05.08.2013 Views

INA138 INA168 High-Side Measurement CURRENT SHUNT ...

INA138 INA168 High-Side Measurement CURRENT SHUNT ...

INA138 INA168 High-Side Measurement CURRENT SHUNT ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SBOS122<br />

FEATURES<br />

®<br />

For most current data sheet and other product<br />

information, visit www.burr-brown.com<br />

<strong>High</strong>-<strong>Side</strong> <strong>Measurement</strong><br />

<strong>CURRENT</strong> <strong>SHUNT</strong> MONITOR<br />

● COMPLETE UNIPOLAR HIGH-SIDE<br />

<strong>CURRENT</strong> MEASUREMENT CIRCUIT<br />

● WIDE SUPPLY AND COMMON-MODE<br />

RANGE<br />

● <strong>INA138</strong>: 2.7V to 36V<br />

● <strong>INA168</strong>: 2.7V to 60V<br />

● INDEPENDENT SUPPLY AND INPUT<br />

COMMON-MODE VOLTAGES<br />

● SINGLE RESISTOR GAIN SET<br />

● LOW QUIESCENT <strong>CURRENT</strong> (25μA typ)<br />

● SOT23-5 PACKAGE<br />

APPLICATIONS<br />

● <strong>CURRENT</strong> <strong>SHUNT</strong> MEASUREMENT:<br />

Automotive, Telephone, Computers<br />

● PORTABLE & BATTERY-BACKUP<br />

SYSTEMS<br />

● BATTERY CHARGERS<br />

● POWER MANAGEMENT<br />

● CELL PHONES<br />

● PRECISION <strong>CURRENT</strong> SOURCE<br />

V IN+<br />

Up To 60V<br />

V+<br />

5<br />

V IN+<br />

R S<br />

3 4<br />

GND<br />

2<br />

V IN–<br />

5kΩ 5kΩ<br />

DESCRIPTION<br />

<strong>INA138</strong><br />

<strong>INA168</strong><br />

The <strong>INA138</strong> and <strong>INA168</strong> are high-side, unipolar,<br />

current shunt monitors. Wide input common-mode<br />

voltage range, low quiescent current, and tiny SOT23<br />

packaging enable use in a variety of applications.<br />

Input common-mode and power-supply voltages are<br />

independent and can range from 2.7V to 36V for the<br />

<strong>INA138</strong> and 2.7V to 60V for the <strong>INA168</strong>. Quiescent<br />

current is only 25μA, which permits connecting the<br />

power supply to either side of the current measurement<br />

shunt with minimal error.<br />

The device converts a differential input voltage to a<br />

current output. This current is converted back to a<br />

voltage with an external load resistor that sets any<br />

gain from 1 to over 100. Although designed for<br />

current shunt measurement, the circuit invites creative<br />

applications in measurement and level shifting.<br />

Both the <strong>INA138</strong> and <strong>INA168</strong> are available in<br />

SOT23-5 and are specified for the –40°C to +85°C<br />

industrial temperature range.<br />

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111<br />

Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132<br />

©1999 Burr-Brown Corporation PDS-1576B Printed in U.S.A. August, 2000<br />

I S<br />

OUT<br />

1<br />

Load<br />

R L<br />

V O = I S R S R L /5kΩ


SPECIFICATIONS<br />

At T A = –40°C to +85°C, V S = 5V, V IN+ = 12V, R OUT = 125kΩ, unless otherwise noted.<br />

