warmer temperatures and reduced lake ice<br />

will likely lead to increased evaporati<strong>on</strong> from bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> water and their surrounding watersheds,<br />

potentially lowering lake and river levels and reducing vessel carrying capacity. Shipping across<br />

the Great Lakes and the Upper Midwest river system would thereby be impaired, although a<br />

l<strong>on</strong>ger shipping seas<strong>on</strong> would <str<strong>on</strong>g>of</str<strong>on</strong>g>fset some <str<strong>on</strong>g>of</str<strong>on</strong>g> the adverse ec<strong>on</strong>omic effects. Thawing permafrost<br />

in Alaska is already creating settlement and land subsidence problems for roads, rail lines,<br />

runways, and pipelines. Greater temperature extremes (mainly heat waves) in some U.S. regi<strong>on</strong>s<br />

could lead to buckling <str<strong>on</strong>g>of</str<strong>on</strong>g> pavements and misalignment <str<strong>on</strong>g>of</str<strong>on</strong>g> rail lines. More intense precipitati<strong>on</strong><br />

could increase the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding events, such as the storms that plagued the Midwest<br />

during the flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mississippi River in 1993 and the Chicago area in 1996. More intense<br />

tropical storms, like Hurricanes Katrina and Rita, which ravaged the Gulf Coast in 2005, are<br />

likely to become more frequent. However, no significant increases in the annual number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Atlantic tropical storms are projected.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> vulnerability 8 <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> sector to these impacts has not been thoroughly<br />

studied, nor has it been widely c<strong>on</strong>sidered by transportati<strong>on</strong> planners and decisi<strong>on</strong> makers in<br />

planning, designing, c<strong>on</strong>structing, retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting, and operating the transportati<strong>on</strong> infrastructure.<br />

Many transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als are unaware <str<strong>on</strong>g>of</str<strong>on</strong>g> the problems climate change could create.<br />

Others are hesitant to take acti<strong>on</strong> in view <str<strong>on</strong>g>of</str<strong>on</strong>g> the uncertain outcomes and l<strong>on</strong>g time frames<br />

involved and the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> clear guidelines and standards for addressing the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change and related hazards.<br />

STUDY CHARGE, SCOPE, AND AUDIENCE<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Executive Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Research Board (T<str<strong>on</strong>g>RB</str<strong>on</strong>g>) requested and provided<br />

funding for this study, which was undertaken jointly with the Divisi<strong>on</strong> <strong>on</strong> Earth and Life Studies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academies. <str<strong>on</strong>g>The</str<strong>on</strong>g> expert committee formed to c<strong>on</strong>duct the study was charged 9 to:<br />

6<br />

In this report, infrastructure refers to both transportati<strong>on</strong> networks (e.g., road and rail systems) and facilities (e.g.,<br />

bridges, tunnels, ports).<br />

7<br />

In fact, a recent assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program (CCSP) found that the scientific<br />

community is not well structured to develop informati<strong>on</strong> that would enable adaptive resp<strong>on</strong>se for any sector in the<br />

United States (NRC 2007). <str<strong>on</strong>g>The</str<strong>on</strong>g> CCSP integrates federal research <strong>on</strong> climate and global change, as sp<strong>on</strong>sored by 13<br />

federal agencies.<br />

8<br />

One in-depth assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts in the Gulf Coast regi<strong>on</strong>, entitled <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and Variability<br />

<strong>on</strong> Transportati<strong>on</strong> Systems and Infrastructure: Gulf Coast Study, was <strong>on</strong>-going during the course <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. It<br />

became available for public comment <strong>on</strong>ly after the committee had completed its deliberati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> public review<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gulf Coast Study can be accessed at http://www.climatescience.gov/Library/sap/sap4-7/publicreview-draft/default.htm.<br />

9<br />

A more detailed statement <str<strong>on</strong>g>of</str<strong>on</strong>g> task is included as Appendix A.


Introducti<strong>on</strong> 17<br />

• Provide federal, state, and local transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials in the United States with an<br />

overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific c<strong>on</strong>sensus regarding climate change, including uncertainty about its<br />

nature and extent.<br />

• Summarize previous work <strong>on</strong> strategies for reducing transportati<strong>on</strong>’s impact <strong>on</strong><br />

climate change.<br />

• Summarize possible impacts <strong>on</strong> transportati<strong>on</strong>, such as those due to rising sea levels,<br />

higher mean temperatures with less extreme low temperatures and more heat extremes, and more<br />

frequent intense precipitati<strong>on</strong> events.<br />

• Analyze opti<strong>on</strong>s for adapting to these impacts, including the possible need to alter<br />

assumpti<strong>on</strong>s about infrastructure design and operati<strong>on</strong>s, the ability to incorporate uncertainty into<br />

l<strong>on</strong>g-range decisi<strong>on</strong> making, and the capability <str<strong>on</strong>g>of</str<strong>on</strong>g> instituti<strong>on</strong>s to plan and act <strong>on</strong> mitigati<strong>on</strong> and<br />

adaptati<strong>on</strong> strategies at the state and regi<strong>on</strong>al levels.<br />

• Identify critical areas for research.<br />

• Suggest policies and acti<strong>on</strong>s for preparing for the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> committee’s charge can be viewed more broadly as a risk management problem with<br />

hazards to address (potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change) and vulnerable 10 assets to protect<br />

(transportati<strong>on</strong> infrastructure). Seen in this framework, the objective is to minimize risk by<br />

reducing the hazards (i.e., identify mitigati<strong>on</strong> measures to reduce the potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change) and protecting the assets (i.e., identify adaptati<strong>on</strong> measures 11 to strengthen the<br />

infrastructure and increase its resilience to changing climate c<strong>on</strong>diti<strong>on</strong>s through more stringent<br />

design standards and c<strong>on</strong>structi<strong>on</strong> codes and retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting or relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> at-risk facilities). 12<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> primary focus <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is <strong>on</strong> adaptati<strong>on</strong> strategies rather than <strong>on</strong> strategies to<br />

mitigate transportati<strong>on</strong>-related GHG emissi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> topic <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong>, particularly as it relates<br />

to transportati<strong>on</strong>, has not received the attenti<strong>on</strong> or research given to the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong>.<br />

Investigating both topics fully was bey<strong>on</strong>d the resources available for the study. In fact, at the<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> this writing, T<str<strong>on</strong>g>RB</str<strong>on</strong>g> initiated a new study focused entirely <strong>on</strong> mitigati<strong>on</strong>. 13 Nevertheless, in<br />

resp<strong>on</strong>se to its charge and drawing heavily <strong>on</strong> existing studies, committee member George Eads,<br />

with the c<strong>on</strong>sensus <str<strong>on</strong>g>of</str<strong>on</strong>g> the full committee, has summarized current and projected c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the transportati<strong>on</strong> sector to GHG emissi<strong>on</strong>s and examined numerous technological and n<strong>on</strong>technological<br />

mitigati<strong>on</strong> strategies in a lengthy appendix (see Appendix B). <str<strong>on</strong>g>The</str<strong>on</strong>g> analysis did not<br />

attempt to pick winners and losers by comparing the costs and benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative mitigati<strong>on</strong><br />

10<br />

In this report, the term “vulnerability” is defined as “the degree to which a system is susceptible to, and unable to<br />

cope with, adverse effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, including climate variability and extremes. Vulnerability is a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the character, magnitude, and rate <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and variati<strong>on</strong> to which a system is exposed, its sensitivity,<br />

and its adaptive capacity” (IPCC 2007a, 21). <str<strong>on</strong>g>The</str<strong>on</strong>g> committee notes that there is a large literature <strong>on</strong> vulnerability as<br />

it relates to many hazards and cites Turner et al (2003) as an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a broad vulnerability framework and its<br />

applicati<strong>on</strong> in case studies to several different types <str<strong>on</strong>g>of</str<strong>on</strong>g> hazards and affected communities.<br />

11<br />

Adaptati<strong>on</strong> strategies refer to human attempts to protect or adapt systems so as to reduce the risks and moderate<br />

the potential harm from and exploit the beneficial opportunities <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. Mitigati<strong>on</strong><br />

strategies refer to human interventi<strong>on</strong> to reduce the sources <str<strong>on</strong>g>of</str<strong>on</strong>g> GHGs that c<strong>on</strong>tribute to climate change.<br />

12<br />

Until researchers can quantify both the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> expected outcomes and their probabilities, however, a full risk<br />

assessment is not possible.<br />

13<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study <strong>on</strong> potential energy savings and greenhouse gas reducti<strong>on</strong>s will review policies and strategies to affect<br />

behavior and improve fuel ec<strong>on</strong>omy for passenger and freight vehicles across all modes, develop scenarios to<br />

illustrate potential savings over a 25-50 year time horiz<strong>on</strong> for the United States, and analyze the safety, ec<strong>on</strong>omic,<br />

transportati<strong>on</strong> finance, and envir<strong>on</strong>mental c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> energy-saving measures.


18 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

approaches. Indeed the data for doing so were not available. That level <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis would<br />

require a separate study or even a series <str<strong>on</strong>g>of</str<strong>on</strong>g> studies.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> committee was mindful <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential interacti<strong>on</strong> between mitigati<strong>on</strong> and<br />

adaptati<strong>on</strong> strategies as shown in Figure 1-1. For example, if the fuel c<strong>on</strong>sumpti<strong>on</strong> and CO2<br />

emissi<strong>on</strong>s and c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> vehicles could be substantially reduced by the<br />

introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies, this would lessen the human-caused c<strong>on</strong>tributi<strong>on</strong> to climate<br />

change and its impacts <strong>on</strong> transportati<strong>on</strong> infrastructure. Reducti<strong>on</strong>s in travel demand or shifts to<br />

less GHG-emitting travel modes (e.g., public transit for pers<strong>on</strong>al travel and rail for freight travel)<br />

would operate in a similar fashi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> summary <str<strong>on</strong>g>of</str<strong>on</strong>g> Appendix B notes, however, that a comm<strong>on</strong><br />

characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> these mitigati<strong>on</strong> measures is the c<strong>on</strong>siderable time they will take to be fully<br />

effective, 14 and the fact that they would <strong>on</strong>ly affect future GHG emissi<strong>on</strong>s and c<strong>on</strong>centrati<strong>on</strong><br />

levels. Complementary adaptati<strong>on</strong> strategies are thus essential if the transportati<strong>on</strong> sector is to<br />

address the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s and c<strong>on</strong>centrati<strong>on</strong> levels that have already occurred.<br />

Greenhouse Gas<br />

Emissi<strong>on</strong>s and<br />

C<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s<br />

Mediating<br />

Envir<strong>on</strong>mental<br />

Effects<br />

Reduce greenhouse gas emissi<strong>on</strong>s and c<strong>on</strong>centrati<strong>on</strong>s<br />

Adaptati<strong>on</strong><br />

Strategies<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> U.S.<br />

Transportati<strong>on</strong><br />

Infrastructure<br />

Mitigati<strong>on</strong><br />

Measures<br />

FIGURE 1-1 <str<strong>on</strong>g>The</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures and adaptati<strong>on</strong> strategies in addressing<br />

climate change impacts <strong>on</strong> U.S. transportati<strong>on</strong> infrastructure.<br />

Note: Bolded areas denote the primary focus <str<strong>on</strong>g>of</str<strong>on</strong>g> this study.<br />

Policies/<br />

Acti<strong>on</strong>s<br />

14 <str<strong>on</strong>g>The</str<strong>on</strong>g> appendix notes that the time required to develop, commercialize, and disseminate new vehicle technologies is<br />

probably shorter than the time required to alter the fundamental drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> demand for pers<strong>on</strong>al and freight<br />

transport—growth in real income, populati<strong>on</strong> growth, urbanizati<strong>on</strong>, and changes in urban form. Nevertheless, both<br />

new technology and shifts in demand are needed if future levels <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong>-related GHG emissi<strong>on</strong>s—a major<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> total GHG emissi<strong>on</strong>s—are to be significantly reduced.<br />

Reduce <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>


Introducti<strong>on</strong> 19<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> report begins with an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the current state <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge about climate<br />

change and its potential impacts, with a particular focus <strong>on</strong> North America, to set the stage for<br />

assessing the c<strong>on</strong>sequences for the transportati<strong>on</strong> sector and identifying prudent adaptati<strong>on</strong><br />

strategies. <str<strong>on</strong>g>The</str<strong>on</strong>g> objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this review is not to advance the state <str<strong>on</strong>g>of</str<strong>on</strong>g> climate science, but to<br />

inform transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als about climate change─including uncertainty as to its precise<br />

timing and geographic locati<strong>on</strong>s─so they can begin to c<strong>on</strong>sider appropriate resp<strong>on</strong>ses.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> report encompasses all modes <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong>─highways (including bridges and<br />

tunnels), rail (including private rail lines and public transportati<strong>on</strong>), marine and air<br />

transportati<strong>on</strong>, and pipelines. Its primary focus is <strong>on</strong> the direct impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong><br />

transportati<strong>on</strong> infrastructure and system operating performance, although indirect impacts are<br />

noted (e.g., potential shifts in the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic activities and use <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> modes,<br />

polluti<strong>on</strong> impacts). <str<strong>on</strong>g>The</str<strong>on</strong>g>se indirect impacts are highly uncertain because they depend <strong>on</strong><br />

assumpti<strong>on</strong>s about populati<strong>on</strong> and ec<strong>on</strong>omic growth, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> technological innovati<strong>on</strong>, and<br />

policy decisi<strong>on</strong>s (e.g., government regulati<strong>on</strong>s and c<strong>on</strong>trols <strong>on</strong> coastal land use and development,<br />

private-sector decisi<strong>on</strong>s about business operati<strong>on</strong>s and logistics).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> geographic scope <str<strong>on</strong>g>of</str<strong>on</strong>g> the study is c<strong>on</strong>fined to the United States, but extends bey<strong>on</strong>d<br />

the c<strong>on</strong>tiguous 48 states to include Alaska, Hawaii, and the U.S. territories. 15 <str<strong>on</strong>g>The</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weather and climate c<strong>on</strong>diti<strong>on</strong>s 16 embraced by this area is broad—from the permafrost c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska to the tropical c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Puerto Rico and Hawaii. Thus, the United States can<br />

expect a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changes and its impacts. Internati<strong>on</strong>al studies were reviewed for<br />

techniques and approaches that might be appropriate to the United States. However, the<br />

committee found few studies that address the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong> and<br />

adaptati<strong>on</strong> strategies.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> audience for this report is the transportati<strong>on</strong> community broadly defined. <str<strong>on</strong>g>The</str<strong>on</strong>g> overall<br />

goal <str<strong>on</strong>g>of</str<strong>on</strong>g> the report is to dem<strong>on</strong>strate to decisi<strong>on</strong> makers resp<strong>on</strong>sible for transportati<strong>on</strong><br />

infrastructure⎯both public and private⎯why they should plan for climate change. At the same<br />

time, an attempt is made to moderate expectati<strong>on</strong>s about the level <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong> with which the<br />

report can provide guidance <strong>on</strong> specific impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and their time frames.<br />

WHY CLIMATE CHANGE MATTERS<br />

When asked to c<strong>on</strong>sider climate change, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als frequently protest that<br />

dealing with a problem whose time horiz<strong>on</strong> is decades and centuries and whose effects are<br />

uncertain is impractical. Moreover, they maintain, resources are insufficient to address day-today<br />

maintenance problems, much less to make investments <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> changes that may or<br />

may not occur years or even generati<strong>on</strong>s into the future.<br />

So why should transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als take note <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change? First, it is not<br />

just a problem for the future. Recent changes, such as global warming and resulting sea level<br />

rises, reflect the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s that were released into the atmosphere over the past<br />

century. What appears to be new is the greater certainty <str<strong>on</strong>g>of</str<strong>on</strong>g> scientists that human activity is<br />

15 Informati<strong>on</strong> <strong>on</strong> climate change effects and impacts, however, is not always available for smaller geographic areas.<br />

16 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change refers to a statistically significant variati<strong>on</strong> in either the mean state <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate or its variability<br />

over an extended period, typically decades or l<strong>on</strong>ger, that can be attributed to either natural causes or human<br />

activity. Weather refers to the familiar hour-by-hour, day-by-day changes in temperature, cloudiness, precipitati<strong>on</strong>,<br />

and other atmospheric phenomena.


20 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

already warming the climate and that the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change is likely to be greater than at any time in<br />

modern history (IPCC 2007b).<br />

Sec<strong>on</strong>d, climate change will not necessarily occur gradually. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists expect<br />

that higher temperatures will be amplified by normal variability in climate, leading to new<br />

extremes far outside current experience (e.g., the heat wave in Europe in 2003 [Stott et al. 2004]<br />

and the near record heat <str<strong>on</strong>g>of</str<strong>on</strong>g> the year 2006 in the United States [Hoerling et al. 2007]). Higher<br />

temperatures are also likely to trigger surprises, such as more rapid than expected melting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Arctic sea ice and rising sea levels.<br />

Third, although transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als typically plan 20 to 30 years into the future,<br />

many decisi<strong>on</strong>s taken today, particularly about the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure, help shape<br />

development patterns and markets that endure far bey<strong>on</strong>d these planning horiz<strong>on</strong>s. Similarly,<br />

decisi<strong>on</strong>s about land use, z<strong>on</strong>ing, and development <str<strong>on</strong>g>of</str<strong>on</strong>g>ten create demand for l<strong>on</strong>g-lived<br />

transportati<strong>on</strong> infrastructure investments. Thus, it is important for transportati<strong>on</strong> decisi<strong>on</strong><br />

makers to c<strong>on</strong>sider potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change now in making these investment choices<br />

because those impacts will affect how well the infrastructure adapts to climate change.<br />

Fourth, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als in many fields, from finance, to building (where protecting against<br />

earthquakes, wildfires, or wind risk is a c<strong>on</strong>cern), to nuclear power, to water resources (in the<br />

design <str<strong>on</strong>g>of</str<strong>on</strong>g> dams and canals) are c<strong>on</strong>tinually making decisi<strong>on</strong>s in the face <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertain informati<strong>on</strong><br />

about risks and outcomes. In fact, the highway and bridge engineering community, through the<br />

auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and Transportati<strong>on</strong> Officials<br />

(AASHTO), has developed design guidelines and standards for earthquake resistance <strong>on</strong> the<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> probabilistic seismic hazard assessments that take many uncertainties into account.<br />

Similarly, addressing climate change requires more quantitative assessments, such as the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> probabilistic climate change scenarios at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic and modal<br />

specificity needed by transportati<strong>on</strong> planners and engineers, which can be incorporated into<br />

planning forecasts and engineering design guidelines and standards.<br />

Finally, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als already c<strong>on</strong>sider weather- and climate-related factors<br />

in designing and operating the transportati<strong>on</strong> infrastructure. For example, many transportati<strong>on</strong><br />

networks and facilities are designed with adequate drainage and pumping capacity to handle a<br />

100-year storm. 17 Materials and maintenance cycles are geared to assumpti<strong>on</strong>s about<br />

temperature and precipitati<strong>on</strong> levels. Evacuati<strong>on</strong> plans and routes have been identified in<br />

hurricane- and other storm-pr<strong>on</strong>e locati<strong>on</strong>s <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> current elevati<strong>on</strong>s and assumpti<strong>on</strong>s<br />

about storm surges and wave acti<strong>on</strong>. But what if the 100-year storm were to become the 50- or<br />

30-year storm, or design thresholds were frequently to be exceeded, or evacuati<strong>on</strong> routes<br />

themselves were to become vulnerable (see Box 1-1)? Such changes could necessitate different<br />

design criteria, asset management policies, maintenance cycles, and operating strategies. Recent<br />

severe weather events—such as the Mississippi River floods <str<strong>on</strong>g>of</str<strong>on</strong>g> 1993, Category 3 or greater<br />

hurricanes (e.g., Ivan, Katrina, Rita), the California wildfires <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003—provide ample<br />

opportunities for transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als to observe the vulnerabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the infrastructure<br />

to shocks to the system that could become more comm<strong>on</strong>place in the future. <str<strong>on</strong>g>The</str<strong>on</strong>g>y also illustrate<br />

the dilemma facing transportati<strong>on</strong> decisi<strong>on</strong> makers <str<strong>on</strong>g>of</str<strong>on</strong>g> whether to rebuild, rebuild differently, or<br />

relocate critical transportati<strong>on</strong> infrastructure.<br />

17 A 100-year storm is defined as the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall during a specified length <str<strong>on</strong>g>of</str<strong>on</strong>g> time that has a 1 percent chance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> being equaled or exceeded in any given year or, put another way, has a recurrence interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 years.


Introducti<strong>on</strong> 21<br />

BOX 1-1<br />

What If?<br />

• What if design lives for infrastructure and return periods were to be exceeded<br />

routinely? Many facilities are built to withstand a 100-year storm. <str<strong>on</strong>g>The</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> other<br />

facilities, such as bridges, assumes a 50-year storm and does not take into account the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> wave acti<strong>on</strong>, vividly illustrated by Hurricane Katrina (Meyer 2006). What if<br />

the 50-year storm, or even the 100-year storm, were to be exceeded routinely, reducing<br />

projected recurrence periods to much below 1 in 50 or 1 in 100 years?<br />

• What if multiple severe weather events were to occur? Each year, Florida and the Gulf<br />

Coast brace for hurricanes, and California prepares for wildfires or heavy rains.<br />

Emergency pers<strong>on</strong>nel are generally able to handle these events, and transportati<strong>on</strong><br />

managers find alternative routes to keep freight moving, largely because the events<br />

occur sequentially and at relatively infrequent intervals. But c<strong>on</strong>sider the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Category 4 or 5 hurricane directed at Houst<strong>on</strong> and its critical petrochemical<br />

infrastructure at the same time that torrential rains and mudslides prevent access to the<br />

Port <str<strong>on</strong>g>of</str<strong>on</strong>g> Los Angeles. How would emergency resp<strong>on</strong>ders and the ec<strong>on</strong>omy fare in the<br />

face <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple and simultaneous intense storms that climate change could bring with<br />

greater frequency?<br />

• What if critical evacuati<strong>on</strong> routes were themselves to become submerged by rising seas<br />

and storm surge? Populati<strong>on</strong> increases in coastal areas are projected to more than<br />

double in the next 20 years. Many seaside communities count <strong>on</strong> coastal highways for<br />

evacuati<strong>on</strong> in a major storm. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these highways also act as flood barriers. What<br />

if the current accelerating rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise were to c<strong>on</strong>tinue into the foreseeable<br />

future? Highways in low-lying areas that provide a vital lifeline could themselves<br />

become compromised by encroaching seas and storm surge. Some communities could<br />

be cut <str<strong>on</strong>g>of</str<strong>on</strong>g>f in a severe storm or would be forced to evacuate well in advance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

storm’s known trajectory to avoid that risk. In the l<strong>on</strong>ger term, it may be possible to<br />

relocate some coastal highways further inland and still provide a means <str<strong>on</strong>g>of</str<strong>on</strong>g> egress for<br />

vulnerable communities.<br />

STUDY APPROACH AND KEY ISSUES<br />

A wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changes could impact transportati<strong>on</strong> infrastructure and result in changes<br />

in the way U.S. transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als plan, design, operate, and maintain the<br />

infrastructure. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee adapted a figure from a workshop c<strong>on</strong>ducted by the U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (U.S. DOT 2003) <strong>on</strong> the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong><br />

transportati<strong>on</strong> (Potter and Sav<strong>on</strong>is 2003) to provide a c<strong>on</strong>ceptual framework for this study<br />

(Figure 1-2). <str<strong>on</strong>g>The</str<strong>on</strong>g> first task is to identify potential climate change effects, focusing <strong>on</strong> those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greatest relevance for transportati<strong>on</strong> (see column 1). This task also includes indicating what is


22 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

known from climate scientists about the certainty <str<strong>on</strong>g>of</str<strong>on</strong>g> these effects, particularly at the regi<strong>on</strong>al and<br />

local levels, and the time frame over which they are likely to unfold.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d task (see column 2) involves describing the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change <strong>on</strong> transportati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se impacts can be c<strong>on</strong>sidered in several different ways—by type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change effect (e.g., sea level rise, temperature extremes), by transportati<strong>on</strong> mode, by<br />

geographic area, and by type <str<strong>on</strong>g>of</str<strong>on</strong>g> impact. Regarding the latter, impacts <strong>on</strong> transportati<strong>on</strong> can be<br />

direct (i.e., affecting the physical infrastructure as well as the operating performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

system) or indirect (e.g., affecting the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic activities or levels <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong>).<br />

Finally, these impacts will be influenced by changes in the envir<strong>on</strong>ment in which the<br />

infrastructure is situated. For example, changes in temperature and precipitati<strong>on</strong> will affect soil<br />

moisture and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, which in turn will affect peak stream flows, sediment delivery to coasts, and<br />

the sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> the landforms up<strong>on</strong> which the infrastructure is built, with c<strong>on</strong>siderable<br />

regi<strong>on</strong>al variability. <str<strong>on</strong>g>The</str<strong>on</strong>g> tasks listed in columns 1 and 2 require good communicati<strong>on</strong> am<strong>on</strong>g<br />

climate scientists, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als, and other relevant scientific disciplines.<br />

1. <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Effects<br />

• Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest<br />

relevance for<br />

transportati<strong>on</strong><br />

• Geographic scale at<br />

which effect can be<br />

projected with<br />

c<strong>on</strong>fidence<br />

• Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> certainty<br />

with which effect is<br />

known<br />

• Time frame over<br />

which effect is likely<br />

to unfold<br />

2. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> U.S.<br />

Transportati<strong>on</strong> *<br />

• By climate change<br />

effect<br />

• By transportati<strong>on</strong><br />

mode<br />

• By geographic area<br />

where the<br />

infrastructure is<br />

located<br />

• By type <str<strong>on</strong>g>of</str<strong>on</strong>g> impact<br />

– Direct, indirect<br />

– Infrastructure,<br />

operati<strong>on</strong>s<br />

3. Possible<br />

Adaptati<strong>on</strong><br />

Strategies<br />

• Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

critical infrastructure<br />

potentially at risk<br />

• M<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

changing climate<br />

c<strong>on</strong>diti<strong>on</strong>s and<br />

impacts <strong>on</strong><br />

infrastructure<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

operating and<br />

maintenance<br />

practices<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

infrastructure design<br />

and redesign<br />

• Relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vulnerable<br />

infrastructure<br />

FIGURE 1-2 <str<strong>on</strong>g>Potential</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong> infrastructure.<br />

* Note that the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> U.S. transportati<strong>on</strong> infrastructure will be influenced<br />

by the envir<strong>on</strong>ment in which the infrastructure is located (e.g., soil moisture, stream flow), which<br />

will vary from regi<strong>on</strong> to regi<strong>on</strong>. (Source: Adapted from Potter and Sav<strong>on</strong>is 2003, 29.)


Introducti<strong>on</strong> 23<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> final task (see column 3) requires developing possible adaptati<strong>on</strong> strategies. A range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> approaches is suggested—from the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> at-risk critical infrastructure, to the<br />

m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s (both climate and infrastructure), to changes in operating and<br />

maintenance practices, to changes in infrastructure design and redesign, to relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vulnerable infrastructure. <str<strong>on</strong>g>The</str<strong>on</strong>g> strategies listed in this column require acti<strong>on</strong> primarily by<br />

transportati<strong>on</strong> decisi<strong>on</strong> makers—planners, designers, engineers, and operating and maintenance<br />

pers<strong>on</strong>nel.<br />

Figure 1-2 links together potential climate change effects, impacts <strong>on</strong> U.S. transportati<strong>on</strong><br />

infrastructure, and possible adaptati<strong>on</strong> strategies, but it does not fully address several key points.<br />

First, issues <str<strong>on</strong>g>of</str<strong>on</strong>g> scale affect the certainty with which the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong><br />

transportati<strong>on</strong> infrastructure can be examined at present. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change projecti<strong>on</strong>s are most<br />

accurate at the global level, but transportati<strong>on</strong> infrastructure is largely local and regi<strong>on</strong>al.<br />

Nevertheless, the ability to predict climate change at the local and regi<strong>on</strong>al levels is improving.<br />

Furthermore, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change are not point specific; their impacts may differ even<br />

within a regi<strong>on</strong>, depending <strong>on</strong> locati<strong>on</strong>. For example, sea level rise will affect coastal regi<strong>on</strong>s,<br />

but the seriousness <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact will depend <strong>on</strong> the elevati<strong>on</strong>, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> land subsidence,<br />

and the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> protecti<strong>on</strong> (e.g., levees) provided for and the redundancy <str<strong>on</strong>g>of</str<strong>on</strong>g> vulnerable<br />

infrastructure in the affected areas.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> network character <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure adds another layer <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity.<br />

Adverse impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong> facilities in <strong>on</strong>e regi<strong>on</strong>, for example, may<br />

shift activity to another locati<strong>on</strong> or route, either temporarily, as was the case for freight<br />

movement in the wake <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricane Katrina, or in the l<strong>on</strong>ger term (e.g., shifts in port activity<br />

resulting from new shipping routes opening as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> warming and deepening seas), with net<br />

effects that may be positive or negative.<br />

Differences in time frames are another complicating factor. Some climate changes will<br />

unfold over decades and centuries, ostensibly allowing time for transportati<strong>on</strong> decisi<strong>on</strong> makers to<br />

plan and resp<strong>on</strong>d. Others are likely to increase the sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system and could<br />

bring surprises and abrupt changes that would make planning difficult. 18 <str<strong>on</strong>g>The</str<strong>on</strong>g> lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> infrastructure can be as little as 10 to 20 years (e.g., some pavement surfaces),<br />

allowing engineers to adapt to some climate changes as they unfold. Many other transportati<strong>on</strong><br />

networks and facilities are l<strong>on</strong>ger-lived. Major bridges and pipelines, for example, have<br />

lifetimes <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 to 100 years, while the right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way <str<strong>on</strong>g>of</str<strong>on</strong>g> major transportati<strong>on</strong> networks (e.g., rail<br />

lines, roads) is easily that l<strong>on</strong>g-lived. Thus, many <str<strong>on</strong>g>of</str<strong>on</strong>g> the investment decisi<strong>on</strong>s made by<br />

transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als today will have a significant effect <strong>on</strong> how well the infrastructure<br />

adapts to climate change.<br />

Finally, like so many other problems, climate change will not be experienced in isolati<strong>on</strong>.<br />

It will manifest itself in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> other demographic, social, and ec<strong>on</strong>omic trends, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

aggravating existing c<strong>on</strong>diti<strong>on</strong>s. For example, many coastal areas are likely to experience<br />

increased development pressures as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> growth, greater affluence, and tourist<br />

demands. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these areas are already vulnerable to erosi<strong>on</strong> and storm damage. As sea<br />

levels rise with global warming, coastal storms with higher tides and storm surges are likely to<br />

create the c<strong>on</strong>diti<strong>on</strong>s for more severe coastal flooding and erosi<strong>on</strong>, placing more people in<br />

harm’s way and increasing the difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuating in an emergency.<br />

18<br />

Evidence exists for abrupt climate changes that can occur within a decade. <str<strong>on</strong>g>The</str<strong>on</strong>g> Dust Bowl drought <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1930s is<br />

a good example (NRC 2002).


24 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

ORGANIZATION OF THE REPORT<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this report addresses the committee’s charge. Chapter 2 reviews the current<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge about climate change, including projected changes over the next century, and<br />

those factors <str<strong>on</strong>g>of</str<strong>on</strong>g> particular relevance to U.S. transportati<strong>on</strong>. Chapter 3 is focused <strong>on</strong> the potential<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changes <strong>on</strong> transportati<strong>on</strong> infrastructure. <str<strong>on</strong>g>The</str<strong>on</strong>g> chapter begins with an<br />

overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the infrastructure to these changes; it then examines the likely<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the most critical climate changes by transportati<strong>on</strong> mode, reviews the handful <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

studies that have examined the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong>, and draws a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

findings. Chapter 4 describes how the transportati<strong>on</strong> sector is organized and explains why<br />

climate change poses a difficult challenge to decisi<strong>on</strong> makers. It c<strong>on</strong>cludes with some<br />

suggesti<strong>on</strong>s for a more strategic, risk-based approach to investment decisi<strong>on</strong>s. Chapter 5<br />

c<strong>on</strong>siders adaptati<strong>on</strong> strategies—both engineering and operati<strong>on</strong>al measures, as well as changes<br />

in transportati<strong>on</strong> planning and land use c<strong>on</strong>trols, development <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies, improved<br />

data and analysis tools, and organizati<strong>on</strong>al changes. In the sixth and final chapter, the committee<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers its recommendati<strong>on</strong>s for policies and acti<strong>on</strong>s to address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong><br />

transportati<strong>on</strong> and for needed research.<br />

REFERENCES<br />

Abbreviati<strong>on</strong>s<br />

IPCC Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

NRC Nati<strong>on</strong>al Research Council<br />

U.S. DOT U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

U.S. EPA U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency<br />

Hoerling, M., J. Eischeid, X. Quan, and T. Xu. 2007. Explaining the Record U.S. Warmth <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006.<br />

Geophysical Research Letters, Vol. 34, No. 17, L17704.<br />

IPCC. 2005. Guidance Notes for Lead Authors <str<strong>on</strong>g>of</str<strong>on</strong>g> the IPCC Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <strong>on</strong> Addressing<br />

Uncertainties, July. Available at http://ipccwg1.ucar.edu/wg1/<str<strong>on</strong>g>Report</str<strong>on</strong>g>/AR4_UncertaintyGuidanceNote.pdf,<br />

Accessed <strong>on</strong> January 30, 2008.<br />

IPCC. 2007a. Summary for Policymakers. In: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>, Adaptati<strong>on</strong>, and<br />

Vulnerability. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group II to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [M.L. Parry, O.F. Canziani, J.P. Palutik<str<strong>on</strong>g>of</str<strong>on</strong>g>, P.J. van der<br />

Linden and C.E. Hans<strong>on</strong> (eds.)], Cambridge University Press, Cambridge, UK.<br />

IPCC. 2007b. Summary for Policymakers. In: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Science Basis.<br />

C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental Panel <strong>on</strong><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [Solom<strong>on</strong>, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor<br />

and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY.<br />

NRC. 2002. Abrupt <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>: Inevitable Surprises. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academies Press,<br />

Washingt<strong>on</strong>, D.C.<br />

NRC. 2007. Evaluating Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program: Methods and<br />

Preliminary Results. Nati<strong>on</strong>al Academies Press, Washingt<strong>on</strong>, D.C.<br />

Potter, J. R., and M. J. Sav<strong>on</strong>is. 2003. Transportati<strong>on</strong> in an Age <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, What Are the<br />

Research Priorities? TR News, Vol. 227, July–Aug.<br />

Staudt, A., N. Huddlest<strong>on</strong>, and S. Rudenstein. 2005. Understanding and Resp<strong>on</strong>ding to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>:<br />

Highlights <str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Academies <str<strong>on</strong>g>Report</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academies Press, Washingt<strong>on</strong>, D.C., Oct.


Introducti<strong>on</strong> 25<br />

Stott, P. A., D. A. St<strong>on</strong>e, and M. R. Allen. 2004. Human C<strong>on</strong>tributi<strong>on</strong> to the European Heatwave <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003.<br />

Nature, Vol. 432, pp. 610– 614, doi:10.1038/nature03089.<br />

Turner, B.L., P.A. Mats<strong>on</strong>, J.J. McCarthy et al. 2003. Illustrating the Coupled Human-Envir<strong>on</strong>ment<br />

System for Vulnerability Analysis: Three Case Studies. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Science, Vol. 100, No. 14, July 8.<br />

U.S. DOT. 2003. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>, Summary and Discussi<strong>on</strong><br />

Papers. Federal Research Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct.<br />

1–2, 2002.<br />

U.S. EPA. 2007. Inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Greenhouse Gas Emissi<strong>on</strong>s and Sinks: 1990–2005. EPA 430-R-07-<br />

002, Washingt<strong>on</strong>, D.C., Apr. 15.<br />

World Business Council for Sustainable Development. 2004. Mobility 2030: Meeting the Challenges to<br />

Sustainability. <str<strong>on</strong>g>The</str<strong>on</strong>g> Sustainable Mobility Project. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academies Press, Washingt<strong>on</strong>, D.C.


T<br />

2<br />

Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

his chapter begins with an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> current understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the role greenhouse gases<br />

(GHGs) play in the atmosphere and evidence for how they are already influencing the<br />

earth’s climate in both general and specific ways. <str<strong>on</strong>g>The</str<strong>on</strong>g> discussi<strong>on</strong> includes a review <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

climate change projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> global climate models and some <str<strong>on</strong>g>of</str<strong>on</strong>g> the evidence that has led recent<br />

nati<strong>on</strong>al and internati<strong>on</strong>al scientific assessments—including those <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental<br />

Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC) (2007), the Nati<strong>on</strong>al Research Council (2001), and the <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program (CCSP) Synthesis and Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> 1.1 (Karl et al. 2006)—to<br />

link the rise in temperature, particularly since the 1970s, to increases in GHGs. Next is a<br />

discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the projected climate changes for North America most relevant for U.S.<br />

transportati<strong>on</strong>. For each climate variable, past projecti<strong>on</strong>s and key uncertainties are also<br />

discussed. <str<strong>on</strong>g>The</str<strong>on</strong>g> chapter ends with a series <str<strong>on</strong>g>of</str<strong>on</strong>g> findings.<br />

OVERVIEW OF GLOBAL CLIMATE CHANGE<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Greenhouse Effect and Atmospheric Compositi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> natural “greenhouse” effect is real, and is an essential comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the planet's climatic<br />

processes. A small proporti<strong>on</strong> (roughly 2 percent) <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere is, and l<strong>on</strong>g has been,<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> GHGs (water vapor, carb<strong>on</strong> dioxide, oz<strong>on</strong>e, and methane). <str<strong>on</strong>g>The</str<strong>on</strong>g>se gases effectively<br />

prevent part <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat radiated by the earth's surface from otherwise escaping to space. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the global system to this trapped heat is a climate that is warmer than it would be<br />

without the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> these gases; in their absence, the earth’s temperature would be too low to<br />

support life as we know it. Am<strong>on</strong>g the GHGs, water vapor is by far the most dominant, but other<br />

gases augment its effect through greater trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> heat in certain porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electromagnetic (light) spectrum.<br />

In additi<strong>on</strong> to the natural greenhouse effect outlined above, a change is under way in the<br />

greenhouse radiati<strong>on</strong> balance. Some GHGs are proliferating in the atmosphere because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

human activities and increasingly trapping more heat. Direct atmospheric measurements made<br />

over the past 50 years have documented steady growth in the atmospheric abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

dioxide (CO2). In additi<strong>on</strong> to these direct, real-time measurements, ice cores have revealed the<br />

atmospheric CO2 c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the distant past. Measurements using air bubbles trapped<br />

within layers <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulating snow show that atmospheric CO2 has increased by nearly 35<br />

percent over the Industrial Era (since 1750), compared with its relatively c<strong>on</strong>stant abundance<br />

over at least the preceding 10,000 years (see Figure 2-1). <str<strong>on</strong>g>The</str<strong>on</strong>g> predominant causes <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

increase in CO2 are the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels and deforestati<strong>on</strong>. Further, the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

methane has doubled over the Industrial Era, although its increase has slowed during the past<br />

decade for reas<strong>on</strong>s not clearly understood. Other heat-trapping gases are also increasing as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> human activities. Scientists are unable to state with certainty the rate at which these<br />

GHGs will c<strong>on</strong>tinue to increase because <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainties in future emissi<strong>on</strong>s, as well as in how<br />

27


28 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-1 Atmospheric c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide, methane and nitrous oxide<br />

over the last 10,000 years (large panels) and since 1750 (inset panels). Measurements are<br />

from a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ice cores (going back 10,000 years) and atmospheric samples in the<br />

twentieth century. (Source: IPCC 2007, <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Science Basis: Summary for Policymakers,<br />

Figure SPM-1, p. 15. Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the IPCC Secretariat, Geneva, Switzerland.)


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 29<br />

these emissi<strong>on</strong>s will be taken up by the atmosphere, land, and oceans. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are certain,<br />

however, that <strong>on</strong>ce in the atmosphere, these gases have a relatively l<strong>on</strong>g residence time, <strong>on</strong> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> a century (IPCC 2001). This means they become well mixed across the globe.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is no doubt that the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere is affected by human activities.<br />

Today GHGs are the largest human influence <strong>on</strong> atmospheric compositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> increase in<br />

GHG c<strong>on</strong>centrati<strong>on</strong>s in the atmosphere implies a positive radiative forcing (i.e., a tendency to<br />

warm the climate system).<br />

Increases in heat-trapping GHGs are projected to be amplified by feedback effects, such<br />

as changes in water vapor, snow cover, and sea ice. As atmospheric c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 and<br />

other GHGs increase, the resulting rise in surface temperature leads to less sea ice and snow<br />

cover, causing the planet to absorb more <str<strong>on</strong>g>of</str<strong>on</strong>g> the sun’s energy rather than reflecting it back to<br />

space, thereby raising temperatures even further. Present evidence also suggests that as GHGs<br />

lead to rising temperatures, evaporati<strong>on</strong> increases, leading to more atmospheric water vapor<br />

(Soden et al. 2005; Trenberth et al. 2005). Additi<strong>on</strong>al water vapor, the dominant GHG, acts as a<br />

very important feedback to increase temperature further. <str<strong>on</strong>g>The</str<strong>on</strong>g> most uncertain feedback is related<br />

to clouds, specifically changes in cloud frequency, locati<strong>on</strong>, and height. <str<strong>on</strong>g>The</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty<br />

spans from a significant positive feedback to no feedback, or even a slightly negative feedback.<br />

Present understanding suggests that these feedback effects account for at least half <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

climate’s warming (IPCC 2001; Karl and Trenberth 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> exact magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> these effects<br />

remains a significant source <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty in understanding the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing GHGs. In<br />

additi<strong>on</strong>, increases in evaporati<strong>on</strong> and water vapor affect global climate in other ways besides<br />

causing rising temperatures, such as increasing rainfall and snowfall rates and accelerating<br />

drying during droughts.<br />

Particles suspended in the atmosphere (aerosols) resulting from human activities can also<br />

affect climate. Aerosols vary c<strong>on</strong>siderably by regi<strong>on</strong>. Some aerosol types (e.g., sulfate) act in a<br />

way opposite to the GHGs by reflecting more solar radiati<strong>on</strong> back to space than the heat they<br />

absorb, and thereby causing a negative radiative forcing or cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system. Other<br />

aerosols (e.g., soot) act in the same way as GHGs and warm the climate. In c<strong>on</strong>trast to the l<strong>on</strong>glived<br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2, aerosols are short-lived and removed from the lower atmosphere within a<br />

few days. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, human-generated aerosols exert a l<strong>on</strong>g-term forcing <strong>on</strong> climate <strong>on</strong>ly<br />

because their emissi<strong>on</strong>s c<strong>on</strong>tinue each day <str<strong>on</strong>g>of</str<strong>on</strong>g> the year. <str<strong>on</strong>g>The</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aerosols <strong>on</strong> climate can be<br />

manifested directly by their ability to reflect and trap heat, but also indirectly by changes in the<br />

lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> clouds and in the clouds’ reflectivity to sunshine. <str<strong>on</strong>g>The</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the negative<br />

forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> the indirect effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aerosols is highly uncertain, but it may be larger than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their direct effects (IPCC 2001).<br />

Emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> GHGs and aerosols c<strong>on</strong>tinue to alter the atmosphere by influencing the<br />

planet’s natural energy flows (see Box 2-1), which can cause changes in temperature and<br />

precipitati<strong>on</strong> extremes, reducti<strong>on</strong>s in snow cover and sea ice, changes in storm tracks, and<br />

increased intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes (IPCC 2007). <str<strong>on</strong>g>The</str<strong>on</strong>g>re are also natural factors that exert a forcing<br />

effect <strong>on</strong> climate (e.g., changes in the sun’s energy output and short-lived [a few years] aerosols<br />

in the stratosphere following episodic and explosive volcanic erupti<strong>on</strong>s). If all the possible<br />

influences <str<strong>on</strong>g>of</str<strong>on</strong>g> natural and human climate forcings over the past several decades are c<strong>on</strong>sidered,<br />

increases in GHGs have had a larger influence <strong>on</strong> the planet’s radiati<strong>on</strong> flow than all the other<br />

forcings, <strong>on</strong>e that c<strong>on</strong>tinues to grow disproporti<strong>on</strong>ately larger (IPCC 2007; Karl and Trenberth<br />

2003).


30 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

BOX 2-1<br />

What Warms and Cools the Earth?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sun is the earth’s main energy source. Its output appears nearly c<strong>on</strong>stant, but small<br />

changes during an extended period <str<strong>on</strong>g>of</str<strong>on</strong>g> time can lead to climate changes. In additi<strong>on</strong>, slow<br />

changes in the earth’s orbit affect how the sun’s energy is distributed across the earth, creating<br />

another variable that must be c<strong>on</strong>sidered.<br />

Greenhouse gases warm the earth:<br />

Water vapor (H2O), supplied from oceans and the natural biosphere, accounts for two-thirds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the total greenhouse effect but acts primarily as a feedback. In c<strong>on</strong>trast to other<br />

greenhouse gases, the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water vapor in the atmosphere generally cannot be<br />

c<strong>on</strong>trolled by humans. Water vapor introduced directly into the atmosphere from agricultural<br />

or other activities does not remain there very l<strong>on</strong>g and is overwhelmed by natural sources;<br />

thus it has little warming effect.<br />

Carb<strong>on</strong> dioxide (CO2) has natural and human sources. CO2 levels are increasing as a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels.<br />

Methane (CH4 ) has both human and natural sources and has risen significantly since<br />

preindustrial times as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> an increase in several human activities, including raising<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> livestock; growing <str<strong>on</strong>g>of</str<strong>on</strong>g> rice; use <str<strong>on</strong>g>of</str<strong>on</strong>g> landfills; and extracti<strong>on</strong>, handling, and transport <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural gas.<br />

Oz<strong>on</strong>e (O3) has natural sources, especially in the stratosphere, where changes caused by<br />

oz<strong>on</strong>e-depleting chemicals have been important; oz<strong>on</strong>e also is produced in the troposphere<br />

(the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere) when hydrocarb<strong>on</strong>s and nitrogen oxide pollutants react.<br />

Nitrous oxide (N2O) has been increasing from agricultural and industrial sources.<br />

Halocarb<strong>on</strong>s, including chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>luorocarb<strong>on</strong>s (CFCs), c<strong>on</strong>tinue to be used as substitutes for<br />

CFCs as refrigerant fluids, and CFCs from pre-M<strong>on</strong>treal Protocol usage as refrigerants and as<br />

aerosol-package propellants remain in the atmosphere.<br />

Scientists have a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the human c<strong>on</strong>tributi<strong>on</strong>s to climate forcing<br />

by carb<strong>on</strong> dioxide, methane, nitrous oxide, and CFCs and a medium level <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the human c<strong>on</strong>tributi<strong>on</strong>s to climate forcing by oz<strong>on</strong>e (Foster et al. 2007).<br />

Some aerosols (airborne particles and droplets) warm the earth:<br />

Black carb<strong>on</strong> particles, or “soot,” produced when fossil fuels or vegetati<strong>on</strong> is burned,<br />

generally have a warming effect by absorbing solar radiati<strong>on</strong>.<br />

Some aerosols cool the earth:<br />

Sulfate (SO4 ) aerosols from burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels reflect sunlight back to space.<br />

(c<strong>on</strong>tinued)


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 31<br />

BOX 2-1 (c<strong>on</strong>tinued)<br />

Volcanic erupti<strong>on</strong>s emit gaseous SO2, which, <strong>on</strong>ce in the atmosphere, forms SO4 aerosols<br />

and ash. Both reflect sunlight back to space.<br />

Scientists currently have a low level <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the human c<strong>on</strong>tributi<strong>on</strong>s to climate<br />

forcing by aerosols (Foster et al. 2007).<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in land cover, ice extent, and cloud cover can warm or cool the earth:<br />

Deforestati<strong>on</strong> produces land areas that reflect more sunlight back to space; replacement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tundra by c<strong>on</strong>iferous trees that create dark patches in the snow cover may increase absorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sunlight.<br />

Sea ice reflects sunlight back to space; reducti<strong>on</strong> in the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice allows more sunlight<br />

to be absorbed into the dark ocean, causing warming.<br />

Clouds reflect sunlight back to space, but can also act like a greenhouse gas by absorbing<br />

heat leaving the earth’s surface; the net effect depends <strong>on</strong> how the cloud cover changes.<br />

Source: Adapted from Staudt et al. 2006, p. 7.<br />

Human activities also have a large-scale impact <strong>on</strong> the earth’s land surface. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

land use due to urbanizati<strong>on</strong> and agricultural practices, although not global, are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten most<br />

pr<strong>on</strong>ounced where people live, work, and grow food and are part <str<strong>on</strong>g>of</str<strong>on</strong>g> the human impact <strong>on</strong><br />

climate. Land use changes affect, for example, how much <str<strong>on</strong>g>of</str<strong>on</strong>g> the sun’s energy is absorbed or<br />

reflected and how much precipitati<strong>on</strong> evaporates back into the atmosphere. Large-scale<br />

deforestati<strong>on</strong> and desertificati<strong>on</strong> in Amaz<strong>on</strong>ia and the Sahel, respectively, are two instances in<br />

which evidence suggests the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> a human influence <strong>on</strong> regi<strong>on</strong>al climate (Andreae et al.<br />

2004; Changn<strong>on</strong> and Bras 2005). In general, city climates differ from those in surrounding rural<br />

green areas, causing an “urban heat island” due to greater heat retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban surfaces, such<br />

as c<strong>on</strong>crete and asphalt, as well as the waste generated from anthropogenic activities 1 (Bornstein<br />

and Lin 2000; Changn<strong>on</strong> et al. 1981; J<strong>on</strong>es et al. 1990; Karl et al. 1988; Landsberg 1983;<br />

Peters<strong>on</strong> 2003).<br />

What Is a <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Model and Why Is It Useful?<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific laws governing climate change and the processes involved can be<br />

quantified and linked by mathematical equati<strong>on</strong>s. Figure 2-2 shows schematically the kinds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

processes that can be included in climate models. Am<strong>on</strong>g these are many earth system<br />

comp<strong>on</strong>ents, such as atmospheric chemistry, ocean circulati<strong>on</strong>, sea ice, land-surface hydrology,<br />

biogeochemistry, 2 and atmospheric circulati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> physics <str<strong>on</strong>g>of</str<strong>on</strong>g> many, though not all, <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

1<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> global effects <str<strong>on</strong>g>of</str<strong>on</strong>g> these urban heat islands have been analyzed extensively and assessed to ensure that they do<br />

not bias measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> global temperature.<br />

2<br />

Biogeochemistry refers to the biological chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the earth system, such as the uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric carb<strong>on</strong><br />

by land and ocean vegetati<strong>on</strong>.


32 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-2 Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system and their interacti<strong>on</strong>s, including the<br />

human comp<strong>on</strong>ent. All these comp<strong>on</strong>ents must be modeled as a coupled system that<br />

includes the oceans, atmosphere, land, cryosphere, and biosphere. (Note: GCM = General<br />

Circulati<strong>on</strong> Model. Source: Karl and Trenberth 2003, Figure 3.<br />

Reprinted from Science, Vol. 302, No. 5651.)


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 33<br />

processes governing climate change are well understood, and may be described by mathematical<br />

equati<strong>on</strong>s. Linking these equati<strong>on</strong>s creates mathematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> climate that may be run <strong>on</strong><br />

computers or supercomputers. Coupled climate models can include mathematical equati<strong>on</strong>s<br />

describing physical, chemical, and biogeochemical processes, and are used because the climate<br />

system is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> different interacting comp<strong>on</strong>ents.<br />

Coupled climate models are the preferred approach to climate modeling, but they cannot<br />

at present include all details <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system. One reas<strong>on</strong> is that not all details <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

climate system are understood, even though the major governing processes are known well<br />

enough to allow models to reproduce observed features, including trends, <str<strong>on</strong>g>of</str<strong>on</strong>g> global climate.<br />

Another reas<strong>on</strong> is the prohibitive complexity and run-time requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> models that might<br />

incorporate all known informati<strong>on</strong> about the climate system. Decisi<strong>on</strong>s <strong>on</strong> how to build any<br />

given climate model include trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs am<strong>on</strong>g the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the model and the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

earth system comp<strong>on</strong>ents included, the model’s horiz<strong>on</strong>tal and spatial resoluti<strong>on</strong>, and the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> years <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s the model can produce per day <str<strong>on</strong>g>of</str<strong>on</strong>g> computer time. C<strong>on</strong>sequently, there is<br />

a hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g> varying complexity, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten based <strong>on</strong> the degree to which approximati<strong>on</strong>s<br />

are required for each model or comp<strong>on</strong>ent processes omitted.<br />

Approximati<strong>on</strong>s in climate models represent aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the models that require parameter<br />

choices and “tuning.” As a simple example, imagine representing a single cumulus cloud in a<br />

global climate model. <str<strong>on</strong>g>The</str<strong>on</strong>g> cloud may encompass <strong>on</strong>ly a few hundred meters in vertical and<br />

horiz<strong>on</strong>tal space—a much finer resoluti<strong>on</strong> than can be run <strong>on</strong> today’s coupled atmosphere and<br />

ocean climate models. As a result, if such clouds are to be incorporated into the climate model,<br />

some approximati<strong>on</strong>s must be made regarding the clouds’ statistical properties within, say, an<br />

area 100 or 1000 times larger than the cloud itself. This is referred to as model parameterizati<strong>on</strong>,<br />

and the process <str<strong>on</strong>g>of</str<strong>on</strong>g> selecting the most appropriate parameters to best simulate observed c<strong>on</strong>diti<strong>on</strong>s<br />

is called model tuning. Similar methods are also required in today’s state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-science weather<br />

forecasting models.<br />

An important difference between weather forecasting models and climate models is that<br />

the former are initialized with a specific set <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s representing today’s weather to<br />

predict the weather precisely “x” days or hours into the future. By c<strong>on</strong>trast, the initial starting<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate models are much less important. Also, climate models are not intended to<br />

predict specific future weather events. Rather, they are used to simulate many years <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

“weather” into the future with the intent <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding the change in the collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weather<br />

events at some point in the future compared with some point in the past (<str<strong>on</strong>g>of</str<strong>on</strong>g>ten the climate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

last 30 years or so). Scientists are thus interested in properties <str<strong>on</strong>g>of</str<strong>on</strong>g> climate, such as average<br />

rainfall and temperature and the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong> about that average. This comparis<strong>on</strong><br />

enables scientists to study the output <str<strong>on</strong>g>of</str<strong>on</strong>g> climate model simulati<strong>on</strong>s to understand the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> those aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system that might cause the climate to<br />

change. A key challenge in climate modeling is to isolate and identify cause and effect. Doing<br />

so requires knowledge about the changes and variati<strong>on</strong>s in the external forcings c<strong>on</strong>trolling<br />

climate and a comprehensive understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> climate feedbacks (such as a change in the earth’s<br />

reflectivity because <str<strong>on</strong>g>of</str<strong>on</strong>g> a change in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice or clouds) and natural climate<br />

variability. A related key challenge in climate modeling is the representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-grid scale<br />

processes, such as in some storms, and land-terrain effects.<br />

Model simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate over specified periods can be verified and validated against<br />

the observati<strong>on</strong>al record. Likewise, model parameterizati<strong>on</strong> schemes for particular processes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest can be tested by comparis<strong>on</strong> with observati<strong>on</strong>s and with higher-resoluti<strong>on</strong>, smaller-scale


34 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

models. Models that describe climate variability and change well can be used as a tool to<br />

increase understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system. Once evaluated and validated, climate models can<br />

then be used for predictive purposes. Given specific forcing scenarios, the models can provide<br />

viable projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate. In fact, climate models have become the primary means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projecting climate change, although ultimately, future projecti<strong>on</strong>s are likely to be determined<br />

through a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> means, including the observed rate <str<strong>on</strong>g>of</str<strong>on</strong>g> global climate change.<br />

How Do We Know the Global Air Temperature Is Increasing?<br />

A comprehensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in temperatures near the earth’s surface and throughout<br />

much <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere is presented in the April 2006 CCSP Synthesis and Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g><br />

1.1 (Karl et al. 2006). This report addresses the nagging issue <str<strong>on</strong>g>of</str<strong>on</strong>g> differences in the rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

warming between measurements derived near the surface (typically 2 m above the surface) and<br />

those taken from higher in the atmosphere (i.e. the lower troposphere, or the atmosphere below<br />

roughly 12 km). <str<strong>on</strong>g>The</str<strong>on</strong>g> surface air temperatures are derived from several different analysis teams,<br />

using various combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean ships and buoys, land observati<strong>on</strong>s from weather reporting<br />

stati<strong>on</strong>s, and satellite data. Atmospheric data sets have been derived using satellites, weather<br />

ballo<strong>on</strong>s, and a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two.<br />

C<strong>on</strong>sidering all the latest satellite, ballo<strong>on</strong>, and surface records, the CCSP report<br />

c<strong>on</strong>cludes that there is no significant discrepancy between the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> global temperature change<br />

over the past several decades at the surface compared with those higher in the atmosphere. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

report does acknowledge, however, that there are still uncertainties in the tropics, related<br />

primarily to the data obtained from weather ballo<strong>on</strong>s. Many developing countries are struggling<br />

to launch weather ballo<strong>on</strong>s routinely and process their measurements, and it is unclear whether<br />

scientists have been able to adjust adequately for known biases and errors in the data.<br />

Globally, data indicate that rates <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature change have been similar throughout the<br />

atmosphere since 1979, when satellite data were first available, and that the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change have<br />

been slightly greater in the troposphere than <strong>on</strong> the earth’s surface since 1958 (when weather<br />

ballo<strong>on</strong>s first had adequate spatial coverage for global calculati<strong>on</strong>s). <str<strong>on</strong>g>The</str<strong>on</strong>g> global surface<br />

temperature time series shown in Figure 2-3 indicates warming <strong>on</strong> even l<strong>on</strong>ger time scales, with<br />

accelerati<strong>on</strong> since 1976.<br />

Instrumental temperature measurements are not the <strong>on</strong>ly evidence for increasing global<br />

temperatures. <str<strong>on</strong>g>The</str<strong>on</strong>g> observed increased melting <str<strong>on</strong>g>of</str<strong>on</strong>g> glaciers can be used to estimate the rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature increase since the late nineteenth century. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> near-surface temperature<br />

based <strong>on</strong> glacial melting are very similar to estimates based <strong>on</strong> instrumental temperature data. A<br />

15–20 percent reducti<strong>on</strong> in Arctic sea ice since the 1970s, a 10 percent decrease in snow cover<br />

since the 1970s, and shortened periods <str<strong>on</strong>g>of</str<strong>on</strong>g> lake and river ice cover (about 2 weeks shorter since<br />

the nineteenth century) have been observed. Also, ocean heat c<strong>on</strong>tent has significantly increased<br />

over the past several decades (IPCC 2007).


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 35<br />

FIGURE 2-3 Globally averaged surface air temperature and carb<strong>on</strong> dioxide (CO2)<br />

c<strong>on</strong>centrati<strong>on</strong> (parts per milli<strong>on</strong> by volume [ppmv]) since 1880. Note that the shaded bars<br />

refer to global temperature anomalies and the solid line to CO2 c<strong>on</strong>centrati<strong>on</strong>s.<br />

(Source: Updated from Karl and Trenberth 2003.)<br />

Why Do Scientists Think Humans Are Influencing the Earth’s <str<strong>on</strong>g>Climate</str<strong>on</strong>g>?<br />

Since the 1980s, the scientific community has been actively working <strong>on</strong> detecting climate change<br />

and determining how much <str<strong>on</strong>g>of</str<strong>on</strong>g> the change is attributable to human activities. As described<br />

above, <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> tools <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used for detecti<strong>on</strong> and attributi<strong>on</strong> is mathematical computer models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the climate. Outstanding issues in modeling include specifying forcing mechanisms (e.g., the<br />

causes <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability and change) within the climate system; addressing complex GHG<br />

feedback processes (e.g., methane and carb<strong>on</strong>) and properly dealing with indirect aerosol<br />

forcings and complex physical feedback processes (e.g., energy and water sources); and<br />

improving simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al weather, especially extreme events. Today’s inadequate or<br />

incomplete measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the various forcing mechanisms, with the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> well-mixed<br />

GHGs, add uncertainty when <strong>on</strong>e is trying to simulate past and present climate. C<strong>on</strong>fidence in<br />

predicting future climate depends <strong>on</strong> using climate models to attribute past and present climate<br />

changes to specific causes. Despite these issues, a substantial and growing body <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence<br />

(IPCC 2007) shows that climate models are useful tools for understanding the factors leading to<br />

climate change.


36 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Recent CO2 emissi<strong>on</strong> trends are upward, with increases <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5–1 percent per year over the<br />

past few decades. C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> both reflective and n<strong>on</strong>reflective aerosols are also estimated<br />

to be increasing. Net positive radiative forcings 3 from GHGs dominate the net cooling forcings<br />

from aerosols, and the global temperature change over the last 25-30 years has exceeded the<br />

bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> natural variability estimated from climate simulati<strong>on</strong>s with no human-caused changes.<br />

This has been the case since about 1980. As an example <str<strong>on</strong>g>of</str<strong>on</strong>g> how models are used to detect<br />

human influence <strong>on</strong> the climate system, Figure 2-4 shows that, without including all the known<br />

forcing mechanisms (natural and human or anthropogenic), the models cannot replicate observed<br />

global temperature changes. Moreover, many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system other than global<br />

surface temperatures have been tested for human influences.<br />

FIGURE 2-4 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed global change in surface temperature with<br />

simulati<strong>on</strong>s by climate models using natural and anthropogenic forcings. Decadal averages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s are shown for the period 1906 to 2005 (black line) plotted against the center<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the decade and relative to the corresp<strong>on</strong>ding average for 1901–1950. Solid shading<br />

shows the 5–95 percent range for 19 simulati<strong>on</strong>s from five climate models using <strong>on</strong>ly the<br />

natural forcings due to solar activity and volcanoes. Banded shading shows the 5–95<br />

percent range for 58 simulati<strong>on</strong>s from 14 climate models using both natural and<br />

anthropogenic forcings. (Source: IPCC 2007, <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Science Basis:<br />

Summary for Policymakers, Figure SPM-4, p. 18.<br />

Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the IPCC Secretariat, Geneva, Switzerland.)<br />

3 Radiative forcing can be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as the change in heat flow (expressed in watts per square meter [Wm -2 ]) at the<br />

tropopause due to an internal change or a change in the external forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system, such as a change in<br />

the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 or the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the sun. <str<strong>on</strong>g>The</str<strong>on</strong>g> tropopause is the boundary between the troposphere and the<br />

stratosphere, represented by a rather abrupt change from decreasing to increasing temperature with height.


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 37<br />

Today there is c<strong>on</strong>vincing evidence from a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change detecti<strong>on</strong> and<br />

attributi<strong>on</strong> studies pointing to human influences <strong>on</strong> climate. <str<strong>on</strong>g>The</str<strong>on</strong>g>se studies include c<strong>on</strong>tinental<br />

and subc<strong>on</strong>tinental analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in temperature; the paleoclimatic 4 temperature record;<br />

three-dimensi<strong>on</strong>al analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in atmospheric temperature, in free atmospheric<br />

temperature, in sea ice extent and other comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the cryosphere, and in ocean heat c<strong>on</strong>tent;<br />

and new studies <strong>on</strong> extreme weather and climate events. Thus, there is high c<strong>on</strong>fidence that the<br />

observed warming, especially during the period since the 1970s, is due mainly to human-caused<br />

increases in GHGs (Allen 2005; Gillet et al. 2002; Hegerl et al. 2001; IPCC 2007; Karl et al.<br />

2006; Karoly and Wu 2005; St<strong>on</strong>e and Allen 2005; Stott et al. 2001; Tett 2002; Zhang et al.<br />

2006; Zweirs and Zhang 2003). How climate warming will be manifested over the next 50 to<br />

100 years and which factors will have the greatest potential impact <strong>on</strong> transportati<strong>on</strong> are<br />

discussed in the following secti<strong>on</strong>.<br />

CLIMATE CHANGES RELEVANT TO U.S. TRANSPORTATION<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability and change impact transportati<strong>on</strong> mainly through changes in weather<br />

extremes, such as very hot days, very cold days, or severe storms; changes in climate extremes, 5<br />

such as increases in the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> intense precipitati<strong>on</strong> events and extended droughts; and<br />

sea level rise. <str<strong>on</strong>g>The</str<strong>on</strong>g> U.S. transportati<strong>on</strong> system was built for the typical weather and climate<br />

experienced locally, including a reas<strong>on</strong>able range <str<strong>on</strong>g>of</str<strong>on</strong>g> extremes, such as flooding events occurring<br />

as rarely as <strong>on</strong>ce in <strong>on</strong>e hundred years. Moderate changes in the mean climate have little impact<br />

<strong>on</strong> transportati<strong>on</strong> infrastructure or operati<strong>on</strong>s because the system is designed to accommodate<br />

changing weather c<strong>on</strong>diti<strong>on</strong>s. However, changes in weather and climate extremes can have a<br />

c<strong>on</strong>siderable impact <strong>on</strong> transportati<strong>on</strong>, especially if they push envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s outside<br />

the range for which the system was designed. Weather and climate extremes <str<strong>on</strong>g>of</str<strong>on</strong>g> relevance to<br />

transportati<strong>on</strong> have been changing over the past several decades and are projected to c<strong>on</strong>tinue to<br />

change in the future, with both negative and positive effects <strong>on</strong> the transportati<strong>on</strong> system.<br />

Table 2-1 lists the potential climate changes <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest relevance for transportati<strong>on</strong>, including<br />

the level <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty associated with each. <str<strong>on</strong>g>The</str<strong>on</strong>g> following subsecti<strong>on</strong>s address these changes<br />

in turn, largely summarizing the findings <str<strong>on</strong>g>of</str<strong>on</strong>g> a paper commissi<strong>on</strong>ed for this study (by Petersen et<br />

al. 2006; See Appendix C). Each subsecti<strong>on</strong> highlights past trends, future projecti<strong>on</strong>s, and key<br />

uncertainties. (<str<strong>on</strong>g>The</str<strong>on</strong>g> reader is referred to the paper by Peters<strong>on</strong> et al. 2006 for more detail and<br />

additi<strong>on</strong>al figures to support the discussi<strong>on</strong>.) Note that the discussi<strong>on</strong> generally progresses from<br />

those climate changes about which there is most certainty to those about which there is less.<br />

4 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> during periods prior to the development <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring instruments includes historical and geological time<br />

for which <strong>on</strong>ly proxy climate indicators are available. A proxy climate indicator is a local record that is interpreted,<br />

using physical and biophysical principles, to represent some combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate-related variati<strong>on</strong>s back in time.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-related data derived in this way are referred to as proxy data. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> proxies are tree ring records,<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> corals, and various data derived from ice cores.<br />

5 <str<strong>on</strong>g>The</str<strong>on</strong>g> exact threshold for what is classified as an extreme varies from <strong>on</strong>e analysis to another, but an extreme event<br />

would normally be as rare as, or rarer than, the top or bottom 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> all occurrences (CCSP 2007). For the<br />

purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this report, all tornadoes and hurricanes are c<strong>on</strong>sidered extreme.


38 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

TABLE 2-1 Level <str<strong>on</strong>g>of</str<strong>on</strong>g> Uncertainty Associated<br />

with <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Greatest Relevance to Transportati<strong>on</strong><br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Relevance to U.S. Transportati<strong>on</strong> Level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Uncertainty<br />

Temperature: Increases in very hot days and heat waves Very likely<br />

Temperature: Decreases in very cold days Virtually certain<br />

Temperature: Increases in Arctic temperatures Virtually certain<br />

Temperature: Later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al freeze and earlier <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al thaw Virtually certain<br />

Sea level rise Virtually certain<br />

Precipitati<strong>on</strong>: Increase in intense precipitati<strong>on</strong> events Very likely<br />

Precipitati<strong>on</strong>: Increases in drought c<strong>on</strong>diti<strong>on</strong>s for some regi<strong>on</strong>s Likely<br />

Precipitati<strong>on</strong>: <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in seas<strong>on</strong>al precipitati<strong>on</strong> and flooding patterns Likely<br />

Storms: Increases in hurricane intensity Likely<br />

Storms: Increased intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-seas<strong>on</strong> storms, with increases in winds and in Likely<br />

waves and storm surges<br />

Notes: Italicized uncertainty designati<strong>on</strong>s are those identified by the IPCC (2007). Others reflect the<br />

committee’s judgment, based <strong>on</strong> the available literature. <str<strong>on</strong>g>The</str<strong>on</strong>g> IPCC (2007, 3) Working Group I established<br />

the following terminology to describe uncertainty, that is, probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence: virtually certain ≥ 99<br />

percent; extremely likely ≥ 95 percent; very likely ≥ 90 percent; likely ≥ 66 percent; more likely than not ≥ 50<br />

percent; unlikely ≤ 33 percent; very unlikely ≤ 10 percent; extremely unlikely ≤ 5 percent.<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Temperature<br />

An increase in air temperature allows more water vapor in the atmosphere, which defines the<br />

upper bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> that can occur during short-term (e.g., hourly to day)<br />

extreme precipitati<strong>on</strong> events. Surface moisture, if available (as it always is over the oceans),<br />

effectively acts as the “air c<strong>on</strong>diti<strong>on</strong>er” <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface, as heat used for evaporati<strong>on</strong> moistens<br />

rather than warms the air. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, another c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> global heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower<br />

troposphere is accelerated land-surface drying and more atmospheric water vapor (the dominant<br />

GHG). Human-induced warming has been linked to the water vapor increases in both surface<br />

observati<strong>on</strong>s (Willett et al. 2007) and satellite observati<strong>on</strong>s over the oceans (Santer et al. 2007).<br />

Without an increase in precipitati<strong>on</strong>, accelerated drying increases the incidence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

droughts (Dai et al. 2004), whereas additi<strong>on</strong>al atmospheric water vapor increases the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heavy precipitati<strong>on</strong> events (Trenberth et al. 2003). Increases in global temperature also cause sea<br />

surface temperatures to rise, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> several important factors affecting hurricane intensity.<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Temperature Including Extremes<br />

U.S. temperatures have been rising over the last century, with more rapid increases since 1970<br />

than earlier, as shown in Figure 2-5. It is unlikely that North American temperature changes<br />

since 1950 are due to natural climate variability al<strong>on</strong>e (Karoly et al. 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> warming has not<br />

been uniform across the c<strong>on</strong>tinent. In general, the western porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tiguous United


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 39<br />

States has warmed more than the eastern porti<strong>on</strong>. Alaska has warmed the most rapidly, with<br />

temperatures in some regi<strong>on</strong>s increasing by more than 0.6°C (1.1°F) per decade since 1970.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se warming trends are projected to c<strong>on</strong>tinue over the next century based <strong>on</strong><br />

reas<strong>on</strong>able scenarios for future GHG emissi<strong>on</strong>s. Figure 2-6 shows the temperatures projected for<br />

the Eastern United States for three different scenarios, each scenario run by multiple models.<br />

Other areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States show similar warming trends (see Figure 6 in the commissi<strong>on</strong>ed<br />

paper by Peters<strong>on</strong> et al. 2006 [Appendix C]). It is interesting to note that for the next 30 years,<br />

the uncertainties are primarily model related and not due to different emissi<strong>on</strong>s scenarios. Even<br />

if atmospheric c<strong>on</strong>centrati<strong>on</strong>s remained at current levels, the models would still project similar<br />

warming over the next couple <str<strong>on</strong>g>of</str<strong>on</strong>g> decades (IPCC 2007).<br />

Increases in Very Hot Days and Heat Waves<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> next century is likely to bring more very hot days and heat waves (see Figure 9 in the paper<br />

by Peters<strong>on</strong> et al. 2006 [Appendix C]). <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> days with temperature above 32.2°C<br />

(90°F) and 37.7°C (100°F) has been increasing since 1970, but it is not quite as high today as<br />

during the early 1950s, when several areas, particularly the south-central United States, had<br />

FIGURE 2-5 Area-averaged mean temperature time series<br />

for the c<strong>on</strong>tiguous United States. (Source: NOAA, Nati<strong>on</strong>al Climatic Data Center.)


40 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-6 Annual surface air temperature anomaly, from the 1990–1999 average, for<br />

the Eastern United States and for three different emissi<strong>on</strong>s scenarios. (Note: SRES = <str<strong>on</strong>g>Special</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Report</str<strong>on</strong>g> <strong>on</strong> Emissi<strong>on</strong> Scenarios. Source: Peters<strong>on</strong> et al. 2006, Figure 5 ([see Appendix C]).<br />

severe droughts. By 2090–2099, it is expected that the average temperature <strong>on</strong> the hottest day <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the year will be 2.5–4.5°C (4.5–8.1°F) warmer than the hottest day <str<strong>on</strong>g>of</str<strong>on</strong>g> the year in the 1990s. Not<br />

<strong>on</strong>ly will there be hotter and more very hot days, but it is likely that the c<strong>on</strong>tinental United States<br />

will have significantly more heat waves with sustained high temperatures for 5 c<strong>on</strong>secutive days<br />

or l<strong>on</strong>ger.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are several ways to c<strong>on</strong>ceptualize the change in very hot days. For example, the<br />

20-year-return value for the hottest day <str<strong>on</strong>g>of</str<strong>on</strong>g> the year in 2090–2099 can be compared with the same<br />

value for the 1990s. <str<strong>on</strong>g>The</str<strong>on</strong>g> 20-year-return value is the temperature that is reached or exceeded <strong>on</strong><br />

average <strong>on</strong>ce every 20 years over a l<strong>on</strong>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> time. Such temperatures are truly rare events<br />

because they are expected to be reached <strong>on</strong>ly three or four times during the course <str<strong>on</strong>g>of</str<strong>on</strong>g> a human<br />

lifetime. Over most <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tinental United States, the present-day, 20-year return-value<br />

temperatures would be reached or exceeded seven times or more in a 20-year interval by the end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the twenty-first century. Hence, the rare high temperature event becomes comm<strong>on</strong>place in<br />

this scenario. Figure 2-7 depicts another way <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sidering the change in very hot days<br />

expected in the next century, using Dallas, Texas, as an example. <str<strong>on</strong>g>The</str<strong>on</strong>g> figure shows the<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> having 1 to 20 days during the summer when the temperature exceeds 43.3°C<br />

(110°F). <str<strong>on</strong>g>The</str<strong>on</strong>g> probability increases substantially 25, 50, and 90 years in the future. Similar plots<br />

are presented for Minneapolis, Minnesota, and H<strong>on</strong>olulu in the paper by Peters<strong>on</strong> et al. 2006 (see<br />

Appendix C).


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 41<br />

FIGURE 2-7 Current and future probability <str<strong>on</strong>g>of</str<strong>on</strong>g> having 1 to 20 days<br />

during the summer at or above 43.3°C (110°F) in Dallas, Texas.<br />

(Source: Peters<strong>on</strong> et al. 2006, Figure 10b [see Appendix C]).<br />

Decreases in Very Cold Days<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> very cold days has been decreasing in the United States since about 1970 (see<br />

Figure 2-8). This trend is also expected to c<strong>on</strong>tinue into the future across the c<strong>on</strong>tinent. For<br />

example, in the Washingt<strong>on</strong>, D.C., area, there is currently a 75 percent chance that 3 days each<br />

winter will have maximum temperatures at or below freezing. By the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century, this<br />

probability is projected to drop to 20 percent.<br />

Later Onset <str<strong>on</strong>g>of</str<strong>on</strong>g> Seas<strong>on</strong>al Freeze and Earlier Onset <str<strong>on</strong>g>of</str<strong>on</strong>g> Seas<strong>on</strong>al Thaw<br />

It is not just extremes <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature that can have an impact <strong>on</strong> transportati<strong>on</strong>. In particular, the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> days from the last freeze in the spring to the first freeze in the fall is expected to<br />

increase. Figure 2-9 shows a corresp<strong>on</strong>ding period—the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time between the first day in<br />

the year that the maximum daily temperature reaches 21.1°C (70°F) and the last day <str<strong>on</strong>g>of</str<strong>on</strong>g> the year<br />

when this occurs. This interval has been increasing since 1970 and can be expected to increase<br />

further in the future. While there is c<strong>on</strong>siderable year-to-year variability in the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freeze–thaw days (i.e., days when an observati<strong>on</strong> stati<strong>on</strong>’s maximum temperature is above<br />

freezing and its minimum temperature below freezing), no distinct trend has been observed in<br />

this quantity.


42 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-8 U.S. nati<strong>on</strong>ally averaged anomaly <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days at or below the<br />

coldest 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> January maximum and minimum temperatures at each stati<strong>on</strong>.<br />

(Percentiles were calculated <strong>on</strong> a 1961-1990 base period.<br />

Source: Peters<strong>on</strong> et al. 2006, Figure 14 [see Appendix C]).<br />

FIGURE 2-9 U.S. area-averaged anomaly <str<strong>on</strong>g>of</str<strong>on</strong>g> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time between the first day<br />

above 21.1°C (70°F) in the spring and the last day above 21.1°C in the fall.<br />

(Source: Peters<strong>on</strong> et al. 2006, Figure 19 [see Appendix C]).


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 43<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Sea Level<br />

Sea level is projected to rise over the next century, but there is significant uncertainty as to how<br />

much and how fast. <str<strong>on</strong>g>The</str<strong>on</strong>g> IPCC Third Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> includes a range <str<strong>on</strong>g>of</str<strong>on</strong>g> estimates that sea<br />

levels will rise 0.1–0.9 m above 1990 levels by 2100 (IPCC 2001). To put this in c<strong>on</strong>text, the<br />

IPCC estimates that during the last 6,000 years, global average sea level variati<strong>on</strong>s <strong>on</strong> time scales<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a few hundred years and l<strong>on</strong>ger are likely to have been less than 0.3–0.5 m. Observed sea<br />

level changes from tide gauges and satellite altimeters indicate that the 1993–2005 rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea<br />

level rise was 3 mm per year (Church and White 2006). If this linear trend c<strong>on</strong>tinues, sea level<br />

will rise by about 0.3 m by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the twenty-first century. Several analyses have identified a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors that as yet have uncertain likelihoods, but could easily c<strong>on</strong>tribute to n<strong>on</strong>-linear<br />

and abrupt rises in sea level (IPCC 2007; Scho<str<strong>on</strong>g>of</str<strong>on</strong>g> 2007; Vauthan et al. 2007). Such<br />

extrapolati<strong>on</strong>s are tentative, however, because the extent to which the trends <str<strong>on</strong>g>of</str<strong>on</strong>g> the last decade<br />

are due to natural variability in the climate system is unknown.<br />

Global warming affects sea level through two mechanisms: thermal expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seawater and melting <str<strong>on</strong>g>of</str<strong>on</strong>g> ice present <strong>on</strong> land surfaces. Other factors also play a role in sea level,<br />

such as the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water held back by human-made land reservoirs, leading to sea level falls,<br />

but these factors are less important. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are still problems in rec<strong>on</strong>ciling the observed changes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the past century with the estimated c<strong>on</strong>tributi<strong>on</strong>s from these different sources (Munk 2002).<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the projected sea level rise is due to thermal expansi<strong>on</strong>, but should the melting <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

polar ice caps accelerate, sea level would rise much higher. <str<strong>on</strong>g>The</str<strong>on</strong>g> rapid melting <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenland,<br />

which would have a very large impact, is possible, but too little is known to assess its likelihood<br />

(IPCC 2007). Current model projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise are based <strong>on</strong> the observed rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

melting during 1993–2003, but these rates could increase or decrease in the future.<br />

More important to transportati<strong>on</strong> than the global change in sea level is the local apparent<br />

change in sea level (Burkett 2002; Titus 2002). Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> local apparent sea level rise take<br />

into account the vertical movement <str<strong>on</strong>g>of</str<strong>on</strong>g> land and coastal erosi<strong>on</strong>. Coastal erosi<strong>on</strong>, in turn, is<br />

driven by sea level rise. To estimate local sea level rise, land subsidence in the Gulf Coast and<br />

uplift al<strong>on</strong>g the New England coast are important factors (NRC 1987). Figure 2-10 illustrates<br />

that because <str<strong>on</strong>g>of</str<strong>on</strong>g> these factors, different regi<strong>on</strong>s can have quite different local sea level rise.<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea Level Rise <strong>on</strong> Shoreline Locati<strong>on</strong><br />

Predicting rates <str<strong>on</strong>g>of</str<strong>on</strong>g> shoreline retreat and land loss is critical to planning future coastal<br />

infrastructure. According to the Bruun rule, shorelines retreat so as to maintain a c<strong>on</strong>stant slope,<br />

and by some estimates, move inland roughly 150 m for every meter rise in sea level (Bruun<br />

1962; Leatherman et al. 2000). Thus, for a 0.5 m worldwide sea level rise, sandy shores could<br />

retreat 75 m. Although the Bruun rule is useful as a c<strong>on</strong>ceptual model, rigorous applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coastal geology and climatology models is necessary for risk analysis at specific locati<strong>on</strong>s.


44 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-10 Trends in sea level from global changes in seawater volume and local<br />

changes in land surface elevati<strong>on</strong> for representative locati<strong>on</strong>s in the United States.<br />

(Source: NOAA 2001, p. 4)<br />

Exacerbati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Storm Surge by Sea Level Rise<br />

Storm surge is the abnormal rise in sea level accompanying a hurricane or other intense storm,<br />

above the level <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal or astr<strong>on</strong>omic tide. Storm surge can be exacerbated by tidal piling,<br />

a phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abnormally high water levels from successive incoming tides that do not<br />

completely drain because <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g winds or waves persisting through successive tide cycles.<br />

Flooding due to coastal storms results from a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surge and intense<br />

precipitati<strong>on</strong>. Storm surge is <str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cern to port operati<strong>on</strong>s, mooring facilities, and moored<br />

vessels, as well as to coastal infrastructure that is vulnerable to flooding.<br />

Storm surge has been estimated or modeled using the United States Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Engineer’s (USACE) Waterways Experiment Stati<strong>on</strong> (WES) model; the Nati<strong>on</strong>al Weather


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 45<br />

Service (NWS) Sea, Lake and Overland Surge from Hurricanes (SLOSH) model; and more<br />

recently the Advanced CIRCulati<strong>on</strong> Model (ADCIRC) (Westerink et al. 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g>se models<br />

use wind fields from past storms as input; these historical input data are updated infrequently.<br />

When updated, these models show wider areas <str<strong>on</strong>g>of</str<strong>on</strong>g> 100-year floodplains. For example, a recent<br />

analysis with the ADCIRC model using input data through the 2005 hurricane seas<strong>on</strong> showed<br />

greater storm surge and higher flooding. <str<strong>on</strong>g>The</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the 100-year storm surge flood<br />

(previously established using data for 1900–1956) would now recur at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 years<br />

based <strong>on</strong> data for 1900–2005 (Levins<strong>on</strong> 2006).<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Precipitati<strong>on</strong><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in the Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> Heavy and Extreme Precipitati<strong>on</strong><br />

Basic theory and climate model simulati<strong>on</strong>s as well as empirical evidence (see Figure 2-11)<br />

c<strong>on</strong>firm that warmer climates, owing to increased water vapor, lead to more intense precipitati<strong>on</strong><br />

events even when total precipitati<strong>on</strong> remains c<strong>on</strong>stant, with prospects for even str<strong>on</strong>ger events<br />

when precipitati<strong>on</strong> amounts increase. Figure 2-12 depicts the aggregate land-surface worldwide<br />

changes in intense precipitati<strong>on</strong> events over the last half <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century, with an<br />

associated geographic depicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> where changes in intense precipitati<strong>on</strong> have occurred; most<br />

areas show increases. Worldwide, an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> a few percent in intense precipitati<strong>on</strong> events is<br />

evident since the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century, particularly in the middle and high latitudes.<br />

This leads to more frequent events that are currently rare. For example, by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentyfirst<br />

century, a c<strong>on</strong>servative projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change has the recurrence period (or average<br />

expected waiting time) for the current 1-in-20-year, heaviest daily precipitati<strong>on</strong> event reducing to<br />

every six to eight years over much <str<strong>on</strong>g>of</str<strong>on</strong>g> North America (Kharin et al. 2007; Wehner 2006).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> practical implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> addressing these changes are seen in the Nati<strong>on</strong>al Oceanic<br />

and Atmospheric Administrati<strong>on</strong>’s (NOAA) recent update <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ohio River Basin’s 100-year<br />

daily precipitati<strong>on</strong> return period. <str<strong>on</strong>g>The</str<strong>on</strong>g>se data are used to help set engineering design standards<br />

related to excessive rainfall. Over the past several decades, increases in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

precipitati<strong>on</strong> occurring during the heaviest daily precipitati<strong>on</strong> events have been observed in many<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the central and eastern United States (Groisman et al. 2004, Groisman et al. 2005; Karl<br />

and Knight 1998). In fact, over the twentieth century, annual precipitati<strong>on</strong> averaged across the<br />

United States increased by about 7 percent, but very intense precipitati<strong>on</strong> events (above the 95th<br />

percentile) increased by nearly three times that rate (20 percent). <str<strong>on</strong>g>The</str<strong>on</strong>g> observed behavior<br />

supports <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most c<strong>on</strong>fident projecti<strong>on</strong>s that scientists can make about future precipitati<strong>on</strong>.<br />

C<strong>on</strong>siderable analysis has shown that because water vapor has increased in the atmosphere and<br />

will c<strong>on</strong>tinue to do so with added anthropogenic GHG emissi<strong>on</strong>s, the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

will c<strong>on</strong>tinue to increase in much <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States (and elsewhere). In many regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

world, increases in extreme precipitati<strong>on</strong> are occurring even when total precipitati<strong>on</strong> is relatively<br />

c<strong>on</strong>stant (Alpert et al. 2002; Groisman et al. 2003, 2005). In areas where overall precipitati<strong>on</strong><br />

increases, the increase in the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> very heavy precipitati<strong>on</strong> events will be even greater.