PARAMETER<br />

INPUT<br />

CONDITION MIN TYP MAX MIN TYP MAX UNITS<br />

Full-Scale Sense Voltage VSENSE = V +<br />

IN – V –<br />

IN 100 500 ✽ ✽ mV<br />

Common-Mode Input Range 2.7 36 ✽ 60 V<br />

Common-Mode Rejection VIN+ = 2.7V to 40V, VSENSE = 50mV 100 120 dB<br />

VIN+ = 2.7V to 60V, VSENSE = 50mV 100 120 dB<br />

Offset Voltage (1) ±0.2 ±1 ✽ ✽ mV<br />

vs Temperature TMIN to TMAX 1 ✽ μV/°C<br />

vs Power Supply, V+ V– = 2.7V to 40V, VSENSE = 50mV 0.1 10 μV/V<br />

V– = 2.7V to 60V, VSENSE = 50mV 0.1 10 μV/V<br />

Input Bias Current<br />

OUTPUT<br />

V +<br />

IN , VIN – 2 ✽ uA<br />

Transconductance VSENSE = 10mV – 150mV 198 200 202 ✽ ✽ ✽ μA/V<br />

vs Temperature VSENSE = 100mV 10 ✽ nA/°C<br />

Nonlinearity Error VSENSE = 10mV to 150mV ±0.01 ±0.1 ✽ ✽ %<br />

Total Output Error VSENSE = 100mV ±0.5 ±2 ✽ ✽ %<br />

Output Impedance<br />

Voltage Output<br />

1 || 5 ✽ GΩ || pF<br />

Swing to Power Supply, V+ (V+) – 0.8 (V+) – 1.0 ✽ ✽ V<br />

Swing to Common Mode, VCM FREQUENCY RESPONSE<br />

VCM – 0.5 VCM – 0.8 ✽ ✽ V<br />

Bandwidth ROUT = 5kΩ 800 ✽ kHz<br />

ROUT = 125kΩ 32 ✽ kHz<br />

Settling Time (0.1%) 5V Step, ROUT = 5kΩ 1.8 ✽ μs<br />

NOISE<br />

5V Step, ROUT = 125kΩ 30 ✽ μs<br />

Output-Current Noise Density 9 ✽ pA/√Hz<br />

Total Output-Current Noise<br />

POWER SUPPLY<br />

BW = 100kHz 3 ✽ nA RMS<br />

Operating Range, V+ 2.7 36 ✽ 60 V<br />

Quiescent Current<br />

TEMPERATURE RANGE<br />

VSENSE = 0, IO = 0 25 45 ✽ ✽ μA<br />

Specification, TMIN to TMAX –40 85 ✽ ✽ °C<br />

Operating –55 125 ✽ ✽ °C<br />

Storage –65 150 ✽ ✽ °C<br />

Thermal Resistance θJA 200 ✽ °C/W<br />

NOTE: (1) Defined as the amount of input voltage, V SENSE, to drive the output to zero.<br />

®<br />

<strong>INA138</strong>, <strong>INA168</strong><br />

2<br />

<strong>INA138</strong>NA <strong>INA168</strong>NA


PIN CONFIGURATION<br />

TOP VIEW SOT23<br />

OUT<br />

GND<br />

ABSOLUTE MAXIMUM RATINGS (1)<br />

1<br />

2<br />

V +<br />

IN 3<br />

4 V –<br />

IN<br />

Supply Voltage, V+<br />

<strong>INA138</strong> ............................................................................... –0.3V to 60V<br />

<strong>INA168</strong> ............................................................................... –0.3V to 75V<br />

Analog Inputs, V IN + , VIN –<br />

<strong>INA138</strong><br />

Common Mode ............................................................... –0.3V to 60V<br />

Differential (V IN + ) – (VIN – ) ..................................................... –40V to 2V<br />

<strong>INA168</strong><br />

Common Mode ............................................................... –0.3V to 75V<br />

Differential (V IN + ) – (VIN – ) ..................................................... –40V to 2V<br />

Analog Output, Out .............................................................. –0.3V to 40V<br />

Operating Temperature ..................................................–55°C to +125°C<br />

Storage Temperature ..................................................... –55°C to +125°C<br />

Junction Temperature .................................................................... +150°C<br />

Lead Temperature (soldering, 10s) ............................................... +300°C<br />

NOTE: (1) Stresses above these ratings may cause permanent damage.<br />

Exposure to absolute maximum conditions for extended periods may degrade<br />

device reliability. These are stress ratings only, and functional operation of the<br />

device at these or any other conditions beyond those specified is not implied.<br />