46 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-11 <str<strong>on</strong>g>The</str<strong>on</strong>g> diagram shows that warmer climates have a higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

rainfall coming from heavy and very heavy events. <str<strong>on</strong>g>The</str<strong>on</strong>g> data are based <strong>on</strong> a worldwide<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observing stati<strong>on</strong>s, each with the same seas<strong>on</strong>al mean precipitati<strong>on</strong> amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 230 (±5) mm. In cool climates, there are more daily precipitati<strong>on</strong> events than in warmer<br />

climates (adapted from Karl and Trenberth 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> various cloud and rain symbols<br />

reflect the different daily precipitati<strong>on</strong> rates and are categorized in the top panel <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

figure to reflect the approximate proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the different rates for cool, moderate, and<br />

warm climates across the globe.


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 47<br />

FIGURE 2-12 Trends in the c<strong>on</strong>tributi<strong>on</strong> to total annual precipitati<strong>on</strong> from very wet days<br />

(95th percentile) in percent per decade. (a) Regi<strong>on</strong>al changes, with stipled areas not<br />

reporting. (b) Worldwide changes in areas with adequate data. Percentiles were calculated<br />

<strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> 1961-1990 data. (Source: Alexander et al. 2006, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research.<br />

[Copyright 2006 by American Geophysical Uni<strong>on</strong>. Reproduced with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American<br />

Geophysical Uni<strong>on</strong> in the format Other book via Copyright Clearance Center]).


48 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are several different ways to think about how the increase in the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy<br />

and extreme precipitati<strong>on</strong> events might be manifested. One opti<strong>on</strong> is to c<strong>on</strong>sider changes in a<br />

20-year return event. In the A1b emissi<strong>on</strong>s scenario, the present-day 20-year precipitati<strong>on</strong> event<br />

would take place 2 to 4 times as frequently by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the twenty-first century (see Figure 27c<br />

and text for an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissi<strong>on</strong>s scenarios in Peters<strong>on</strong> et al. 2006 [Appendix C]).<br />

Another useful measure is the Simple Daily Intensity Index, which equals the total annual<br />

precipitati<strong>on</strong> divided by the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days with precipitati<strong>on</strong> in that year. Figure 2-13 (top)<br />

shows that this quantity has increased over the United States, indicating that <strong>on</strong> days that<br />

precipitati<strong>on</strong> does occur, the amount is becoming greater. Median model projecti<strong>on</strong>s for the<br />

future over the c<strong>on</strong>tinental United States, Figure 2-13 (bottom), indicate that the Simple Daily<br />

Intensity Index is expected to c<strong>on</strong>tinue to increase over the next century.<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in the Severity and Frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> Drought<br />

Drought is a recurring feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate system; major droughts have occurred in the past<br />

and are expected in the future. At any given time, at least part <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States is in drought,<br />

with proporti<strong>on</strong>s ranging from 5 to 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s total land area. U.S. droughts show<br />

pr<strong>on</strong>ounced multiyear to multidecadal variability, but there is no c<strong>on</strong>vincing evidence for<br />

systematic l<strong>on</strong>g-term trends toward more or fewer events. Drought calculati<strong>on</strong>s have shown that<br />

over the United States, the increase in temperatures that may have led to increased evaporati<strong>on</strong><br />

has been compensated by a general increase in precipitati<strong>on</strong> during the past few decades (Dai et<br />

al. 2004), with the result that there has been no general trend in drought intensity nati<strong>on</strong>wide<br />

(Figure 2-14). Over the United States, climate model projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> change by the<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the twenty-first century show a tendency for increasing winter precipitati<strong>on</strong> and<br />

decreasing summer precipitati<strong>on</strong> as global temperatures increase. Locati<strong>on</strong>s that do experience<br />

decreased precipitati<strong>on</strong> in additi<strong>on</strong> to the c<strong>on</strong>tinuing increase in temperatures, such as the<br />

recently observed record-high January–June <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 (NOAA Press Release, July 2006), could<br />

have greater drought severity and frequency, especially during periods <str<strong>on</strong>g>of</str<strong>on</strong>g> dry weather due to<br />

increases in evaporati<strong>on</strong>. L<strong>on</strong>g-term warming trends have already led to changes in the timing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

snow melt and stream flows, especially in the West, resulting in earlier peak stream flows and<br />

diminished summertime flows.<br />

For the c<strong>on</strong>tinental United States, the most extensive drought in the modern observati<strong>on</strong>al<br />

record occurred from 1933 to 1938. In July 1934, 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States was gripped by<br />

moderate or greater drought (see Figure 2-14), and 63 percent was experiencing severe to<br />

extreme drought. During 1953–1957, severe drought covered up to 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the country.<br />

Paleoclimatic data (e.g., tree ring measurements) have been used to rec<strong>on</strong>struct drought patterns<br />

for the period prior to the modern instrumental record (Cook et al. 1999, 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

rec<strong>on</strong>structi<strong>on</strong>s show that during most <str<strong>on</strong>g>of</str<strong>on</strong>g> the past two millennia, the climate <str<strong>on</strong>g>of</str<strong>on</strong>g> the western<br />

United States has been more arid than at present. <str<strong>on</strong>g>The</str<strong>on</strong>g> recent intense western drought from 1999<br />

to 2004 that str<strong>on</strong>gly affected the Colorado River basin was exceeded in severity as recently as<br />

the nineteenth century. Within the past millennium, severe droughts in both the western United<br />

States and the Midwest have occurred that have lasted for multiple decades.


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 49<br />

FIGURE 2-13 (Top) <str<strong>on</strong>g>The</str<strong>on</strong>g> upward trend in the Simple Daily Intensity Index (i.e., total<br />

precipitati<strong>on</strong> per year divided by the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days with precipitati<strong>on</strong>) indicates that, <strong>on</strong><br />

a U.S. area-averaged basis, when precipitati<strong>on</strong> does occur, it tends to be heavier. (Bottom)<br />

Median model projected changes in the Simple Daily Intensity Index for the c<strong>on</strong>tinental<br />

United States. (Source: Peters<strong>on</strong> et al. 2006, Figure 28a,b [see Appendix C]).


50 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-14 Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tiguous U.S. land area in moderate to severe drought.<br />

(Note: Based <strong>on</strong> the Palmer Drought Index. Source: NOAA, Nati<strong>on</strong>al Climatic Data Center.)<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the more robust findings <str<strong>on</strong>g>of</str<strong>on</strong>g> the IPCC (2007) relates to recent agreement am<strong>on</strong>g<br />

virtually all climate model simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the twenty-first century that a drying <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

southwestern United States is evident. Seager and colleagues (2007) provide the details and<br />

indicate that this drying is attributable to both an increase in evapotranspirati<strong>on</strong> and reduced<br />

precipitati<strong>on</strong>. Droughts in this part <str<strong>on</strong>g>of</str<strong>on</strong>g> the country that occur naturally, such as those <str<strong>on</strong>g>of</str<strong>on</strong>g> the past<br />

two millennia, would be expected to be enhanced as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

climate. Increased temperatures will lead to increased drying during periods <str<strong>on</strong>g>of</str<strong>on</strong>g> dry weather,<br />

leading to more intense droughts in much <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States. For the southwestern United<br />

States, reduced precipitati<strong>on</strong> will add to this effect.


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 51<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Storms<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Hurricane Intensity and Frequency<br />

Tropical storms, particularly hurricanes, are an important issue <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern for the United States.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> record-breaking hurricane seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2005, especially the havoc created by Katrina, raised<br />

public awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> the dangers <str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes to new heights. Hurricanes resp<strong>on</strong>d to a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors, including ocean temperatures, atmospheric stability, wind changes, El<br />

Niño, and others. One important questi<strong>on</strong> is whether hurricane activity has changed over the last<br />

100 years. Since 1995, Atlantic hurricane activity has increased substantially, with more and<br />

more intense hurricanes, compared with the previous two decades, and this increased level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

activity is also reflected in those hurricanes striking the United States (see Figure 2-15). Earlier<br />

periods, however, such as 1945–1970, were nearly as active.<br />

An important c<strong>on</strong>siderati<strong>on</strong> with regard to hurricane intensity is the trend toward warmer<br />

sea surface temperatures, particularly in the tropical Atlantic and the Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico, indicating<br />

that climate change may play some role in increased hurricane intensity (Emanuel 2005; Webster<br />

et al. 2005). Another factor is a slow cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> natural fluctuati<strong>on</strong>s in atmospheric c<strong>on</strong>diti<strong>on</strong>s and<br />

ocean temperatures in the North Atlantic, referred to as the Atlantic Multi-decadal Oscillati<strong>on</strong><br />

(AMO), which is currently in a warm ocean temperature phase.<br />

What does the future hold for hurricane activity? In the near term, it is expected that<br />

favorable c<strong>on</strong>diti<strong>on</strong>s for Atlantic hurricanes will persist for the next decade or so <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

previously active periods. For the l<strong>on</strong>ger term, climate models project an increase in the<br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g hurricanes in the twenty-first century (Bengtss<strong>on</strong> et al. 2007; McD<strong>on</strong>ald et al.<br />

2005; Oouchi et al. 2006; Sugi et al. 2002). Specifically, this translates to increases in wind<br />

speed and about a half-category increase in intensity <strong>on</strong> the comm<strong>on</strong>ly used Saffir-Simps<strong>on</strong><br />

Hurricane Intensity Scale as tropical sea surface temperatures increase by nearly 2°C. Given<br />

these c<strong>on</strong>diti<strong>on</strong>s (str<strong>on</strong>ger hurricanes and warmer tropical sea surface temperatures), climate<br />

models also predict an increase in storm rainfall rates <str<strong>on</strong>g>of</str<strong>on</strong>g> about 20 percent (T. R. Knuts<strong>on</strong>,<br />

pers<strong>on</strong>al communicati<strong>on</strong>, 2006). No robust projecti<strong>on</strong>s c<strong>on</strong>cerning the annual global number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tropical storms has yet emerged from modeling studies, but more detailed analyses focused <strong>on</strong><br />

the Atlantic Ocean suggest no significant increases in the annual number <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic tropical<br />

storms (CCSP 2007). Many relevant factors, such as future changes in wind field patterns,<br />

remain very difficult to predict.<br />

Extratropical Storms<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> IPCC AR4 models projected a reducti<strong>on</strong> in the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> midlatitude cycl<strong>on</strong>es and an<br />

increase in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> intense storms. This is a robust result, yielded by essentially all the<br />

models (Lambert and Fyfe 2006). Associated with these changes is an increase in ocean wave<br />

height in the northeastern Atlantic and the northern Pacific (Wang et al. 2004). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>diti<strong>on</strong>s that cause thunderstorm systems in the United States to produce hail results in a time<br />

series fairly similar to the U.S. temperature time series shown in Figure 2-5, decreasing from<br />

1950 to the 1970s and then increasing (Brooks and Dotzek 2006). Projecting these c<strong>on</strong>diti<strong>on</strong>s<br />

into the future is difficult because c<strong>on</strong>temporary climate models lack sufficient resoluti<strong>on</strong> to<br />

simulate these storms directly.


52 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 2-15 Number <str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes striking the United States, summed by 5-year periods<br />

(e.g., 1901–1905, 1906–1910). <str<strong>on</strong>g>The</str<strong>on</strong>g> black bars represent the number <str<strong>on</strong>g>of</str<strong>on</strong>g> major hurricanes<br />

(Category 3–5), and the gray bars, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> weaker Category 1 and 2 hurricanes per<br />

5-year period (pentad). (Source: NOAA, Nati<strong>on</strong>al Climatic Data Center.)<br />

Visibility<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate changes discussed earlier in this chapter may have sec<strong>on</strong>dary effects.<br />

Visibility is <strong>on</strong>e such effect. For example, if the number <str<strong>on</strong>g>of</str<strong>on</strong>g> intense extratropical storms<br />

increases, they may be accompanied by more time with low visibility during heavy snowfall<br />

events (Rasmussen et al. 1999). Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> drying in the interior <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinents would imply<br />

the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> increases in blowing dust. <str<strong>on</strong>g>The</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> forest wildfires in the American West is<br />

str<strong>on</strong>gly associated with increased spring and summer temperatures and an earlier spring melt<br />

(Westerling et al. 2006) as well as possible biomass increases from increased precipitati<strong>on</strong> (e.g.,<br />

Bachelet et al. 2001; Lenihan et al. 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g>se are exactly the c<strong>on</strong>diti<strong>on</strong>s being projected by<br />

models for the future. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, wildfire-induced decreases in visibility are likely to become<br />

more frequent. It is uncertain from a theoretical standpoint how the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> fog might<br />

change in a warming climate. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, while the number <str<strong>on</strong>g>of</str<strong>on</strong>g> low visibility events associated


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 53<br />

with intense storms and fires might be projected to increase, it is uncertain whether the total<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> low visibility would increase, decrease, or remain the same in the<br />

projected climate <str<strong>on</strong>g>of</str<strong>on</strong>g> the future.<br />

Transportati<strong>on</strong> is significantly impacted when visibility drops to less than about 400 m<br />

(.25 mi). Times with such low visibility are associated primarily with fog, heavy precipitati<strong>on</strong>,<br />

blowing sand or snow, or smoke from wildfires. Observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> past trends in visibility and<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> changes projected for the future are not currently available. While visibility is<br />

observed at airports throughout the United States, changes in observing practices over the past<br />

decades make it inappropriate to examine l<strong>on</strong>g-term changes in low visibility without a major<br />

effort to assess the data’s homogeneity.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> C<strong>on</strong>siderati<strong>on</strong>s Related to Alaska<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Alaskan Arctic and sub-Arctic is recognized as the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the world where changes to the<br />

climate are likely to be am<strong>on</strong>g the greatest, leading to significant impacts. It is also an area that<br />

has always experienced great natural climatic variability. Because the climate changes in Alaska<br />

are so distinct from those in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States, this secti<strong>on</strong> is devoted to an<br />

examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these expected changes as they relate to transportati<strong>on</strong>.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> variables <str<strong>on</strong>g>of</str<strong>on</strong>g> particular relevance to the transportati<strong>on</strong> sector in Alaska include (a)<br />

the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice, snow cover, and permafrost, all directly driven by temperature change and<br />

to some extent by atmospheric and oceanic circulati<strong>on</strong>; (b) storminess as related to wave height<br />

and storm surges; (c) precipitati<strong>on</strong> and related snow and ice cover; and (d) sea level as related to<br />

land ice, ocean temperature, and movement <str<strong>on</strong>g>of</str<strong>on</strong>g> the land relative to the ocean due to geologic<br />

features and glacial rebound <str<strong>on</strong>g>of</str<strong>on</strong>g> the land as land ice melts.<br />

Generally, the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice is important because the ice dampens the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean<br />

waves. Wave energy is dependent <strong>on</strong> the distance traveled by the wind over open water. Less<br />

extensive sea ice exposes the coastline to more frequent and potentially higher ocean waves and<br />

swells. Temperature drives the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice, but changes in atmospheric and ocean<br />

circulati<strong>on</strong> also play an important role in multiyear variati<strong>on</strong>s in the extent and locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sea<br />

ice. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in the type, amount, and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>, as well as the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> snow<br />

and ice cover, can also c<strong>on</strong>tribute to coastal erosi<strong>on</strong> from stream flow and overland run<str<strong>on</strong>g>of</str<strong>on</strong>g>f to the<br />

sea. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost al<strong>on</strong>g coasts can lead to subsidence <str<strong>on</strong>g>of</str<strong>on</strong>g> the land, which occurs when ice<br />

beneath the sea and al<strong>on</strong>g the shoreline melts. Alaska has c<strong>on</strong>siderable permafrost al<strong>on</strong>g its<br />

northern and western coasts. <str<strong>on</strong>g>The</str<strong>on</strong>g> height <str<strong>on</strong>g>of</str<strong>on</strong>g> the sea relative to the land is the ultimate l<strong>on</strong>g-term<br />

driver <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal erosi<strong>on</strong>, but Alaskan sea level rise is complicated by both climatic factors and<br />

geologic forces, affecting local and regi<strong>on</strong>al changes in the height <str<strong>on</strong>g>of</str<strong>on</strong>g> the land relative to the<br />

ocean.<br />

Atmospheric Temperature<br />

Temperatures in Alaska have increased. Observati<strong>on</strong>al data indicate that Alaskan spring and<br />

summer surface temperatures have increased by about 2–3 o C (about 4–5 o F) in the last few<br />

decades. However, there are no discernible trends in temperature during autumn, and changes in<br />

winter temperature are more complex. <str<strong>on</strong>g>The</str<strong>on</strong>g>re were two 5-year periods in the first half <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

twentieth century when temperatures were nearly as warm as today, but record-breaking high<br />

temperatures have become more comm<strong>on</strong> during recent decades.


54 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Most climate model projecti<strong>on</strong>s for temperature change during the twenty-first century<br />

suggest that Alaska, and the Arctic as a whole, will warm at least twice as much as the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

world. <str<strong>on</strong>g>The</str<strong>on</strong>g> warming is expected to be greatest during the cold half <str<strong>on</strong>g>of</str<strong>on</strong>g> the year. <str<strong>on</strong>g>The</str<strong>on</strong>g> observed<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> warming during the autumn and the relatively large increases during other times <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

year are not entirely c<strong>on</strong>sistent with model projecti<strong>on</strong>s; they do not depict this asymmetry.<br />

As temperatures increase and sea ice c<strong>on</strong>tinues to melt, a natural climate feedback occurs<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> less reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sunlight by the ocean formerly covered by sea ice. This feedback<br />

can lead to accelerated warming and additi<strong>on</strong>al sea ice melting. At present, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Northern Hemisphere sea ice is exceeding climate model projecti<strong>on</strong>s, and at the present rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loss, summer sea ice will be absent before the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> this century. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> models do project<br />

an accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice retreat over the twenty-first century, with periods <str<strong>on</strong>g>of</str<strong>on</strong>g> extensive melting<br />

lasting progressively further into spring and fall. All climate models project this trend to<br />

c<strong>on</strong>tinue regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissi<strong>on</strong> scenario used and the sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the model.<br />

Large porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Northern Hemisphere sea ice form during the cold seas<strong>on</strong>s and melt<br />

during the warm seas<strong>on</strong>s. C<strong>on</strong>siderable sea ice persists through the melt seas<strong>on</strong>, but because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ocean circulati<strong>on</strong> and the resultant ice movement, multiyear sea ice makes up <strong>on</strong>ly a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total ice extent. Records indicate that the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new sea ice each year cannot keep<br />

pace with the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> melting, which is c<strong>on</strong>sistent with observed surface warming. Northern<br />

Hemisphere sea ice has been decreasing steadily since the 1950s, measured largely through<br />

c<strong>on</strong>tinuous coverage provided by NOAA polar orbiting satellites beginning in the 1970s. Prior<br />

to that time, assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> Northern Hemisphere sea ice during the first half <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

twentieth century was limited to reports from land stati<strong>on</strong>s and ocean surface observati<strong>on</strong>s.<br />

Scientists have less c<strong>on</strong>fidence in the data for the first part <str<strong>on</strong>g>of</str<strong>on</strong>g> the century, but independent<br />

anecdotal evidence, such as interviews with native peoples <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, also suggests substantially<br />

greater extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice earlier in the century.<br />

It is important to understand trends in the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal sea ice because it is an<br />

important determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> wave energy affecting coastlines. As the storms that create wave<br />

energy also exhibit str<strong>on</strong>g seas<strong>on</strong>al variati<strong>on</strong>, it is important to know how sea ice is changing by<br />

seas<strong>on</strong>. Since the 1950s, the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice during winter and autumn has decreased from 15<br />

to 14 milli<strong>on</strong> square kilometers (km 2 ) and from 12 to 11 milli<strong>on</strong> km 2 , respectively. Since the<br />

1950s, decreases in spring and summer have been substantially greater, down from an average <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

15 to 12 milli<strong>on</strong> km 2 and 11 to 8 milli<strong>on</strong> km 2 , respectively. This is equivalent to more than 10<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the North American land mass and is a area larger than the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska.<br />

Extratropical Storms<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> climatology <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific Ocean storms favors the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>gest storms<br />

(extratropical cycl<strong>on</strong>es) from autumn to spring. Although there are remaining uncertainties<br />

about the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the data, analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific Ocean extratropical cycl<strong>on</strong>es over the past 50<br />

years indicate little change in the total number but a significant increase in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> intense<br />

storms (those with low central pressure and resultant high winds and waves). <str<strong>on</strong>g>The</str<strong>on</strong>g> increase in<br />

extratropical storms is punctuated by c<strong>on</strong>siderable year-to-year variability. Both observati<strong>on</strong>al<br />

evidence and modeling projecti<strong>on</strong>s support the noti<strong>on</strong> that as the world warms, the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cycl<strong>on</strong>es in the northern Pacific (and the northern Atlantic) will increase (e.g., Lambert and Fyfe<br />

2006; Wang et al. 2006).


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 55<br />

Even without an increase in storm intensity, the greater expanse <str<strong>on</strong>g>of</str<strong>on</strong>g> open water due to less<br />

extensive sea ice means that ocean waves, with resultant coastal erosi<strong>on</strong>, can occur more<br />

frequently and with greater impact.<br />

Precipitati<strong>on</strong> and Extent <str<strong>on</strong>g>of</str<strong>on</strong>g> Snow Cover<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most difficult quantities to measure across the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska is precipitati<strong>on</strong>. This is<br />

the case because <str<strong>on</strong>g>of</str<strong>on</strong>g> the variable nature <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> in general, the relatively low number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observing stati<strong>on</strong>s across the state, and the difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> providing high-quality data in the harsh<br />

Arctic envir<strong>on</strong>ment. <str<strong>on</strong>g>The</str<strong>on</strong>g> large uncertainty in estimated precipitati<strong>on</strong> trends is also due to the<br />

difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring wind-blown solid precipitati<strong>on</strong>.<br />

Based <strong>on</strong> existing records, however, there is evidence to indicate that during the past 40<br />

years, as temperatures have warmed, more precipitati<strong>on</strong> has been falling in liquid form (rain) as<br />

opposed to solid form (snow, ice). <str<strong>on</strong>g>The</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> also increased during the<br />

twentieth century, with much <str<strong>on</strong>g>of</str<strong>on</strong>g> that increase occurring during the recent period <str<strong>on</strong>g>of</str<strong>on</strong>g> warming over<br />

the past 40 years. <str<strong>on</strong>g>The</str<strong>on</strong>g> increase is estimated to be between 10 and 20 percent, with most <str<strong>on</strong>g>of</str<strong>on</strong>g> it<br />

occurring during the summer and winter rather than during the transiti<strong>on</strong> seas<strong>on</strong>s. Because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greater overall precipitati<strong>on</strong> in the summer, the percent increase in summer equates to a greater<br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> compared with winter.<br />

Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in intense precipitati<strong>on</strong> events have been c<strong>on</strong>ducted for areas south<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 62° N latitude. <str<strong>on</strong>g>The</str<strong>on</strong>g>y show that the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> intense precipitati<strong>on</strong> events has increased<br />

substantially (30–40 percent) during the past several decades. Thus, a disproporti<strong>on</strong>ate amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the precipitati<strong>on</strong> increase is attributable to the most intense precipitati<strong>on</strong> events.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> models project that precipitati<strong>on</strong> will increase by a greater proporti<strong>on</strong> in the high<br />

latitudes compared with the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the world. This result is c<strong>on</strong>sistent from model to model, as<br />

is the fact that this increase is expected to be disproporti<strong>on</strong>ately larger in the more intense<br />

precipitati<strong>on</strong> events. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> these phenomena can lead to increased erosi<strong>on</strong>.<br />

NOAA’s polar-orbiting envir<strong>on</strong>mental satellite data and surface-based observati<strong>on</strong>s have<br />

also revealed major changes in the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> snow cover. <str<strong>on</strong>g>The</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> North American snow<br />

cover has decreased by about 1 milli<strong>on</strong> km 2 , and this trend is expected to c<strong>on</strong>tinue or accelerate.<br />

Surface observers also report a 1- to 2-week reducti<strong>on</strong> in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days with snow <strong>on</strong> the<br />

ground across the state. In additi<strong>on</strong>, in the Arctic, the lake and river ice seas<strong>on</strong> is now estimated<br />

to be 12 days shorter compared with the nineteenth century<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> increase in total and liquid precipitati<strong>on</strong>, especially when falling <strong>on</strong> less extensive<br />

snow cover, can affect soil erosi<strong>on</strong>. However, the complex effects <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in precipitati<strong>on</strong><br />

type and intensity, earlier breakup <str<strong>on</strong>g>of</str<strong>on</strong>g> winter ice, and less extensive snow cover have not been<br />

well evaluated with respect to potential impacts <strong>on</strong> coastal erosi<strong>on</strong> and flooding. It will be<br />

necessary to know which factor dominates in order to understand whether coastal erosi<strong>on</strong> and<br />

flooding will be enhanced or ameliorated as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> and<br />

snow cover.<br />

Permafrost<br />

Thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> the permafrost, especially al<strong>on</strong>g the northern coasts, is expected to c<strong>on</strong>tinue. L<strong>on</strong>gterm<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures within the permafrost are rare, but it is clear that as air and<br />

ocean temperatures have warmed, permafrost has been melting. As permafrost melts al<strong>on</strong>g the


56 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

coastlines, the effect <strong>on</strong> coastal erosi<strong>on</strong> can be compounded by the retreat <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice. <str<strong>on</strong>g>The</str<strong>on</strong>g> thaw<br />

causes the land to subside al<strong>on</strong>g the shore, exposing more land to the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the waves. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

thaw also causes slumping and landslides in the interior, undermining structures built <strong>on</strong> or near<br />

permafrost.<br />

Sea Level<br />

A general increase in sea level would expose more land to coastal erosi<strong>on</strong> through wave energy<br />

and storm surges. However, it is important to recognize that there are many local and regi<strong>on</strong>al<br />

variati<strong>on</strong>s in sea level rise, and Alaska is no excepti<strong>on</strong> in this regard. Complicati<strong>on</strong>s arise<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> geologic forces; the rebound <str<strong>on</strong>g>of</str<strong>on</strong>g> the land as glaciers melt; and in some areas, local<br />

engineering projects. For certain areas in Alaska (e.g., parts <str<strong>on</strong>g>of</str<strong>on</strong>g> southeast Alaska), sea level is<br />

actually falling as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> natural geologic and glacial rebound effects, but this is generally<br />

not the case in much <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. It is clear, however, that changes in Alaskan climate are am<strong>on</strong>g<br />

the greatest in the world. <str<strong>on</strong>g>The</str<strong>on</strong>g>y have likely played an important role in determining the extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coastal erosi<strong>on</strong> and flooding in the state and are likely to c<strong>on</strong>tinue to do so in the future.<br />

Accelerated coastal erosi<strong>on</strong> and flooding linked to sea level rise in Alaska cannot be ruled out.<br />

FINDINGS<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> the science c<strong>on</strong>tinues to indicate that modern climate change is affected by human<br />

influences, primarily human-induced changes in atmospheric compositi<strong>on</strong> that are warming the<br />

climate. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes result mainly from emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> GHGs associated with energy use, but<br />

<strong>on</strong> local and regi<strong>on</strong>al scales, urbanizati<strong>on</strong> and land use changes are also important c<strong>on</strong>tributors to<br />

climate change. Once in the atmosphere, GHG c<strong>on</strong>centrati<strong>on</strong>s have a l<strong>on</strong>g residence time—<strong>on</strong><br />

the order <str<strong>on</strong>g>of</str<strong>on</strong>g> a century. Thus, they would c<strong>on</strong>tinue to affect climate c<strong>on</strong>diti<strong>on</strong>s even if GHG<br />

emissi<strong>on</strong>s were eliminated today, and demand a resp<strong>on</strong>se.<br />

Substantial progress has been made in m<strong>on</strong>itoring and understanding the causes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change, but scientific, technical, and instituti<strong>on</strong>al challenges to improving projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future climate change remain. For example, c<strong>on</strong>siderable uncertainty persists about the rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change that can be expected during the twenty-first century. Nevertheless, it is clear that<br />

climate change will be increasingly manifested in important and tangible ways, such as changes<br />

in extremes <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and precipitati<strong>on</strong>, decreases in seas<strong>on</strong>al and perennial snow and ice<br />

extent, and rising sea levels. In additi<strong>on</strong>, climate models project an increase in the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

str<strong>on</strong>g hurricanes, with an increase in related storm rainfall rates, in the twenty-first century.<br />

Thus, as human-induced climate changes are superimposed <strong>on</strong> the natural variability <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

climate, the future will include new classes <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and climate extremes not experienced in<br />

modern times.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> changes will affect transportati<strong>on</strong> largely through these extremes. <str<strong>on</strong>g>The</str<strong>on</strong>g> U.S.<br />

transportati<strong>on</strong> system was built for the typical weather and climate experienced locally, including<br />

a reas<strong>on</strong>able range <str<strong>on</strong>g>of</str<strong>on</strong>g> extremes. If projected climate changes push envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

outside the range for which the system was designed—and the scientific evidence suggests that<br />

this will be the case—the impacts will be significant. <str<strong>on</strong>g>The</str<strong>on</strong>g>y will vary by mode <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong><br />

and regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the country, and some will be positive; in general, however, the impacts will be<br />

widespread and costly in both human and ec<strong>on</strong>omic terms and require significant changes in the


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 57<br />

planning, design, c<strong>on</strong>structi<strong>on</strong>, operati<strong>on</strong>, and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> systems. In the next<br />

chapter, the likely impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> projected climate changes <strong>on</strong> transportati<strong>on</strong> are examined in detail.<br />

REFERENCES<br />

Abbreviati<strong>on</strong>s<br />

CCSP U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program<br />

IPCC Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

NOAA Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong><br />

NRC Nati<strong>on</strong>al Research Council<br />

Alexander, L. V., X. Zhang, T. C. Peters<strong>on</strong>, J. Caesar, B. Gleas<strong>on</strong>, A. M. G. Klein Tank, M. Haylock, D.<br />

Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, P. Ambenje, K. Rupa Kumar, J. Revadekar, and G.<br />

Griffiths. 2006. Global Observed <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Daily <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Extremes <str<strong>on</strong>g>of</str<strong>on</strong>g> Temperature and<br />

Precipitati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research. Vol. 111, No. D5, Mar. 15.<br />

Allen, M. R. 2005. <str<strong>on</strong>g>The</str<strong>on</strong>g> Spectre <str<strong>on</strong>g>of</str<strong>on</strong>g> Liability: Part 1—Attributi<strong>on</strong>. In <str<strong>on</strong>g>The</str<strong>on</strong>g> Finance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>:<br />

A Guide for Governments, Corporati<strong>on</strong>s, and Investors (Ch. 29) (K. Tang, ed.). Risk Books,<br />

Haymarket, L<strong>on</strong>d<strong>on</strong>.<br />

Alpert, P., T. Ben-Gai, A. Baharad, Y. Benjamini, D. Yekutieli, M. Colacino, L. Diodato, C. Ramis, V.<br />

Homar, R. Romero, S. Michaelides, and A. Manes. 2002. <str<strong>on</strong>g>The</str<strong>on</strong>g> Paradoxical Increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mediterranean Extreme Daily Rainfall in Spite <strong>on</strong> Decrease in Total Values. Geophysical Research<br />

Letters, Vol. 29, No. 11, p. 1536.<br />

Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. L<strong>on</strong>go, and M. A. Silva-Dias.<br />

2004. Smoking Rain Clouds over the Amaz<strong>on</strong>. Science, Vol. 303, No. 5662, pp. 1337–1342.<br />

Bachelet, D. R.P. Neils<strong>on</strong>, J.M. Lenihan, and R.J. Drapek. 2001. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Effects <strong>on</strong> Vegetati<strong>on</strong><br />

Distributi<strong>on</strong> and Carb<strong>on</strong> Budget in the United States. Ecosystems, Vol. 4, pp. 164-185.<br />

Bengtss<strong>on</strong>, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata. 2007.<br />

How May Tropical Cycl<strong>on</strong>es <str<strong>on</strong>g>Change</str<strong>on</strong>g> in a Warmer <str<strong>on</strong>g>Climate</str<strong>on</strong>g>. Tellus A, Vol. 59, No. 4, pp. 539-561.<br />

Bornstein, R., and Q. Lin. 2000. Urban Heat Islands and Summertime C<strong>on</strong>vective Thunderstorms in<br />

Atlanta: Three Case Studies. Atmospheric Envir<strong>on</strong>ment, Vol. 34, No. 3, pp. 507–516.<br />

Brooks, H. E., and N. Dotzek. 2006. <str<strong>on</strong>g>The</str<strong>on</strong>g> Spatial Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Severe C<strong>on</strong>vective Storms and Analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their Secular <str<strong>on</strong>g>Change</str<strong>on</strong>g>s. In <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Extremes and Society (H. Diaz and R. Murnane, eds.),<br />

Cambridge University Press, in press.<br />

Bruun, P. 1962. Sea-Level Rise as a Cause <str<strong>on</strong>g>of</str<strong>on</strong>g> Shore Erosi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Waterways and Harbors<br />

Divisi<strong>on</strong>, Vol. 88, pp. 117–130.<br />

Burkett, V. 2002. <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and Variability <strong>on</strong> Transportati<strong>on</strong> in the Gulf<br />

Coast/Mississippi Delta Regi<strong>on</strong>. In <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>,<br />

Summary and Discussi<strong>on</strong> Papers. Federal Research Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings<br />

Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct. 1–2, 2002, pp. 103-113.<br />

CCSP. 2007. Weather and <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Extremes in a Changing <str<strong>on</strong>g>Climate</str<strong>on</strong>g>. Regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Focus: North America,<br />

Hawaii, Caribbean, and U.S. Pacific Islands. A <str<strong>on</strong>g>Report</str<strong>on</strong>g> by the U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program<br />

and the Subcommittee <strong>on</strong> Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research (Thomas R. Karl, Gerald A. Meehl, Christopher<br />

D. Miller, Susan J. Hassol, Anne M. Waple, and William L. Murray, (eds.)). Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Commerce, NOAA’s Nati<strong>on</strong>al Climatic Data Center, Washingt<strong>on</strong>, D.C.<br />

Chagn<strong>on</strong>, F. J. F., and R. L. Bras. 2005. C<strong>on</strong>temporary <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> in the Amaz<strong>on</strong>. Geophysical<br />

Research Letters, Vol. 32, L13703.<br />

Changn<strong>on</strong>, S. A. (ed.). 1981. METROMEX: A Review and Summary. Meteorological M<strong>on</strong>ograph,<br />

Vol. 18, American Meteorological Society, Bost<strong>on</strong>, Mass.


58 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Church, J. A. and N. J. White. 2006. A 20 th Century Accelerati<strong>on</strong> in Global Sea-Level Rise.<br />

Geophysical Research Letters, Vol. 33, L01602.<br />

Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland. 1999. Drought Rec<strong>on</strong>structi<strong>on</strong>s for the<br />

C<strong>on</strong>tinental United States. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 12, pp. 1145–1162.<br />

Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle. 2004. L<strong>on</strong>g-Term Aridity<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in the Western United States. Science, Vol. 306, No. 5698, pp. 1015–1018.<br />

Dai, A., K. E. Trenberth, and T. Qian. 2004. A Global Data Set <str<strong>on</strong>g>of</str<strong>on</strong>g> Palmer Drought Severity Index for<br />

1870–2002: Relati<strong>on</strong>ship with Soil Moisture and Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface Warming. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hydrometeorology, Vol. 5, pp. 1117–1130.<br />

Emanuel, K. 2005. Increasing Destructiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> Tropical Cycl<strong>on</strong>es over the Past 30 Years. Nature,<br />

Vol. 436, pp. 686–688.<br />

Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C.<br />

Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland. 2007. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Atmospheric C<strong>on</strong>stituents and in Radiative Forcing. In: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Science<br />

Basis. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental<br />

Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [Solom<strong>on</strong>, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt,<br />

M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY..<br />

Gillett, N. P., F. L. Zwiers, A. J. Weaver, G. C. Hegerl, M. R. Allen, and P. A. Stott. 2002. Detecting<br />

Anthropogenic Influences with a Multi-Model Ensemble. Geophysical Research Letters, Vol. 29,<br />

No. 20, p. 1970.<br />

Groisman, P. Ya., B. Sun, R. S. Vose, J. H. Lawrimore, P. H. Whitfield, E. Førland, I. Hanssen-Bauer, M.<br />

C. Serreze, V. N. Razuvaev, and G. V. Alekseev. 2003. C<strong>on</strong>temporary <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in High<br />

Latitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> the Northern Hemisphere: Daily Time Resoluti<strong>on</strong>. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al<br />

Symposium <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Beijing, China, World Meteorological Organizati<strong>on</strong> Publicati<strong>on</strong> No.<br />

1172, Mar. 31–Apr. 3, 2003, pp. 51–55.<br />

Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. Lawrimore. 2004.<br />

C<strong>on</strong>temporary <str<strong>on</strong>g>Change</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hydrological Cycle over the C<strong>on</strong>tiguous United States: Trends<br />

Derived from in Situ Observati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrometeorology, Vol. 5, pp. 64–85.<br />

Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, G. C. Hegerl, and V. N. Razuvaev. 2005.<br />

Trends in Intense Precipitati<strong>on</strong> in the <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Record. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 18, pp. 1326–1350.<br />

Hegerl, G. C., P. D. J<strong>on</strong>es, and T. P. Barnett. 2001. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Observati<strong>on</strong>al Sampling Error <strong>on</strong> the<br />

Detecti<strong>on</strong> and Attributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Anthropogenic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 14, No. 2, pp.<br />

198–207.<br />

IPCC. 2001. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001: <str<strong>on</strong>g>The</str<strong>on</strong>g> Scientific Basis. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group 1 to the Third<br />

Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [J. T. Hought<strong>on</strong>, Y. Ding,<br />

D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K Maskell, and C.A. Johns<strong>on</strong> (eds.)].<br />

Cambridge University Press, Cambridge, UK and New York, NY.<br />

IPCC. 2007. Summary for Policymakers. In: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Science Basis.<br />

C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental Panel <strong>on</strong><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [Solom<strong>on</strong>, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor<br />

and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY.<br />

J<strong>on</strong>es, P. D., P. Ya Groisman, M. Coughlan, N. Plummer‡, W. -C. Wang, T. R. Karl. 1990. Assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Urbanizati<strong>on</strong> Effects in Time Series <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface Air Temperature over Land. Nature, Vol. 347, pp.<br />

169–172.<br />

Karl, T. R., H. F. Diaz, and G. Kukla. 1988. Urbanizati<strong>on</strong>: Its Detecti<strong>on</strong> and Effect in the United States<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Record. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 1, pp. 1099–1123.<br />

Karl, T. R., and R. W. Knight. 1998. Secular Trends <str<strong>on</strong>g>of</str<strong>on</strong>g> Precipitati<strong>on</strong> Amount, Frequency, and Intensity<br />

in the United States. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Meteorological Society, Vol. 79, No. 2, pp. 231–241.<br />

Karl, T. R., and K. E. Trenberth. 2003. Modern <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. Science, Vol. 302, No. 5651, pp.<br />

1719–1723.


Understanding <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 59<br />

Karl, T. R., S. J. Hassol, C. Miller, and W. Murray. 2006. Temperature Trends in the Lower<br />

Atmosphere: Understanding and Rec<strong>on</strong>ciling Differences. <str<strong>on</strong>g>The</str<strong>on</strong>g> U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science<br />

Program, Ashville, N.C.<br />

Karoly, D. J., K. Braganza, P. A. Scott, J. M. Arblaster, G. A. Meehl, A. J. Broccoli, and K. W. Dix<strong>on</strong>.<br />

2003. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Human Influence <strong>on</strong> North American <str<strong>on</strong>g>Climate</str<strong>on</strong>g>. Science, Vol. 302, No. 5648, pp.<br />

1200–1203.<br />

Karoly, D. J., and Q. Wu. 2005. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Regi<strong>on</strong>al Surface Temperature Trends. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 18, pp. 4337–4343.<br />

Kharin, V., F. W. Zwiers, X. Zhang, and G. C. Hegerl. 2007. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Temperature and Precipitati<strong>on</strong><br />

Extremes in the IPCC Ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Coupled Model Simulati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, in press.<br />

Lambert, S. J., and J. C. Fyfe. 2006. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Winter Cycl<strong>on</strong>e Frequencies and Strengths Simulated in<br />

Enhanced Greenhouse Warming Experiments: Results from the Models Participating in the IPCC<br />

Diagnostic Exercise. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Dynamics, Vol. 26, pp. 713–728.<br />

Landsberg, H. E. 1983. Urban <str<strong>on</strong>g>Climate</str<strong>on</strong>g>s. Island Press, Washingt<strong>on</strong>, D.C.<br />

Leatherman, S. P., K. Zhang, and B. C. Douglas. 2000. Sea-Level Rise Shown to Drive Coastal Erosi<strong>on</strong>.<br />

EOS Transacti<strong>on</strong>s, Vol. 81, No. 6, pp. 55–57.<br />

Lenihan, J.M., R. Drapek, D. Bachelet, and R.P. Neils<strong>on</strong>. 2003. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Effects <strong>on</strong> Vegetati<strong>on</strong><br />

Distributi<strong>on</strong>, Carb<strong>on</strong>, and Fire in California, Ecological Applicati<strong>on</strong>s, Vol. 13, No. 6, Dec., pp. 1667-<br />

1681.<br />

Levins<strong>on</strong>, D. H. 2006. Update to the Standard Project Hurricane (SPH) Indices. Enclosure 6 <str<strong>on</strong>g>of</str<strong>on</strong>g> Annex<br />

6, Louisiana Coastal Protecti<strong>on</strong> and Restorati<strong>on</strong>, Preliminary Technical <str<strong>on</strong>g>Report</str<strong>on</strong>g> submitted to C<strong>on</strong>gress<br />

in July 2006.<br />

McD<strong>on</strong>ald, R.E., D.G, Bleaken, D.R. Cresswell, V.D. Pope, and C.A. Senior. 2005. Tropical Storms:<br />

Representati<strong>on</strong> and Diagnosis in <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Models and the <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

Dynamics. Vol. 25, No. 1, pp. 19-36.<br />

Munk, W. 2002. Twentieth Century Sea Level: An Enigma. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sciences, Vol. 99, pp. 6550–6555.<br />

NOAA. 2001. Coastal Areas and Marine Resources: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g>. A <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Coastal Assessment Group for the U.S. Global<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Research Program, Dec.<br />

NRC. 1987. Resp<strong>on</strong>ding to <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Sea-Level: Engineering Implicati<strong>on</strong>s. Commissi<strong>on</strong> <strong>on</strong><br />

Engineering and Technical Systems, Nati<strong>on</strong>al Research Council, Nati<strong>on</strong>al Academy Press,<br />

Washingt<strong>on</strong>, D.C.<br />

NRC. 2001. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science. An Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Some Key Questi<strong>on</strong>s. Nati<strong>on</strong>al Academy Press,<br />

Washingt<strong>on</strong>, D.C.<br />

Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda. 2006. Tropical Cycl<strong>on</strong>e<br />

Climatology in a Global-warming <str<strong>on</strong>g>Climate</str<strong>on</strong>g> as Simulated in a 20km-mesh Global Atmospheric Model:<br />

Frequency and Wind Intensity Analysis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Meteorological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, Vol. 84,<br />

No. 2, pp. 259-276.<br />

Peters<strong>on</strong>, T. C. 2003. Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Urban Versus Rural in Situ Surface Temperatures in the<br />

C<strong>on</strong>tiguous United States. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 16, No. 18, Sept., pp. 2941–2959.<br />

Peters<strong>on</strong>, T. C., M. McGuirk, T. G. Houst<strong>on</strong>, A. H. Horvitz, and M. S. Wehner. 2006. <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> with Implicati<strong>on</strong>s for Transportati<strong>on</strong>. Nati<strong>on</strong>al Oceanic and Atmospheric<br />

Administrati<strong>on</strong> and Lawrence Berkeley Nati<strong>on</strong>al Laboratory, Dec. 16.<br />

Rasmussen, R. M., J. Vivekanandan, J. Cole, B. Myers and C. Masters. 1999. <str<strong>on</strong>g>The</str<strong>on</strong>g> Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Snowfall Rate Using Visibility. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Meteorology, Vol. 38, pp. 1542–1563.<br />

Santer, B. D., C. Mears, F. J. Wentz, K. E. Taylor, P. J. Gleckler, T. M. Wigley, T. P. Barnett, J. S. Boyle,<br />

W. Brüggemann, N. P. Gillett, S. A. Klein, G. A. Meehl, T. Nozawa, D. W. Pierce, P. A. Stott, W. M.<br />

Washingt<strong>on</strong>, and M. F. Wehner. 2007. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Human-Induced <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Atmospheric<br />

Moisture C<strong>on</strong>tent. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America,<br />

Vol. 104, No. 39, pp. 15248–15253.


60 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Scho<str<strong>on</strong>g>of</str<strong>on</strong>g>, C. 2007. Ice Sheet Grounding Line Dynamics: Steady States, Stability and Hysteresis. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research, Vol. 112, FO25S28.<br />

Seager, R., M. F. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H. P. Huang, N. Harnik, A. Leetmaa, N. C.<br />

Lau, C. Li, J. Velez, and N. Naik. 2007. Model Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an Imminent Transiti<strong>on</strong> to a More<br />

Arid <str<strong>on</strong>g>Climate</str<strong>on</strong>g> in Southwestern North America. Science, Vol. 316, No. 5828, May 25, pp. 1181–1184.<br />

Soden, B. J., D. L. Jacks<strong>on</strong>, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang. 2005. <str<strong>on</strong>g>The</str<strong>on</strong>g> Radiative<br />

Signature <str<strong>on</strong>g>of</str<strong>on</strong>g> Upper Tropospheric Moistening. Science, Vol. 310, No. 5749, pp. 841–844.<br />

Staudt, A., N. Huddlest<strong>on</strong>, and S. Rudenstein. 2006. Understanding and Resp<strong>on</strong>ding to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>:<br />

Highlights <str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Academies <str<strong>on</strong>g>Report</str<strong>on</strong>g>s, Nati<strong>on</strong>al Academies Press, March.<br />

St<strong>on</strong>e, D. A., and M. R. Allen. 2005. Attributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Surface Warming without Dynamical<br />

Models. Geophysical Research Letters, Vol. 32, No. 18, L18711.<br />

Stott, P. A., S. F. B. Tett, G. S. J<strong>on</strong>es, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell. 2001. Attributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Twentieth Century Temperature <str<strong>on</strong>g>Change</str<strong>on</strong>g> to Natural and Anthropogenic Causes. <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

Dynamics, Vol. 17, pp. 1–21.<br />

Sugi, M., A. Noda, and N. Sato. 2002. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Warming <strong>on</strong> Tropical Cycl<strong>on</strong>e Climatology:<br />

An Experiment with the JMA Global Model. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Meteorological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, Vol. 80,<br />

No. 2, pp. 249-272.<br />

Tett, S. F. B. 2002. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural and Anthropogenic C<strong>on</strong>tributi<strong>on</strong>s to Twentieth Century<br />

Temperature <str<strong>on</strong>g>Change</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research, Vol. 107, No. D16, 4306.<br />

Titus, J. 2002. Does Sea Level Rise Matter to Transportati<strong>on</strong> al<strong>on</strong>g the Atlantic Coast? In <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>, Summary and Discussi<strong>on</strong> Papers. Federal Research<br />

Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct. 1–2, 2002, pp. 135-150.<br />

Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Pars<strong>on</strong>s. 2003. <str<strong>on</strong>g>The</str<strong>on</strong>g> Changing Character <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Precipitati<strong>on</strong>. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Meteorological Society, Vol. 84, No. 9, pp. 1205–1217.<br />

Trenberth, K. E., J. Fasullo, and L. Smith. 2005. Trends and Variability in Column Integrated<br />

Atmospheric Water Vapor. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Dynamics, Vol. 24, No. 7-8, pp. 741–758.<br />

Vaughan, D. G., J. W. Holt, and D. D. Blankenship. 2007. West Antarctic Links to Sea Level<br />

Estimati<strong>on</strong>. Eos, Transacti<strong>on</strong>s, American Geophysical Uni<strong>on</strong>, Vol. 88, No. 46, p. 485.<br />

Wang, X. L., F. W. Zwiers, and V. R. Swail. 2004. North Atlantic Ocean Wave <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Scenarios for the Twenty-First Century. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 17, pp. 2368–2383.<br />

Wang X.L., V.R. Swail, and F.W. Zwiers. 2006. Climatology and <str<strong>on</strong>g>Change</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Extra-tropical Storm<br />

Tracks and Cycl<strong>on</strong>e Activity: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ERA-40 with NCEP/NCAR Reanalysis for 1958–2001.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 19, pp. 3145-3166.<br />

Webster, P. J., G. J. Holland, A. Curry, and H. -R. Chang. 2005. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Tropical Cycl<strong>on</strong>e Number,<br />

Durati<strong>on</strong> and Intensity in a Warming Envir<strong>on</strong>ment. Science, Vol. 309, No. 5742, pp. 1844–1846.<br />

Wehner, M. 2005. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Daily Precipitati<strong>on</strong> and Surface Air Temperature Extremes in the IPCC<br />

AR4 Models. US CLIVAR Variati<strong>on</strong>s, Vol. 3, pp. 5-9.<br />

Westerink, J. J., C. A. Blain, R. Luettich, and N. W. Scheffner. 1994. ADCIRC: An Advanced Three-<br />

Dimensi<strong>on</strong>al Circulati<strong>on</strong> Model for Shelves, Coasts, and Estuaries. <str<strong>on</strong>g>Report</str<strong>on</strong>g> 2: Users Manual for<br />

ADCIRC-2DDI, Technical <str<strong>on</strong>g>Report</str<strong>on</strong>g> DRP-92-6, U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, Coastal Engineering<br />

Research Center, Vicksburg, Miss.<br />

Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and Earlier Spring<br />

Increase in Western U.S. Forest Wildfire Activity. Science, Vol. 313, pp. 940–943.<br />

Willett, K. M., N. P. Gillett, P. D. J<strong>on</strong>es, and P. W. Thorne. 2007. Attributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Observed Surface<br />

Humidity <str<strong>on</strong>g>Change</str<strong>on</strong>g>s to Human Influence. Nature, Vol. 449, pp. 710–712.<br />

Zhang, X., F. W. Zweirs, and P.A. Stott. 2006. Multi-Model Multi-Signal <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Detecti<strong>on</strong> at<br />

Regi<strong>on</strong>al Scale. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, in press.<br />

Zwiers, F. W., and X. Zhang. 2003. Toward Regi<strong>on</strong>al Scale <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Detecti<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g>, Vol. 16, pp. 793–797.


T<br />

3<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong><br />

his chapter explores what is known about the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong><br />

transportati<strong>on</strong>. First, the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> system to climate change is<br />

c<strong>on</strong>sidered, recognizing, however, that not all changes will have negative impacts. <str<strong>on</strong>g>The</str<strong>on</strong>g>n, the<br />

potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the major climate change factors <str<strong>on</strong>g>of</str<strong>on</strong>g> relevance for U.S. transportati<strong>on</strong><br />

identified in the previous chapter are described for each transportati<strong>on</strong> mode. Next, the few<br />

studies that have actually assessed the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong> in a particular<br />

regi<strong>on</strong> or metropolitan area are reviewed; these studies provide a good illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al<br />

differences in both expected climate changes and impacts. <str<strong>on</strong>g>The</str<strong>on</strong>g> chapter ends with the<br />

committee’s findings <strong>on</strong> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong>.<br />

VULNERABILITY OF THE TRANSPORTATION SYSTEM TO CLIMATE CHANGE<br />

No comprehensive inventory exists <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. transportati<strong>on</strong> infrastructure vulnerable to climate<br />

change impacts, the potential extent <str<strong>on</strong>g>of</str<strong>on</strong>g> that exposure, or the potential damage costs.<br />

Nevertheless, some salient data can be pieced together from various sources. For example,<br />

53 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. populati<strong>on</strong> lives in counties with coastal areas, although such areas make<br />

up <strong>on</strong>ly 17 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s c<strong>on</strong>tiguous land area (Crossett et al. 2004; U.S. Census Bureau<br />

2005, 28). 1 Populati<strong>on</strong> density in coastal counties (excluding Alaska) is significantly higher than<br />

the nati<strong>on</strong>al average—300 versus 98 pers<strong>on</strong>s per square mile—reflecting the limited land area<br />

involved (Crossett et al. 2004). This populati<strong>on</strong> swells in the summer m<strong>on</strong>ths, as beaches are the<br />

top tourist destinati<strong>on</strong> (Douglass et al. 2005). Coastal areas are projected to experience<br />

c<strong>on</strong>tinued development pressures as both retirement magnets and tourist destinati<strong>on</strong>s. For<br />

example, many <str<strong>on</strong>g>of</str<strong>on</strong>g> the most populous coastal counties located in California, south Florida, and<br />

Texas (Harris County), which already experience the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes and other tropical<br />

storms, are expected to grow rapidly in the coming decades (Crossett et al. 2004). This growth<br />

will generate demand for more transportati<strong>on</strong> infrastructure and increase the difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evacuati<strong>on</strong> in an emergency.<br />

Sea level rise, which climate scientists now believe to be virtually certain, in combinati<strong>on</strong><br />

with expected populati<strong>on</strong> growth, will aggravate the situati<strong>on</strong>, making housing and infrastructure<br />

in low-lying coastal areas even more vulnerable to extensive flooding and higher storm surges.<br />

An estimated 60,000 miles <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal highways is already exposed to periodic coastal storm<br />

flooding and wave acti<strong>on</strong> (Douglass et al. 2005). 2 Those highways that currently serve as<br />

evacuati<strong>on</strong> routes during hurricanes and other coastal storms could be compromised in the future.<br />

1 Coastal areas are defined by the U.S. Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong> as counties and equivalent<br />

areas with at least 15 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> their land area either in a coastal watershed or in a coastal area between watersheds.<br />

2 <str<strong>on</strong>g>The</str<strong>on</strong>g>se estimates were made using geographic informati<strong>on</strong> systems to measure the length <str<strong>on</strong>g>of</str<strong>on</strong>g> roads in coastal<br />

counties, superimposing data from the Flood Insurance Rate Maps <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Emergency Management Agency<br />

to indicate those roads al<strong>on</strong>g the coast or tidal rivers likely to be inundated by storm surge in a 100-year storm, and<br />

finally adjusting the estimate to eliminate flooding from rainfall run<str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

61


62 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Although coastal highway mileage is a small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nearly 4 milli<strong>on</strong> miles <str<strong>on</strong>g>of</str<strong>on</strong>g> public<br />

roads in the United States, the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> these highways is c<strong>on</strong>centrated in a few states, and<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> these routes also serve as barriers to sea intrusi<strong>on</strong> and as evacuati<strong>on</strong> routes (Titus 2002).<br />

Coastal areas are also major centers <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic activity. Six <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s top 10 U.S.<br />

freight gateways (by value <str<strong>on</strong>g>of</str<strong>on</strong>g> shipments) (BTS 2007) will be at risk from sea level rise (see<br />

Table 3-1). Seven <str<strong>on</strong>g>of</str<strong>on</strong>g> the 10 largest ports (by t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic) (BTS 2007, 30) are located in the<br />

Gulf Coast, whose vulnerability was amply dem<strong>on</strong>strated during the 2005 tropical storm seas<strong>on</strong>. 3<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Gulf Coast is also home to the U.S. oil and gas industries, providing nearly 30 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

nati<strong>on</strong>’s crude oil producti<strong>on</strong> and approximately 20 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> its natural gas producti<strong>on</strong> (Felmy<br />

2005). Several thousand <str<strong>on</strong>g>of</str<strong>on</strong>g>f-shore drilling platforms, dozens <str<strong>on</strong>g>of</str<strong>on</strong>g> refineries, and thousands <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

miles <str<strong>on</strong>g>of</str<strong>on</strong>g> pipelines are vulnerable to disrupti<strong>on</strong> and damage from storm surge and high winds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tropical storms, as was recently dem<strong>on</strong>strated by Hurricanes Katrina and Rita. Those hurricanes<br />

halted all oil and gas producti<strong>on</strong> from the Gulf, disrupted nearly 20 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s<br />

refinery capacity, and closed oil and gas pipelines (CBO 2006). 4 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists believe that<br />

global warming is likely to increase the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g hurricanes making landfall, increasing<br />

the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to, or lengthening the disrupti<strong>on</strong> in the operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>, these vital facilities.<br />

Inland areas are also likely to experience the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. Increased intense<br />

precipitati<strong>on</strong> predicted by climate scientists for the c<strong>on</strong>tinental United States could increase the<br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> such events as the great flood <str<strong>on</strong>g>of</str<strong>on</strong>g> 1993. That event caused catastrophic flooding al<strong>on</strong>g<br />

500 miles <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mississippi and Missouri River system, paralyzing surface transportati<strong>on</strong><br />

systems, including rail, truck, and marine traffic. Major east–west traffic was halted for roughly<br />

6 weeks in an area stretching from St. Louis west to Kansas City and North to Chicago, affecting<br />

<strong>on</strong>e-quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> all U.S. freight that either originated or terminated in the flood-affected regi<strong>on</strong><br />

(Changn<strong>on</strong> 1996). Drier c<strong>on</strong>diti<strong>on</strong>s are likely to prevail in the summer in midc<strong>on</strong>tinental<br />

regi<strong>on</strong>s, such as the Saint Lawrence Seaway. Weather and vessel incidents cause most <str<strong>on</strong>g>of</str<strong>on</strong>g> lock<br />

TABLE 3-1 Top 10 U.S. Foreign Trade Freight Gateways by Value <str<strong>on</strong>g>of</str<strong>on</strong>g> Shipments, 2005<br />

Rank Port Mode Shipment Value (in<br />

billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. dollars)<br />

1 John F. Kennedy Internati<strong>on</strong>al Airport, NY Air $134.9<br />

2 Los Angeles, CA Vessel 134.3<br />

3 Detroit, MI Land 130.5<br />

4 New York, NY, and New Jersey Vessel 130.4<br />

5 L<strong>on</strong>g Beach, CA Vessel 124.6<br />

6 Laredo, TX Land 93.7<br />

7 Houst<strong>on</strong>, TX Vessel 86.1<br />

8 Chicago, IL Air 73.4<br />

9 Los Angeles Internati<strong>on</strong>al Airport, CA Air 72.9<br />

10 Buffalo-Niagara Falls, NY Land 70.5<br />

Source: BTS 2007, 39.<br />

3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Port <str<strong>on</strong>g>of</str<strong>on</strong>g> South Louisiana is the nati<strong>on</strong>’s largest port by t<strong>on</strong>nage and the largest agricultural export facility in the<br />

United States (Mineta 2005). Fortunately, it suffered <strong>on</strong>ly minor structural damage from Hurricane Katrina.<br />

4 By the end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2005—4 m<strong>on</strong>ths after Hurricane Katrina and a little more than 3 m<strong>on</strong>ths after Hurricane Rita—<br />

roughly <strong>on</strong>e-quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> crude oil producti<strong>on</strong> and <strong>on</strong>e-fifth <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas producti<strong>on</strong> from the Gulf remained shut<br />

down (CBO 2006). Two percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s refinery capacity still was not operating.


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 63<br />

downtime <strong>on</strong> the Seaway, but in 2000 and 2001, water levels were at their lowest point in 35<br />

years, reducing vessel carrying capacity to about 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> normal (BTS 2005, 140). If low<br />

water levels become more comm<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> dryer c<strong>on</strong>diti<strong>on</strong>s due to climate change, freight<br />

movements in the regi<strong>on</strong> could be seriously impaired, and extensive dredging could be required<br />

to keep shipping channels open (Great Lakes Regi<strong>on</strong>al Assessment Team 2000; Quinn 2002). A<br />

l<strong>on</strong>ger shipping seas<strong>on</strong> afforded by a warmer climate, however, could <str<strong>on</strong>g>of</str<strong>on</strong>g>fset some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

resulting adverse ec<strong>on</strong>omic effects.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure to climate change is in part a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its robustness and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> protecti<strong>on</strong> from exposure to climate change effects (as is the case,<br />

for example, with seawalls and levees). It also depends <strong>on</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> redundancy in the<br />

system. Box 3-1 illustrates how system redundancies proved critical to the rapid restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

partial rail service during both Hurricane Katrina and the 1993 Mississippi River flood. 5 Yet the<br />

predominant trend has been for the railroads (as well as other owners <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure) to shed<br />

BOX 3-1<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> the Role <str<strong>on</strong>g>of</str<strong>on</strong>g> System Redundancies in the Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Critical Infrastructure Following Natural Disasters<br />

Hurricane Katrina significantly damaged rail transport in the Gulf Coast regi<strong>on</strong>,<br />

particularly east–west traffic through the New Orleans interchange rail gateway—<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>ly four major rail crossings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mississippi River. CSX was the rail carrier most<br />

affected, sustaining significant damage to two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> its track mileage between Mobile<br />

and New Orleans and to five railroad bridges between Biloxi and New Orleans (Hinsdale<br />

2006). Estimated rec<strong>on</strong>structi<strong>on</strong> costs were approximately $300 milli<strong>on</strong>, or about <strong>on</strong>equarter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CSX’s annual operating revenues available for capital investment.<br />

Nevertheless, CSX coped with the situati<strong>on</strong> by using “borrowed” track <str<strong>on</strong>g>of</str<strong>on</strong>g> other, less<br />

hard-hit railroads in the regi<strong>on</strong> and by rerouting freight as far north as the St. Louis<br />

Mississippi River crossing. CSX has committed to rebuilding its coastal track in the<br />

short term but is evaluating less vulnerable alternative routes using existing rail corridors<br />

or c<strong>on</strong>structing further inland.<br />

At the time, the flood <str<strong>on</strong>g>of</str<strong>on</strong>g> 1993 was hailed as the worst natural disaster ever<br />

experienced by the U.S. railroad industry. Total physical damages amounted to more<br />

than $282 milli<strong>on</strong> in 2005 dollars—23 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> which included costs to operate<br />

detoured trains (Changn<strong>on</strong> 2006). In additi<strong>on</strong>, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the delays, the railroads lost<br />

revenues <str<strong>on</strong>g>of</str<strong>on</strong>g> $198 milli<strong>on</strong>. Nevertheless, nearly 3,000 l<strong>on</strong>g-distance trains were rerouted<br />

<strong>on</strong>to other railroad lines and some little-used lines bordering <strong>on</strong> aband<strong>on</strong>ment. System<br />

redundancies and operating arrangements with other carriers enabled the affected<br />

railroads to c<strong>on</strong>tinue operating—more slowly and at increased cost—but operating<br />

n<strong>on</strong>etheless.<br />

5<br />

See also the discussi<strong>on</strong> later in this chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> a case study <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricanes Katrina and Rita<br />

commissi<strong>on</strong>ed for this study.


64 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

unec<strong>on</strong>omical unused capacity by c<strong>on</strong>solidating operati<strong>on</strong>s and aband<strong>on</strong>ing underused lines.<br />

Likewise, major businesses, both manufacturing and retail, have reduced operating costs through<br />

just-in-time delivery strategies, but with the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing their vulnerability to disrupti<strong>on</strong>s<br />

or failures <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> system from either natural or human causes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> network character <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> system can help mitigate the negative<br />

ec<strong>on</strong>omic c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> a shock to the system, particularly in the l<strong>on</strong>ger term as shipments<br />

can be shifted to alternative modes or other regi<strong>on</strong>s can pick up the interrupted service. To<br />

illustrate, the Port <str<strong>on</strong>g>of</str<strong>on</strong>g> Gulfport, Mississippi, which was competing with New Orleans to be the<br />

sec<strong>on</strong>d largest c<strong>on</strong>tainer port in the Gulf, was 95 percent destroyed by the 30-foot storm surge<br />

from Hurricane Katrina (Plume 2005). Subsequently, much <str<strong>on</strong>g>of</str<strong>on</strong>g> the traffic shifted to other ports<br />

while Gulfport undertook major rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its facilities. On the other hand, the network<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> system can work to magnify the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a shock to the system,<br />

particularly when critical links are damaged or destroyed. This situati<strong>on</strong> was well illustrated<br />

during Hurricane Katrina with the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> critical highway and rail bridges.<br />

POTENTIAL IMPACTS BY TRANSPORTATION MODE<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong> infrastructure will differ depending <strong>on</strong> the<br />

particular mode <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong>, its geographic locati<strong>on</strong>, and its c<strong>on</strong>diti<strong>on</strong>. This secti<strong>on</strong> is<br />

focused <strong>on</strong> those climate changes and weather parameters identified in the previous chapter (see<br />

Table 2-1) that climate scientists agree are most likely to occur over the course <str<strong>on</strong>g>of</str<strong>on</strong>g> this century<br />

and are <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest relevance to transportati<strong>on</strong>. <str<strong>on</strong>g>Potential</str<strong>on</strong>g> impacts <strong>on</strong> all modes <str<strong>on</strong>g>of</str<strong>on</strong>g> transport—<br />

land, marine, and aviati<strong>on</strong>—are c<strong>on</strong>sidered. However, the discussi<strong>on</strong> is intended to be<br />

illustrative rather than comprehensive in coverage, highlighting major impacts, similarities and<br />

differences am<strong>on</strong>g modes, and implicati<strong>on</strong>s for adaptati<strong>on</strong> strategies.<br />

Annex 3-1 lists the relevant climate and weather parameters al<strong>on</strong>g with potential impacts<br />

by transportati<strong>on</strong> mode. In preparing this table, the committee drew <strong>on</strong> past efforts to identify<br />

transportati<strong>on</strong>-sensitive weather c<strong>on</strong>diti<strong>on</strong>s, as well as the collective expertise <str<strong>on</strong>g>of</str<strong>on</strong>g> the committee<br />

members. Some notable past reports include the Weather Informati<strong>on</strong> for Surface<br />

Transportati<strong>on</strong> Nati<strong>on</strong>al Needs Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> (OFCM 2002), the Metropolitan East Coast<br />

Assessment (Gornitz and Couch 2000; see detail in the next secti<strong>on</strong>), the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong> Workshop <strong>on</strong> Transportati<strong>on</strong> and <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (U.S. DOT 2002), and an<br />

article by Black (1990). In additi<strong>on</strong>, the discussi<strong>on</strong> in this secti<strong>on</strong> draws heavily <strong>on</strong> a paper<br />

commissi<strong>on</strong>ed for this study (Peters<strong>on</strong> et al. 2006; see Appendix C) that provides a more detailed<br />

discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong> <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> recent<br />

global climate simulati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> primary focus here is <strong>on</strong> the direct impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate changes <strong>on</strong><br />

transportati<strong>on</strong> infrastructure. Nevertheless, many <str<strong>on</strong>g>of</str<strong>on</strong>g> these effects will be influenced by the<br />

envir<strong>on</strong>ment in which the infrastructure is located. For example, increased precipitati<strong>on</strong> levels in<br />

some regi<strong>on</strong>s will affect moisture levels in the soil and hydrostatic build up behind retaining<br />

walls and abutments and the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> pavement subgrades. Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from increased<br />

precipitati<strong>on</strong> levels will also affect stream flow and sediment delivery in some locati<strong>on</strong>s, with<br />

potentially adverse effects <strong>on</strong> bridge foundati<strong>on</strong>s. Permafrost decline will affect Arctic land<br />

forms and hydrology, with potentially adverse effects <strong>on</strong> the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> road- and rail beds. And<br />

sea level rise will affect coastal land forms, exposing many coastal areas to storm surge as barrier


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 65<br />

islands and other natural barriers disappear. Such changes are noted here, but their variability<br />

from regi<strong>on</strong> to regi<strong>on</strong> prohibits further elaborati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are also likely to be many indirect effects <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate changes <strong>on</strong><br />

transportati<strong>on</strong>. For example, possible climate-caused shifts in demographics or in the<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural producti<strong>on</strong>, forests, and fisheries would have implicati<strong>on</strong>s for road<br />

usage and other transport patterns between emerging ec<strong>on</strong>omic centers and urban areas.<br />

Transportati<strong>on</strong> patterns could also shift as the tourism industry resp<strong>on</strong>ds to changes in<br />

ecologically or recreati<strong>on</strong>ally interesting destinati<strong>on</strong>s. Similarly, climate changes elsewhere in<br />

the world that shift markets or demographics could affect the U.S. transportati<strong>on</strong> system.<br />

Other indirect effects may be manifested at the interface between mitigati<strong>on</strong> and<br />

adaptati<strong>on</strong>. Likely U.S. regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gas emissi<strong>on</strong>s by the Envir<strong>on</strong>mental Protecti<strong>on</strong><br />

Agency will affect transportati<strong>on</strong> activities, potentially shifting travel to more energy-efficient<br />

modes (see Appendix B). Furthermore, climate changes may present additi<strong>on</strong>al challenges to<br />

meeting air and water quality standards. For example, warmer summertime temperatures will<br />

exacerbate air polluti<strong>on</strong>, particularly ground-level oz<strong>on</strong>e, likely requiring further acti<strong>on</strong> to<br />

mitigate transportati<strong>on</strong>-related emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants. Similarly, changes in run<str<strong>on</strong>g>of</str<strong>on</strong>g>f resulting<br />

from modified precipitati<strong>on</strong> regimes could affect water quality, with implicati<strong>on</strong>s for roadway<br />

treatments.<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Warming Temperatures and Temperature Extremes<br />

Land Transportati<strong>on</strong> Modes<br />

Land transportati<strong>on</strong> modes comprise highways (including bridges and tunnels); rail (including<br />

private rail lines and public transportati<strong>on</strong>); the vehicles that use these facilities—passenger cars,<br />

trucks, buses, rail and rail transit cars—and pipelines (recognizing that the latter are buried<br />

underground in many areas).<br />

Projected warming temperatures and more heat extremes will affect all <str<strong>on</strong>g>of</str<strong>on</strong>g> these modes<br />

(see Annex 3-1). <str<strong>on</strong>g>The</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature warming are already being experienced in Alaska in<br />

the form <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinued retreat <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost regi<strong>on</strong>s (see the discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska below), creating<br />

land subsidence issues for some secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the road and rail systems and for some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

elevated supports for above-ground secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Trans-Alaska pipeline. Warming winter<br />

temperatures have also shortened the seas<strong>on</strong> for ice roads that provide vital access to<br />

communities and industrial activities in remote areas.<br />

Alaska’s situati<strong>on</strong> is quite different from that <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower 48 states, however,<br />

where warming temperatures should have less dramatic, and in some cases beneficial, effects. In<br />

many northern states, for example, warming winter temperatures will bring about reducti<strong>on</strong>s in<br />

snow and ice removal costs, lessen adverse envir<strong>on</strong>mental impacts from the use <str<strong>on</strong>g>of</str<strong>on</strong>g> salt and<br />

chemicals <strong>on</strong> roads and bridges, extend the c<strong>on</strong>structi<strong>on</strong> seas<strong>on</strong>, and improve the mobility and<br />

safety <str<strong>on</strong>g>of</str<strong>on</strong>g> passenger and freight travel through reduced winter hazards. Expected increases in<br />

temperature extremes, however, will have less positive impacts. More freeze–thaw c<strong>on</strong>diti<strong>on</strong>s<br />

may occur, creating frost heaves and potholes <strong>on</strong> road and bridge surfaces and resulting in load<br />

restricti<strong>on</strong>s <strong>on</strong> certain roads to minimize the damage. With the expected earlier <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al<br />

warming, the period <str<strong>on</strong>g>of</str<strong>on</strong>g> springtime load restricti<strong>on</strong>s may be reduced in some areas, but is likely to<br />

expand in others with shorter winters but l<strong>on</strong>ger thaw seas<strong>on</strong>s.


66 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Periods <str<strong>on</strong>g>of</str<strong>on</strong>g> excessive summer heat are likely to increase wildfires, threatening<br />

communities and infrastructure directly and bringing about road and rail closures in affected<br />

areas. L<strong>on</strong>ger periods <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme heat may compromise pavement integrity (e.g., s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening<br />

asphalt and increasing rutting from traffic); cause deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rail lines and derailments or, at<br />

a minimum, speed restricti<strong>on</strong>s (Rosetti 2002); 6 and cause thermal expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bridge joints,<br />

adversely affecting bridge operati<strong>on</strong> and increasing maintenance costs. Pipelines in the lower 48<br />

states are not likely to experience adverse effects from heat extremes.<br />

Marine Transportati<strong>on</strong><br />

Marine transportati<strong>on</strong> infrastructure includes ports and harbors and supporting intermodal<br />

terminals and the ships and barges that use these facilities. Expected climate change impacts<br />

differ for coastal and inland waterways.<br />

Warming winter temperatures, particularly in northern coastal areas, could be a bo<strong>on</strong> for<br />

marine transportati<strong>on</strong>. Fewer days below freezing would reduce problems with ice accumulati<strong>on</strong><br />

<strong>on</strong> vessels, decks, riggings, and docks; the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> dangerous ice fog; and the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ice jams in ports. <str<strong>on</strong>g>The</str<strong>on</strong>g> striking thinning (Rothrock and Zhang 2005) and overall downward trend<br />

in the extent (Stroeve et al. 2005) <str<strong>on</strong>g>of</str<strong>on</strong>g> Arctic sea ice are regarded as a major opportunity for<br />

shippers (Annex 3-1). In the short term, c<strong>on</strong>tinued reducti<strong>on</strong> in Arctic sea ice should result in<br />

more ice-free ports, improved access to both ports and natural resources in remote areas, and<br />

l<strong>on</strong>ger shipping seas<strong>on</strong>s. In the l<strong>on</strong>ger term, shippers are looking forward to new Arctic shipping<br />

routes that could provide significant cost savings in shipping times and distances (see the<br />

discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska below). For the next several decades, however, warming temperatures and<br />

melting sea ice are likely to result in increased variability in year-to-year shipping c<strong>on</strong>diti<strong>on</strong>s and<br />

higher costs due to requirements for str<strong>on</strong>ger ships and support systems (e.g., ice-capable ship<br />

designs, icebreaker escorts, search and rescue support) (ACIA 2004). In additi<strong>on</strong>, improved<br />

access to remote areas may increase the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental degradati<strong>on</strong> to fragile ecosystems.<br />

Warming temperatures are also likely to provide l<strong>on</strong>ger shipping seas<strong>on</strong>s for the St.<br />

Lawrence Seaway and the Great Lakes (Annex 3-1). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex interacti<strong>on</strong> am<strong>on</strong>g<br />

warmer temperatures, reduced lake ice, and increased evaporati<strong>on</strong>, however, all 9 climate model<br />

simulati<strong>on</strong>s suggest lower lake levels as the climate warms (Great Lakes Regi<strong>on</strong>al Assessment<br />

Team 2000) 7 . With lower lake levels, ships will be unable to carry as much cargo, and hence<br />

shipping costs will increase, although some <str<strong>on</strong>g>of</str<strong>on</strong>g> the adverse ec<strong>on</strong>omic impacts could be <str<strong>on</strong>g>of</str<strong>on</strong>g>fset by a<br />

l<strong>on</strong>ger shipping seas<strong>on</strong>. 8 A recent study <str<strong>on</strong>g>of</str<strong>on</strong>g> the ec<strong>on</strong>omic impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> Canadian<br />

commercial navigati<strong>on</strong> <strong>on</strong> the Great Lakes, for example, found that predicted lowering <str<strong>on</strong>g>of</str<strong>on</strong>g> Great<br />

Lakes water levels would result in an estimated increase in shipping costs for Canadian<br />

commercial navigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> between 13–29 percent by 2050, all else remaining equal (Millard<br />

2005). 9 Lower water levels could also create periodic problems for river traffic, reminiscent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

6<br />

Proper installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous welded rail usually prevents kinks from occurring, but not always (Changn<strong>on</strong><br />

2006).<br />

7<br />

See in particular Chapter 4 <strong>on</strong> climate change and shipping/boating.<br />

8<br />

According to the Great Lakes Carrier’s Associati<strong>on</strong>, a 1,000-foot-l<strong>on</strong>g vessel typically used for intralake transport<br />

loses 270 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> capacity for each inch <str<strong>on</strong>g>of</str<strong>on</strong>g> draft loss. (Draft is the distance between the water line and the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the vessel.) Ocean-going vessels, sized for passage through the St. Lawrence Seaway, are approximately 740 feet<br />

l<strong>on</strong>g and lose 100 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> capacity for each inch <str<strong>on</strong>g>of</str<strong>on</strong>g> draft lost (Great Lakes Regi<strong>on</strong>al Assessment Team 2000).<br />

9<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> were estimated <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> three climate scenarios: <strong>on</strong>e that assumes a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmospheric<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 by midcentury and two that assume a more gradual increase in greenhouse gases and include


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 67<br />

the stranded barges <strong>on</strong> the Mississippi River during the drought <str<strong>on</strong>g>of</str<strong>on</strong>g> 1988 (du Vair et al. 2002). In<br />

the l<strong>on</strong>ger run, <str<strong>on</strong>g>of</str<strong>on</strong>g> course, less efficient waterborne commodity movement would likely result in<br />

shifts to other transportati<strong>on</strong> modes, such as truck and rail. Increased dredging could <str<strong>on</strong>g>of</str<strong>on</strong>g>fset some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, but at a high cost and with potentially negative envir<strong>on</strong>mental<br />

c<strong>on</strong>sequences.<br />

Air Transportati<strong>on</strong><br />

Air transportati<strong>on</strong> comprises airports and ground facilities, as well as the airplanes that carry<br />

both passengers and freight and the air traffic c<strong>on</strong>trol system.<br />

Warming temperatures and possible increases in temperature extremes will affect airport<br />

ground facilities—runways in particular—in much the same way that they will affect roads. In<br />

Alaska, where use <str<strong>on</strong>g>of</str<strong>on</strong>g> air transport is atypically high relative to land transportati<strong>on</strong> modes and<br />

many airstrips are built <strong>on</strong> permafrost, c<strong>on</strong>tinued retreat and thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost could<br />

undermine runway foundati<strong>on</strong>s, necessitating major repairs or even relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some landing<br />

strips (Annex 3-1; U.S. Arctic Research Commissi<strong>on</strong> Permafrost Task Force 2003). In c<strong>on</strong>trast,<br />

airports in many <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower 48 northern states are likely to benefit from reducti<strong>on</strong>s in the cost<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> snow and ice removal and in the envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> salt and chemical use. Airlines<br />

could benefit as well from reduced need for deicing <str<strong>on</strong>g>of</str<strong>on</strong>g> airplanes. <str<strong>on</strong>g>The</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> any reducti<strong>on</strong>,<br />

however, will depend <strong>on</strong> the balance between expected warming and increased precipitati<strong>on</strong>.<br />

More heat extremes, however, are likely to be problematic. <str<strong>on</strong>g>The</str<strong>on</strong>g>y could cause heat<br />

buckling <str<strong>on</strong>g>of</str<strong>on</strong>g> runways. Extreme heat can also affect aircraft lift; hotter air is less dense, reducing<br />

mass flowing over the wing to create lift. <str<strong>on</strong>g>The</str<strong>on</strong>g> problem is exacerbated at high-altitude airports.<br />

If runways are not sufficiently l<strong>on</strong>g for large aircraft to build up enough speed to generate lift,<br />

aircraft weight must be reduced or some flights cancelled altogether. Thus, increases in extreme<br />

heat are likely to result in payload restricti<strong>on</strong>s, flight cancellati<strong>on</strong>s, and service disrupti<strong>on</strong>s at<br />

affected airports, and could require some airports to extend runway lengths, if feasible. An<br />

analysis by the Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong> (NOAA) for the Denver and<br />

Phoenix airports estimated summer cargo loss (June through August) for a single Boeing 747 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

about 17 and 9 percent, respectively, by 2030 because <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increased temperature and<br />

water vapor (Karl and Anders<strong>on</strong> 2007).<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Increased Heavy Precipitati<strong>on</strong> and Sea Level Rise<br />

Land Transportati<strong>on</strong> Modes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> frequency, intensity, and durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intense precipitati<strong>on</strong> events are important factors in<br />

design specificati<strong>on</strong>s for transportati<strong>on</strong> infrastructure. Probabilistic estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall<br />

intensities for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> durati<strong>on</strong>s (5 minutes to 24 hours) for return periods, or recurrence<br />

intervals, <str<strong>on</strong>g>of</str<strong>on</strong>g> 20, 50, and 100 years have been used by civil engineers for designs <str<strong>on</strong>g>of</str<strong>on</strong>g> road culverts,<br />

storm water drainage systems, and rail- and roadbeds. Projected increases in intense<br />

precipitati<strong>on</strong> events will necessitate updating design specificati<strong>on</strong>s to provide for greater capacity<br />

and shorter recurrence intervals, increasing system costs.<br />

the cooling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfate aerosols. <str<strong>on</strong>g>The</str<strong>on</strong>g> study found that ec<strong>on</strong>omic impacts varied widely by commodity and<br />

route.


68 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most immediate impact <str<strong>on</strong>g>of</str<strong>on</strong>g> more intense precipitati<strong>on</strong> will be increased flooding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coastal roads and rail lines (Annex 3-1). Expected sea level rise will aggravate the flooding<br />

because storm surges will build <strong>on</strong> a higher base, reaching farther inland (Titus 2002). In fact,<br />

the chapter in the Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC) Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g><br />

<strong>on</strong> North America identifies coastal flooding from expected sea level rise and storm surge,<br />

especially al<strong>on</strong>g the Gulf and Atlantic coasts, as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most serious effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change (Burkett 2002 in Field et al. 2007). Indeed, several studies <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise project that<br />

transportati<strong>on</strong> infrastructure in some coastal areas al<strong>on</strong>g the Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico and the Atlantic will<br />

be permanently inundated sometime in the next century (Dingers<strong>on</strong> 2005; Gornitz and Couch<br />

2000; Leatherman et al 2000; Titus 2002). Low-lying bridge and tunnel entrances for roads, rail,<br />

and rail transit will also be more susceptible to flooding, and thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> culverts could be<br />

undersized for flows. Engineers must be prepared to deal with the resulting erosi<strong>on</strong> and<br />

subsidence <str<strong>on</strong>g>of</str<strong>on</strong>g> road bases and rail beds, as well as erosi<strong>on</strong> and scouring <str<strong>on</strong>g>of</str<strong>on</strong>g> bridge supports. 10<br />

Interrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road and rail traffic is likely to become more comm<strong>on</strong> with more frequent<br />

flooding.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise is limited to coastal areas, but the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intense<br />

precipitati<strong>on</strong> <strong>on</strong> land transportati<strong>on</strong> infrastructure and operati<strong>on</strong>s is not. For example, a recordbreaking<br />

24-hour rainstorm in July 1996 resulted in flash flooding in Chicago and its suburbs,<br />

with major impacts <strong>on</strong> the urban area. Extensive travel delays occurred <strong>on</strong> metropolitan<br />

highways and railroads, and streets and bridges were damaged. Commuters were unable to reach<br />

Chicago for up to 3 days, and more than 300 freight trains were delayed or rerouted (Changn<strong>on</strong><br />

1999).<br />

Pipelines may also be affected by increased intense precipitati<strong>on</strong>. For example, federal<br />

regulati<strong>on</strong>s require that pipelines carrying hazardous materials in the lower 48 states be buried<br />

with a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 feet <str<strong>on</strong>g>of</str<strong>on</strong>g> cover—up to 5 feet near heavily populated areas. Intense<br />

precipitati<strong>on</strong> can erode soil cover and cause subsidence (i.e., sinking <str<strong>on</strong>g>of</str<strong>on</strong>g> the earth underneath the<br />

pipeline). Scour and shifting <str<strong>on</strong>g>of</str<strong>on</strong>g> pipelines is a major problem in shallow riverbeds, where<br />

pipelines are more exposed to the elements (B. Cooper, Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oil Pipe Lines, pers<strong>on</strong>al<br />

communicati<strong>on</strong>, Dec. 7, 2006). Ultra-shallow seabed waters can also be a problem if the<br />

pipeline becomes exposed and subject to potential movement and even fracture from c<strong>on</strong>tinuing<br />

storm wave acti<strong>on</strong>.<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in seas<strong>on</strong>al precipitati<strong>on</strong> levels, with more precipitati<strong>on</strong> falling as rain than<br />

snow, can be beneficial but can also create problems in certain areas. For example, California’s<br />

transportati<strong>on</strong> infrastructure could be sensitive to even modest changes from frozen to liquid<br />

precipitati<strong>on</strong>. When precipitati<strong>on</strong> falls as rain rather than snow, it leads to immediate run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and<br />

increases the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> floods, landslides, slope failures, and c<strong>on</strong>sequent damage to roadways,<br />

especially rural roadways in the winter and spring m<strong>on</strong>ths (du Vair et al. 2002). Navigable rivers<br />

with both rainfall and snowmelt resp<strong>on</strong>ses would probably see greater winter volume flows<br />

associated with a greater risk <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding (U.S. Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research Program 1999).<br />

10 Scour is the hole left behind when sediment (sand and rocks) is washed away from the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> a river. Although<br />

scour may occur at any time, scour acti<strong>on</strong> is especially str<strong>on</strong>g during floods. Swiftly flowing water has more energy<br />

than calm water to lift and carry sediment down river. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment from around bridge piers or abutments<br />

(piers are the pillars supporting a bridge and abutments the supports at each end <str<strong>on</strong>g>of</str<strong>on</strong>g> a bridge) can weaken and<br />

ultimately undermine the integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> bridges (Warren 1993).


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 69<br />

Marine Transportati<strong>on</strong><br />

Coastal ports and harbor facilities will be affected by increased intense precipitati<strong>on</strong> and sea<br />

level rise. Landside facilities will be particularly vulnerable to flooding from an increase in<br />

intense precipitati<strong>on</strong> events and to the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> higher tides and storm surges from rising seas<br />

(Annex 3-1). Sea level with respect to dock level is an important c<strong>on</strong>siderati<strong>on</strong> at both wet and<br />

dry docks, general cargo docks, and c<strong>on</strong>tainer berths for clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> dock cranes and other<br />

structures. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s due to increased intense precipitati<strong>on</strong> and sea level rise could require some<br />

retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting <str<strong>on</strong>g>of</str<strong>on</strong>g> facilities. At a minimum, they are likely to result in increased weather-related<br />

delays and periodic interrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shipping services.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> navigability <str<strong>on</strong>g>of</str<strong>on</strong>g> shipping channels is also likely to change. Some channels may be<br />

more accessible to shipping farther inland because <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise. <str<strong>on</strong>g>The</str<strong>on</strong>g> navigability <str<strong>on</strong>g>of</str<strong>on</strong>g> others,<br />

however, could be adversely affected by changes in sedimentati<strong>on</strong> rates and the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shoals. In other areas, a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise and storm surge could eliminate waterway<br />

systems entirely. For example, the Gulf Coast porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the intercoastal waterway will likely<br />

disappear with c<strong>on</strong>tinued land subsidence and disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> barrier islands. This will bring<br />

an end to coastal barge traffic, which helps <str<strong>on</strong>g>of</str<strong>on</strong>g>fset rail and highway c<strong>on</strong>gesti<strong>on</strong>; all ships will<br />

have to navigate the open seas. According to the U.S. Geological Survey, Hurricanes Katrina<br />

and Rita al<strong>on</strong>e destroyed 217 square miles <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal wetlands. This loss represents slightly<br />

more than two-fifths <str<strong>on</strong>g>of</str<strong>on</strong>g> that which scientists had previously predicted would take place over the<br />

50-year period from 2000 to 2050 (Barras 2006).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> increased intense precipitati<strong>on</strong> and periodic droughts predicted for the<br />

midc<strong>on</strong>tinental United States will affect shipping <strong>on</strong> the Mississippi and Missouri River system.<br />

Increased precipitati<strong>on</strong> could bring a repetiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the floods that devastated travel <strong>on</strong> the Upper<br />

Mississippi River in 1993. Droughts have a greater influence <strong>on</strong> commercial navigati<strong>on</strong> <strong>on</strong> the<br />

lower porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the river—from St. Louis to the Gulf—where there are no locks and dams, and<br />

channel depths are entirely dependent <strong>on</strong> river flows. <str<strong>on</strong>g>The</str<strong>on</strong>g> 1988 drought, for example, stranded<br />

more than 4,000 barges, shifting freight to the railroads, which experienced increased business in<br />

hauling grains and other bulk commodities (Changn<strong>on</strong> 2006; du Vair et al. 2002). In a recent<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change impacts <strong>on</strong> the lock and dam system <strong>on</strong> the Middle Mississippi, between<br />

the Missouri and Ohio Rivers, the U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers c<strong>on</strong>cluded that the uncertainty<br />

associated with predicting future river flows called for a “wait and see,” m<strong>on</strong>itoring approach<br />

rather than for expensive infrastructure improvements (Institute for Water Resources 2005).<br />

Nevertheless, feasibility studies for navigati<strong>on</strong> projects have a 50-year planning horiz<strong>on</strong>, thus<br />

requiring at least some c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

most robust strategies under a range <str<strong>on</strong>g>of</str<strong>on</strong>g> different possible scenarios.<br />

Air Transportati<strong>on</strong><br />

Several <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s largest airports lie in coastal z<strong>on</strong>es, built al<strong>on</strong>g tidal waters, sometimes <strong>on</strong><br />

fill (Titus 2002). <str<strong>on</strong>g>The</str<strong>on</strong>g>ir runways are particularly vulnerable to flooding and erosi<strong>on</strong> from<br />

increased intense precipitati<strong>on</strong> and, in the l<strong>on</strong>ger term, from sea level rise. Some airports, such<br />

as New York’s LaGuardia, are protected by dikes (see the discussi<strong>on</strong> below <str<strong>on</strong>g>of</str<strong>on</strong>g> the Metropolitan<br />

East Coast Assessment), but others may require protecti<strong>on</strong>. At a minimum, increased intense<br />

precipitati<strong>on</strong> is likely to cause increased disrupti<strong>on</strong>s and delays in air service and periodic airport<br />

closures.


70 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> More Intense Tropical Storms<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists believe more intense tropical storms are a likely effect <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<br />

Three aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> tropical storms are relevant to transportati<strong>on</strong>: precipitati<strong>on</strong>, winds, and windinduced<br />

storm surge. All three tend to be much greater during str<strong>on</strong>g storms. Such storms tend<br />

to have l<strong>on</strong>ger periods <str<strong>on</strong>g>of</str<strong>on</strong>g> intense precipitati<strong>on</strong>; wind damage increases with wind speed; and<br />

wind-induced storm surge and wave acti<strong>on</strong> can have devastating effects.<br />

All modes <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure are affected by more intense tropical storms. Sustained storm<br />

surge and damaging wave acti<strong>on</strong> displaced highway and rail bridge decks during the recent<br />

hurricanes al<strong>on</strong>g the Gulf Coast, not to menti<strong>on</strong> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> sign and signal supports.<br />

Shipping was disrupted, and barges that were unable to get out <str<strong>on</strong>g>of</str<strong>on</strong>g> harm’s way in time were<br />

destroyed. Airports were closed and sustained wind damage. Refineries were damaged, and<br />

barge traffic between <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore drill sites and coastal pumping facilities was suspended. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> different transportati<strong>on</strong> modes, as well as their resilience to intense tropical<br />

storms, is well documented by the case study <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> sector’s resp<strong>on</strong>se to and<br />

recovery from Hurricanes Katrina and Rita discussed later in this chapter.<br />

REVIEW OF ASSESSMENTS FOR PARTICULAR AREAS OR REGIONS<br />

Few studies have attempted to examine the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong><br />

in a particular area or regi<strong>on</strong>. Those the committee found are briefly reviewed in this secti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Metropolitan East Coast Assessment<br />

This study <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change in the tristate area <str<strong>on</strong>g>of</str<strong>on</strong>g> New York, New Jersey, and<br />

C<strong>on</strong>necticut focused <strong>on</strong> transportati<strong>on</strong> infrastructure because <str<strong>on</strong>g>of</str<strong>on</strong>g> the enormous value <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Metropolitan East Coast’s (MEC) highly developed infrastructure to the regi<strong>on</strong>’s nearly $1<br />

trilli<strong>on</strong> ec<strong>on</strong>omy (Jacob et al. 2007). 11 With more than 2,000 km <str<strong>on</strong>g>of</str<strong>on</strong>g> shoreline and extensive<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> vulnerable residential development and business centers and supporting infrastructure,<br />

the focus was <strong>on</strong> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study used two global climate models, tailored to the MEC area, to describe possible<br />

future climate scenarios over the twenty-first century. 12 <str<strong>on</strong>g>The</str<strong>on</strong>g> projecti<strong>on</strong>s showed a potential rise<br />

in sea level <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.24 to 1.08 m (nearly 0.8 to 3.5 ft) between the reference year, 1980, and 2080.<br />

More important, the combined effect <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise and storm surge could result in flood<br />

heights for the 100-year coastal storm <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.2 to 4.2 m (10.5 to nearly 14 ft) above the current<br />

reference height <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.96 m (nearly 10 ft) for New York City. Thus, projected increases in sea<br />

level could raise the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal storm surges and related flooding by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 3, <strong>on</strong><br />

average. Moreover, the return interval <str<strong>on</strong>g>of</str<strong>on</strong>g> the 100-year storm could shorten to as little as 4 to 60<br />

years, depending <strong>on</strong> the climate scenario.<br />

11 <str<strong>on</strong>g>The</str<strong>on</strong>g> study, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 regi<strong>on</strong>al comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Nati<strong>on</strong>al Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Potential</str<strong>on</strong>g> C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> organized by the U.S. Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research program under the Clint<strong>on</strong><br />

Administrati<strong>on</strong>, was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>ly assessments that examined transportati<strong>on</strong> infrastructure.<br />

12 <str<strong>on</strong>g>The</str<strong>on</strong>g> two models used were the United Kingdom Hadley Centre model and the model from the Canadian Centre<br />

for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Modeling and Analysis. For a more detailed discussi<strong>on</strong>, see Jacob et al. 2000.


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 71<br />

Elevati<strong>on</strong> maps <str<strong>on</strong>g>of</str<strong>on</strong>g> areas within the 3 m (10 ft) reference height above current sea level<br />

reveal that roughly 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total MEC land area—porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lower Manhattan; coastal<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Brooklyn, Queens, Staten Island, and Nassau County; and the New Jersey<br />

Meadowlands—could experience a marked increase in flooding frequency (see Figure 3-1).<br />

Many critical transportati<strong>on</strong> infrastructure facilities lie at elevati<strong>on</strong>s 2 to 6 m (6 to 20 ft) above<br />

present sea level—well within the range <str<strong>on</strong>g>of</str<strong>on</strong>g> current and projected coastal storm surges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

FIGURE 3-1 Map <str<strong>on</strong>g>of</str<strong>on</strong>g> the central porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Metropolitan East Coast study area. Gray<br />

shading shows the areas at elevati<strong>on</strong>s below 3 m (10 ft) above present mean sea level.<br />

(Source: Jacob et al. 2007. [Copyright Elsevier 2007. Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Elsevier Limited,<br />

Oxford, UK.])


72 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

hurricanes and more frequent nor’easters (see Figure 3-2). Most area rail and tunnel entrance<br />

points, for example, as well as three major airports, lie at elevati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 m or less. 13<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> New York metropolitan area is no stranger to the devastating impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding.<br />

For example, the nor’easter <str<strong>on</strong>g>of</str<strong>on</strong>g> December 1992 produced some <str<strong>on</strong>g>of</str<strong>on</strong>g> the worst flooding in the area<br />

in 40 years, resulting in an almost complete shutdown <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>al transportati<strong>on</strong> system and<br />

evacuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many seaside communities (Jacob et al. 2007). More recently, heavy rainstorms in<br />

September 2004 and in August 2007 crippled the New York City transit system. Torrential<br />

rainfall (nearly 3 inches <str<strong>on</strong>g>of</str<strong>on</strong>g> rain in a 1-hour period in the 2007 event) overwhelmed the drainage<br />

system, designed to handle <strong>on</strong>ly about half that amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall, sending water into the subway<br />

tunnels (Chan 2007). Recent emergency planning for New York has focused <strong>on</strong> a worst-case<br />

scenario evacuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 2.3 milli<strong>on</strong> New Yorkers, many by transit, in the event <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Category 3+ hurricane.<br />

Flooding and storm surge will <strong>on</strong>ly be exacerbated by sea level rise. <str<strong>on</strong>g>The</str<strong>on</strong>g> New York<br />

metropolitan area is c<strong>on</strong>stantly rehabilitating and modernizing its aging capital stock, providing<br />

opportunities to build in new protecti<strong>on</strong>s against potential increased flooding. <str<strong>on</strong>g>The</str<strong>on</strong>g> MEC study<br />

proposes several measures, including incorporating sea level rise into the design, siting, and<br />

c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new infrastructure facilities or renovati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing facilities; recognizing sea<br />

level rise in federal Flood Insurance Rate Maps used by many local jurisdicti<strong>on</strong>s for land use<br />

planning and c<strong>on</strong>structi<strong>on</strong> regulati<strong>on</strong>s; instituting land use measures to prevent new or further<br />

development in highly vulnerable coastal areas; and c<strong>on</strong>structing strategically placed storm surge<br />

barriers, similar to those in operati<strong>on</strong> in the Netherlands and across the Thames River near<br />

L<strong>on</strong>d<strong>on</strong>, to protect highly vulnerable and valuable areas.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g>’s L<strong>on</strong>g-Term <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Metro Bost<strong>on</strong> (CLIMB) Study<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency funded a 3-year project to study the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change <strong>on</strong> infrastructure systems, including transportati<strong>on</strong>, in the metropolitan Bost<strong>on</strong><br />

area and to recommend strategies for preventing, reducing, or managing the risk (Kirshen<br />

undated). <str<strong>on</strong>g>The</str<strong>on</strong>g> l<strong>on</strong>g-term ec<strong>on</strong>omic success and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> depend heavily <strong>on</strong><br />

reliable infrastructure systems, which could be adversely affected by climate change. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

c<strong>on</strong>cern is that global warming may result in sea level rise and increased flooding, higher peak<br />

summer temperatures, and more frequent and intense winter and summer storms with higher<br />

storm surges. At the same time, c<strong>on</strong>tinued populati<strong>on</strong> and ec<strong>on</strong>omic growth will result in<br />

increased development pressure <strong>on</strong> already vulnerable coastal and riverine areas, increasing not<br />

<strong>on</strong>ly the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure at risk but also the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f that must be handled by<br />

area rivers, streams, and stormwater systems (Suarez et al. 2005).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> human and ec<strong>on</strong>omic costs <str<strong>on</strong>g>of</str<strong>on</strong>g> disrupti<strong>on</strong> to infrastructure systems from flooding and<br />

storm surge in the area were dramatically illustrated by the devastating storm <str<strong>on</strong>g>of</str<strong>on</strong>g> October 1996.<br />

Drainage systems were inadequate to handle the 100-year storm. Backups and overflows<br />

affected several secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the city, causing $70 milli<strong>on</strong> in property damage in additi<strong>on</strong> to<br />

disrupting business and pers<strong>on</strong>al travel (Kirshen et al. 2004, 71). Porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bost<strong>on</strong><br />

13 Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these facilities are protected, but may need modificati<strong>on</strong>. For example, the Port Authority <str<strong>on</strong>g>of</str<strong>on</strong>g> New York<br />

and New Jersey (PANYNJ), an active participant in the MEC study, built a dike and levee system to protect<br />

LaGuardia Airport. After the severe nor’easter in 1992, PANYNJ built floodgates to protect the PATH tunnel under<br />

the Huds<strong>on</strong> River, which had flooded and put commuter trains out <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> for 10 days (Jacob et al. 2007).


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 73<br />

FIGURE 3-2 Current lowest critical elevati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> facilities operated by the Port Authority<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> New York and New Jersey compared with changing storm elevati<strong>on</strong>s at these locati<strong>on</strong>s<br />

for surge recurrence periods <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 50, and 500 years between 2000 (baseline) and the<br />

2090s. (Note that 10 ft equals approximately 3 m. Source: Jacob et al. 2007. [Copyright Elsevier<br />

2007. Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Elsevier Limited, Oxford, UK.])


74 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Museum <str<strong>on</strong>g>of</str<strong>on</strong>g> Fine Arts and Northeastern University were flooded, as were a Green Line tunnel<br />

and four rapid transit stati<strong>on</strong>s, causing major damage and interrupted service for several weeks.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study analyzed climate change impacts <strong>on</strong> seven sectors, including transportati<strong>on</strong>. 14<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impact analysis for land transportati<strong>on</strong> systems focused <strong>on</strong> flooding and impacts <strong>on</strong> the road<br />

system, emphasizing the effect <strong>on</strong> system performance rather than <strong>on</strong> infrastructure damage<br />

(Suarez et al. 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> methodology involved integrating projected changes in land use,<br />

demographics, ec<strong>on</strong>omic activity, and climatic c<strong>on</strong>diti<strong>on</strong>s into the urban transportati<strong>on</strong> modeling<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bost<strong>on</strong> Metropolitan Area Planning Council (MAPC). 15 <str<strong>on</strong>g>The</str<strong>on</strong>g> model was then used<br />

to simulate traffic flows for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> different flooding scenarios for a base case year (2003)<br />

and a future year (2025), incorporating anticipated socioec<strong>on</strong>omic changes, as well as projected<br />

new links or increased capacity in the road network. 16 Finally, the models were rerun to take<br />

into account the aggregate effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased flooding <strong>on</strong> delays and lost trips over the period<br />

2000 to 2100. 17<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results show that delays and trips lost between the baseline year 2000 and 2100<br />

would increase by 80 and 82 percent, respectively, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> increased flooding attributable<br />

to climate change (Suarez et al. 2005, 240). Nevertheless, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the large number <str<strong>on</strong>g>of</str<strong>on</strong>g> daily<br />

baseline trips in the Bost<strong>on</strong> metropolitan area—approximately 14.6 milli<strong>on</strong> in 2000—these<br />

percentage increases represent relatively modest effects. <str<strong>on</strong>g>The</str<strong>on</strong>g> results also reflect the redundancy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> network that is typical <str<strong>on</strong>g>of</str<strong>on</strong>g> a mature metropolitan area, which lessens but does<br />

not eliminate vulnerability. For example, although coastal areas are more densely populated, the<br />

road network is less redundant, so that residents are unable to make trips when the roads become<br />

inundated. In c<strong>on</strong>trast, riverine floods result in increased vehicle miles and vehicle hours<br />

traveled. Travelers have more alternative routes available, but many are major commuter routes,<br />

thereby increasing c<strong>on</strong>gesti<strong>on</strong> and time traveled (Suarez et al. 2005).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> report c<strong>on</strong>cludes that even if <strong>on</strong>e uses high m<strong>on</strong>etized values for lost trips and<br />

incremental delays, the impacts are “significant, but probably not large enough to justify a major<br />

effort for adapting the physical infrastructure to expected climatic c<strong>on</strong>diti<strong>on</strong>s, except for some<br />

key links” (Suarez et al. 2005, 231). <str<strong>on</strong>g>The</str<strong>on</strong>g> study, however, did not take into c<strong>on</strong>siderati<strong>on</strong> the<br />

potential physical damage to transportati<strong>on</strong> infrastructure and repair costs due to climate change<br />

that also must be part <str<strong>on</strong>g>of</str<strong>on</strong>g> any investment decisi<strong>on</strong>.<br />

14 <str<strong>on</strong>g>The</str<strong>on</strong>g> sectors were energy use, sea level rise, river flooding, water supply, public health (heat-stress mortality),<br />

localized systems (water quality, tall buildings, bridge scour), and transportati<strong>on</strong>.<br />

15 MAPC forecasts populati<strong>on</strong> and employment growth to 2025 at the town level, providing the best available<br />

estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the spatial evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> people and ec<strong>on</strong>omic growth in the regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> study assumed that similar<br />

growth trends would persist up to 2050 and then remain c<strong>on</strong>stant. <str<strong>on</strong>g>The</str<strong>on</strong>g> Canadian <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Centre and Hadley Centre<br />

climate scenarios used in the New England Regi<strong>on</strong>al Assessment—another regi<strong>on</strong>al comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Nati<strong>on</strong>al<br />

Assessment—were superimposed over time series data <strong>on</strong> local weather c<strong>on</strong>diti<strong>on</strong>s to provide the climate change<br />

predicti<strong>on</strong>s for 2001 to 2100 (Kirshen et al. 2004).<br />

16 Twelve flooding scenarios were developed to reflect different years <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>, areas flooded (n<strong>on</strong>e, 100-year,<br />

and 500-year floodplains), and type <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding (coastal, riverine, or both). Flood Insurance Rate Maps were used to<br />

identify coastal and riverine floodplains, and these were overlaid <strong>on</strong> maps showing land use and the road networks<br />

within the boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> each traffic analysis z<strong>on</strong>e used in the model (Kirshen et al. 2004).<br />

17 Two climate states were modeled—<strong>on</strong>e assuming no climate change, projecting past trends into the future by<br />

bootstrapping from 50 years <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall and sea level data for the Bost<strong>on</strong> area, and the sec<strong>on</strong>d assuming climate<br />

changes in line with available climate model predicti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> difference in network performance between the two<br />

scenarios was attributed to climate change (Kirshen et al. 2004).


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 75<br />

Seattle Audit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g><br />

Since the early 1990s, Seattle has been a leader in its efforts to reduce greenhouse gas emissi<strong>on</strong>s<br />

that c<strong>on</strong>tribute to climate change (Soo Hoo and Sumitani 2005). Because the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change are likely to persist well into the twenty-first century, however, policy makers have also<br />

recognized the need to develop appropriate adaptati<strong>on</strong> strategies. Seattle’s Office <str<strong>on</strong>g>of</str<strong>on</strong>g> City<br />

Auditor initiated a series <str<strong>on</strong>g>of</str<strong>on</strong>g> reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> how changes in the climate <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pacific Northwest<br />

regi<strong>on</strong> would affect the operati<strong>on</strong>s and infrastructure <str<strong>on</strong>g>of</str<strong>on</strong>g> various city departments. <str<strong>on</strong>g>The</str<strong>on</strong>g> first<br />

review was focused <strong>on</strong> the Seattle Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (SDOT), which is resp<strong>on</strong>sible<br />

for the city’s $8 billi<strong>on</strong> transportati<strong>on</strong> infrastructure, including its roadways, most bridges, and<br />

bike paths (Soo Hoo and Simitani 2005).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> primary changes predicted by climate scientists for the Pacific Northwest in the<br />

twenty-first century are warmer temperatures, rising sea levels, and increased winter<br />

precipitati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> study identified five potential types <str<strong>on</strong>g>of</str<strong>on</strong>g> impact.<br />

First, increased winter precipitati<strong>on</strong> could lead to more flooding and landslides, which<br />

could damage the city’s transportati<strong>on</strong> infrastructure and underlying utilities and hamper the<br />

mobility and safety <str<strong>on</strong>g>of</str<strong>on</strong>g> travel. 18 More flooding, for example, could overwhelm the existing<br />

stormwater drainage system, causing soil saturati<strong>on</strong> and surface erosi<strong>on</strong>. It could also exacerbate<br />

erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil around roads, bridge footings, and retaining walls.<br />

Sec<strong>on</strong>d, rising sea levels could affect the adequacy <str<strong>on</strong>g>of</str<strong>on</strong>g> seawall heights and bridge<br />

clearances. SDOT had c<strong>on</strong>sidered sea level rise in developing design standards for a major<br />

Alaskan Way Seawall replacement project, but questi<strong>on</strong>s were raised regarding whether the<br />

projected sea level rise was underestimated.<br />

Third, increased precipitati<strong>on</strong> and temperatures and sea level rise would adversely impact<br />

bridge operati<strong>on</strong>s. More than <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> Seattle’s 105 bridges are currently rated as being in<br />

poor c<strong>on</strong>diti<strong>on</strong>. 19 Warmer temperatures could cause greater thermal expansi<strong>on</strong> at bridge<br />

expansi<strong>on</strong> joints, affecting bridge operati<strong>on</strong>s and adding to maintenance costs. Increased winter<br />

precipitati<strong>on</strong> could exacerbate erosi<strong>on</strong> around bridge footings, and rising sea levels could affect<br />

bridge clearances (see Figure 3-3).<br />

Fourth, warmer temperatures and increased precipitati<strong>on</strong> could cause roadways to<br />

deteriorate. SDOT is resp<strong>on</strong>sible for approximately 1,500 lane miles <str<strong>on</strong>g>of</str<strong>on</strong>g> arterial streets and 2,700<br />

lane miles <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>arterial streets. <str<strong>on</strong>g>The</str<strong>on</strong>g> city’s arterial streets are in good c<strong>on</strong>diti<strong>on</strong>, but there is a<br />

backlog <str<strong>on</strong>g>of</str<strong>on</strong>g> repair and resurfacing projects. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> changes could shorten street lives (Figure 3-<br />

3). Hotter summers could result in pavement s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening and buckling and the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

bumps, although use <str<strong>on</strong>g>of</str<strong>on</strong>g> warmer-temperature asphalt mix could mitigate some <str<strong>on</strong>g>of</str<strong>on</strong>g> these effects.<br />

Increased precipitati<strong>on</strong> would increase street flooding and tax drainage systems.<br />

Finally, warmer and l<strong>on</strong>ger summers and reduced summer precipitati<strong>on</strong> would place<br />

stress <strong>on</strong> trees and landscaped areas in the city’s rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way, requiring increased<br />

18 Seattle Public Utilities has primary resp<strong>on</strong>sibility for resp<strong>on</strong>ding to emergencies, such as landslides and surface<br />

flooding. However, SDOT is primarily resp<strong>on</strong>sible when the structural integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> public streets, bridges, and<br />

retaining walls is threatened (Soo Hoo and Sumitani 2005).<br />

19 According to the 2004 <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Citizens’ Transportati<strong>on</strong> Advisory Committee, 37 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the city’s bridges<br />

are in “poor c<strong>on</strong>diti<strong>on</strong> or worse,” and 4 percent already face weight restricti<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> critical deficiencies (Soo<br />

Hoo and Sumitami 2005, 20).


76 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

FIGURE 3-3 <str<strong>on</strong>g>Potential</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> Seattle’s transportati<strong>on</strong><br />

infrastructure. (Source: Soo Hoo and Sumitani 2005.)


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 77<br />

maintenance. 20 SDOT’s Urban Forestry unit is already c<strong>on</strong>sidering the use <str<strong>on</strong>g>of</str<strong>on</strong>g> drought-resistant<br />

plants and other strategies to <str<strong>on</strong>g>of</str<strong>on</strong>g>fset the negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<br />

In resp<strong>on</strong>se to the report, SDOT noted that it is including climate change as a factor in the<br />

scoping <str<strong>on</strong>g>of</str<strong>on</strong>g> new projects. It is also undertaking a new asset management effort that will focus <strong>on</strong><br />

replacement cycles for all transportati<strong>on</strong> infrastructure; climate change impacts will be<br />

c<strong>on</strong>sidered as <strong>on</strong>e factor in determining the adequacy <str<strong>on</strong>g>of</str<strong>on</strong>g> proposed replacement and rehabilitati<strong>on</strong><br />

projects (E. Paschke, SDOT, pers<strong>on</strong>al communicati<strong>on</strong>, April 14, 2006). That being said, SDOT<br />

noted that the l<strong>on</strong>g time frames and uncertainties <str<strong>on</strong>g>of</str<strong>on</strong>g> expected climate changes, coupled with<br />

maintenance backlogs and short-term planning horiz<strong>on</strong>s for operating budgets, justify “a prudent<br />

approach: <strong>on</strong>e that combines watchfulness in following trends in climate change, including<br />

anticipating how climate change may increase our resource needs, while we c<strong>on</strong>tinue with our<br />

efforts to mitigate the causes” (Soo Hoo and Sumitani 2005, 46). Finally, SDOT <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials<br />

recommended an interdepartmental team to coordinate a comprehensive assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projecti<strong>on</strong>s for sea level rise, as well as data <strong>on</strong> other issues related to climate change, that could<br />

be used to revise existing or establish new and c<strong>on</strong>sistent standards reflecting climate change<br />

across all city infrastructure investment projects (Soo Hoo and Sumitani 2005).<br />

Alaska<br />

Alaska is already experiencing some <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, such as warming<br />

temperatures and c<strong>on</strong>tinued shrinkage <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost regi<strong>on</strong>s—areas <str<strong>on</strong>g>of</str<strong>on</strong>g> permanently frozen<br />

ground below the surface layer—with c<strong>on</strong>sequences for all modes <str<strong>on</strong>g>of</str<strong>on</strong>g> land transportati<strong>on</strong>. 21<br />

Warming temperatures are also affecting marine transportati<strong>on</strong>. Decreased c<strong>on</strong>centrati<strong>on</strong>s and<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice in the Arctic Ocean have lengthened the ice-free shipping seas<strong>on</strong>, expanded<br />

shipping al<strong>on</strong>g the Northern Sea Route, and opened the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a Northwest Passage for<br />

shipping. 22 At the same time, however, more open seas have exposed coastal villages al<strong>on</strong>g<br />

northern and western Alaska to increased storms and wave acti<strong>on</strong>, with attendant erosi<strong>on</strong>.<br />

Coastal villages, al<strong>on</strong>g with their infrastructure, will need greater protecti<strong>on</strong> or may have to be<br />

relocated (G. Wendler, Geophysical Institute <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Center, pers<strong>on</strong>al communicati<strong>on</strong>, Mar. 2,<br />

2006).<br />

As noted earlier, Alaska’s transportati<strong>on</strong> infrastructure differs from that <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower 48<br />

states. Although Alaska is twice the size <str<strong>on</strong>g>of</str<strong>on</strong>g> Texas, both its populati<strong>on</strong> and road mileage are<br />

more like Verm<strong>on</strong>t’s. Of its 12,700 miles <str<strong>on</strong>g>of</str<strong>on</strong>g> roads, for example, <strong>on</strong>ly about 30 percent are paved<br />

(U.S. Arctic Research Commissi<strong>on</strong> 2003, 28). <str<strong>on</strong>g>The</str<strong>on</strong>g> road and rail networks are c<strong>on</strong>centrated<br />

20 SDOT’s Urban Forestry unit maintains an inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> 130 acres <str<strong>on</strong>g>of</str<strong>on</strong>g> land in city rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way. Approximately<br />

30,000 trees are located <strong>on</strong> city-owned land, with an estimated value <str<strong>on</strong>g>of</str<strong>on</strong>g> $100 milli<strong>on</strong>. Approximately half <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

city’s landscaped areas are currently rated as being in good c<strong>on</strong>diti<strong>on</strong> (Soo Hoo and Sumitani 2005, 24).<br />

21 Permafrost refers to soil, rock, or sediment that has remained below 32° F for 2 or more c<strong>on</strong>secutive years (ACIA<br />

2004). <str<strong>on</strong>g>The</str<strong>on</strong>g> 2-year designati<strong>on</strong> is intended to exclude the overlying ground surface layer that freezes each winter and<br />

thaws each summer. Regi<strong>on</strong>s are classified into c<strong>on</strong>tinuous permafrost z<strong>on</strong>es, in which the permafrost occupies the<br />

entire area, and sporadic or disc<strong>on</strong>tinuous permafrost z<strong>on</strong>es, in which the permafrost underlies from 10 to 90 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the land and may be <strong>on</strong>ly a few meters thick in places. Permafrost is further classified into two types: a) cold<br />

permafrost, where temperatures remain below at least 30° F, and the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable heat can be<br />

tolerated without thawing; and b) warm permafrost, where temperatures remain just below freezing, and very little<br />

additi<strong>on</strong>al heat may induce thawing.<br />

22 <str<strong>on</strong>g>The</str<strong>on</strong>g> Northern Sea Route encompasses all routes across the Russian Arctic coastal seas to the Bering Strait. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Northwest Passage is the name given to the marine routes between the Atlantic and Pacific oceans al<strong>on</strong>g the<br />

northern coast <str<strong>on</strong>g>of</str<strong>on</strong>g> North America that span the straits and the sounds <str<strong>on</strong>g>of</str<strong>on</strong>g> the Canadian Arctic Archipelago.


78 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

largely in the south-central part <str<strong>on</strong>g>of</str<strong>on</strong>g> the state, near major populati<strong>on</strong> centers. Transport by air is<br />

much more comm<strong>on</strong> than in most states. Alaska has 84 commercial airports and more than<br />

3,000 airstrips, many <str<strong>on</strong>g>of</str<strong>on</strong>g> which serve as the <strong>on</strong>ly means <str<strong>on</strong>g>of</str<strong>on</strong>g> transport for rural communities. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

state also is home to the Trans-Alaska Pipeline System (TAPS).<br />

Two recent studies (ACIA 2004; U.S. Arctic Research Commissi<strong>on</strong> 2003) c<strong>on</strong>sidered the<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> a warming Arctic <strong>on</strong> both Alaska and its infrastructure, particularly the effects <strong>on</strong><br />

permafrost. <str<strong>on</strong>g>The</str<strong>on</strong>g> band <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous, warm permafrost has been moving northward for some<br />

years. For highways, thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> the permafrost causes settling <str<strong>on</strong>g>of</str<strong>on</strong>g> the roadbed and frost heaves<br />

that adversely affect roadway performance, such as load-carrying capacity. <str<strong>on</strong>g>The</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

state’s highways are located in areas where permafrost is disc<strong>on</strong>tinuous, and dealing with thaw<br />

settlement problems already claims a significant porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highway maintenance dollars (M.<br />

Miles, Alaska Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> & Public Facilities (DOT&PF), pers<strong>on</strong>al<br />

communicati<strong>on</strong>, Mar. 3, 2006). Nevertheless, a road rehabilitati<strong>on</strong> cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> about 15 years is<br />

sufficiently short to enable engineers to adapt to changing climate c<strong>on</strong>diti<strong>on</strong>s. Thus, they are<br />

able to anticipate some problems created by thawing prior to c<strong>on</strong>structi<strong>on</strong> and have developed a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> techniques. 23 In additi<strong>on</strong>, the Cold Regi<strong>on</strong>s Research and Engineering<br />

Laboratory (CRREL), 24 in partnership with the DOT&PF and the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, has<br />

developed a web-based geographic informati<strong>on</strong> system tool—the Alaska Engineering Design<br />

Informati<strong>on</strong> System (AEDIS)—for use in m<strong>on</strong>itoring and design. AEDIS provides geographicspecific<br />

data <strong>on</strong> climate factors, such as precipitati<strong>on</strong> levels, permafrost, and snow depth, that can<br />

be used to derive engineering design parameters (e.g., load-bearing capacity), schedule<br />

maintenance, and select optimum transportati<strong>on</strong> routes (T. Douglas, CRREL, pers<strong>on</strong>al<br />

communicati<strong>on</strong>, Mar. 9, 2006).<br />

Less flexible and l<strong>on</strong>ger-lived bridges and large culverts are sensitive to movement<br />

caused by thawing permafrost and are more difficult than roads to repair and modify for<br />

changing site c<strong>on</strong>diti<strong>on</strong>s. Thus, designing these facilities to take climate change into account is<br />

more critical than is the case for roads (O. Smith, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska Anchorage, pers<strong>on</strong>al<br />

communicati<strong>on</strong>, Mar. 1, 2006). Another impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> bridges is increased scour.<br />

Hotter, dryer summers have led to increased glacial melting and l<strong>on</strong>ger periods <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

streamflows, leading to both increased sediment transport <strong>on</strong> rivers and scour at bridge crossings.<br />

A network <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>on</strong>ars has been installed <strong>on</strong> several scour-critical bridges around the state, and the<br />

m<strong>on</strong>itoring data are regularly sent to Alaska DOT&PF (J. C<strong>on</strong>away, United States Geological<br />

Survey, pers<strong>on</strong>al communicati<strong>on</strong>, Mar. 8, 2006).<br />

Temporary ice roads and bridges are comm<strong>on</strong>ly used in many parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska to access<br />

northern communities and provide support for the mining and oil and gas industries. Rising<br />

temperatures have already shortened the seas<strong>on</strong> during which these critical facilities can be used<br />

(ACIA 2004).<br />

Like the highway system, the Alaska Railroad crosses permafrost terrain, but the railroad<br />

does not extend northward into the z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous permafrost. While frost heave and<br />

23 For example, insulati<strong>on</strong> can be placed in the road prism (area <str<strong>on</strong>g>of</str<strong>on</strong>g> road c<strong>on</strong>taining the road surface, cut slope and fill<br />

slope), and different types <str<strong>on</strong>g>of</str<strong>on</strong>g> passive refrigerati<strong>on</strong> schemes can be used, including thermo-siph<strong>on</strong>s, rock galleries,<br />

and “cold culverts” (M. Miles, Alaska DOT&PF pers<strong>on</strong>al communicati<strong>on</strong>, Mar. 3, 2006).<br />

24 <str<strong>on</strong>g>The</str<strong>on</strong>g> Civil and Infrastructure Engineering Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> CRREL, part <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, c<strong>on</strong>ducts<br />

applied research and develops innovative engineering soluti<strong>on</strong>s for facilities and infrastructure that operate under<br />

freezing, thawing, and extreme temperature differences.


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 79<br />

settlement from thawing affect some porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the track, increasing maintenance costs, major<br />

relocati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> existing track will not likely be required (U.S. Arctic Research Commissi<strong>on</strong> 2003).<br />

Alaska’s airports and airstrips are located throughout the state. A significant number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

airstrips in the southwest, the northwest, and the interior are built <strong>on</strong> permafrost, and thus will<br />

require major repairs or relocati<strong>on</strong> if their foundati<strong>on</strong>s are compromised by thawing (U.S. Arctic<br />

Research Commissi<strong>on</strong> 2003).<br />

TAPS, which stretches from Prudhoe Bay in northern Alaska to the ice-free port <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Valdez in the south, crosses a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost types and varying temperature<br />

c<strong>on</strong>diti<strong>on</strong>s. More than half <str<strong>on</strong>g>of</str<strong>on</strong>g> the 800-mile pipeline is elevated <strong>on</strong> vertical supports over thawunstable<br />

permafrost to avoid problems <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost degradati<strong>on</strong>, soil liquefacti<strong>on</strong>, and land<br />

subsidence (U.S. Arctic Research Commissi<strong>on</strong> 2003). Because the system was designed in the<br />

early 1970s <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost and climate c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1950–1970 period, it<br />

requires c<strong>on</strong>tinuous m<strong>on</strong>itoring, and some supporting members have had to be replaced. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Federal/State Joint Pipeline Office, which regulates TAPS, and the Alyeska Pipeline Company,<br />

which operates it, do not regard permafrost degradati<strong>on</strong> as a problem, but this assessment does<br />

not take into account the Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment predicti<strong>on</strong>s for the next 30 years<br />

(U.S. Arctic Research Commissi<strong>on</strong> 2003).<br />

Arctic marine transport will benefit from climate changes. Observati<strong>on</strong>s over the past 50<br />

years show a decline in the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> Arctic sea ice in all seas<strong>on</strong>s, with the most prominent retreat<br />

in the summer (ACIA 2004). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> models project an accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this trend, opening new<br />

shipping routes and extending shipping seas<strong>on</strong>s al<strong>on</strong>g Arctic coastlines, including Alaska.<br />

Improved accessibility, however, will not be uniformly distributed. For example, the navigati<strong>on</strong><br />

seas<strong>on</strong> 25 for the Northern Sea Route is projected to increase from 20–30 days per year to about<br />

90–100 days by 2080 (ACIA 2004, 83). For trans-Arctic voyages, this route represents up to a<br />

40 percent savings in distance from northern Europe to northeastern Asia and the northwest coast<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> North American compared with southerly routes via the Suez or Panama Canal. In c<strong>on</strong>trast,<br />

reducti<strong>on</strong> in the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea ice may create highly variable c<strong>on</strong>diti<strong>on</strong>s in the Northwest Passage,<br />

reflecting the complex geography <str<strong>on</strong>g>of</str<strong>on</strong>g> the Canadian Arctic that could not be captured by the<br />

regi<strong>on</strong>al climate models used for the Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment.<br />

In sum, recent climate change assessments show that Alaska is already experiencing the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, particularly warming <str<strong>on</strong>g>of</str<strong>on</strong>g> the Arctic climate and thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effects are projected to accelerate during this century (ACIA 2004), and Alaska’s experience<br />

with adaptati<strong>on</strong> may be instructive for some other cold-weather regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the state’s transportati<strong>on</strong> infrastructure was designed for permafrost, and those systems<br />

with relatively short rehabilitati<strong>on</strong> cycles relative to projected climate changes will have time to<br />

adapt to the changes. Nevertheless, projected changes are likely to require at best increased<br />

m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> climate c<strong>on</strong>diti<strong>on</strong>s and higher maintenance costs, and at worst more major retr<str<strong>on</strong>g>of</str<strong>on</strong>g>its<br />

or even relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some facilities. According to <strong>on</strong>e transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al, the greatest<br />

challenge lies not in dealing with the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change but in not knowing exactly what<br />

changes to expect or when (B. C<strong>on</strong>nor, Alaska Transportati<strong>on</strong> Research Center, pers<strong>on</strong>al<br />

communicati<strong>on</strong>, Mar. 9, 2006).<br />

25 <str<strong>on</strong>g>The</str<strong>on</strong>g> navigati<strong>on</strong> seas<strong>on</strong> is generally defined as the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days per year when there is less than 50 percent sea-<br />

ice c<strong>on</strong>centrati<strong>on</strong>.


80 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Gulf Coast<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> committee commissi<strong>on</strong>ed a special case study <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> sector’s resp<strong>on</strong>se to and<br />

recovery from Hurricanes Katrina and Rita. 26 One <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to<br />

examine the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> system to a major disrupti<strong>on</strong>, with a particular<br />

focus <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> an interrupti<strong>on</strong> <strong>on</strong> nati<strong>on</strong>al-level movement <str<strong>on</strong>g>of</str<strong>on</strong>g> freight.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Gulf Coast is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the key ec<strong>on</strong>omic and populati<strong>on</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States,<br />

home to more than 15 milli<strong>on</strong> Americans located in five states (Texas, Louisiana, Mississippi,<br />

Alabama, and Florida) and three major metropolitan areas. <str<strong>on</strong>g>The</str<strong>on</strong>g> low-lying flat land al<strong>on</strong>g the<br />

Gulf Coast, skirting the subtropical waters <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico, makes the regi<strong>on</strong> vulnerable to<br />

major hurricanes, more so than any other regi<strong>on</strong> in the United States. However, the geography<br />

that makes the coastal area dangerous during hurricanes also makes it attractive for industrial and<br />

commercial development. Several <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s most heavily used ports are located al<strong>on</strong>g the<br />

Gulf Coast. <str<strong>on</strong>g>The</str<strong>on</strong>g> Ports <str<strong>on</strong>g>of</str<strong>on</strong>g> South Louisiana and Houst<strong>on</strong>—am<strong>on</strong>g the world’s 10 most heavily<br />

used ports—are particularly attractive to internati<strong>on</strong>al shippers because <str<strong>on</strong>g>of</str<strong>on</strong>g> the area’s centralized<br />

locati<strong>on</strong> with respect to the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong> and its wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> c<strong>on</strong>necti<strong>on</strong>s by<br />

pipeline, highway, rail, and river. <str<strong>on</strong>g>The</str<strong>on</strong>g> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico also c<strong>on</strong>tains some <str<strong>on</strong>g>of</str<strong>on</strong>g> the largest U.S.<br />

oilfields and, with its large share <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic natural gas and petroleum producti<strong>on</strong>, combined<br />

with its status as a major energy importer, is the epicenter <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. petrochemical industry.<br />

Hurricane Katrina was the most destructive and costliest natural disaster in U.S. history,<br />

claiming more than 1,800 lives and causing an estimated $75 billi<strong>on</strong> in damage. Hurricane Rita,<br />

exceeding Katrina in both intensity and maximum wind speed, claimed 120 lives and caused<br />

approximately $10 billi<strong>on</strong> in damage. <str<strong>on</strong>g>The</str<strong>on</strong>g> significantly lower casualty and damage levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rita can be attributed to its easterly track, which spared the Houst<strong>on</strong> metropolitan area from the<br />

worst <str<strong>on</strong>g>of</str<strong>on</strong>g> the storm. <str<strong>on</strong>g>The</str<strong>on</strong>g> unusually large losses <str<strong>on</strong>g>of</str<strong>on</strong>g> life and physical destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricane<br />

Katrina resulted from a levee failure and the inability <str<strong>on</strong>g>of</str<strong>on</strong>g> the flood waters to recede because so<br />

much <str<strong>on</strong>g>of</str<strong>on</strong>g> New Orleans lies below sea level. A failed evacuati<strong>on</strong> plan for the car-less exacerbated<br />

the human toll. Both storms seriously disrupted transportati<strong>on</strong> systems. Key highway and<br />

railroad bridges were heavily damaged or destroyed, necessitating rerouting <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic and<br />

placing increased strain <strong>on</strong> other routes, particularly other rail lines. Barge shipping was halted,<br />

as was export grain traffic out <str<strong>on</strong>g>of</str<strong>on</strong>g> the Port <str<strong>on</strong>g>of</str<strong>on</strong>g> New Orleans, the nati<strong>on</strong>’s largest export grain port.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pipeline network was shut down, producing shortages <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas and petroleum products.<br />

Despite predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-lasting transportati<strong>on</strong> stoppages, however, the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Gulf Coast highways, rail lines, pipelines, ports, and airports were back in service within weeks<br />

to a m<strong>on</strong>th (see Table 3-2). <str<strong>on</strong>g>The</str<strong>on</strong>g> worst-damaged bridges took 3–6 m<strong>on</strong>ths to repair. Just three<br />

bridges that carry highway U.S. 90 al<strong>on</strong>g the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gulf Coast failed to reopen until mid- to<br />

late 2007, approximately 2 years after they were destroyed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fact that Hurricanes Katrina and Rita had <strong>on</strong>ly a modest impact <strong>on</strong> nati<strong>on</strong>al-level<br />

freight flows can be attributed primarily to redundancies in the transportati<strong>on</strong> system, the timing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the storms, and the track <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricane Rita. For example, truck traffic was diverted from the<br />

collapsed bridge that carries highway I-10 over Lake P<strong>on</strong>tchartrain to highway I-12, which<br />

parallels I-10 well north <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gulf Coast. <str<strong>on</strong>g>The</str<strong>on</strong>g> primary north–south highways that c<strong>on</strong>nect the<br />

Gulf Coast with the major inland transportati<strong>on</strong> hubs were not damaged and were open for nearly<br />

full commercial freight movement within days. <str<strong>on</strong>g>The</str<strong>on</strong>g> railroads were able to reroute intermodal<br />

and carload traffic not bound directly for New Orleans through Memphis and other Midwest rail<br />

26 This secti<strong>on</strong> draws heavily <strong>on</strong> the commissi<strong>on</strong>ed paper, by Grenzeback and Lukmann (2007) (see Appendix C).


TABLE 3-2 Major Transportati<strong>on</strong> Facilities Damaged and Closed by Hurricanes Katrina and Rita<br />

Element <str<strong>on</strong>g>of</str<strong>on</strong>g> Infrastructure Issue<br />

Cost to<br />

Repair Closed<br />

(Milli<strong>on</strong>s) On<br />

Closed<br />

Until 29-Aug<br />

Highways<br />

I-10 (Louisiana &<br />

Twin Span Bridge (New $35.0<br />

Eastbound Span Heavily Aug. Oct. 14,<br />

Westbound Span Heavily Aug. Jan. 6,<br />

I-10 to US 90 Ramp Damaged $0.4 Aug.<br />

Pascagoula River Bridge 312 ft secti<strong>on</strong> $5.2 Aug. Oct. 1,<br />

US 90 (Louisiana, Mississippi<br />

Chef Menteur Pass Bridge Damaged $2.9 Aug. Aug<br />

Rigolets Bridge (East New Electrical/Mec $44.0 Aug. Dec. 7,<br />

Bay St. Louis Bridge (Bay Destroyed $266.8 Aug. May<br />

Roadway - (Pass Christian, Heavily $100.0 Aug. Oct. 29,<br />

Biloxi-Ocean Springs Destroyed $338.6 Aug. Nov<br />

Cochrane-Africatown Damaged (Oil $1.7 Aug. Sept. 1,<br />

Mobile Causeway / Tensaw Damaged Aug. Sept. 2,<br />

Lake P<strong>on</strong>tchartrain<br />

Northbound Span Undamaged Aug. Not<br />

Southbound Span Damaged Aug. Sep. 24,<br />

I-110 (Biloxi, Mississippi) Damaged $5.0 Aug. Sept. 1,<br />

LA 1 Damaged Aug.<br />

Rail Corridors<br />

CSX Gulf Coast Mainline Heavily $250.0 Aug. Jan. 31,<br />

Norfolk Southern Lake Washed Out Aug. Sept. 12,<br />

Uni<strong>on</strong> Pacific Minor Damage Aug. Aug. 31,<br />

Burlingt<strong>on</strong> Northern Santa Minor Damage Aug. Sept. 1,<br />

Canadian Nati<strong>on</strong>al Minor Damage Aug. Sept. 30,<br />

Kansas City Southern Undamaged Aug. Aug. 31,<br />

Pipelines<br />

5-Sep<br />

12-Sep<br />

19-Sep<br />

26-Sep<br />

3-Oct<br />

10-Oct<br />

17-Oct<br />

24-Oct<br />

1-Oct<br />

7-Nov<br />

14-Nov<br />

21-Nov<br />

28-Nov<br />

5-Dec<br />

12-Dec<br />

19-Dec<br />

26-Dec<br />

2-Jan<br />

9-Jan<br />

16-Jan<br />

23-Jan<br />

30-Jan<br />

6-Feb<br />

13-Feb<br />

20-Feb<br />

27-Feb


Louisiana Offshore Oil Port Minor Damage Aug. Sept. 2,<br />

Capline Mostly Aug. Sept. 1,<br />

Col<strong>on</strong>ial Pipeline Mostly Aug. Aug. 31,<br />

Plantati<strong>on</strong> Pipeline Mostly Aug. Sept. 1,<br />

Ports<br />

Port <str<strong>on</strong>g>of</str<strong>on</strong>g> New Orleans Significant Aug. Sept. 12,<br />

175 Barges Stranded in Out <str<strong>on</strong>g>of</str<strong>on</strong>g> $7.6<br />

Port <str<strong>on</strong>g>of</str<strong>on</strong>g> South Louisiana Damaged Aug.<br />

Port Fourch<strong>on</strong> Damaged Aug.<br />

Port <str<strong>on</strong>g>of</str<strong>on</strong>g> Gulfport Mostly Aug. Sept. 30,<br />

Port <str<strong>on</strong>g>of</str<strong>on</strong>g> Lake Charles Minor Damage Sept. Oct. 1,<br />

Port <str<strong>on</strong>g>of</str<strong>on</strong>g> Houst<strong>on</strong> Undamaged Sept. Sept. 27,<br />

Aviati<strong>on</strong><br />

Louis Armstr<strong>on</strong>g New Heavily $15.2 Aug. Sept. 13,<br />

Lakefr<strong>on</strong>t Airport Heavily $2.0 Aug. Oct. 19,<br />

Gulfport-Biloxi Internati<strong>on</strong>al Heavily $44.0 Aug. Sept. 8,<br />

Lake Charles Regi<strong>on</strong>al Heavily $8.0 Sept. Sept. 28,<br />

Southeast Texas Regi<strong>on</strong>al Damaged $6.0 Sept. Oct. 8,<br />

*Closures caused by Hurricane Rita; all others caused by Hurricane Katrina Durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> facility closure; now reopened Durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> facility closure; still closed for repair or replacement<br />

Source: Grenzeback and Lukmann 2007, 40.


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 83<br />

hubs. Although New Orleans is a major rail freight interchange point for east–west rail traffic, it<br />

is not itself a major origin or destinati<strong>on</strong> for rail freight. Had Hurricane Rita struck a larger<br />

industrial and transportati<strong>on</strong> hub such as Houst<strong>on</strong>, the effects <strong>on</strong> rail transportati<strong>on</strong> and freight<br />

movement would have been greater and more costly. Timing also played a role. <str<strong>on</strong>g>The</str<strong>on</strong>g> hurricanes<br />

struck before the peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the corn and soybean export seas<strong>on</strong>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mississippi River<br />

ports and the inland waterway were back in service to handle peak export demand later in fall<br />

2005. Finally, the major pipelines suffered relatively little damage and were able to open within<br />

days, as electrical power was restored.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> hurricanes’ impacts <strong>on</strong> nati<strong>on</strong>al freight flows may have been modest, but they were<br />

certainly not without cost. A full accounting <str<strong>on</strong>g>of</str<strong>on</strong>g> the direct costs to repair transportati<strong>on</strong> facilities<br />

damaged by Hurricanes Katrina and Rita has not yet been compiled. <str<strong>on</strong>g>Report</str<strong>on</strong>g>ed costs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individual projects shown in Table 3-2 total more than $1.1 billi<strong>on</strong>. Replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> the I-10<br />

Twin Span Bridge between New Orleans and Slidell, Louisiana, will add nearly another<br />

$1 billi<strong>on</strong>, and the repair and replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> rail lines, pipelines, ports, waterways, and airports<br />

will likely add several billi<strong>on</strong> more to the total. Moreover, the numbers do not include the costs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> unreported emergency operating expenditures, lengthy detours, the opportunity costs <str<strong>on</strong>g>of</str<strong>on</strong>g> lost<br />

shipments, and the l<strong>on</strong>g-term costs <str<strong>on</strong>g>of</str<strong>on</strong>g> displaced business and trade.<br />

What less<strong>on</strong>s were learned about the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> system from the<br />

experience with these two hurricanes? First, with few excepti<strong>on</strong>s, the physical redundancies <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

mature transportati<strong>on</strong> system provided sufficient alternative routes to keep freight flows moving<br />

without major disrupti<strong>on</strong>. Where the infrastructure was privately owned (e.g., CSX Railroad),<br />

arrangements with other carriers enabled operati<strong>on</strong>s to c<strong>on</strong>tinue. Of course, this outcome might<br />

be quite different if multiple catastrophic storms were to strike major industrial and<br />

transportati<strong>on</strong> hubs in close successi<strong>on</strong>—a plausible scenario in a climate-changed world.<br />

Sec<strong>on</strong>d, restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> services depended heavily <strong>on</strong> the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical<br />

power and manpower. Electricity is critical for the highway system to operate traffic lights and<br />

signs, for railroads to operate signal systems and crossing gates, for ports to operate cranes and<br />

elevators, for airports to power air traffic c<strong>on</strong>trol facilities and operate nighttime runway lights,<br />

and for pipelines to power pumping stati<strong>on</strong>s. Thus, redundancy <str<strong>on</strong>g>of</str<strong>on</strong>g> power and communicati<strong>on</strong>s<br />

systems is also necessary for the rapid restorati<strong>on</strong> and functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> freight transportati<strong>on</strong><br />

networks. Similarly, adequate manpower is critical to timely efforts to restore transportati<strong>on</strong><br />

services and staff restorati<strong>on</strong> projects. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the devastati<strong>on</strong> wreaked by Hurricane Katrina,<br />

many public- and private-sector employees lost family and homes in the storm, and many others<br />

evacuated the regi<strong>on</strong>; the city itself was closed for more than a m<strong>on</strong>th. Thus, major<br />

transportati<strong>on</strong> companies such as CSX were forced to bring in workers from other locati<strong>on</strong>s to<br />

staff rec<strong>on</strong>structi<strong>on</strong> projects.<br />

Finally, the storms have resulted in plans for relocating at least <strong>on</strong>e facility and<br />

redesigning others in anticipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future hurricanes. <str<strong>on</strong>g>The</str<strong>on</strong>g> Port <str<strong>on</strong>g>of</str<strong>on</strong>g> New Orleans is c<strong>on</strong>sidering<br />

relocating companies and facilities to the main port area <strong>on</strong> the Mississippi riverfr<strong>on</strong>t from the<br />

deep-water channel c<strong>on</strong>necting the port’s Inner Harbor navigati<strong>on</strong> canal to the Gulf, where they<br />

are more vulnerable to future storms. <str<strong>on</strong>g>The</str<strong>on</strong>g> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> the relocati<strong>on</strong> is estimated at $350 milli<strong>on</strong>.<br />

CSX has c<strong>on</strong>sidered moving its vulnerable rail line inland—less as a resp<strong>on</strong>se to hurricane<br />

threats than as a resp<strong>on</strong>se to Mississippi politicians who are interested in the land for casino and<br />

housing development (M. Hinsdale, CSX, pers<strong>on</strong>al communicati<strong>on</strong>, Sept. 12, 2006). And at the<br />

initiative and recommendati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Highway Administrati<strong>on</strong> (FHWA), almost all <str<strong>on</strong>g>of</str<strong>on</strong>g>


84 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

the major river and bay bridges destroyed by the hurricane’s surge waters will be rebuilt at<br />

higher elevati<strong>on</strong>s, above the maximum forecast surge levels. 27<br />

FINDINGS<br />

All modes <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> are vulnerable to climate change. Just as infrastructure is local and<br />

regi<strong>on</strong>al, however, so, too, are the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. <str<strong>on</strong>g>The</str<strong>on</strong>g>y will vary depending <strong>on</strong> the<br />

locati<strong>on</strong>, mode, and c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> infrastructure. For example, coastal areas and<br />

their infrastructure will be subject to the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise, while the St. Lawrence Seaway<br />

and the Great Lakes may experience lower water levels. <str<strong>on</strong>g>The</str<strong>on</strong>g> infrastructure will experience<br />

unique impacts to each mode (e.g., scour <strong>on</strong> bridge supports), but many impacts, such as<br />

flooding and erosi<strong>on</strong>, will be comm<strong>on</strong> across all modes. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the infrastructure itself<br />

will affect the impacts experienced. Increased intense precipitati<strong>on</strong>, for example, could cause<br />

accelerated degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> roads in poor c<strong>on</strong>diti<strong>on</strong>. As the examples in this<br />

chapter have illustrated, the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> U.S. transportati<strong>on</strong> will be widespread<br />

and costly.<br />

According to the most recent scientific assessment, the IPCC Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g>,<br />

the greatest impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> North America’s transportati<strong>on</strong> system will be coastal<br />

flooding, especially al<strong>on</strong>g the Gulf and Atlantic Coasts, because <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise, aggravated in<br />

some locati<strong>on</strong>s by land subsidence and storm surge (Burkett 2002). However, the rate at which<br />

these changes are likely to occur remains uncertain. <str<strong>on</strong>g>The</str<strong>on</strong>g> current IPCC projecti<strong>on</strong>s do not include<br />

melting <str<strong>on</strong>g>of</str<strong>on</strong>g> the Greenland ice mass, for example, which could accelerate sea level rise.<br />

Projected climate extremes are likely to have a particularly severe impact <strong>on</strong><br />

transportati<strong>on</strong> infrastructure because the U.S. transportati<strong>on</strong> system was built to typical weather<br />

c<strong>on</strong>diti<strong>on</strong>s at the time and local weather and climate experience. Expected changes in climate<br />

extremes, such as more extreme temperatures, more intense precipitati<strong>on</strong>, and more intense<br />

storms, could push envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s outside the range for which the system was<br />

designed. This in turn could necessitate changes in design, materials, c<strong>on</strong>structi<strong>on</strong>, and operating<br />

and maintenance practices. For example, increased flooding from more intense storms could<br />

require a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical improvements (e.g., greater pumping capacity, more elevated<br />

bridges) and operati<strong>on</strong>al measures (e.g., better flood warning and evacuati<strong>on</strong> plans, better realtime<br />

micro-level weather forecasts).<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change will create both winners and losers. For example, the marine<br />

transportati<strong>on</strong> sector could benefit from more open seas in the Arctic, reducing shipping routes,<br />

times, and costs in the l<strong>on</strong>g run. In cold regi<strong>on</strong>s, expected temperature warming, particularly<br />

decreases in very cold days and later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al freeze and earlier <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al thaw,<br />

could mean less snow and ice c<strong>on</strong>trol for departments <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> and safer travel<br />

c<strong>on</strong>diti<strong>on</strong>s for passenger vehicles and freight.<br />

27 Hurricane damage to the Gulf Coast bridges resulted primarily from a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surge and wave crests<br />

that simply lifted bridge decks <str<strong>on</strong>g>of</str<strong>on</strong>g>f their supports. Thus, FHWA recommended that a 100-year, rather than a 50-year<br />

design frequency be used for Interstates, major structures, and critical bridges, and that design guidelines take into<br />

c<strong>on</strong>siderati<strong>on</strong> a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave and surge effects. It was also recommended that risk and cost assessments be<br />

c<strong>on</strong>ducted (FHWA 2005 in Meyer 2006). New standards have not yet been agreed up<strong>on</strong>, so it is unclear whether<br />

they will take forecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise into c<strong>on</strong>siderati<strong>on</strong>.


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 85<br />

In all cases, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als will have to c<strong>on</strong>fr<strong>on</strong>t and adapt to climate<br />

change without knowing the full magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> expected changes. <str<strong>on</strong>g>The</str<strong>on</strong>g> greatest challenge is the<br />

uncertainty as to exactly what changes to expect and when. Thus, transportati<strong>on</strong> decisi<strong>on</strong> makers<br />

will need to adopt a more probabilistic risk management approach to infrastructure planning,<br />

design, and operati<strong>on</strong>s to accommodate uncertainties about the nature and timing <str<strong>on</strong>g>of</str<strong>on</strong>g> expected<br />

climate changes—a major focus <str<strong>on</strong>g>of</str<strong>on</strong>g> the next chapter.<br />

REFERENCES<br />

Abbreviati<strong>on</strong>s<br />

ACIA Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment<br />

BTS Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> Statistics<br />

CBO C<strong>on</strong>gressi<strong>on</strong>al Budget <str<strong>on</strong>g>of</str<strong>on</strong>g>fice<br />

FHWA Federal Highway Administrati<strong>on</strong><br />

NOAA Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong><br />

OFCM Office <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Coordinator for Meteorological Services and<br />

Supporting Research<br />

U.S. DOT U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

ACIA. 2004. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Warming Arctic. Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment. Cambridge University<br />

Press, U.K.<br />

Barras, J.A. 2006. Land Area <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Coastal Louisiana after the 2005 Hurricanes: A Series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Three Maps. USGS Open File <str<strong>on</strong>g>Report</str<strong>on</strong>g> 06-1274, U.S. Geological Survey.<br />

Black, W. R. 1990. Global Warming: <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> the Transportati<strong>on</strong> Infrastructure. TR News, Vol. 150,<br />

Sept.–Oct., pp. 2–8.<br />

BTS. 2005. Transportati<strong>on</strong> Statistics Annual <str<strong>on</strong>g>Report</str<strong>on</strong>g>. Research and Innovative Technology<br />

Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Nov.<br />

BTS. 2007. Pocket Guide to Transportati<strong>on</strong>. Research and Innovative Technology Administrati<strong>on</strong>, U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Jan.<br />

Burkett, V. 2002. <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and Variability <strong>on</strong> Transportati<strong>on</strong> in the Gulf<br />

Coast/Mississippi Delta Regi<strong>on</strong>. In <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>,<br />

Summary and Discussi<strong>on</strong> Papers. Federal Research Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings<br />

Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct. 1–2, 2002, pp. 103-113, and in Field et al. 2007.<br />

CBO. 2006. <str<strong>on</strong>g>The</str<strong>on</strong>g> Macroec<strong>on</strong>omic Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricanes Katrina and Rita. In <str<strong>on</strong>g>The</str<strong>on</strong>g> Budget and Ec<strong>on</strong>omic<br />

Outlook: Fiscal Years 2007 to 2016, Jan.<br />

Changn<strong>on</strong>, S. A. (ed.). 1996. <str<strong>on</strong>g>The</str<strong>on</strong>g> Great Flood <str<strong>on</strong>g>of</str<strong>on</strong>g> 1993: Causes, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>, and Resp<strong>on</strong>ses. Westview<br />

Press, Inc., Boulder, CO.<br />

Changn<strong>on</strong>, S.A. 1999. Record Flood-Producing Rainstorms <str<strong>on</strong>g>of</str<strong>on</strong>g> 17–18 July 1996 in the Chicago<br />

Metropolitan Area. Part III: <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> and Resp<strong>on</strong>ses to the Flash Flooding. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Meteorology. Vol. 38, Issue 3, March, pp. 273-280.<br />

Changn<strong>on</strong>, S. A. 2006. Railroads and Weather: From Fogs to Floods and Heat to Hurricanes, the<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Weather and <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <strong>on</strong> American Railroading. American Meteorological Society,<br />

Bost<strong>on</strong>, MA.<br />

Chan, S. 2007. Flooding Cripples Subway System. New York Times, Aug. 8.<br />

Crossett, K. M., T. J. Cullit<strong>on</strong>, P. C. Wiley, and T. R. Goodspeed. 2004. Populati<strong>on</strong> Trends al<strong>on</strong>g the<br />

Coastal United States: 1980–2008. Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong>, Sept.


86 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Dingers<strong>on</strong>, L. 2005. Predicting Future Shoreline C<strong>on</strong>diti<strong>on</strong> Based <strong>on</strong> Land Use Trends, Logistic<br />

Regressi<strong>on</strong>, and Fuzzy Logic. <str<strong>on</strong>g>The</str<strong>on</strong>g>sis. Virginia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Science, College <str<strong>on</strong>g>of</str<strong>on</strong>g> William and<br />

Mary, Gloucester, VA.<br />

Douglass, S. L., J. M. Richards, J. Lindstrom, and J. Shaw. 2005. An Estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the Extent <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S.<br />

Coastal Highways. Presentati<strong>on</strong> to the Committee <strong>on</strong> Hydraulics, Hydrology, and Water Quality,<br />

T<str<strong>on</strong>g>RB</str<strong>on</strong>g> Annual Meeting, Washingt<strong>on</strong>, D.C., Jan. 10.<br />

du Vair, P., D. Wickizer, and M. Burer. 2002. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and the <str<strong>on</strong>g>Potential</str<strong>on</strong>g> Implicati<strong>on</strong>s for<br />

California’s Transportati<strong>on</strong> System. In <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>,<br />

Summary and Discussi<strong>on</strong> Papers. Federal Research Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings<br />

Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct. 1–2, 2002, pp. 125-134.<br />

Felmy, J. 2005. Statement <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Petroleum Institute before the House Transportati<strong>on</strong> and<br />

Infrastructure Subcommittees <strong>on</strong> Water Resources and Envir<strong>on</strong>ment and <strong>on</strong> Ec<strong>on</strong>omic Development,<br />

Public Buildings, and Emergency Management, House Transportati<strong>on</strong> and Infrastructure Committee,<br />

Joint Hearing <strong>on</strong> A Visi<strong>on</strong> and Strategy for Rebuilding New Orleans, U.S. House <str<strong>on</strong>g>of</str<strong>on</strong>g> Representatives,<br />

Oct. 18.<br />

FHWA. 2005. Coastal Bridges and Design Storm Frequency. Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Bridge Technology,<br />

Washingt<strong>on</strong>, D.C., Sept. 28.<br />

Field, C. B., L. D. Mortsch,, M. Brklacich, D. L. Forbes, P. Kovacs, J. A. Patz, S. W. Running and M. J.<br />

Scott. 2007. Chapter 14: North America. In <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>, Adaptati<strong>on</strong> and<br />

Vulnerability. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group II to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (M. L. Parry, O. F. Canziani, J. P. Palutik<str<strong>on</strong>g>of</str<strong>on</strong>g>, P. J. van<br />

der Linden, and C. E. Hans<strong>on</strong>, eds.), Cambridge University Press, Cambridge, U.K., pp. 617–652.<br />

Gornitz, V., and S. Couch. 2000. Sea-level Rise and Coastal Hazards. In <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and a Global<br />

City: An Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the Metropolitan East Coast Regi<strong>on</strong>, United States Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research<br />

Program, Washingt<strong>on</strong>, D.C., pp. 21–46.<br />

http://ccsr.columbia.edu/cig/mec/03_Sea_Level_Rise_and_Coast.pdf.<br />

Great Lakes Regi<strong>on</strong>al Assessment Team. 2000. Preparing for a Changing <str<strong>on</strong>g>Climate</str<strong>on</strong>g>: Great Lakes. In A<br />

Summary by the Great Lakes Regi<strong>on</strong>al Assessment Group (P. J. Sousounis and J. M. Bisanz, eds.),<br />

U.S. Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research Program, Oct.<br />

Grenzeback, L. R., and A. T. Lukmann. 2007. Case Study <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Sector’s Resp<strong>on</strong>se to<br />

and Recovery from Hurricanes Katrina and Rita. Cambridge Systematics, Inc., Jan. 10.<br />

Hinsdale, M. 2006. Hurricane Katrina and CSX. Power Point presentati<strong>on</strong> to the Committee <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> and U.S. Transportati<strong>on</strong>, Jan. 5.<br />

Institute for Water Resources. 2005. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Inland Waterways. Final <str<strong>on</strong>g>Report</str<strong>on</strong>g>. U.S. Army<br />

Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, Alexandria, VA, July.<br />

Jacob, K. H., N. Edelblum, and J. Arnold. 2000. Risk Increase to Infrastructure Due to Sea Level Rise.<br />

Sector <str<strong>on</strong>g>Report</str<strong>on</strong>g>: Infrastructure, the MEC Regi<strong>on</strong>al Assessment. In <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and a Global City:<br />

An Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the Metropolitan East Coast (MEC) Regi<strong>on</strong> (C. Rosezweig. and W. D. Solecki,<br />

eds.). http://metroeast_climate.ciesin.columbia.edu/reports/infrastructure.pdf. Accessed Apr. 14,<br />

2006.<br />

Jacob, K., V. Gornitz, and C. Rosenzweig. 2007. Vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the New York City Metropolitan Area<br />

to Coastal Hazards, Including Sea Level Rise—Inferences for Urban Coastal Risk Management and<br />

Adaptati<strong>on</strong> Policies. Chapter 9. In Managing Coastal Vulnerability (L. McFadden, R. Nicholls, and<br />

E. Penning-Roswell, eds.), Elsevier Publishing, Oxford, UK, pp. 141–158.<br />

Karl, T.R. and D. M. Anders<strong>on</strong>. 2007. Emerging Issues in Abrupt <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. NOAA’s Nati<strong>on</strong>al<br />

Climatic Data Center, Power Point Briefing, Mar. 12.<br />

Kirshen, P. Undated. CLIMB: <str<strong>on</strong>g>Climate</str<strong>on</strong>g>’s L<strong>on</strong>g-term <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Metro Bost<strong>on</strong>, Summary.<br />

http://www.tufts.edu/tie/climb. Accessed Apr. 19, 2006.<br />

Kirshen, P., M. Ruth, W. Anders<strong>on</strong>, and T. R. Lakshmanan. 2004. Infrastructure Systems, Services and<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>: Integrated <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> and Resp<strong>on</strong>se Strategies for the Bost<strong>on</strong> Metropolitan Area.<br />

EPA Grant No. R.827450-01, Aug. 13.


<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> 87<br />

Leatherman, S. P., K. Zhang, and B. C. Douglas. 2000. Sea-Level Rise Shown to Drive Coastal Erosi<strong>on</strong>.<br />

EOS Transacti<strong>on</strong>s, Vol. 81, No. 6, pp. 55–57.<br />

Meyer, M. D. 2006. Design Standards for U.S. Transportati<strong>on</strong> Infrastructure: <str<strong>on</strong>g>The</str<strong>on</strong>g> Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Dec. 18.<br />

Millard, F. 2005. <str<strong>on</strong>g>The</str<strong>on</strong>g> Ec<strong>on</strong>omic Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Canadian Commercial Navigati<strong>on</strong> <strong>on</strong> the<br />

Great Lakes. Canadian Water Resources Journal, Vol. 30, No. 4, pp. 269–280.<br />

Mineta, N. Y. 2005. Statement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g> H<strong>on</strong>orable Norman Y. Mineta, Secretary <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, before<br />

the Subcommittee <strong>on</strong> Transportati<strong>on</strong>, Treasury, Housing and Urban Development, the Judiciary,<br />

District <str<strong>on</strong>g>of</str<strong>on</strong>g> Columbia, and Independent Agencies, Committee <strong>on</strong> Appropriati<strong>on</strong>s, U.S. House <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Representatives, Oct. 6.<br />

OFCM. 2002. Weather Informati<strong>on</strong> for Surface Transportati<strong>on</strong>: A Nati<strong>on</strong>al Needs Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g><br />

(WIST). FCM-R18-2002. Washingt<strong>on</strong>, D.C. http://www.<str<strong>on</strong>g>of</str<strong>on</strong>g>cm.gov/wist_report/wist_report.htm.<br />

Peters<strong>on</strong>, T. C., M. McGuirk, T. G. Houst<strong>on</strong>, A. H. Horvitz, and M. F. Wehner. 2006. <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> with Implicati<strong>on</strong>s for Transportati<strong>on</strong>. Nati<strong>on</strong>al Oceanic and Atmospheric<br />

Administrati<strong>on</strong> and Lawrence Berkeley Nati<strong>on</strong>al Laboratory, Dec. 6.<br />

Plume, J. 2005. Crossroads for Gulfport. Traffic World, Vol. 269, No. 49, Dec. 5, p. 32.<br />

Quinn, F.H. 2002. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Great Lakes Transportati<strong>on</strong>. In <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>, Summary and Discussi<strong>on</strong> Papers. Federal<br />

Research Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct. 1–2, 2002, pp.<br />

115-123.<br />

Rossetti, M. A. 2002. <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Railroads. In <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>, Summary and Discussi<strong>on</strong> Papers. Federal Research Partnership<br />

Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct. 1–2, 2002, pp. 209-221.<br />

Rothrock, D. A., and J. Zhang. 2005. Arctic Ocean Sea Ice Volume: What Explains its Recent<br />

Depleti<strong>on</strong>? Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research, Vol. 110, C01002.<br />

Soo Hoo, W. K., and M. Sumitani. 2005. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Will Impact the Seattle Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong>. Office <str<strong>on</strong>g>of</str<strong>on</strong>g> City Auditor, Aug. 9.<br />

Stroeve J. C., M. C. Serreze, F. Fetterer, T. Arbetter, W. Meier, J. Maslanik, and K. Knowles. 2005.<br />

Tracking the Arctic’s Shrinking Ice Cover: Another Extreme September Minimum in 2004.<br />

Geophysical Research Letters, Vol. 32, L04501.<br />

Suarez, P., W. Anders<strong>on</strong>, V. Mahal, and T. R. Lakshmanan. 2005. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Flooding and <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Urban Transportati<strong>on</strong>: A Systemwide Performance Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bost<strong>on</strong> Metro<br />

Area. Transportati<strong>on</strong> Research Part D, Vol. 10, pp. 231–244.<br />

Titus, J. 2002. Does Sea Level Rise Matter to Transportati<strong>on</strong> Al<strong>on</strong>g the Atlantic Coast? In <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>, Summary and Discussi<strong>on</strong> Papers. Federal Research<br />

Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct. 1–2, 2002, pp. 135-150.<br />

U.S. Arctic Research Commissi<strong>on</strong> Permafrost Task Force. 2003. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Permafrost, and<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Civil Infrastructure. <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> 01-03. Arlingt<strong>on</strong>, VA, Dec.<br />

U.S. Census Bureau. 2005. Statistical Abstract <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States: 2006 (125th Editi<strong>on</strong>). Washingt<strong>on</strong>,<br />

D.C., Oct.<br />

U.S. DOT. 2002. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong>, Summary and Discussi<strong>on</strong><br />

Papers. Federal Research Partnership Workshop, <str<strong>on</strong>g>The</str<strong>on</strong>g> Brookings Instituti<strong>on</strong>, Washingt<strong>on</strong>, D.C., Oct.<br />

1–2, 2002.<br />

U.S. Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research Program. 1999. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> in the Pacific<br />

Northwest. U.S. Nati<strong>on</strong>al Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Potential</str<strong>on</strong>g> C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability and<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>. Nati<strong>on</strong>al Atmospheric and Oceanic Administrati<strong>on</strong>, Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Programs, and<br />

JISAO/SMA <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> Group, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Seattle, WA.<br />

Warren, L. P. 1993. Scour at Bridges—What’s It All About? Prepared by the U.S. Geological Survey in<br />

cooperati<strong>on</strong> with the Massachusetts Highway Department. Open-File <str<strong>on</strong>g>Report</str<strong>on</strong>g> 93-W0487.<br />

http://ma.water.usgs.gov/publicati<strong>on</strong>s/<str<strong>on</strong>g>of</str<strong>on</strong>g>r/scour.htm. Accessed July 6, 2006.


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Temperature:<br />

Increases in<br />

very hot days<br />

and heat waves<br />

ANNEX 3-1 <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s and <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong><br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Limitati<strong>on</strong>s <strong>on</strong><br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>structi<strong>on</strong><br />

activity due to<br />

health and safety<br />

c<strong>on</strong>cerns;<br />

restricti<strong>on</strong>s<br />

typically begin at<br />

29.5°C (85°F);<br />

heat exhausti<strong>on</strong><br />

possible at<br />

40.5°C (105°F)<br />

• Vehicle<br />

overheating and<br />

tire deteriorati<strong>on</strong><br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> • <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong><br />

pavement and shipping due to<br />

c<strong>on</strong>crete<br />

warmer water in<br />

c<strong>on</strong>structi<strong>on</strong> rivers and lakes<br />

practices<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal<br />

expansi<strong>on</strong> <strong>on</strong><br />

bridge expansi<strong>on</strong><br />

joints and paved<br />

surfaces<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong><br />

landscaping in<br />

highway and<br />

street rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>way<br />

• C<strong>on</strong>cerns<br />

regarding<br />

pavement<br />

integrity, e.g.,<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening, trafficrelated<br />

rutting,<br />

migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

liquid asphalt;<br />

sustained air<br />

temperature over<br />

32°C (90°F) is a<br />

significant<br />

threshold<br />

• Rail-track<br />

deformities; air<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Delays due to<br />

excessive heat<br />

• Impact <strong>on</strong> lift-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

load limits at<br />

high-altitude or<br />

hot-weather<br />

climate airports<br />

with insufficient<br />

runway lengths,<br />

resulting in flight<br />

cancellati<strong>on</strong>s<br />

and/or limits <strong>on</strong><br />

payload (i.e.,<br />

weight<br />

restricti<strong>on</strong>s)<br />

• More energy<br />

c<strong>on</strong>sumpti<strong>on</strong> <strong>on</strong><br />

the ground<br />

Infrastructure<br />

• Heat-related<br />

weathering and<br />

buckling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pavements and<br />

c<strong>on</strong>crete facilities<br />

• Heat-related<br />

weathering <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vehicle stock


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Temperature:<br />

Decreases in<br />

very cold days<br />

Temperature:<br />

Increases in<br />

Arctic<br />

temperatures<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Regi<strong>on</strong>al changes<br />

in snow and ice<br />

removal costs<br />

and<br />

envir<strong>on</strong>mental<br />

impacts from salt<br />

and chemical use<br />

(reducti<strong>on</strong><br />

overall, but<br />

increases in some<br />

regi<strong>on</strong>s)<br />

• Fewer coldrelated<br />

restricti<strong>on</strong>s for<br />

maintenance<br />

workers<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

temperature<br />

above 43°C<br />

(110°F) can lead<br />

to equipment<br />

failure<br />

• Decreased utility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> unimproved<br />

roads that rely <strong>on</strong><br />

frozen ground for<br />

passage<br />

• Thawing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

permafrost,<br />

causing<br />

subsidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

roads, rail beds,<br />

bridge supports<br />

(cave-in), and<br />

pipelines<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong><br />

• Less ice<br />

accumulati<strong>on</strong> <strong>on</strong><br />

vessels, decks,<br />

riggings, and<br />

docks; less ice<br />

fog; fewer ice<br />

jams in ports<br />

• L<strong>on</strong>ger ocean<br />

transport seas<strong>on</strong><br />

and more ice-free<br />

ports in northern<br />

regi<strong>on</strong>s<br />

• Possible<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Northern Sea<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in snow<br />

and ice removal<br />

costs and<br />

envir<strong>on</strong>mental<br />

impacts from salt<br />

and chemical use<br />

• Reducti<strong>on</strong> in<br />

need for deicing<br />

• Fewer limitati<strong>on</strong>s<br />

<strong>on</strong> ground crew<br />

work at airports,<br />

typically<br />

restricted at wind<br />

chills below<br />

–29°C (–20°F)<br />

Infrastructure<br />

• Thawing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

permafrost,<br />

undermining<br />

runway<br />

foundati<strong>on</strong>s


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Temperature:<br />

Later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al freeze<br />

and earlier<br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al thaw<br />

Sea level rise,<br />

added to storm<br />

surge<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

seas<strong>on</strong>al weight<br />

restricti<strong>on</strong>s<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

seas<strong>on</strong>al fuel<br />

requirements<br />

• Improved<br />

mobility and<br />

safety associated<br />

with a reducti<strong>on</strong><br />

in winter weather<br />

• L<strong>on</strong>ger<br />

c<strong>on</strong>structi<strong>on</strong><br />

seas<strong>on</strong><br />

• More frequent<br />

interrupti<strong>on</strong>s in<br />

travel <strong>on</strong> coastal<br />

and low-lying<br />

roadways and rail<br />

service due to<br />

storm surges<br />

• More severe<br />

storm surges,<br />

requiring<br />

evacuati<strong>on</strong><br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Shorter seas<strong>on</strong> Route or a<br />

for ice roads Northwest<br />

Passage<br />

• Reduced<br />

pavement<br />

deteriorati<strong>on</strong><br />

resulting from<br />

less exposure to<br />

freezing, snow,<br />

and ice, but<br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

more freeze–<br />

thaw c<strong>on</strong>diti<strong>on</strong>s<br />

in some locati<strong>on</strong>s<br />

• Inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

roads and rail<br />

lines in coastal<br />

areas<br />

• More frequent or<br />

severe flooding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> underground<br />

tunnels and lowlying<br />

infrastructure<br />

• Erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road<br />

base and bridge<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong><br />

• Extended<br />

shipping seas<strong>on</strong><br />

for inland<br />

waterways<br />

(especially the St.<br />

Lawrence<br />

Seaway and the<br />

Great Lakes) due<br />

to reduced ice<br />

coverage<br />

• More severe<br />

storm surges,<br />

requiring<br />

evacuati<strong>on</strong><br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

harbor and port<br />

facilities to<br />

accommodate<br />

higher tides and<br />

storm surges<br />

• Reduced<br />

clearance under<br />

waterway bridges<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

navigability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

channels; some<br />

• <str<strong>on</strong>g>Potential</str<strong>on</strong>g> for<br />

closure or<br />

restricti<strong>on</strong>s for<br />

several <str<strong>on</strong>g>of</str<strong>on</strong>g> the top<br />

50 airports that<br />

lie in coastal<br />

z<strong>on</strong>es, affecting<br />

service to the<br />

highest-density<br />

populati<strong>on</strong>s in<br />

the United States<br />

Infrastructure<br />

• Inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

airport runways<br />

located in coastal<br />

areas


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Precipitati<strong>on</strong>:<br />

Increase in<br />

intense<br />

precipitati<strong>on</strong><br />

events<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Increases in<br />

weather-related<br />

delays<br />

• Increases in<br />

traffic disrupti<strong>on</strong>s<br />

• Increased<br />

flooding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evacuati<strong>on</strong> routes<br />

• Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>structi<strong>on</strong><br />

activities<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in rain,<br />

snowfall, and<br />

seas<strong>on</strong>al flooding<br />

that impact safety<br />

and maintenance<br />

operati<strong>on</strong>s<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

supports<br />

• Bridge scour<br />

• Reduced<br />

clearance under<br />

bridges<br />

• Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal<br />

wetlands and<br />

barrier shoreline<br />

• Land subsidence<br />

• Increases in<br />

flooding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

roadways, rail<br />

lines, and<br />

subterranean<br />

tunnels<br />

• Overloading <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drainage systems,<br />

causing backups<br />

and street<br />

flooding<br />

• Increases in road<br />

washout,<br />

damages to<br />

railbed support<br />

structures, and<br />

landslides and<br />

mudslides that<br />

damage<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong><br />

• Increases in<br />

weather-related<br />

delays<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

will be more<br />

accessible (and<br />

farther inland)<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> deeper<br />

waters, while<br />

others will be<br />

restricted because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> changes in<br />

sedimentati<strong>on</strong><br />

rates and shoal<br />

locati<strong>on</strong>s<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong><br />

harbor<br />

infrastructure<br />

from wave<br />

damage and<br />

storm surges<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

underwater<br />

surface and silt<br />

and debris<br />

buildup, which<br />

can affect<br />

channel depth<br />

• Increases in<br />

delays due to<br />

c<strong>on</strong>vective<br />

weather<br />

• Stormwater<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f that<br />

exceeds the<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

collecti<strong>on</strong><br />

systems, causing<br />

flooding, delays,<br />

and airport<br />

closings<br />

• Implicati<strong>on</strong>s for<br />

emergency<br />

evacuati<strong>on</strong><br />

planning, facility<br />

maintenance, and<br />

safety<br />

Infrastructure<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong><br />

structural<br />

integrity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

airport facilities<br />

• Destructi<strong>on</strong> or<br />

disabling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

navigati<strong>on</strong>al aid<br />

instruments<br />

• Runway and<br />

other<br />

infrastructure<br />

damage due to<br />

flooding<br />

• Inadequate or<br />

damaged<br />

pavement<br />

drainage systems


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Precipitati<strong>on</strong>:<br />

Increases in<br />

drought<br />

c<strong>on</strong>diti<strong>on</strong>s for<br />

some regi<strong>on</strong>s<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Increased<br />

susceptibility to<br />

wildfires, causing<br />

road closures due<br />

to fire threat or<br />

reduced visibility<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

roadways and<br />

tracks<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> soil<br />

moisture levels,<br />

affecting<br />

structural<br />

integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> roads,<br />

bridges, and<br />

tunnels<br />

• Adverse impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> standing water<br />

<strong>on</strong> the road base<br />

• Increases in<br />

scouring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pipeline roadbeds<br />

and damages to<br />

pipelines<br />

• Increased<br />

susceptibility to<br />

wildfires that<br />

threaten<br />

transportati<strong>on</strong><br />

infrastructure<br />

directly<br />

• Increased<br />

susceptibility to<br />

mudslides in<br />

areas deforested<br />

by wildfires<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong><br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> river<br />

transportati<strong>on</strong><br />

routes and<br />

seas<strong>on</strong>s<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

management<br />

• Decreased<br />

visibility for<br />

airports located<br />

in drought<br />

susceptible areas<br />

with potential for<br />

increased<br />

wildfires<br />

Infrastructure


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Precipitati<strong>on</strong>:<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

seas<strong>on</strong>al<br />

precipitati<strong>on</strong><br />

and river flow<br />

patterns<br />

Storms:<br />

More frequent<br />

str<strong>on</strong>g<br />

hurricanes<br />

(Category 4–5)<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Benefits for<br />

safety and<br />

reduced<br />

interrupti<strong>on</strong>s if<br />

frozen<br />

precipitati<strong>on</strong><br />

shifts to rainfall,<br />

depending <strong>on</strong><br />

terrain<br />

• More debris <strong>on</strong><br />

roads and rail<br />

lines, interrupting<br />

travel and<br />

shipping<br />

• More frequent<br />

and potentially<br />

more extensive<br />

emergency<br />

evacuati<strong>on</strong>s<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> • Periodic channel<br />

floods from closings or<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

restricti<strong>on</strong>s if<br />

landslides, slope flooding<br />

failures, and increases<br />

damage to roads • Benefits for<br />

if precipitati<strong>on</strong> safety and<br />

changes from reduced<br />

snow to rain in interrupti<strong>on</strong>s if<br />

winter and spring frozen<br />

thaws<br />

precipitati<strong>on</strong><br />

shifts to rainfall<br />

• Greater<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infrastructure<br />

failures<br />

• Increased threat<br />

to stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bridge decks<br />

• Increased<br />

damage to signs,<br />

lighting fixtures<br />

and supports<br />

• Decreased<br />

expected lifetime<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> highways<br />

exposed to storm<br />

surge<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong><br />

• Implicati<strong>on</strong>s for<br />

emergency<br />

evacuati<strong>on</strong><br />

planning, facility<br />

maintenance, and<br />

safety<br />

management<br />

Infrastructure Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in silt • Benefits for<br />

depositi<strong>on</strong> safety and<br />

leading to reduced<br />

reduced depth <str<strong>on</strong>g>of</str<strong>on</strong>g> interrupti<strong>on</strong>s if<br />

some inland frozen<br />

waterways and precipitati<strong>on</strong><br />

impacts <strong>on</strong> l<strong>on</strong>gterm<br />

viability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some inland<br />

navigati<strong>on</strong> routes<br />

shifts to rainfall<br />

• Greater challenge<br />

to robustness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infrastructure<br />

• Damage to<br />

harbor<br />

infrastructure<br />

from waves and<br />

storm surges<br />

• Damage to cranes<br />

and other dock<br />

and terminal<br />

facilities<br />

• More frequent<br />

interrupti<strong>on</strong>s in<br />

air service<br />

Infrastructure<br />

• Inadequate or<br />

damaged<br />

pavement<br />

drainage systems<br />

• Damage to<br />

landside facilities<br />

(e.g., terminals,<br />

navigati<strong>on</strong>al aids,<br />

fencing around<br />

perimeters, signs)


T<br />

4<br />

Challenges to Resp<strong>on</strong>se<br />

his chapter explores the challenges and c<strong>on</strong>straints faced by transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als as<br />

they begin to c<strong>on</strong>fr<strong>on</strong>t projected impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. <str<strong>on</strong>g>The</str<strong>on</strong>g> chapter begins with an<br />

overview <str<strong>on</strong>g>of</str<strong>on</strong>g> how the U.S. transportati<strong>on</strong> system is organized and how investment and operating<br />

decisi<strong>on</strong>s are made. <str<strong>on</strong>g>The</str<strong>on</strong>g>se organizati<strong>on</strong>al arrangements and planning approaches influence how<br />

transportati<strong>on</strong> decisi<strong>on</strong> makers c<strong>on</strong>sider the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and help explain why<br />

resp<strong>on</strong>ding poses difficult challenges—the next topic <str<strong>on</strong>g>of</str<strong>on</strong>g> discussi<strong>on</strong>. A framework for addressing<br />

the uncertainties and analyzing the trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs associated with adaptati<strong>on</strong> to climate change is<br />

then introduced. <str<strong>on</strong>g>The</str<strong>on</strong>g> chapter ends with the committee’s findings, suggesting opportunities for<br />

meeting the challenges to resp<strong>on</strong>se.<br />

DECISION MAKING IN THE TRANSPORTATION SECTOR<br />

Organizati<strong>on</strong> and Funding<br />

Resp<strong>on</strong>sibility for transportati<strong>on</strong> infrastructure is decentralized and shared between the public<br />

and private sectors (see Table 4-1). Highways, bridges, and public transportati<strong>on</strong> infrastructure<br />

are owned and operated by state and local governments. 1 Major funding for capital<br />

improvements—and in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> public transportati<strong>on</strong>, rolling stock (e.g., transit buses, rail<br />

cars)—is provided by the federal government, with matching requirements from other<br />

governmental levels. Railroads and pipelines are privately owned and operated, although the<br />

federal government has regulatory oversight over railroad and pipeline safety. 2 Ports are joint<br />

public–private operati<strong>on</strong>s. Typically, an independent authority or public entity owns the land<br />

and sometimes the landside facilities, which are then leased to private operators, generally <strong>on</strong> a<br />

l<strong>on</strong>g-term basis. Major improvements, such as dredging <str<strong>on</strong>g>of</str<strong>on</strong>g> harbors and channels, are federally<br />

funded through the U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, with required cost sharing. 3 <str<strong>on</strong>g>The</str<strong>on</strong>g> St.<br />

Lawrence Seaway system is jointly operated by the U.S. Government and Canada through<br />

management corporati<strong>on</strong>s established expressly for this purpose, while the inland waterway<br />

system, including upkeep <str<strong>on</strong>g>of</str<strong>on</strong>g> the lock system, is operated by the U.S. Government through the<br />

U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, also with cost-sharing arrangements. Airports are publicly<br />

owned and operated by local governments or independent authorities. At the major hub airports,<br />

the airlines <str<strong>on</strong>g>of</str<strong>on</strong>g>ten operate their own hangars and maintenance facilities. Many airport capital<br />

improvements are federally funded, supplemented with state and local grants and passenger<br />

facility charges. In sum, decisi<strong>on</strong> making in the transportati<strong>on</strong> sector is a shared resp<strong>on</strong>sibility<br />

1<br />

Highways and bridges <strong>on</strong> federal lands are an excepti<strong>on</strong>, as are privately owned toll roads. In additi<strong>on</strong>, the<br />

vehicles that use the highway system are privately owned, except for transit buses (see Table 4-1).<br />

2<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Federal Energy Regulatory Commissi<strong>on</strong> regulates the siting <str<strong>on</strong>g>of</str<strong>on</strong>g> new natural gas pipelines, and the U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> requires 3 feet <str<strong>on</strong>g>of</str<strong>on</strong>g> cover at initial c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an oil pipeline.<br />

3<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is some privately c<strong>on</strong>structed and maintained infrastructure (e.g., channels to private terminals, private<br />

berthing areas).<br />

95


96 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

TABLE 4-1 Transportati<strong>on</strong> System Resp<strong>on</strong>sibility<br />

System Owner/Operators Capital Improvements<br />

Land Transportati<strong>on</strong><br />

Highways and bridges<br />

Infrastructure<br />

Vehicles<br />

Public transportati<strong>on</strong><br />

Infrastructure<br />

Rolling stock<br />

Railroads<br />

Infrastructure<br />

Rolling stock<br />

Pipelines<br />

Marine Transportati<strong>on</strong><br />

Inland and coastal<br />

navigati<strong>on</strong> channels,<br />

St. Lawrence Seaway,<br />

and associated<br />

navigati<strong>on</strong> aid (all<br />

infrastructure)<br />

Ports and terminals<br />

Infrastructure<br />

Vessels<br />

Air Transportati<strong>on</strong><br />

Infrastructure<br />

Vehicle fleet<br />

State and local governments a<br />

Privately owned and operated<br />

Local governments and independent<br />

authorities b<br />

Publicly owned and operated<br />

Privately owned and operated<br />

Privately owned and operated<br />

Privately owned and operated<br />

Federal government through the U.S.<br />

Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers and U.S.<br />

Coast Guard<br />

State and local governments,<br />

independent authorities, and private<br />

entities<br />

Privately owned and operated<br />

Local governments and independent<br />

authorities<br />

Privately owned and operated<br />

Federal funding for major highways<br />

with required local match<br />

NA<br />

Federal funding with required local<br />

match<br />

NA<br />

Private funding<br />

NA<br />

Private funding<br />

Joint federal and n<strong>on</strong>-federal public<br />

funding, user fees<br />

Public and private funding<br />

NA<br />

Federal funding, supplemented with<br />

state and local grants and passenger<br />

facility charges<br />

NA<br />

a <str<strong>on</strong>g>The</str<strong>on</strong>g> excepti<strong>on</strong>s are highways <strong>on</strong> federal lands and private toll roads. States are resp<strong>on</strong>sible for highways and<br />

bridges <strong>on</strong> major roads. Cities are resp<strong>on</strong>sible for major arterial streets in some metropolitan areas.<br />

b Some public transportati<strong>on</strong> services are c<strong>on</strong>tracted out to private providers.<br />

Note: NA = not applicable.


Challenges to Resp<strong>on</strong>se 97<br />

am<strong>on</strong>g many governmental owner-operators and the private sector, largely decentralized, and<br />

modally focused.<br />

Infrastructure Service Lives<br />

Transportati<strong>on</strong> infrastructure is designed to perform for a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> service lives (see Table<br />

4-2). 4 Roads are am<strong>on</strong>g the shortest-lived facilities, with surfaces that must be repaved every 10<br />

to 20 years. 5 Bridges, locks, and pipelines are am<strong>on</strong>g the l<strong>on</strong>gest-lived—designed for a 50- to<br />

100-year service life—although many <str<strong>on</strong>g>of</str<strong>on</strong>g> their comp<strong>on</strong>ents (e.g., bridge decks) must be<br />

rehabilitated more frequently. Transportati<strong>on</strong> facilities with shorter design lives provide<br />

numerous opportunities for engineers to adapt to the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, such as by using<br />

more heat-resistant paving materials to withstand the more extreme temperatures projected for<br />

some U.S. regi<strong>on</strong>s. Opportunities for adaptati<strong>on</strong>—for example, elevating a bridge to<br />

accommodate expected sea level rise—are fewer for l<strong>on</strong>ger-lived facilities, which are<br />

rehabilitated or retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itted at much l<strong>on</strong>ger intervals.<br />

TABLE 4-2 Transportati<strong>on</strong> Infrastructure Design Lives<br />

Transportati<strong>on</strong> Mode<br />

Expected Infrastructure<br />

Design Life<br />

Highways, Bridges, and Tunnels<br />

Pavement<br />

10–20 years<br />

Bridges/culverts<br />

50–100 years/30–45 years<br />

Tunnels<br />

50–100 years<br />

Public Transportati<strong>on</strong><br />

Rail track<br />

Up to 50 years<br />

Rail<br />

Track<br />

Up to 50 years<br />

Marine Transportati<strong>on</strong><br />

Locks and dams<br />

50 years<br />

Docks and port terminals<br />

40–50 years<br />

Air Transportati<strong>on</strong><br />

Runway pavements<br />

10 years<br />

Terminals<br />

40–50 years<br />

Pipeline 100 years<br />

Note: Design lives are averages. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> the infrastructure operates far bey<strong>on</strong>d its design life.<br />

Source: Meyer 2006.<br />

4<br />

Service life can be defined as the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time a facility will remain in use to serve its intended functi<strong>on</strong>. This<br />

will <str<strong>on</strong>g>of</str<strong>on</strong>g>ten exceed the facility’s design life or the period <str<strong>on</strong>g>of</str<strong>on</strong>g> time used for ec<strong>on</strong>omic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> project benefits and<br />

costs.<br />

5<br />

Typically, the road base is far more durable, unless it is compromised by poor drainage or other adverse<br />

c<strong>on</strong>diti<strong>on</strong>s.


98 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

In practice, many transportati<strong>on</strong> facilities perform well bey<strong>on</strong>d their design lives.<br />

Moreover, the most critical decisi<strong>on</strong> is where to locate a facility initially. Once the right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way<br />

and alignment for a facility have been established, such as for a highway or rail line, relocating<br />

the right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way, as might be required in coastal areas experiencing sea level rise, would be<br />

enormously expensive. Thus, investment choices made today about the locati<strong>on</strong>, retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting, and<br />

rehabilitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure will have far-reaching c<strong>on</strong>sequences for the ability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure to accommodate climate change and for the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

necessary adaptati<strong>on</strong>.<br />

L<strong>on</strong>g-Range Planning and Investment Decisi<strong>on</strong>s<br />

For each mode, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als engage in planning for l<strong>on</strong>g-term capital<br />

improvements to infrastructure assets. Below is a brief summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the planning process for<br />

publicly and privately owned infrastructure and the implicati<strong>on</strong>s for addressing climate change.<br />

Publicly Owned Infrastructure<br />

Planning and investment decisi<strong>on</strong>s for publicly owned land transportati<strong>on</strong> infrastructure are<br />

made within the framework and requirements defined by the planning provisi<strong>on</strong>s c<strong>on</strong>tained in<br />

legislati<strong>on</strong>; codified in Title 23, U.S.C.; and most recently amended in August 2005 by the Safe,<br />

Accountable, Flexible, Efficient Transportati<strong>on</strong> Equity Act: A Legacy for Users, known as<br />

SAFETEA-LU. State departments <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> and metropolitan planning organizati<strong>on</strong>s<br />

(MPOs), working in coordinati<strong>on</strong> with local governments, have lead resp<strong>on</strong>sibilities for<br />

planning. 6 <str<strong>on</strong>g>The</str<strong>on</strong>g> transportati<strong>on</strong> planning process has two principal products: a l<strong>on</strong>g-range<br />

transportati<strong>on</strong> plan and a short-term transportati<strong>on</strong> improvement program. Because the<br />

infrastructure is largely in place, the vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> capital improvement projects involve<br />

retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting or upgrading the existing transportati<strong>on</strong> system or providing new capacity at the<br />

margin.<br />

Each state and metropolitan area with an MPO prepares a l<strong>on</strong>g-range plan, looking ahead<br />

20 to 30 years. <str<strong>on</strong>g>The</str<strong>on</strong>g> plans incorporate forecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>, ec<strong>on</strong>omic growth, and land use<br />

patterns to help determine the locus and extent <str<strong>on</strong>g>of</str<strong>on</strong>g> demand for passenger and freight travel and<br />

supporting transportati<strong>on</strong> infrastructure needs. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d product—a transportati<strong>on</strong><br />

improvement program—provides a list <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term capital improvement projects, reflecting<br />

available funding, which is updated <strong>on</strong> a 4-year cycle.<br />

Joint Public–Private and Privately Owned Infrastructure<br />

Ports generally have a short planning horiz<strong>on</strong>—5 to 10 years—because <str<strong>on</strong>g>of</str<strong>on</strong>g> the highly competitive<br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> port business operati<strong>on</strong>s. Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> major capital improvements, however, such as<br />

landside facilities—warehouses, terminals, berths, rail links, and truck access roads—many <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

which have 40- to 50-year design lives, require forecasting <str<strong>on</strong>g>of</str<strong>on</strong>g> costs and expected returns over a<br />

6 <str<strong>on</strong>g>The</str<strong>on</strong>g> Highway Act <str<strong>on</strong>g>of</str<strong>on</strong>g> 1973 required the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> MPOs in urbanized areas with a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than<br />

50,000 and dedicated a small porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each state’s funding from the Highway Trust Fund for this purpose. MPOs<br />

are composed primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> local elected <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials whose purpose is to facilitate decisi<strong>on</strong> making <strong>on</strong> regi<strong>on</strong>al<br />

transportati<strong>on</strong> issues.


Challenges to Resp<strong>on</strong>se 99<br />

much l<strong>on</strong>ger planning period. Similarly, the planning horiz<strong>on</strong> for capital improvements to l<strong>on</strong>glived<br />

locks and dams al<strong>on</strong>g inland waterways is about 50 years.<br />

Airports have 20- to 30-year capital improvement plans for landside investments.<br />

Because many <str<strong>on</strong>g>of</str<strong>on</strong>g> these improvements are federally financed, the Federal Aviati<strong>on</strong><br />

Administrati<strong>on</strong>, as well as local airport authorities and local planners, is involved in the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-range plans for airport infrastructure.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> planning cycle for privately owned infrastructure—railroads and pipelines—is<br />

handled by individual companies through their capital budgeting process. Railroads are<br />

characterized by their capital intensity and large fixed investments. Even when a fully functi<strong>on</strong>al<br />

network is in place, large annual capital investments must be made to provide operating<br />

equipment (e.g., locomotives, freight cars, maintenance vehicles, computer and signaling<br />

equipment) and maintain the physical right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way. 7 Capital budgets are part <str<strong>on</strong>g>of</str<strong>on</strong>g> strategic plans<br />

that look 5 years out and annual financial plans that identify the available budget for capital<br />

outlays each year. Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> individual capital projects forecast costs and returns over 20- to<br />

more than 30-year lifetimes for major facilities, such as a double-tracking project or a new<br />

marshaling yard. 8<br />

Pipelines involve a large initial investment; assets are designed to be very l<strong>on</strong>g-lived<br />

(about 100 years); and there are few new entrants. Pipeline companies c<strong>on</strong>duct market forecasts<br />

looking ahead 5 years at most. Planning for capital improvements follows the normal privatesector<br />

capital budgeting process (i.e., project analysis using present value calculati<strong>on</strong>s over asset<br />

lifetimes, minimum expected rates <str<strong>on</strong>g>of</str<strong>on</strong>g> return for project selecti<strong>on</strong>, and annual capital budgets).<br />

In sum, public and private transportati<strong>on</strong> infrastructure providers are making short- and<br />

l<strong>on</strong>g-term investment decisi<strong>on</strong>s every day that have implicati<strong>on</strong>s for how well the transportati<strong>on</strong><br />

system will resp<strong>on</strong>d to climate change in both the near and l<strong>on</strong>g terms.<br />

Operati<strong>on</strong>al and Emergency Planning<br />

Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als in both the public and private sectors also engage in operati<strong>on</strong>al<br />

planning to resp<strong>on</strong>d to short-term c<strong>on</strong>gesti<strong>on</strong>, delays, and disrupti<strong>on</strong>s to systems operati<strong>on</strong>s.<br />

Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als are keenly aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> weather <strong>on</strong> system performance<br />

and already address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> weather <strong>on</strong> operati<strong>on</strong>s for a diverse range <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

c<strong>on</strong>diti<strong>on</strong>s. For example, many departments <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> have well-organized snow and ice<br />

c<strong>on</strong>trol operati<strong>on</strong>s that can c<strong>on</strong>sume up to 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> annual highway operating budgets in<br />

some northern U.S. states. Others are organizing to achieve better management <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic<br />

c<strong>on</strong>gesti<strong>on</strong> and incident c<strong>on</strong>trol by establishing transportati<strong>on</strong> management centers. 9<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> changes are expected to affect transportati<strong>on</strong> primarily through climate extremes,<br />

such as more severe tropical storms and flooding from intense rainfall. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the probable<br />

outcomes is the growing importance <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> to emergency resp<strong>on</strong>se and evacuati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> organizati<strong>on</strong>al arrangements necessary to support this interacti<strong>on</strong> are generally not well<br />

developed, although some regi<strong>on</strong>s have been more proactive in this regard. For example, Florida<br />

has a well-organized multigovernmental approach to emergency planning and evacuati<strong>on</strong> for<br />

7<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se investments tend to be uneven or “lumpy,” however, because equipment, such as rail cars, is purchased in<br />

batches.<br />

8<br />

Note, however, that discounting <str<strong>on</strong>g>of</str<strong>on</strong>g> future benefits at typical discount rates means that for financial purposes,<br />

benefits bey<strong>on</strong>d, say, 20 years will be <str<strong>on</strong>g>of</str<strong>on</strong>g> diminishing importance.<br />

9<br />

For more detail, see the paper by Lockwood (2006; see Appendix C) commissi<strong>on</strong>ed for this study. See also the<br />

discussi<strong>on</strong> about transportati<strong>on</strong> management centers in Chapter 5 (Box 5-1).


100 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

hurricanes that includes transportati<strong>on</strong>. Hurricanes Katrina and Rita provided a wake-up call to<br />

many governments in the Gulf Coast regi<strong>on</strong>, which have since improved emergency plans and<br />

evacuati<strong>on</strong> strategies. <str<strong>on</strong>g>The</str<strong>on</strong>g> events <str<strong>on</strong>g>of</str<strong>on</strong>g> September 11, 2001, were instrumental in focusing attenti<strong>on</strong><br />

<strong>on</strong> the need for emergency plans and evacuati<strong>on</strong> strategies and in underscoring the critical<br />

support transportati<strong>on</strong> can provide. In practice, however, transportati<strong>on</strong> is not always well<br />

integrated into these plans. Emergencies that involve multistate geographic areas and require a<br />

regi<strong>on</strong>al resp<strong>on</strong>se are particularly difficult, as Hurricane Katrina illustrated (Deen 2006).<br />

In the l<strong>on</strong>ger term, critical infrastructure that serves as evacuati<strong>on</strong> routes or egress points<br />

may itself be threatened by climate change. For example, highways in low-lying coastal areas<br />

could become endangered as encroaching sea level rise combines with storm surge to make these<br />

routes impassible.<br />

CHALLENGES POSED BY CLIMATE CHANGE<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change poses a complex set <str<strong>on</strong>g>of</str<strong>on</strong>g> challenges that in many ways are new and different for<br />

transportati<strong>on</strong> planners and decisi<strong>on</strong> makers, and this may help explain why there is little<br />

c<strong>on</strong>sensus <strong>on</strong> the issue or how to address it. 10 <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>sistent resp<strong>on</strong>se may also stem<br />

from resource c<strong>on</strong>straints and an absence <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate informati<strong>on</strong> and guidance.<br />

Differences in Planning Horiz<strong>on</strong>s<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists describe the future in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> outcomes that unfold over decades to centuries.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the reas<strong>on</strong>s for these l<strong>on</strong>g time frames is that the inherent variability <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate makes<br />

it difficult to separate the “signal from the noise” in making short-tern (i.e., less than 25 years)<br />

projecti<strong>on</strong>s. For many public-sector transportati<strong>on</strong> planners, l<strong>on</strong>g-term planning horiz<strong>on</strong>s rarely<br />

exceed more than 30 years; 20 to 25 years is the norm. Port, rail, and pipeline providers have<br />

much shorter planning horiz<strong>on</strong>s—5 years at most for strategic plans—although many <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

assets are designed to be much l<strong>on</strong>ger-lived, and capital project analyses reflect these l<strong>on</strong>ger<br />

timeframes. Thus, many transportati<strong>on</strong> planners perceive that impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change will be<br />

experienced well bey<strong>on</strong>d the time frame <str<strong>on</strong>g>of</str<strong>on</strong>g> their l<strong>on</strong>gest-term plans, not realizing that climate<br />

changes are already occurring and that investment decisi<strong>on</strong>s made today will affect how well the<br />

infrastructure accommodates these and future changes.<br />

Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Uncertainty<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> issue <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change introduces uncertainties with which transportati<strong>on</strong> planners are<br />

unfamiliar and uncomfortable. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists describe the future in probabilistic terms with a<br />

portfolio <str<strong>on</strong>g>of</str<strong>on</strong>g> plausible scenarios and outcomes that are c<strong>on</strong>stantly refined and revised as new<br />

knowledge accumulates. Uncertainties exist regarding the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and the extent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its impacts, even for those changes about which climate scientists have the greatest<br />

c<strong>on</strong>fidence, such as warming temperatures and sea level rise. <str<strong>on</strong>g>The</str<strong>on</strong>g>se uncertainties make it<br />

difficult to plan and design infrastructure that can accommodate these impacts. <str<strong>on</strong>g>The</str<strong>on</strong>g> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate extremes and surprises <strong>on</strong>ly exacerbates the problem. Moreover, knowledge about<br />

10 See the paper by Dewar and Wachs (2006; see Appendix C) commissi<strong>on</strong>ed for this study for a more complete<br />

discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many points made in this secti<strong>on</strong>.


Challenges to Resp<strong>on</strong>se 101<br />

climate change impacts is likely to change over time, requiring a dynamic decisi<strong>on</strong> process that<br />

can adapt to new informati<strong>on</strong> and accommodate feedback.<br />

In c<strong>on</strong>trast to climate scientists, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als tend to focus <strong>on</strong> “knowns.”<br />

Metropolitan transportati<strong>on</strong> planners, for example, typically provide a single visi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the future<br />

<strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> “best available” forecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>, employment, housing, and development<br />

that drive transportati<strong>on</strong> infrastructure needs. Infrastructure is built to meet the forecasted<br />

demand, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten without fully incorporating uncertainties associated with the predicti<strong>on</strong>s.<br />

Unexpected unplanned events, such as earthquakes, hurricanes, and floods, challenge the system,<br />

but a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> traveler adaptability and system redundancy has enabled transportati<strong>on</strong><br />

infrastructure providers thus far to maintain operati<strong>on</strong>s with surprisingly little disrupti<strong>on</strong>.<br />

Perhaps for these reas<strong>on</strong>s, regi<strong>on</strong>al transportati<strong>on</strong> planners appear to be satisfied with<br />

their performance. A nati<strong>on</strong>al survey <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al planning agencies, for example, revealed that<br />

the majority rated their performance as acceptable and their models as adequate or better. Only a<br />

few, however, had simulated the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> removing key links from their systems or assuming<br />

large and irregular fluctuati<strong>on</strong>s in traffic flows in some corridors, such as might occur if tropical<br />

storms become more severe or intense precipitati<strong>on</strong> and flooding become more frequent in some<br />

regi<strong>on</strong>s (Dewar and Wachs 2006).<br />

Poor Alignment Between <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> and Transportati<strong>on</strong><br />

Organizati<strong>on</strong>al Arrangements<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> decentralized and modally focused organizati<strong>on</strong>al structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> sector may<br />

not align well with climate change impacts, which do not always follow modal, jurisdicti<strong>on</strong>al, or<br />

corporate boundaries. Sea level rise and flooding from intense precipitati<strong>on</strong>, for example, can<br />

affect individual transportati<strong>on</strong> facilities, but they are also likely to have widespread impacts<br />

requiring the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple infrastructure providers. Some climate changes, such as more<br />

frequent intense tropical storms (Category 4–5 hurricanes), will require regi<strong>on</strong>al or even<br />

multistate resp<strong>on</strong>ses that transportati<strong>on</strong> instituti<strong>on</strong>s are poorly c<strong>on</strong>figured to address. Regi<strong>on</strong>al<br />

planning organizati<strong>on</strong>s exist, but regi<strong>on</strong>al government does not. Multistate acti<strong>on</strong> is difficult, as<br />

Hurricane Katrina illustrated.<br />

Resource C<strong>on</strong>straints<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change poses the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> significant, l<strong>on</strong>g-lasting impacts <strong>on</strong> transportati<strong>on</strong><br />

infrastructure and system performance that are likely to be widespread and costly in human and<br />

ec<strong>on</strong>omic terms. Most other challenges c<strong>on</strong>fr<strong>on</strong>ted by the transportati<strong>on</strong> sector, even extreme<br />

weather events such as Hurricane Katrina or earthquakes, cause significant damage, but the<br />

effects tend to be local and temporary. By c<strong>on</strong>trast, climate changes in some U.S. regi<strong>on</strong>s may<br />

necessitate permanent changes. Over time, for example, roads, rail lines, and airport runways in<br />

low-lying coastal areas may become casualties <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise, ultimately requiring relocati<strong>on</strong> or<br />

expensive protective measures (e.g., levees, which themselves would be subject to catastrophic<br />

failure, as was experienced during Hurricane Katrina).


102 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Resistance to <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Transportati<strong>on</strong> planners and engineers typically extrapolate from historical trends to forecast<br />

future trends and c<strong>on</strong>diti<strong>on</strong>s that influence their investment choices and operating plans.<br />

However, the past will not be a reliable guide for future plans and designs as they relate to<br />

climate. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists cauti<strong>on</strong> that climate change will usher in a new regime <str<strong>on</strong>g>of</str<strong>on</strong>g> weather<br />

and climate extremes, likely falling outside the range for which many existing transportati<strong>on</strong><br />

facilities were designed.<br />

Faced with a new problem such as this predicted break in trend, transportati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als typically adopt incremental rather than radical soluti<strong>on</strong>s. This tendency to favor<br />

proven methods and practices is understandable, particularly for engineers, who are designing<br />

infrastructure expected to provide reliable service for decades, and in view <str<strong>on</strong>g>of</str<strong>on</strong>g> the uncertainties<br />

about the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> its effects. Nevertheless, reinforced by<br />

c<strong>on</strong>servative instituti<strong>on</strong>s, regulatory requirements, and limited funding, this way <str<strong>on</strong>g>of</str<strong>on</strong>g> thinking can<br />

hamper timely resp<strong>on</strong>ses to issues such as climate change that involve risk and uncertainty.<br />

Interviews with transportati<strong>on</strong> planning <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials c<strong>on</strong>ducted for the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong>’s (U.S. DOT) Gulf Coast study by Cambridge Systematics, Inc. (2006) are<br />

illustrative <str<strong>on</strong>g>of</str<strong>on</strong>g> prevailing attitudes. <str<strong>on</strong>g>The</str<strong>on</strong>g> interviews were c<strong>on</strong>ducted in spring 2006 when the<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricanes Katrina and Rita were very much <strong>on</strong> the minds <str<strong>on</strong>g>of</str<strong>on</strong>g> local planners.<br />

Understandably, local <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials were c<strong>on</strong>cerned with the immediate problems <str<strong>on</strong>g>of</str<strong>on</strong>g> rebuilding and<br />

recovery from the hurricanes. When questi<strong>on</strong>ed about the possibility that climate change could<br />

bring about more storms <str<strong>on</strong>g>of</str<strong>on</strong>g> the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> Katrina or Rita in the future, however, many local<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ficials expressed skepticism or pleaded ignorance. Others opted for a literal interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

SAFETEA-LU’s planning guidance, which does not require c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, or<br />

pointed to federal policies that allow replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> facilities <strong>on</strong>ly as they are currently<br />

designed, preventing c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> design modificati<strong>on</strong>s that could provide for adaptati<strong>on</strong> to<br />

potential climate change impacts (e.g., elevated bridges to accommodate sea level rise, storm<br />

surge, and wave acti<strong>on</strong>). 11 Some <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials interviewed believed that FHWA regulati<strong>on</strong>s<br />

prevented them from c<strong>on</strong>sidering any changes that would extend bey<strong>on</strong>d the time horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their l<strong>on</strong>g-range plans. 12 Still others identified limited current funding that, in combinati<strong>on</strong> with<br />

uncertainties about the rate and timing <str<strong>on</strong>g>of</str<strong>on</strong>g> projected climate changes, disinclines planners to give<br />

more attenti<strong>on</strong> to the issue.<br />

Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> Relevant Informati<strong>on</strong><br />

Even those transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als who are aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and<br />

are already addressing its impacts, such as the planners and engineers in Alaska who are<br />

managing the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> melting permafrost, indicate that they <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lack sufficiently detailed<br />

informati<strong>on</strong> <strong>on</strong> which to take appropriate acti<strong>on</strong>. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists tend to describe projected<br />

climate changes in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> global averages and c<strong>on</strong>fidence levels for global, c<strong>on</strong>tinental, or<br />

large subc<strong>on</strong>tinental regi<strong>on</strong>s because climate models have the greatest fidelity at these levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

11 <str<strong>on</strong>g>The</str<strong>on</strong>g> Federal Highway Administrati<strong>on</strong>, however, has granted excepti<strong>on</strong>s and is rethinking its regulati<strong>on</strong>s and<br />

guidance for design <str<strong>on</strong>g>of</str<strong>on</strong>g> bridges in a coastal envir<strong>on</strong>ment (see the paper by Meyer [2006; see Appendix C]<br />

commissi<strong>on</strong>ed for this study).<br />

12 Secti<strong>on</strong> 6001 <str<strong>on</strong>g>of</str<strong>on</strong>g> SAFETEA-LU references a 20-year forecast period for l<strong>on</strong>g range transportati<strong>on</strong> plans. Many<br />

states and MPOs, however, are using a 20- to 30-year time horiz<strong>on</strong>.


Challenges to Resp<strong>on</strong>se 103<br />

analysis. In additi<strong>on</strong>, studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change—with the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

handful <str<strong>on</strong>g>of</str<strong>on</strong>g> studies reviewed in the previous chapter—have not focused <strong>on</strong> transportati<strong>on</strong><br />

specifically, but <strong>on</strong> other critical sectors, such as agriculture, forestry, energy, and water<br />

resources.<br />

Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als need data at the finest-grained level <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic detail<br />

possible because infrastructure is regi<strong>on</strong>al and local. Fortunately, the most recent assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC 2007) noted the improved capability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate scientists to simulate regi<strong>on</strong>al climates and make robust statements about projected<br />

climate changes for many regi<strong>on</strong>s—a level <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic specificity that is more useful to<br />

transportati<strong>on</strong> planners and designers. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists should be encouraged to develop<br />

informati<strong>on</strong> <strong>on</strong> transportati<strong>on</strong>-relevant climate changes that is as detailed as possible.<br />

Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als also have a role to play in helping to define what informati<strong>on</strong> about<br />

climate change they need, such as temperature and precipitati<strong>on</strong> thresholds, climate c<strong>on</strong>diti<strong>on</strong>s<br />

that create unacceptable performance outcomes, and the like.<br />

A DECISION FRAMEWORK FOR ADDRESSING CLIMATE CHANGE<br />

How should transportati<strong>on</strong> planners and engineers proceed in view <str<strong>on</strong>g>of</str<strong>on</strong>g> the challenges just<br />

outlined? A decisi<strong>on</strong>-making framework is needed that more adequately accommodates<br />

uncertainty and incorporates more probabilistic approaches to assessing risk and making<br />

investment choices. <str<strong>on</strong>g>The</str<strong>on</strong>g> basic c<strong>on</strong>cepts in such a probabilistic assessment include hazards,<br />

assets, and c<strong>on</strong>sequences, each <str<strong>on</strong>g>of</str<strong>on</strong>g> which is subject to uncertainties (see Annex 4-1). In the<br />

c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, the hazards represent the potential threats from changing climate<br />

c<strong>on</strong>diti<strong>on</strong>s, such as more extreme temperatures or more intense tropical storms. <str<strong>on</strong>g>The</str<strong>on</strong>g> assets<br />

represent the infrastructure and its value—both its ec<strong>on</strong>omic value to the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

transportati<strong>on</strong> system and its physical replacement value. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>sequences represent the<br />

susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> the infrastructure to damage from the hazards, which in turn depends <strong>on</strong> the<br />

infrastructure’s design and state <str<strong>on</strong>g>of</str<strong>on</strong>g> repair, am<strong>on</strong>g other factors. Estimating future risk involves<br />

solving for the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> the hazards times the probable c<strong>on</strong>sequences if the<br />

hazards occurred, summed over all the transportati<strong>on</strong> assets in a regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> objective is to<br />

minimize future risks.<br />

Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als already take risk into account, particularly in designing<br />

facilities, and in recent years more probabilistic approaches have been incorporated (Meyer<br />

2006). For example, engineers design structures to withstand certain wind speeds <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a probabilistic assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> wind speed occurrence as measured by historical wind speed<br />

frequency. <str<strong>on</strong>g>The</str<strong>on</strong>g> 100-year storm is another example. Engineers <str<strong>on</strong>g>of</str<strong>on</strong>g>ten size the drainage capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a transportati<strong>on</strong> facility to handle a storm so severe that it occurs, <strong>on</strong> average, just <strong>on</strong>ce in 100<br />

years. Adapting risk-based approaches to account for climate change poses new challenges.<br />

First, historical experience will not be a reliable predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate c<strong>on</strong>diti<strong>on</strong>s. Sec<strong>on</strong>d,<br />

the hazards themselves are likely to change over time, but in ways that are not currently<br />

understood with any precisi<strong>on</strong>. Finally, attempting to hedge by simply designing to a more<br />

robust standard—say a higher wind speed tolerance or a 500-year storm—will produce much<br />

more costly designs, likely to be unacceptable given limited budgets. 13 A more strategic and<br />

13 <str<strong>on</strong>g>The</str<strong>on</strong>g> committee is aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the precauti<strong>on</strong>ary principle, which holds that “where there are threats <str<strong>on</strong>g>of</str<strong>on</strong>g> serious or<br />

irreversible damage, the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> full scientific certainty shall not be used as a reas<strong>on</strong> for postp<strong>on</strong>ing cost-effective


104 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

selective risk-based approach that explicitly trades <str<strong>on</strong>g>of</str<strong>on</strong>g>f the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> designing for greater<br />

resilience against the costs associated with failure could help in setting realistic design standards<br />

and investment priorities.<br />

California’s seismic retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it program for bridges is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e way to proceed<br />

(see Box 4-1). Following the Lomo Prieta earthquake in 1989, the state was faced with the<br />

daunting task <str<strong>on</strong>g>of</str<strong>on</strong>g> how best to retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it its stock <str<strong>on</strong>g>of</str<strong>on</strong>g> some 25,000 bridges. Earthquakes are a<br />

recurring problem, but there is c<strong>on</strong>siderable uncertainty about when or where a seismic event<br />

will occur. Moreover, the resources needed to retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it every bridge to the highest standard or to<br />

c<strong>on</strong>duct a physical inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> all structures to determine which need to be retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it are not<br />

available. <str<strong>on</strong>g>The</str<strong>on</strong>g> California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (Caltrans) decided to proceed in the<br />

following manner. First, departmental engineers determined an acceptable performance standard<br />

or level <str<strong>on</strong>g>of</str<strong>on</strong>g> risk, reducing <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the uncertainties. For most bridges, that standard was “no<br />

collapse” under a maximum seismic event, c<strong>on</strong>sistent with the geographic locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bridge.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> objective was to avoid loss <str<strong>on</strong>g>of</str<strong>on</strong>g> life. However, some damage to the structure was acceptable<br />

as l<strong>on</strong>g as the structure itself remained intact and could be reopened for service so<strong>on</strong> after the<br />

event. <str<strong>on</strong>g>The</str<strong>on</strong>g> excepti<strong>on</strong>s were 750 structures <strong>on</strong> state highways and 11 major toll bridges, which<br />

were held to a higher standard both to protect the substantial investment in these major structures<br />

and to ensure that these vital transportati<strong>on</strong> lifelines would remain in service following a major<br />

seismic event to provide access for emergency resp<strong>on</strong>ders. Sec<strong>on</strong>d, the experts devised a layered<br />

screening system to rate the structures most in need <str<strong>on</strong>g>of</str<strong>on</strong>g> retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it; an in-depth physical inventory<br />

was c<strong>on</strong>ducted <strong>on</strong>ly for those bridges that did not meet the performance standard. Finally,<br />

elected <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials were brought <strong>on</strong> board, and a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> funds—federal grants, state gas tax<br />

and b<strong>on</strong>d funds, and local revenues—was employed to implement a l<strong>on</strong>g-term investment<br />

program that c<strong>on</strong>tinues to this day.<br />

BOX 4-1<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> California Seismic Retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it Program for Bridges<br />

Following the Lomo Prieta earthquake in 1989, the California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

(Caltrans) faced the enormous task <str<strong>on</strong>g>of</str<strong>on</strong>g> prioritizing its inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> structures throughout the state<br />

for seismic retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it. Approximately 25,000 bridges <strong>on</strong> state and local highways required<br />

evaluati<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this large number <str<strong>on</strong>g>of</str<strong>on</strong>g> bridges, simple and computati<strong>on</strong>ally manageable<br />

prioritizati<strong>on</strong> methodology had to be devised. <str<strong>on</strong>g>The</str<strong>on</strong>g> goal was to identify and rank the most<br />

seismically vulnerable bridges in the state so the available resources could be used in the most<br />

efficient manner possible.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> process began with establishing a required performance standard. For most bridges,<br />

the minimum standard was “no collapse” during a major seismic event to prevent loss <str<strong>on</strong>g>of</str<strong>on</strong>g> life.<br />

However, damage to the structure was acceptable provided that the structure itself remained intact<br />

and could be reopened for service so<strong>on</strong> after the event. <str<strong>on</strong>g>The</str<strong>on</strong>g> excepti<strong>on</strong>s to the “no collapse”<br />

(c<strong>on</strong>tinued)<br />

measures to prevent envir<strong>on</strong>mental degradati<strong>on</strong>” (UNEP 1992 in Whiteside 2006). It recommends that costeffective<br />

measures to protect the more vulnerable transportati<strong>on</strong> infrastructure be taken. However, the significant<br />

costs <str<strong>on</strong>g>of</str<strong>on</strong>g> redesigning and retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting much <str<strong>on</strong>g>of</str<strong>on</strong>g> the infrastructure to adapt to potential climate change impacts<br />

underscore the need for more strategic and selective risk-based analyses.


Challenges to Resp<strong>on</strong>se 105<br />

BOX 4-1 (c<strong>on</strong>tinued)<br />

requirement were 750 structures for which the highest level <str<strong>on</strong>g>of</str<strong>on</strong>g> performance was desirable to<br />

protect the substantial investment in these major structures and ensure that they would remain in<br />

service after a major seismic event to provide access for emergency resp<strong>on</strong>ders. <str<strong>on</strong>g>The</str<strong>on</strong>g> 11 major<br />

toll bridges, including the San Francisco-Oakland Bay Bridge, were handled separately because<br />

their complexity necessitated a time-c<strong>on</strong>suming dynamic analysis.<br />

A risk algorithm was developed for screening <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-toll bridges. This algorithm was<br />

based <strong>on</strong> four major evaluati<strong>on</strong> criteria: seismic activity, seismic hazard, impact, and<br />

vulnerability. Seismic activity was determined by locating structures in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> four fault activity<br />

z<strong>on</strong>es, ranked from highly to minimally active. Seismic hazard was determined <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

specific c<strong>on</strong>diti<strong>on</strong>s (e.g., soil) at the bridge site. Impact was based <strong>on</strong> such attributes as average<br />

daily traffic, route type, and detour length. Vulnerability was assessed <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> structural<br />

characteristics (e.g., structure type, structure age, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> joints) to assess the risk<br />

to the structure itself. <str<strong>on</strong>g>The</str<strong>on</strong>g> score <strong>on</strong> each criteri<strong>on</strong> was multiplied by a weighting factor—seismic<br />

activity and hazard were weighted more heavily—and summed with those <strong>on</strong> the other criteria to<br />

arrive at a final score.<br />

All 12,600 state highway bridges were processed using this screening procedure and were<br />

prioritized by score. (<str<strong>on</strong>g>The</str<strong>on</strong>g> 750 major structures were flagged to be in the program.) Additi<strong>on</strong>al<br />

screening was required for 7,000 bridges that failed to meet the minimum performance standard.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se bridges were reviewed for specific deficiencies through an examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the as-built<br />

plans for each. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d “paper” screening was used to determine whether the bridge was in<br />

the program or retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it could be deferred; the goal was to make the program more manageable<br />

while still addressing the most urgent needs given the available resources. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

sec<strong>on</strong>d screening, 2,194 bridges were found to be in need <str<strong>on</strong>g>of</str<strong>on</strong>g> retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it and were programmed for<br />

improvement. A final in-depth field inspecti<strong>on</strong> was performed, with the result that some bridges<br />

were found to meet the “no collapse” requirement and were removed from the list. A similar<br />

procedure was followed for the 12,400 local roadway bridges, resulting in 4,500 structures that<br />

required further evaluati<strong>on</strong> and analysis.<br />

Since the program was initiated, 2,194 bridges <strong>on</strong> the state highway system have been<br />

retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it at a cost <str<strong>on</strong>g>of</str<strong>on</strong>g> $3 billi<strong>on</strong>, and the program is c<strong>on</strong>sidered 99 percent complete. <str<strong>on</strong>g>The</str<strong>on</strong>g> remaining<br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the program c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting 1,235 bridges <strong>on</strong> local roadways at an estimated cost<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> $1.7 billi<strong>on</strong>; the program for local bridges is about 60 percent complete. Funding is provided<br />

through a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local funds, state gas tax revenues, statewide b<strong>on</strong>d initiatives, and<br />

federal funds.<br />

Caltrans has maintained <strong>on</strong>going assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the seismic retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it needs <str<strong>on</strong>g>of</str<strong>on</strong>g> its bridge<br />

inventory to identify structures with potential seismic vulnerabilities based <strong>on</strong> less<strong>on</strong>s learned<br />

since the program’s incepti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> bridges identified through this process are prioritized and<br />

added to the program as required.<br />

State and local governments and private infrastructure providers could adopt a similar<br />

approach for identifying and screening critical infrastructure relative to projected climate<br />

changes. Key to adopting such an approach is establishing a performance standard for a<br />

particular facility that reflects a tolerable level <str<strong>on</strong>g>of</str<strong>on</strong>g> risk (a “no collapse” equivalent), al<strong>on</strong>g with a<br />

screening process that takes into c<strong>on</strong>siderati<strong>on</strong> such factors as the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> risk (e.g., magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the hazard), the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the facility, and how essential the facility is to the system so<br />

priorities for rehabilitati<strong>on</strong> or retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it can be determined.<br />

Source: Informati<strong>on</strong> provided by Craig Whitten, Robert Stott, Kevin Thomps<strong>on</strong>, and Cynthia MacLeay,<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Services, Caltrans, October 2007.


106 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

State and local transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials could adopt a similar approach to assess how<br />

climate change may affect transportati<strong>on</strong> assets and develop appropriate adaptati<strong>on</strong> resp<strong>on</strong>ses<br />

and investment strategies. To begin, they might ask the following questi<strong>on</strong>s:<br />

• Which projected climate changes are most relevant for their regi<strong>on</strong>?<br />

• How are climate change hazards likely to be manifested (e.g., flooding, storm surge<br />

coupled with sea level rise)?<br />

• Which transportati<strong>on</strong> assets may be affected?<br />

• How severe must a hazard be before it becomes relevant and acti<strong>on</strong> is required? Can<br />

thresholds be identified?<br />

• How likely is it that a projected hazard will exceed the threshold, when, and where?<br />

• How much risk can be tolerated, or in other words, what infrastructure performance<br />

level is tolerable?<br />

• What level <str<strong>on</strong>g>of</str<strong>on</strong>g> investment (capital and operating) is needed to maintain different levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> service? Can acceptable performance standards for all modes <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> be<br />

established?<br />

• Are there critical levels <str<strong>on</strong>g>of</str<strong>on</strong>g> service needed to protect health and safety?<br />

• Who is empowered to make these judgments and decisi<strong>on</strong>s?<br />

• What are the risks <str<strong>on</strong>g>of</str<strong>on</strong>g> adverse impacts or c<strong>on</strong>sequences if no acti<strong>on</strong> is taken?<br />

• If acti<strong>on</strong> is necessary, how will investment priorities be determined?<br />

• Who will make the necessary investments, and how will they be funded?<br />

Answers to many <str<strong>on</strong>g>of</str<strong>on</strong>g> these questi<strong>on</strong>s can be found by following the six steps set forth in<br />

Box 4-2. This approach provides guidance <strong>on</strong> how to proceed in addressing many <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

technical questi<strong>on</strong>s previously posed. However, it does not cover relevant organizati<strong>on</strong>al and<br />

political issues. Transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials must communicate the results <str<strong>on</strong>g>of</str<strong>on</strong>g> their technical analyses<br />

to senior management and elected <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials, who make the policy decisi<strong>on</strong>s that guide funding<br />

choices. In the California situati<strong>on</strong>, the Lomo Prieta earthquake focused attenti<strong>on</strong> <strong>on</strong> the need<br />

for seismic retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> the bridges throughout the state to avoid catastrophic failure and<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> life from such an event in the future. With climate changes, however, the impacts will<br />

not always be as unambiguously attributable to those changes or as dramatic, with the excepti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events (e.g., severe tropical storms, intense precipitati<strong>on</strong> events, heat waves). Thus,<br />

communicating the need for early attenti<strong>on</strong> to the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change requires leadership,<br />

supported by compelling analyses, <strong>on</strong> the part <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> community.<br />

FINDINGS<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change poses a complex set <str<strong>on</strong>g>of</str<strong>on</strong>g> problems, associated risks, and uncertainties with which<br />

transportati<strong>on</strong> planners and decisi<strong>on</strong> makers are unfamiliar. Am<strong>on</strong>g the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change that make it particularly difficult to tackle are uncertainties about the rate and extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projected changes; poor alignment between climate change impacts, which may not follow the<br />

modal, jurisdicti<strong>on</strong>al, or corporate boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> the transportati<strong>on</strong> sector; and impacts that may<br />

require coordinated regi<strong>on</strong>al or multistate resp<strong>on</strong>ses that infrastructure providers are poorly<br />

c<strong>on</strong>figured to address. <str<strong>on</strong>g>The</str<strong>on</strong>g> significant costs <str<strong>on</strong>g>of</str<strong>on</strong>g> designing infrastructure to allow for adaptati<strong>on</strong> to<br />

l<strong>on</strong>g-term climate change impacts in the face <str<strong>on</strong>g>of</str<strong>on</strong>g> resource c<strong>on</strong>straints, the tendency <str<strong>on</strong>g>of</str<strong>on</strong>g>


Challenges to Resp<strong>on</strong>se 107<br />

BOX 4-2<br />

Decisi<strong>on</strong> Framework to Address <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong><br />

U.S. Transportati<strong>on</strong> Infrastructure<br />

1. Assess how climate changes are likely to impact various regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the country and mode <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> (assess hazards).<br />

2. Inventory transportati<strong>on</strong> infrastructure essential to maintaining network performance in light<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change projecti<strong>on</strong>s to determine whether, when, and where the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projected changes could be c<strong>on</strong>sequential (assess the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> assets and the system’s<br />

resilience to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> assets).<br />

3. Analyze adaptati<strong>on</strong> opti<strong>on</strong>s to assess the trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs between making the infrastructure more<br />

robust and the costs involved. C<strong>on</strong>sider m<strong>on</strong>itoring as an opti<strong>on</strong>.<br />

4. Determine investment priorities, taking into c<strong>on</strong>siderati<strong>on</strong> the criticality <str<strong>on</strong>g>of</str<strong>on</strong>g> the infrastructure<br />

comp<strong>on</strong>ent, as well as opportunities for multiple benefits (e.g., c<strong>on</strong>gesti<strong>on</strong> relief, removal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evacuati<strong>on</strong> route bottlenecks).<br />

5. Develop and implement a program <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> strategies for the near and l<strong>on</strong>g terms.<br />

6. Periodically assess the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> strategies, and repeat steps 1 through 5.<br />

transportati<strong>on</strong> planners and engineers to extrapolate from the past and adopt incremental<br />

soluti<strong>on</strong>s when approaching new problems, and the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant informati<strong>on</strong> and guidance <strong>on</strong><br />

which to base appropriate acti<strong>on</strong>s also affect how transportati<strong>on</strong> planners and engineers view<br />

climate change.<br />

A change in perspective is needed. First, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als must recognize<br />

climate change as a credible and important problem so that champi<strong>on</strong>s will emerge to bring<br />

attenti<strong>on</strong> to the issue and to make collaborati<strong>on</strong> with climate scientists and meteorologists a<br />

priority. Sec<strong>on</strong>d, addressing climate change requires a l<strong>on</strong>ger-term perspective and recogniti<strong>on</strong><br />

that investment decisi<strong>on</strong>s made today, particularly about the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong><br />

infrastructure, help shape l<strong>on</strong>g-term development patterns and markets well bey<strong>on</strong>d the 30-year<br />

time frames <str<strong>on</strong>g>of</str<strong>on</strong>g> many public-sector capital improvement plans and private-sector capital<br />

budgeting analyses. <str<strong>on</strong>g>The</str<strong>on</strong>g>se decisi<strong>on</strong>s also affect how well the transportati<strong>on</strong> system will adapt to<br />

climate change in the near and l<strong>on</strong>g terms. Third, the significant costs <str<strong>on</strong>g>of</str<strong>on</strong>g> redesigning,<br />

retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting, and potentially having to relocate, or protect at great expense, some transportati<strong>on</strong><br />

infrastructure to adapt to potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change suggest the need for more strategic,<br />

risk-based approaches to decisi<strong>on</strong> making and infrastructure design. Such approaches should be<br />

better oriented to assessing the trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs between the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> investments to make the<br />

infrastructure more robust and the likelihood and costs <str<strong>on</strong>g>of</str<strong>on</strong>g> facility failures or major disrupti<strong>on</strong>s to<br />

the system. <str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> such assessments should be presented in a form that can be<br />

communicated to senior management and elected <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials as a prudent acti<strong>on</strong> program, and<br />

provisi<strong>on</strong> should be made for adjustments as new knowledge becomes available. Finally,


108 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

addressing the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change that require regi<strong>on</strong>al and multistate resp<strong>on</strong>ses is likely<br />

to entail developing new coaliti<strong>on</strong>s and organizati<strong>on</strong>al arrangements. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these changes<br />

will take time. Fortunately, transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als have many avenues through which to<br />

begin to develop adaptati<strong>on</strong> strategies, the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> the next chapter.<br />

REFERENCES<br />

Abbreviati<strong>on</strong><br />

IPCC Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

UNEP United Nati<strong>on</strong>s Envir<strong>on</strong>ment Programme<br />

Cambridge Systematics, Inc. 2006. <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> to<br />

Transportati<strong>on</strong> Systems and Infrastructure—Gulf Coast Study: L<strong>on</strong>g-Range Planning and<br />

Investment. Working Paper. Cambridge, MA, June 30.<br />

Deen, T. B. 2006. Preliminary Remarks Outline, Rapporteur. C<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g><br />

<strong>on</strong> U.S. Transportati<strong>on</strong>. Transportati<strong>on</strong> Research Board and Divisi<strong>on</strong> <strong>on</strong> Earth and Life Studies, Oct.<br />

12.<br />

Dewar, J. A., and M. Wachs. 2006. Transportati<strong>on</strong> Planning, <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, and Decisi<strong>on</strong>making<br />

Under Uncertainty. Dec. 13.<br />

IPCC. 2007. Summary for Policymakers. In: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Science Basis.<br />

C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental Panel <strong>on</strong><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [Solom<strong>on</strong>, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor<br />

and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY.<br />

Lockwood, S. A. 2006. Operati<strong>on</strong>al Resp<strong>on</strong>ses to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>. PB C<strong>on</strong>sult, Dec, 29.<br />

Meyer, M. D. 2006. Design Standards for U.S. Transportati<strong>on</strong> Infrastructure: <str<strong>on</strong>g>The</str<strong>on</strong>g> Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Dec. 18.<br />

UNEP. 1992. Principle 15. Declarati<strong>on</strong> made at the United Nati<strong>on</strong>s C<strong>on</strong>ference <strong>on</strong> Envir<strong>on</strong>ment and<br />

Development, Rio de Janeiro, Brazil, June 14.<br />

Whiteside, K.H. 2006. Precauti<strong>on</strong>ary Politics: Principle and Practice in C<strong>on</strong>fr<strong>on</strong>ting Envir<strong>on</strong>mental<br />

Risk. <str<strong>on</strong>g>The</str<strong>on</strong>g> MIT Press, Cambridge, Mass.


Challenges to Resp<strong>on</strong>se 109<br />

ANNEX 4-1 APPLYING PROBABILISTIC RISK ASSESSMENT TO CLIMATE<br />

CHANGE AND TRANSPORTATION<br />

Probabilistic risk assessment (PRA) is a comprehensive, well-developed methodology for<br />

evaluating risks so they can be prioritized and managed more effectively. Properly applied, PRA<br />

will likely prove an indispensable tool for transportati<strong>on</strong> managers c<strong>on</strong>sidering the potential<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<br />

Classic Risk Assessment<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> central idea behind PRA is to define risk as the product <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> adverse<br />

c<strong>on</strong>sequences and the probability that those c<strong>on</strong>sequences will occur. For instance, the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a coastal road due to a storm surge would be the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> a storm surge rising<br />

high enough to inundate the road, multiplied by both the dollar cost <str<strong>on</strong>g>of</str<strong>on</strong>g> replacing the flooded road<br />

and the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> the ec<strong>on</strong>omic disrupti<strong>on</strong> during the time the road was unusable.<br />

In principle, transportati<strong>on</strong> managers could use this risk definiti<strong>on</strong> to thoroughly assess the<br />

risks posed by climate change for their system. <str<strong>on</strong>g>The</str<strong>on</strong>g>y could list the full range <str<strong>on</strong>g>of</str<strong>on</strong>g> hazards<br />

associated with climate change for their regi<strong>on</strong> (e.g., sea level rise, heat) and then estimate the<br />

c<strong>on</strong>sequences that each hazard, if it occurred, would have for each transportati<strong>on</strong> asset in their<br />

regi<strong>on</strong>. Each comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> this equati<strong>on</strong> has an associated probability. Thus, for example, there<br />

is a certain annual probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence for a 5- foot, 10-foot, or 20-foot storm surge; a<br />

certain probability that a road would fail if c<strong>on</strong>fr<strong>on</strong>ted by a 5-foot, 10-foot, or 20-foot storm<br />

surge; and a certain probability that the ec<strong>on</strong>omic costs <str<strong>on</strong>g>of</str<strong>on</strong>g> such a failure would be 1, 5, or 10<br />

milli<strong>on</strong> dollars.<br />

In sum, the risk due to climate change for all the assets in a manager’s system would be<br />

given by<br />

Total Risk<br />

=<br />

∑Prob<br />

All Assets, All Hazards<br />

[ Hazard]<br />

× Prob[<br />

C<strong>on</strong>sequence]<br />

where the first term represents the probability densities for each hazard, and the sec<strong>on</strong>d term<br />

represents the probability densities for the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> each hazard (including the probability and the<br />

cost <str<strong>on</strong>g>of</str<strong>on</strong>g> failure) for each asset in the transportati<strong>on</strong> system.<br />

Carrying out this analysis would provide transportati<strong>on</strong> managers with an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

total risk and the most important sources <str<strong>on</strong>g>of</str<strong>on</strong>g> that risk. (In practice, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> hazard is<br />

time dependent and any future c<strong>on</strong>sequences for l<strong>on</strong>g-lived infrastructure would be discounted.<br />

However, this simplified expressi<strong>on</strong> is sufficient for the discussi<strong>on</strong> below.) Note that the same<br />

c<strong>on</strong>tributi<strong>on</strong> to risk can be made by a hazard with a relatively high probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence but<br />

moderate c<strong>on</strong>sequences and a hazard with a relatively low probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence but<br />

relatively high c<strong>on</strong>sequences. Such informati<strong>on</strong> provides a solid foundati<strong>on</strong> for determining the<br />

most effective ways to manage the risk.<br />

Challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> Assessing the Risks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> for Transportati<strong>on</strong> Assets and<br />

Systems<br />

In practice, it is difficult to carry out this calculati<strong>on</strong> in its complete form. First, all the necessary<br />

data <strong>on</strong> the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> the various hazards and their ec<strong>on</strong>omic c<strong>on</strong>sequences may not be


110 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

available. Sec<strong>on</strong>d, significant uncertainty may be associated with the data that are available.<br />

Decisi<strong>on</strong> and risk analysts <str<strong>on</strong>g>of</str<strong>on</strong>g>ten distinguish between risk and uncertainty. In the former,<br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> future events can be well characterized by probability distributi<strong>on</strong>s. In the latter<br />

decisi<strong>on</strong> makers may not view the best available probability distributi<strong>on</strong>s as very reliable. For<br />

instance, if transportati<strong>on</strong> managers were completely c<strong>on</strong>fident that the climate is not changing,<br />

they might have high c<strong>on</strong>fidence in estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> moderate-probability hazards,<br />

that is, those expected to occur every 10 years or less as gleaned from weather records for their<br />

regi<strong>on</strong> extending back several decades or more. Managers might regard estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> lowprobability<br />

hazards, that is, those expected to occur every century, as less reliable. However,<br />

transportati<strong>on</strong> managers have little basis for assuming that estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate-related<br />

hazards gleaned from past weather records in their regi<strong>on</strong> can serve as good estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

future likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> such events. <str<strong>on</strong>g>The</str<strong>on</strong>g>y need to adjust their expectati<strong>on</strong>s <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> probabilistic projecti<strong>on</strong>s from climate models. As discussed in Chapter 2, some hazard<br />

estimates from such models, in particular estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events, may be<br />

less reliable than others.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> final reas<strong>on</strong> that a comprehensive probabilistic risk assessment would prove difficult is<br />

that many transportati<strong>on</strong> assets are l<strong>on</strong>g-lived, many <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change are expected to increase over time, and future transportati<strong>on</strong> managers may take steps<br />

that can reduce (or perhaps unintenti<strong>on</strong>ally increase) the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate changes.<br />

To address such changes over time, those who study the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change identify four<br />

key factors that characterize the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a system to adjust to climate change. Using a slightly<br />

different language, drawn from the ecological and biological literatures as opposed to the<br />

engineering literature <str<strong>on</strong>g>of</str<strong>on</strong>g> formal probabilistic risk assessment, the Intergovernmental Panel <strong>on</strong><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC) defines these factors as follows:<br />

• Exposure, defined as the manner and degree to which a system is exposed to<br />

significant climate variati<strong>on</strong>s.<br />

• Vulnerability, defined as the potential for loss, or the degree to which a system is<br />

susceptible to or unable to cope with adverse effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<br />

• Resilience, which refers to the restorative or regenerative capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a system when<br />

faced with change.<br />

• Adaptati<strong>on</strong>, defined as the adjustment made to a system in resp<strong>on</strong>se to actual or<br />

expected climate change to moderate harm or exploit beneficial opportunities.<br />

Exposure and vulnerability are similar to hazards and c<strong>on</strong>sequences. System-level<br />

resilience is a particularly important c<strong>on</strong>cept in the transportati<strong>on</strong> sector because individual<br />

assets functi<strong>on</strong> as comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a network. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to any <strong>on</strong>e asset will<br />

depend <strong>on</strong> the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic to reroute using other routes and/or modes. <str<strong>on</strong>g>The</str<strong>on</strong>g>y will also depend<br />

<strong>on</strong> the speed with which the affected private transportati<strong>on</strong> providers and public agencies (e.g.,<br />

state and local governments) can react and bring resources to bear to restore damaged systems to<br />

service. <str<strong>on</strong>g>The</str<strong>on</strong>g> resilience, or lack there<str<strong>on</strong>g>of</str<strong>on</strong>g>, <str<strong>on</strong>g>of</str<strong>on</strong>g> the system can thus reduce or increase the<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to individual assets in the system.<br />

Adaptati<strong>on</strong> will also be an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> managers’ ability to<br />

manage future risks associated with climate change. Managers today do not need to address the<br />

full range <str<strong>on</strong>g>of</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate change because they can reas<strong>on</strong>ably assume that<br />

future managers will take prudent steps to reduce the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> their assets and increase the


Challenges to Resp<strong>on</strong>se 111<br />

resilience <str<strong>on</strong>g>of</str<strong>on</strong>g> their systems. However, some decisi<strong>on</strong>s made today can have implicati<strong>on</strong>s that<br />

might make adaptati<strong>on</strong> acti<strong>on</strong>s by future managers significantly more or less effective. For<br />

instance, some choices regarding the design and locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new transportati<strong>on</strong> infrastructure<br />

may make it easier and less costly for future managers to adapt to climate changes if those<br />

changes turn out to be larger than currently expected. If there are two otherwise similar locati<strong>on</strong>s<br />

for a new road, for example, locating it farther from the coast will make it less costly for future<br />

managers to address any vulnerabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the asset should sea level rise turn out to be larger<br />

than currently expected.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Risk Assessment for Transportati<strong>on</strong> Managers in Practice<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> above factors—lack <str<strong>on</strong>g>of</str<strong>on</strong>g> complete data, uncertainty about the reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future climate change, and uncertainty about the acti<strong>on</strong>s future managers will take to reduce the<br />

vulnerability and increase the resilience <str<strong>on</strong>g>of</str<strong>on</strong>g> a transportati<strong>on</strong> system—make it difficult to c<strong>on</strong>duct<br />

a comprehensive probabilistic risk analysis for a regi<strong>on</strong>al transportati<strong>on</strong> system. In future years,<br />

more comprehensive planning frameworks can be expected to come into use that will help<br />

transportati<strong>on</strong> managers integrate c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure, vulnerability, resilience, and<br />

adaptati<strong>on</strong> factors. In the near term, however, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venient and relatively simple<br />

methods can facilitate transportati<strong>on</strong> managers’ incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these risk assessment c<strong>on</strong>cepts<br />

into their planning.<br />

For instance, the California Seismic Retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it Program (see Box 4-1) provides an example <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a simple screening analysis, based <strong>on</strong> the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> probabilistic risk analysis, that allowed the<br />

California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> to prioritize seismic retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it investments for<br />

approximately 25,000 bridges <strong>on</strong> state and local highways. <str<strong>on</strong>g>The</str<strong>on</strong>g> screening criteria focused <strong>on</strong><br />

both the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> individual assets and the resilience <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. For instance, the<br />

program prescribed a higher performance standard for 11 major toll bridges, such as the San<br />

Francisco-Oakland Bay Bridge, whose loss would cause major ec<strong>on</strong>omic disrupti<strong>on</strong> and which<br />

would be extremely expensive to replace.<br />

Transportati<strong>on</strong> planners can address the potential for future system adaptati<strong>on</strong> by time<br />

windows. For instance, operati<strong>on</strong>al decisi<strong>on</strong>s will be focused <strong>on</strong> near-term changes in weather<br />

and climate c<strong>on</strong>diti<strong>on</strong>s, such as more frequent and more intense events (e.g., intense precipitati<strong>on</strong><br />

and flooding), with which transportati<strong>on</strong> operators are already familiar. Retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it decisi<strong>on</strong>s will<br />

determine the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> assets for several decades, and thus should use probabilistic<br />

climate forecasts that extend out for several decades to estimate hazards. Finally, land use and<br />

locati<strong>on</strong> decisi<strong>on</strong>s for new infrastructure may influence transportati<strong>on</strong> systems for a century or<br />

more, so managers should use probabilistic climate projecti<strong>on</strong>s for future climate c<strong>on</strong>diti<strong>on</strong>s<br />

extending into the twenty-sec<strong>on</strong>d century. <str<strong>on</strong>g>The</str<strong>on</strong>g> decisi<strong>on</strong> framework described in Box 4-2<br />

provides <strong>on</strong>e way to incorporate such c<strong>on</strong>siderati<strong>on</strong>s.<br />

Robustness and Sensitivity Analysis<br />

Particularly when using multidecadal and century-scale climate projecti<strong>on</strong>s, transportati<strong>on</strong><br />

managers should pay heed to potentially significant uncertainties in these estimates. In<br />

particular, when using probabilistic risk assessments to compare alternative design choices or<br />

even when c<strong>on</strong>ducting a screening analysis, transportati<strong>on</strong> managers should be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> choices<br />

or rankings that are especially sensitive to particular probabilistic estimates. Engineers


112 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

comm<strong>on</strong>ly incorporate safety factors into designs or design standards to account for unforeseen<br />

events or abnormal forces <strong>on</strong> structures. Similarly, transportati<strong>on</strong> managers should recognize<br />

that it may be difficult for climate change projecti<strong>on</strong>s to distinguish a future 100-year storm from<br />

a future 500-year storm, or that estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the likelihood that sea level rise will exceed 1 m by<br />

2100 may change significantly in the years ahead. To the extent that they can make locati<strong>on</strong><br />

decisi<strong>on</strong>s and design choices that account for such uncertainties in their risk assessments, today’s<br />

transportati<strong>on</strong> managers will help future stewards <str<strong>on</strong>g>of</str<strong>on</strong>g> their systems minimize avoidable surprises.


A<br />

5<br />

Meeting the Challenges<br />

daptati<strong>on</strong> to climate change would be necessary even if drastic mitigati<strong>on</strong> measures were<br />

taken immediately to stabilize or even eliminate greenhouse gas (GHG) emissi<strong>on</strong>s (IPCC<br />

2007). <str<strong>on</strong>g>The</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> such global climate changes as warming temperatures and sea level rise<br />

occurring today reflect emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> GHGs released into the atmosphere over the past century.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> these l<strong>on</strong>g-lasting effects, the acti<strong>on</strong>s taken by transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als today<br />

have implicati<strong>on</strong>s for how the transportati<strong>on</strong> system will resp<strong>on</strong>d to climate change in the near<br />

and l<strong>on</strong>g terms.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is organized around timescales that transportati<strong>on</strong><br />

decisi<strong>on</strong> makers must c<strong>on</strong>sider in determining how best to adapt to climate change. In the short<br />

term (i.e., the next several decades), transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als are likely to resp<strong>on</strong>d to<br />

changing climate c<strong>on</strong>diti<strong>on</strong>s and climate extremes through operati<strong>on</strong>al resp<strong>on</strong>ses. Operators <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> systems already react to many climate changes, particularly extreme events (e.g.,<br />

intense precipitati<strong>on</strong>, intense tropical storms) and can rapidly adapt operating and maintenance<br />

practices for those climate c<strong>on</strong>diti<strong>on</strong>s projected to increase in frequency or intensity.<br />

Rehabilitating or retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting infrastructure requires a l<strong>on</strong>ger time horiz<strong>on</strong> because<br />

engineers design many infrastructure facilities with l<strong>on</strong>g service lives in mind (see Chapter 4),<br />

thereby providing fewer opportunities for adapting to changing climate c<strong>on</strong>diti<strong>on</strong>s without<br />

incurring significant costs. Adapting facilities for climate change may also involve the<br />

reevaluati<strong>on</strong> and development <str<strong>on</strong>g>of</str<strong>on</strong>g> design standards—a process that typically involves a lengthy<br />

research and testing program.<br />

Finally, c<strong>on</strong>structing new transportati<strong>on</strong> infrastructure or providing major additi<strong>on</strong>s to<br />

existing transportati<strong>on</strong> systems requires the l<strong>on</strong>gest time horiz<strong>on</strong>. Transportati<strong>on</strong> systems shape<br />

land use and development patterns, and in turn, populati<strong>on</strong> growth and ec<strong>on</strong>omic development<br />

stimulate demand for new infrastructure facilities to support growth. In both cases, decisi<strong>on</strong>s<br />

made today about where to locate or expand transportati<strong>on</strong> infrastructure establish development<br />

patterns that persist for generati<strong>on</strong>s and are difficult to change. <str<strong>on</strong>g>The</str<strong>on</strong>g>se decisi<strong>on</strong>s should be<br />

weighed carefully to ensure that people and businesses are not placed in harm’s way as projected<br />

climate changes unfold.<br />

Following discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these topics, the chapter turns to many crosscutting issues—<br />

flood insurance; m<strong>on</strong>itoring technologies and new materials; data, models, and decisi<strong>on</strong>-support<br />

tools; and new partnerships and organizati<strong>on</strong>al arrangements—that can help facilitate adaptati<strong>on</strong><br />

to climate change or bring climate change issues into the decisi<strong>on</strong>-making process. <str<strong>on</strong>g>The</str<strong>on</strong>g> chapter<br />

ends with the committee’s findings.<br />

ADAPTATION STRATEGIES<br />

Annex 5-1A–C summarize a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> measures that can be used to address<br />

many <str<strong>on</strong>g>of</str<strong>on</strong>g> the climate change impacts discussed in Chapter 3 (see Annex 3-1). <str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

adaptati<strong>on</strong>s are identified for land, marine, and air transportati<strong>on</strong>, respectively, by resp<strong>on</strong>se<br />

113


114 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

category: a) changes in operati<strong>on</strong>s, b) changes in infrastructure design and materials, and c)<br />

other. No attempt is made to estimate the relative costs or effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> these measures,<br />

although such analyses would be necessary to evaluate specific infrastructure investment<br />

alternatives. <str<strong>on</strong>g>The</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> addresses the key issues and opportunities for<br />

adaptati<strong>on</strong> in each resp<strong>on</strong>se category.<br />

Operati<strong>on</strong>al Resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most rapid resp<strong>on</strong>se to the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change is likely to come through changes in<br />

transportati<strong>on</strong> operating and maintenance practices. 1 Every U.S. transportati<strong>on</strong> provider already<br />

experiences the adverse impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> weather <strong>on</strong> operati<strong>on</strong>s under a diverse range <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

c<strong>on</strong>diti<strong>on</strong>s. For example, approximately 75 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> air travel delays in the Nati<strong>on</strong>al Airspace<br />

System are weather related (Maurice and Gupta 2007). Slick pavement and adverse weather<br />

c<strong>on</strong>tribute to nearly <strong>on</strong>e-quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> all highway crashes and about 7,400 fatalities annually. 2 In<br />

additi<strong>on</strong>, snow, ice, rain, and fog cause about 15 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> total delays <strong>on</strong> the nati<strong>on</strong>’s highways<br />

(FHWA 2004; NRC 2004a). Weather also causes delays and interrupti<strong>on</strong>s in service for railroad<br />

and marine transportati<strong>on</strong>. 3<br />

Transportati<strong>on</strong> agencies expend c<strong>on</strong>siderable resources to address these c<strong>on</strong>diti<strong>on</strong>s. For<br />

example, snow and ice c<strong>on</strong>trol accounts for about 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> annual highway operating<br />

budgets in snowbelt states (FHWA 2006a). Hurricane resp<strong>on</strong>se is a major focus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> operati<strong>on</strong>s in states bordering the Gulf Coast. Collaborati<strong>on</strong> between departments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> (DOTs) and emergency resp<strong>on</strong>se pers<strong>on</strong>nel has improved, particularly in those<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the country subject to recurring natural disasters—the Gulf Coast (hurricanes) and<br />

California (earthquakes and wildfires)—but still has a l<strong>on</strong>g way to go. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is altering<br />

the frequency, intensity, and incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> weather events.<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> Extreme Weather Events<br />

With changes in the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme weather events, operati<strong>on</strong>al resp<strong>on</strong>ses treated today <strong>on</strong><br />

an ad hoc, emergency basis are likely to become part <str<strong>on</strong>g>of</str<strong>on</strong>g> mainstream operati<strong>on</strong>s. One could<br />

imagine, for example, that if str<strong>on</strong>g (Category 4 and 5) hurricanes increased in frequency as is<br />

likely, widespread establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> routes and use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>traflow operati<strong>on</strong>s 4 in<br />

affected areas might become as comm<strong>on</strong>place as snow emergency routes in the Northeast and<br />

Midwest. Mainstreaming such resp<strong>on</strong>ses will require expanding the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> the traditi<strong>on</strong>al<br />

operating focus <str<strong>on</strong>g>of</str<strong>on</strong>g> DOTs <strong>on</strong> traffic and incident management to include weather management, as<br />

well as improved training for operating pers<strong>on</strong>nel.<br />

1<br />

This secti<strong>on</strong> draws heavily <strong>on</strong> the paper by Lockwood (2006; see Appendix C) commissi<strong>on</strong>ed for this study.<br />

2<br />

Based <strong>on</strong> averages from 1995–2004 data collected by the Nati<strong>on</strong>al Highway Traffic Safety Administrati<strong>on</strong> and<br />

analyzed by Mitretek Systems.<br />

3<br />

See, for example, Changn<strong>on</strong> (2006) <strong>on</strong> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and climate <strong>on</strong> american railroading and a report by<br />

the Office <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Coordinator for Meteorological Services and Supporting Research <strong>on</strong> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weather <strong>on</strong> surface transportati<strong>on</strong> modes (OFCM 2002).<br />

4<br />

C<strong>on</strong>traflow involves the reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic flow <strong>on</strong> <strong>on</strong>e or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the inbound lanes and shoulders <str<strong>on</strong>g>of</str<strong>on</strong>g> roads and<br />

highways for use in the outbound directi<strong>on</strong> to increase evacuati<strong>on</strong> capacity in an emergency by using both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

roadway.


Meeting the Challenges 115<br />

Increases in Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> Weather Events<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is expected to trigger more extreme weather events, such as more intense<br />

precipitati<strong>on</strong>, which are likely to produce areawide emergencies and may require evacuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

areas vulnerable to flooding and storm surge. In the wake <str<strong>on</strong>g>of</str<strong>on</strong>g> September 11, 2001, and<br />

Hurricanes Katrina and Rita, the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Homeland Security has mandated an allhazards<br />

approach to emergency planning and resp<strong>on</strong>se and encouraged better evacuati<strong>on</strong><br />

planning (DHS 2006). Coordinati<strong>on</strong> am<strong>on</strong>g state and local emergency managers—the first<br />

resp<strong>on</strong>ders in an emergency—has improved, and emergency operati<strong>on</strong>s centers (EOCs) have<br />

been established in many metropolitan areas as command posts that can be activated rapidly in<br />

an emergency. Typically, transportati<strong>on</strong> is a support functi<strong>on</strong>, but the critical role it plays in<br />

emergency resp<strong>on</strong>se and especially in evacuati<strong>on</strong>—a role that is likely to become more important<br />

as the climate changes—should be strengthened through increased collaborati<strong>on</strong> between<br />

emergency managers and transportati<strong>on</strong> providers and more representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong><br />

agencies and private transportati<strong>on</strong> providers at EOCs. Operators <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> systems also<br />

need to work more closely with weather forecasters and emergency resp<strong>on</strong>se planners to c<strong>on</strong>vey<br />

their own lead-time requirements for providing the necessary pers<strong>on</strong>nel and equipment in an<br />

evacuati<strong>on</strong> and protecting their own assets. Finally, a greater emphasis <strong>on</strong> emergency<br />

management as a separate functi<strong>on</strong>al resp<strong>on</strong>sibility within DOTs and other transportati<strong>on</strong><br />

providers is needed.<br />

Regi<strong>on</strong>al transportati<strong>on</strong> management centers (TMCs) provide <strong>on</strong>e locati<strong>on</strong> through which<br />

collaborati<strong>on</strong> between transportati<strong>on</strong> providers and emergency managers can occur (see<br />

Box 5-1). TMCs are currently focused <strong>on</strong> traffic m<strong>on</strong>itoring and incident management through<br />

rapid deployment <str<strong>on</strong>g>of</str<strong>on</strong>g> police, fire and rescue, and emergency medical services. In some<br />

metropolitan areas, new functi<strong>on</strong>s are being added, such as better weather informati<strong>on</strong> and<br />

greater use <str<strong>on</strong>g>of</str<strong>on</strong>g> real-time traffic advisories, as well as links with emergency managers. Some<br />

TMCs are also serving as EOCs. However, integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and emergency management<br />

functi<strong>on</strong>s in TMCs is still in its infancy according to a recent US DOT assessment (FHWA<br />

2006b).<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> Weather Patterns<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> changes will bring new weather patterns to previously unaffected areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the United<br />

States. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes, however, may not necessarily require the development <str<strong>on</strong>g>of</str<strong>on</strong>g> new operating<br />

and maintenance strategies. <str<strong>on</strong>g>The</str<strong>on</strong>g> United States has a diverse climate, ranging from subtropical to<br />

arctic and from arid to wet, with several regi<strong>on</strong>s being subject to temperature extremes and such<br />

events as blizzards, hurricanes, tornadoes, floods, wildfires, avalanches, and mudslides. As<br />

climate patterns change, the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> best practices from <strong>on</strong>e locati<strong>on</strong> to another will be<br />

essential. A mechanism is needed to encourage such informati<strong>on</strong> exchange, involving all<br />

transportati<strong>on</strong> modes. This effort should build <strong>on</strong> existing technology transfer mechanisms, such<br />

as the Technology Implementati<strong>on</strong> Group <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and<br />

Transportati<strong>on</strong> Officials (AASHTO). 5<br />

5 <str<strong>on</strong>g>The</str<strong>on</strong>g> primary objective <str<strong>on</strong>g>of</str<strong>on</strong>g> AASHTO’s Technology Implementati<strong>on</strong> Group, which grew out <str<strong>on</strong>g>of</str<strong>on</strong>g> an AASHTO task<br />

force’s successful effort to implement products <str<strong>on</strong>g>of</str<strong>on</strong>g> the Strategic Highway Research Program, is to provide leadership<br />

to state DOTs, local governments, and industry in the selecti<strong>on</strong> and promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ready-to-implement technologies.


116 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

BOX 5-1<br />

Transportati<strong>on</strong> Management Centers<br />

Improving the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the existing highway network involves the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

technologies, such as intelligent transportati<strong>on</strong> systems (ITS), and c<strong>on</strong>trol strategies, such<br />

as ramp metering, dynamic message signs, and incident management. In many large<br />

metropolitan areas, these developments have been accompanied by establishment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

regi<strong>on</strong>al transportati<strong>on</strong> management centers (TMCs), which are seen as the cockpit or<br />

nerve center for m<strong>on</strong>itoring traffic incidents and providing rapid police resp<strong>on</strong>se, crash<br />

clearance, and travel advisories. Many TMCs are manned by staff from multiple<br />

agencies and jurisdicti<strong>on</strong>s working as a team.<br />

Some TMCs are focused primarily <strong>on</strong> traffic and incident management. Others,<br />

such as Houst<strong>on</strong> TranStar, have a broader scope. Opened in 1996, Houst<strong>on</strong> TranStar is a<br />

c<strong>on</strong>sortium partnership <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> and emergency management agencies in the<br />

Greater Houst<strong>on</strong> area, housing engineers, law enforcement pers<strong>on</strong>nel, informati<strong>on</strong><br />

technology specialists, and emergency managers. In additi<strong>on</strong> to traffic m<strong>on</strong>itoring and<br />

incident c<strong>on</strong>trol, emergency management pers<strong>on</strong>nel from the Harris County Office <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Emergency Management m<strong>on</strong>itor potential emergencies due to severe weather using<br />

state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art technology, such as flood warning m<strong>on</strong>itors, Doppler radar, satellite<br />

imagery and weather data from the Nati<strong>on</strong>al Weather Service, to provide the public with<br />

real-time informati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> city <str<strong>on</strong>g>of</str<strong>on</strong>g> Chicago recently opened a new City Incident Center (CIC), which<br />

integrates the city’s homeland security efforts with traffic services, am<strong>on</strong>g other<br />

activities. <str<strong>on</strong>g>The</str<strong>on</strong>g> CIC follows <strong>on</strong> the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Traffic Management Authority in 2005,<br />

dedicated to improving traffic flow through ITS technology and centralized c<strong>on</strong>trol<br />

systems. <str<strong>on</strong>g>The</str<strong>on</strong>g> new facility will have positi<strong>on</strong>s dedicated to traffic management, but will<br />

also provide a central locati<strong>on</strong> for communicati<strong>on</strong> am<strong>on</strong>g dispatch operators from all the<br />

relevant city departments so they can resp<strong>on</strong>d rapidly and effectively in the event <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

emergency (Chicago Opens New City Incident Center to Coordinate Communicati<strong>on</strong>s,<br />

Dispatch 2006).<br />

Design Strategies<br />

Operati<strong>on</strong>al resp<strong>on</strong>ses are geared to addressing near-term impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. To make<br />

decisi<strong>on</strong>s today about rehabilitating or retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting transportati<strong>on</strong> facilities, especially those with<br />

l<strong>on</strong>g design lives (see Table 4-2 in the previous chapter) transportati<strong>on</strong> planners and engineers<br />

must c<strong>on</strong>sider how climate changes will affect these facilities 50 years or more from now.<br />

Adapting to climate change will also require reevaluati<strong>on</strong>, development, and regular updating <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

design standards that guide infrastructure design.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> design standards is to provide engineers with guidance <strong>on</strong> how to<br />

c<strong>on</strong>struct infrastructure for safe and reliable performance. 6 <str<strong>on</strong>g>The</str<strong>on</strong>g>se standards represent the<br />

uniform applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the best engineering knowledge, developed through years <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental<br />

6 This secti<strong>on</strong> draws heavily <strong>on</strong> the paper by Meyer (2006; see Appendix C) commissi<strong>on</strong>ed for this study.


Meeting the Challenges 117<br />

study and actual experience. Often they become imbedded in regulatory requirements and<br />

funding programs. 7 Design standards embody trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs between performance (e.g., safety,<br />

reliability) and cost. Faced with a myriad <str<strong>on</strong>g>of</str<strong>on</strong>g> factors that can affect performance, engineers<br />

typically select the most demanding parameter—the 100-year storm, the heaviest truck, the most<br />

powerful wind speed—as the basis for design, thereby building in a safety margin to minimize<br />

the chances <str<strong>on</strong>g>of</str<strong>on</strong>g> failure.<br />

Envir<strong>on</strong>mental factors are integral to the design <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure.<br />

C<strong>on</strong>diti<strong>on</strong>s such as temperature, freeze–thaw cycles, and durati<strong>on</strong> and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

determine subsurface and foundati<strong>on</strong> designs, choices <str<strong>on</strong>g>of</str<strong>on</strong>g> materials, and drainage capacity. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

issue is whether current design standards are adequate to accommodate the climate changes<br />

projected by scientists. Table 5-1 provides an assessment by Meyer (2006) <str<strong>on</strong>g>of</str<strong>on</strong>g> the principal<br />

climate-induced changes and their implicati<strong>on</strong>s for infrastructure design in both the short and<br />

l<strong>on</strong>g terms. Looking across all climate changes, the author notes that the most dominant impact<br />

is <strong>on</strong> those design elements most associated with forces resulting from water flows. This finding<br />

is not surprising in view <str<strong>on</strong>g>of</str<strong>on</strong>g> the extensive damage to transportati<strong>on</strong> infrastructure and buildings<br />

caused by flooding and storm surge in Hurricanes Katrina and Rita. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> changes, however,<br />

will not affect the design <str<strong>on</strong>g>of</str<strong>on</strong>g> all infrastructure modes equally, a sec<strong>on</strong>d important observati<strong>on</strong>.<br />

For example, wave acti<strong>on</strong> is more critical than temperature changes for coastal bridge design.<br />

Finally, climate extremes, such as str<strong>on</strong>ger wind speeds, increased storm surges, and greater<br />

wave heights, will place the greatest demands <strong>on</strong> infrastructure because they are likely to push<br />

the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> the performance range for which facilities were designed.<br />

How should engineering design decisi<strong>on</strong>s be modified to address climate change,<br />

particularly for l<strong>on</strong>ger-lived infrastructure for which the uncertainties are greater regarding the<br />

magnitude and timing <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changes? One opti<strong>on</strong> is to build to a more robust standard,<br />

assuming a greater frequency and magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events, without a full understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future risks and presumably at greater cost. This strategy could be appropriate for major<br />

facilities in vulnerable locati<strong>on</strong>s (e.g., critical bridges and evacuati<strong>on</strong> routes), but its high costs<br />

necessitate a highly selective approach. Another opti<strong>on</strong> is to upgrade parallel routes, but this<br />

alternative depends <strong>on</strong> the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> right <str<strong>on</strong>g>of</str<strong>on</strong>g> way and the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> upgrading. A third opti<strong>on</strong><br />

is to build infrastructure with shorter design lives, presumably at lower cost, to be retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itted as<br />

more knowledge about future climate c<strong>on</strong>diti<strong>on</strong>s is gained. This alternative probably is not<br />

viable in the United States because <str<strong>on</strong>g>of</str<strong>on</strong>g> the disrupti<strong>on</strong> and negative public reacti<strong>on</strong> resulting from<br />

more frequent retr<str<strong>on</strong>g>of</str<strong>on</strong>g>its <str<strong>on</strong>g>of</str<strong>on</strong>g> major facilities. Most states are adopting a “fast in, fast out, and stay<br />

out” approach to major rec<strong>on</strong>structi<strong>on</strong> projects. A final opti<strong>on</strong> is to hedge by building to current<br />

standards or making marginal improvements, recognizing that the infrastructure remains at risk<br />

and may require major improvements in the future. This alternative poses many <str<strong>on</strong>g>of</str<strong>on</strong>g> the same<br />

problems as the previous <strong>on</strong>e. All four opti<strong>on</strong>s involve important cost–risk reducti<strong>on</strong> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs<br />

that engineers and planners can best address through a more strategic, risk-based approach to<br />

design and investment decisi<strong>on</strong>s, such as that described in the previous chapter. <str<strong>on</strong>g>The</str<strong>on</strong>g> approach<br />

taken by Transit New Zealand to determine the necessity and feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> taking acti<strong>on</strong> now to<br />

protect the state highway network from the potential future impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change could also<br />

be instructive (see Box 5-2).<br />

7 To be eligible for federal funding, for example, state and local governments must comply with federal standards<br />

with respect to lane and shoulder widths <strong>on</strong> highways and bridge clearances over navigable waterways. If the<br />

infrastructure is damaged or destroyed, federal agencies and insurers typically allow renovati<strong>on</strong> or rebuilding <strong>on</strong>ly to<br />

replacement standards; upgrading is not a reimbursable cost.


118 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

TABLE 5-1 <str<strong>on</strong>g>Climate</str<strong>on</strong>g>-Induced <str<strong>on</strong>g>Change</str<strong>on</strong>g>s That Could Influence Transportati<strong>on</strong><br />

Infrastructure Design<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-<str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Envir<strong>on</strong>mental Design Implicati<strong>on</strong>s<br />

Phenomen<strong>on</strong><br />

C<strong>on</strong>diti<strong>on</strong><br />

Temperature change Rising maximum temperature; Over the short term,<br />

lower minimum temperature;<br />

wider temperature range;<br />

possible significant impact <strong>on</strong><br />

permafrost<br />

* minimal impact <strong>on</strong><br />

pavement or structural design; potential<br />

significant impact <strong>on</strong> road, bridge scour, and<br />

culvert design in cold regi<strong>on</strong>s<br />

Over the l<strong>on</strong>g term, possible significant<br />

impact <strong>on</strong> pavement and structural design;<br />

need for new materials and better<br />

maintenance strategies<br />

Changing precipitati<strong>on</strong><br />

levels<br />

Worst-case scenario, more<br />

precipitati<strong>on</strong>; higher water<br />

tables; greater levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flooding; higher moisture<br />

c<strong>on</strong>tent in soils<br />

Wind loads Str<strong>on</strong>ger wind speeds and thus<br />

loads <strong>on</strong> bridge structures;<br />

more turbulence<br />

Sea level rise Rising water levels in coastal<br />

areas and rivers; increases in<br />

severe coastal flooding<br />

Greater storm surges<br />

and wave heights<br />

Larger and more frequent<br />

storm surges; more powerful<br />

wave acti<strong>on</strong><br />

Over the short term, could affect pavement<br />

and drainage design; need for greater<br />

attenti<strong>on</strong> to foundati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, more<br />

probabilistic approaches to design floods,<br />

more targeted maintenance<br />

Over the l<strong>on</strong>g term, definite impact <strong>on</strong><br />

foundati<strong>on</strong> design and design <str<strong>on</strong>g>of</str<strong>on</strong>g> drainage<br />

systems and culverts; impact <strong>on</strong> design <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pavement subgrade and materials<br />

Over the short term, design factors for design<br />

wind speed might change; wind tunnel<br />

testing will have to c<strong>on</strong>sider more turbulent<br />

wind c<strong>on</strong>diti<strong>on</strong>s<br />

Over the l<strong>on</strong>g term, need for materials <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greater strength; impact <strong>on</strong> design<br />

c<strong>on</strong>siderati<strong>on</strong>s for suspended and cablestayed<br />

bridges<br />

Over the l<strong>on</strong>g term, greater inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coastal areas; need for more stringent design<br />

standards for flooding and building in<br />

saturated soils; greater protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infrastructure needed when higher sea levels<br />

combine with storm surges<br />

Over the short term, need for design changes<br />

to bridge height in vulnerable areas; need for<br />

more probabilistic approach to predicting<br />

storm surges<br />

Over l<strong>on</strong>g term, need for design changes to<br />

bridge design, both superstructure and<br />

foundati<strong>on</strong>s, change in materials<br />

specificati<strong>on</strong>s, and more protective strategies<br />

for critical comp<strong>on</strong>ents<br />

*<br />

For purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this table, short term is defined as being the next 30 to 40 years; l<strong>on</strong>g term is from 40 to 100 years.<br />

Source: Meyer 2006, Table 1.


Meeting the Challenges 119<br />

Box 5-2<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and Asset Management: New Zealand Transit’s<br />

Approach to Addressing <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Under the 2004 Resource Management (Energy and <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>) Amendment Act—<br />

New Zealand’s principal legislati<strong>on</strong> for envir<strong>on</strong>mental management—Transit New Zealand<br />

was required to take into account the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change as it plans, c<strong>on</strong>structs, and<br />

maintains the state highway network (Kinsella and McGuire 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> key climate changes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern to state highways are sea level rise, coastal storm surges, and increased frequency<br />

and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy rainfall events. <str<strong>on</strong>g>The</str<strong>on</strong>g> primary assets at risk are bridges, culverts,<br />

causeways and coastal roads, pavement surfaces, surface drainage, and hillside slopes.<br />

Transit New Zealand proceeded with a two-stage assessment to identify those areas<br />

requiring acti<strong>on</strong>. Stage 1 involved assessing the need to act now to manage future potential<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. Three criteria were used:<br />

• Level <str<strong>on</strong>g>of</str<strong>on</strong>g> certainty that the climate change impact will occur at the magnitude predicted<br />

in the specified time frame<br />

• Intended design life <str<strong>on</strong>g>of</str<strong>on</strong>g> the state highway asset<br />

• Capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the agency’s current asset management practice to manage the impact<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> the Stage 1 assessment revealed that current asset management practice is<br />

generally adequate to deal with impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change for most <str<strong>on</strong>g>of</str<strong>on</strong>g> the network, but that<br />

bridges and culverts with an intended design life <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 25 years may require case-by<br />

case c<strong>on</strong>siderati<strong>on</strong> to ensure protecti<strong>on</strong> (Kinsella and McGuire 2005).<br />

Stage 2 involved assessing the ec<strong>on</strong>omic feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> acting now to manage future<br />

potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and was focused <strong>on</strong> bridges and culverts with design<br />

lives <str<strong>on</strong>g>of</str<strong>on</strong>g> greater than 25 years. Making several simplifying assumpti<strong>on</strong>s, the analysis<br />

examined three opti<strong>on</strong>s: (a) doing nothing, (b) retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting all existing bridges and culverts<br />

now to avoid future climate change impacts, and (c) designing all new bridges and culverts to<br />

accommodate future climate changes to 2080. <str<strong>on</strong>g>The</str<strong>on</strong>g> analysis revealed that it would not be<br />

ec<strong>on</strong>omical to retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it the existing stock <str<strong>on</strong>g>of</str<strong>on</strong>g> bridges and culverts, but would be preferable to<br />

repair the assets when a specific loss or need became evident. <str<strong>on</strong>g>The</str<strong>on</strong>g> primary reas<strong>on</strong>s for this<br />

c<strong>on</strong>clusi<strong>on</strong> were uncertainties about where and when the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change will<br />

manifest themselves and the historical number <str<strong>on</strong>g>of</str<strong>on</strong>g> bridges and culverts lost prematurely<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> other events. Retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting all new bridges and culverts to take climate change into<br />

account was also determined not to be ec<strong>on</strong>omical. Nevertheless, the agency decided that,<br />

where possible, provisi<strong>on</strong> should be made for subsequent retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting (either lifting or<br />

lengthening the bridge) in the event impacts are experienced. For major bridges (and<br />

culverts) where retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting is not practical, the structure should be designed for projected<br />

future impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the best available informati<strong>on</strong> (Kinsella and<br />

McGuire 2005).<br />

Transit New Zealand has amended its Bridge Manual to include c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relevant impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change as a design factor. In additi<strong>on</strong>, the agency will c<strong>on</strong>tinue<br />

to m<strong>on</strong>itor climate change data and developments and review its policy when appropriate.


120 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

More fundamentally, the scientific community and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al associati<strong>on</strong>s must<br />

reevaluate design standards for transportati<strong>on</strong> infrastructure that take climate change into account<br />

and begin the lengthy process <str<strong>on</strong>g>of</str<strong>on</strong>g> developing new standards where appropriate. Reexaminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

design standards can be prompted by a single event, such as the damage to coastal highway<br />

bridges from Hurricane Katrina, when it became evident that the current state <str<strong>on</strong>g>of</str<strong>on</strong>g> practice—<br />

designing bridges for a riverine envir<strong>on</strong>ment and a 50-year storm—was inadequate. <str<strong>on</strong>g>The</str<strong>on</strong>g> Federal<br />

Highway Administrati<strong>on</strong> (FHWA) not <strong>on</strong>ly approved and shared in the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> rebuilding the<br />

damaged bridges to a higher design standard, but also recommended the development <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

appropriate bridge design standards in general for a coastal envir<strong>on</strong>ment that would take into<br />

account the combined effects <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surge and wave acti<strong>on</strong> and assume a more severe storm<br />

event (e.g., a 100-year or even 500-year storm) (FHWA 2005a). 8<br />

Typically, however, the development <str<strong>on</strong>g>of</str<strong>on</strong>g> design standards follows a time-c<strong>on</strong>suming and<br />

systematic process that involves pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al organizati<strong>on</strong>s in an extensive research and testing<br />

program over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> decades. Once the standards are in place, engineers are understandably<br />

reluctant to change them. A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time required to modify or develop<br />

new standards, the instituti<strong>on</strong>al procedures for approval <str<strong>on</strong>g>of</str<strong>on</strong>g> standards (vetting any changes<br />

through pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al committees <str<strong>on</strong>g>of</str<strong>on</strong>g> practicing engineers), and the use <str<strong>on</strong>g>of</str<strong>on</strong>g> well-established<br />

standards as evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> “good practice” in litigati<strong>on</strong> lead to a c<strong>on</strong>servative approach to change.<br />

Developing standards to address climate change in a timely manner thus will require leadership<br />

by the scientific community and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al associati<strong>on</strong>s and, given the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> potential<br />

impacts, a broad-based, federally sp<strong>on</strong>sored research program that must begin so<strong>on</strong>. A good<br />

model is the c<strong>on</strong>gressi<strong>on</strong>ally mandated Nati<strong>on</strong>al Earthquake Hazard Reducti<strong>on</strong> Program, begun<br />

in 1977, which has provided much <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying research for seismic standards (see<br />

Box 5-3).<br />

New Infrastructure Investment, Transportati<strong>on</strong> Planning, and C<strong>on</strong>trols <strong>on</strong> Land Use<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most effective strategies for reducing the risks <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change is to avoid placing<br />

people and infrastructure in vulnerable locati<strong>on</strong>s, such as coastal areas. Chapter 3 described the<br />

c<strong>on</strong>tinuing development pressures <strong>on</strong> coastal counties despite the increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding and<br />

damage from storm surge and wave acti<strong>on</strong> accompanying projected rising sea levels. Many<br />

areas al<strong>on</strong>g the Atlantic, Gulf, and Pacific coasts will be affected. Once in place, settlement<br />

patterns and supporting infrastructure are difficult to change. In New York City, for example, a<br />

major c<strong>on</strong>cern <str<strong>on</strong>g>of</str<strong>on</strong>g> emergency planners is handling the evacuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some 2.3 milli<strong>on</strong> New<br />

Yorkers from flood-pr<strong>on</strong>e areas in the event <str<strong>on</strong>g>of</str<strong>on</strong>g> a Category 3 or greater hurricane (New York City<br />

Transit 2007). C<strong>on</strong>tinued development <str<strong>on</strong>g>of</str<strong>on</strong>g> such vulnerable areas will <strong>on</strong>ly place more<br />

communities and businesses at risk and increase the difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> in the event <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

major storm.<br />

Why do transportati<strong>on</strong> planners fail to c<strong>on</strong>sider development patterns in making<br />

investment decisi<strong>on</strong>s? <str<strong>on</strong>g>The</str<strong>on</strong>g> short answer is that they do, but not from the perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> land use<br />

c<strong>on</strong>trol. Public-sector transportati<strong>on</strong> planners typically forecast expected land use patterns over a<br />

25- to 30-year period as the basis for modeling future travel demand and infrastructure<br />

investment needs (Meyer and Miller 2001). However, they rarely c<strong>on</strong>sider whether such<br />

investments are desirable, or what development may result from building or expanding<br />

8 AASHTO and state DOTs are leading this initiative, and research <strong>on</strong> wave forces and wave load design practices is<br />

now being undertaken by universities and US DOT’s Turner Fairbank Highway Research Center, am<strong>on</strong>g others.


Meeting the Challenges 121<br />

BOX 5-3<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Seismic Standards in the United States<br />

In 1977 C<strong>on</strong>gress passed the Earthquake Hazards Reducti<strong>on</strong> Act, which established the<br />

Nati<strong>on</strong>al Earthquake Hazard Reducti<strong>on</strong> Program (NEHRP)—a l<strong>on</strong>g-term earthquake risk<br />

reducti<strong>on</strong> program. Member agencies include the United States Geological Survey, the<br />

Nati<strong>on</strong>al Science Foundati<strong>on</strong>, the Federal Emergency Management Agency, and the<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards and Technology—agencies engaged primarily in research<br />

and development. <str<strong>on</strong>g>The</str<strong>on</strong>g> missi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NEHRP is broad and includes understanding the<br />

science <str<strong>on</strong>g>of</str<strong>on</strong>g> earthquakes and their effects, improving earthquake hazard identificati<strong>on</strong> and<br />

risk assessment methods, and developing effective practices (e.g., model building codes)<br />

and policies to reduce earthquake losses (NEHRP 2007).<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary accomplishments <str<strong>on</strong>g>of</str<strong>on</strong>g> NEHRP has been the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

design standards for the seismic safety <str<strong>on</strong>g>of</str<strong>on</strong>g> buildings, both new and existing, which serve<br />

as a basis for nati<strong>on</strong>al model building codes. Seismic standards and guidelines have also<br />

been developed for lifelines—telecommunicati<strong>on</strong>s, transportati<strong>on</strong>, water, sewage, electric<br />

power, gas, and liquid fuel lines. Adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the standards is voluntary, but some states,<br />

such as California, have incorporated the model nati<strong>on</strong>al codes into state regulati<strong>on</strong>s, and<br />

the federal government has adopted the standards for its own buildings and as a<br />

prerequisite for obtaining federal funds. <str<strong>on</strong>g>The</str<strong>on</strong>g> Federal Highway Administrati<strong>on</strong>, for<br />

example, requires that federally assisted bridge and highway projects meet minimum<br />

seismic standards.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> seismic specificati<strong>on</strong>s for bridges began in the 1970s with the<br />

San Fernando earthquake and was spurred by the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> subsequent major<br />

earthquakes. For example, the 1989 Lomo Prieta earthquake led the American<br />

Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and Transportati<strong>on</strong> Officials (AASHTO) to adopt a<br />

standard seismic specificati<strong>on</strong> for bridges in 1990. In resp<strong>on</strong>se to the limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

“<strong>on</strong>e-size-fits-all” approach, a modified performance-based standard was proposed in<br />

1997, but it was rejected as being too complex and having too high a return frequency<br />

(2,500 years) relative to other hazards (Buckle 2006). (A performance-based nati<strong>on</strong>al<br />

c<strong>on</strong>sensus standard has been developed for buildings.) Nevertheless, revisi<strong>on</strong>s are under<br />

way, and the performance-based approach, which takes into account different<br />

performance requirements and levels <str<strong>on</strong>g>of</str<strong>on</strong>g> risk, could be a model for the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

standards to address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. A program such as NEHRP would be<br />

essential to fund the necessary supporting research and testing.<br />

transportati<strong>on</strong> networks (Amekudzi and Meyer 2005). 9 Although the l<strong>on</strong>g-term capital<br />

improvement and budgeting process is different in the private sector (see Chapter 4), it suffers<br />

from the same limitati<strong>on</strong>s.One <str<strong>on</strong>g>of</str<strong>on</strong>g> the main reas<strong>on</strong>s for the disc<strong>on</strong>nect between transportati<strong>on</strong><br />

investment decisi<strong>on</strong>s and land use and development decisi<strong>on</strong>s can be traced to governance<br />

9 Meyer (2006) notes two locati<strong>on</strong>s—Lake Tahoe, Nevada, and Cape Cod, Massachusetts—where transportati<strong>on</strong><br />

planners have identified envir<strong>on</strong>mentally sensitive areas that are <str<strong>on</strong>g>of</str<strong>on</strong>g>f limits to new infrastructure and development,<br />

but these are the excepti<strong>on</strong>s rather than the rule.


122 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

arrangements. Decisi<strong>on</strong>s regarding large-scale transportati<strong>on</strong> infrastructure investments are the<br />

resp<strong>on</strong>sibility <str<strong>on</strong>g>of</str<strong>on</strong>g> states, regi<strong>on</strong>al authorities, and the private sector. Local governments and a few<br />

states (e.g., Florida, California) c<strong>on</strong>trol land use decisi<strong>on</strong>s through comprehensive plans, z<strong>on</strong>ing<br />

ordinances, permitting, and building codes. Locally c<strong>on</strong>trolled land use planning, the typical<br />

situati<strong>on</strong> in the United States, has too limited a perspective to account for the broadly shared<br />

risks <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. Local governments are interested primarily in the jobs and ec<strong>on</strong>omic<br />

development that growth may bring to their communities, although in many localities, the costs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> unc<strong>on</strong>trolled growth in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> crowded roads and schools are being recognized. In some<br />

locati<strong>on</strong>s, greater integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> and land use planning is resulting from smart<br />

growth policies, which recognize the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> investments <strong>on</strong> regi<strong>on</strong>al<br />

development and ec<strong>on</strong>omic growth and vice versa; such integrati<strong>on</strong> is not comm<strong>on</strong>, however.<br />

Transportati<strong>on</strong> planners cannot resolve these issues single-handedly. <str<strong>on</strong>g>The</str<strong>on</strong>g> developers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

any strategy that involves imposing land use c<strong>on</strong>trols to address climate change would need to<br />

build c<strong>on</strong>sensus am<strong>on</strong>g key decisi<strong>on</strong> makers in both transportati<strong>on</strong> and land use, probably at the<br />

regi<strong>on</strong>al level—a challenging propositi<strong>on</strong>. Nevertheless, if transportati<strong>on</strong> planners were required<br />

to work more closely with land use planners and c<strong>on</strong>sider potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change in<br />

the development <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term investment plans, the issues would become more visible.<br />

At present, the Safe, Accountable, Flexible, Efficient Transportati<strong>on</strong> Equity Act: A<br />

Legacy for Users (SAFETEA-LU) encourages greater collaborati<strong>on</strong> and partnership am<strong>on</strong>g<br />

transportati<strong>on</strong> planners and state and local agencies resp<strong>on</strong>sible for land use management, am<strong>on</strong>g<br />

others, in plan development. 10 In the reauthorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this legislati<strong>on</strong>, such collaborati<strong>on</strong><br />

should be required, as should c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change impacts and their effects <strong>on</strong><br />

infrastructure plans and investments, particularly in vulnerable locati<strong>on</strong>s.<br />

At the local level, some metropolitan planning organizati<strong>on</strong>s (MPOs) have already begun<br />

to adopt more flexible, scenario-based approaches in developing their l<strong>on</strong>g-range transportati<strong>on</strong><br />

investment plans (see Box 5-4). <str<strong>on</strong>g>The</str<strong>on</strong>g> impetus has come in part from the desire to provide local<br />

communities with a framework within which to better understand the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> growth and the<br />

difficult trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs am<strong>on</strong>g social, ec<strong>on</strong>omic, and envir<strong>on</strong>mental goals in planning future<br />

transportati<strong>on</strong> investments. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic informati<strong>on</strong> systems and modeling has enabled<br />

planners to illustrate and quantify the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al growth scenarios <strong>on</strong> land use<br />

and area traffic, am<strong>on</strong>g other factors. At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the planning process, <strong>on</strong>e scenario typically<br />

is selected as the preferred opti<strong>on</strong>. Development and m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> performance measures<br />

enable local planners to examine the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> their choices and revisit the plans periodically to<br />

take into account new developments and changes in local priorities.<br />

Scenario planning could be adapted to take potential climate changes into account in the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> future regi<strong>on</strong>al transportati<strong>on</strong> plans. For example, projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> current<br />

development patterns and supporting transportati<strong>on</strong> infrastructure, when overlaid <strong>on</strong> maps<br />

showing current elevati<strong>on</strong>s and expected sea level rise, could illustrate the increased risks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

allowing unc<strong>on</strong>trolled development in vulnerable coastal areas and the desirability <str<strong>on</strong>g>of</str<strong>on</strong>g> managed<br />

growth policies and protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> critical infrastructure. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists, perhaps at local<br />

universities, could assist in the planning process by identifying plausible impact scenarios.<br />

10 More specifically, Secti<strong>on</strong> 6001 and the Final Rule <strong>on</strong> Statewide and Metropolitan Transportati<strong>on</strong> Planning<br />

(Federal Register 2007) specify that l<strong>on</strong>g-range transportati<strong>on</strong> plans must be developed in c<strong>on</strong>sultati<strong>on</strong> with<br />

agencies resp<strong>on</strong>sible for land use management, natural resources, envir<strong>on</strong>mental protecti<strong>on</strong>, c<strong>on</strong>servati<strong>on</strong>, and<br />

historic preservati<strong>on</strong>, and that state c<strong>on</strong>servati<strong>on</strong> plans or maps and inventories <str<strong>on</strong>g>of</str<strong>on</strong>g> natural or historic resources must<br />

be c<strong>on</strong>sulted.


Meeting the Challenges 123<br />

Box 5-4<br />

Scenario Analysis in Transportati<strong>on</strong> Planning<br />

Scenario analysis as practiced by transportati<strong>on</strong> planners is a process through which<br />

public agencies, private entities, and citizens work together to envisi<strong>on</strong> the l<strong>on</strong>g-term<br />

future <str<strong>on</strong>g>of</str<strong>on</strong>g> their communities (FHWA 2005b). Scenario planning starts with a business-asusual<br />

baseline scenario, incorporating current plans or trends for a regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>n, a range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alternative future scenarios is identified <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> community input, using tools<br />

and transportati<strong>on</strong> models incorporating geographic informati<strong>on</strong> to identify impacts both<br />

quantitatively and visually. Typically, <strong>on</strong>e scenario is chosen as the preferred alternative<br />

and is adopted as the regi<strong>on</strong>’s visi<strong>on</strong> for the future.<br />

According to a recent survey, metropolitan planning organizati<strong>on</strong>s (MPOs) are the<br />

lead sp<strong>on</strong>sors <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario planning, followed by n<strong>on</strong>pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it organizati<strong>on</strong>s (e.g.,<br />

envir<strong>on</strong>mental groups) and local governments (Bartholomew 2005). Numerous<br />

localities—Salt Lake City, Houst<strong>on</strong>, Sacramento, Portland, Los Angeles, and Chicago,<br />

am<strong>on</strong>g others—have adopted this approach.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> recently released 2035 Regi<strong>on</strong>al Transportati<strong>on</strong> Plan for Greater Houst<strong>on</strong> is a<br />

good example <str<strong>on</strong>g>of</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios to examine the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> different land<br />

development choices <strong>on</strong> travel c<strong>on</strong>gesti<strong>on</strong>, transit use, and populati<strong>on</strong> growth in<br />

floodplains and hurricane evacuati<strong>on</strong> z<strong>on</strong>es (Bridging our Communities 2035 2007).<br />

Facing a projected 75 percent increase in populati<strong>on</strong> and a 60 percent increase in<br />

employment over the next 30 years, the Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Governments for the Greater Houst<strong>on</strong><br />

area—the Houst<strong>on</strong>-Galvest<strong>on</strong> Area Council—spearheaded the Envisi<strong>on</strong> Houst<strong>on</strong> Regi<strong>on</strong><br />

initiative in 2005 to engage elected <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials, residents, and other stakeholders in planning<br />

and creating a l<strong>on</strong>g-term growth strategy to 2035. Four scenarios were c<strong>on</strong>sidered,<br />

ranging from the status quo to a scenario assuming high-density mixed-use development<br />

al<strong>on</strong>g transit corridors and town centers; the latter is the selected Envisi<strong>on</strong> scenario,<br />

which planners believe <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a reas<strong>on</strong>able path forward and has c<strong>on</strong>siderable community<br />

support.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> regi<strong>on</strong>al plan also is notable for taking the first steps toward integrating<br />

climate change into the transportati<strong>on</strong> planning process. <str<strong>on</strong>g>The</str<strong>on</strong>g> planners noted the<br />

vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> to tropical storms and flooding, likely to be intensified by<br />

climate change and land subsidence, and the scenarios c<strong>on</strong>sidered compared populati<strong>on</strong><br />

growth in sensitive floodplains and hurricane evacuati<strong>on</strong> areas. <str<strong>on</strong>g>The</str<strong>on</strong>g> chosen Envisi<strong>on</strong><br />

scenario showed a reducti<strong>on</strong> in populati<strong>on</strong> in both areas, alleviating demand <strong>on</strong><br />

evacuati<strong>on</strong> routes as compared with the baseline, status quo scenario.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> climate scientists, for example, projected expected levels <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level<br />

rise for Seattle that became a c<strong>on</strong>siderati<strong>on</strong> in designing a major rehabilitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Alaskan<br />

Way Seawall. 11<br />

11 Sea level projecti<strong>on</strong>s from the climate impacts research group at the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> suggested that the<br />

city’s current design standards for the new seawall did not adequately account for the potential projected rise in sea<br />

level. Given the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>g-term financial and transportati<strong>on</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the Alaskan Way Seawall


124 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

In those major metropolitan areas highly vulnerable to the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change,<br />

where projected sea level rise combined with storm surge could threaten already densely<br />

developed areas—parts <str<strong>on</strong>g>of</str<strong>on</strong>g> New York City, Miami, and San Francisco, for example—opti<strong>on</strong>s<br />

such as levees and storm barrier systems are likely to be c<strong>on</strong>sidered to protect valuable real<br />

estate. <str<strong>on</strong>g>The</str<strong>on</strong>g>se opti<strong>on</strong>s are costly, they can create envir<strong>on</strong>mental problems, and they may provide<br />

a false sense <str<strong>on</strong>g>of</str<strong>on</strong>g> security. 12 Moreover, as was the experience in New Orleans, levees can<br />

encourage development in “protected” flood risk areas (ASFPM 2007). In small communities,<br />

exposure to impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change may necessitate aband<strong>on</strong>ing homes, businesses, and<br />

infrastructure and relocating inland. For example, reduced sea ice al<strong>on</strong>g Alaska’s Arctic coast is<br />

already eroding shoreline and exposing coastal areas to the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> winter storm surges and<br />

waves, a pattern that will be exacerbated by further sea level rise. Some 200 Native American<br />

villages are at risk and may so<strong>on</strong> be aband<strong>on</strong>ed for inland locati<strong>on</strong>s (ACIA 2004).<br />

CROSSCUTTING ISSUES<br />

Flood Insurance<br />

Private insurers may be able to accomplish what government cannot in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> land use c<strong>on</strong>trol.<br />

Some major insurers, for example, are refusing to write new or renew existing homeowners’<br />

policies in areas already vulnerable to hurricanes and other severe storms, which are likely to<br />

intensify in a warming climate (Adams 2006). Florida, Texas, Louisiana, Mississippi, Hawaii,<br />

New York City, and L<strong>on</strong>g Island are am<strong>on</strong>g the affected areas thus far. Some states, such as<br />

Florida, have stepped up to become insurers <str<strong>on</strong>g>of</str<strong>on</strong>g> last resort for coastal homes and businesses, but<br />

the high costs <str<strong>on</strong>g>of</str<strong>on</strong>g> providing coverage are unlikely to be sustainable or would result in prohibitive<br />

premium increases in many cases if the costs were passed <strong>on</strong> to homeowners. Moreover, the<br />

provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insurance in hazard-pr<strong>on</strong>e areas that is not actuarially sound is bad public policy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> federal government is already the insurer <str<strong>on</strong>g>of</str<strong>on</strong>g> last resort for homeowners and<br />

businesses that cannot secure affordable private flood insurance in flood hazard areas. In 1968<br />

C<strong>on</strong>gress authorized the Nati<strong>on</strong>al Flood Insurance Program (NFIP) to mitigate increasing<br />

taxpayer-funded flood relief. <str<strong>on</strong>g>The</str<strong>on</strong>g> Federal Emergency Management Agency (FEMA)<br />

administers the program and maps the nati<strong>on</strong>’s floodplains; these maps serve as the basis for<br />

determining the eligibility <str<strong>on</strong>g>of</str<strong>on</strong>g> homeowners and businesses for NFIP funding. To become eligible,<br />

a community must adopt and enforce floodplain management ordinances and building code<br />

requirements to reduce future flood damage. 13 In exchange, NFIP makes federally backed,<br />

affordable flood insurance available to homeowners, renters, and businesses in mapped <str<strong>on</strong>g>Special</str<strong>on</strong>g><br />

Flood Hazard Areas (SFHAs) through licensed agents and insurance companies. Flood<br />

insurance is required to secure financing for buying, building, or improving a structure in<br />

project, the City Auditor’s Office recommended that the city obtain a comprehensive, independent analysis that<br />

would c<strong>on</strong>sider all available scientific sources in estimating the probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> expected increases in sea level and<br />

their rate (Soo Hoo and Sumitami 2005).<br />

12 Levees interfere with the natural attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flows from flood waters, cause backwaters, generally increase the<br />

depth and velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> flood waters, and encourage channel degradati<strong>on</strong> and eventual bank erosi<strong>on</strong> (ASFPM 2007).<br />

13 Details <str<strong>on</strong>g>of</str<strong>on</strong>g> the program were accessed from the Federal Emergency Management Agency website at<br />

http://www.fema.gov/about/programs/nfip.shtm <strong>on</strong> May 9, 2007.


Meeting the Challenges 125<br />

SFHAs. New buildings must be elevated to or above the predicted 100-year flood level, and<br />

foundati<strong>on</strong>s must be designed to resist flood loads (Elliott 2005). Buildings that are repaired or<br />

improved after floods must be brought into compliance with these ordinances if the repair costs<br />

50 percent or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the market value <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure.<br />

Over the years, NFIP has been criticized for encouraging more development in these<br />

flood-pr<strong>on</strong>e areas than would have occurred without the program (Elliott 2005; Burby 2006).<br />

Others suggest that the program has had little impact because many properties (e.g., beach<br />

houses) are purchased without a mortgage and thus need not comply with floodplain ordinances.<br />

Communities have also been slow to enact and enforce floodplain management measures.<br />

Finally, flood insurance is not required <str<strong>on</strong>g>of</str<strong>on</strong>g> properties located behind levees that have been<br />

certified for 100-year storms, even though such properties are at enhanced risk for any flood that<br />

exceeds the 100-year storm. Because climate change is projected to trigger more intense storms,<br />

and sea level rise will extend the areas <str<strong>on</strong>g>of</str<strong>on</strong>g> flood damage in some SFHAs, FEMA and<br />

c<strong>on</strong>gressi<strong>on</strong>al oversight committees should reevaluate the risk reducti<strong>on</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

program.<br />

FEMA is engaged in a multiyear map modernizati<strong>on</strong> program to provide reliable digital<br />

flood hazard data and maps in support <str<strong>on</strong>g>of</str<strong>on</strong>g> NFIP. However, the maps are based <strong>on</strong> historical data<br />

and thus do not take account <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. <str<strong>on</strong>g>The</str<strong>on</strong>g> SFHA boundaries are keyed to the 100-year<br />

storm, the base elevati<strong>on</strong> data are inadequate (NRC 2007), and the pace <str<strong>on</strong>g>of</str<strong>on</strong>g> updating is slow. In<br />

fact, some states have taken over the task <str<strong>on</strong>g>of</str<strong>on</strong>g> updating to speed up the process. Further additi<strong>on</strong>s<br />

to flood z<strong>on</strong>e maps may be needed and are particularly important to transportati<strong>on</strong> engineers<br />

because these maps have become a quasi design standard for determining appropriate drainage<br />

capacity, for example, for transportati<strong>on</strong> infrastructure in coastal areas.<br />

M<strong>on</strong>itoring Technologies and New Materials<br />

Better m<strong>on</strong>itoring technologies and new materials could <str<strong>on</strong>g>of</str<strong>on</strong>g>fer engineers alternatives to costly<br />

infrastructure retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it or replacement in advance <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. For example, better systems<br />

for m<strong>on</strong>itoring impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> infrastructure could provide engineers with an early<br />

warning <str<strong>on</strong>g>of</str<strong>on</strong>g> problems, buying time for making the necessary modificati<strong>on</strong>s. This approach would<br />

also provide a good soluti<strong>on</strong> for less critical infrastructure facilities for which the costs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting in anticipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change are not ec<strong>on</strong>omical. In Alaska, where climate<br />

warming is occurring more rapidly than in the lower 48 states, engineers are closely m<strong>on</strong>itoring<br />

bridge foundati<strong>on</strong>s for scour. Hotter, dryer summers have led to increased glacial melting and<br />

l<strong>on</strong>ger periods <str<strong>on</strong>g>of</str<strong>on</strong>g> high stream flows, leading to both increased sediment transport <strong>on</strong> rivers and<br />

scour at bridge crossings. A network <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>on</strong>ars has been installed <strong>on</strong> several scour-critical<br />

bridges around the state. <str<strong>on</strong>g>The</str<strong>on</strong>g> m<strong>on</strong>itoring data are sent regularly to the Alaska Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong> and Public Facilities (J. C<strong>on</strong>away, United States geological Survey, pers<strong>on</strong>al<br />

communicati<strong>on</strong>, Mar. 8, 2006), an approach that could be adapted for use in other states. 14<br />

Sensors and other “smart” technologies yet to be developed could also be used more<br />

widely to m<strong>on</strong>itor changing climate c<strong>on</strong>diti<strong>on</strong>s and issue warnings when thresholds are<br />

exceeded. Sensors are already available that m<strong>on</strong>itor changing pressures <strong>on</strong> a building or bridge<br />

and issue a warning when the pressures become abnormal (Meyer 2006). Sensors could also be<br />

embedded in pavements and bridge decks, for example, to m<strong>on</strong>itor stress and strain as<br />

14 <str<strong>on</strong>g>The</str<strong>on</strong>g> FHWA scour program requires bridge owners to evaluate bridges for potential scour associated with the 100year<br />

storm and a 500-year superflood event (FHWA 2005a).


126 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

temperatures change, enabling remedial acti<strong>on</strong> to be taken before failure occurs. <str<strong>on</strong>g>The</str<strong>on</strong>g> collapse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Minneapolis’ Interstate 35W bridge in August 2007 brought renewed attenti<strong>on</strong> to the need for<br />

better technologies to m<strong>on</strong>itor bridge c<strong>on</strong>diti<strong>on</strong>s. Numerous technologies are available: x-ray<br />

machines can spot hidden cracks in girders, computerized m<strong>on</strong>itors can track minute changes in<br />

stresses <strong>on</strong> steel beams, and sensors embedded in c<strong>on</strong>crete can track corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> steel<br />

reinforcing beams. <str<strong>on</strong>g>The</str<strong>on</strong>g> costs are not small—<strong>on</strong>e estimate to install m<strong>on</strong>itoring equipment <strong>on</strong> a<br />

large bridge was $250,000—but relative to retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting or replacing a failed structure, the costs<br />

are marginal (Bridge M<strong>on</strong>itoring Devices Unused 2007). Advances in material sciences<br />

(applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nanotechnologies), 15 computer processing, and communicati<strong>on</strong>s capabilities, as<br />

well as in sensor technologies, could provide a fertile field for the development <str<strong>on</strong>g>of</str<strong>on</strong>g> devices for<br />

m<strong>on</strong>itoring climate changes and communicating the results to the appropriate infrastructure<br />

owners.<br />

New materials also hold promise for addressing some climate changes. For example,<br />

temperature extremes, particularly increases in very hot days and heat waves, are likely to affect<br />

both pavements and rails. Changn<strong>on</strong> and colleagues (1996) report that highways and railroads<br />

were damaged by heat-induced heaving and buckling <str<strong>on</strong>g>of</str<strong>on</strong>g> joints during the 1995 heat wave in<br />

Chicago. Extreme heat can also cause misalignment <str<strong>on</strong>g>of</str<strong>on</strong>g> rail lines and derailments, although the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous welded rail should prevent kinks from occurring (Changn<strong>on</strong> 2006). C<strong>on</strong>tinued<br />

research and development <str<strong>on</strong>g>of</str<strong>on</strong>g> materials that can withstand high temperatures would be<br />

productive, as would effective mechanisms for sharing new knowledge.<br />

Data, Models, and Decisi<strong>on</strong>-Support Tools<br />

Data systems for m<strong>on</strong>itoring the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change can be an effective tool for<br />

determining appropriate adaptati<strong>on</strong> strategies. One such system is the Alaska Engineering<br />

Design Informati<strong>on</strong> System (AEDIS), described in Chapter 3. AEDIS provides geographicspecific<br />

data <strong>on</strong> temperatures, precipitati<strong>on</strong> levels, permafrost, and snow depth collected from<br />

weather stati<strong>on</strong>s located around the state. <str<strong>on</strong>g>The</str<strong>on</strong>g> data are intended to help in deriving engineering<br />

design parameters (e.g., load-bearing capacity), scheduling maintenance and repairs, and<br />

selecting optimum locati<strong>on</strong>s for transportati<strong>on</strong> infrastructure (T. Douglas, Cold Regi<strong>on</strong>s<br />

Research and Engineering Laboratory, pers<strong>on</strong>nel communicati<strong>on</strong>, Mar. 9, 2006). As trend data<br />

accumulate, AEDIS could provide a useful repository <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> <strong>on</strong> the l<strong>on</strong>ger-term impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> infrastructure that could be linked with a database <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se strategies<br />

and costs—from changes in maintenance practices, to use <str<strong>on</strong>g>of</str<strong>on</strong>g> new materials, to design changes.<br />

Improving informati<strong>on</strong> <strong>on</strong> weather for transportati<strong>on</strong> infrastructure applicati<strong>on</strong>s is another<br />

important area for development, particularly in view <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential for more climate extremes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> nati<strong>on</strong>al needs assessment report <str<strong>on</strong>g>of</str<strong>on</strong>g> the Weather Informati<strong>on</strong> for Surface Transportati<strong>on</strong><br />

(WIST) initiative (OFCM 2002)—a joint effort <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Oceanic and Atmospheric<br />

Administrati<strong>on</strong> (NOAA) and FHWA—identifies as a particular need more accurate informati<strong>on</strong><br />

at higher spatial (e.g., surface temperatures) and temporal resoluti<strong>on</strong>s (OFCM 2002). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

informati<strong>on</strong> must also be provided with sufficient lead time (for forecasts) and currency (for<br />

observati<strong>on</strong>s) to guide operati<strong>on</strong>al decisi<strong>on</strong>s. Providing the data will require improved weather<br />

detecti<strong>on</strong> and forecasting; better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> thresholds for precipitati<strong>on</strong>, temperature,<br />

winds, and the like, which affect transportati<strong>on</strong> operati<strong>on</strong>s and, if exceeded, could cause<br />

15 Nanotechnology is a field <str<strong>on</strong>g>of</str<strong>on</strong>g> applied science focused <strong>on</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> matter <strong>on</strong> a scale smaller than 1 micrometer,<br />

normally 1–100 nanometers, as well as the fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> devices <strong>on</strong> this same scale.


Meeting the Challenges 127<br />

significant interrupti<strong>on</strong>s in operati<strong>on</strong>s or infrastructure failure; and improvements in data<br />

integrati<strong>on</strong> and real-time communicati<strong>on</strong> to both transportati<strong>on</strong> operators and system users<br />

(Lockwood 2006). Clarus, a major initiative <str<strong>on</strong>g>of</str<strong>on</strong>g> FHWA’s Surface Transportati<strong>on</strong> Weather<br />

Program, 16 is already working to develop and dem<strong>on</strong>strate an integrated nati<strong>on</strong>wide surface<br />

weather observing, forecasting, and data management system. A range <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>al<br />

technologies, from remote to fixed sensors to vehicle probes, are being tested as sources <str<strong>on</strong>g>of</str<strong>on</strong>g> realtime<br />

data, as is a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> tools to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the data. Such efforts could have applicati<strong>on</strong> for<br />

other transportati<strong>on</strong> modes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> 2004 and 2005 hurricane seas<strong>on</strong>s provided a vivid illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the need for<br />

improvements in modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surge and wave acti<strong>on</strong>, which will be<br />

aggravated by sea level rise. NOAA’s Sea, Lake, and Overland Surge from Hurricanes<br />

(SLOSH) model and, more recently, the Advanced CIRculati<strong>on</strong> Model (ADCIRC) (described in<br />

Chapter 2) have been used to estimate the threat from storm surge. 17 <str<strong>on</strong>g>The</str<strong>on</strong>g>se models use historical<br />

input data that are infrequently updated. For example, when ADCIRC was run using input data<br />

through the 2005 hurricane seas<strong>on</strong>, it was found that the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the 100-year storm-surge<br />

flood would now reoccur at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 years. Following Hurricane Katrina, c<strong>on</strong>siderable<br />

research was also c<strong>on</strong>ducted <strong>on</strong> wave acti<strong>on</strong> <strong>on</strong> bridges (Krolak 2006); the results <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

research should help in revising coastal bridge design standards.<br />

If extreme weather events require evacuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> affected areas, better modeling to support<br />

evacuati<strong>on</strong> efforts will be needed. Some MPOs are using travel demand models to estimate the<br />

time required to evacuate regi<strong>on</strong>al areas for different types <str<strong>on</strong>g>of</str<strong>on</strong>g> emergencies, but this is not<br />

comm<strong>on</strong> practice. For example, according to modeling estimates provided after Hurricane Rita<br />

by the Houst<strong>on</strong>-Galvest<strong>on</strong> Area Council, the Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Governments for the Houst<strong>on</strong><br />

metropolitan area, it would take 80 to 120 hours to evacuate 3 milli<strong>on</strong> residents from Galvest<strong>on</strong>,<br />

Houst<strong>on</strong>, and other coastal areas, assuming use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>traflow and optimum flow c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

necessary lead time far exceeds the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> meteorologists to predict the landfall and trajectory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes (Bridging our Communities 2035, 2007), and this has led local governments to<br />

c<strong>on</strong>sider hardening public facilities <strong>on</strong> higher ground and encouraging residents in n<strong>on</strong>vulnerable<br />

coastal areas to shelter in place. Simulati<strong>on</strong> models are also being used to help identify optimal<br />

evacuati<strong>on</strong> routes, compute estimated evacuati<strong>on</strong> times, and determine traffic management needs<br />

for an emergency planning area (Goldblatt and Weinisch 2005). However, these models must be<br />

upgraded to provide more real-time informati<strong>on</strong> to assist emergency managers and transportati<strong>on</strong><br />

providers in resp<strong>on</strong>ding to an incident (e.g., by changing routing instructi<strong>on</strong>s and notifying<br />

emergency resp<strong>on</strong>se teams).<br />

16 <str<strong>on</strong>g>The</str<strong>on</strong>g> Surface Transportati<strong>on</strong> Weather Program was authorized in SAFETEA-LU for $5 milli<strong>on</strong> annually for 4<br />

years. <str<strong>on</strong>g>The</str<strong>on</strong>g> primary focus is <strong>on</strong> alleviating the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> adverse weather <strong>on</strong> the safety and reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>’s<br />

highways.<br />

17 ADCIRC is being applied in southern Louisiana by the U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers New Orleans District to<br />

design levee heights and alignments, by FEMA to establish flooding probabilities for insurance purposes, by the<br />

State <str<strong>on</strong>g>of</str<strong>on</strong>g> Louisiana at the Center for the Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Health <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricanes to operati<strong>on</strong>ally predict<br />

hurricane inundati<strong>on</strong>, and by the Louisiana State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources to assess coastal restorati<strong>on</strong><br />

projects (informati<strong>on</strong> from the ADCIRC website, accessed at http://www.adcirc.org <strong>on</strong> October 10, 2007).


128 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

New Partnerships and Organizati<strong>on</strong>al Arrangements<br />

Adapting successfully to climate change will require forging new partnerships and organizati<strong>on</strong>al<br />

arrangements that better align with the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, which do not follow modal,<br />

jurisdicti<strong>on</strong>al, or corporate boundaries. As discussed earlier, decisi<strong>on</strong> making in the<br />

transportati<strong>on</strong> sector is structured around these boundaries. Transportati<strong>on</strong> planning is c<strong>on</strong>ducted<br />

primarily at the regi<strong>on</strong>al level, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten in a bottom-up process that starts with local jurisdicti<strong>on</strong>s.<br />

Railroads, trucking, and waterborne commerce are largely private enterprises with varying levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> federal participati<strong>on</strong>.<br />

Partnerships could involve closer collaborati<strong>on</strong> between transportati<strong>on</strong> agencies and<br />

emergency resp<strong>on</strong>ders. Tabletop exercises, for example, in which emergency managers and<br />

critical transportati<strong>on</strong> agencies, am<strong>on</strong>g others, role play their resp<strong>on</strong>ses to hypothetical<br />

emergency situati<strong>on</strong>s (e.g., a terrorist attack, a major hurricane), provide an opportunity for such<br />

coordinati<strong>on</strong> and c<strong>on</strong>tact. Other relevant partnerships could involve local collaborati<strong>on</strong> between<br />

university climate scientists and regi<strong>on</strong>al transportati<strong>on</strong> planners; greater interacti<strong>on</strong> between<br />

transportati<strong>on</strong> planners and those who c<strong>on</strong>trol land use (both described previously); and creati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a more formal process for better communicati<strong>on</strong> am<strong>on</strong>g transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als, climate<br />

scientists, and other relevant scientific disciplines, al<strong>on</strong>g with a repository for transportati<strong>on</strong>relevant<br />

climate change informati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al and multistate organizati<strong>on</strong>al arrangements to address climate<br />

change is a formidable challenge, but could yield enormous pay<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in the ability to resp<strong>on</strong>d not<br />

<strong>on</strong>ly to climate change, but also to other natural and manmade disasters (e.g., earthquakes,<br />

terrorist incidents). <str<strong>on</strong>g>The</str<strong>on</strong>g> transportati<strong>on</strong> sector has some models for cross-jurisdicti<strong>on</strong>al<br />

arrangements, such as regi<strong>on</strong>al authorities for specific facilities (e.g., the Alameda Corridor in<br />

California). 18 Regi<strong>on</strong>al and multistate emergency resp<strong>on</strong>se operati<strong>on</strong>s that include transportati<strong>on</strong><br />

are beginning to emerge in resp<strong>on</strong>se to hurricanes and other disasters, such as the events <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

September 11, 2001. <str<strong>on</strong>g>The</str<strong>on</strong>g>se might serve as the nucleus for multistate regi<strong>on</strong>al compacts to<br />

address other issues, such as the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (Deen 2006). State-mandated<br />

regi<strong>on</strong>al compacts for addressing regi<strong>on</strong>al air quality issues <str<strong>on</strong>g>of</str<strong>on</strong>g>fer another model. 19 One could<br />

imagine the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> similar arrangements to address such problems as the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sea<br />

level rise <strong>on</strong> coastal real estate and infrastructure in the tristate New York area or other coastal<br />

areas, or the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> drought <strong>on</strong> shipping al<strong>on</strong>g inland waterways, or the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes<br />

in the Gulf Coast regi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> organizati<strong>on</strong>al arrangements “right-sized” to address the problems<br />

for transportati<strong>on</strong> infrastructure created by climate change may require state or federal acti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> California Coastal Commissi<strong>on</strong> is a good example <str<strong>on</strong>g>of</str<strong>on</strong>g> a state initiative designed to resolve a<br />

18 Created as a Joint Powers Authority by affected cities, the Ports <str<strong>on</strong>g>of</str<strong>on</strong>g> Los Angeles and L<strong>on</strong>g Beach, and the Los<br />

Angeles County Metropolitan Transportati<strong>on</strong> Authority, the Alameda Corridor Transportati<strong>on</strong> Authority guided the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> a 20-mile-l<strong>on</strong>g rail cargo expressway. <str<strong>on</strong>g>The</str<strong>on</strong>g> expressway separates freight rail from street traffic and<br />

passenger trains while linking the ports to the transc<strong>on</strong>tinental rail network near downtown Los Angeles.<br />

19 In the eastern half <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States, for example, where regi<strong>on</strong>al oz<strong>on</strong>e is an important c<strong>on</strong>cern, organizati<strong>on</strong>s<br />

such as the Oz<strong>on</strong>e Transport Commissi<strong>on</strong> and the ad hoc Oz<strong>on</strong>e Transport Assessment Group were established, the<br />

former in 1991 under the auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> the federal Clean Air Act Amendments. In the west, where degrading visibility<br />

in scenic areas is a growing problem, the Grand Cany<strong>on</strong> Visibility Transport Commissi<strong>on</strong> and its successor, the<br />

Western Regi<strong>on</strong>al Air Partnership, were established as voluntary organizati<strong>on</strong>s representing western states, tribes,<br />

and the federal government. <str<strong>on</strong>g>The</str<strong>on</strong>g> main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> these groups is to recommend and implement multistate<br />

mitigati<strong>on</strong> strategies for air polluti<strong>on</strong> that extend bey<strong>on</strong>d any <strong>on</strong>e state border (NRC 2004b).


Meeting the Challenges 129<br />

regi<strong>on</strong>al problem. In the early 1970s, many Californians became alarmed that private<br />

development was cutting <str<strong>on</strong>g>of</str<strong>on</strong>g>f public access to the shore, and by voter initiative petiti<strong>on</strong>ed the state<br />

to exert its stewardship role to protect coastal assets for future generati<strong>on</strong>s. In 1976 the state<br />

legislature enacted the California Coastal Act and established a permanent California Coastal<br />

Commissi<strong>on</strong>, which plans and regulates development and use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources al<strong>on</strong>g the coast<br />

in partnership with local governments and in keeping with the requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> the Coastal Act<br />

(California Coastal Commissi<strong>on</strong> 2007). One could imagine a similar arrangement to mediate<br />

land use and development issues in vulnerable coastal areas in light <str<strong>on</strong>g>of</str<strong>on</strong>g> projected climate changes.<br />

FINDINGS<br />

Adaptati<strong>on</strong> is unavoidable to address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change due to GHG emissi<strong>on</strong>s<br />

released into the atmosphere decades ago or l<strong>on</strong>ger. <str<strong>on</strong>g>The</str<strong>on</strong>g> prudent strategy is for transportati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als to begin now to take a more proactive approach in addressing both past and<br />

potential future impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. A wide array <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> opti<strong>on</strong>s is available.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most immediate resp<strong>on</strong>se is likely to come through changes in transportati<strong>on</strong><br />

operating and maintenance practices. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes will involve incorporating resp<strong>on</strong>ses to<br />

more extreme weather events into routine operati<strong>on</strong>s, improving collaborati<strong>on</strong> with emergency<br />

managers, recognizing weather and emergency management as integral functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> agency operati<strong>on</strong>s, and widely sharing best practices. To make decisi<strong>on</strong>s about<br />

rehabilitating or retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting transportati<strong>on</strong> infrastructure with l<strong>on</strong>g service lives, transportati<strong>on</strong><br />

planners and engineers will need to c<strong>on</strong>sider how climate change will affect these facilities 50<br />

years or more into the future. Design changes may also be required to harden l<strong>on</strong>g-lived<br />

infrastructure in locati<strong>on</strong>s particularly vulnerable to climate changes. <str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

standards to address climate change will be a time-c<strong>on</strong>suming process, requiring research and<br />

testing and the c<strong>on</strong>sensus <str<strong>on</strong>g>of</str<strong>on</strong>g> practicing engineers. In view <str<strong>on</strong>g>of</str<strong>on</strong>g> the myriad <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate<br />

change impacts to be c<strong>on</strong>sidered, the scientific community and relevant pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al<br />

organizati<strong>on</strong>s should take the lead in initiating a program so<strong>on</strong>, with federal support for the<br />

necessary research and testing. Relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some transportati<strong>on</strong> systems, such as coastal roads<br />

and rail lines, may ultimately prove necessary. Costly levees or storm barrier systems may be<br />

c<strong>on</strong>sidered to protect valuable real estate in selected densely populated exposed areas.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most effective strategies for reducing the risks <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change is to avoid<br />

placing people and infrastructure in vulnerable locati<strong>on</strong>s. This is not always possible in highly<br />

developed areas, but more stringent land use c<strong>on</strong>trols and flood insurance requirements could<br />

help curb further development. Federal planning regulati<strong>on</strong>s should require that transportati<strong>on</strong><br />

planners take climate change into account in developing l<strong>on</strong>g-range plans, as well as collaborate<br />

with agencies resp<strong>on</strong>sible for land use, so that the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure investment<br />

decisi<strong>on</strong>s for land use and vice versa can be more clearly identified. FEMA should reevaluate<br />

the risk reducti<strong>on</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> NFIP. At a minimum, updating <str<strong>on</strong>g>of</str<strong>on</strong>g> flood z<strong>on</strong>e maps to account<br />

for sea level rise (incorporating land subsidence) should be a priority in coastal areas.<br />

Better m<strong>on</strong>itoring technologies and new materials could also provide alternatives to<br />

costly upgrading <str<strong>on</strong>g>of</str<strong>on</strong>g> some infrastructure. More widespread use <str<strong>on</strong>g>of</str<strong>on</strong>g> sensors for m<strong>on</strong>itoring impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and new heat-resistant paving materials are examples. More refined data (e.g.,<br />

better elevati<strong>on</strong> data for flood plain mapping, more accurate data <strong>on</strong> surface temperatures) and


130 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

improved modeling—from weather forecasting to modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> expected storm surge and realtime<br />

evacuati<strong>on</strong> scenarios—are needed as well.<br />

Adapting to climate change will also require new partnerships and organizati<strong>on</strong>al<br />

arrangements that better align with climate impacts than do current modal, jurisdicti<strong>on</strong>al, and<br />

corporate boundaries around which decisi<strong>on</strong> making in the transportati<strong>on</strong> sector is structured.<br />

Some models for regi<strong>on</strong>al and multistate cooperati<strong>on</strong> exist in regi<strong>on</strong>al emergency resp<strong>on</strong>se<br />

initiatives and in regi<strong>on</strong>al authorities and compacts for air quality, but state or federal incentives<br />

may be necessary to ensure the development <str<strong>on</strong>g>of</str<strong>on</strong>g> organizati<strong>on</strong>s “right-sized” to address the<br />

problems for transportati<strong>on</strong> infrastructure raised by climate change.<br />

At the federal level, an interagency working group could be created, focused solely <strong>on</strong><br />

adaptati<strong>on</strong> issues for the transportati<strong>on</strong> sector, to help shape existing agency research programs.<br />

US DOT would be the natural lead for this activity.<br />

Embracing these adaptati<strong>on</strong> strategies would require overcoming many <str<strong>on</strong>g>of</str<strong>on</strong>g> the barriers<br />

outlined in Chapter 4. First and foremost, transportati<strong>on</strong> leaders would need to agree that climate<br />

change is a problem that warrants acti<strong>on</strong>. Thinking l<strong>on</strong>ger term, adopting more risk-based<br />

approaches to investment decisi<strong>on</strong>s, and forging new partnerships and organizati<strong>on</strong>al<br />

arrangements are am<strong>on</strong>g the greatest challenges. <str<strong>on</strong>g>The</str<strong>on</strong>g> next and final chapter provides the<br />

committee’s recommendati<strong>on</strong>s for moving forward.<br />

REFERENCES<br />

Abbreviati<strong>on</strong>s<br />

ACIA Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment<br />

ASFPM Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Floodplain Managers<br />

DHS U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Homeland Security<br />

FHWA Federal Highway Administrati<strong>on</strong><br />

IPCC Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

NEHRP Nati<strong>on</strong>al Earthquake Hazards Reducti<strong>on</strong> Program<br />

NRC Nati<strong>on</strong>al Research Council<br />

OFCM Office <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal Coordinator for Meteorological Services and<br />

Supporting Research<br />

ACIA. 2004. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Warming Arctic. Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment. Cambridge University<br />

Press, U.K.<br />

Adams, M. 2006. Strapped Insurers Flee Coastal Areas. USA Today, Apr. 26.<br />

Amekudzi, A., and M. Meyer. 2005. C<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Factors in Transportati<strong>on</strong> Systems<br />

Planning. NCHRP <str<strong>on</strong>g>Report</str<strong>on</strong>g> 541. Nati<strong>on</strong>al Academies Press, Washingt<strong>on</strong>, D.C.<br />

ASFPM. 2007. Nati<strong>on</strong>al Flood Policy Challenges. Levees: <str<strong>on</strong>g>The</str<strong>on</strong>g> Double-edged Sword. ASFPM White<br />

Paper, Apr. 17.<br />

http://www.floods.org/PDF/ASFPM_Levee_Policy_Challenges_White_Paper_021907.pdf.<br />

Bartholomew, K. 2005. Integrating Land Use Issues into Transportati<strong>on</strong> Planning: Scenario Planning,<br />

Summary <str<strong>on</strong>g>Report</str<strong>on</strong>g>. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Utah.<br />

Bridge M<strong>on</strong>itoring Devices Unused. 2007. Inside ITS, Vol. 17, No. 18, Sept. 15.<br />

Bridging our Communities 2035. 2007. <str<strong>on</strong>g>The</str<strong>on</strong>g> 2035 Houst<strong>on</strong>-Galvest<strong>on</strong> Regi<strong>on</strong>al Transportati<strong>on</strong> Plan.<br />

Draft Executive Summary, revised May 9.<br />

Buckle, I. 2006. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Earthquake Engineering Standards for Transportati<strong>on</strong> Structures.<br />

Presentati<strong>on</strong> to the Committee <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and U.S. Transportati<strong>on</strong>, Washingt<strong>on</strong>, D.C., Jan. 5.


Meeting the Challenges 131<br />

Burby, R. J. 2006. Hurricane Katrina and the Paradoxes <str<strong>on</strong>g>of</str<strong>on</strong>g> Government Disaster Policy. Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

American Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Political and Social Science, Vol. 604, No. 1, Mar., pp. 171–191.<br />

California Coastal Commissi<strong>on</strong>. 2007. Why It Exists and What It Does. http://www.coastal.ca.gov.<br />

Accessed Oct. 2, 2007.<br />

Changn<strong>on</strong>, S. A. 2006. Railroads and Weather: From Fogs to Floods and Heat to Hurricanes, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Weather and <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <strong>on</strong> American Railroading. American Meteorological Society, Bost<strong>on</strong>, MA.<br />

Changn<strong>on</strong>, S. A., K. Kunkel, and B. Reinke. 1996. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> and Resp<strong>on</strong>ses to the 1995 Heat Wave:<br />

A Call to Acti<strong>on</strong>. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Meteorological Society, Vol. 77, No. 7, July.<br />

Chicago Opens New City Incident Center to Coordinate Communicati<strong>on</strong>s, Dispatch. 2006. Inside ITS,<br />

Vol. 16, No. 6, Mar. 15.<br />

Deen, T. B. 2006. Preliminary Remarks Outline, Rapporteur. C<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g><br />

<strong>on</strong> U.S. Transportati<strong>on</strong>, Transportati<strong>on</strong> Research Board and Divisi<strong>on</strong> <strong>on</strong> Earth and Life Studies, Oct.<br />

12.<br />

DHS. 2006. Nati<strong>on</strong>wide Plan Review, Phase 2 <str<strong>on</strong>g>Report</str<strong>on</strong>g>, June 16.<br />

Elliott, D. J. 2005. Federal Flood Insurance after Katrina. Center <strong>on</strong> Federal Financial Instituti<strong>on</strong>s,<br />

Washingt<strong>on</strong>, D.C.<br />

Federal Register. 2007. Statewide Transportati<strong>on</strong> Planning; Metropolitan Transportati<strong>on</strong> Planning; Final<br />

Rule. § 450.322. Vol. 72, No. 30, Feb. 14, pp. 7275–7277.<br />

FHWA. 2004. Traffic C<strong>on</strong>gesti<strong>on</strong> and Reliability: Linking Soluti<strong>on</strong>s to Problems. Executive Summary.<br />

FHWA-HOP-05-004, July.<br />

FHWA. 2005a. Coastal Bridges and Design Storm Frequency. Interim Guidance. Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Bridge<br />

Technology, Washingt<strong>on</strong>, D.C., Sept. 28.<br />

FHWA. 2005b. Scenario Planning: A Holistic Approach to Integrating Land Use and Transportati<strong>on</strong>.<br />

Successes in Stewardship M<strong>on</strong>thly Newsletter, Nov.<br />

FHWA. 2006a. Highway Statistics 2005. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Washingt<strong>on</strong>, D.C.<br />

FHWA. 2006b. Integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Emergency and Weather Elements into Transportati<strong>on</strong> Management<br />

Centers. FHWA-HOP-06-090. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Feb.<br />

Goldblatt, R. B.. and K. Weinisch. 2005. Evacuati<strong>on</strong> Planning, Human Factors, and Traffic Engineering:<br />

Developing Systems for Training and Effective Resp<strong>on</strong>se. TR News, No. 238, May–June.<br />

IPCC. 2007. Summary for Policymakers. In: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>, Adaptati<strong>on</strong>, and<br />

Vulnerability. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group II to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [M.L. Parry, O.F. Canziani, J.P. Palutik<str<strong>on</strong>g>of</str<strong>on</strong>g>, P.J. van der<br />

Linden and C.E. Hans<strong>on</strong> (eds.)], Cambridge University Press, Cambridge, UK.<br />

Kinsella, Y., and F. McGuire. 2005. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Uncertainty and the State Highway Network: A<br />

Moving Target. Transit New Zealand.<br />

Krolak, J. 2006. Coastal Storm Events: Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> FHWA Plan <str<strong>on</strong>g>of</str<strong>on</strong>g> Acti<strong>on</strong>. PowerPoint Briefing, Wave<br />

Force Symposium, Turner-Fairbank Highway Research Center, July 27.<br />

Lockwood, S. A. 2006. Operati<strong>on</strong>al Resp<strong>on</strong>ses to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>, PB C<strong>on</strong>sult, Dec. 29.<br />

Maurice, L., and M. Gupta. 2007. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Aviati<strong>on</strong> Systems. Power<br />

Point Presentati<strong>on</strong> to the Committee <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and U.S. Transportati<strong>on</strong>, Office <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Envir<strong>on</strong>ment and Energy, U.S. Federal Aviati<strong>on</strong> Administrati<strong>on</strong>, Jan. 4.<br />

Meyer, M. D. 2006. Design Standards for U.S. Transportati<strong>on</strong> Infrastructure: <str<strong>on</strong>g>The</str<strong>on</strong>g> Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Dec. 18.<br />

Meyer, M., and E. Miller. 2001. Urban Transportati<strong>on</strong> Planning: A Decisi<strong>on</strong>-Oriented Approach.<br />

McGraw-Hill, New York.<br />

NEHRP. 2007. Nati<strong>on</strong>al Earthquake Hazards Reducti<strong>on</strong> Program: Working To Reduce Earthquake<br />

Losses. http:///www.nehrp.gov/about/index.htm. Accessed May 8, 2007.<br />

New York City Transit. 2007. Hurricane Evacuati<strong>on</strong> Service Plan and Attachments, June revisi<strong>on</strong>.<br />

NRC. 2004a. Where the Weather Meets the Road: A Research Agenda for Improving Road Weather<br />

Services. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academies Press, Washingt<strong>on</strong>, D.C.


132 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

NRC. 2004b. Air Quality Management in the United States. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academies Press,<br />

Washingt<strong>on</strong>, D.C.<br />

NRC. 2007. Base Map Inputs for Floodplain Mapping. <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academies Press, Washingt<strong>on</strong>,<br />

D.C.<br />

OFCM. 2002. Weather Informati<strong>on</strong> for Surface Transportati<strong>on</strong>: A Nati<strong>on</strong>al Needs Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g><br />

(WIST). FCM-R18-2002. Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong>, Washingt<strong>on</strong>, D.C.<br />

Soo Hoo, W. K., and, M. Sumitani. 2005. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Will Impact the Seattle Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong>. Office <str<strong>on</strong>g>of</str<strong>on</strong>g> City Auditor, Aug. 9.


ANNEX 5-1A <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong>, and Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and Infrastructure <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Interrupti<strong>on</strong>s<br />

Infrastructure<br />

Design/New Materials<br />

Temperature: • Limitati<strong>on</strong>s <strong>on</strong> • <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> pavement • Shifting c<strong>on</strong>structi<strong>on</strong> • Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new,<br />

Increases in periods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

and c<strong>on</strong>crete<br />

schedules to cooler heat-resistant paving<br />

very hot days c<strong>on</strong>structi<strong>on</strong> activity c<strong>on</strong>structi<strong>on</strong> practices parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the day<br />

materials<br />

and heat<br />

waves<br />

due to health and<br />

safety c<strong>on</strong>cerns;<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal expansi<strong>on</strong> <strong>on</strong><br />

bridge expansi<strong>on</strong> joints<br />

• Greater use <str<strong>on</strong>g>of</str<strong>on</strong>g> heattolerant<br />

street and<br />

restricti<strong>on</strong>s typically and paved surfaces<br />

highway landscaping<br />

begin at 29.5°C<br />

(85°F); heat<br />

exhausti<strong>on</strong> possible<br />

at 40.5°C (105°F)<br />

• Vehicle overheating<br />

and tire deteriorati<strong>on</strong><br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> landscaping<br />

in highway and street<br />

rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way<br />

• C<strong>on</strong>cerns regarding<br />

pavement integrity, e.g.,<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening, traffic-related<br />

rutting, migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

liquid asphalt; sustained<br />

air temperature over<br />

32°C (90°F) is a<br />

significant threshold<br />

• Rail-track deformities;<br />

air temperature above<br />

43°C (110°F) can lead<br />

to equipment failure<br />

• Greater use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous welded<br />

rail lines<br />

Temperature:<br />

Decreases in<br />

very cold days<br />

• Regi<strong>on</strong>al changes in<br />

snow and ice<br />

removal costs and<br />

envir<strong>on</strong>mental<br />

impacts from salt<br />

and chemical use<br />

(reducti<strong>on</strong> overall,<br />

• Decreased utility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unimproved roads that<br />

rely <strong>on</strong> frozen ground<br />

for passage<br />

• Reducti<strong>on</strong> in snow and<br />

ice removal<br />

• Extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>structi<strong>on</strong> and<br />

maintenance seas<strong>on</strong><br />

• Shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong><br />

for use <str<strong>on</strong>g>of</str<strong>on</strong>g> ice roads<br />

Other


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Temperature:<br />

Increases in<br />

Arctic<br />

temperatures<br />

Temperature:<br />

Later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al<br />

freeze and<br />

earlier <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al thaw<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

but increases in<br />

some regi<strong>on</strong>s)<br />

• Fewer cold-related<br />

restricti<strong>on</strong>s for<br />

maintenance<br />

workers<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in seas<strong>on</strong>al<br />

weight restricti<strong>on</strong>s<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in seas<strong>on</strong>al<br />

fuel requirements<br />

• Improved mobility<br />

and safety associated<br />

with a reducti<strong>on</strong> in<br />

winter weather<br />

• L<strong>on</strong>ger c<strong>on</strong>structi<strong>on</strong><br />

seas<strong>on</strong><br />

Infrastructure<br />

• Thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost,<br />

causing subsidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

roads, rail beds, bridge<br />

supports (cave-in), and<br />

pipelines<br />

• Shorter seas<strong>on</strong> for ice<br />

roads<br />

• Reduced pavement<br />

deteriorati<strong>on</strong> resulting<br />

from less exposure to<br />

freezing, snow, and ice,<br />

but possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

freeze–thaw c<strong>on</strong>diti<strong>on</strong>s<br />

in some locati<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s<br />

• Shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong><br />

for use <str<strong>on</strong>g>of</str<strong>on</strong>g> ice roads<br />

• Lengthening <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potential c<strong>on</strong>structi<strong>on</strong><br />

seas<strong>on</strong><br />

• Increased use <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>on</strong>ars<br />

to m<strong>on</strong>itor streambed<br />

flow and bridge scour<br />

• Relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al<br />

weight restricti<strong>on</strong>s<br />

• Shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong><br />

for use <str<strong>on</strong>g>of</str<strong>on</strong>g> ice roads<br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

Design/New Materials<br />

• Use <str<strong>on</strong>g>of</str<strong>on</strong>g> insulati<strong>on</strong> in<br />

the road prism<br />

• Use <str<strong>on</strong>g>of</str<strong>on</strong>g> different types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> passive<br />

refrigerati<strong>on</strong> schemes,<br />

including<br />

thermosiph<strong>on</strong>s, rock<br />

galleries, and “cold<br />

culverts”<br />

Other<br />

• Relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> roads<br />

and rail lines to<br />

more stable ground


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Sea level rise,<br />

added to<br />

storm surge<br />

Precipitati<strong>on</strong>:<br />

Increase in<br />

intense<br />

precipitati<strong>on</strong><br />

events<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• More frequent<br />

interrupti<strong>on</strong>s in<br />

travel <strong>on</strong> coastal and<br />

low-lying roadways<br />

and rail service due<br />

to storm surges<br />

• More severe storm<br />

surges, requiring<br />

evacuati<strong>on</strong><br />

• Increases in weatherrelated<br />

delays<br />

• Increases in traffic<br />

disrupti<strong>on</strong>s<br />

• Increased flooding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> routes<br />

• Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Infrastructure<br />

• Inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> roads and<br />

rail lines in coastal<br />

areas<br />

• More frequent or severe<br />

flooding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

underground tunnels<br />

and low-lying<br />

infrastructure<br />

• Erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road base<br />

and bridge supports<br />

• Bridge scour<br />

• Reduced clearance<br />

under bridges<br />

• Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal<br />

wetlands and barrier<br />

shoreline<br />

• Land subsidence<br />

• Increases in flooding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

roadways, rail lines,<br />

and subterranean<br />

tunnels<br />

• Overloading <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drainage systems,<br />

causing backups and<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s<br />

• Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> systems<br />

for m<strong>on</strong>itoring scour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bridge piers and<br />

abutments<br />

• Increase in m<strong>on</strong>itoring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> land slopes and<br />

drainage systems<br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

Design/New Materials<br />

• Elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> streets,<br />

bridges, and rail lines<br />

• Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drainage<br />

canals near coastal<br />

roads<br />

• Elevati<strong>on</strong> and<br />

protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bridge,<br />

tunnel, and transit<br />

entrances<br />

• Additi<strong>on</strong>al pumping<br />

capacity for tunnels<br />

• Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> critical<br />

evacuati<strong>on</strong> routes<br />

• Upgrading <str<strong>on</strong>g>of</str<strong>on</strong>g> road<br />

drainage systems<br />

• Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bridge<br />

piers and abutments<br />

with riprap<br />

Other<br />

• Relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> roads<br />

and rail lines inland<br />

• Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highvalue<br />

coastal real<br />

estate with levees,<br />

seawalls, and dikes<br />

• Strengthening and<br />

heightening <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

existing levees,<br />

seawalls, and dikes<br />

• Restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> most<br />

vulnerable coastal<br />

areas from further<br />

development<br />

• Increase in flood<br />

insurance rates to<br />

help restrict<br />

development<br />

• Return <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

coastal areas to<br />

nature<br />

• Greater use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sensors for<br />

m<strong>on</strong>itoring water<br />

flows<br />

• Restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

development in<br />

floodplains


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Precipitati<strong>on</strong>:<br />

Increases in<br />

drought<br />

c<strong>on</strong>diti<strong>on</strong>s for<br />

some regi<strong>on</strong>s<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

c<strong>on</strong>structi<strong>on</strong><br />

activities<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in rain,<br />

snowfall, and<br />

seas<strong>on</strong>al flooding<br />

that impact safety<br />

and maintenance<br />

operati<strong>on</strong>s<br />

• Increased<br />

susceptibility to<br />

wildfires, causing<br />

road closures due to<br />

fire threat or reduced<br />

visibility<br />

Infrastructure<br />

street flooding<br />

• Increases in road<br />

scouring, road washout,<br />

damages to railbed<br />

support structures, and<br />

landslides and<br />

mudslides that damage<br />

roadways and tracks<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> soil<br />

moisture levels,<br />

affecting structural<br />

integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> roads,<br />

bridges, and tunnels<br />

• Adverse impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

standing water <strong>on</strong> road<br />

bases<br />

• Increases in scouring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pipeline roadbeds and<br />

damages to pipelines<br />

• Increased susceptibility<br />

to wildfires that<br />

threaten transportati<strong>on</strong><br />

infrastructure directly<br />

• Increased susceptibility<br />

to mudslides in areas<br />

deforested by wildfires<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s<br />

• Increases in m<strong>on</strong>itoring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pipelines for<br />

exposure, shifting, and<br />

scour in shallow waters<br />

• Increases in real-time<br />

m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> flood<br />

levels<br />

• Integrating emergency<br />

evacuati<strong>on</strong> procedures<br />

into operati<strong>on</strong>s<br />

• Vegetati<strong>on</strong><br />

management<br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

Design/New Materials<br />

• Increases in culvert<br />

capacity<br />

• Increases in pumping<br />

capacity for tunnels<br />

• Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> slope<br />

retenti<strong>on</strong> structures<br />

and retaining<br />

facilities for<br />

landslides<br />

• Increases in the<br />

standard for drainage<br />

capacity for new<br />

transportati<strong>on</strong><br />

infrastructure and<br />

major rehabilitati<strong>on</strong><br />

projects (e.g.,<br />

assuming a 500-year<br />

rather than a 100-year<br />

storm)<br />

Other


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Precipitati<strong>on</strong>:<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

seas<strong>on</strong>al<br />

precipitati<strong>on</strong><br />

and river flow<br />

patterns<br />

Storms:<br />

More frequent<br />

str<strong>on</strong>g<br />

hurricanes<br />

(Category 4–<br />

5)<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

• Benefits for safety<br />

and reduced<br />

interrupti<strong>on</strong>s if<br />

frozen precipitati<strong>on</strong><br />

shifts to rainfall,<br />

depending <strong>on</strong> terrain<br />

• More debris <strong>on</strong><br />

roads and rail lines,<br />

interrupting travel<br />

and shipping<br />

• More frequent and<br />

potentially more<br />

extensive emergency<br />

evacuati<strong>on</strong>s<br />

Infrastructure<br />

• Increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> floods<br />

from run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, landslides,<br />

slope failures, and<br />

damage to roads if<br />

precipitati<strong>on</strong> changes<br />

from snow to rain in<br />

winter and spring thaws<br />

• Greater probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infrastructure failures<br />

• Increased threat to<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> bridge decks<br />

• Increased damage to<br />

signs, lighting fixtures<br />

and supports<br />

• Decreased expected<br />

lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> highways<br />

exposed to storm surge<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s<br />

• Emergency evacuati<strong>on</strong><br />

procedures that become<br />

more routine<br />

• Improvements in ability<br />

to forecast landfall and<br />

trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes<br />

• Improvements in<br />

m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> road<br />

c<strong>on</strong>diti<strong>on</strong>s and issuance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> real-time messages<br />

to motorists<br />

• Improvements in<br />

modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> emergency<br />

evacuati<strong>on</strong><br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

Design/New Materials<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in bridge<br />

design to tie decks<br />

more securely to<br />

substructure and<br />

strengthen<br />

foundati<strong>on</strong>s<br />

• Increases in drainage<br />

capacity for new<br />

transportati<strong>on</strong><br />

infrastructure or<br />

major rehabilitati<strong>on</strong><br />

projects (e.g.,<br />

assumably more<br />

frequent return<br />

periods)<br />

• Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic<br />

bottlenecks <strong>on</strong> critical<br />

evacuati<strong>on</strong> routes and<br />

building <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

system redundancy<br />

• Adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modular<br />

c<strong>on</strong>structi<strong>on</strong><br />

Other<br />

• Strengthening and<br />

heightening <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

levees<br />

• Restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

further<br />

development in<br />

vulnerable coastal<br />

locati<strong>on</strong>s<br />

• Increase in flood<br />

insurance rates to<br />

help restrict<br />

development<br />

• Return <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

• coastal areas to<br />

nature


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Land Transportati<strong>on</strong><br />

(highways, rail, pipeline)<br />

Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

Infrastructure<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s<br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

Design/New Materials<br />

techniques where<br />

infrastructure is in<br />

danger <str<strong>on</strong>g>of</str<strong>on</strong>g> failure<br />

• Development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modular traffic<br />

features and road sign<br />

systems for easier<br />

replacement<br />

Other


ANNEX 5-1B <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong>, and Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong><br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Operati<strong>on</strong>s and Infrastructure <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Interrupti<strong>on</strong>s<br />

Infrastructure<br />

Design/New Materials<br />

Temperature: • <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> shipping<br />

Increases in due to warmer water<br />

very hot days<br />

and heat<br />

waves<br />

in rivers and lakes<br />

Temperature:<br />

Decreases in<br />

very cold days<br />

Temperature:<br />

Increases in<br />

Arctic<br />

temperatures<br />

Temperature:<br />

Later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al<br />

freeze and<br />

earlier <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al thaw<br />

• Less ice<br />

accumulati<strong>on</strong> <strong>on</strong><br />

vessels, decks,<br />

riggings, and docks;<br />

less ice fog; fewer<br />

ice jams in ports<br />

• L<strong>on</strong>ger ocean<br />

transport seas<strong>on</strong> and<br />

more ice-free ports<br />

in northern regi<strong>on</strong>s<br />

• Possible availability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Northern Sea<br />

Route or a<br />

Northwest Passage<br />

Extended shipping<br />

seas<strong>on</strong> for inland<br />

waterways<br />

(especially the St.<br />

Lawrence Seaway<br />

and the Great Lakes)<br />

due to reduced ice<br />

coverage<br />

• Improvement in<br />

operating c<strong>on</strong>diti<strong>on</strong>s<br />

from less ice<br />

accumulati<strong>on</strong>, fog, and<br />

jams<br />

• L<strong>on</strong>ger ice-free<br />

shipping seas<strong>on</strong> and<br />

increased access to<br />

more ice-free ports and<br />

resources in remote<br />

areas<br />

• L<strong>on</strong>ger seas<strong>on</strong> for barge<br />

transport<br />

• Increases in summer<br />

load restricti<strong>on</strong>s<br />

• Design <str<strong>on</strong>g>of</str<strong>on</strong>g> shallower<br />

bottom vessels for<br />

seaway travel<br />

Other<br />

• More dredging but<br />

envir<strong>on</strong>mental and<br />

instituti<strong>on</strong>al issues<br />

• Shifts to other<br />

transportati<strong>on</strong><br />

modes


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

Sea level rise,<br />

added to<br />

storm surge<br />

Precipitati<strong>on</strong>:<br />

Increase in<br />

intense<br />

precipitati<strong>on</strong><br />

events<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong><br />

• More severe storm<br />

surges, requiring<br />

evacuati<strong>on</strong><br />

• Increases in weatherrelated<br />

delays<br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

Infrastructure <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in harbor and<br />

port facilities to<br />

accommodate higher<br />

tides and storm surges<br />

• Reduced clearance<br />

under bridges<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> navigability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> channels: some will<br />

be more accessible (and<br />

farther inland) because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> deeper waters, while<br />

others will be restricted<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in<br />

sedimentati<strong>on</strong><br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> harbor<br />

infrastructure from<br />

wave damage and storm<br />

surges<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in underwater<br />

surface and silt and<br />

debris buildup can<br />

affect channel depth<br />

• More frequent bridge<br />

openings to handle<br />

shipping<br />

Design/New Materials<br />

• Raising <str<strong>on</strong>g>of</str<strong>on</strong>g> dock and<br />

wharf levels and<br />

retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting <str<strong>on</strong>g>of</str<strong>on</strong>g> other<br />

facilities to provide<br />

adequate clearance<br />

• Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terminal<br />

and warehouse<br />

entrances<br />

• Elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bridges<br />

and other structures<br />

• Strengthening <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

harbor infrastructure<br />

to protect it from<br />

storm surge and wave<br />

damage<br />

• Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terminal<br />

and warehouse<br />

entrances from<br />

flooding<br />

Other<br />

• More dredging <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some channels<br />

• Raising or<br />

c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

jetties and seawalls<br />

to protect harbors<br />

• More dredging <strong>on</strong><br />

some shipping<br />

channels


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

Precipitati<strong>on</strong>:<br />

Increases in<br />

drought<br />

c<strong>on</strong>diti<strong>on</strong>s for<br />

some regi<strong>on</strong>s<br />

Precipitati<strong>on</strong>:<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

seas<strong>on</strong>al<br />

precipitati<strong>on</strong><br />

and river flow<br />

patterns<br />

Storms:<br />

More frequent<br />

str<strong>on</strong>g<br />

hurricanes<br />

(Category 4–<br />

5)<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Marine Transportati<strong>on</strong><br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> river<br />

transportati<strong>on</strong> routes<br />

and seas<strong>on</strong>s<br />

• Periodic channel<br />

closings or<br />

restricti<strong>on</strong>s if<br />

flooding increases<br />

• Benefits for safety<br />

and reduced<br />

interrupti<strong>on</strong>s if<br />

frozen precipitati<strong>on</strong><br />

shifts to rainfall<br />

• Implicati<strong>on</strong>s for<br />

emergency<br />

evacuati<strong>on</strong> planning,<br />

facility maintenance,<br />

and safety<br />

management<br />

Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

Infrastructure <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in silt<br />

depositi<strong>on</strong> leading to<br />

reduced depth <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

inland waterways and<br />

impacts <strong>on</strong> l<strong>on</strong>g-term<br />

viability <str<strong>on</strong>g>of</str<strong>on</strong>g> some inland<br />

navigati<strong>on</strong> routes<br />

• Greater challenge to<br />

robustness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infrastructure<br />

• Damage to harbor<br />

infrastructure from<br />

waves and storm surges<br />

• Damage to cranes and<br />

other dock and terminal<br />

facilities<br />

• Restricti<strong>on</strong>s <strong>on</strong> shipping<br />

due to channel depth<br />

al<strong>on</strong>g inland waterways<br />

and <strong>on</strong> other river travel<br />

• Restricti<strong>on</strong>s <strong>on</strong> shipping<br />

due to channel depth<br />

al<strong>on</strong>g inland waterways<br />

and <strong>on</strong> other river travel<br />

• Emergency evacuati<strong>on</strong><br />

procedures that become<br />

more routine<br />

Design/New Materials<br />

• Hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> docks,<br />

wharves, and<br />

terminals to withstand<br />

storm surge and wave<br />

acti<strong>on</strong><br />

Other<br />

• More dredging <strong>on</strong><br />

some shipping<br />

channels and<br />

harbors<br />

• Release <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

from upstream<br />

sources<br />

• Shifts to other<br />

transportati<strong>on</strong><br />

modes<br />

• More dredging <strong>on</strong><br />

some shipping<br />

channels


ANNEX 5-1C <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>s, <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Air Transportati<strong>on</strong>, and Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Aviati<strong>on</strong> Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Operati<strong>on</strong>s and Infrastructure <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Interrupti<strong>on</strong>s<br />

Infrastructure<br />

Design/New Materials<br />

Temperature: • Delays due to • Heat-related weathering • Increase in payload • Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

Increases in excessive heat and buckling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

restricti<strong>on</strong>s <strong>on</strong> aircraft heat-resistant runway<br />

very hot days<br />

and heat waves<br />

• Impact <strong>on</strong> lift-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

load limits at high-<br />

pavements and c<strong>on</strong>crete<br />

facilities<br />

at high-altitude or hotweather<br />

airports<br />

paving materials<br />

• Extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> runway<br />

altitude or hot- • Heat-related weathering • Increase in flight lengths at highweather<br />

climate <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle stock<br />

cancellati<strong>on</strong>s<br />

altitude or hotairports<br />

with<br />

weather airports, if<br />

insufficient runway<br />

lengths, resulting in<br />

flight cancellati<strong>on</strong>s<br />

and/or limits <strong>on</strong><br />

payload (i.e., weight<br />

restricti<strong>on</strong>s)<br />

• More energy<br />

c<strong>on</strong>sumpti<strong>on</strong> <strong>on</strong> the<br />

ground<br />

feasible<br />

Temperature:<br />

Decreases in<br />

very cold days<br />

• <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in snow<br />

and ice removal<br />

costs and<br />

envir<strong>on</strong>mental<br />

impacts from salt<br />

and chemical use<br />

• Reducti<strong>on</strong> in need<br />

for deicing<br />

• Fewer limitati<strong>on</strong>s<br />

<strong>on</strong> ground crew<br />

work at airports,<br />

typically restricted at<br />

wind chills below<br />

• Reducti<strong>on</strong> in snow and<br />

ice removal<br />

• Reducti<strong>on</strong> in airplane<br />

deicing<br />

Other


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

Temperature:<br />

Increases in<br />

Arctic<br />

temperatures<br />

Temperature:<br />

Later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al freeze<br />

and earlier<br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seas<strong>on</strong>al thaw<br />

Sea level rise,<br />

added to storm<br />

surge<br />

Precipitati<strong>on</strong>:<br />

Increase in<br />

intense<br />

precipitati<strong>on</strong><br />

events<br />

–29°C (–20°F).<br />

• <str<strong>on</strong>g>Potential</str<strong>on</strong>g> for closure<br />

or restricti<strong>on</strong>s for<br />

several <str<strong>on</strong>g>of</str<strong>on</strong>g> the top 50<br />

airports that lie in<br />

coastal z<strong>on</strong>es,<br />

affecting service to<br />

the highest-density<br />

populati<strong>on</strong>s in the<br />

United States<br />

• Increases in delays<br />

due to c<strong>on</strong>vective<br />

weather<br />

• Stormwater run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

that exceeds the<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Aviati<strong>on</strong> Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

Infrastructure <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

Design/New Materials<br />

• Thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> permafrost,<br />

undermining runway<br />

foundati<strong>on</strong>s<br />

• Inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> airport<br />

runways located in<br />

coastal areas<br />

• <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> structural<br />

integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> airport<br />

facilities<br />

• Destructi<strong>on</strong> or disabling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> navigati<strong>on</strong>al aid<br />

instruments<br />

• More disrupti<strong>on</strong> and<br />

delays in air service<br />

• More airport closures<br />

• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

runway paving<br />

materials<br />

• Major repair <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

runways<br />

• Elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

runways<br />

• Increases in drainage<br />

capacity and<br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drainage systems<br />

supporting runways<br />

and other paved<br />

Other<br />

• Relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some landing<br />

strips<br />

• C<strong>on</strong>structi<strong>on</strong> or<br />

raising <str<strong>on</strong>g>of</str<strong>on</strong>g> protective<br />

dikes and levees<br />

• Relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

runways, if feasible


<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g> Operati<strong>on</strong>s and<br />

Interrupti<strong>on</strong>s<br />

Precipitati<strong>on</strong>:<br />

Increases in<br />

drought<br />

c<strong>on</strong>diti<strong>on</strong>s for<br />

some regi<strong>on</strong>s<br />

Precipitati<strong>on</strong>:<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

seas<strong>on</strong>al<br />

precipitati<strong>on</strong><br />

and river flow<br />

patterns<br />

Storms:<br />

More frequent<br />

str<strong>on</strong>g<br />

hurricanes<br />

(Category 4–5)<br />

collecti<strong>on</strong> systems,<br />

causing flooding,<br />

delays, and airport<br />

closings<br />

• Implicati<strong>on</strong>s for<br />

emergency<br />

evacuati<strong>on</strong> planning,<br />

facility maintenance,<br />

and safety<br />

management<br />

• Decreased visibility<br />

at airports located in<br />

drought susceptible<br />

areas with potential<br />

for increased<br />

wildfires<br />

• Benefits for safety<br />

and reduced<br />

interrupti<strong>on</strong>s if<br />

frozen precipitati<strong>on</strong><br />

shifts to rainfall<br />

• More frequent<br />

interrupti<strong>on</strong>s in air<br />

service<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> Aviati<strong>on</strong> Adaptati<strong>on</strong> Opti<strong>on</strong>s<br />

Infrastructure <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Operati<strong>on</strong>s <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

Infrastructure<br />

• Runway and other<br />

infrastructure damage<br />

due to flooding<br />

• Inadequate or damaged<br />

pavement drainage<br />

systems<br />

• Inadequate or damaged<br />

pavement drainage<br />

systems<br />

Damage to landside<br />

facilities (e.g., terminals,<br />

navigati<strong>on</strong>al aids, fencing<br />

around perimeters, signs)<br />

Design/New Materials<br />

surfaces<br />

• Increases in drainage<br />

capacity and<br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drainage systems<br />

supporting runways<br />

and other paved<br />

surfaces<br />

• Hardening <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

terminals and other<br />

facilities<br />

Other


T<br />

6<br />

Summing Up<br />

he charge to this committee was to review the current scientific understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change from the perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> those changes <str<strong>on</strong>g>of</str<strong>on</strong>g> particular relevance for U.S. transportati<strong>on</strong>,<br />

including the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> current knowledge; to identify potential impacts <strong>on</strong> U.S. transportati<strong>on</strong><br />

infrastructure and operati<strong>on</strong>s; to c<strong>on</strong>sider adaptati<strong>on</strong> opti<strong>on</strong>s; and to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer recommendati<strong>on</strong>s for<br />

acti<strong>on</strong>s that can be taken to prepare for climate change and for needed research. In this final<br />

chapter, the committee presents its c<strong>on</strong>sensus findings and recommendati<strong>on</strong>s in resp<strong>on</strong>se to this<br />

charge, al<strong>on</strong>g with its principal supporting arguments. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee’s c<strong>on</strong>sensus positi<strong>on</strong> was<br />

informed by the five papers commissi<strong>on</strong>ed for this study; the 1-day c<strong>on</strong>ference held midway<br />

through the study to obtain the input <str<strong>on</strong>g>of</str<strong>on</strong>g> a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> academicians and<br />

practiti<strong>on</strong>ers, climate scientists, and other experts; reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> previous studies that examined the<br />

potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> transportati<strong>on</strong>, with a focus <strong>on</strong> adaptati<strong>on</strong> strategies;<br />

numerous briefings <strong>on</strong> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant topics presented at committee meetings; and the<br />

committee’s own expertise and judgment. <str<strong>on</strong>g>The</str<strong>on</strong>g> chapter is organized around a series <str<strong>on</strong>g>of</str<strong>on</strong>g> questi<strong>on</strong>s<br />

that guided the committee’s thinking.<br />

WHICH CLIMATE CHANGES ARE MOST RELEVANT FOR<br />

U.S. TRANSPORTATION?<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> past several decades <str<strong>on</strong>g>of</str<strong>on</strong>g> historical regi<strong>on</strong>al climate patterns<br />

comm<strong>on</strong>ly used by transportati<strong>on</strong> planners to guide their operati<strong>on</strong>s and<br />

investments may no l<strong>on</strong>ger be a reliable guide for future plans. In particular,<br />

future climate will include new classes (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude and frequency) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weather and climate extremes, such as record rainfall and record heat waves,<br />

not experienced in modern times as human-induced changes are superimposed<br />

<strong>on</strong> the climate’s natural variability.<br />

Transportati<strong>on</strong> planners and engineers typically extrapolate from historical weather and climate<br />

patterns in planning and designing infrastructure. <str<strong>on</strong>g>The</str<strong>on</strong>g> past will not be a good predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> future<br />

c<strong>on</strong>diti<strong>on</strong>s, however, as climate changes bring new weather patterns and climate extremes that<br />

exceed current experience. Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten depicted as gradual changes,<br />

such as the rise in global temperatures or in sea levels projected over this century. However,<br />

climate changes are unlikely to be experienced in such a smooth manner because human-induced<br />

changes will be amplified in some years by naturally fluctuating c<strong>on</strong>diti<strong>on</strong>s, reflected in<br />

potentially sudden and dramatic changes at the regi<strong>on</strong>al or local level, where transportati<strong>on</strong><br />

infrastructure is located. Warming temperatures may trigger weather extremes and surprises,<br />

such as more rapid melting <str<strong>on</strong>g>of</str<strong>on</strong>g> the Arctic sea ice or more rapid rise in sea levels than is projected<br />

by current climate models.<br />

145


146 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

On the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> current knowledge, climate scientists have identified five climate changes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particular importance to U.S. transportati<strong>on</strong> and estimated the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> their occurrence<br />

during the twenty-first century:<br />

• Increases in very hot days and heat waves (very likely) 1<br />

• Increases in Arctic temperatures (virtually certain)<br />

• Rising sea levels (virtually certain)<br />

• Increases in intense precipitati<strong>on</strong> events (very likely)<br />

• Increases in hurricane intensity (likely)<br />

HOW WILL CLIMATE CHANGE AFFECT U.S. TRANSPORTATION?<br />

Finding: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change will affect transportati<strong>on</strong> primarily through increases<br />

in several types <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and climate extremes, such as very hot days; intense<br />

precipitati<strong>on</strong> events; intense hurricanes; drought;, and rising sea levels,<br />

coupled with storm surges and land subsidence. <str<strong>on</strong>g>The</str<strong>on</strong>g> impacts will vary by mode<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> and regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the country, but they will be widespread and<br />

costly in both human and ec<strong>on</strong>omic terms and will require significant changes<br />

in the planning, design, c<strong>on</strong>structi<strong>on</strong>, operati<strong>on</strong>, and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> systems.<br />

Transportati<strong>on</strong> infrastructure was designed for typical weather patterns and envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s, reflecting local climate and incorporating assumpti<strong>on</strong>s about a reas<strong>on</strong>able range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperatures and precipitati<strong>on</strong> levels. It will be affected most by those climate changes that<br />

cause envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s to extend outside the range for which the system was designed.<br />

Finding: <str<strong>on</strong>g>Potential</str<strong>on</strong>g>ly, the greatest impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change for North<br />

America’s transportati<strong>on</strong> systems will be flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal roads, railways,<br />

transit systems, and runways because <str<strong>on</strong>g>of</str<strong>on</strong>g> global rising sea levels, coupled with<br />

storm surges and exacerbated in some locati<strong>on</strong>s by land subsidence.<br />

Fully 53 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. populati<strong>on</strong> now lives in counties with coastal regi<strong>on</strong>s, many am<strong>on</strong>g<br />

the most densely populated in the nati<strong>on</strong>. If development pressures c<strong>on</strong>tinue in vulnerable<br />

coastal areas, and there is every reas<strong>on</strong> to believe they will, the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change will be<br />

magnified as increasing numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> people and businesses are placed in harm’s way, and the<br />

infrastructure is expanded or new infrastructure is built to accommodate the growth. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Atlantic and Gulf Coasts are particularly vulnerable because they have already experienced high<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong>, land subsidence, and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> wetlands. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir vulnerability to the storm surges<br />

and wave acti<strong>on</strong> that accompany str<strong>on</strong>g tropical storms was amply dem<strong>on</strong>strated during the 2005<br />

hurricane seas<strong>on</strong>. Sea level rise and coastal flooding also pose risks for the East Coast, as well as<br />

the Pacific Northwest and parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the California Coast.<br />

1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC) (2007) Working Group I established the<br />

following terminology to describe uncertainty, that is, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence: virtually certain = >99 percent;<br />

extremely likely = >95 percent; very likely = >90 percent; likely = >66 percent; more likely than not = >50 percent;<br />

unlikely =


Summing Up 147<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change will not be limited to coastal areas. For example,<br />

watersheds supplying water to the St. Lawrence Seaway and the Great Lakes, as well as the<br />

Upper Midwest river system, are likely to experience drier c<strong>on</strong>diti<strong>on</strong>s, resulting in lower water<br />

levels and reduced capacity to ship agricultural and other bulk commodities, although a l<strong>on</strong>ger<br />

shipping seas<strong>on</strong> could <str<strong>on</strong>g>of</str<strong>on</strong>g>fset some <str<strong>on</strong>g>of</str<strong>on</strong>g> the adverse ec<strong>on</strong>omic effects. Thawing permafrost in<br />

Alaska is already creating settlement and land subsidence problems for roads, rail lines, runways,<br />

and pipelines. Higher temperature extremes (mainly heat waves) in some U.S. regi<strong>on</strong>s could<br />

lead to more frequent buckling <str<strong>on</strong>g>of</str<strong>on</strong>g> pavements and misalignment <str<strong>on</strong>g>of</str<strong>on</strong>g> rail lines. More severe<br />

weather events with intense precipitati<strong>on</strong> could increase the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> extensive flooding<br />

events, such as the storms that plagued the Midwest during the 1993 flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mississippi<br />

and Missouri River system, the Chicago area in 1996, and the Houst<strong>on</strong> regi<strong>on</strong> during Tropical<br />

Storm Allis<strong>on</strong> in 2001. Flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> a waterway system can knock out barge operati<strong>on</strong>s <strong>on</strong> the<br />

river itself, rail operati<strong>on</strong>s <strong>on</strong> rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way adjacent to the river, and even highway approaches<br />

to bridges crossing flooded rivers.<br />

Not all climate change impacts will be negative. For example, the marine transportati<strong>on</strong><br />

sector could benefit from more open seas in the Arctic, creating new and shorter shipping routes<br />

and reducing transport time and costs. In cold regi<strong>on</strong>s, expected temperature rises, particularly<br />

decreases in very cold days and later <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al freezes and earlier <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al<br />

thaws, could mean reduced costs <str<strong>on</strong>g>of</str<strong>on</strong>g> snow and ice c<strong>on</strong>trol for departments <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> and<br />

safer travel c<strong>on</strong>diti<strong>on</strong>s for passenger vehicles and freight.<br />

Recommendati<strong>on</strong> 1: Federal, state and local governments, in collaborati<strong>on</strong><br />

with owners and operators <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure, such as ports and airports,<br />

and private railroad and pipeline companies, should inventory critical<br />

transportati<strong>on</strong> infrastructure in light <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change projecti<strong>on</strong>s to<br />

determine whether, when, and where projected climate changes in their<br />

regi<strong>on</strong>s might be c<strong>on</strong>sequential.<br />

Inventorying transportati<strong>on</strong> assets essential to maintaining network performance to determine<br />

their potential vulnerability to projected climate changes is a sensible first step. Informati<strong>on</strong><br />

about projected climate changes is currently available from climate scientists for large<br />

subc<strong>on</strong>tinental regi<strong>on</strong>s—a scale more relevant than global projecti<strong>on</strong>s for regi<strong>on</strong>al and local<br />

transportati<strong>on</strong> infrastructure. Although such an inventory must be updated periodically as new<br />

scientific knowledge about climate change becomes available, inventorying is a relatively lowcost<br />

activity. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the tools needed for the purpose (e.g., geographic informati<strong>on</strong> systems<br />

[GIS]) are available. <str<strong>on</strong>g>The</str<strong>on</strong>g> inventorying process itself should help identify with greater precisi<strong>on</strong><br />

the data needed <strong>on</strong> transportati<strong>on</strong>-relevant climate changes and encourage collaborati<strong>on</strong> between<br />

transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als and climate scientists.<br />

HOW SHOULD TRANSPORTATION DECISION MAKERS RESPOND?<br />

Finding: Public authorities and <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials at various governmental levels and<br />

executives <str<strong>on</strong>g>of</str<strong>on</strong>g> private companies are c<strong>on</strong>tinually making short- and l<strong>on</strong>g-term<br />

investment decisi<strong>on</strong>s that have implicati<strong>on</strong>s for how the transportati<strong>on</strong> system<br />

will resp<strong>on</strong>d to climate change in the near and l<strong>on</strong>g terms.


148 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Transportati<strong>on</strong> decisi<strong>on</strong> makers have an opportunity now to prepare for projected climate<br />

changes. Decisi<strong>on</strong>s made today, particularly those related to the redesign and retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

existing or the locati<strong>on</strong> and design <str<strong>on</strong>g>of</str<strong>on</strong>g> new transportati<strong>on</strong> infrastructure, will affect how well the<br />

system adapts to climate change far into the future. Many transportati<strong>on</strong> facilities, such as<br />

bridges, large culverts, and rail and port facilities, are designed with l<strong>on</strong>g service lives and help<br />

shape development patterns that, <strong>on</strong>ce in place, are difficult to change. Thus, transportati<strong>on</strong><br />

planners and engineers should c<strong>on</strong>sider how projected climate changes in their regi<strong>on</strong>s might<br />

affect these facilities.<br />

Recommendati<strong>on</strong> 2: State and local governments and private<br />

infrastructure providers should incorporate climate change into their l<strong>on</strong>gterm<br />

capital improvement plans, facility designs, maintenance practices,<br />

operati<strong>on</strong>s, and emergency resp<strong>on</strong>se plans.<br />

Taking measures now to evaluate and protect the most vulnerable infrastructure should pay <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

by diminishing near-term maintenance expenditures and reducing the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> catastrophic failure,<br />

with its toll <strong>on</strong> human life and disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic activity. Such measures might include<br />

strengthening or elevating some coastal roads, rail lines, and bridges, particularly those that serve<br />

as evacuati<strong>on</strong> routes or upgrading parallel routes where they are available. 2 In the l<strong>on</strong>ger term,<br />

relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way farther inland or installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costly storm barrier systems to protect<br />

selected areas (e.g., parts <str<strong>on</strong>g>of</str<strong>on</strong>g> New York City or Miami) might be c<strong>on</strong>sidered.<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> significant costs <str<strong>on</strong>g>of</str<strong>on</strong>g> redesigning and retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting transportati<strong>on</strong><br />

infrastructure to adapt to potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change suggest the need<br />

for more strategic, risk-based approaches to investment decisi<strong>on</strong>s.<br />

Designing transportati<strong>on</strong> facilities to more robust standards to hedge against potentially negative<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change will produce much more costly designs that are likely to be<br />

unacceptable given limited budgets. More strategic and selective risk-based approaches are<br />

needed for determining appropriate design standards and investment priorities. Transportati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als already take risk into account, particularly in designing facilities. For example,<br />

structures are designed to withstand certain wind speeds <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> probabilistic assessments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wind speed occurrence using historical data <strong>on</strong> wind speed frequency. Drainage requirements<br />

for many transportati<strong>on</strong> facilities are sized to accommodate the 100-year storm, a probabilistic<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> storm frequency. Engineers also comm<strong>on</strong>ly incorporate safety factors into designs<br />

or design standards to account for unforeseen events or abnormal forces <strong>on</strong> structures. In<br />

general, however, transportati<strong>on</strong> decisi<strong>on</strong> makers have a l<strong>on</strong>g way to go to take full advantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantitative, risk-based approaches that incorporate uncertainty and probabilistic assessments in<br />

making investment and design decisi<strong>on</strong>s.<br />

Recommendati<strong>on</strong> 3: Transportati<strong>on</strong> planners and engineers should use<br />

more probabilistic investment analyses and design approaches that<br />

incorporate techniques for trading <str<strong>on</strong>g>of</str<strong>on</strong>g>f the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> making the<br />

infrastructure more robust against the ec<strong>on</strong>omic costs <str<strong>on</strong>g>of</str<strong>on</strong>g> failure. At a more<br />

2 States in particularly vulnerable regi<strong>on</strong>s like the Gulf Coast could c<strong>on</strong>sider securing and banking right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way for<br />

alternative evacuati<strong>on</strong> routes, should they prove necessary.


Summing Up 149<br />

general level, these techniques could also be used to communicate these<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs to policy makers who make investment decisi<strong>on</strong>s and authorize<br />

funding.<br />

At present, the necessary data and certitude about projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate, particularly at the<br />

local and regi<strong>on</strong>al levels, are not available to permit a comprehensive probabilistic risk<br />

assessment and analysis. However, more simplified approaches can be used by transportati<strong>on</strong><br />

planners and engineers to incorporate many <str<strong>on</strong>g>of</str<strong>on</strong>g> these risk assessment c<strong>on</strong>cepts into their planning<br />

and design. One model is the California Seismic Retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it Program. Following the Lomo Prieta<br />

earthquake in 1989, the California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> developed a risk-based<br />

approach for analyzing the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> highway bridges statewide to earthquakes and their<br />

criticality to the network to make it possible to determine investment priorities for retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting<br />

and replacement. <str<strong>on</strong>g>The</str<strong>on</strong>g> program established a higher performance standard for 750 structures to<br />

protect the investment in these major facilities and ensure that these vital transportati<strong>on</strong> lifelines<br />

would remain in service after a major seismic event to provide access for emergency resp<strong>on</strong>ders.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> state’s 11 major toll bridges were handled separately because their complexity demanded a<br />

time-c<strong>on</strong>suming dynamic analysis. For most other bridges, the standard was “no collapse” under<br />

a maximum seismic event, c<strong>on</strong>sistent with the geographic locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bridge. <str<strong>on</strong>g>The</str<strong>on</strong>g> objective<br />

was to avoid loss <str<strong>on</strong>g>of</str<strong>on</strong>g> life; however, some damage to a structure was acceptable as l<strong>on</strong>g as it<br />

remained intact and could be reopened for service so<strong>on</strong> after the event.<br />

Extending and incorporating such techniques to include climate change will require more<br />

complete data <strong>on</strong> the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> climate-related hazards and their ec<strong>on</strong>omic c<strong>on</strong>sequences. It<br />

will also necessitate c<strong>on</strong>tinuing educati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> current planners and engineers and training <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als. Finally, educating policy makers to gain their support will entail<br />

communicating the informati<strong>on</strong> so that the trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs and investment priorities are clear. It may<br />

also require new eligibility criteria in funding programs, and new funding sources may also be<br />

necessary to make the investments identified by the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these techniques.<br />

WHAT DATA AND DECISION SUPPORT TOOLS ARE NEEDED?<br />

Finding: Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lack sufficiently detailed<br />

informati<strong>on</strong> about expected climate changes and their timing to take<br />

appropriate acti<strong>on</strong>.<br />

Transportati<strong>on</strong> decisi<strong>on</strong> makers note that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most difficult aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> addressing climate<br />

change is obtaining the relevant informati<strong>on</strong> in the form they need for planning and design. This<br />

difficulty is not limited to the transportati<strong>on</strong> sector. A recent NRC report (2007) found that<br />

while the scientific understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change has made great progress, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> that<br />

knowledge to support decisi<strong>on</strong> making and formulate mitigati<strong>on</strong> and adaptati<strong>on</strong> strategies is<br />

much less well developed. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is understood with greatest c<strong>on</strong>fidence as a global or<br />

c<strong>on</strong>tinental phenomen<strong>on</strong>, while transportati<strong>on</strong> planners as well as other decisi<strong>on</strong> makers need<br />

local and regi<strong>on</strong>al climate projecti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>y also need a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how projected<br />

climate changes, such as changes in temperature and precipitati<strong>on</strong>, will affect the envir<strong>on</strong>ment<br />

(e.g., soil moisture, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f) in which the infrastructure is situated, which will vary from regi<strong>on</strong> to<br />

regi<strong>on</strong>. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> projecti<strong>on</strong>s themselves are presented by climate scientists as a portfolio <str<strong>on</strong>g>of</str<strong>on</strong>g>


150 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

plausible scenarios and outcomes, which are c<strong>on</strong>tinually refined and revised as new knowledge<br />

accumulates. Transportati<strong>on</strong> planners need to have a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> which scenarios are<br />

most plausible for their regi<strong>on</strong>s and most significant for their operati<strong>on</strong>s and plans.<br />

Recommendati<strong>on</strong> 4: <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Oceanic and Atmospheric<br />

Administrati<strong>on</strong>, the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> (US DOT), the U.S.<br />

Geological Survey, and other relevant agencies should work together to<br />

institute a process for better communicati<strong>on</strong> am<strong>on</strong>g transportati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als, climate scientists, and other relevant scientific disciplines,<br />

and establish a clearinghouse for transportati<strong>on</strong>-relevant climate change<br />

informati<strong>on</strong>.<br />

All pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>s should benefit from the collaborati<strong>on</strong>. Transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als would be<br />

encouraged to define with greater precisi<strong>on</strong> the climate data needed to improve transportati<strong>on</strong><br />

decisi<strong>on</strong>s, such as temperature and precipitati<strong>on</strong> thresholds at finer-grained geographic scales or<br />

climate c<strong>on</strong>diti<strong>on</strong>s that would create unacceptable performance outcomes. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> scientists<br />

would be challenged to elaborate <strong>on</strong> the possibilities and limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> projecting impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change at the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic specificity that are most useful for transportati<strong>on</strong><br />

planners. And hydrologists and others would be challenged to c<strong>on</strong>sider how the envir<strong>on</strong>ment<br />

would influence these effects and their impacts <strong>on</strong> transportati<strong>on</strong> infrastructure. One promising<br />

approach might be for the federal government to support a number <str<strong>on</strong>g>of</str<strong>on</strong>g> pilot projects in which<br />

federal agencies would work closely with local transportati<strong>on</strong> planners to include the full range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> relevant climate informati<strong>on</strong> that could affect a specific project.<br />

Finding: Better decisi<strong>on</strong> support tools are also needed to assist transportati<strong>on</strong><br />

decisi<strong>on</strong> makers.<br />

Recommendati<strong>on</strong> 5: Ongoing and planned research at federal and state<br />

agencies and universities that provide climate data and decisi<strong>on</strong> support<br />

tools should include the needs <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> decisi<strong>on</strong> makers.<br />

For example, the research program <str<strong>on</strong>g>of</str<strong>on</strong>g> the US DOT Center for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and<br />

Envir<strong>on</strong>mental Forecasting could be charged with expanding its existing research program in this<br />

area and provided the necessary funding. Needed tools include accurate digital elevati<strong>on</strong> maps<br />

in coastal areas for forecasting the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding and storm surge heights; GIS that can be<br />

used to map the locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> critical infrastructure, overlaid with informati<strong>on</strong> <strong>on</strong> climate change<br />

effects (e.g., sea level rise, permafrost melt); greater use <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios that include climate change<br />

in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-range regi<strong>on</strong>al transportati<strong>on</strong> plans to pinpoint likely vulnerabilities<br />

(e.g., areas susceptible to sea level rise, aggravated by storm surge) and ways to address them;<br />

and better transportati<strong>on</strong> network models for examining the systemwide effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

critical transportati<strong>on</strong> infrastructure links.


Summing Up 151<br />

WHICH ADAPTATION STRATEGIES MAKE SENSE?<br />

Transportati<strong>on</strong> decisi<strong>on</strong> makers have a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> opti<strong>on</strong>s from which to choose in<br />

determining how best to adjust to climate change. One way to organize these opti<strong>on</strong>s is around<br />

the timescales used by transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als in their decisi<strong>on</strong> making. For example,<br />

operati<strong>on</strong>al decisi<strong>on</strong>s are typically focused <strong>on</strong> the short term, and thus will be c<strong>on</strong>cerned mainly<br />

with near-term changes in weather and climate c<strong>on</strong>diti<strong>on</strong>s. Decisi<strong>on</strong>s about rehabilitating or<br />

retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting infrastructure are made with a l<strong>on</strong>ger time horiz<strong>on</strong> in mind. Such decisi<strong>on</strong>s will<br />

determine the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> those assets with l<strong>on</strong>g service lives for many decades and thus<br />

should take l<strong>on</strong>ger-term climate projecti<strong>on</strong>s into c<strong>on</strong>siderati<strong>on</strong> so likely hazards can be assessed.<br />

Decisi<strong>on</strong>s about new infrastructure or major capacity additi<strong>on</strong>s involve the l<strong>on</strong>gest time frame<br />

because they will shape land use and development patterns for years to come, and thus may<br />

require c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change projecti<strong>on</strong>s that extend into the twenty-sec<strong>on</strong>d century.<br />

Other adaptati<strong>on</strong> opti<strong>on</strong>s, such as m<strong>on</strong>itoring and use <str<strong>on</strong>g>of</str<strong>on</strong>g> technology or new organizati<strong>on</strong>al<br />

arrangements, cut across timescales and <str<strong>on</strong>g>of</str<strong>on</strong>g>fer adaptati<strong>on</strong> opti<strong>on</strong>s in their own right or ways to<br />

better incorporate climate change in transportati<strong>on</strong> decisi<strong>on</strong> making.<br />

Operati<strong>on</strong>al Resp<strong>on</strong>ses<br />

Finding: Projected increases in extreme weather and climate underscore the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> emergency resp<strong>on</strong>se plans in vulnerable locati<strong>on</strong>s, and require<br />

that transportati<strong>on</strong> providers work more closely with weather forecasters and<br />

emergency planners and assume a greater role in evacuati<strong>on</strong> planning and<br />

emergency resp<strong>on</strong>se.<br />

U.S. transportati<strong>on</strong> providers already address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> weather <strong>on</strong> transportati<strong>on</strong> system<br />

operati<strong>on</strong>s in a diverse range <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic c<strong>on</strong>diti<strong>on</strong>s. For example, snow and ice c<strong>on</strong>trol accounts<br />

for about 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> annual highway operating budgets in the northern U.S. states. Likewise,<br />

hurricane planning has become a major focus <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> operati<strong>on</strong>s in the Gulf Coast<br />

states, where transportati<strong>on</strong> providers are forging close relati<strong>on</strong>ships with emergency resp<strong>on</strong>ders<br />

to handle severe weather events.<br />

As climate changes induce new extremes (e.g., more intense storms, more intense<br />

precipitati<strong>on</strong>), operati<strong>on</strong>al resp<strong>on</strong>ses are likely to become more routine and proactive than<br />

today’s approach <str<strong>on</strong>g>of</str<strong>on</strong>g> treating severe weather <strong>on</strong> an ad hoc, emergency basis. For example, if<br />

hurricanes increase in intensity, as is likely to be the case, establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> routes and<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>traflow operati<strong>on</strong>s may become as comm<strong>on</strong>place as the current use <str<strong>on</strong>g>of</str<strong>on</strong>g> snow emergency<br />

routes in the Northeast and Midwest. More accurate and timely weather predicti<strong>on</strong> and<br />

communicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> storm warnings in real time to those potentially in harm’s way will become<br />

more important.<br />

Recommendati<strong>on</strong> 6: Transportati<strong>on</strong> agencies and service providers should<br />

build <strong>on</strong> the experience in those locati<strong>on</strong>s where transportati<strong>on</strong> is well<br />

integrated into emergency resp<strong>on</strong>se and evacuati<strong>on</strong> plans.<br />

Following the events <str<strong>on</strong>g>of</str<strong>on</strong>g> September 11, 2001, and the experience with Hurricanes Katrina and<br />

Rita, coordinati<strong>on</strong> between state and local emergency managers—the first resp<strong>on</strong>ders in an


152 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

emergency—and transportati<strong>on</strong> agencies and service providers improved, particularly in those<br />

locati<strong>on</strong>s with recurring natural disasters, such as hurricanes. In some locati<strong>on</strong>s, transportati<strong>on</strong> is<br />

represented at emergency operati<strong>on</strong>s centers―command posts that can be activated rapidly in an<br />

emergency. Transportati<strong>on</strong> agencies and service providers are also working closely with weather<br />

forecasters and emergency resp<strong>on</strong>se planners to c<strong>on</strong>vey their own lead-time requirements so they<br />

can provide the pers<strong>on</strong>nel and equipment necessary for evacuati<strong>on</strong> and protect their own assets.<br />

Transportati<strong>on</strong> agencies and service providers in locati<strong>on</strong>s where collaborati<strong>on</strong> is not as<br />

advanced should build <strong>on</strong> this experience.<br />

M<strong>on</strong>itoring and Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Finding: Greater use <str<strong>on</strong>g>of</str<strong>on</strong>g> technology would enable infrastructure providers to<br />

m<strong>on</strong>itor climate changes and receive advance warning <str<strong>on</strong>g>of</str<strong>on</strong>g> potential failures due<br />

to water levels and currents, wave acti<strong>on</strong>, winds, and temperatures exceeding<br />

what the infrastructure was designed to withstand.<br />

M<strong>on</strong>itoring infrastructure c<strong>on</strong>diti<strong>on</strong>s, particularly the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and climate extremes,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers an alternative to preventive retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting or rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some facilities. It is also an<br />

activity that can begin immediately. In Alaska, which is experiencing more accelerated climate<br />

changes than the lower 48 states, the Alyeska Pipeline Company already m<strong>on</strong>itors the right-<str<strong>on</strong>g>of</str<strong>on</strong>g>way<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Trans-Alaska Pipeline System to spot land subsidence problems, particularly al<strong>on</strong>g<br />

the 800 miles <str<strong>on</strong>g>of</str<strong>on</strong>g> pipeline elevated <strong>on</strong> vertical supports. Alaskan engineers also closely m<strong>on</strong>itor<br />

bridge supports, which are experiencing damage from earlier winter run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f and increased stream<br />

flow. In the future, sensors and other “smart” technologies could be embedded in the<br />

infrastructure to m<strong>on</strong>itor changing climate c<strong>on</strong>diti<strong>on</strong>s and impacts and provide warning when<br />

pressure or stress thresholds are being exceeded. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> more heat-resistant materials<br />

could help protect pavements and some rail facilities, in particular, from the adverse impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projected temperature extremes.<br />

Recommendati<strong>on</strong> 7: Federal and academic research programs should<br />

encourage the development and implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itoring technologies<br />

that could provide advance warning <str<strong>on</strong>g>of</str<strong>on</strong>g> pending failures due to the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weather and climate extremes <strong>on</strong> major transportati<strong>on</strong> facilities.<br />

Advances in sensor technologies, computer processing, and communicati<strong>on</strong>s capabilities should<br />

provide a fertile field for the development <str<strong>on</strong>g>of</str<strong>on</strong>g> smart devices that can be used for m<strong>on</strong>itoring<br />

changing climate c<strong>on</strong>diti<strong>on</strong>s and communicating the results to the appropriate transportati<strong>on</strong><br />

infrastructure owners. Advances in material sciences should enable the development <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

materials that can withstand climate extremes.<br />

Sharing <str<strong>on</strong>g>of</str<strong>on</strong>g> Best Practices<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> geographic extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States—from Alaska to Florida<br />

and from Maine to Hawaii—and its diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> weather and climate c<strong>on</strong>diti<strong>on</strong>s<br />

can provide a laboratory for identifying best practices and sharing informati<strong>on</strong><br />

as the climate changes.


Summing Up 153<br />

As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States will experience new climateinduced<br />

weather patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes, however, may not necessarily require the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new operating and maintenance strategies. <str<strong>on</strong>g>The</str<strong>on</strong>g> United States has a diverse climate, ranging<br />

from subtropical to arctic and from arid to wet, with several regi<strong>on</strong>s being subject to temperature<br />

extremes and such events as blizzards, hurricanes, tornadoes, floods, wildfires, avalanches, and<br />

mudslides. As climate patterns change, transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> best practices from <strong>on</strong>e locati<strong>on</strong> to another<br />

will be essential.<br />

Recommendati<strong>on</strong> 8: <str<strong>on</strong>g>The</str<strong>on</strong>g> American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and<br />

Transportati<strong>on</strong> Officials (AASHTO), the Federal Highway Administrati<strong>on</strong>,<br />

the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American Railroads, the American Public<br />

Transportati<strong>on</strong> Associati<strong>on</strong>, the American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Port Authorities,<br />

the Airport Operators Council, associati<strong>on</strong>s for oil and gas pipelines, and<br />

other relevant transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al and research organizati<strong>on</strong>s<br />

should develop a mechanism to encourage sharing <str<strong>on</strong>g>of</str<strong>on</strong>g> best practices for<br />

addressing the potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<br />

This effort should build <strong>on</strong> technology transfer mechanisms that already exist, such as<br />

AASHTO’s technology-sharing program. Technology should be defined broadly to include<br />

probabilistic decisi<strong>on</strong>-making tools, as well as m<strong>on</strong>itoring technologies, new materials, and<br />

operating and maintenance strategies.<br />

Design <str<strong>on</strong>g>Change</str<strong>on</strong>g>s<br />

Finding: Reevaluating, developing, and regularly updating design standards<br />

for transportati<strong>on</strong> infrastructure to address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change will<br />

require a broad-based research and testing program and a substantial<br />

implementati<strong>on</strong> effort.<br />

Operati<strong>on</strong>al resp<strong>on</strong>ses are geared to addressing near-term impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, but<br />

rehabilitating or retr<str<strong>on</strong>g>of</str<strong>on</strong>g>itting transportati<strong>on</strong> facilities—many <str<strong>on</strong>g>of</str<strong>on</strong>g> which are designed to have l<strong>on</strong>g<br />

service lives—requires that transportati<strong>on</strong> planners and engineers c<strong>on</strong>sider how climate changes<br />

will affect the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> these facilities 50 or more years into the future. Opportunities for<br />

adaptati<strong>on</strong> are limited <strong>on</strong>ce a facility has been renovated unless engineers build in the potential to<br />

make subsequent changes. Addressing climate change will also require reevaluati<strong>on</strong>,<br />

development, and regular updating <str<strong>on</strong>g>of</str<strong>on</strong>g> design standards that guide infrastructure design.<br />

Envir<strong>on</strong>mental factors are integral to the design <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> infrastructure.<br />

C<strong>on</strong>diti<strong>on</strong>s such as temperature, freeze–thaw cycles, and durati<strong>on</strong> and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

determine subsurface and foundati<strong>on</strong> designs, the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> materials, and drainage capacity.<br />

Engineers, however, have given little thought to whether current design standards are adequate to<br />

accommodate climate change. For example, will drainage capacity be adequate for expected<br />

increases in intense precipitati<strong>on</strong> events? Many infrastructure comp<strong>on</strong>ents are currently<br />

designed for the 100-year storm, but projecti<strong>on</strong>s indicate that today’s 100-year precipitati<strong>on</strong><br />

event is likely to occur every 50 or perhaps even every 20 years by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> this century. What<br />

new materials and operating practices might be needed when very hot temperatures and heat<br />

waves become more frequent? Are infrastructure comp<strong>on</strong>ents sufficiently str<strong>on</strong>g to withstand


154 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

the forces <str<strong>on</strong>g>of</str<strong>on</strong>g> larger and more frequent storm surges and more powerful wave acti<strong>on</strong>, the effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which were vividly dem<strong>on</strong>strated when Hurricane Katrina simply lifted bridge decks <str<strong>on</strong>g>of</str<strong>on</strong>g>f their<br />

supporting structures?<br />

Developing standards is a time-c<strong>on</strong>suming c<strong>on</strong>sensus process that typically involves<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al organizati<strong>on</strong>s in an extensive research and testing program. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in design<br />

practices tend to be incremental, and building to higher standards to strengthen transportati<strong>on</strong><br />

infrastructure so it can accommodate the adverse impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change must be weighed<br />

against the costs involved.<br />

Recommendati<strong>on</strong> 9: US DOT should take a leadership role, al<strong>on</strong>g with<br />

those pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al organizati<strong>on</strong>s in the forefr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> civil engineering<br />

practice across all modes, to initiate immediately a federally funded,<br />

multiagency research program for <strong>on</strong>going reevaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing and<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> new design standards as progress is made in understanding<br />

future climate c<strong>on</strong>diti<strong>on</strong>s and the opti<strong>on</strong>s available for addressing them. A<br />

research plan and cost proposal should be developed for submissi<strong>on</strong> to<br />

C<strong>on</strong>gress for authorizati<strong>on</strong> and funding <str<strong>on</strong>g>of</str<strong>on</strong>g> this program.<br />

Developing standards to address climate change in a timely manner requires leadership by the<br />

scientific community and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al associati<strong>on</strong>s and, given the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential impacts,<br />

a broadly based, federally sp<strong>on</strong>sored research program. <str<strong>on</strong>g>The</str<strong>on</strong>g> initial focus <str<strong>on</strong>g>of</str<strong>on</strong>g> such a program<br />

should be <strong>on</strong> essential links in transportati<strong>on</strong> networks, particularly those vulnerable to climate<br />

changes in coastal areas or in low-lying areas in riverside locati<strong>on</strong>s. A good model is the<br />

c<strong>on</strong>gressi<strong>on</strong>ally mandated Nati<strong>on</strong>al Earthquake Hazard Reducti<strong>on</strong> Program, begun in 1977,<br />

which established a research effort and a coordinati<strong>on</strong> mechanism to reduce the risks to life and<br />

property from earthquakes through the development <str<strong>on</strong>g>of</str<strong>on</strong>g> standards that afford different levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protecti<strong>on</strong> for different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> risk. If a similar program is to be launched to address climate<br />

change in a timely manner, it should be initiated so<strong>on</strong>.<br />

Recommendati<strong>on</strong> 10: In the short term, state and federally funded<br />

transportati<strong>on</strong> infrastructure rehabilitati<strong>on</strong> projects in highly vulnerable<br />

locati<strong>on</strong>s should be rebuilt to higher standards, and greater attenti<strong>on</strong><br />

should be paid to the provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> redundant power and communicati<strong>on</strong>s<br />

systems to ensure rapid restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> services in the event<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> failure.<br />

Following Hurricane Katrina, for example, the Federal Highway Administrati<strong>on</strong> recognized that<br />

current design standards for coastal highway bridges—which were based <strong>on</strong> a riverine<br />

envir<strong>on</strong>ment and a 50-year storm—were inadequate. <str<strong>on</strong>g>The</str<strong>on</strong>g> agency approved and shared in the<br />

cost <str<strong>on</strong>g>of</str<strong>on</strong>g> rebuilding bridges damaged in the hurricane to a higher design standard, and<br />

recommended the development <str<strong>on</strong>g>of</str<strong>on</strong>g> bridge design standards more appropriate for a coastal<br />

envir<strong>on</strong>ment, which take into account the combined effects <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surge and wave acti<strong>on</strong> and<br />

assume a more severe storm event (e.g., a 100-year or even a 500-year storm). AASHTO is<br />

leading the effort to develop a new c<strong>on</strong>sensus standard. Hurricane Katrina also showed the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> power and communicati<strong>on</strong>s systems to the restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> services<br />

(e.g., operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> traffic lights, rail signal systems, pumping stati<strong>on</strong>s, air-traffic c<strong>on</strong>trol facilities,<br />

and night-time running lights).


Summing Up 155<br />

Finding: Federal agencies have not focused generally <strong>on</strong> adaptati<strong>on</strong> in<br />

addressing climate change.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate design standards to accommodate climate change is <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several possible adaptati<strong>on</strong> strategies that may require federal leadership, research, and funding.<br />

Recommendati<strong>on</strong> 11: US DOT should take the lead in developing an<br />

interagency working group focused <strong>on</strong> adaptati<strong>on</strong>.<br />

This initiative would not necessarily require new funding bey<strong>on</strong>d that recommended above.<br />

Better collaborati<strong>on</strong> am<strong>on</strong>g federal agencies could help focus attenti<strong>on</strong> <strong>on</strong> adaptati<strong>on</strong> issues and<br />

shape existing research programs.<br />

Transportati<strong>on</strong> Planning and Land Use C<strong>on</strong>trols<br />

Finding: Transportati<strong>on</strong> planners are not currently required to c<strong>on</strong>sider<br />

climate change impacts and their effects <strong>on</strong> infrastructure investments,<br />

particularly in vulnerable locati<strong>on</strong>s.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most effective strategies for reducing the risks <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change is to avoid placing<br />

people and infrastructure in vulnerable locati<strong>on</strong>s. Transportati<strong>on</strong> planners currently c<strong>on</strong>sider<br />

expected land use patterns when forecasting future travel demand and infrastructure needs.<br />

However, they rarely questi<strong>on</strong> whether such development is desirable, much less what effects<br />

climate change might have <strong>on</strong> the provisi<strong>on</strong> and development <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure in vulnerable<br />

locati<strong>on</strong>s. In part, this situati<strong>on</strong> stems from governance arrangements. States, regi<strong>on</strong>al<br />

authorities, and the private sector are resp<strong>on</strong>sible for large-scale transportati<strong>on</strong> investment<br />

decisi<strong>on</strong>s, but local governments and a few states c<strong>on</strong>trol land use decisi<strong>on</strong>s through<br />

comprehensive plans, z<strong>on</strong>ing ordinances, permitting, and building codes. In some locati<strong>on</strong>s,<br />

transportati<strong>on</strong> and land use planning are becoming more integrated as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> smart growth<br />

policies, which recognize the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> investments <strong>on</strong> regi<strong>on</strong>al development and<br />

ec<strong>on</strong>omic growth and vice versa; however, such integrati<strong>on</strong> is uncomm<strong>on</strong>.<br />

Recommendati<strong>on</strong> 12: Federal planning regulati<strong>on</strong>s should require that<br />

climate change be included as a factor in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> public-sector,<br />

l<strong>on</strong>g-range transportati<strong>on</strong> plans; eliminate any percepti<strong>on</strong> that such plans<br />

should be limited to 20–30 years; and require collaborati<strong>on</strong> in plan<br />

development with agencies resp<strong>on</strong>sible for land use, envir<strong>on</strong>mental<br />

protecti<strong>on</strong>, and natural resource management to foster more integrated<br />

transportati<strong>on</strong>–land use decisi<strong>on</strong> making.<br />

Current surface transportati<strong>on</strong> legislati<strong>on</strong> encourages such collaborati<strong>on</strong>. During reauthorizati<strong>on</strong>,<br />

requiring transportati<strong>on</strong> planners to both c<strong>on</strong>sider climate change and collaborate with land use<br />

planners in the preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> public-sector, l<strong>on</strong>g-range plans could go a l<strong>on</strong>g way toward<br />

making these issues more visible. Some metropolitan planning organizati<strong>on</strong>s are already using<br />

scenario-based approaches to illustrate the trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs am<strong>on</strong>g social, ec<strong>on</strong>omic, and envir<strong>on</strong>mental<br />

goals and understand the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> different l<strong>on</strong>g-range investment plans. Scenario planning


156 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

could be adapted to take potential climate changes into account, and the results could provide the<br />

basis for discussi<strong>on</strong> with local governments and developers resp<strong>on</strong>sible for land use decisi<strong>on</strong>s,<br />

particularly in vulnerable areas.<br />

Finding: Locally c<strong>on</strong>trolled land use planning, which is typical throughout the<br />

country, has too limited a perspective to account for the broadly shared risks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change.<br />

Any strategy that involves land use c<strong>on</strong>trols to address climate change would need to<br />

build c<strong>on</strong>sensus am<strong>on</strong>g key decisi<strong>on</strong> makers in transportati<strong>on</strong> and land use, probably at the<br />

regi<strong>on</strong>al level—a challenging propositi<strong>on</strong>. Federal and state incentives may be needed to<br />

encourage new organizati<strong>on</strong>al arrangements, a topic discussed later in this chapter.<br />

Insurance<br />

Finding: <str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Flood Insurance Program and the flood insurance rate<br />

maps (FIRMs) that determine program eligibility do not take climate change<br />

into account.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> federal government is the insurer <str<strong>on</strong>g>of</str<strong>on</strong>g> last resort for homeowners and businesses that cannot<br />

secure affordable private flood insurance in specially designated flood hazard areas. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Nati<strong>on</strong>al Flood Insurance Program, authorized by C<strong>on</strong>gress in 1968 to mitigate increasing<br />

taxpayer-funded flood relief, is administered by the Federal Emergency Management Agency<br />

(FEMA). FEMA maps the nati<strong>on</strong>’s floodplains, and eligible homeowners and businesses receive<br />

below-cost insurance. In return, the local community must adopt and enforce floodplain<br />

management measures, including building code ordinances for new c<strong>on</strong>structi<strong>on</strong> and rebuilding<br />

after a disaster, to reduce flood damage. In practice, critics c<strong>on</strong>tend that the program has resulted<br />

in more development than would otherwise have occurred in these areas. Moreover, the<br />

accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the FIRMs used to determine program eligibility is woefully inadequate, despite a<br />

mapping modernizati<strong>on</strong> program. Flood hazard area boundaries are keyed to the 100-year storm,<br />

and base elevati<strong>on</strong> data are inadequate. <str<strong>on</strong>g>The</str<strong>on</strong>g> maps are based <strong>on</strong> historical data and thus do not<br />

factor in such climate changes as sea level rise and storm surge.<br />

Recommendati<strong>on</strong> 13: FEMA should reevaluate the risk reducti<strong>on</strong><br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Flood Insurance Program and the FIRMs,<br />

particularly in view <str<strong>on</strong>g>of</str<strong>on</strong>g> projected increases in intense precipitati<strong>on</strong> and<br />

storms. At a minimum, updated flood z<strong>on</strong>e maps that account for sea level<br />

rise (incorporating land subsidence) should be a priority in coastal areas.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change may trigger more intense storms, and sea level rise will extend the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> flood<br />

damage in some special flood hazard areas. FEMA and c<strong>on</strong>gressi<strong>on</strong>al oversight committees<br />

should reevaluate the risk reducti<strong>on</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Flood Insurance Program in<br />

light <str<strong>on</strong>g>of</str<strong>on</strong>g> these projected changes. <str<strong>on</strong>g>The</str<strong>on</strong>g> FIRMs should account for climate change and the<br />

likelihood that it will extend the boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> some special flood hazard areas, which are keyed<br />

to the 100-year storm. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes are particularly important to transportati<strong>on</strong> engineers<br />

because the FIRMs have become a quasi design standard, for example, for determining<br />

appropriate drainage capacity for transportati<strong>on</strong> infrastructure in coastal areas.


Summing Up 157<br />

New Organizati<strong>on</strong>al Arrangements<br />

Finding: Current instituti<strong>on</strong>al arrangements for transportati<strong>on</strong> planning and<br />

operati<strong>on</strong>s were not organized to address climate change and may not be<br />

adequate for the purpose.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change do not follow modal, corporate, or jurisdicti<strong>on</strong>al boundaries, yet<br />

decisi<strong>on</strong> making in the transportati<strong>on</strong> sector is structured around these boundaries.<br />

Transportati<strong>on</strong> planning is c<strong>on</strong>ducted primarily at the regi<strong>on</strong>al level, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten through a bottom-up<br />

process that starts with local jurisdicti<strong>on</strong>s. Railroads, trucking, and waterborne commerce are<br />

largely private enterprises with varying levels <str<strong>on</strong>g>of</str<strong>on</strong>g> federal participati<strong>on</strong>. Thus, existing<br />

instituti<strong>on</strong>al arrangements are not well suited to addressing climate change. Some models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cross-jurisdicti<strong>on</strong>al cooperati<strong>on</strong> exist, such as regi<strong>on</strong>al authorities for specific facilities (e.g., the<br />

Alameda Corridor); regi<strong>on</strong>al and multistate emergency resp<strong>on</strong>se agreements; and state-mandated<br />

regi<strong>on</strong>al authorities, such as those resp<strong>on</strong>sible for air quality improvement. One could imagine<br />

the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> similar arrangements to address, for example, the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise <strong>on</strong><br />

coastal real estate and infrastructure in the tristate New York area or other coastal areas, or the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> drought <strong>on</strong> shipping al<strong>on</strong>g inland waterways, or the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> hurricanes in the Gulf<br />

Coast regi<strong>on</strong>. However, state or federal incentives may be required to ensure the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such organizati<strong>on</strong>al arrangements at the regi<strong>on</strong>al or multistate level.<br />

Recommendati<strong>on</strong> 14: Incentives incorporated in federal and state<br />

legislati<strong>on</strong> should be c<strong>on</strong>sidered as a means <str<strong>on</strong>g>of</str<strong>on</strong>g> addressing and mitigating<br />

the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change through regi<strong>on</strong>al and multistate efforts.<br />

For example, states could use updated FIRMs or their own state maps to identify geographic<br />

areas vulnerable to climate change and craft policies for restricting transportati<strong>on</strong> investments<br />

and limiting insurance in these locati<strong>on</strong>s.<br />

WHAT ACTIONS AND RESEARCH ARE NEEDED TO PREPARE FOR<br />

CLIMATE CHANGE?<br />

At the outset <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, the committee was asked to provide recommendati<strong>on</strong>s for acti<strong>on</strong>s to<br />

be taken to prepare for climate change and for needed research. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee interpreted this<br />

charge broadly, particularly as it applies to research. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> its recommendati<strong>on</strong>s relate to the<br />

development and sharing <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>, decisi<strong>on</strong> support tools, and new technologies and<br />

materials, as well as research more narrowly defined. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee also attempted to identify<br />

who should implement each <str<strong>on</strong>g>of</str<strong>on</strong>g> its recommendati<strong>on</strong>s.<br />

Acti<strong>on</strong>s to prepare for climate change can be taken almost immediately. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee<br />

recommends that transportati<strong>on</strong> agencies and service providers inventory critical infrastructure in<br />

light <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change projecti<strong>on</strong>s (recommendati<strong>on</strong> 1); incorporate climate change into their<br />

l<strong>on</strong>g-term capital improvement plans, facility designs, maintenance practices, operati<strong>on</strong>s, and<br />

emergency resp<strong>on</strong>se plans (recommendati<strong>on</strong> 2); incorporate more probabilistic investment<br />

analyses and design approaches and communicate the results <str<strong>on</strong>g>of</str<strong>on</strong>g> these analyses to policy makers<br />

in ways that highlight trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs and investment priorities (recommendati<strong>on</strong> 3); and build <strong>on</strong> the


158 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

experience <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong>s where transportati<strong>on</strong> is well integrated into emergency resp<strong>on</strong>se and<br />

evacuati<strong>on</strong> plans to prepare for projected weather and climate extremes (recommendati<strong>on</strong> 6).<br />

Other steps depend <strong>on</strong> federal and state acti<strong>on</strong>. Federal planning regulati<strong>on</strong>s should<br />

require inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-range plans and collaborati<strong>on</strong><br />

between transportati<strong>on</strong> and land use agencies (recommendati<strong>on</strong> 12); state and federally funded<br />

transportati<strong>on</strong> infrastructure rehabilitati<strong>on</strong> projects in highly vulnerable locati<strong>on</strong>s should be<br />

rebuilt to higher standards until design standards can be assessed more broadly in light <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change (recommendati<strong>on</strong> 10); FEMA should reevaluate the risk reducti<strong>on</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Nati<strong>on</strong>al Flood Insurance Program and update the FIRMs, both in light <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<br />

(recommendati<strong>on</strong> 13); and federal and state legislati<strong>on</strong> should incorporate incentives to<br />

encourage the development <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al and multistate efforts to address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change (recommendati<strong>on</strong> 14).<br />

Research needs, broadly defined, include establishing a process for better communicati<strong>on</strong><br />

am<strong>on</strong>g transportati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als, climate scientists, and other relevant scientific disciplines<br />

and a clearinghouse for transportati<strong>on</strong>-relevant informati<strong>on</strong> <strong>on</strong> climate change (recommendati<strong>on</strong><br />

4); developing climate data and decisi<strong>on</strong> support tools that incorporate the needs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> decisi<strong>on</strong> makers (recommendati<strong>on</strong> 5); developing and implementing m<strong>on</strong>itoring<br />

technologies for major transportati<strong>on</strong> facilities to provide advance warning <str<strong>on</strong>g>of</str<strong>on</strong>g> pending failures<br />

due to severe weather events and climate extremes (recommendati<strong>on</strong> 7); developing <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

mechanism for sharing best practices to address potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<br />

(recommendati<strong>on</strong> 8); initiating a federally funded, multiagency research program for<br />

reevaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing and development <str<strong>on</strong>g>of</str<strong>on</strong>g> new design standards to address the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

climate change, including a research plan and cost proposal for immediate submissi<strong>on</strong> to<br />

C<strong>on</strong>gress (recommendati<strong>on</strong> 9); and creating a federal-level interagency working group focused<br />

<strong>on</strong> adaptati<strong>on</strong> (recommendati<strong>on</strong> 11). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these initiatives would require federal acti<strong>on</strong>;<br />

others would require acti<strong>on</strong> by pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al organizati<strong>on</strong>s and university researchers. In all<br />

cases, leadership and c<strong>on</strong>tinuing commitment would be essential.<br />

REFERENCES<br />

Abbreviati<strong>on</strong>s<br />

IPCC Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

NRC Nati<strong>on</strong>al Research Council<br />

IPCC. 2007. Summary for Policymakers. In: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Science Basis.<br />

C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to the Fourth Assessment <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental Panel <strong>on</strong><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> [Solom<strong>on</strong>, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor<br />

and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY.<br />

NRC. 2007. Evaluating Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program: Methods and<br />

Preliminary Results. Nati<strong>on</strong>al Academies Press, Washingt<strong>on</strong>, D.C.


T<br />

APPENDIX A<br />

Detailed Statement <str<strong>on</strong>g>of</str<strong>on</strong>g> Task<br />

his study will focus <strong>on</strong> and emphasize the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> U.S.<br />

transportati<strong>on</strong> and adaptati<strong>on</strong> strategies. It will summarize possible c<strong>on</strong>sequences for<br />

transportati<strong>on</strong>, such as from sea-level rise, higher mean temperatures with less extreme low<br />

temperatures and more hot extremes, and, possibly, more frequent and severe rain events. U.S.<br />

transportati<strong>on</strong> opti<strong>on</strong>s for adapting to impacts will be analyzed, including possible need to alter<br />

assumpti<strong>on</strong>s about infrastructure design and operati<strong>on</strong>s; ability to incorporate uncertainty in<br />

l<strong>on</strong>g-range decisi<strong>on</strong> making; and capability <str<strong>on</strong>g>of</str<strong>on</strong>g> instituti<strong>on</strong>s to plan and act <strong>on</strong> mitigati<strong>on</strong> and<br />

adaptati<strong>on</strong> strategies at the state and regi<strong>on</strong>al levels.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study will also provide federal, state, and local transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials in the United<br />

States with an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific c<strong>on</strong>sensus regarding climate change—including<br />

uncertainty about its nature and extent.<br />

Drawing heavily up<strong>on</strong> analyses already prepared, the study will summarize current and<br />

projected c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> to climate change and the potential effects, costs, and<br />

benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> strategies to reduce transportati<strong>on</strong>’s impact. This would include strategies, for<br />

example, which affect land use patterns, influence mode choice, and involve alternatively fueled<br />

or more efficient motor vehicles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study will identify critical areas <str<strong>on</strong>g>of</str<strong>on</strong>g> needed research. <str<strong>on</strong>g>The</str<strong>on</strong>g> final report will include<br />

findings and recommendati<strong>on</strong>s regarding needed research and suggested acti<strong>on</strong>s to prepare for<br />

the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<br />

159


T<br />

APPENDIX B<br />

C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas<br />

Emissi<strong>on</strong>s and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

he body <str<strong>on</strong>g>of</str<strong>on</strong>g> this report describes how climate change is expected to impact the U.S.<br />

transportati<strong>on</strong> sector and identifies ways in which this impact might be ameliorated. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

committee’s charge also directed it to review what is known about the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transportati<strong>on</strong> to greenhouse gas emissi<strong>on</strong>s:<br />

Drawing heavily up<strong>on</strong> analyses already prepared, the study will summarize<br />

current and projected c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> to climate change and the<br />

potential effects, costs, and benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> strategies to reduce transportati<strong>on</strong>’s<br />

impact. This would include strategies, for example, which affect land use<br />

patterns, influence mode choice, and involve alternatively fueled or more<br />

efficient motor vehicles.<br />

This appendix addresses this aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> the committee’s charge.<br />

HOW THE TRANSPORTATION SECTOR INFLUENCES CLIMATE CHANGE<br />

Transportati<strong>on</strong> vehicles emit greenhouse gases (GHG) when fuel undergoes combusti<strong>on</strong> in their<br />

engines. <str<strong>on</strong>g>The</str<strong>on</strong>g> vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> these combusti<strong>on</strong>-related emissi<strong>on</strong>s c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide<br />

(CO2). 1 But road transport vehicles also emit small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrous oxide (N2O) and methane<br />

(CH4). Aircraft operating at high altitudes emit not <strong>on</strong>ly nitrogen oxides (NOx) (which increases<br />

the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> oz<strong>on</strong>e producti<strong>on</strong> by speeding the oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> m<strong>on</strong>oxide [CO] and CH4), but<br />

also water vapor (which generates c<strong>on</strong>trails that, depending <strong>on</strong> the time <str<strong>on</strong>g>of</str<strong>on</strong>g> day they are produced,<br />

either reflect solar radiati<strong>on</strong> back into space [daytime] or trap it [nighttime]) (IPCC 1999; see<br />

also Stuber et al. 2006).<br />

Transport activity is also associated with two additi<strong>on</strong>al categories <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s: (1)<br />

those produced in the extracti<strong>on</strong>, producti<strong>on</strong>, and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuels, and (2) those<br />

produced in the manufacture, distributi<strong>on</strong>, and disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> transport vehicles. 2 A rough idea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the relative significance <str<strong>on</strong>g>of</str<strong>on</strong>g> these additi<strong>on</strong>al categories <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s can be obtained from lifecycle<br />

studies that attempt to track all emissi<strong>on</strong>s related to a vehicle and its fuel. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the best<br />

known <str<strong>on</strong>g>of</str<strong>on</strong>g> these studies estimates that the life-cycle CO2 emissi<strong>on</strong>s generated by a 1996-vintage<br />

1 <str<strong>on</strong>g>The</str<strong>on</strong>g> U.S. Energy Informati<strong>on</strong> Agency’s annual publicati<strong>on</strong> Emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenhouse Gases in the United States<br />

provides estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> transport sector emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2, CH4, and N2O. In 2003, CO2 accounted for 97 percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total, when each gas is c<strong>on</strong>verted into its global warming potential. Nearly all the remainder was accounted for<br />

by N2O (U.S. Energy Informati<strong>on</strong> Administrati<strong>on</strong> 2004, 31, 49, and 62). This publicati<strong>on</strong> provides no informati<strong>on</strong><br />

<strong>on</strong> aerosols produced by transport activity, but these are believed to be relatively insignificant.<br />

2 <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> these categories is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern <strong>on</strong>ly with respect to road vehicles. <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>road vehicles<br />

(locomotives, ships, and aircraft) is so small that the GHG emissi<strong>on</strong>s related to their manufacture, distributi<strong>on</strong>, and<br />

disposal are minimal.<br />

161


162 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

midsize U.S. passenger car using gasoline as its fuel total 263 g/km, <str<strong>on</strong>g>of</str<strong>on</strong>g> which the vehicle<br />

manufacturing cycle (including disposal) accounts for 18 g/km (6.8 percent); the fuel cycle, 49<br />

g/km (18.7 percent); and fuel combusti<strong>on</strong>, 196 g/km (74.5 percent) (Weiss et al. 2000, 5–8). 3<br />

In this appendix, the committee attempts to provide as comprehensive a picture as<br />

possible <str<strong>on</strong>g>of</str<strong>on</strong>g> transport-related GHG emissi<strong>on</strong>s. It was not feasible to include emissi<strong>on</strong>s from each<br />

life-cycle stage or emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each GHG gas; we do, however, take care to identify which<br />

emissi<strong>on</strong>s are included in the data presented.<br />

CURRENT AND PROJECTED TRANSPORT-RELATED GREENHOUSE<br />

GAS EMISSIONS<br />

According to the 2005 editi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al Energy Agency (IEA) publicati<strong>on</strong> CO2<br />

Emissi<strong>on</strong>s from Fuel Combusti<strong>on</strong>, worldwide CO2 emissi<strong>on</strong>s from fuel combusti<strong>on</strong> in 2003<br />

totaled 25.0 billi<strong>on</strong> t<strong>on</strong>nes (IEA 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> transport sector accounted for 5.9 billi<strong>on</strong> t<strong>on</strong>nes, or<br />

23.6 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> this total (IEA 2005). 4 Another IEA publicati<strong>on</strong> (IEA 2006) provides “reference<br />

case” projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s for 2050. According to that report, total CO2 emissi<strong>on</strong>s from fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> in 2050 will be 57.6 billi<strong>on</strong> t<strong>on</strong>nes (IEA 2006). Transport sector emissi<strong>on</strong>s will be<br />

11.7 billi<strong>on</strong> t<strong>on</strong>nes, or 20.3 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> this total.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two IEA publicati<strong>on</strong>s just cited do not provide a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> modal detail.<br />

However, the World Business Council for Sustainable Development’s Sustainable Mobility<br />

Project (SMP) has published detailed modal estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s from fuel combusti<strong>on</strong> for the<br />

year 2000 and projecti<strong>on</strong>s at 5-year intervals to 2050 (World Business Council for Sustainable<br />

Development, 2004). 5 <str<strong>on</strong>g>The</str<strong>on</strong>g> SMP also published estimates and projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2, N2O, and CH4<br />

emissi<strong>on</strong>s from the producti<strong>on</strong> and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuels. <str<strong>on</strong>g>The</str<strong>on</strong>g> SMP’s figures were<br />

generated by a model that was benchmarked to the IEA transport sector totals. Table B-1 shows<br />

the estimates and projecti<strong>on</strong>s generated by this model.<br />

Light-duty passenger vehicles (LDVs), c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> passenger cars, pickup trucks, sport<br />

utility vehicles (SUVs), and minivans, account for the largest share <str<strong>on</strong>g>of</str<strong>on</strong>g> transport-related<br />

emissi<strong>on</strong>s. This will c<strong>on</strong>tinue to be the case even in 2050 if present trends c<strong>on</strong>tinue. However,<br />

emissi<strong>on</strong>s from other modes, notably air transport and trucks used to haul freight, are extremely<br />

significant and are projected to grow faster than emissi<strong>on</strong>s from LDVs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SMP report also provides estimates and projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> transport-related emissi<strong>on</strong>s by<br />

country/regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are shown in Figure B-1. <str<strong>on</strong>g>The</str<strong>on</strong>g> United States is included in the regi<strong>on</strong><br />

“OECD [Organisati<strong>on</strong> for Ec<strong>on</strong>omic Cooperati<strong>on</strong> and Development] North America” al<strong>on</strong>g with<br />

Canada and Mexico.<br />

3 <str<strong>on</strong>g>The</str<strong>on</strong>g> report assumes 95 percent recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> metals and 50 percent recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> plastics. In the report, the<br />

emissi<strong>on</strong>s figures are stated in grams <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> per kilometer. For c<strong>on</strong>sistency with the other emissi<strong>on</strong>s data in this<br />

appendix, the figures have been c<strong>on</strong>verted here to grams <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 per kilometer.<br />

4 <str<strong>on</strong>g>The</str<strong>on</strong>g>se are emissi<strong>on</strong>s from fuel combusti<strong>on</strong>.<br />

5 <str<strong>on</strong>g>The</str<strong>on</strong>g> documentati<strong>on</strong> for this model, as well as the model itself, can be found at www.sustainablemobility.org. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

SMP characterizes its projecti<strong>on</strong>s as what might occur “if present trends c<strong>on</strong>tinue.” For a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> what is<br />

meant by the phrase, “if present trends c<strong>on</strong>tinue,” see Box 2.1 in the SMP report (p. 27). <str<strong>on</strong>g>The</str<strong>on</strong>g> report also can be<br />

found at the web address just cited. <str<strong>on</strong>g>The</str<strong>on</strong>g> report draws <strong>on</strong> 2003 data, the most recent available at the time the report<br />

was published. This appendix, which draws heavily <strong>on</strong> the SMP report, uses 2003 data because it would have been<br />

impractical to update the data c<strong>on</strong>tained in the SMP report.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 163<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

Megat<strong>on</strong>nes<br />

TABLE B-1 World Transport WTW (Vehicle + Upstream)<br />

CO2-Equivalent Emissi<strong>on</strong>s by Mode (Mt)<br />

Year<br />

AAGR (%)<br />

Mode 2000 2025 2050 2000–2025 2025–2050<br />

Freight + passenger rail 207 341 503 2.0 1.6<br />

Buses 396 436 480 0.4 0.4<br />

Air 733 1,487 2,583 2.9 2.2<br />

Freight trucks 1,446 2,423 3,582 2.1 1.6<br />

Light-duty passenger vehicles 2,798 4,152 5,901 1.6 1.4<br />

Two- and three-wheelers 110 209 313 2.6 1.6<br />

Water 638 826 1,015 1.0 0.8<br />

Total 6,328 9,874 14,378 1.8 1.5<br />

Note: AAGR = annual average growth rate; Mt = megat<strong>on</strong>s; WTW = well-to-wheel.<br />

Source: Data generated by the Internati<strong>on</strong>al Energy Agency/Sustainable Mobility Project (IEA/SMP)<br />

Spreadsheet Model.<br />

14000.0<br />

12000.0<br />

10000.0<br />

8000.0<br />

6000.0<br />

4000.0<br />

2000.0<br />

0.0<br />

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050<br />

Year<br />

Africa<br />

Latin America<br />

Middle East<br />

India<br />

Other Asia<br />

China<br />

Eastern Europe<br />

FSU<br />

OECD Pacific<br />

OECD Europe<br />

OECD North America<br />

FIGURE B-1 Transport greenhouse gas emissi<strong>on</strong>s by regi<strong>on</strong> (all modes).<br />

(Source: Data generated by the IEA/SMP Spreadsheet Model.)


164 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

One notable feature <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure B-1 is the differences in relative growth rates <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s<br />

within different countries/regi<strong>on</strong>s. Generally speaking, emissi<strong>on</strong>s from countries not presently<br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> the OECD are projected to grow much more rapidly than emissi<strong>on</strong>s from countries<br />

that are members <str<strong>on</strong>g>of</str<strong>on</strong>g> the three OECD regi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> factors resp<strong>on</strong>sible for this faster growth are<br />

discussed in more detail below.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> IEA estimates that U.S. transport-sector emissi<strong>on</strong>s from fuel combusti<strong>on</strong> in 2003<br />

totaled 1.8 billi<strong>on</strong> t<strong>on</strong>nes, <str<strong>on</strong>g>of</str<strong>on</strong>g> which road transport (LDVs, motorized two- and three-wheelers,<br />

buses, medium- and heavy-duty trucks) accounted for 85 percent. <str<strong>on</strong>g>The</str<strong>on</strong>g> U.S. Envir<strong>on</strong>mental<br />

Protecti<strong>on</strong> Agency (EPA) provides estimates having a greater level <str<strong>on</strong>g>of</str<strong>on</strong>g> modal detail (see Table<br />

B-2). Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the figures from Table B-2 with those from Table B-1 implies that in 2003,<br />

U.S. transport emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 from fuel combusti<strong>on</strong> accounted for 30–31 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

world transport CO2 emissi<strong>on</strong>s from fuel combusti<strong>on</strong>, depending <strong>on</strong> whether internati<strong>on</strong>al<br />

aviati<strong>on</strong> and marine bunkers are included. 6 <str<strong>on</strong>g>The</str<strong>on</strong>g> emissi<strong>on</strong>s factors developed by the SMP for the<br />

producti<strong>on</strong> and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each type <str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuel suggest that including fuel cycle<br />

emissi<strong>on</strong>s would add another 17.5 percent to the U.S. total (and 15.0 percent to the world total).<br />

EPA does not publish projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future emissi<strong>on</strong>s at a similar level <str<strong>on</strong>g>of</str<strong>on</strong>g> detail. And, as<br />

already noted, the SMP’s projecti<strong>on</strong>s are for OECD North America (i.e., the United States,<br />

Canada, and Mexico). According to the SMP data in Figure B-1, OECD North American<br />

transport-related emissi<strong>on</strong>s will have fallen from 37 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the world transport-related total to<br />

26 percent by 2050. This decline in share is accounted for not by any absolute reducti<strong>on</strong> in<br />

North American emissi<strong>on</strong>s but by the much more rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth projected for emissi<strong>on</strong>s in<br />

regi<strong>on</strong>s (other than the other two OECD regi<strong>on</strong>s) outside North America.<br />

STRATEGIES FOR REDUCING TRANSPORT-RELATED GREENHOUSE<br />

GAS EMISSIONS<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> charge to the committee quoted above recognizes that a range <str<strong>on</strong>g>of</str<strong>on</strong>g> possible approaches exist<br />

by which transport-related GHG emissi<strong>on</strong>s might be reduced. <str<strong>on</strong>g>The</str<strong>on</strong>g> committee believes that the<br />

best way <str<strong>on</strong>g>of</str<strong>on</strong>g> organizing the present discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this range <str<strong>on</strong>g>of</str<strong>on</strong>g> approaches is through the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the “ASIF decompositi<strong>on</strong>.” <str<strong>on</strong>g>The</str<strong>on</strong>g> CO2 emissi<strong>on</strong>s from fuel combusti<strong>on</strong> by transport vehicles can<br />

be characterized by the following equati<strong>on</strong>:<br />

G = A*Si*Ii*Fi,j, where:<br />

G = CO2 emissi<strong>on</strong>s from fuel combusti<strong>on</strong> by transport;<br />

A = total transport activity;<br />

Si = the modal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> transport activity;<br />

Ii = the energy c<strong>on</strong>sumpti<strong>on</strong> (fuel intensity) <str<strong>on</strong>g>of</str<strong>on</strong>g> each transport mode; and<br />

Fi,j = the GHG emissi<strong>on</strong>s characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> each transport fuel.<br />

(i = transport mode, j = fuel type)<br />

6 “Internati<strong>on</strong>al aviati<strong>on</strong> and marine bunkers” denotes fuel loaded <strong>on</strong> transport vehicles in the United States but<br />

c<strong>on</strong>sumed in internati<strong>on</strong>al operati<strong>on</strong>s. Generally speaking, “internati<strong>on</strong>al bunkers” are not included in nati<strong>on</strong>al<br />

totals, though they are included in the world totals cited above. <str<strong>on</strong>g>The</str<strong>on</strong>g> IEA estimates that in 2003, the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

internati<strong>on</strong>al aviati<strong>on</strong> bunkers accounted for 359 milli<strong>on</strong> t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 emissi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>al<br />

marine bunkers is estimated to have accounted for 459 milli<strong>on</strong> t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 emissi<strong>on</strong>s.


TABLE B-2 2003 U.S. CO2 Emissi<strong>on</strong>s from Fossil Fuel Combusti<strong>on</strong> in Transportati<strong>on</strong> End-Use Sector (Tg CO2 Eq.)<br />

Fuel Type<br />

Distillate<br />

Fuel Oil<br />

Aviati<strong>on</strong> Residual Natural<br />

Mode<br />

Vehicle Type<br />

Gasoline (Diesel) Jet Fuel Gasoline Fuel Oil Gas LPG Electricity Total a<br />

Mode<br />

Share a<br />

Road Vehicles 1464.1 78.9%<br />

Automobiles 630.2 3.4 0.0 633.6 34.2%<br />

Light-Duty Trucks 460.9 17.6 0.0 0.3 478.8 25.8%<br />

Other Trucks 39.6 301.1 0.5 341.2 18.4%<br />

Buses 0.3 8.0 0.6 0.0 8.9 0.5%<br />

Motorcycles 1.6<br />

1.6 0.1%<br />

Rail 42.8 2.3%<br />

Rail<br />

39.6 3.2 42.8 2.3%<br />

Waterborne 82.1 4.4%<br />

Ships and Boats 17.0 29.5 46.5 2.5%<br />

Ships (Bunkers) 6.0 18.6 24.6 1.3%<br />

Boats (Recreati<strong>on</strong>al) 11.0 11.0 0.6%<br />

Aircraft<br />

230.8 12.4%<br />

Commercial Aircraft 122.8 122.8 6.6%<br />

Military Aircraft 20.5 20.5 1.1%<br />

General Aviati<strong>on</strong> 9.4 2.2 11.6 0.6%<br />

Other Aircraft 16.3 16.3 0.9%<br />

Aircraft (Bunkers) 59.6 59.6 3.2%<br />

Pipeline<br />

34.8 1.9%<br />

Pipeline 34.8 34.8 1.9%<br />

Fuel Total a<br />

1166.6 369.7 228.6 2.2 48.1 35.4 0.8 3.2<br />

Fuel Share a 62.9% 19.9% 12.3% 0.1% 2.6% 1.9% 0.0% 0.2%<br />

Note: Totals may not sum because <str<strong>on</strong>g>of</str<strong>on</strong>g> independent rounding.<br />

a<br />

Includes aircraft and waterborne internati<strong>on</strong>al bunkers.<br />

Source: U.S. EPA 2005, Table 3-7.<br />

1854.6<br />

100.0%


166 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> the first two variables <strong>on</strong> the righthand side <str<strong>on</strong>g>of</str<strong>on</strong>g> this equati<strong>on</strong>, A and Si, is<br />

the demand for transport services provided by transport mode i. <str<strong>on</strong>g>The</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> the last two<br />

variables, Ii and Fi,j, is the GHG generated by each unit <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> service provided by<br />

mode i using fuel type j. 7<br />

Historically, the primary driver <str<strong>on</strong>g>of</str<strong>on</strong>g> transport-related GHG emissi<strong>on</strong>s has been the growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> total transport activity (A). <str<strong>on</strong>g>The</str<strong>on</strong>g> primary <str<strong>on</strong>g>of</str<strong>on</strong>g>fsetting factor has been a reducti<strong>on</strong> in the energy<br />

required to produce each unit <str<strong>on</strong>g>of</str<strong>on</strong>g> transport services (I). However, improvements in transport<br />

energy efficiency have been overwhelmed by the increase in transport activity. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s the<br />

modal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> transport activity (S) have tended to boost GHG emissi<strong>on</strong>s in two ways. First,<br />

activity has tended to shift from less energy-intensive transport modes (e.g., rail) to more energyintensive<br />

modes (e.g., truck). Sec<strong>on</strong>d, in some modes (e.g., LDVs), the load factor (the<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle capacity actually utilized) has fallen sharply. 8 <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in the emissi<strong>on</strong>s<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuels (F) have had little impact <strong>on</strong>e way or another.<br />

Reducing the Volume <str<strong>on</strong>g>of</str<strong>on</strong>g> Transport Activity (A) and/or Altering the Modal Structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transport Activity (S)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SMP report projects that worldwide pers<strong>on</strong>al transport activity, which totaled 32.3 trilli<strong>on</strong><br />

passenger-kilometers (pkm) in 2000, will grow to 74.0 trilli<strong>on</strong> pkm by 2050 9 (see Figure B-2).<br />

Worldwide goods transport activity (excluding waterborne 10 ), which in 2000 totaled 14.4 trilli<strong>on</strong><br />

t<strong>on</strong>ne-kilometers (tkm), 11 is projected to grow to 45.9 tkm (see Figure B-3). <str<strong>on</strong>g>The</str<strong>on</strong>g>se projecti<strong>on</strong>s<br />

imply average annual rates <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.7 percent for pers<strong>on</strong>al transport activity and<br />

2.3 percent for goods transport activity (again excluding waterborne).<br />

Figures B-2 and B-3 also indicate that rates <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> both pers<strong>on</strong>al and goods<br />

transport activity are likely to vary widely across countries/regi<strong>on</strong>s, reflecting basic ec<strong>on</strong>omic<br />

and demographic changes discussed below. At present, the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> both pers<strong>on</strong>al and goods<br />

transport activity occurs within and/or between countries that are members <str<strong>on</strong>g>of</str<strong>on</strong>g> the OECD. 12 Over<br />

the next half-century, however, transport activity is projected to grow much more rapidly in<br />

7 This formulati<strong>on</strong> was originally popularized by Lee Schipper. This particular versi<strong>on</strong> is taken from the IEA (see<br />

IEA 2000, 22).<br />

8 In both trucking and air transport, improvements in average load factors have tended to <str<strong>on</strong>g>of</str<strong>on</strong>g>fset some <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the inherently higher energy intensiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the mode. <str<strong>on</strong>g>The</str<strong>on</strong>g> energy intensiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> the modes (I) has increased<br />

somewhat as a result. (It takes more energy to move heavier average loads.) But the increase in energy required is<br />

c<strong>on</strong>siderably less than proporti<strong>on</strong>al to the increase in load.<br />

9 Passenger-kilometer is defined as the transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e passenger a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 kilometer.<br />

10 <str<strong>on</strong>g>The</str<strong>on</strong>g> SMP report does not project waterborne freight activity. According to the United Nati<strong>on</strong>s C<strong>on</strong>ference <strong>on</strong><br />

Trade and Development (UNCTAD 2005), in 2000, world seaborne trade totaled 23.7 trilli<strong>on</strong> t<strong>on</strong>ne-miles, or 43.9<br />

t<strong>on</strong>ne-kilometers (tkm). Of this total, 41 percent was oil and oil products, 29 percent was the five main dry bulk<br />

commodities (including ir<strong>on</strong> ore, coal, and grain), and 30 percent was other dry cargoes (including c<strong>on</strong>tainerized<br />

cargoes). We assume that the “miles” reported by UNCTAD (2005) are nautical miles. If so, this means that in<br />

2000, ocean shipping accounted for 75 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> all tkm <str<strong>on</strong>g>of</str<strong>on</strong>g> freight carried.<br />

11 T<strong>on</strong>ne-kilometer is defined as the transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 metric t<strong>on</strong> (t<strong>on</strong>ne) <str<strong>on</strong>g>of</str<strong>on</strong>g> freight a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 kilometer.<br />

12 <str<strong>on</strong>g>The</str<strong>on</strong>g> OECD was formed in 1961 by the following countries: Austria, Belgium, Canada, Denmark, France,<br />

Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain Sweden,<br />

Switzerland, Turkey, the United Kingdom, and the United States. <str<strong>on</strong>g>The</str<strong>on</strong>g> following countries have since joined: Japan<br />

(1964), Finland (1969), Australia (1971), New Zealand (1973), Mexico (1994), the Czech Republic (1995), Hungary<br />

(1996), Poland (1996), the Republic <str<strong>on</strong>g>of</str<strong>on</strong>g> Korea (1996), and Slovakia (2000).


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 167<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

Trilli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> T<strong>on</strong>ne-Kilometers (tkm)<br />

Trilli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Passenger-Kilometers (pkm)<br />

50.0<br />

45.0<br />

40.0<br />

35.0<br />

30.0<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

80.0<br />

70.0<br />

60.0<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

0.0<br />

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050<br />

Year<br />

Africa<br />

Latin America<br />

Middle East<br />

India<br />

Other Asia<br />

China<br />

Eastern Europe<br />

FSU<br />

OECD Pacific<br />

OECD Europe<br />

OECD North America<br />

FIGURE B-2 Passenger transport activity by regi<strong>on</strong>.<br />

(Source: World Business Council for Sustainable Development 2004, Figure 2-2, p. 30.)<br />

5.0<br />

0.0<br />

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050<br />

Year<br />

Africa<br />

Latin America<br />

Middle East<br />

India<br />

Other Asia<br />

China<br />

Eastern Europe<br />

FSU<br />

OECD Pacific<br />

OECD Europe<br />

OECD North America<br />

FIGURE B-3 Goods transport activity (excluding waterborne). (Note: Waterborne activity not<br />

available by country/regi<strong>on</strong>. According to the United Nati<strong>on</strong>s C<strong>on</strong>ference <strong>on</strong> Trade and the Envir<strong>on</strong>ment<br />

[UNCTAD], in 2000, worldwide waterborne transport activity totaled 43.9 trilli<strong>on</strong> tkm.<br />

Source: World Business Council for Sustainable Development 2004, Figure 2-5, p. 32.)


168 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

those countries that are not presently OECD members. <str<strong>on</strong>g>The</str<strong>on</strong>g>se higher growth rates, if achieved,<br />

imply that n<strong>on</strong>-OECD pers<strong>on</strong>al transport activity will exceed OECD pers<strong>on</strong>al transport activity<br />

by about 2025. <str<strong>on</strong>g>The</str<strong>on</strong>g> crossover point for goods transport activity is likely to be even so<strong>on</strong>er—<br />

perhaps as early as 2015.<br />

Drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> the Volume <str<strong>on</strong>g>of</str<strong>on</strong>g> Pers<strong>on</strong>al and Goods Transport Activity<br />

Numerous factors influence the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>al and goods transport activity, but the<br />

following are especially important: (1) the level and rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> real per capita income,<br />

(2) the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> growth, (3) the share <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> residing in urban areas, and (4) the<br />

spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban areas (also called “urban form”). In additi<strong>on</strong>, a potentially salient<br />

factor is the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> telecommuting and the Internet <strong>on</strong> travel demand.<br />

Level and Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Real Per Capita Income Transportati<strong>on</strong> activity both drives and<br />

is driven by the level and rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> real per capita income. This should not be surprising.<br />

Transportati<strong>on</strong> services are a major enabler <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic growth, and as people become<br />

wealthier, they find more reas<strong>on</strong>s to travel. Figure B-4 shows the relati<strong>on</strong>ship between real gross<br />

domestic product (GDP) per capita and per capita pers<strong>on</strong>al travel in the year 2000 for the<br />

countries/regi<strong>on</strong>s included in the SMP report. 13 In 2000, the average resident <str<strong>on</strong>g>of</str<strong>on</strong>g> an OECD<br />

country traveled 5.7 times as many kilometers per year as did the average resident <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-<br />

OECD country—a slightly lower ratio than that between the average real per capita incomes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the two country groupings.<br />

Per Capita Pers<strong>on</strong>al Travel Activity (thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> km)<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

Eastern Europe<br />

OECD Europe<br />

OECD Pacific<br />

OECD North America<br />

5.0<br />

Other Asia<br />

India<br />

FSU<br />

Middle East<br />

Latin America<br />

China<br />

Africa<br />

0.0<br />

0.0 5.0 10.0 15.0 20.0 25.0 30.0<br />

Per Capita Real Income (thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> US$, Purchasing Power Parity Basis)<br />

FIGURE B-4 Per capita pers<strong>on</strong>al travel activity versus per capita real income.<br />

(Source: Data generated by the IEA/SMP Spreadsheet Model.)<br />

13 Similar data for goods transport activity are not provided because the informati<strong>on</strong> <strong>on</strong> waterborne origin–<br />

destinati<strong>on</strong> pairs needed to assign that important transport activity to countries/regi<strong>on</strong>s is lacking.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 169<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

Figure B-5 shows the relati<strong>on</strong>ship between the projected rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change in real GDP per<br />

capita and the projected rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change in per capita pers<strong>on</strong>al travel over the period 2000–2050.<br />

Note the difference in the relative positi<strong>on</strong>s in the two exhibits <str<strong>on</strong>g>of</str<strong>on</strong>g> the three OECD regi<strong>on</strong>s and<br />

those n<strong>on</strong>-OECD countries/regi<strong>on</strong>s in which ec<strong>on</strong>omic growth is projected to grow the most<br />

rapidly.<br />

Given the relati<strong>on</strong>ship between real per capita income growth and per capita pers<strong>on</strong>al<br />

(and probably also goods) transport activity, it is obvious that if the former were slower, so<br />

would be the latter. However, most people (especially those living in countries where real per<br />

capita GDP is relatively low today but is projected to grow rapidly) would find highly<br />

unpalatable a strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> deliberately slowing growth in real GDP per capita in order to slow the<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> travel activity. This does not mean that the link between real per capita income<br />

growth and per capita travel activity is immutable. But it does mean that if this link is to be<br />

weakened, the measures employed will have to be less drac<strong>on</strong>ian than limiting ec<strong>on</strong>omic growth.<br />

This issue is revisited below.<br />

Projected <str<strong>on</strong>g>Change</str<strong>on</strong>g> in Per Capita Pers<strong>on</strong>al Transport Demand<br />

3.0%<br />

2.5%<br />

2.0%<br />

1.5%<br />

1.0%<br />

0.5%<br />

0.0%<br />

OECD North<br />

America<br />

Middle East<br />

OECD Europe<br />

Africa<br />

Latin America<br />

OECD Pacific<br />

Other Asia<br />

Eastern Europe<br />

FSU<br />

India<br />

China<br />

-0.5%<br />

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5%<br />

Projected <str<strong>on</strong>g>Change</str<strong>on</strong>g> in Real Gross Domestic Product (GDP) per Capita<br />

(Purchasing Power Parity Basis)<br />

FIGURE B-5 Projected change in real per capita pers<strong>on</strong>al transport demand versus<br />

projected change in real gross domestic product (GDP) per capita<br />

(purchasing power parity basis), 2000–2050.<br />

(Source: Data generated from the IEA/SMP Spreadsheet Model.)


170 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Populati<strong>on</strong> Growth <str<strong>on</strong>g>The</str<strong>on</strong>g> projected trends in real per capita income growth, if realized,<br />

will be a powerful force serving to increase transport activity. However, another factor that has<br />

exerted a powerful influence in increasing transport activity in the recent past—populati<strong>on</strong><br />

growth—will be waning in importance in the future.<br />

Populati<strong>on</strong> growth rates are falling everywhere. This should not be surprising. Figure B-6<br />

illustrates how extraordinary populati<strong>on</strong> growth during the last half <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century truly<br />

was. This explosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> world populati<strong>on</strong> was caused by reduced mortality in the less developed<br />

regi<strong>on</strong>s—a reducti<strong>on</strong> that was not accompanied (at least initially) by declining fertility rates in<br />

these regi<strong>on</strong>s. One major factor enabling this rapid growth in populati<strong>on</strong> was the increased ability<br />

to transport food, especially by ship and rail. <str<strong>on</strong>g>The</str<strong>on</strong>g> growth in populati<strong>on</strong>, together with improved<br />

transport, stimulated the demand for finished goods. During the last quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth<br />

century, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> growth began to fall, largely because declines in fertility.<br />

As with real per capita income growth, the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> growth over the period<br />

2000–2050 will differ by regi<strong>on</strong>.<br />

As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> sharp fertility declines, the average age <str<strong>on</strong>g>of</str<strong>on</strong>g> the populati<strong>on</strong> in many countries<br />

will be rising. In 1950, the median age <str<strong>on</strong>g>of</str<strong>on</strong>g> the world’s populati<strong>on</strong> was 23.5 years. It is estimated<br />

to have increased to 28.1 years by 2005, and by 2050 is projected to reach 37.8 years. 14<br />

FIGURE B-6 L<strong>on</strong>g-term world populati<strong>on</strong> growth, 1750–2050 (projected). (Source: UN<br />

1999, Figure 1, p. 7. [Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the United Nati<strong>on</strong>s Populati<strong>on</strong> Divisi<strong>on</strong>.])<br />

14 <str<strong>on</strong>g>The</str<strong>on</strong>g> median age <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. populati<strong>on</strong>, which was 30.0 years in 1950, is estimated to have reached 36.1 years by<br />

2005 and is projected to grow to 41.1 years by 2050 (UN 2005, Table VIII-12).


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 171<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

Share <str<strong>on</strong>g>of</str<strong>on</strong>g> Populati<strong>on</strong> Residing in Urban Areas Most pers<strong>on</strong>al travel is within or between urban<br />

areas. Urban areas depend <strong>on</strong> transport systems to supply them with food, energy, raw materials,<br />

and finished goods. It is not surprising, therefore, to find a link between urbanizati<strong>on</strong> and<br />

transport activity.<br />

In 1950, about half <str<strong>on</strong>g>of</str<strong>on</strong>g> the people in the more developed regi<strong>on</strong>s lived in cities 15 (see<br />

Table B-3). By 2000 this figure had increased to nearly 75 percent. 16 However, the growth in<br />

urbanizati<strong>on</strong> is tapering <str<strong>on</strong>g>of</str<strong>on</strong>g>f in the countries <str<strong>on</strong>g>of</str<strong>on</strong>g> the more developed regi<strong>on</strong>s. In the next 30 years,<br />

the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> people living in urban areas in these countries will increase <strong>on</strong>ly to 82 percent.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total urban populati<strong>on</strong> in these regi<strong>on</strong>s will experience a relatively small increase, with most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> that increase occurring in North America (the United States and Canada). 17 In c<strong>on</strong>trast, urban<br />

populati<strong>on</strong>s in countries located in the less developed regi<strong>on</strong>s will grow rapidly.<br />

Spatial Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Urban Areas (Urban Form) <str<strong>on</strong>g>The</str<strong>on</strong>g> spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban areas<br />

exerts an independent influence <strong>on</strong> the total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>al and goods transport activity, as<br />

well as <strong>on</strong> modal choice. When people talk about eliminating “unnecessary” travel or<br />

“unlinking” ec<strong>on</strong>omic growth from transport activity, they generally are referring to the<br />

deliberate alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban areas’ spatial organizati<strong>on</strong> to influence the total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>al<br />

and goods transport activity, the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> modes by which the demand for that activity is<br />

fulfilled, and/or the capacity utilizati<strong>on</strong> rates (i.e., load factors) <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicles being used.<br />

How the Spatial Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Urban Areas <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> and Is Impacted by Transport Activity<br />

and Modal Availability Throughout history, the size and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> cities have been c<strong>on</strong>strained<br />

by the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> their transport systems to supply them with food and raw materials, to enable<br />

their residents to c<strong>on</strong>gregate in numbers sufficient to c<strong>on</strong>vert these raw materials into finished<br />

goods efficiently and/or to c<strong>on</strong>duct other business requiring face-to-face interacti<strong>on</strong>, and to<br />

transport their finished goods to distant markets. <str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> inexpensive waterborne<br />

transportati<strong>on</strong> eased the first and third <str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>straints. But cities were still severely limited<br />

in size by their ability to move people from their homes to work and back <strong>on</strong> a daily basis.<br />

Until roughly the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the nineteenth century, the area <str<strong>on</strong>g>of</str<strong>on</strong>g> a city like L<strong>on</strong>d<strong>on</strong> was<br />

c<strong>on</strong>strained by the distance people could walk from home to work. 18 <str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

railways linking the suburbs and the central business district, together with the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> moving masses <str<strong>on</strong>g>of</str<strong>on</strong>g> people underground within the central business district, enabled<br />

L<strong>on</strong>d<strong>on</strong>ers and residents <str<strong>on</strong>g>of</str<strong>on</strong>g> other major cities to live much greater distances from their work.<br />

However, the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> these modes <str<strong>on</strong>g>of</str<strong>on</strong>g> high-speed public transport did not necessarily<br />

15 <str<strong>on</strong>g>The</str<strong>on</strong>g> categorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> countries into those located in “more developed regi<strong>on</strong>s” and “less developed regi<strong>on</strong>s” is<br />

used by the United Nati<strong>on</strong>s “for statistical c<strong>on</strong>venience and [does] not necessarily express a judgment about the<br />

stage reached by a particular country or area in the developing process” (UN 2005, ii). Generally speaking,<br />

countries in the more developed regi<strong>on</strong>s are members <str<strong>on</strong>g>of</str<strong>on</strong>g> the OECD, while those in the less developed regi<strong>on</strong>s are<br />

not. But there are some important excepti<strong>on</strong>s. Russia and the European porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the former Soviet Uni<strong>on</strong> are<br />

included in the more developed regi<strong>on</strong>s but are not OECD members. Mexico, South Korea, and Turkey are OECD<br />

members but are designated by the United Nati<strong>on</strong>s as being in the less developed regi<strong>on</strong>s.<br />

16 In 2000 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. populati<strong>on</strong> lived in metropolitan areas as defined by the U.S. Census.<br />

17 <str<strong>on</strong>g>The</str<strong>on</strong>g> figure for the United States is projected to increase to 87 percent by 2030 (UN 2003, Tables A-3 and A-5).<br />

18 Indeed, the first traffic count <str<strong>on</strong>g>of</str<strong>on</strong>g> people entering the 1 square mile City <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong> between 8 AM and 8 PM (1854)<br />

found that horse-drawn omnibuses were the means by which the largest number <str<strong>on</strong>g>of</str<strong>on</strong>g> people (44,000) were transported<br />

into town; 31,000 arrived by train; and 26,000 people entered using private carriages or hackney cabs. But all these<br />

modes <str<strong>on</strong>g>of</str<strong>on</strong>g> transport were dwarfed by the 200,000 who walked.


TABLE B-3 World Urbanizati<strong>on</strong> Trends, 1950–2030 (projected)<br />

Urban Populati<strong>on</strong> (billi<strong>on</strong>s)<br />

Average Annual Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (%)<br />

2030 <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

2000–2030<br />

1950 1975 2000 (projected) 2000–2030 1950–1975 1975–2000 (projected)<br />

More Developed Regi<strong>on</strong>s 0.43 0.70 0.88 1.01 0.13 2.0 0.9 0.5<br />

Europe 0.28 0.45 0.53 0.55 0.02 1.9 0.7 0.1<br />

Northern America 0.11 0.18 0.25 0.35 0.10 2.0 1.3 1.2<br />

Japan 0.03 0.06 0.08 0.09 0.01 3.2 1.1 0.2<br />

Less Developed Regi<strong>on</strong>s 0.31 0.81 1.97 3.93 1.96 3.9 3.6 2.3<br />

China 0.07 0.16 0.60 0.88 0.28 3.4 5.4 1.3<br />

India 0.06 0.13 0.28 0.59 0.31 3.1 3.1 2.5<br />

Percentage Urban<br />

2030 <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

1950 1975 2000 (projected) 2000–2030<br />

More Developed Regi<strong>on</strong>s 53 67 74 82 8<br />

Europe 51 66 73 80 7<br />

Northern America 64 74 79 87 8<br />

Japan 35 57 65 73 8<br />

Less Developed Regi<strong>on</strong>s 18 27 41 57 16<br />

China 13 17 36 61 25<br />

India 17 21 28 41 13<br />

Source: UN 2003, Tables A-2, A-3, and A-6. (Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the United Nati<strong>on</strong>s Populati<strong>on</strong> Divisi<strong>on</strong>.)


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 173<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

change the need for people’s activities other than commuting to be located within a relatively<br />

short distance <str<strong>on</strong>g>of</str<strong>on</strong>g> where they lived.<br />

Only when automobile availability became widespread did the locati<strong>on</strong> c<strong>on</strong>straints <strong>on</strong><br />

these other activities ease. Indeed, n<strong>on</strong>commute activities now account for the majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pers<strong>on</strong>al trips and miles traveled in most high-income countries. Table B-4 illustrates this point<br />

for the United States using data from the 2001 Nati<strong>on</strong>al Pers<strong>on</strong>al Transportati<strong>on</strong> Survey.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban activity also impacts and is impacted by goods<br />

transport. Prior to the advent <str<strong>on</strong>g>of</str<strong>on</strong>g> the automobile and the truck, nearly all large cities had a single,<br />

relatively compact central business district (CBD) where a large share <str<strong>on</strong>g>of</str<strong>on</strong>g> the city’s employment<br />

was c<strong>on</strong>centrated. (In the terminology used by urban planners, these cities were “m<strong>on</strong>ocentric.”)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the CBD was usually determined by its proximity to waterborne (and later to rail)<br />

transportati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> the motorized truck freed CBDs from these c<strong>on</strong>straints.<br />

Thus, the widespread ownership <str<strong>on</strong>g>of</str<strong>on</strong>g> motorized road vehicles allowed workers to both live<br />

and work almost anywhere they wished within a metropolitan regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting decline in<br />

average residential and employment densities has undermined the viability <str<strong>on</strong>g>of</str<strong>on</strong>g> public transport,<br />

especially rail-based public transport. Only cities that have managed to maintain str<strong>on</strong>g CBDs<br />

and that developed high-speed public transport systems before the automobile came to dominate<br />

pers<strong>on</strong>al travel have managed to keep the share <str<strong>on</strong>g>of</str<strong>on</strong>g> commuting travel by private car relatively<br />

low. 19 And this is <strong>on</strong>ly true for workers traveling to work in the CBD; those with jobs outside<br />

the CBD generally commute to work by car.<br />

Magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the Spatial Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Urban Areas <strong>on</strong> Transport Activity and<br />

Modal Choice Studies have dem<strong>on</strong>strated a statistically significant relati<strong>on</strong>ship between the<br />

spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban areas and the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>al travel activity. But just how<br />

quantitatively significant is this relati<strong>on</strong>ship? Two recent U.S. studies provide informati<strong>on</strong> <strong>on</strong><br />

this questi<strong>on</strong>. A T<str<strong>on</strong>g>RB</str<strong>on</strong>g> policy study is also underway that is examining the relati<strong>on</strong>ships am<strong>on</strong>g<br />

development patterns, vehicle miles travelled, and the energy c<strong>on</strong>servati<strong>on</strong> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> denser<br />

development patterns.<br />

TABLE B-4 Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. "Daily" or "Short Distance" Pers<strong>on</strong>al<br />

Travel, 2001<br />

Trips Kilometers<br />

Annual travel (per capita) 1481 24,459<br />

Purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> travel<br />

Commuting/business 18% 26%<br />

School, church 10% 6%<br />

Shopping 19% 13%<br />

Family, pers<strong>on</strong>al business, escort 25% 20%<br />

Social/recreati<strong>on</strong>al, vacati<strong>on</strong>, visiting friends, and other 28% 35%<br />

Source: CRA Internati<strong>on</strong>al compilati<strong>on</strong> from the 2001 Nati<strong>on</strong>al Household Travel Survey (BTS<br />

2001).<br />

19 <str<strong>on</strong>g>The</str<strong>on</strong>g> share <str<strong>on</strong>g>of</str<strong>on</strong>g> commuters working in Manhattan who drive to work is just over 10 percent. <str<strong>on</strong>g>The</str<strong>on</strong>g> data for<br />

commuters working in central L<strong>on</strong>d<strong>on</strong> are similar.


174 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Ewing and colleagues (2002) ranked 83 U.S. cities in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a “sprawl index”<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> four comp<strong>on</strong>ents: residential density; the neighborhood mix <str<strong>on</strong>g>of</str<strong>on</strong>g> homes, jobs, and<br />

services; the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> activity centers and downtowns; and the accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> street networks.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y compiled informati<strong>on</strong> <strong>on</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle ownership, the share <str<strong>on</strong>g>of</str<strong>on</strong>g> commuters taking<br />

transit to work, the share <str<strong>on</strong>g>of</str<strong>on</strong>g> commuters walking to work, the average commute time, and the<br />

vehicle-miles traveled (VMT) per household per day for each <str<strong>on</strong>g>of</str<strong>on</strong>g> these cities. Table B-5 shows<br />

the average <str<strong>on</strong>g>of</str<strong>on</strong>g> these transport indicators and the average sprawl index 20 for the 10 “most<br />

sprawling” and the 10 “least sprawling” cities. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter category excludes two clear outliers—<br />

New York City and Jersey City 21 —which are shown separately in Table B-5.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> range in the researchers’ sprawl index between these two groups <str<strong>on</strong>g>of</str<strong>on</strong>g> cities—73.43—is<br />

almost three standard deviati<strong>on</strong>s. Over this range, there is an 11 percent difference in the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cars per hundred households (180 versus 162) and a 29 percent difference in the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

VMT per household per day (70.18 versus 54.45). For both groups <str<strong>on</strong>g>of</str<strong>on</strong>g> cities, the share <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

commuters taking public transit to work averages below 10 percent, and the share <str<strong>on</strong>g>of</str<strong>on</strong>g> commuters<br />

walking to work averages less than 5 percent. <str<strong>on</strong>g>The</str<strong>on</strong>g> average daily <strong>on</strong>e-way commute time in both<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> cities is identical—26 minutes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d study, c<strong>on</strong>ducted by Bento and colleagues (2005) covered 114 U.S. urban<br />

areas. Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> developing a sprawl index, these researchers used the actual values <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

variables that they believe reflect the spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these urban areas. <str<strong>on</strong>g>The</str<strong>on</strong>g>y used these<br />

characteristics, plus other c<strong>on</strong>trol variables, to predict the average VMT per household, the<br />

average probability <str<strong>on</strong>g>of</str<strong>on</strong>g> driving to work by workers, and the average annual commute miles for the<br />

“average U.S. household” if it resided in each urban area. Table B-6 shows these predicted<br />

values for 6 U.S. urban areas: Atlanta, Bost<strong>on</strong>, Chicago, Houst<strong>on</strong>, New York, and San Diego.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> difference in predicted average annual VMT per household between Atlanta and Bost<strong>on</strong> (the<br />

latter being the “most compact” urban area other than New York City) is 25 percent (16,899 vs.<br />

12,704 VMT). <str<strong>on</strong>g>The</str<strong>on</strong>g> predicted average probability <str<strong>on</strong>g>of</str<strong>on</strong>g> driving to work by workers does not fall<br />

below 70 percent for any city except New York City. <str<strong>on</strong>g>The</str<strong>on</strong>g> average number <str<strong>on</strong>g>of</str<strong>on</strong>g> commute miles<br />

driven per year ranges between 4,500 and 5,600 miles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> differences in transport activity and modal choice am<strong>on</strong>g U.S. urban areas reported<br />

in the above two studies are not trivial, but they need to be placed in perspective. Cities change<br />

slowly, and their changes are heavily path dependent. Transforming a city with the spatial<br />

organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlanta into <strong>on</strong>e with the spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bost<strong>on</strong> would be a tremendous<br />

task requiring many decades, if it could be accomplished at all. Making marginal changes over<br />

time might be practical, but even this would not be easy. Moreover, marginal changes are likely<br />

to yield <strong>on</strong>ly marginal results.<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Telecommuting and the Internet <strong>on</strong> Travel Demand Some have argued that the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> telecommuting and the Internet could reduce travel demand significantly. This<br />

does not appear to be happening. Mokhtarian (2003) summarizes the evidence as follows:<br />

20 <str<strong>on</strong>g>The</str<strong>on</strong>g> sprawl index is scaled so that 25 units is equal to <strong>on</strong>e standard deviati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> index ranges in value from<br />

14.22 to 177.78, with a lower value indicating greater sprawl.<br />

21 <str<strong>on</strong>g>The</str<strong>on</strong>g> New York City regi<strong>on</strong> (which includes Jersey City) accounts for approximately 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> all U.S. public<br />

transport trips.


TABLE B-5 How Pers<strong>on</strong>al Transportati<strong>on</strong> Demand Is Influence by Urban Form<br />

Sprawl Vehicles Transit to Walk to Commute<br />

Vehicle-Miles<br />

Traveled per<br />

MSA/PMSA Name<br />

Index per 100 HH Work (%) Work (%) Time (min.) HH (mi/day)<br />

Average—10 most sprawling 58.86 180 2.1 1.92 26 70.18<br />

Average—10 least sprawling<br />

(excluding outliers)<br />

Difference—10 most sprawling<br />

and 10 least sprawling<br />

(excluding outliers)<br />

132.29<br />

162<br />

7.0<br />

3.56<br />

26<br />

54.45<br />

73.43 -18 4.9 1.64 0 -15.73<br />

Excluding outliers<br />

Jersey City, NJ PMSA 162.27 93 34.2 8.71 33 N/A<br />

New York, NY PMSA 177.78 74 48.5 9.61 39 40.19<br />

Note: HH = household; MSA = Metropolitan Statistical Area; PSMA = Primary Metropolitan Statistical Area.<br />

Source: Derived from Ewing et al. 2002, Appendix 3.<br />

TABLE B-6 How Transport Demand is Influenced by Urban Form<br />

Characteristic Minimum a Maximum a Atlanta Bost<strong>on</strong> Chicago Houst<strong>on</strong> New York San Diego<br />

Lane density (area <str<strong>on</strong>g>of</str<strong>on</strong>g> roads per 100<br />

square miles <str<strong>on</strong>g>of</str<strong>on</strong>g> land)<br />

1.6 10.6 3.9 4.3 4.7 5.2 5.3 4.2<br />

Land area (km 2 ) 135 7,683 2,944 2,308 4,104 3,049 7,683 1,788<br />

Populati<strong>on</strong> 158,553 16,044,012 2,157,806 2,775,370 6,792,087 2,901,851 16,044,012 2,348,417<br />

Density (people/ km 2 ) 446 2,240 733 1,202 1,655 952 2,088 1,314<br />

Rail transit supply (10,000 mi/km 2 ) 0 5.7 0.7 1.8 1.9 0.0 5.7 0.2<br />

N<strong>on</strong>rail transit supply (10,000<br />

mi/km 2 )<br />

0.1 4.3 1.0 1.3 2.8 1.4 3.0 1.6<br />

Jobs–housing balance (standardized) 0.12 0.58 0.44 0.28 0.35 0.44 0.41 0.58<br />

Populati<strong>on</strong> centrality (standardized) 0.11 0.22 0.11 0.17 0.15 0.13 0.20 0.20<br />

City shape 0.04 0.99 0.26 0.82 0.48 0.80 0.73 0.36<br />

Predicted average vehicle-miles traveled per household<br />

16,899 12,704 14,408 15,685 9,453 16,493<br />

Predicted average probability <str<strong>on</strong>g>of</str<strong>on</strong>g> driving to work by workers<br />

0.87 0.73 0.74 0.90 0.40 0.84<br />

Predicted average commute miles driven<br />

a<br />

Refers to sample <str<strong>on</strong>g>of</str<strong>on</strong>g> 114 urban areas.<br />

5,450 4,565 4,620 5,641 2,496 5,247<br />

Source: Bento et al. 2005, <str<strong>on</strong>g>The</str<strong>on</strong>g> Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics and Statistics, Vol. 87, No. 3, Aug., p. 477. (© 2005 by the President and Fellows <str<strong>on</strong>g>of</str<strong>on</strong>g> Harvard College and the<br />

Massachusetts Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. Reprinted with the permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MIT Press Journals.)


176 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Overall, substituti<strong>on</strong>, complementarity, modificati<strong>on</strong>, and neutrality within and<br />

across transportati<strong>on</strong> modes are all happening simultaneously. <str<strong>on</strong>g>The</str<strong>on</strong>g> net outcome<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these partially counteracting effects, if current trends c<strong>on</strong>tinue, is likely to be<br />

faster growth in telecommunicati<strong>on</strong>s than in travel, resulting in an increasing<br />

share <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s falling to telecommunicati<strong>on</strong>s, but with c<strong>on</strong>tinued growth<br />

in travel in absolute terms. <str<strong>on</strong>g>The</str<strong>on</strong>g> empirical evidence to date is quite limited in its<br />

ability to assess the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> true causality between telecommunicati<strong>on</strong>s and<br />

travel, and more research is needed in that area. At this point, what we can say<br />

with c<strong>on</strong>fidence is that the empirical evidence for net complementarity is<br />

substantial, although not definitive, and the empirical evidence for net<br />

substituti<strong>on</strong> appears to be virtually n<strong>on</strong>existent. (p. 43)<br />

However, she issues the following cauti<strong>on</strong>:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> caveat, “if current trends c<strong>on</strong>tinue,” is a n<strong>on</strong>trivial <strong>on</strong>e. My expectati<strong>on</strong>s<br />

for the future are largely predicated <strong>on</strong> the assumpti<strong>on</strong> that the real price <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

travel will c<strong>on</strong>tinue to decline or at least remain relatively stable. Should the<br />

price <str<strong>on</strong>g>of</str<strong>on</strong>g> travel escalate markedly…the substitutability <str<strong>on</strong>g>of</str<strong>on</strong>g> telecommunicati<strong>on</strong>s<br />

will obviously become more attractive. Shifts towards telecommunicati<strong>on</strong>s<br />

substituti<strong>on</strong> may also occur for reas<strong>on</strong>s such as an increasing societal<br />

commitment to more envir<strong>on</strong>mentally benign or sustainable communicati<strong>on</strong>s<br />

modes, but experience suggests that such impacts will be modest at best. (p. 54)<br />

Pers<strong>on</strong>al and Goods Transport Demand: Summary<br />

Growth in pers<strong>on</strong>al and goods transport demand is the most important single factor driving the<br />

increase in transport-related GHG emissi<strong>on</strong>s. This growth is being propelled by growth in real<br />

GDP per capita, by populati<strong>on</strong> growth, by urbanizati<strong>on</strong>, and by the spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban<br />

areas (urban form). <str<strong>on</strong>g>The</str<strong>on</strong>g> latter factor is also causing shifts in modal use (public transport to<br />

LDVs for pers<strong>on</strong>al transport and rail to truck for goods transport) that likewise serve to boost<br />

transport-related GHG emissi<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> correlati<strong>on</strong> between ec<strong>on</strong>omic growth and increased transport demand has proved to<br />

be very robust, but it is not immutable. Reducing it would be a slow process that would require<br />

substantial changes in almost every aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> people’s lives. This does not mean that efforts to<br />

induce change should not be made; it does mean that such efforts would not likely bear<br />

immediate fruit.<br />

Reducing Vehicle Energy C<strong>on</strong>sumpti<strong>on</strong> Per Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Transport Activity (I)<br />

Hundreds (if not thousands) <str<strong>on</strong>g>of</str<strong>on</strong>g> studies describe and analyze the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> various technologies<br />

to reduce the fuel c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport vehicles. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these studies focus <strong>on</strong> pers<strong>on</strong>al<br />

vehicles—by far the most numerous road vehicles. <str<strong>on</strong>g>The</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies also give the<br />

greatest attenti<strong>on</strong> to improvements in power train technologies. No attempt is made here to<br />

provide an encyclopedic account <str<strong>on</strong>g>of</str<strong>on</strong>g> the results presented in this vast body <str<strong>on</strong>g>of</str<strong>on</strong>g> material. Rather,<br />

the discussi<strong>on</strong> is c<strong>on</strong>fined to broad categories <str<strong>on</strong>g>of</str<strong>on</strong>g> technologies. Addressed in turn are


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 177<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

technologies with the potential to reduce the fuel c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road vehicles, those with the<br />

potential to reduce the fuel c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>road vehicles, factors influencing the extent to<br />

which the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> a technology to reduce transport-related GHG emissi<strong>on</strong>s is realized, and<br />

the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle capacity utilizati<strong>on</strong> (load factor) <strong>on</strong> energy use.<br />

Technologies with the <str<strong>on</strong>g>Potential</str<strong>on</strong>g> to Reduce the Fuel C<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Road Vehicles 22<br />

Road vehicles (automobiles, trucks <str<strong>on</strong>g>of</str<strong>on</strong>g> all sizes, buses, and powered two- and three-wheelers)<br />

account for 76 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> all transport energy use worldwide and for 82 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. transport<br />

energy use. LDVs (cars, light trucks, and powered two- and three-wheelers) account for the<br />

li<strong>on</strong>’s share <str<strong>on</strong>g>of</str<strong>on</strong>g> this total—46 percent worldwide and 62 percent for the United States. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the remainder—24 percent worldwide and 20 percent for the United States—is accounted for by<br />

medium and heavy freight trucks.<br />

Engine Technologies Road vehicles utilize <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two fundamental engine technologies—spark<br />

igniti<strong>on</strong> or compressi<strong>on</strong> igniti<strong>on</strong>. Other technologies, such as gas turbines, have been tried, but<br />

have proved unsatisfactory for powering road vehicles. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are, however, a very limited number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vehicles powered solely by electric batteries.<br />

Spark-Igniti<strong>on</strong> Internal Combusti<strong>on</strong> Engines Most spark-igniti<strong>on</strong> engines in use today are fueled<br />

by petroleum gasoline, but they also can run <strong>on</strong> synthetic gasoline derived from gas-to-liquid<br />

processes, <strong>on</strong> ethanol (or blends <str<strong>on</strong>g>of</str<strong>on</strong>g> gasoline and ethanol), <strong>on</strong> compressed natural gas, <strong>on</strong> liquefied<br />

petroleum gases, or <strong>on</strong> hydrogen.<br />

In the intake system <str<strong>on</strong>g>of</str<strong>on</strong>g> spark-igniti<strong>on</strong> engines, air is mixed with small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel.<br />

In the past, this process was carried out in the carburetor, where the fuel was drawn into the<br />

airflow mechanically. To meet more stringent emissi<strong>on</strong>s requirements, the carburetor has been<br />

replaced in nearly all engines by port-injecti<strong>on</strong> systems or direct-injecti<strong>on</strong> systems. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter<br />

are particularly effective in reducing fuel c<strong>on</strong>sumpti<strong>on</strong> and CO2 emissi<strong>on</strong>s; this is especially true<br />

for several combusti<strong>on</strong> technologies now in development, such as lean-burn technologies. 23<br />

C<strong>on</strong>venti<strong>on</strong>al engine architectures use valves activated mechanically by <strong>on</strong>e or more<br />

camshafts to c<strong>on</strong>trol the gas flow into the combusti<strong>on</strong> chamber and the expulsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the exhaust<br />

gases. Variable valve c<strong>on</strong>trol is an advanced system that allows better management <str<strong>on</strong>g>of</str<strong>on</strong>g> valve<br />

timing and substantially reduces the need for the throttle plates in gasoline engines. Some<br />

mechanical systems for valve timing have already been introduced. Other systems, based <strong>on</strong><br />

electromagnetic or electrohydraulic actuati<strong>on</strong> technologies, are currently being developed.<br />

Variable valve c<strong>on</strong>trol can also enable modular use <str<strong>on</strong>g>of</str<strong>on</strong>g> the engine, completely obviating the need<br />

for some <str<strong>on</strong>g>of</str<strong>on</strong>g> the cylinders when little engine power is required. This soluti<strong>on</strong> diminishes fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> even further and has already been introduced in some large cars.<br />

C<strong>on</strong>trolled auto igniti<strong>on</strong> (CAI) is another new combusti<strong>on</strong> process being actively<br />

explored to improve fuel ec<strong>on</strong>omy and lower the exhaust emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> spark-igniti<strong>on</strong> internal<br />

combusti<strong>on</strong> engines. CAI engines use a highly diluted mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel, air, and residual gases<br />

22 <str<strong>on</strong>g>The</str<strong>on</strong>g> material in this secti<strong>on</strong> is an edited versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> IEA (2006, Ch. 5).<br />

23 A lean-burn engine is designed to operate with a very high air-to-fuel ratio under light-load c<strong>on</strong>diti<strong>on</strong>s. When<br />

little power is required, lower amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel are injected into the combusti<strong>on</strong> chamber, <strong>on</strong>ly in the area around the<br />

spark. This reduces the need for throttling and limits nitrogen oxides.


178 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

that can auto-ignite in a four-stroke engine without preheating <str<strong>on</strong>g>of</str<strong>on</strong>g> the intake air or an increase in<br />

the compressi<strong>on</strong> ratio.<br />

Technologies that reduce or eliminate pumping losses and throttled operati<strong>on</strong>s, combined<br />

with turbochargers and technologies that help c<strong>on</strong>tain knock, can result in significant reducti<strong>on</strong>s<br />

in engine size, also allowing substantial fuel ec<strong>on</strong>omy improvements and reducti<strong>on</strong>s in CO2<br />

emissi<strong>on</strong>s. Many in the automotive industry believe engine downsizing—including the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

turbochargers—can reduce engine displacement size by up to 30 percent. Downsizing the engine<br />

also has a positive effect <strong>on</strong> the whole vehicle design, reducing vehicle inertia and therefore<br />

engine load.<br />

Almost all recent-model vehicles equipped with a spark-igniti<strong>on</strong> engine are fully capable<br />

with low-level ethanol fuel blends, such as E5 or E10 (5 percent and 10 percent ethanol blends,<br />

respectively). To use blends <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 10 percent ethanol, some engine modificati<strong>on</strong>s may be<br />

necessary because <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol’s low compatibility with certain materials and elastomer<br />

comp<strong>on</strong>ents. Using compatible materials would eliminate these problems, and the use <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

materials is already comm<strong>on</strong> in some countries, such as the United States and Brazil. <str<strong>on</strong>g>The</str<strong>on</strong>g> cost <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

making vehicles fully compatible with E10 is negligible, and the cost remains very low for full<br />

compatibility with E85 (an 85 percent ethanol fuel blend.)<br />

If engines were designed exclusively for pure ethanol or ethanol-rich blends, their costs<br />

would be roughly the same as today, but their fuel ec<strong>on</strong>omy (expressed in liters <str<strong>on</strong>g>of</str<strong>on</strong>g> gasoline<br />

equivalent per 100 km) would be better than that <str<strong>on</strong>g>of</str<strong>on</strong>g> engines designed for c<strong>on</strong>venti<strong>on</strong>al gasoline<br />

with the same performance. 24 Similar effects would be seen in CO2 tailpipe emissi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

improvements are possible because the high octane number <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol-rich blends, al<strong>on</strong>g with<br />

the cooling effect from ethanol’s high latent heat <str<strong>on</strong>g>of</str<strong>on</strong>g> vaporizati<strong>on</strong>, would allow higher<br />

compressi<strong>on</strong> ratios in engines designed for ethanol-rich blends, especially those using the most<br />

advanced injecti<strong>on</strong> systems available, such as direct-injecti<strong>on</strong> systems. Technologies such as<br />

direct injecti<strong>on</strong> and turbochargers that could lead to downsizing <str<strong>on</strong>g>of</str<strong>on</strong>g> spark-igniti<strong>on</strong> engines also<br />

favor the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol as a transportati<strong>on</strong> fuel.<br />

Compressi<strong>on</strong>-Igniti<strong>on</strong> Engines Compressi<strong>on</strong>-igniti<strong>on</strong> engines (comm<strong>on</strong>ly known as diesel<br />

engines) are similar to four-stroke spark-igniti<strong>on</strong> engines, with a few essential differences. One<br />

difference is that they do not need to be c<strong>on</strong>trolled by a throttle. Instead, the power output is<br />

c<strong>on</strong>trolled by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel injected into the cylinder, without airflow limitati<strong>on</strong>. This<br />

characteristic reduces the pumping losses that occur in the aspirati<strong>on</strong> phase in spark-igniti<strong>on</strong><br />

engines. Diesel engines do not need spark plugs. <str<strong>on</strong>g>The</str<strong>on</strong>g> air-fuel mixture used in these engines<br />

self-ignites when the fuel is injected into the combusti<strong>on</strong> chamber. As a result, diesel engines<br />

can run lean and reach much higher compressi<strong>on</strong> ratios than c<strong>on</strong>venti<strong>on</strong>al spark-igniti<strong>on</strong> engines.<br />

Diesel indirect-injecti<strong>on</strong> engines (the c<strong>on</strong>venti<strong>on</strong>al injecti<strong>on</strong> technology used in<br />

compressi<strong>on</strong>-igniti<strong>on</strong> engines until a few years ago) were characterized by fuel delivery in a<br />

prechamber designed to ensure proper mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> the atomized fuel with the compressi<strong>on</strong>-heated<br />

air. Precise c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel delivery was not easy to achieve in these systems. In recent years,<br />

indirect-injecti<strong>on</strong> systems have been replaced by comm<strong>on</strong>-rail systems. <str<strong>on</strong>g>The</str<strong>on</strong>g>se systems still use a<br />

pump to store fuel at very high pressure in a reservoir (the comm<strong>on</strong> rail), which is c<strong>on</strong>nected to<br />

the combusti<strong>on</strong> chamber by fuel injectors. Rail systems permit the activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the injectors<br />

24 According to the Transportati<strong>on</strong> Energy Data Book, 25th editi<strong>on</strong> (Davis and Diegel 2006, B-3), the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a gall<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol produces <strong>on</strong>ly about two-thirds the heat <str<strong>on</strong>g>of</str<strong>on</strong>g> a gall<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gasoline (75,670 Btu vs. 115,600 Btu).<br />

This means a gall<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> “gasoline equivalent” ethanol c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1.5 gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> actual ethanol.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 179<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

rather than the pump, eliminating the build-up <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure before each individual injecti<strong>on</strong>. This<br />

makes it possible to c<strong>on</strong>trol very precisely the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel injected and the timing <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

injecti<strong>on</strong>, thereby maximizing performance and optimizing fuel use.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fact that diesel engines can work with higher compressi<strong>on</strong> ratios than gasoline<br />

engines and without a throttle favors the use <str<strong>on</strong>g>of</str<strong>on</strong>g> intake-air compressors, usually in the form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

turbochargers. Such compressors are generally coupled with intercoolers and aftercoolers to<br />

increase the density <str<strong>on</strong>g>of</str<strong>on</strong>g> the air entering the combusti<strong>on</strong> chamber. Turbocharged diesel engines,<br />

working with comm<strong>on</strong> rail and direct injecti<strong>on</strong>, are now an established technology. <str<strong>on</strong>g>The</str<strong>on</strong>g>y equip<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> the light-duty diesel vehicles sold in Europe and virtually all new heavy-duty trucks sold<br />

around the world. 25<br />

Two important barriers to the increased use <str<strong>on</strong>g>of</str<strong>on</strong>g> diesel engines have been their relatively<br />

high emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate matter (PM) and NOx. A modern exhaust system for diesel engines<br />

includes a two-way oxidati<strong>on</strong> catalyst and, in the most recent versi<strong>on</strong>s, a particulate filter. 26 <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

two-way oxidati<strong>on</strong> catalyst is similar to the catalytic c<strong>on</strong>verter used in gasoline-fueled cars. It<br />

c<strong>on</strong>verts unburned hydrocarb<strong>on</strong>s and CO into CO2 and water. <str<strong>on</strong>g>The</str<strong>on</strong>g>se c<strong>on</strong>verters are not as<br />

effective as those used in gasoline-fueled vehicles. On the other hand, CO and hydrocarb<strong>on</strong><br />

emissi<strong>on</strong>s from compressi<strong>on</strong>-igniti<strong>on</strong> engines are inherently low because <str<strong>on</strong>g>of</str<strong>on</strong>g> the leaner fuel<br />

mixture. Oxidati<strong>on</strong> catalysts reduce particulate mass by as much as 50 percent. <str<strong>on</strong>g>The</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ultrafine particulates, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most dangerous emissi<strong>on</strong>s in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> health effects, remains<br />

unresolved at this point.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> aftertreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> NOx emissi<strong>on</strong>s in diesel engines presents a difficult technical<br />

challenge because <str<strong>on</strong>g>of</str<strong>on</strong>g> the oxygen-rich state <str<strong>on</strong>g>of</str<strong>on</strong>g> the exhaust under lean c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NOx can be reduced by using cooled intake-air compressi<strong>on</strong> (whereby an intercooler and<br />

aftercooler lower the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the air-to-fuel mix in the cylinder) and by exhaust gas<br />

recirculati<strong>on</strong>. Research in the field <str<strong>on</strong>g>of</str<strong>on</strong>g> aftertreatment systems c<strong>on</strong>tinues, including efforts to<br />

integrate NOx reducti<strong>on</strong> with particulate filters.<br />

Hybrid Vehicles <str<strong>on</strong>g>The</str<strong>on</strong>g> term “hybrid” refers to any vehicle that can use different energy sources in<br />

combinati<strong>on</strong>. Currently, the term usually refers to hybrid-electric vehicles, 27 which are powered<br />

by a drive-train that combines a c<strong>on</strong>venti<strong>on</strong>al internal combusti<strong>on</strong> engine (powered by gasoline,<br />

diesel, or an alternative fuel) and an electric motor. Hybrid-electric vehicles can be built in a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> engine architectures with varying sizes for the combusti<strong>on</strong> engine and electric motor,<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> which involves different trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> cost, efficiency, and performance.<br />

In series hybrids, an electric motor drives the wheels and derives its energy from a<br />

battery or an engine, generally an internal-combusti<strong>on</strong> engine, used as a power generator. 28 <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

power generator supplies the average power required to operate the vehicle and accessories,<br />

while a battery stores the excess energy and provides it when needed. Like electric vehicles,<br />

series hybrids may use regenerative braking to recharge the battery. A further efficiency gain is<br />

25 Variable valve c<strong>on</strong>trol, already described for gasoline engines, also <str<strong>on</strong>g>of</str<strong>on</strong>g>fers improvements in diesel engines,<br />

although its ability to reduce fuel c<strong>on</strong>sumpti<strong>on</strong> is lower for compressi<strong>on</strong>-igniti<strong>on</strong> engines than for spark-igniti<strong>on</strong><br />

engines because the latter suffer from higher pumping losses.<br />

26 A diesel particulate filter may take the form <str<strong>on</strong>g>of</str<strong>on</strong>g> a ceramic h<strong>on</strong>eycomb m<strong>on</strong>olith. It may also c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> sintered<br />

metal, foamed metal structures, fiber mats, or other materials. It removes particulate from the diesel exhaust by<br />

physical filtrati<strong>on</strong>, capturing the particulate matter <strong>on</strong> its walls.<br />

27 <str<strong>on</strong>g>The</str<strong>on</strong>g>re are hybrid vehicles that use hydraulic fluid rather than batteries as a power “accumulator.”<br />

28 Diesel-electric railroad locomotives are series hybrids. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir diesel engine drives a generator that provides power<br />

to electric tracti<strong>on</strong> motors.


180 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

achieved by the fact that the engine is largely uncoupled from the load because <str<strong>on</strong>g>of</str<strong>on</strong>g> road<br />

c<strong>on</strong>diti<strong>on</strong>s and can be kept working at a range <str<strong>on</strong>g>of</str<strong>on</strong>g> operating points where its efficiency is high.<br />

This type <str<strong>on</strong>g>of</str<strong>on</strong>g> engine use <str<strong>on</strong>g>of</str<strong>on</strong>g>fers advantages for the aftertreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> exhaust gases.<br />

In parallel hybrids, moti<strong>on</strong> is delivered to the wheels by both an internal combusti<strong>on</strong><br />

engine and an electric motor. <str<strong>on</strong>g>The</str<strong>on</strong>g> internal combusti<strong>on</strong> engine is no l<strong>on</strong>ger used exclusively as a<br />

power plant, but works jointly with the electric motor to deliver movement to the vehicle.<br />

“Mild” parallel hybrids have an electric motor that acts as a starter and can serve as an alternator<br />

during braking (regenerative braking), while an internal combusti<strong>on</strong> engine powers the<br />

drivetrain. In mild hybrid c<strong>on</strong>figurati<strong>on</strong>s, the electric motor may also provide extra torque and<br />

extra power when needed. <str<strong>on</strong>g>The</str<strong>on</strong>g> electric motor used in mild hybrids is usually located between<br />

the engine and the transmissi<strong>on</strong> or, in “light” designs, in the same positi<strong>on</strong> as a standard<br />

alternator.<br />

Full hybrids can operate in internal-combusti<strong>on</strong> mode, in hybrid mode, or even in allelectric<br />

mode, the latter being used mainly for cold starts and for urban driving at ranges below<br />

50 km. <str<strong>on</strong>g>The</str<strong>on</strong>g> electric energy is stored in large batteries during the periods <str<strong>on</strong>g>of</str<strong>on</strong>g> internal combusti<strong>on</strong><br />

engine driving and regenerative braking. In some cases, electricity is stored by charging the<br />

battery from the grid (plug-in hybrids).<br />

Hybrid drivetrains are a promising technology not <strong>on</strong>ly for LDVs, but also for heavy- and<br />

medium-duty vehicles that operate locally and for urban buses. Hybrid soluti<strong>on</strong>s are not<br />

particularly suitable for heavy-duty trucks and intercity buses because the driving cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> those<br />

vehicles is characterized by l<strong>on</strong>g driving periods at steady speeds.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> main barrier to greater market penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid vehicles is their cost, which is<br />

still higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> competing vehicles, notably diesel. In their most advanced<br />

c<strong>on</strong>figurati<strong>on</strong>s, diesel vehicles <str<strong>on</strong>g>of</str<strong>on</strong>g>fer fuel ec<strong>on</strong>omies not far behind those <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids. Reducing<br />

the cost, weight, and size <str<strong>on</strong>g>of</str<strong>on</strong>g> batteries is the greatest technology challenge facing hybrid<br />

development.<br />

Diesel hybrids achieve smaller reducti<strong>on</strong>s in fuel c<strong>on</strong>sumpti<strong>on</strong> relative to hybrids that<br />

incorporate gasoline engines; nevertheless, full diesel hybrids may be the most efficient vehicles<br />

in the l<strong>on</strong>g run. Diesel hybrid engines will be best suited to urban buses and medium freight<br />

trucks, although further improvements in battery technology are needed for this type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

applicati<strong>on</strong>.<br />

Table B-7 shows estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 emissi<strong>on</strong>s from new midsized U.S. passenger cars<br />

equipped with the above engine technologies identified during the three time intervals 2003–<br />

2015, 2015–2030, and 2030–2050. Setting a 2003–2015 gasoline internal combusti<strong>on</strong> engine<br />

vehicle equal to 100, Table B-8 shows an index <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissi<strong>on</strong>s from each engine type during<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> the three periods.<br />

Fuel Cell Vehicles A fuel cell is an electrochemical device that c<strong>on</strong>verts hydrogen and oxygen<br />

into water and produces electricity in the process. Fuel cell vehicles (FCVs) are propelled by<br />

electric motors, with electricity produced within the vehicle.<br />

Prot<strong>on</strong>-exchange-membrane (PEM) fuel cells are particularly suited to powering<br />

passenger cars and buses because <str<strong>on</strong>g>of</str<strong>on</strong>g> their fast start-up time, favorable power density, and high<br />

power-to-weight ratio. Fuelled with pure hydrogen from storage tanks or <strong>on</strong>-board reformers,<br />

PEM fuel cells use a solid polymer as an electrolyte and porous carb<strong>on</strong> electrodes with a<br />

platinum catalyst. <str<strong>on</strong>g>The</str<strong>on</strong>g>y operate at relatively low temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> around 80ºC. This has the<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> allowing the fuel cell to start quickly, but cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> the cell is required to prevent


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 181<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

TABLE B-7 Tailpipe CO2 Emissi<strong>on</strong>s for Midsized U.S. Passenger Cars Using<br />

Different Engine Technologies (g/km)<br />

Time Period<br />

Engine Technology 2003–2015 2015–2030 2030–2050<br />

Spark Igniti<strong>on</strong><br />

Gasoline ICE a 130–234 122–219 114–204<br />

Dedicated Ethanol<br />

ICE b 120–215 112–200 103–185<br />

Flexible Fuel<br />

Vehicle ICE c 133–239 125–224 116–209<br />

Light Hybrid,<br />

Gasoline ICE d 119–214 111–199 103–185<br />

Mild Hybrid,<br />

Gasoline ICE d 108–194 99–178 94–168<br />

Full Hybrid,<br />

Gasoline ICE d 99–178 94–169 89–160<br />

Compressi<strong>on</strong> Igniti<strong>on</strong><br />

Diesel ICE e 108–193 105–188 102–183<br />

Light Hybrid, Diesel<br />

ICE f 96–173 94–168 91–163<br />

Mild Hybrid, Diesel<br />

ICE f 87–155 83–149 80–143<br />

Full Hybrid, Diesel<br />

ICE f 83–148 80–143 77–138<br />

Notes: <str<strong>on</strong>g>The</str<strong>on</strong>g>se estimates refer to a midsized vehicle and assume that roughly half <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential<br />

improvements due to advanced vehicle technologies will improve vehicle fuel ec<strong>on</strong>omy. (In the case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids, this share rises to 100 percent, but hybrid power trains could also be used to increase<br />

performance rather than fuel ec<strong>on</strong>omy.) <str<strong>on</strong>g>The</str<strong>on</strong>g> estimates also assume that c<strong>on</strong>siderable learning and<br />

optimizati<strong>on</strong> will occur between 2010 and 2050, in additi<strong>on</strong> to large-scale producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicles.<br />

Footnotes below indicate assumpti<strong>on</strong>s c<strong>on</strong>cerning what technologies are introduced and when. ICE =<br />

internal combusti<strong>on</strong> engine.<br />

a 2003–2015: C<strong>on</strong>venti<strong>on</strong>al engine, stoichiometric combusti<strong>on</strong>, increased use <str<strong>on</strong>g>of</str<strong>on</strong>g> variable valve c<strong>on</strong>trol.<br />

2015–2030: Turbocharged engine with direct injecti<strong>on</strong> and variable valve c<strong>on</strong>trol, engine downsizing.<br />

Progressive introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> advanced combusti<strong>on</strong> technologies with NOx traps. 2030–2050:<br />

Downsized turbocharged engine with direct injecti<strong>on</strong> and variable valve c<strong>on</strong>trol using advanced<br />

combusti<strong>on</strong> technologies (CAI) with NOx traps.<br />

b 2003–2015: C<strong>on</strong>venti<strong>on</strong>al engine, stoichiometric combusti<strong>on</strong>. 2015–2030: Turbocharged engine<br />

combusti<strong>on</strong> with direct injecti<strong>on</strong> and variable valve c<strong>on</strong>trol. Progressive introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> advanced<br />

combusti<strong>on</strong> technologies needing NOx traps, progressive downsizing. 2030–2050: Turbocharged<br />

downsized engine with direct injecti<strong>on</strong> and variable valve c<strong>on</strong>trol, using advanced combusti<strong>on</strong><br />

technologies with NOx traps.<br />

c 2003–2015: C<strong>on</strong>venti<strong>on</strong>al engine, stoichiometric combusti<strong>on</strong>. 2015–2030: Ethanol-hybrid<br />

turbocharged engine with direct injecti<strong>on</strong> and variable valve c<strong>on</strong>trol, downsizing. Progressive<br />

introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> advanced combusti<strong>on</strong> technologies needing NOx traps. 2030–2050: Downsized<br />

ethanol-hybrid turbocharged engine with direct injecti<strong>on</strong> and variable valve c<strong>on</strong>trol using advanced<br />

combusti<strong>on</strong> technologies with NOx traps.<br />

d 2003–2015: Wide introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> starter-alternator systems, mild hybrid engines <strong>on</strong> some models,<br />

full hybrids mainly <strong>on</strong> large LDVs. 2015–2030: Higher penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mild hybrids, even <strong>on</strong> small<br />

vehicles, wide diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> full hybrids <strong>on</strong> large LDVs. Large hybrid shares for minibuses and medium<br />

freight trucks. ICE improved in light hybrids, slightly less for mild and full hybrids. 2030–2050: A


182 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

large share <str<strong>on</strong>g>of</str<strong>on</strong>g> ICE vehicles sold <strong>on</strong> the market equipped with hybrid systems. ICE improved in light<br />

hybrids, slightly less so for mild and full hybrids.<br />

e 2003–2015: Sec<strong>on</strong>d-generati<strong>on</strong> comm<strong>on</strong> rail, progressive downsizing. 2015–2030: Turbocharged<br />

downsized engine, variable valve c<strong>on</strong>trol, possibly heat recovery, particulate filter and NOx trap (or<br />

selective catalytic reducti<strong>on</strong> systems, especially <strong>on</strong> large engines). 2030–2050: Turbocharged<br />

downsized engine, variable valve c<strong>on</strong>trol, and possibly heat recovery. Particulate filter and NOx trap<br />

(or selective catalytic reducti<strong>on</strong> systems, especially <strong>on</strong> large engines).<br />

f Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> starter-alternator systems; hybrid motorizati<strong>on</strong>s <strong>on</strong> large LDVs; initial diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hybrids in buses, minibuses, and freight trucks. 2015–2030: Penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mild hybrids <strong>on</strong> small<br />

vehicles, wider diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> full hybrids <strong>on</strong> large vehicles. Larger shares <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid buses, minibuses,<br />

freight trucks. ICE improved as for diesel engines in light hybrids, slightly less so for mild and full<br />

hybrids. 2030–2050: Further cost reducti<strong>on</strong>s leading to large shares <str<strong>on</strong>g>of</str<strong>on</strong>g> new vehicles equipped with<br />

hybrid systems. ICE improved as for diesel engines in light hybrids, slightly less so for mild and full<br />

hybrids.<br />

Source: IEA 2006, Chapter 5. (Energy Technology Perspectives © OECD/IEA, 2006, material taken<br />

from Table 5.2, p. 297; Tables 5.3-5.4, pp. 300-301; Table 5.5, p. 309; and Tables 5.6–5-7, pp. 318-<br />

319. Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> OECD/IEA.)<br />

TABLE B-8 Index <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 Emissi<strong>on</strong>s from a Midsized New U.S. Passenger Car<br />

Powered by Engine Type Shown During Period Indicated (g/km; 2003–2015<br />

Gasoline-Powered ICE = 100)<br />

Time Period<br />

Engine Technology 2003–2015 2015–2030 2030–2050<br />

Spark Igniti<strong>on</strong><br />

Gasoline ICE 100 94 88<br />

Dedicated Ethanol ICE 92 86 79<br />

Flexible Fuel Vehicle ICE 102 96 89<br />

Light Hybrid, Gasoline ICE 92 85 79<br />

Mild Hybrid, Gasoline ICE 83 76 72<br />

Full Hybrid, Gasoline ICE 76 72 68<br />

Compressi<strong>on</strong> Igniti<strong>on</strong><br />

Diesel ICE 83 81 78<br />

Light Hybrid, Diesel ICE 74 72 70<br />

Mild Hybrid, Diesel ICE 67 64 62<br />

Full Hybrid, Diesel ICE 64 62 59<br />

Note: ICE = internal combusti<strong>on</strong> engine.<br />

Source: Derived from Table B-7 by Appendix B author.<br />

overheating. <str<strong>on</strong>g>The</str<strong>on</strong>g> platinum catalyst is costly and extremely sensitive to CO pois<strong>on</strong>ing. Research<br />

efforts are focusing <strong>on</strong> high-temperature membranes that would allow the use <str<strong>on</strong>g>of</str<strong>on</strong>g> lower-cost and<br />

more robust catalyst systems.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> current cost <str<strong>on</strong>g>of</str<strong>on</strong>g> PEM fuel cells exceeds $2000 per kilowatt (kW), but costs could be<br />

cut to as low as $100 per kW through mass producti<strong>on</strong> and experience with the technology. This<br />

reducti<strong>on</strong> in cost might not be sufficient, however. It is believed that the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel cells must<br />

fall to below $50 per kW to make them competitive. Achieving this cost reducti<strong>on</strong> would<br />

require fundamental advances in materials technology and the achievement <str<strong>on</strong>g>of</str<strong>on</strong>g> higher power<br />

densities for fuel cells.<br />

On-board fuel storage is a major challenge. Existing <strong>on</strong>-board storage opti<strong>on</strong>s do not yet<br />

meet the technical and ec<strong>on</strong>omic requirements for making them competitive. Safety is also


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 183<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

believed to be an issue. Gaseous storage at 350–700 bar 29 and liquid storage at -253ºC are<br />

commercially available, but are very costly. Solid storage (for example, using hydrides) <str<strong>on</strong>g>of</str<strong>on</strong>g>fers<br />

potentially decisive advantages, but is still under development, with a number <str<strong>on</strong>g>of</str<strong>on</strong>g> materials being<br />

investigated.<br />

At present, in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> further breakthroughs, gaseous storage at 700 bar appears to<br />

be the technology <str<strong>on</strong>g>of</str<strong>on</strong>g> choice for passenger cars. However, the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> the tank is $600–800 per<br />

kilogram (kg) <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen (H2), and 5 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> storage capacity is needed to provide adequate range<br />

for the vehicle.<br />

Depending <strong>on</strong> the pace <str<strong>on</strong>g>of</str<strong>on</strong>g> technological development, the stack cost <str<strong>on</strong>g>of</str<strong>on</strong>g> a PEM fuel cell<br />

could decline to $35–70 per kW by 2030. If this were to happen, the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> a fuel cell vehicle at<br />

that time would exceed that <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>venti<strong>on</strong>al internal combusti<strong>on</strong> engine vehicle by $2,200–<br />

$7,600.<br />

Determining CO2 emissi<strong>on</strong>s from hydrogen-powered fuel cell vehicles is not<br />

straightforward. <str<strong>on</strong>g>The</str<strong>on</strong>g> fuel cells themselves do not produce any CO2 emissi<strong>on</strong>s. However, as<br />

discussed below, the processes used to produce the hydrogen fuel can emit large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO2, making the “well-to-wheels” emissi<strong>on</strong>s from such vehicles comparable to (and sometimes<br />

even higher than) those from c<strong>on</strong>venti<strong>on</strong>al gasoline or diesel internal combusti<strong>on</strong> engines.<br />

N<strong>on</strong>engine Technologies While reducti<strong>on</strong>s in engine energy use attract by far the most<br />

attenti<strong>on</strong>, other important technologies have the potential to reduce the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

required to propel a vehicle.<br />

Transmissi<strong>on</strong> Technologies Engines have ideal ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> speed at which they can operate.<br />

Operating outside these ranges increases fuel c<strong>on</strong>sumpti<strong>on</strong> and engine wear. A vehicle’s<br />

transmissi<strong>on</strong> allows its engine to operate more closely to its ideal speed while permitting its<br />

driving wheels to operate at the speed the driver chooses.<br />

Transmissi<strong>on</strong>s use gears to reduce the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the engine to the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the wheels.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> larger the number <str<strong>on</strong>g>of</str<strong>on</strong>g> gears, the more likely it is that the engine will be able to operate at its<br />

ideal speed across a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle speeds and power requirements. But more gears mean<br />

more complexity and more internal fricti<strong>on</strong>.<br />

Until the 1970s, most LDVs in the U.S. had three forward gears—low, medium, and<br />

high. When fuel prices increased substantially in the late 1970s and early 1980s, vehicles<br />

generally added a fourth gear, sometimes called “overdrive.” More recently, transmissi<strong>on</strong>s have<br />

added electr<strong>on</strong>ic c<strong>on</strong>trols and additi<strong>on</strong>al speeds. Today, transmissi<strong>on</strong>s with six forward speeds<br />

are being introduced, and seven-speed transmissi<strong>on</strong>s are not unheard <str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Some vehicles are now equipped with a c<strong>on</strong>tinuously variable transmissi<strong>on</strong> (CVT).<br />

CVTs use a system <str<strong>on</strong>g>of</str<strong>on</strong>g> belts and adjustable-diameter pulleys to permit an infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forward gear ratios. <str<strong>on</strong>g>The</str<strong>on</strong>g> engine operates at a near-c<strong>on</strong>stant speed while the transmissi<strong>on</strong> adjusts<br />

c<strong>on</strong>tinually to produce the speed required for the wheels. CVTs have not yet achieved the<br />

power-handling capability to be used <strong>on</strong> the full range <str<strong>on</strong>g>of</str<strong>on</strong>g> LDV sizes and weights. Also, they<br />

have suffered from reliability problems. However, their use has been forecast to increase in the<br />

years ahead.<br />

29 A bar is a unit <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure. It is equivalent to 14.5 pounds per square inch (psi). Atmospheric pressure is 14.7 psi.<br />

So 350–700 bar would be approximately equal to 350–700 times atmospheric pressure, or approximately 5,000–<br />

10,000 psi.


184 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Technologies to Reduce Vehicle Weight <str<strong>on</strong>g>The</str<strong>on</strong>g> lighter a vehicle, the less fuel it c<strong>on</strong>sumes. Vehicle<br />

mass can be reduced either by decreasing the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle or by changing the materials<br />

from which it is made. Lighter cars can be propelled by lighter engines. A light power train, in<br />

turn, requires less structural support and allows further reducti<strong>on</strong>s in the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle<br />

frame, suspensi<strong>on</strong>, and brakes.<br />

Steel is currently the main automotive material. Over the past decade, steel made up an<br />

average <str<strong>on</strong>g>of</str<strong>on</strong>g> 55 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> a fully fuelled car without cargo or passengers. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the remaining weight is accounted for by ir<strong>on</strong> (10 percent), aluminum (6–10 percent), and<br />

plastics. Cost and the eventual need for large investments to modify the vehicle producti<strong>on</strong><br />

process are the main barriers to the increased use <str<strong>on</strong>g>of</str<strong>on</strong>g> lightweight materials. High-strength steel<br />

can cost as much as 50 percent more than traditi<strong>on</strong>al steels, but less <str<strong>on</strong>g>of</str<strong>on</strong>g> the material is needed to<br />

achieve the same performance. 30 Lighter materials such as aluminum and magnesium cost more<br />

than c<strong>on</strong>venti<strong>on</strong>al mild steel, but their greater use could lead to improved manufacturing<br />

processes, thereby reducing manufacturing costs. Composite materials have extremely attractive<br />

properties, but cost a great deal more than metals.<br />

Another source <str<strong>on</strong>g>of</str<strong>on</strong>g> weight reducti<strong>on</strong> is the replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical or hydraulic<br />

systems by electrical or electr<strong>on</strong>ic systems. Steering can be accomplished by electric motors<br />

actuated by joysticks rather than by mechanical linkages between the steering wheel and the<br />

wheels <str<strong>on</strong>g>of</str<strong>on</strong>g> the car. This is known as “steering by wire.” “Braking by wire” also has been<br />

developed, as has “shifting by wire” and “throttle by wire.”<br />

Lightweight technologies are being introduced progressively and will c<strong>on</strong>tinue to be part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>going developments.<br />

Tire Technologies <str<strong>on</strong>g>The</str<strong>on</strong>g> energy requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> the power train can be reduced through the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy-efficient tires. For an LDV, fuel c<strong>on</strong>sumpti<strong>on</strong> can be reduced by 3–4 percent through the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> currently available low-rolling-resistance tires. An additi<strong>on</strong>al reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1–2 percent in<br />

fuel c<strong>on</strong>sumpti<strong>on</strong> can be achieved by accurately m<strong>on</strong>itoring tire pressure. Currently available<br />

technologies can automatically sense low pressure and inform the driver.<br />

Technologies to Improve Vehicle Aerodynamics—Aerodynamic drag, which is proporti<strong>on</strong>al to<br />

the square <str<strong>on</strong>g>of</str<strong>on</strong>g> a vehicle’s speed, is the main factor determining a vehicle’s need for power at high<br />

speeds. At this time, aerodynamic issues affect most seriously l<strong>on</strong>g-haulage heavy-duty trucks<br />

and intercity buses, and significant improvements are possible for such vehicles. At highway<br />

speeds, aerodynamic losses are estimated to account for 21 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy use <str<strong>on</strong>g>of</str<strong>on</strong>g> a heavyduty<br />

truck–trailer combinati<strong>on</strong> unit.<br />

Technologies To Reduce the Energy Requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> Onboard Equipment <str<strong>on</strong>g>The</str<strong>on</strong>g> energy<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air c<strong>on</strong>diti<strong>on</strong>ers and other <strong>on</strong>-board appliances can account for up to half <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

vehicle’s fuel c<strong>on</strong>sumpti<strong>on</strong> under certain c<strong>on</strong>diti<strong>on</strong>s. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> efforts are under way to<br />

reduce the energy used by these devices. A particular focus has been <strong>on</strong> reducing the energy<br />

required to operate a vehicle’s air c<strong>on</strong>diti<strong>on</strong>ing system. Installati<strong>on</strong> rates for air c<strong>on</strong>diti<strong>on</strong>ers,<br />

30 <str<strong>on</strong>g>The</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> steel used in vehicles has been changing. In 1977, 60 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the average U.S.<br />

domestic car c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> steel, 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> which was c<strong>on</strong>venti<strong>on</strong>al steel—including cold-rolled and precoated<br />

steel. By 2003, the total steel share had fallen to 54 percent, with <strong>on</strong>ly 75 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> that total c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>venti<strong>on</strong>al steel. During both years, the remainder is accounted for by high-strength steel, stainless steel, and<br />

other steels.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 185<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

already approaching 100 percent in both North America and the OECD Pacific regi<strong>on</strong>, are<br />

growing rapidly in Europe. Fewer than 15 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> LDVs sold in France in 1995 were<br />

equipped with air c<strong>on</strong>diti<strong>on</strong>ing. By 2000, that rate had risen to 60 percent, and it is expected to<br />

reach nearly 100 percent by 2010.<br />

A significant barrier to greater market penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy-efficient <strong>on</strong>-board<br />

comp<strong>on</strong>ents is the fact that the energy c<strong>on</strong>sumed by these appliances is not always captured in<br />

current vehicle tests. 31 This reduces the incentive for manufacturers to use such devices. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

public is largely unaware <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuel use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>-board appliances and the cost entailed: 1 kW hour<br />

(kWh) <str<strong>on</strong>g>of</str<strong>on</strong>g> electricity generated <strong>on</strong> board costs just slightly less than 1 liter <str<strong>on</strong>g>of</str<strong>on</strong>g> gasoline, exceeding<br />

by far the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> electricity generated in central power plants.<br />

Technologies with the <str<strong>on</strong>g>Potential</str<strong>on</strong>g> to Reduce Fuel C<strong>on</strong>sumpti<strong>on</strong> by N<strong>on</strong>road Vehicles While LDVs<br />

are, in the aggregate, the largest c<strong>on</strong>sumers <str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuel and emitters <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG, vehicles such<br />

as medium and heavy trucks, commercial aircraft, locomotives, and large waterborne vessels<br />

actually use much more energy per vehicle each year. In 2003, the average U.S. passenger car<br />

traveled about 12,000 miles and used about 550 gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel. <str<strong>on</strong>g>The</str<strong>on</strong>g> average combinati<strong>on</strong> truck<br />

(i.e., a tractor unit with <strong>on</strong>e or more trailers) traveled about 62,000 miles and used about 12,000<br />

gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel. <str<strong>on</strong>g>The</str<strong>on</strong>g> average commercial aircraft traveled about 900,000 miles and used about<br />

2.3 milli<strong>on</strong> gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel. 32 This appendix has already described technologies applicable to<br />

medium and heavy freight trucks and to buses. <str<strong>on</strong>g>The</str<strong>on</strong>g> discussi<strong>on</strong> now turns to vehicles that do not<br />

travel <strong>on</strong> roads—aircraft, waterborne vessels, and railroad locomotives.<br />

Aircraft Commercial aircraft account for 12 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> transport energy use worldwide and<br />

8 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> that in the United States. Since the 1960s, turbine engines fueled by a light<br />

petroleum product known as jet fuel have powered virtually all new commercial aircraft. While<br />

the combusti<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> these turbine engines is quite efficient, the energy required to lift an<br />

aircraft and its payload <str<strong>on</strong>g>of</str<strong>on</strong>g>f the ground and propel it l<strong>on</strong>g distances at high speeds is formidable.<br />

In fact, a large share <str<strong>on</strong>g>of</str<strong>on</strong>g> the payload transported by any aircraft is its own fuel. Not surprisingly,<br />

fuel usage and fuel costs are therefore an extremely important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total operating<br />

cost <str<strong>on</strong>g>of</str<strong>on</strong>g> an air transport system, comparable in magnitude to crew costs, and ownership and<br />

investment costs.<br />

In a review <str<strong>on</strong>g>of</str<strong>on</strong>g> historical and projected future trends in aircraft energy use, Lee and<br />

colleagues analyze the relative c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different technological improvements and<br />

operati<strong>on</strong>al factors to reducing the energy intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial aircraft during the period<br />

1971–1998 (Lee et al. 2001). As measured by megajoules per revenue passenger kilometer<br />

(mj/rpk), this energy intensity has declined by more than 60 percent—an average decline <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

about 3.3 percent a year.<br />

Three technological factors—reduced specific fuel c<strong>on</strong>sumpti<strong>on</strong>, an increase in<br />

aerodynamic efficiency, and improved structural efficiency—have been resp<strong>on</strong>sible for much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this decline. Engine efficiency improved by about 40 percent between 1959 and 1995, with most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the improvement being achieved before 1970 with the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high-bypass engines.<br />

Other factors include higher peak temperatures within the engine, increased pressure ratios, and<br />

31 We understand that this is not the case for the United States.<br />

32 <str<strong>on</strong>g>The</str<strong>on</strong>g>se data were calculated from data provided in the Transportati<strong>on</strong> Energy Data Book (Davis and Diegel 2006)<br />

and Nati<strong>on</strong>al Transportati<strong>on</strong> Statistics 2004 (BTS 2005).


186 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

improved engine comp<strong>on</strong>ent efficiencies. Aerodynamic efficiency has increased by<br />

approximately 15 percent historically, driven by better wing design and improved propulsi<strong>on</strong>–<br />

airframe integrati<strong>on</strong>. Improvements in structural efficiency have c<strong>on</strong>tributed less, despite some<br />

improvements in the materials used to c<strong>on</strong>struct aircraft. As has also been true for motor<br />

vehicles, reducti<strong>on</strong>s in aircraft weight produced by these improved materials have largely been<br />

traded <str<strong>on</strong>g>of</str<strong>on</strong>g>f for other technological improvements and passenger comfort.<br />

Lee et al. (2001) project that over the next several decades, the energy intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

commercial aircraft will c<strong>on</strong>tinue to decline, but at a slower rate—1.2–2.2 percent per year,<br />

compared with the 3.3 percent average annual decline experienced over the past several decades.<br />

Waterborne Vessels Waterborne transport, including oceans shipping, coastal shipping, and<br />

inland waterway transport, accounts for 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> transport energy use worldwide and for<br />

4 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. transport energy use. (<str<strong>on</strong>g>The</str<strong>on</strong>g> U.S. figure includes recreati<strong>on</strong>al uses; the world<br />

figure does not.)<br />

Almost all commercial vessels are powered by diesel engines. <str<strong>on</strong>g>The</str<strong>on</strong>g> engines used in large<br />

ocean-going ships are the largest ever built. <str<strong>on</strong>g>The</str<strong>on</strong>g>se giant diesels can have up to 14 cylinders,<br />

each with a bore <str<strong>on</strong>g>of</str<strong>on</strong>g> 980 mm and a stroke <str<strong>on</strong>g>of</str<strong>on</strong>g> 2660 mm, giving the engine a displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> nearly<br />

1,000 liters. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these very large engines are classified as “slow speed.” That is, they<br />

operate at about 100 revoluti<strong>on</strong>s per minute (rpm) and are coupled directly to the ship’s<br />

propeller, eliminating the need for reducti<strong>on</strong> gears.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> diesel engines powering towboats or self-propelled barges <strong>on</strong> inland waterways are<br />

much smaller—about the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a large diesel-electric locomotive, though there may be more<br />

than <strong>on</strong>e such engine. Large towboats <strong>on</strong> U.S. inland waterways are rated at over 10,500<br />

horsepower. Fuels used by waterborne transport vehicles are “heavy” grades <str<strong>on</strong>g>of</str<strong>on</strong>g> diesel fuel and<br />

an even “heavier” petroleum product known as “residual fuel oil.” Typically, these fuels are<br />

higher (<str<strong>on</strong>g>of</str<strong>on</strong>g>ten much higher) in sulfur relative to other transport fuels.<br />

A report to the Internati<strong>on</strong>al Maritime Organizati<strong>on</strong> published in March 2000 details the<br />

energy use and emissi<strong>on</strong>s characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean-going vessels as <str<strong>on</strong>g>of</str<strong>on</strong>g> 1996 (IMO 2000). Table<br />

B-9 shows the emissi<strong>on</strong>s estimated to result from the 138 milli<strong>on</strong> t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> distillate and residual<br />

fuel c<strong>on</strong>sumed during that year by these ships. <str<strong>on</strong>g>The</str<strong>on</strong>g> same report identifies and evaluates the<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> technical and operati<strong>on</strong>al measures that could be applied to new and existing<br />

ships to reduce energy use and CO2 emissi<strong>on</strong>s. Table B-10 summarizes the report’s findings<br />

c<strong>on</strong>cerning technical measures that might be applied.<br />

Railroad Engines 33 Railroad engines account for 3 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> transport energy use worldwide<br />

and for 2 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> transport energy use in the United States. Most railroad engines use<br />

electricity generated externally or diesel fuel carried <strong>on</strong> board as their primary energy source.<br />

For the world as a whole, 27 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> energy used by railroads is externally generated<br />

electricity, 59 percent is diesel, and 12 percent is coal (virtually all in China). Countries vary<br />

widely in the extent to which their railroads rely <strong>on</strong> electric power. Railroads in Canada and the<br />

United States are almost totally diesel powered. In Japan, 78 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail energy used is<br />

electrical, and in Europe, 61 percent. 34<br />

33 <str<strong>on</strong>g>The</str<strong>on</strong>g> Internati<strong>on</strong>al Uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Railways c<strong>on</strong>ducted a project, Energy Efficiency Technology for Railways, in which a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> technologies relating to railway energy efficiency including, but not limited to, engine technologies were<br />

evaluated. <str<strong>on</strong>g>The</str<strong>on</strong>g> project can be accessed at http://www.railway-energy.org/tfee/index.php.<br />

34 <str<strong>on</strong>g>The</str<strong>on</strong>g> statistics in this paragraph were calculated from 2003 data provided by the IEA.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 187<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

TABLE B-9 Marine Emissi<strong>on</strong>s, 1996<br />

Gas Comp<strong>on</strong>ent Range <str<strong>on</strong>g>of</str<strong>on</strong>g> Estimated Emissi<strong>on</strong>s (Mt)<br />

Carb<strong>on</strong> m<strong>on</strong>oxide 0.7–1.1<br />

N<strong>on</strong>-methane volatile organic compounds —<br />

Methane —<br />

Nitrous oxide —<br />

Carb<strong>on</strong> dioxide 436–438<br />

Sulfur dioxide Residual 5.0–7.0<br />

Distillate 0.2–0.8<br />

Total 5.2–7.8<br />

Nitrogen oxides 10.1–11.4<br />

Source: IMO 2000, p. 11. (Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the IMO.)<br />

TABLE B-10 Marine CO2 Reducti<strong>on</strong>s by Technical Measures<br />

Fuel/CO2 Savings<br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

Measures<br />

(%)<br />

New Ships<br />

Optimized hull shape 5–20<br />

Choice <str<strong>on</strong>g>of</str<strong>on</strong>g> propeller 5–10<br />

Efficiency optimized 10–12 b<br />

2–5 c<br />

Fuel (HFO to MDO) 4–5<br />

Plant C<strong>on</strong>cepts 4–6<br />

Fuel (HFO to MDO) 4–5<br />

Subtotal a<br />

(%)<br />

5–30<br />

14–17 b<br />

6–10 c<br />

8–11<br />

Machinery M<strong>on</strong>itoring<br />

Existing Ships<br />

0.5–1 0.5–1<br />

Optimal hull maintenance<br />

Propeller maintenance<br />

3–5<br />

1–3<br />

4–8<br />

Fuel injecti<strong>on</strong> 1–2<br />

Fuel (HFO to MDO) 4–5<br />

Efficiency rating 3–5<br />

Fuel (HFO to MDO) 4–5<br />

Efficiency Rating + TC upgrade 5–7<br />

Fuel (HFO to MDO) 4–5<br />

5–7<br />

7–10<br />

9–12<br />

Total a<br />

(%)<br />

Note: HFO = heavy fuel oil; MDO = marine diesel oil; TC = turbo charging.<br />

a <str<strong>on</strong>g>Potential</str<strong>on</strong>g> for reducti<strong>on</strong> from individual measures is documented by different sources; potential for<br />

combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> measures is based <strong>on</strong> estimates <strong>on</strong>ly.<br />

b State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art technique in new medium-speed engines running <strong>on</strong> HFO.<br />

c Slow-speed engines when trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f with NOx is acceptable.<br />

Source: IMO 2000, p. 14. (Reprinted with permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the IMO.)<br />

5–30<br />

4–20


188 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Recent years have seen major improvements in the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> electric locomotives,<br />

brought about by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> AC power. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> diesel-powered locomotives, propulsi<strong>on</strong><br />

system developments have focused primarily <strong>on</strong> improving the power, reliability, and efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the diesel engines used to generate <strong>on</strong>-board electric energy, as well as the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric tracti<strong>on</strong> engines that deliver this energy to the driving wheels. In additi<strong>on</strong>, diesel<br />

locomotives have become subject to emissi<strong>on</strong>s standards and, in some places, to noise standards.<br />

Interest is growing in the use <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel cells to provide auxiliary power for diesel<br />

locomotives. This would permit the main diesel engine to be shut down when the locomotive is<br />

not in use but still has power needs. Idle time c<strong>on</strong>stitutes a surprisingly large share <str<strong>on</strong>g>of</str<strong>on</strong>g> the total<br />

time a diesel engine is in operati<strong>on</strong>. A recent study <str<strong>on</strong>g>of</str<strong>on</strong>g> locomotive duty cycles <strong>on</strong> Canadian<br />

railroads found that engines were idling between 54–83 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the time. Using either fuel<br />

cells as auxiliary power units or the “hybrid” approach described above would permit engines to<br />

reduce the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> idle time substantially. Although fuel use and emissi<strong>on</strong>s are much greater<br />

when a locomotive is operating at full power than when it is idling, the potential improvements<br />

in both are n<strong>on</strong>trivial.<br />

Factors Influencing the Extent to Which the <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Technology to Reduce Transport-<br />

Related Greenhouse Gas Emissi<strong>on</strong>s is Realized<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most c<strong>on</strong>troversial issues in the debate over the use <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies to reduce<br />

GHG emissi<strong>on</strong>s is how effective these technologies will be when incorporated into actual<br />

transport vehicles in normal service. Invariably, ex post analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> actual emissi<strong>on</strong>s reducti<strong>on</strong>s<br />

fall short (sometimes c<strong>on</strong>siderably short) <str<strong>on</strong>g>of</str<strong>on</strong>g> their original claimed potential. <str<strong>on</strong>g>The</str<strong>on</strong>g> discussi<strong>on</strong><br />

below reviews some <str<strong>on</strong>g>of</str<strong>on</strong>g> the more important factors that tend to create this result.<br />

Extent to Which a Technology’s <str<strong>on</strong>g>Potential</str<strong>on</strong>g> to Reduce Energy C<strong>on</strong>sumpti<strong>on</strong> is Incorporated<br />

into the Vehicles in Which it is Employed Most vehicle technologies with the potential to<br />

reduce fuel c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fer vehicle designers a range <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities for how they may be<br />

used. Depending <strong>on</strong> the decisi<strong>on</strong>s made by the designer, the share <str<strong>on</strong>g>of</str<strong>on</strong>g> this potential that is<br />

actually used to reduce fuel c<strong>on</strong>sumpti<strong>on</strong> can vary from zero to 100 percent.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> history <str<strong>on</strong>g>of</str<strong>on</strong>g> LDV fuel ec<strong>on</strong>omy in the United States since the mid-1980s provides a<br />

textbook example. <str<strong>on</strong>g>The</str<strong>on</strong>g> bottom line in Figure B-7 shows the corporate average fuel ec<strong>on</strong>omy<br />

(CAFE) <str<strong>on</strong>g>of</str<strong>on</strong>g> the new light vehicle fleet as tested by EPA. New LDV CAFE rose sharply between<br />

1979 and 1982, increased slowly from 1983 through 1987, declined slowly from 1987 through<br />

1994, and has remained nearly c<strong>on</strong>stant since.<br />

This does not mean that vehicle technologies related to fuel c<strong>on</strong>sumpti<strong>on</strong> have failed to<br />

improve since the mid-1980s. EPA uses a measure known as t<strong>on</strong>-miles per gall<strong>on</strong> as an<br />

(imperfect) reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in the energy efficiency potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the technologies actually<br />

incorporated into vehicles. <str<strong>on</strong>g>The</str<strong>on</strong>g> top line <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure B-7 tracks this indicator. It has grown<br />

relatively steadily at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1–2 percent per year throughout the period, reflecting the<br />

new technologies that have been introduced and disseminated throughout the new vehicle fleet.<br />

What explains the sharp c<strong>on</strong>trast between the two lines in Figure B-7? <str<strong>on</strong>g>The</str<strong>on</strong>g> brief answer<br />

is that for much <str<strong>on</strong>g>of</str<strong>on</strong>g> the period, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuel ec<strong>on</strong>omy improvement potential has been used by<br />

vehicle designers to improve vehicle performance, not fuel ec<strong>on</strong>omy. Figures B-8a and B-8b<br />

show the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> passenger car (B-8a) and light truck (B-8b) accelerati<strong>on</strong> performance<br />

(measured as 0–60 mph time) between 1975 and 2006. Figures B-9a and B-9b show similar data


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 189<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

MPG or T<strong>on</strong>-MPG<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005<br />

Model Year<br />

Combined Fleet LDV CAFE (as tested) Combined Fleet T<strong>on</strong>-MPG<br />

FIGURE B-7 U.S. Light-duty vehicle Corporate Average Fuel Ec<strong>on</strong>omy (CAFE) and<br />

technology capability. (Note: MPG = miles per gall<strong>on</strong>. Source: Heavenrich 2005, Table 1, p. 10.)<br />

for the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle inertia weight. 35 <str<strong>on</strong>g>The</str<strong>on</strong>g> sharp decline in inertia weight, rather than any<br />

radical change in vehicle technology, largely explains the dramatic improvement in new vehicle<br />

fleet fuel ec<strong>on</strong>omy that occurred during between the late-1970s and the early 1980s. By the mid-<br />

1980s, as new energy-saving technologies began to be introduced in a major way into LDVs,<br />

average vehicle weight began to increase, and accelerati<strong>on</strong> performance, which had remained<br />

relatively c<strong>on</strong>stant (or even deteriorated somewhat) between 1975 and 1980 began to improve.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> increase in average weight resulted from two interrelated factors. First, the average<br />

inertia weight within each vehicle size class grew. Sec<strong>on</strong>d, larger size classes made up a greater<br />

share <str<strong>on</strong>g>of</str<strong>on</strong>g> the total vehicle market. In particular, a greater share <str<strong>on</strong>g>of</str<strong>on</strong>g> the new LDV fleet began to be<br />

accounted for by light trucks, especially vans and SUVs (see Figure B-10). By 2006, the weight<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the average LDV had exceeded its 1975 level. <str<strong>on</strong>g>The</str<strong>on</strong>g> accelerati<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> both fleets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vehicles had improved dramatically.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> 2005 editi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the EPA report just referenced (Heavenrich 2005) estimates the<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle weight and vehicle performance <strong>on</strong> the “laboratory” (or “as tested”) fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new U.S. passenger cars, light trucks, and all LDVs. Table B-11, adapted from<br />

this report, shows these results. <str<strong>on</strong>g>The</str<strong>on</strong>g> top line <str<strong>on</strong>g>of</str<strong>on</strong>g> the table shows the actual “laboratory” (or “as<br />

tested”) “combined” fuel ec<strong>on</strong>omy (mpg) for new model year 2005 cars, trucks, and the total<br />

LDV fleet. <str<strong>on</strong>g>The</str<strong>on</strong>g> next two rows show estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> what the 2004 fuel ec<strong>on</strong>omy would have been<br />

35 Inertia weight is defined as the curb weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle (including fuel) plus 300 pounds.


190 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Combined City/Highway MPG (as tested)<br />

25<br />

20<br />

15<br />

Combined City/Highway MPG (as tested)<br />

30<br />

25<br />

20<br />

2005<br />

2000<br />

1995<br />

1975<br />

15<br />

9 10 11 12 13 14 15<br />

1990<br />

0–60 Time (sec)<br />

FIGURE B-8a Car 55/45 laboratory MPG versus 0–60 time by model year.<br />

(Source: Heavenrich 2006, Figure 6, p.16.)<br />

2005<br />

2000<br />

1995<br />

10<br />

9 10 11 12 13 14 15<br />

0–60 Time (sec)<br />

FIGURE B-8b Truck 55/45 laboratory MPG versus 0–60 time by model year.<br />

(Source: Heavenrich 2006, Figure 7, p. 16.)<br />

1990<br />

1975<br />

1985<br />

1985<br />

1980<br />

1980


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 191<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

Combined City/Highway MPG (as tested<br />

Combined City/Highway MPG (as tested)<br />

29<br />

27<br />

25<br />

23<br />

21<br />

19<br />

17<br />

1985<br />

1980<br />

1990<br />

1995<br />

2000<br />

2005<br />

1975<br />

15<br />

3000 3200 3400 3600 3800 4000 4200<br />

Inertia Weight (pounds)<br />

FIGURE B-9a Car 55/45 laboratory MPG versus inertia weight by model year.<br />

(Source: Heavenrich 2006, Figure 8, p. 17.)<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

1985<br />

1980<br />

1990<br />

1975<br />

1995<br />

3500 3700 3900 4100 4300 4500 4700 4900<br />

Inertia Weight (pounds)<br />

FIGURE B-9b Truck 55/45 laboratory MPG versus inertia weight by model year.<br />

(Source: Heavenrich 2006, Figure 9, p. 17.)<br />

2000<br />

2005


192 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Sales Fracti<strong>on</strong> (%)<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

1975 1980 1985 1990 1995 2000 2005<br />

Model Year<br />

FIGURE B-10 Sales fracti<strong>on</strong> by vehicle type (3-year moving average).<br />

(Source: Heavenrich 2006, Figure 10, p. 18.)<br />

TABLE B-11 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Performance, Size, and Weight Distributi<strong>on</strong> <strong>on</strong><br />

Laboratory 55/45 Fuel Ec<strong>on</strong>omy<br />

Laboratory<br />

55/45 Fuel Ec<strong>on</strong>omy<br />

Percent <str<strong>on</strong>g>Change</str<strong>on</strong>g> from<br />

2005 Actual Averages<br />

Scenario Cars Trucks Both Cars Trucks Both<br />

2005 actual average 28.8 21.3 24.5<br />

Model year 2005 averages<br />

recalculated using 1981:<br />

Weight distributi<strong>on</strong> 31.9 30.2 31.0 10.8% 41.8% 26.6%<br />

Size distributi<strong>on</strong> 28.4 21.2 24.3 -1.4% -0.5% -0.9%<br />

0–60 distributi<strong>on</strong> 29.8 20.9 24.6 3.5% -1.9% 0.3%<br />

Weight and 0–60 36.4 28.5 32.0 26.4% 33.8% 30.5%<br />

Size and 0–60 37.1 25.0 29.9 28.8% 17.4% 22.0%<br />

Ref. 1981 actual average 25.1 20.1 24.6 -12.8% -5.6% 0.4%<br />

Source: Adapted from Heavenrich 2005, Table 24, p.72.<br />

SUV<br />

Car<br />

Wag<strong>on</strong><br />

Van<br />

Pickup


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 193<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

had the inertia weight and 0–60 accelerati<strong>on</strong> time been what they were in 1981 and 1987. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

final two rows show similar results for size (interior volume) and 0–60 accelerati<strong>on</strong> time. In all<br />

cases, the model year 2004 fleet would have exhibited improved fuel ec<strong>on</strong>omy performance,<br />

with the increase in some cases being as high as 30 percent.<br />

Automobile manufacturers assert that these developments merely reflected changes in<br />

c<strong>on</strong>sumer tastes as fuel prices fell sharply in the mid-1980s and remained low in inflati<strong>on</strong>adjusted<br />

terms thereafter (until recently). Envir<strong>on</strong>mentalists assert that the path <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel ec<strong>on</strong>omy<br />

improvements over time reflects the failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. government to increase its vehicle energy<br />

efficiency standards <strong>on</strong>ce they reached their peak in the mid-1980s. Whatever the reas<strong>on</strong>,<br />

technological improvements have not automatically translated into improved fuel ec<strong>on</strong>omy over<br />

much <str<strong>on</strong>g>of</str<strong>on</strong>g> the period shown.<br />

Length <str<strong>on</strong>g>of</str<strong>on</strong>g> Time Required between the First Commercial Use <str<strong>on</strong>g>of</str<strong>on</strong>g> a Technology and When Its<br />

Impact <strong>on</strong> Fuel C<strong>on</strong>sumpti<strong>on</strong> is Felt throughout the Entire Vehicle Fleet New technologies<br />

are not introduced across a manufacturer’s entire fleet at <strong>on</strong>e time. EPA has collected data<br />

showing the length <str<strong>on</strong>g>of</str<strong>on</strong>g> time required to achieve various rates <str<strong>on</strong>g>of</str<strong>on</strong>g> fleet penetrati<strong>on</strong> for successful<br />

new LDV technologies in the United States (Heavenrich 2006, 62). Fifty percent penetrati<strong>on</strong><br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 years are not unusual, and 75 percent penetrati<strong>on</strong> rates can easily take 20 years to<br />

achieve.<br />

Transport vehicles tend to last a l<strong>on</strong>g time. Half the cars built during the 1990 model<br />

year were still <strong>on</strong> the road when the 2007 model year vehicles were first introduced. Heavy<br />

trucks last even l<strong>on</strong>ger. Based <strong>on</strong> “minimal preliminary data,” the expected median lifetime for a<br />

model year 1990 heavy truck is 29 years (Davis and Diegel 2006, Tables 3-8 and 3-10).<br />

Commercial aircraft are also very l<strong>on</strong>g-lived. DC-3 aircraft built 50 years or more ago<br />

are still in commercial service in parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world. Boeing estimates that 8,800 <str<strong>on</strong>g>of</str<strong>on</strong>g> the world’s<br />

fleet <str<strong>on</strong>g>of</str<strong>on</strong>g> 17,000 commercial aircraft that were operating in 2005 will still be operating in 2025<br />

(Boeing Company 2006, 6).<br />

Table B-12 shows estimates made by MIT’s Laboratory for Energy and the Envir<strong>on</strong>ment<br />

as to how l<strong>on</strong>g it might take for various new LDV technologies to have a significant impact <strong>on</strong><br />

energy use and GHG emissi<strong>on</strong>s.<br />

TABLE B-12 Timescales for New Light-Duty Vehicle Powertrain Technologies<br />

Implementati<strong>on</strong> Phase<br />

Market<br />

Penetrati<strong>on</strong> across<br />

New Vehicle<br />

Vehicle Technology Competitive Producti<strong>on</strong> a<br />

Major Fleet<br />

Penetrati<strong>on</strong> b<br />

Total Time<br />

for Impact<br />

Turbocharged gasoline<br />

engine<br />

5 years 10 years 10 years 20 years<br />

Low-emissi<strong>on</strong>s diesel 5 years 15 years 10–15 years 30 years<br />

Gasoline hybrid 5 years 20 years 10–15 years 35 years<br />

Hydrogen fuel cell hybrid 15 years 25 years 20 years 55 years<br />

a<br />

Accounts for more than <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> new vehicle producti<strong>on</strong>.<br />

b<br />

Accounts for more than <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> all mileage driven.<br />

Source: Heywood 2006, p.62, from Fueling Our Transportati<strong>on</strong> by John Heywood. Copyright © 2006 by<br />

Scientific American, Inc. Reprinted with permissi<strong>on</strong>. All rights reserved.


194 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

How Motorists Actually Operate <str<strong>on</strong>g>The</str<strong>on</strong>g>ir Vehicles <str<strong>on</strong>g>The</str<strong>on</strong>g> way vehicles are operated has a<br />

significant influence <strong>on</strong> fuel c<strong>on</strong>sumpti<strong>on</strong>. Governments test the fuel c<strong>on</strong>sumpti<strong>on</strong> performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> LDVs <strong>on</strong> dynamometers that are programmed to follow a set sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>s<br />

(accelerating, stopping, operating at high speed, operating at low speed, etc.) for specific<br />

intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> time. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir ratings <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicles’ fuel c<strong>on</strong>sumpti<strong>on</strong> are based <strong>on</strong> these tests. However,<br />

vehicle operators typically do not operate their vehicles as implied by these test procedures.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y accelerate more rapidly, drive faster, and so <strong>on</strong>. This produces a significant gap between<br />

“as tested” and “in-use” fuel c<strong>on</strong>sumpti<strong>on</strong>. For reporting purposes (but not for regulatory<br />

compliance purposes), EPA currently adjusts “as tested” mpg downward by 15 percent to make<br />

it more comparable to the fuel ec<strong>on</strong>omy vehicle users are likely to experience in practice.<br />

However, the agency believes that this adjustment factor, which is about two decades old, is<br />

outdated, and proposes increasing it to approximately 22 percent. According to EPA, adopti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this new adjustment factor would result in the 2006 U.S. new vehicle fleet’s adjusted fuel<br />

ec<strong>on</strong>omy being reduced from its “as tested” level <str<strong>on</strong>g>of</str<strong>on</strong>g> 24.6 mpg (9.6 l/100km) to 19.1 mpg (12.3<br />

l/100 km). Using the current 15 percent adjustment factor, the adjusted fuel ec<strong>on</strong>omy for the<br />

2006 U.S. new vehicle fleet is 21.0 mpg (11.2 l/100 km) (Heavenrich 2006, A.10–A.14).<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Vehicle Capacity Utilizati<strong>on</strong> (i.e., Load Factor) <strong>on</strong> Energy Use<br />

In the analysis thus far, reducti<strong>on</strong>s in energy use per vehicle-kilometer have been treated as<br />

producing corresp<strong>on</strong>ding reducti<strong>on</strong>s in energy use per passenger-kilometer or t<strong>on</strong>ne-kilometer.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> latter two measures, not the former, represent the fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> transport demand.<br />

Increasing a vehicle’s average load <str<strong>on</strong>g>of</str<strong>on</strong>g> passengers or freight, while increasing energy use<br />

somewhat, normally leads to a reducti<strong>on</strong> in the energy required to produce a given volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transport services. Fitting vehicle size to demand is an important c<strong>on</strong>siderati<strong>on</strong> in minimizing<br />

transport energy use.<br />

Different transport modes have experienced varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> success in improving the<br />

capacity utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their vehicles. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. commercial aviati<strong>on</strong>, the increase in<br />

average load factor from about 55 percent in 1975 to the 80+ percent levels being experienced<br />

today is resp<strong>on</strong>sible for a major share <str<strong>on</strong>g>of</str<strong>on</strong>g> the industry’s energy efficiency improvement per<br />

passenger-kilometer. <str<strong>on</strong>g>The</str<strong>on</strong>g> average load factor <str<strong>on</strong>g>of</str<strong>on</strong>g> freight trucks has also increased. However,<br />

U.S. LDV load factors have shown the opposite trend. Between 1977 and 2001, the average<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> occupants per vehicle declined from 1.9 to 1.6 passengers, or by 14 percent (Hu and<br />

Reuscher 2004, Table 16, p. 31). This helps explain why the number <str<strong>on</strong>g>of</str<strong>on</strong>g> btu’s required to propel<br />

the average U.S. passenger car 1 mile fell from 9,250 in 1970 to 5,572 in 2003 (i.e., by<br />

40 percent), while the number <str<strong>on</strong>g>of</str<strong>on</strong>g> btu’s required to move <strong>on</strong>e passenger 1 mile fell <strong>on</strong>ly from<br />

4,868 to 3,549 (i.e., by 27 percent) over the same period (Davis and Diegel 2006, Table 2-11, p.<br />

2-13).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> a vehicle’s available capacity that can be used is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

complex trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between cost and c<strong>on</strong>venience. No form <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial transport can operate<br />

at 100 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> capacity all the time. But as operating costs increase, people are willing to<br />

sacrifice c<strong>on</strong>venience to reduce cost, and load factors rise. Public transport systems are<br />

especially sensitive to this trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f. As noted above, low residential densities and the decline <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CBDs as the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> most jobs have reduced the number <str<strong>on</strong>g>of</str<strong>on</strong>g> people wishing to travel from <strong>on</strong>e<br />

given point to another, especially during rush hours. Maintaining a level <str<strong>on</strong>g>of</str<strong>on</strong>g> service frequency


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 195<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

and service coverage necessary to make public transport services attractive has collided with the<br />

need to use larger vehicles to reduce per-seat labor, energy, and capital costs.<br />

Vehicle Fuel C<strong>on</strong>sumpti<strong>on</strong>: Summary<br />

New technologies have the potential to reduce substantially the energy used by transport<br />

vehicles. <str<strong>on</strong>g>The</str<strong>on</strong>g> time required to develop, commercialize, and disseminate new vehicle<br />

technologies probably is shorter than the time required to alter the fundamental drivers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pers<strong>on</strong>al and goods transport demand, but it is still measured in decades. In additi<strong>on</strong>, there is the<br />

problem <str<strong>on</strong>g>of</str<strong>on</strong>g> ensuring that the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies to reduce energy c<strong>on</strong>sumpti<strong>on</strong> in<br />

transport is actually realized. As the example <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. LDVs after the mid-1980s shows, there is<br />

no guarantee that this will occur. Fuel c<strong>on</strong>sumpti<strong>on</strong> is but <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> many attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle<br />

performance. Unless c<strong>on</strong>diti<strong>on</strong>s are right (or can be made right), it is possible that some (or even<br />

all) <str<strong>on</strong>g>of</str<strong>on</strong>g> this potential will end up improving these other performance attributes rather than<br />

reducing vehicle fuel c<strong>on</strong>sumpti<strong>on</strong>.<br />

Altering the Greenhouse Gas Emissi<strong>on</strong>s Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Transport Fuel (F)<br />

Gaseous and liquid transport fuels can be produced from a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> primary energy sources<br />

(see Figure B-11). Depending <strong>on</strong> the feedstock used and the producti<strong>on</strong> method employed, CO2<br />

emissi<strong>on</strong>s (sometimes referred to as “well-to-tank” or WTT emissi<strong>on</strong>s) can vary widely,<br />

sometimes even being negative. As noted above, changes in the GHG emissi<strong>on</strong>s characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuels have not c<strong>on</strong>tributed much <strong>on</strong>e way or the other to changes in transport-related<br />

GHG emissi<strong>on</strong>s over the past several decades. This is due to the present overwhelming<br />

dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> petroleum-based fuels in transport and to the fact that all petroleum-based<br />

transport fuels emit approximately the same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> energy they provide (see<br />

Table B-13). In the future, however, WTT emissi<strong>on</strong>s are likely to have much greater<br />

significance in determining total transport-related GHG emissi<strong>on</strong>s.<br />

Figure B-12, from the SMP’s final report, shows estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the “well-to-tank,” “tankto-wheels”<br />

(TTW, sometimes also called “tailpipe emissi<strong>on</strong>s”), and “well-to-wheels” (WTW)<br />

emissi<strong>on</strong>s (the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> WTT and TTW emissi<strong>on</strong>s) generated by a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle/fuel<br />

combinati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> figure illustrates that for transport fuels such as hydrogen and for power train<br />

technologies such as fuel cells, the WTT porti<strong>on</strong> totally dominates total transport-related CO2<br />

emissi<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> wide range in WTT emissi<strong>on</strong>s for the various fuels illustrated in Figure B-12 results<br />

largely from three factors:<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> growing <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass used to manufacture bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (and possibly hydrogen)<br />

removes CO2 from the atmosphere. Gathering and processing the biomass into fuel takes energy<br />

and results in the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2. This <str<strong>on</strong>g>of</str<strong>on</strong>g>fsets some <str<strong>on</strong>g>of</str<strong>on</strong>g> the CO2 removed from the atmosphere<br />

by the growing <str<strong>on</strong>g>of</str<strong>on</strong>g> the biomass. But under plausible assumpti<strong>on</strong>s, net WTT CO2 emissi<strong>on</strong>s for<br />

biomass-derived fuels can still be negative.


196 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Table A.13<br />

Table A.13 -- CO2 Emissi<strong>on</strong>s per Liter (gasoline equivalent)<br />

Fuel C02 Emissi<strong>on</strong>s (Kg/liter) Index (gasoline = 100)<br />

Gasoline 2.416 100<br />

Diesel (distillate) 2.582 107<br />

Jet fuel 2.491 103<br />

Ethanol 2.484 103<br />

Biodiesel 2.672 111<br />

Residual fuel (bunker fuel) 2.697 112<br />

FIGURE B-11 Possible transport fuel pathways.<br />

Note: CNG = Compressed Natural Gas; DME = Di-Methyl Ether; FC = Fuel Cell; FT = Fischer–<br />

Tropsch; ICE = Internal Combusti<strong>on</strong> Engine; LPG = Liquefied Petroleum Gas.<br />

Source: World Business Council <strong>on</strong> Sustainable Development 2004, Figure 3.1, p. 67.<br />

TABLE B-13 CO2 Emissi<strong>on</strong>s per Liter (Gasoline Equivalent)<br />

Fuel CO2 Emissi<strong>on</strong>s (kg/liter) Index (gasoline = 100)<br />

Gasoline 2.416 100<br />

Diesel (distillate) 2.582 107<br />

Jet fuel 2.491 103<br />

Ethanol 2.484 103<br />

Biodiesel 2.672 111<br />

Residual fuel (bunker fuel) 2.697 112<br />

Source: Data generated from IEA/SMP Spreadsheet Model.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 197<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

Gasoline 2010 ICE<br />

Gasoline DI ICE<br />

Advanced Gasoline ICE<br />

Ethanol Sugar Beet ICE<br />

Ethanol Poplar Plantati<strong>on</strong> ICE<br />

Diesel DI ICE<br />

Advanced DI Diesel ICE<br />

RME Biodiesel DI ICE<br />

FT-Diesel remote-NG DI ICE<br />

FT-Diesel Residual Wood DI ICE<br />

CNG EU-NG-Mix ICE<br />

LH2 EU-NG-Mix ICE<br />

Gasoline DI HEV<br />

Diesel DI HEV<br />

Gasoline FC<br />

Methanol remote-NG FC<br />

CGH2 Residual Wood FC<br />

CGH2 EU-NG-Mix <strong>on</strong>site FC<br />

CGH2 EU-EI-Mix <strong>on</strong>site FC<br />

LH2 EU-NG-Mix FC<br />

a<br />

b<br />

b<br />

a<br />

b<br />

c<br />

-150.0 -100.0 -50.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0<br />

Greenhouse Gas Emissi<strong>on</strong>s (g/km)<br />

Well-to-Tank Tank-to-Wheels Well-to-Wheels<br />

FIGURE B-12 Well-to-wheels (well-to-tank + tank-to-wheels) greenhouse gas emissi<strong>on</strong>s for<br />

various fuel and propulsi<strong>on</strong> system combinati<strong>on</strong>s. (Source: World Business Council for<br />

Sutainable Development 2004,adapted from Figure 3.3, p. 77.)<br />

Note: CGH2 = gaseous hydrogen; CNG = Compressed Natural Gas; CO2 = Carb<strong>on</strong> Dioxide; DI<br />

= Direct Injecti<strong>on</strong>; EU = European Uni<strong>on</strong>; FC = Fuel Cell; FT = Fischer–Tropsch; HEV = hybrid<br />

electric vehicle; ICE = Internal Combusti<strong>on</strong> Engine; LH2 = Liquid Hydrogen; NG = Natural Gas;<br />

RME = Rapeseed Methyl Ester.<br />

a Estimated by the Institute for Internal Combusti<strong>on</strong> Engines (VKA).<br />

b Estimated by British Petroleum (BP), from General Motors (GM) data.<br />

c Net output from energy use in c<strong>on</strong>versi<strong>on</strong> process.


198 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> producti<strong>on</strong> process for some bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (e.g., ethanol from corn) generates<br />

coproducts that can displace other products that require energy to produce and whose producti<strong>on</strong><br />

emits CO2. How these “coproduct credits” are allocated has a major impact <strong>on</strong> a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uel’s costs,<br />

the energy required to produce it, and its WTT CO2 emissi<strong>on</strong>s (Farrell et al. 2006).<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport fuels from n<strong>on</strong>petroleum fossil carb<strong>on</strong> sources (e.g., coal<br />

or natural gas) generates substantial CO2 emissi<strong>on</strong>s. However, if these emissi<strong>on</strong>s can be<br />

sequestered, the WTT emissi<strong>on</strong>s from the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these fuels can be reduced to nearly<br />

zero.<br />

Analysts differ <strong>on</strong> how each these factors should be treated in “scoring” the WTT<br />

emissi<strong>on</strong>s characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> different transport fuels produced by different processes from<br />

different primary energy sources. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, any<strong>on</strong>e reviewing the literature <strong>on</strong> this topic can<br />

expect to encounter a range <str<strong>on</strong>g>of</str<strong>on</strong>g> estimates. <str<strong>on</strong>g>The</str<strong>on</strong>g> important thing now universally acknowledged is<br />

that WTT emissi<strong>on</strong>s must be incorporated into any estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> future transport-related CO2<br />

emissi<strong>on</strong>s.<br />

Fueling Infrastructure<br />

A vast supply infrastructure has developed to deliver petroleum-based transport fuels to the<br />

vehicles that utilize them. As noted earlier, motor vehicles can use some alternative fuel blends<br />

(e.g., E5 and E10) without major modificati<strong>on</strong>s either to their engines or to their fuel systems.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> same is true <str<strong>on</strong>g>of</str<strong>on</strong>g> the current fuel supply infrastructure. Today’s petroleum product pipelines<br />

routinely carry gasoline, diesel fuel, jet fuel, and propane. <str<strong>on</strong>g>The</str<strong>on</strong>g>y also can carry “mild” blends <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gasoline and bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (such as E5 and E10). But they cannot carry blends c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (such as E85) or 100 percent ethanol. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly gaseous transport fuel<br />

carried by pipeline is natural gas. Other gaseous transport fuels (in particular, hydrogen), would<br />

require dedicated pipelines.<br />

Another very important part <str<strong>on</strong>g>of</str<strong>on</strong>g> the transport fuel infrastructure is the fueling stati<strong>on</strong>s that<br />

actually deliver fuel to vehicles. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these are not directly c<strong>on</strong>nected to a pipeline. Instead,<br />

they are supplied by tank trucks that haul fuel from a distributing point (that is c<strong>on</strong>nected to a<br />

pipeline) to individual fueling stati<strong>on</strong>s.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most formidable challenges facing any new transport fuel would be the<br />

establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> an infrastructure capable <str<strong>on</strong>g>of</str<strong>on</strong>g> distributing it widely. <str<strong>on</strong>g>The</str<strong>on</strong>g> enormous fixed costs<br />

involved in establishing such an infrastructure mean it would not be established without<br />

assurance that the demand for the products it would transport would be forthcoming. Yet the<br />

vehicles that would be the source <str<strong>on</strong>g>of</str<strong>on</strong>g> this demand would not be built and purchased without<br />

assurance that fuel to power them would be available.<br />

Efforts are being made in some states to establish “hydrogen highways.” <str<strong>on</strong>g>The</str<strong>on</strong>g>se are<br />

routes al<strong>on</strong>g which enough hydrogen refueling stati<strong>on</strong>s have been established to permit drivers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydrogen-fueled vehicles to travel <strong>on</strong> them. <str<strong>on</strong>g>The</str<strong>on</strong>g>se stati<strong>on</strong>s are supplied by tanker trucks. While<br />

this could help build initial demand for hydrogen as a transport fuel, it is not a l<strong>on</strong>g-term soluti<strong>on</strong><br />

to the fuel infrastructure problem.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 199<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

HOW MUCH AND OVER WHAT TIME PERIOD MIGHT TRANSPORT-RELATED<br />

GREENHOUSE GAS EMISSIONS BE REDUCED?<br />

This appendix has described a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> technological and n<strong>on</strong>technological means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reducing transport-related GHG emissi<strong>on</strong>s. In this final secti<strong>on</strong>, the committee attempts to<br />

indicate how much transport-related GHG emissi<strong>on</strong>s might be reduced given the trends thus far<br />

described.<br />

As stated at the outset, the fundamental challenge is to reduce the emissi<strong>on</strong>s produced per<br />

unit <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> services provided more rapidly than the demand for transportati<strong>on</strong> services<br />

grows. While it may be possible to reduce the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> demand growth somewhat<br />

without harming ec<strong>on</strong>omic growth unacceptably, the committee is aware <str<strong>on</strong>g>of</str<strong>on</strong>g> no forecast that<br />

projects that transportati<strong>on</strong> demand will fail to grow relatively rapidly in the decades ahead,<br />

especially in many <str<strong>on</strong>g>of</str<strong>on</strong>g> the world’s less developed countries. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>sibility for<br />

reducing emissi<strong>on</strong>s will therefore fall <strong>on</strong> improved vehicle technologies and low-carb<strong>on</strong> or<br />

carb<strong>on</strong>-free fuels.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is c<strong>on</strong>siderable uncertainty about what it might cost to commercialize and widely<br />

disseminate many <str<strong>on</strong>g>of</str<strong>on</strong>g> the more advanced vehicle technology and fuel soluti<strong>on</strong>s. Given what is<br />

known about projected demand growth, however, it is possible to simulate what might be<br />

feasible trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> advances in vehicle technology and fuel substituti<strong>on</strong>.<br />

To obtain a better sense <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential impact <str<strong>on</strong>g>of</str<strong>on</strong>g> various technologies and fuels in<br />

reducing transport-related GHG emissi<strong>on</strong>s, the SMP c<strong>on</strong>ducted a number <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s using its<br />

spreadsheet model. <str<strong>on</strong>g>The</str<strong>on</strong>g> benchmark was the SMP reference case projecti<strong>on</strong> showing total<br />

transport-related CO2 emissi<strong>on</strong>s doubling between 2000 and 2050, with most <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth in<br />

emissi<strong>on</strong>s occurring in the countries <str<strong>on</strong>g>of</str<strong>on</strong>g> the developing world. While other analyses have<br />

examined this issue for individual developed countries or regi<strong>on</strong>s, to the committee’s knowledge,<br />

the SMP was the first to examine it for the world as a whole.<br />

In these simulati<strong>on</strong>s, the focus was <strong>on</strong> total road transport. <str<strong>on</strong>g>The</str<strong>on</strong>g> exercise did not examine<br />

the technical or ec<strong>on</strong>omic feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> any <str<strong>on</strong>g>of</str<strong>on</strong>g> the acti<strong>on</strong>s being simulated. It was intended<br />

merely to help the SMP understand the impact <strong>on</strong> GHG emissi<strong>on</strong>s from road vehicles if the<br />

acti<strong>on</strong>s described were taken. This enabled the SMP to compare its results with those <str<strong>on</strong>g>of</str<strong>on</strong>g> other<br />

studies that likewise did not c<strong>on</strong>sider technical or ec<strong>on</strong>omic feasibility in deriving their results.<br />

Single-Technology Simulati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SMP began by examining the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> single technologies <strong>on</strong> CO2 emissi<strong>on</strong>s from road<br />

transport worldwide. Figure B-13 shows results for five such technologies—dieselizati<strong>on</strong>,<br />

hybridizati<strong>on</strong>, fuel cells, “carb<strong>on</strong>-neutral” hydrogen, and bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels. It was assumed that each<br />

power train technology would achieve as close to 100 percent global sales penetrati<strong>on</strong> as possible<br />

given the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the technology, and that each fuel would become as close to<br />

100 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the global road transport fuel pool as its characteristics would permit.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SMP emphasized that these single-technology examples were purely hypothetical. It<br />

is highly unlikely in practice that any single technology would achieve 100 percent penetrati<strong>on</strong>.


200 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Gigat<strong>on</strong>nes CO 2-Equivalent GHGs<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

2000 2010 2020 2030 2040 2050<br />

Reference Case<br />

Diesels<br />

Hybrids<br />

Fuel Cells (hydrogen from<br />

natural gas)<br />

Fuel Cells (zero-carb<strong>on</strong><br />

hydrogen)<br />

Advanced Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (all road<br />

vehicles)<br />

FIGURE B-13 Hypothetical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> individual technologies to lower road transport<br />

well-to-wheels greenhouse gas emissi<strong>on</strong>s relative to the SMP reference case.<br />

(Source: World Business Council for Sustainable Development 2004, Figure 4.7, p. 113.)<br />

Also, the examples cannot be added together. Differences in the timing <str<strong>on</strong>g>of</str<strong>on</strong>g> the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these technologies and fuels in the developed and developing worlds was largely ignored.<br />

For both diesels and advanced hybrids, it was assumed that 100 percent sales penetrati<strong>on</strong><br />

would be reached by 2030 and that these technologies would be used in LDVs and medium-duty<br />

trucks. 36 In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel cell vehicles, it was assumed that 100 percent sales penetrati<strong>on</strong><br />

would be reached by 2050. 37 It was also assumed that the hydrogen used in these vehicles would<br />

be produced by reforming natural gas and that carb<strong>on</strong> sequestrati<strong>on</strong> would not be involved. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>-neutral hydrogen was generated by changing the WTT<br />

emissi<strong>on</strong>s characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrogen used in the fuel cell case just described. To focus <strong>on</strong><br />

the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels, it was assumed that these fuels would be used in a world road vehicle<br />

fleet similar in energy use characteristics to the SMP reference fleet. Diesel internal combusti<strong>on</strong><br />

engine technology (using c<strong>on</strong>venti<strong>on</strong>al diesel fuel) was assumed to have an 18 percent fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> benefit compared with the prevailing gasoline internal combusti<strong>on</strong> engine<br />

technology during the entire period. <str<strong>on</strong>g>The</str<strong>on</strong>g> fuel c<strong>on</strong>sumpti<strong>on</strong> benefit relative to gasoline internal<br />

combusti<strong>on</strong> engine technology was assumed to be 36 percent for diesel hybrids, 30 percent for<br />

gasoline hybrids, and 45 percent for fuel cell vehicles.<br />

36 A very high proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy trucks and buses are already diesel powered. <str<strong>on</strong>g>The</str<strong>on</strong>g> SMP assumed that hybrid<br />

technology would not see significant use in heavy-duty over-the-road trucks and buses because <str<strong>on</strong>g>of</str<strong>on</strong>g> their operating<br />

characteristics. Public transport buses are already being viewed as prime candidates for hybridizati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se were<br />

not included in the SMP’s calculati<strong>on</strong>, but their omissi<strong>on</strong> makes relatively little difference to the results.<br />

37 <str<strong>on</strong>g>The</str<strong>on</strong>g> SMP made the same assumpti<strong>on</strong>s c<strong>on</strong>cerning the types <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicles to which fuel cells might be applied as it<br />

did for hybrids.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 201<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

From this single-technology assessment, it is evident that even if implemented<br />

worldwide, diesels and hybrid internal combusti<strong>on</strong> engines fueled with c<strong>on</strong>venti<strong>on</strong>al gasoline<br />

and diesel fuel or fuel cells fueled with natural gas–derived hydrogen could no more than slow<br />

the growth in road transport CO2 emissi<strong>on</strong>s during the period 2000–2050. Only the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong>-neutral hydrogen in fuel cells and advanced bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels in internal combusti<strong>on</strong> engine–<br />

powered vehicles could largely or totally <str<strong>on</strong>g>of</str<strong>on</strong>g>fset the increase in CO2 emissi<strong>on</strong>s produced by the<br />

growth in road travel during the period 2000–2050.<br />

This does not mean that vehicle energy use characteristics are irrelevant. <str<strong>on</strong>g>The</str<strong>on</strong>g>y might not<br />

have a major impact <strong>on</strong> the trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> road vehicle GHG emissi<strong>on</strong>s over the very l<strong>on</strong>g term,<br />

but they would have a major impact <strong>on</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> low-carb<strong>on</strong> or carb<strong>on</strong>-neutral fuel that<br />

would have to be produced to power the world’s road vehicle fleet. This means they could have<br />

a very important impact <strong>on</strong> the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> significantly reducing GHG emissi<strong>on</strong>s from road<br />

vehicles. 38<br />

Based <strong>on</strong> these results, the SMP c<strong>on</strong>cluded that it is <strong>on</strong>ly through a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel<br />

and power train soluti<strong>on</strong>s that significant CO2 reducti<strong>on</strong> can be attained. No single-technology<br />

pathway merits selecti<strong>on</strong> as the sole l<strong>on</strong>g-run soluti<strong>on</strong>.<br />

Combined-Technology Simulati<strong>on</strong><br />

Since the substantial reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 emissi<strong>on</strong>s from road vehicles is likely to depend <strong>on</strong> the<br />

widespread adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several advanced vehicle and fuel technologies, as well as other factors,<br />

the SMP decided to examine the combined impact <str<strong>on</strong>g>of</str<strong>on</strong>g> several acti<strong>on</strong>s, including the following:<br />

• Fuels that are carb<strong>on</strong> neutral (defined by the SMP as <strong>on</strong>es that reduce WTW CO2<br />

emissi<strong>on</strong>s by at least 80 percent)<br />

• Power trains that are highly energy efficient<br />

• A change in the historical mix-shifting trend to larger vehicle categories<br />

• Improved traffic flow and other changes in transport activity resulting from better<br />

integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport systems, enabled, at least in part, by informati<strong>on</strong> technology<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SMP set an illustrative target <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing annual worldwide CO2 emissi<strong>on</strong>s from road<br />

transport by half by 2050. This is equivalent to a decline in yearly CO2 emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> about<br />

5 gigat<strong>on</strong>nes from levels that the SMP reference case projects would otherwise be reached and,<br />

by coincidence, returns annual road vehicle CO2 emissi<strong>on</strong>s in 2050 to about their current levels.<br />

For illustrative purposes, the illustrative CO2 reducti<strong>on</strong> target was divided into six<br />

increments. <str<strong>on</strong>g>The</str<strong>on</strong>g> timing and size <str<strong>on</strong>g>of</str<strong>on</strong>g> each increment is not fixed and ultimately would be decided<br />

<strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainability and investment choices at the nati<strong>on</strong>al, regi<strong>on</strong>al, and global levels.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the analysis was to illustrate what might be achieved if ambitious changes were<br />

made bey<strong>on</strong>d those in the SMP reference case, with no judgment as to cost or the probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each step being taken.<br />

• Increment 1. Dieselizati<strong>on</strong>: It was assumed that dieselizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LDVs and<br />

medium-duty trucks would rise to around 45 percent globally by 2030 (that is, to about current<br />

38 <str<strong>on</strong>g>The</str<strong>on</strong>g> fuel ec<strong>on</strong>omy benefit relative to gasoline internal combusti<strong>on</strong> engine technology was assumed to be<br />

36 percent for diesel hybrids, 30 percent for gasoline hybrids, and 45 percent for fuel cell vehicles.


202 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

European levels). Diesel engines were assumed to c<strong>on</strong>sume about 18 percent less fuel (and emit<br />

18 percent less CO2) than current gasoline internal combusti<strong>on</strong> engines.<br />

• Increment 2. Hybridizati<strong>on</strong>: It was assumed that the hybridizati<strong>on</strong> (gasoline and<br />

diesel) <str<strong>on</strong>g>of</str<strong>on</strong>g> LDVs and medium-duty trucks would increase to half <str<strong>on</strong>g>of</str<strong>on</strong>g> all internal combusti<strong>on</strong><br />

engine vehicles sold by 2030. Gasoline hybrids were assumed to c<strong>on</strong>sume an average <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

30 percent less fuel than current gasoline internal combusti<strong>on</strong> engines, and diesel hybrids were<br />

assumed to c<strong>on</strong>sume an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 percent less fuel than current diesels. 39<br />

• Increment 3. C<strong>on</strong>venti<strong>on</strong>al and advanced bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels: It was assumed that the<br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels in the total worldwide gasoline and diesel pool would rise steadily, reaching<br />

<strong>on</strong>e-third by 2050. C<strong>on</strong>venti<strong>on</strong>al bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (those yielding a 20 percent CO2 unit efficiency<br />

benefit) were capped at 5 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total pool. <str<strong>on</strong>g>The</str<strong>on</strong>g> balance was assumed to be advanced<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (those yielding at least an 80 percent CO2 unit efficiency benefit). 40<br />

• Increment 4. Fuel cells using hydrogen derived from fossil fuels (no carb<strong>on</strong><br />

sequestrati<strong>on</strong>): It was assumed that mass market sales <str<strong>on</strong>g>of</str<strong>on</strong>g> LDVs and medium-duty trucks would<br />

start in 2020 and rise to half <str<strong>on</strong>g>of</str<strong>on</strong>g> all vehicle sales by 2050. It also was assumed that fuel cellequipped<br />

vehicles c<strong>on</strong>sume an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 45 percent less energy than current gasoline internal<br />

combusti<strong>on</strong> engines.<br />

• Increment 5. Carb<strong>on</strong>-neutral hydrogen used in fuel cells: It was assumed that<br />

hydrogen sourcing for fuel cells would switch to centralized producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>-neutral<br />

hydrogen over the period 2030–2050 <strong>on</strong>ce hydrogen LDV fleets had reached significant<br />

penetrati<strong>on</strong> at the country level. By 2050, 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen would be produced by carb<strong>on</strong>neutral<br />

processes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first five increments reflect the inherent properties <str<strong>on</strong>g>of</str<strong>on</strong>g> different vehicle technologies<br />

and fuels. But actual reducti<strong>on</strong>s in CO2 emissi<strong>on</strong>s will be determined not <strong>on</strong>ly by these<br />

properties, but also by the mix <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicles purchased by c<strong>on</strong>sumers and businesses and by how<br />

these vehicles are used <strong>on</strong> a daily basis. To reflect these two factors, two more increments were<br />

included.<br />

• Increment 6. Additi<strong>on</strong>al improvement in fleet-level vehicle energy efficiency:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SMP reference case projects an average improvement in the energy efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>-road<br />

LDV fleet <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.4 percent per year, with new vehicle sales showing an average 0.5 percent<br />

per year improvement in fuel ec<strong>on</strong>omy. <str<strong>on</strong>g>The</str<strong>on</strong>g> improvement potential embodied in actual vehicles<br />

is around 1.0 percent per year, but about half <str<strong>on</strong>g>of</str<strong>on</strong>g> this potential improvement is <str<strong>on</strong>g>of</str<strong>on</strong>g>fset because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vehicle purchasers’ preferences for larger and heavy vehicles. In developing this increment, the<br />

SMP assumed that preferences relating to the mix <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicles chosen by purchasers and the<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> these vehicles would change somewhat, leading to an additi<strong>on</strong>al 10 percent<br />

average annual in-use improvement relative to the reference case (i.e., average annual fleet-level<br />

improvement would rise from about 0.4 percent to about 0.6 percent).<br />

39 It is generally acknowledged that, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the diesel’s initial superior energy efficiency, any additi<strong>on</strong>al benefit<br />

from hybridizing a diesel is likely to be smaller than that from hybridizing a gasoline engine.<br />

40 This implies that these advanced bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels are either gasoline from lignocellulosic sugar fermentati<strong>on</strong> or diesel<br />

from biomass gasificati<strong>on</strong>/Fischer Tropsch synthesis.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 203<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

• Increment 7. A 10 percent reducti<strong>on</strong> in emissi<strong>on</strong>s due to better traffic flow and<br />

other efficiencies in road vehicle use: It was assumed that the gap between <strong>on</strong>-road energy-use<br />

performance and the technological improvements embodied in vehicles would narrow. How<br />

might this happen? For <strong>on</strong>e thing, there are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunities relating to the increased<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> technology in transport systems that might enable the better management <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

travel demand. Improved routing informati<strong>on</strong> might permit trips to be shortened, while<br />

improved informati<strong>on</strong> about road c<strong>on</strong>diti<strong>on</strong>s might reduce the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time motorists spend in<br />

their vehicles while idling in traffic. For another thing, more accurate and current informati<strong>on</strong><br />

about when public transport vehicles will arrive and how l<strong>on</strong>g they will take to get to their<br />

destinati<strong>on</strong>s might encourage additi<strong>on</strong>al use <str<strong>on</strong>g>of</str<strong>on</strong>g> public transport. Individually, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

improvements would be major, and almost certainly there would be <str<strong>on</strong>g>of</str<strong>on</strong>g>fsets. But combined, the<br />

SMP assumes that such factors could produce an additi<strong>on</strong>al 10 percent reducti<strong>on</strong> in road vehicle<br />

CO2 emissi<strong>on</strong>s.<br />

Figure B-14 shows the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the SMP combined-technologies analysis just described.<br />

It c<strong>on</strong>firms the impressi<strong>on</strong> c<strong>on</strong>veyed by the three single-technology analyses discussed above<br />

that the widespread adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle and fuel technologies (plus other<br />

factors) would be required to return 2050 CO2 emissi<strong>on</strong>s from road vehicles to their 2000 level.<br />

Gigat<strong>on</strong>nes CO 2 Equivalent GHGs<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

2000 2010 2020 2030 2040 2050<br />

Diesels (LDVs)<br />

Hybrids (LDVs and MDTs)<br />

Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels (80% low GHG sources by 2050)<br />

Fuel Cells (fossil hydrogen)<br />

Fuel Cells (80% low-GHG hydrogen by 2050)<br />

Mix Shifting Yielding 10% Vehicle Efficiency Improvement<br />

10% Vehicle Travel Reducti<strong>on</strong> (all road vehicles)<br />

Remaining GHGs<br />

FIGURE B-14 Combined-technology case. (Source: Adapted from World Business Council<br />

for Sustainable Development 2004, Figure 4.11, p. 117.)


204 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

SUMMARY<br />

Any global warming that will be experienced during the next several decades will largely be the<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s that have already occurred. As the main body <str<strong>on</strong>g>of</str<strong>on</strong>g> this report points out,<br />

regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> what else it might do, America’s transport sector will have to adjust to the<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> this warming. But the transport sector in general, and America’s transport<br />

sector in particular, is a significant source <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s. If future warming is to be limited,<br />

GHG c<strong>on</strong>centrati<strong>on</strong>s in the atmosphere must be stabilized. This will require reducing GHG<br />

emissi<strong>on</strong>s not merely to below what they might otherwise be if present trends were to c<strong>on</strong>tinue,<br />

but to well below current levels. <str<strong>on</strong>g>The</str<strong>on</strong>g> transport sector will have to c<strong>on</strong>tribute to this reducti<strong>on</strong>.<br />

This appendix has identified several approaches by which transport-related GHG<br />

emissi<strong>on</strong>s might be reduced. A comm<strong>on</strong> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> these approaches is that they take<br />

c<strong>on</strong>siderable time to be fully effective. This means that if transport-related GHG emissi<strong>on</strong>s are<br />

to be reduced to below their current levels by 2050, steps must be taken now to begin to<br />

implement certain <str<strong>on</strong>g>of</str<strong>on</strong>g> these approaches.<br />

REFERENCES<br />

Abbreviati<strong>on</strong>s<br />

BTS Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> Statistics<br />

IEA Internati<strong>on</strong>al Energy Agency<br />

IMO Internati<strong>on</strong>al Maritime Organizati<strong>on</strong><br />

IPCC Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

UN United Nati<strong>on</strong>s<br />

UNCTAD United Nati<strong>on</strong>s C<strong>on</strong>ference <strong>on</strong> Trade and Development<br />

U.S. EPA United States Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency<br />

WBSCD World Business Council <strong>on</strong> Sustainable Development<br />

Bento, A. M., M. L. Cropper, A. M. Mobarak, and K. Vinha. 2005. <str<strong>on</strong>g>The</str<strong>on</strong>g> Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Urban Spatial<br />

Structure <strong>on</strong> Travel Demand in the United States. <str<strong>on</strong>g>The</str<strong>on</strong>g> Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics and Statistics, Vol. 87,<br />

No. 3, Aug., pp. 466–478.<br />

Boeing Company. 2006. Current Market Outlook: 2006.<br />

http://www.boeing.com/commercial/pdf/CMO_06.pdf. Accessed January 30, 2008.<br />

BTS. 2001. Nati<strong>on</strong>al Household Travel Survey. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>.<br />

BTS. 2005. Nati<strong>on</strong>al Transportati<strong>on</strong> Statistics 2004. BTS02-08, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>.<br />

Davis, S. C., and S. W. Diegel. 2006. Transportati<strong>on</strong> Energy Data Book: Editi<strong>on</strong> 25. ORNL-6974, Oak<br />

Ridge Nati<strong>on</strong>al Laboratory, May.<br />

Ewing, R., R. Pendall, and D. Chen. 2002. Measuring Sprawl and Its Impact. Smart Growth America.<br />

http://www.smartgrowthamerica.org/sprawlindex/MeasuringSprawl.pdf. Accessed January 30, 2008.<br />

Farrell, A. E., R. J. Plevin, B. T. Turner, A. D. J<strong>on</strong>es, M. O’Hare, and D. M. Kammen. 2006. Ethanol<br />

Can C<strong>on</strong>tribute to Energy and Envir<strong>on</strong>mental Goals. Science, Vol. 311, No. 5760, Jan. 27, pp. 506–<br />

508.<br />

Heavenrich, R.M. 2005. Light-Duty Automotive Technology and Fuel Ec<strong>on</strong>omy Trends: 1975 Through<br />

2005. EPA420-R-05-001, U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, July.<br />

Heavenrich, R.M. 2006. Light-Duty Automotive Technology and Fuel Ec<strong>on</strong>omy Trends: 1975 Through<br />

2006. EPA420-R-06-001, U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, July.


C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Transportati<strong>on</strong> Sector to Greenhouse Gas Emissi<strong>on</strong>s 205<br />

and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mitigati<strong>on</strong> Strategies<br />

Heywood, J. B. 2006. Fueling our Transportati<strong>on</strong> Future. Scientific American, Vol. 295, No. 3, Sept.,<br />

pp. 60-63.<br />

Hu, P. S. and T. R. Reuscher. 2004. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> Travel Trends: 2001 Nati<strong>on</strong>al Household Travel<br />

Survey. Federal Highway Administrati<strong>on</strong>, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, Dec.<br />

IEA. 2000. <str<strong>on</strong>g>The</str<strong>on</strong>g> Road from Kyoto: Current CO2 and Transport Policies in the IEA, IEA Publicati<strong>on</strong>s,<br />

Paris.<br />

IEA. 2005. CO2 Emissi<strong>on</strong>s from Fuel Combusti<strong>on</strong>: 1971–2003. IEA Publicati<strong>on</strong>s, Paris.<br />

IEA. 2006. Energy Technology Perspectives: Scenarios & Strategies to 2050, IEA Publicati<strong>on</strong>s, Paris.<br />

IMO. 2000. Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenhouse Gas Emissi<strong>on</strong>s from Ships: Final <str<strong>on</strong>g>Report</str<strong>on</strong>g> to the Internati<strong>on</strong>al Maritime<br />

Organizati<strong>on</strong>. IMO DOC. MEPC 45/8. Issue No 2-31, Submitted by the IMO Secretariat,<br />

Norwegian Marine Technology Research Institute, Norway, March.<br />

IPCC. 1999. Aviati<strong>on</strong> and the Global Atmosphere (J. E. Penner, D. H. Lister, D. J. Griggs, D. J. Dokken,<br />

M. McFarland, eds.). Cambridge University Press, Cambridge, United Kingdom.<br />

Lee, J. J., S. P. Lukachko, I. A. Waitz, and A. Schafer. 2001. Historical and Future Trends in Aircraft<br />

Performance, Cost, and Emissi<strong>on</strong>s, Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy and Envir<strong>on</strong>ment, Vol. 26, Nov., pp.<br />

167–200.<br />

Mokhtarian, P. L. 2003. Telecommunicati<strong>on</strong>s and Travel: <str<strong>on</strong>g>The</str<strong>on</strong>g> Case for Complementarity. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Industrial Ecology, Vol. 6, No. 2, pp. 43–57.<br />

Stuber, N., P. Forster, G. Rädel, and K. Shine. 2006. <str<strong>on</strong>g>The</str<strong>on</strong>g> Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the Diurnal and Annual Cycle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Air Traffic for C<strong>on</strong>trail Radiative Forcing. Nature, Vol. 441, No. 7095, June 15, pp. 864–867.<br />

UN. 1999. <str<strong>on</strong>g>The</str<strong>on</strong>g> World at Six Billi<strong>on</strong>. Populati<strong>on</strong> Divisi<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic and Social Affairs,<br />

UN Secretariat, Oct. 12, http://www.un.org/esa/populati<strong>on</strong>/publicati<strong>on</strong>s.sixbilli<strong>on</strong>/sixbilli<strong>on</strong>.htm.<br />

Accessed January 30, 2008.<br />

UN. 2003. World Urbanizati<strong>on</strong> Prospects: <str<strong>on</strong>g>The</str<strong>on</strong>g> 2003 Revisi<strong>on</strong>, Populati<strong>on</strong> Divisi<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ec<strong>on</strong>omic and Social Affairs, UN Secretariat.<br />

http://www.un.org/esa/populati<strong>on</strong>/publicati<strong>on</strong>s/wup2003/2003wup.htm. Accessed January 30, 2008.<br />

UN. 2005. World Populati<strong>on</strong> Prospects: <str<strong>on</strong>g>The</str<strong>on</strong>g> 2004 Projecti<strong>on</strong>, Populati<strong>on</strong> Divisi<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ec<strong>on</strong>omic and Social Affairs, UN Secretariat, Feb.<br />

UNCTAD. 2005. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Maritime Transport 2005. UNCTAD Secretariat.<br />

http://www.unctad.org/Templates/WebFlyer.asp?intItemID=3588&lang=1. Accessed January 30,<br />

2008.<br />

U.S. Energy Informati<strong>on</strong> Administrati<strong>on</strong>. 2004. Emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenhouse Gases in the United States.<br />

DOE/EIA-0573. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy.<br />

http://www.eia.doe.gov/oiaf/1605/archive/gg05rpt/index.html. Accessed January 30, 2008.<br />

U.S. EPA. 2005. Inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Greenhouse Gas Emissi<strong>on</strong>s and Sinks: 1990-2003. EPA-430-R-05-<br />

003. Washingt<strong>on</strong>, D.C., April 15.<br />

Weiss, M. A., J. B. Heywood, E. M. Drake, A. Schafer, and F. F. AuYeung. 2000. On the Road in 2020:<br />

A Life-Cycle Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> New Automobile Technologies. Energy Laboratory <str<strong>on</strong>g>Report</str<strong>on</strong>g> #MIT EL 00-003.<br />

Cambridge, Mass. Oct.<br />

World Business Council <strong>on</strong> Sustainable Development. 2004. Mobility 2030: Meeting the Challenges to<br />

Sustainability. <str<strong>on</strong>g>The</str<strong>on</strong>g> Sustainable Mobility Project. Geneva, Switzerland.<br />

http://www.wbcsd.org/web/mobilitypubs.htm. Accessed January 30, 2008.


APPENDIX C<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Commissi<strong>on</strong>ed Papers and Authors<br />

Case Study <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Sector’s Resp<strong>on</strong>se to and Recovery from Hurricanes<br />

Katrina and Rita, Lance R. Grenzeback and Andrew T. Lukmann, Cambridge Systematics,<br />

Inc., January 10, 2007.<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> with Implicati<strong>on</strong>s for Transportati<strong>on</strong>, Thomas C. Peters<strong>on</strong>,<br />

Marjorie McGuirk, Tamara G. Houst<strong>on</strong>, Andrew H. Horvitz, Nati<strong>on</strong>al Oceanic and<br />

Atmospheric Administrati<strong>on</strong>, and Michael F. Wehner, Lawrence Berkeley Nati<strong>on</strong>al<br />

Laboratory, December 6, 2006.<br />

Design Standards for U.S. Transportati<strong>on</strong> Infrastructure: <str<strong>on</strong>g>The</str<strong>on</strong>g> Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>, Michael D. Meyer, Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, December 18, 2006.<br />

Operati<strong>on</strong>al Resp<strong>on</strong>ses to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>, Stephen C. Lockwood, PB C<strong>on</strong>sult,<br />

December 29, 2006.<br />

Transportati<strong>on</strong> Planning, <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, and Decisi<strong>on</strong>making Under Uncertainty, James A.<br />

Dewar and Martin Wachs, December 13, 2006.<br />

207


APPENDIX D<br />

C<strong>on</strong>ference Agenda and Participant List<br />

NATIONAL ACADEMIES<br />

TRANSPORTATION RESEARCH BOARD<br />

DIVISION ON EARTH AND LIFE STUDIES<br />

C<strong>on</strong>ference <strong>on</strong><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences Building<br />

Lecture Room<br />

2100 C Street, N.W.<br />

Washingt<strong>on</strong>, DC<br />

October 12, 2006<br />

AGENDA<br />

8:30 – 8:45 am Welcome, Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the Agenda, and Introducti<strong>on</strong><br />

To Paper Presentati<strong>on</strong>s<br />

Henry G. Schwartz, Jr., committee chair<br />

8:45 – 9:45 Current State <str<strong>on</strong>g>of</str<strong>on</strong>g> Knowledge <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and<br />

Implicati<strong>on</strong>s for Transportati<strong>on</strong><br />

Moderator, Thomas R. Karl, committee member<br />

David J. Karoly, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oklahoma, presenter and discussant<br />

Thomas C. Peters<strong>on</strong>, Marjorie McGuirk, Tamara Houst<strong>on</strong>, Andrew H.<br />

Horvitz, Nati<strong>on</strong>al Oceanic & Atmospheric Administrati<strong>on</strong>; and Michael<br />

F. Wehner, Lawrence Berkeley Nati<strong>on</strong>al Laboratory, paper authors<br />

General Discussi<strong>on</strong><br />

9.45 – 12:30 Adaptive Resp<strong>on</strong>ses to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

9:45 – 11:00 Reexaminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> Design Standards<br />

in Light <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> from <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Moderator, Klaus H. Jacob, committee member<br />

J<strong>on</strong>athan L. Gifford, George Mas<strong>on</strong> University, presenter and discussant<br />

Michael D. Meyer, Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, paper author<br />

General Discussi<strong>on</strong><br />

209


210 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

11:00 ─ 11:15 Break<br />

11:15─ 12:30 Operati<strong>on</strong>al Strategies to Address <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Moderator, Alan C. Clark, committee member<br />

Michael M. Ryan, H.W. Lochner, Inc., presenter and discussant<br />

Stephen C. Lockwood, Pars<strong>on</strong>s Brinckerh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, paper author<br />

General Discussi<strong>on</strong><br />

12:30 – 1:30 pm Lunch Break (Invited participants can find lunch at NAS cafeteria)<br />

1:30 – 2:45 Case Study <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Sector’s Resp<strong>on</strong>se to and<br />

Recovery from Hurricanes Katrina and Rita<br />

Moderator, George C. Eads, committee member<br />

Michael S. Br<strong>on</strong>zini, George Mas<strong>on</strong> University, presenter and discussant<br />

Lance R. Grenzeback and Andrew Lukmann, Cambridge Systematics,<br />

Inc., paper authors<br />

2:45 ─ 3:00 Break<br />

General Discussi<strong>on</strong><br />

3:00 ─ 4:15 Survey <strong>on</strong> Approaches to Decisi<strong>on</strong>-Making Under<br />

Uncertainty<br />

Moderator, Robert J. Lempert, committee member<br />

Paul S. Fischbeck, Carnegie Mell<strong>on</strong> University, presenter and discussant<br />

James A. Dewar and Martin Wachs, paper authors<br />

General Discussi<strong>on</strong><br />

4:15 ─ 5:00 Rapporteurs’ <str<strong>on</strong>g>Report</str<strong>on</strong>g> and General Discussi<strong>on</strong><br />

Moderator, Henry G. Schwartz, Jr., committee chair<br />

Michael C. MacCracken, <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Institute<br />

Thomas B. Deen, Transportati<strong>on</strong> Research Board (retired)<br />

5:00 Adjourn


Roemer Alfelor<br />

Federal Highway Administrati<strong>on</strong><br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

William Anders<strong>on</strong><br />

Bost<strong>on</strong> University<br />

Vicki Arroyo<br />

Pew Center <strong>on</strong> Global <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g><br />

Mitchell Baer<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy<br />

Anjuli Bamzai<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy<br />

Vriginia Burkett<br />

U.S. Geological Survey<br />

David C<strong>on</strong>nell<br />

Uni<strong>on</strong> Pacific Railroad<br />

Billy C<strong>on</strong>nor<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, Fairbanks<br />

Mark Crowell<br />

Federal Emergency Management<br />

Administrati<strong>on</strong><br />

Robert Dalrymple<br />

Johns Hopkins University<br />

John Davies<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency<br />

Robert Dean<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida<br />

Brigid DeCoursey<br />

Office <str<strong>on</strong>g>of</str<strong>on</strong>g> the Secretary<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

C<strong>on</strong>ference Participant List<br />

211<br />

Kevin Eckerle<br />

U.S. Senate Committee <strong>on</strong> Commerce,<br />

Science, and Transportati<strong>on</strong><br />

Subcommittee <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> and<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g><br />

Gary Feuerberg<br />

Research and Innovative Technology<br />

Administrati<strong>on</strong><br />

Gary Gallegos<br />

San Diego Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Governments<br />

Mohan Gupta<br />

Federal Aviati<strong>on</strong> Administrati<strong>on</strong><br />

David Henders<strong>on</strong><br />

North Carolina Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong><br />

Robert Kafalenos<br />

Federal Highway Administrati<strong>on</strong><br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

David Knight<br />

Great Lakes Commissi<strong>on</strong><br />

Lourdes Maurice<br />

Federal Aviati<strong>on</strong> Administrati<strong>on</strong><br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

Carol Murray<br />

New Hampshire Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong><br />

Gummada Murthy<br />

Virginia Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

Richard Nels<strong>on</strong><br />

Nevada Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>


212 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

George Newt<strong>on</strong><br />

U.S. Arctic Research Commissi<strong>on</strong><br />

J. Rolf Olsen<br />

Institute for Water Resources<br />

U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers<br />

Harold Paul<br />

Louisiana Transportati<strong>on</strong> Research Center<br />

William Petak<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Southern California<br />

Craig Philip<br />

Ingram Barge Company<br />

Britt Poole<br />

ICF Internati<strong>on</strong>al, Inc.<br />

Joanne Potter<br />

Cambridge Systematics, Inc.<br />

Ananth Prasad<br />

Florida Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

Stuart Price<br />

RSVP Communicati<strong>on</strong>s<br />

David Robins<strong>on</strong><br />

Rutgers University<br />

Craig Rockey<br />

Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American Railroads<br />

Adam Rose<br />

Pennsylvania State University<br />

Eric Salathe<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong><br />

Michael Sav<strong>on</strong>is<br />

Federal Highway Administrati<strong>on</strong><br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

Leland Smiths<strong>on</strong><br />

American Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and<br />

Transportati<strong>on</strong> Officials<br />

Richard Somerville<br />

Scripps Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography<br />

Marty Spitzer<br />

U.S. House <str<strong>on</strong>g>of</str<strong>on</strong>g> Representatives Committee<br />

<strong>on</strong> Science<br />

Subcommittee <strong>on</strong> the Envir<strong>on</strong>ment,<br />

Technology, and Standards<br />

Mark Stehly<br />

Burlingt<strong>on</strong> Northern Santa Fe Railway<br />

Laura Steinberg<br />

Tulane University<br />

Anne Sudar<br />

Institute for Water Resources<br />

U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers<br />

Megumi Sumitani<br />

Seattle Office <str<strong>on</strong>g>of</str<strong>on</strong>g> City Auditor<br />

Victoria Sutt<strong>on</strong><br />

Research and Innovative Technology<br />

Administrati<strong>on</strong><br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

Anth<strong>on</strong>y Taormina<br />

Port <str<strong>on</strong>g>of</str<strong>on</strong>g> Hueneme<br />

Kevin Wright<br />

ICF Internati<strong>on</strong>al, Inc.<br />

John Zamurs<br />

New York State Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong><br />

Rae Zimmerman<br />

New York University<br />

Jeffrey Zupan<br />

Regi<strong>on</strong>al Plan Associati<strong>on</strong>


Study Committee Biographical Informati<strong>on</strong><br />

Henry G. Schwartz, Jr., Chair, is a nati<strong>on</strong>ally recognized civil and envir<strong>on</strong>mental engineering<br />

leader who spent most <str<strong>on</strong>g>of</str<strong>on</strong>g> his career with Sverdrup Civil, Inc. (now Jacobs Civil, Inc.), which he<br />

joined as a registered pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al engineer in 1966. In 1993, Schwartz was named President<br />

and then Chairman, directing the transportati<strong>on</strong>, public works, and envir<strong>on</strong>mental activities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sverdrup/Jacobs Civil, Inc. before retiring in 2003. Dr. Schwartz’s projects included<br />

multibilli<strong>on</strong>-dollar water and wastewater treatment systems for the cities <str<strong>on</strong>g>of</str<strong>on</strong>g> San Diego, San<br />

Francisco, and Detroit, as well as large civil infrastructure projects, such as highways, bridges,<br />

dams, and railroads. Following his retirement, Dr. Schwartz was appointed Senior Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor and<br />

Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Engineering Management Program at Washingt<strong>on</strong> University in St. Louis, a<br />

positi<strong>on</strong> he held until fall 2006. He has served <strong>on</strong> the advisory boards for Carnegie Mell<strong>on</strong><br />

University, Washingt<strong>on</strong> University, and <str<strong>on</strong>g>The</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Texas, Austin, and is President <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <str<strong>on</strong>g>of</str<strong>on</strong>g> St. Louis. He is Founding Chairman <str<strong>on</strong>g>of</str<strong>on</strong>g> the Water Envir<strong>on</strong>ment Research<br />

Foundati<strong>on</strong> and has served as President <str<strong>on</strong>g>of</str<strong>on</strong>g> the Water Envir<strong>on</strong>ment Federati<strong>on</strong>. Dr. Schwartz is<br />

Past President <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineers and was a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Civil<br />

Engineering Research Foundati<strong>on</strong> Board <str<strong>on</strong>g>of</str<strong>on</strong>g> Directors. He was elected to the Nati<strong>on</strong>al Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering (NAE) in 1997 (Secti<strong>on</strong> 4: Civil Engineering) and has served <strong>on</strong> Nati<strong>on</strong>al<br />

Research Council (NRC) study committees, including the Committee for a Future Strategic<br />

Highway Research Program (SHRP), and <strong>on</strong> the NRC Board <strong>on</strong> Infrastructure and the<br />

C<strong>on</strong>structed Envir<strong>on</strong>ment and the Executive Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Research Board<br />

(T<str<strong>on</strong>g>RB</str<strong>on</strong>g>). Dr. Schwartz received a Ph.D. from the California Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and master <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

science and bachelor <str<strong>on</strong>g>of</str<strong>on</strong>g> science degrees from Washingt<strong>on</strong> University; he also attended Princet<strong>on</strong><br />

University and Columbia University’s Business Program.<br />

Alan C. Clark is Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Houst<strong>on</strong>-Galvest<strong>on</strong> Area Council’s (H-GAC) metropolitan<br />

planning organizati<strong>on</strong> (MPO), which is resp<strong>on</strong>sible for development <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>’s multimodal<br />

transportati<strong>on</strong> plans and air quality programs. <str<strong>on</strong>g>The</str<strong>on</strong>g> MPO’s Transportati<strong>on</strong> Policy Council approves<br />

the programming <str<strong>on</strong>g>of</str<strong>on</strong>g> all federal highway and transit funds in Harris County and the seven adjacent<br />

counties. Mr. Clark’s resp<strong>on</strong>sibilities also include coordinating the Houst<strong>on</strong>-Galvest<strong>on</strong> area’s<br />

resp<strong>on</strong>se to mandates c<strong>on</strong>tained in the Clean Air Act Amendments <str<strong>on</strong>g>of</str<strong>on</strong>g> 1990. He has been a<br />

transportati<strong>on</strong> planner with H-GAC since 1983 and has managed its transportati<strong>on</strong> and air quality<br />

programs since 1986. Mr. Clark has served as an Adjunct Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor with Texas Southern<br />

University. Prior to coming to H-GAC, he worked as a transportati<strong>on</strong> planner with the Metropolitan<br />

Transit Authority <str<strong>on</strong>g>of</str<strong>on</strong>g> Harris County and as a traffic engineering c<strong>on</strong>sultant. He currently serves <strong>on</strong><br />

the advisory councils <str<strong>on</strong>g>of</str<strong>on</strong>g> the Texas Transportati<strong>on</strong> Institute and the Center for Transportati<strong>on</strong><br />

Training and Research at Texas Southern University. In 2006 he was appointed to the Federal<br />

Advisory Committee for the U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program study <strong>on</strong> the <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> Systems and Infrastructure-Gulf Coast Case<br />

Study. Mr. Clark holds master’s degrees in civil engineering and in city and regi<strong>on</strong>al planning from<br />

Ohio State University. He completed his undergraduate degree in business administrati<strong>on</strong> at the<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tennessee.<br />

213


214 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

G. Edward Dickey is a c<strong>on</strong>sultant in water resources policy and planning; Senior Advisor<br />

providing policy, political, and technical advice and representati<strong>on</strong> services <strong>on</strong> the planning and<br />

implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale water projects at Daws<strong>on</strong> and Associates, a Washingt<strong>on</strong>-based<br />

representati<strong>on</strong> firm; and Affiliate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics at Loyola College in Maryland. He is<br />

former Chief <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planning Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Headquarters Office <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Engineers and former Acting Assistant Secretary <str<strong>on</strong>g>of</str<strong>on</strong>g> the Army (Civil Works). Dr. Dickey has<br />

served <strong>on</strong> numerous NRC committees, including the Committee to Review the New York City<br />

Watershed Management Strategy, the Committee for the Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Freight Transportati<strong>on</strong><br />

Capacity for the Next Century, and most recently the Panel <strong>on</strong> Adaptive Management for<br />

Resource Stewardship. He received Ph.D. and master <str<strong>on</strong>g>of</str<strong>on</strong>g> art degrees in ec<strong>on</strong>omics from<br />

Northwestern University and a bachelor <str<strong>on</strong>g>of</str<strong>on</strong>g> arts degree in political ec<strong>on</strong>omy from <str<strong>on</strong>g>The</str<strong>on</strong>g> Johns<br />

Hopkins University.<br />

George C. Eads is Vice President <str<strong>on</strong>g>of</str<strong>on</strong>g> CRA Internati<strong>on</strong>al, Inc. (formerly Charles River Associates<br />

[CRA]) in its Washingt<strong>on</strong>, D.C., <str<strong>on</strong>g>of</str<strong>on</strong>g>fice. Prior to joining CRA in 1995, he held several positi<strong>on</strong>s<br />

at General Motors (GM) Corporati<strong>on</strong>, including Vice President and Chief Ec<strong>on</strong>omist; Vice<br />

President, Worldwide Ec<strong>on</strong>omic and Market Analysis Staff; and Vice President, Product<br />

Planning and Ec<strong>on</strong>omics Staff. Before joining GM, Dr. Eads was Dean <str<strong>on</strong>g>of</str<strong>on</strong>g> the School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public<br />

Affairs at the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland, College Park, where he also was a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor. Before that,<br />

he served as a member <str<strong>on</strong>g>of</str<strong>on</strong>g> President Carter’s Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Advisors. He has been<br />

involved in numerous projects c<strong>on</strong>cerning transport and energy. In 1994 and 1995 he was a<br />

member <str<strong>on</strong>g>of</str<strong>on</strong>g> President Clint<strong>on</strong>’s policy dialogue <strong>on</strong> reducing greenhouse gas emissi<strong>on</strong>s from<br />

pers<strong>on</strong>al motor vehicles, popularly known as “Car Talk.” He coauthored the World Energy<br />

Council’s 1998 <str<strong>on</strong>g>Report</str<strong>on</strong>g> Global Transport and Energy Development: <str<strong>on</strong>g>The</str<strong>on</strong>g> Scope for <str<strong>on</strong>g>Change</str<strong>on</strong>g>.<br />

From 2000 to 2004, Dr. Eads devoted most <str<strong>on</strong>g>of</str<strong>on</strong>g> his time to the World Business Council for<br />

Sustainable Development’s Sustainable Mobility Project, a project funded and carried out by 12<br />

leading internati<strong>on</strong>al automotive and energy companies. During the first stage <str<strong>on</strong>g>of</str<strong>on</strong>g> this project, he<br />

led the CRA c<strong>on</strong>tingent <strong>on</strong> the CRA–Massachusetts Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology team that together<br />

produced the project’s first report, Mobility 2001: World Mobility at the End <str<strong>on</strong>g>of</str<strong>on</strong>g> the Twentieth<br />

Century and Its Sustainability. As lead c<strong>on</strong>sultant during the project’s sec<strong>on</strong>d and final phase,<br />

Dr. Eads drafted the project’s final report, Mobility 2030: Meeting the Challenges to<br />

Sustainability, which was released in summer 2004 in Brussels, Detroit, and Tokyo. Dr. Eads is<br />

a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Presidents’ Circle at the Nati<strong>on</strong>al Academies and has served <strong>on</strong> the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Medicine’s (IOM) Committee <strong>on</strong> the C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Uninsurance. He is an at-large Director<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Research. He received a Ph.D. in ec<strong>on</strong>omics from Yale<br />

University.<br />

Robert E. Gallamore is currently a private c<strong>on</strong>sultant, having recently retired as Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Transportati<strong>on</strong> Center and Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Managerial Ec<strong>on</strong>omics and Decisi<strong>on</strong> Sciences in the<br />

Kellogg School <str<strong>on</strong>g>of</str<strong>on</strong>g> Management, Northwestern University. Prior to joining the university in<br />

August 2001, he was an executive <strong>on</strong> loan from Uni<strong>on</strong> Pacific Railroad to the Transportati<strong>on</strong><br />

Technology Center in Pueblo, Colorado, where he was Assistant Vice President <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Communicati<strong>on</strong>s Technologies and General Manager <str<strong>on</strong>g>of</str<strong>on</strong>g> the North American Joint Positive Train<br />

C<strong>on</strong>trol Program. He has also served in several positi<strong>on</strong>s with the federal government, including<br />

Deputy Federal Railroad Administrator and Associate Administrator for Planning <str<strong>on</strong>g>of</str<strong>on</strong>g> the Urban<br />

Mass Transportati<strong>on</strong> Administrati<strong>on</strong>. Dr. Gallamore served as Chairman <str<strong>on</strong>g>of</str<strong>on</strong>g> the T<str<strong>on</strong>g>RB</str<strong>on</strong>g> Committee


Study Committee Biographical Informati<strong>on</strong> 215<br />

for a Study <str<strong>on</strong>g>of</str<strong>on</strong>g> the Feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a Hazardous Materials Transportati<strong>on</strong> Cooperative Research<br />

Program and the Committee <strong>on</strong> Freight Transportati<strong>on</strong> Informati<strong>on</strong> Systems Security. He also<br />

served as a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the T<str<strong>on</strong>g>RB</str<strong>on</strong>g> Committee for a Review <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Transportati<strong>on</strong> Science<br />

and Technology Strategy, the Steering Committee for a C<strong>on</strong>ference <strong>on</strong> Railroad Research Needs,<br />

and the Transportati<strong>on</strong> Panel <str<strong>on</strong>g>of</str<strong>on</strong>g> the Committee <strong>on</strong> Science and Technology for Countering<br />

Terrorism. Dr. Gallamore currently chairs the NRC Committee for Review <str<strong>on</strong>g>of</str<strong>on</strong>g> the Federal<br />

Railroad Administrati<strong>on</strong> Research and Development Program. He received a Ph.D. in political<br />

ec<strong>on</strong>omy and government from Harvard University.<br />

Genevieve Giuliano is Senior Associate Dean <str<strong>on</strong>g>of</str<strong>on</strong>g> Research and Technology, Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

METRANS Transportati<strong>on</strong> Center, and Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor in the School <str<strong>on</strong>g>of</str<strong>on</strong>g> Policy, Planning, and<br />

Development at the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Southern California (USC). Dr. Giuliano’s research interests<br />

include the relati<strong>on</strong>ship between land use and transportati<strong>on</strong>, transportati<strong>on</strong> policy evaluati<strong>on</strong>,<br />

travel behavior, and the role <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> technology in transportati<strong>on</strong>. She has published<br />

more than 130 papers and reports, and has presented her research at numerous c<strong>on</strong>ferences in the<br />

United States and abroad. She is currently a member <str<strong>on</strong>g>of</str<strong>on</strong>g> two internati<strong>on</strong>al research c<strong>on</strong>sortia and<br />

serves <strong>on</strong> the editorial boards <str<strong>on</strong>g>of</str<strong>on</strong>g> several pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al journals. She is a former member and chair<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the T<str<strong>on</strong>g>RB</str<strong>on</strong>g> Executive Committee and a Nati<strong>on</strong>al Associate <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academies.<br />

Dr. Giuliano has served <strong>on</strong> several NRC and T<str<strong>on</strong>g>RB</str<strong>on</strong>g> policy study committees, including the<br />

Committee for the Study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Highway Capacity Improvements <strong>on</strong> Air Quality and<br />

Energy C<strong>on</strong>sumpti<strong>on</strong>, the Committee <strong>on</strong> Metropolitan Area Governance, the Committee <strong>on</strong><br />

Internati<strong>on</strong>al Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Policies and Expectati<strong>on</strong>s Affecting Public Transit, the<br />

Committee for the Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the C<strong>on</strong>gesti<strong>on</strong> Mitigati<strong>on</strong> and Air Quality Improvement<br />

Program, and the Committee <strong>on</strong> Transportati<strong>on</strong>, Land Use, Physical Activity, and Health. She is<br />

currently chairing the T<str<strong>on</strong>g>RB</str<strong>on</strong>g> policy study Committee <strong>on</strong> Funding Opti<strong>on</strong>s for Freight<br />

Transportati<strong>on</strong> Projects <str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Significance. Dr. Giuliano is also founding Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

California Transportati<strong>on</strong> Research and Technology Advisory Panel. She received a Ph.D. in<br />

social sciences from the University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Irvine.<br />

William J. Gutowski, Jr., is Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology in the Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological and<br />

Atmospheric Sciences at Iowa State University. His research is focused <strong>on</strong> the role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atmospheric dynamics in climate, with emphasis <strong>on</strong> the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic cycle and<br />

regi<strong>on</strong>al climate. Dr. Gutowski’s research program entails a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling and data<br />

analysis approaches to capture the necessary spatial and temporal scales <str<strong>on</strong>g>of</str<strong>on</strong>g> these dynamics and<br />

involves working through the Regi<strong>on</strong>al <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Modeling Laboratory at Iowa State University.<br />

His work also includes regi<strong>on</strong>al modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Arctic, African, and East Asian climates, and<br />

involves collaborati<strong>on</strong> with scientists in these regi<strong>on</strong>s. Dr. Gutowski received a Ph.D. in<br />

meteorology from the Massachusetts Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and a bachelor <str<strong>on</strong>g>of</str<strong>on</strong>g> science degree in<br />

astr<strong>on</strong>omy and physics from Yale University.<br />

Randell H. Iwasaki was appointed Chief Deputy Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the California Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong> (Caltrans) in November 2004. In that capacity, he manages the day-to-day<br />

operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the department, including an operating budget <str<strong>on</strong>g>of</str<strong>on</strong>g> nearly $13 billi<strong>on</strong> and more than<br />

21,000 employees. A licensed civil engineer, Mr. Iwasaki has been with Caltrans for more than<br />

20 years and has served as the department’s Interim Director; Deputy Director for Maintenance<br />

and Operati<strong>on</strong>s; Director <str<strong>on</strong>g>of</str<strong>on</strong>g> Caltrans District 4, covering nine counties in the San Francisco Bay


216 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Area; and Director <str<strong>on</strong>g>of</str<strong>on</strong>g> Caltrans District 9, covering the eastern porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. Mr. Iwasaki is<br />

a board member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intelligent Transportati<strong>on</strong> Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America, the Foundati<strong>on</strong> for<br />

Pavement Preservati<strong>on</strong>, and the Asian Pacific State Employee Associati<strong>on</strong> Foundati<strong>on</strong>. He is<br />

chair <str<strong>on</strong>g>of</str<strong>on</strong>g> the SHRP2 Technical Coordinating Committee for Renewal Research and serves <strong>on</strong> a<br />

T<str<strong>on</strong>g>RB</str<strong>on</strong>g> Nati<strong>on</strong>al Cooperative Highway Research Program panel <strong>on</strong> work z<strong>on</strong>e safety. He was also<br />

recently appointed to the ITS Advisory Committee to Secretary Peters <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong>. Mr. Iwasaki earned a bachelor’s degree in engineering from California<br />

Polytechnic State University, San Luis Obispo, and a master’s degree in envir<strong>on</strong>mental<br />

engineering from California State University, Fresno.<br />

Klaus H. Jacob is <str<strong>on</strong>g>Special</str<strong>on</strong>g> Research Scientist at the Lam<strong>on</strong>t-Doherty Earth Observatory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Columbia University, where he retired from a full-time positi<strong>on</strong> in 2001. He is also an Adjunct<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor at the School <str<strong>on</strong>g>of</str<strong>on</strong>g> Internati<strong>on</strong>al and Public Affairs at Columbia University, where he<br />

teaches disaster risk management. During the first two decades <str<strong>on</strong>g>of</str<strong>on</strong>g> his 36-year career with<br />

Columbia University, Dr. Jacob focused his research <strong>on</strong> basic earth physics and plate-tect<strong>on</strong>ic<br />

processes. In 1986 he c<str<strong>on</strong>g>of</str<strong>on</strong>g>ounded the Nati<strong>on</strong>al Science Foundati<strong>on</strong>–supported Nati<strong>on</strong>al Center<br />

for Earthquake Engineering Research, where he worked <strong>on</strong> engineering and risk management<br />

applicati<strong>on</strong>s for seismic hazards assessment and design criteria for large infrastructure projects.<br />

He has also worked intensively with federal, state, and local emergency management<br />

communities <strong>on</strong> risk mitigati<strong>on</strong> strategies. Dr. Jacob’s recent research efforts include studying<br />

how global climate change and related sea level rise affect the risks from coastal storm surges,<br />

flooding, and inundati<strong>on</strong>, primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure systems. This research was applied in the<br />

recent Metropolitan East Coast Regi<strong>on</strong>al Assessment, which examined the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate<br />

change scenarios <strong>on</strong> the New York metropolitan area’s transportati<strong>on</strong> infrastructure, am<strong>on</strong>g other<br />

impact areas. Dr. Jacob has authored or coauthored more than 140 scientific and technical<br />

publicati<strong>on</strong>s and book chapters. He is a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Geophysical Uni<strong>on</strong>, the<br />

Seismological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America, the Earthquake Engineering Research Institute, the American<br />

Geological Institute, and the New York Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences. Dr. Jacob holds a doctorate in<br />

geophysics from Goethe University (Frankfurt, Germany), a master <str<strong>on</strong>g>of</str<strong>on</strong>g> science degree in<br />

geophysics from Guttenberg University (Mainz), and a bachelor <str<strong>on</strong>g>of</str<strong>on</strong>g> science degree in<br />

mathematics and physics from the Technical University in Darmstadt.<br />

Thomas R. Karl is Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Climatic Data Center, a facility <str<strong>on</strong>g>of</str<strong>on</strong>g> the Commerce<br />

Department’s Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong>, a positi<strong>on</strong> he has held since<br />

1998. Before then, he was Senior Scientist at the climate center, where he analyzed global<br />

climate change, extreme weather events, and trends in global and U.S. climate over the past 100<br />

years. Dr. Karl is a Fellow <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Meteorological Society and the American<br />

Geophysical Uni<strong>on</strong>, and past Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> the Divisi<strong>on</strong> <strong>on</strong> Earth and Life Sciences’ <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Research<br />

Committee. He has edited numerous journals, has authored more than 100 peer-reviewed journal<br />

articles, was lead author <strong>on</strong> several Intergovernmental Panel Assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, and<br />

served as Co-Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> the U.S. Nati<strong>on</strong>al <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Assessment. In 2006 he was appointed to the<br />

Federal Advisory Committee for the U.S. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Science Program study <strong>on</strong> the <str<strong>on</strong>g>Impacts</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability and <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> Transportati<strong>on</strong> Systems and Infrastructure-Gulf Coast<br />

Case Study. Dr. Karl received an h<strong>on</strong>orary doctorate from North Carolina State University, a<br />

master’s degree in meteorology from the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin, and a bachelor’s degree from<br />

Northern Illinois University.


Study Committee Biographical Informati<strong>on</strong> 217<br />

Robert J. Lempert is Senior Scientist at the RAND Corporati<strong>on</strong> and an expert in science and<br />

technology policy, with a special focus <strong>on</strong> climate change, energy, and the envir<strong>on</strong>ment.<br />

An internati<strong>on</strong>ally known scholar in the field <str<strong>on</strong>g>of</str<strong>on</strong>g> decisi<strong>on</strong> making under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> deep<br />

uncertainty, Dr. Lempert is a Fellow <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Physical Society, a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al<br />

Academies’ <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Research Committee, and a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Council <strong>on</strong> Foreign Relati<strong>on</strong>s.<br />

Dr. Lempert is leading a Nati<strong>on</strong>al Science Foundati<strong>on</strong> (NSF)–funded study <strong>on</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scientific and other informati<strong>on</strong> for climate change decisi<strong>on</strong> making under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

uncertainty. He has led studies <strong>on</strong> climate change policy, l<strong>on</strong>g-term policy analysis, and science<br />

and technology investment strategies for such clients as the White House Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and<br />

Technology Policy, the U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy, NSF, and a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> multinati<strong>on</strong>al<br />

firms. A Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Policy Analysis in the RAND Graduate School, Dr. Lempert teaches a<br />

course <strong>on</strong> complex adaptive systems and policy analysis. He authored the book Shaping the<br />

Next One Hundred Years: New Methods for Quantitative, L<strong>on</strong>ger-Term Policy Analysis.<br />

Dr. Lempert holds a Ph.D. in applied physics from Harvard University and a B.A.S. degree in<br />

physics and political science from Stanford University.<br />

Luisa M. Paiew<strong>on</strong>sky is Commissi<strong>on</strong>er <str<strong>on</strong>g>of</str<strong>on</strong>g> the Massachusetts Highway (MassHighway)<br />

Department, where she oversees a combined annual capital and operating budget <str<strong>on</strong>g>of</str<strong>on</strong>g> $890 milli<strong>on</strong>,<br />

manages 1,850 employees, and has resp<strong>on</strong>sibility for more than 9,500 lane miles <str<strong>on</strong>g>of</str<strong>on</strong>g> roadway and<br />

2,800 bridges. Prior to her appointment as Commissi<strong>on</strong>er in 2005, Ms. Paiew<strong>on</strong>sky served as<br />

Assistant Secretary <str<strong>on</strong>g>of</str<strong>on</strong>g> the Executive Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> and before that as Deputy<br />

Commissi<strong>on</strong>er <str<strong>on</strong>g>of</str<strong>on</strong>g> MassHighway, resp<strong>on</strong>sible for the day-to-day operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Comm<strong>on</strong>wealth’s road and bridge program. Ms. Paiew<strong>on</strong>sky rose through the MassHighway<br />

ranks with a series <str<strong>on</strong>g>of</str<strong>on</strong>g> promoti<strong>on</strong>s that included a 4-year term as Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong> Planning and Development and Project Manager for the $35 milli<strong>on</strong> Southeast<br />

Expressway High Occupancy Vehicle (HOV) project. She spearheaded MassHighway’s<br />

participati<strong>on</strong> in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the Anders<strong>on</strong> Regi<strong>on</strong>al Transportati<strong>on</strong> Center, built <strong>on</strong> a<br />

former Superfund site. Ms. Paiew<strong>on</strong>sky is President <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bost<strong>on</strong> Chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> the Women’s<br />

Transportati<strong>on</strong> Seminar and a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Northeast Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State Highway and<br />

Transportati<strong>on</strong> Officials. She serves as a Massachusetts representative to T<str<strong>on</strong>g>RB</str<strong>on</strong>g> and is secretary<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T<str<strong>on</strong>g>RB</str<strong>on</strong>g>’s HOV Systems Committee. Ms. Paiew<strong>on</strong>sky graduated from Mount Holyoke College<br />

with a bachelor’s degree in political science and Spanish. She holds a master’s degree in city<br />

planning from Bost<strong>on</strong> University.<br />

Christopher R. Zeppie is Director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Policy, Programs and<br />

Compliance at the Port Authority <str<strong>on</strong>g>of</str<strong>on</strong>g> New York and New Jersey. Since coming to the Port<br />

Authority in 1979, Mr. Zeppie has held positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing resp<strong>on</strong>sibility as Envir<strong>on</strong>mental<br />

Compliance <str<strong>on</strong>g>Special</str<strong>on</strong>g>ist; Manager, Permits and Governmental Approvals; Attorney,<br />

Envir<strong>on</strong>mental Law Divisi<strong>on</strong>; Assistant Director, Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Management; and<br />

Chief Envir<strong>on</strong>mental Policy Officer. He is a member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dean’s Council at the State<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> New York at St<strong>on</strong>y Brook’s School <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine and Atmosphere Studies, the<br />

Advisory Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> the Envir<strong>on</strong>mental Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the New York Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, the<br />

Review Panel for the St<strong>on</strong>y Brook Storm Surge Research Group Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hydrologic<br />

Feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Storm Surge Barriers to Protect the Metropolitan New York–New Jersey Regi<strong>on</strong>,<br />

and a Stakeholder Partner <str<strong>on</strong>g>of</str<strong>on</strong>g> the Infrastructure Group for the Metropolitan East Coast Regi<strong>on</strong>al<br />

Assessment. Mr. Zeppie was appointed by Mayor Bloomberg to serve <strong>on</strong> the Jamaica Bay


218 <str<strong>on</strong>g>Special</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>290</str<strong>on</strong>g>: <str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> U.S. Transportati<strong>on</strong><br />

Watershed Advisory Committee and will be representing the Port <str<strong>on</strong>g>of</str<strong>on</strong>g> New York and New Jersey<br />

as a delegate to the C40 C<strong>on</strong>ference working group <strong>on</strong> Port Facilities in Rotterdam. He holds a<br />

bachelor <str<strong>on</strong>g>of</str<strong>on</strong>g> science degree in biology and ecology from Manhattan College, a master’s degree in<br />

marine envir<strong>on</strong>mental science from State University <str<strong>on</strong>g>of</str<strong>on</strong>g> New York at St<strong>on</strong>y Brook, and a J.D.<br />

degree from St. John’s University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Law.


TRANSPORTATION RESEARCH BOARD<br />

500 Fifth Street, NW<br />

Washingt<strong>on</strong>, DC 20001<br />

www.T<str<strong>on</strong>g>RB</str<strong>on</strong>g>.org

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!