PACKAGE/ORDERING INFORMATION<br />

5<br />

V+<br />

3<br />

ELECTROSTATIC<br />

DISCHARGE SENSITIVITY<br />

This integrated circuit can be damaged by ESD. Burr-Brown<br />

recommends that all integrated circuits be handled with<br />

appropriate precautions. Failure to observe proper handling<br />

and installation procedures can cause damage.<br />

ESD damage can range from subtle performance degradation<br />

to complete device failure. Precision integrated circuits may<br />

be more susceptible to damage because very small parametric<br />

changes could cause the device not to meet its published<br />

specifications.<br />

PACKAGE SPECIFIED<br />

DRAWING TEMPERATURE PACKAGE ORDERING TRANSPORT<br />

PRODUCT PACKAGE NUMBER RANGE MARKING NUMBER (1) MEDIA<br />

<strong>INA138</strong>NA SOT23-5 Surface Mount 331 –40°C to +85°C B38 <strong>INA138</strong>NA/250 Tape and Reel<br />

" " " " " <strong>INA138</strong>NA/3K Tape and Reel<br />

<strong>INA168</strong>NA SOT23-5 Surface Mount 331 –40°C to +85°C A68 <strong>INA168</strong>NA/250 Tape and Reel<br />

" " " " " <strong>INA168</strong>NA/3K Tape and Reel<br />

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /3K indicates 3000 devices per reel). Ordering 3000 pieces<br />

of “<strong>INA138</strong>NA/3K” will get a single 3000-piece Tape and Reel.<br />

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes<br />

no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change<br />

without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant<br />

any BURR-BROWN product for use in life support devices and/or systems.<br />

<strong>INA138</strong>, <strong>INA168</strong><br />

®


TYPICAL PERFORMANCE CURVES<br />

At T A = +25°C, V+ = 5V, V IN + = 12V, RL = 125kΩ, unless otherwise noted.<br />

Gain (dB)<br />

Power-Supply Rejection (dB)<br />

Total Output Error (%)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

R L = 50kΩ<br />

R L = 5kΩ<br />

–10<br />

CL = 10nF CL = 1nF CL = 100pF<br />

–20<br />

100 1k 10k 100k 1M 10M<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

®<br />

GAIN vs FREQUENCY<br />

R L = 500kΩ<br />

Frequency (Hz)<br />

20<br />

1 10 100 1k 10k 100k<br />

Frequency (Hz)<br />

2<br />

1<br />

0<br />

–1<br />

POWER-SUPPLY REJECTION vs FREQUENCY<br />

<strong>INA138</strong>, <strong>INA168</strong><br />

G = 1<br />

TOTAL OUTPUT ERROR<br />

vs POWER-SUPPLY VOLTAGE<br />

Output error is essentially<br />

independent of both<br />

V+ supply voltage and<br />

input common-mode voltage.<br />

G = 25<br />

–2<br />

0 10 20 30 40 50<br />

Power-Supply Voltage (V)<br />

G = 100<br />

G = 1<br />

G = 10<br />

G = 10<br />

60 70<br />

4<br />

Common-Mode Rejection (dB)<br />

Total Output Error (%)<br />

Quiescent Current (µA)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

COMMON-MODE REJECTION vs FREQUENCY<br />

0<br />

0.1 1 10 100 1k 10k<br />

5<br />

0<br />

–5<br />

–10<br />

–55°C<br />

+25°C<br />

Frequency (Hz)<br />

G = 1<br />

TOTAL OUTPUT ERROR vs V IN<br />

+150°C<br />

–15<br />

0 25 50 75 100 125<br />

50<br />

40<br />

30<br />

20<br />

10<br />

V IN (mV)<br />

QUIESCENT <strong>CURRENT</strong><br />

vs POWER-SUPPLY VOLTAGE<br />

0<br />

0 10 20 30 40 50<br />

Power-Supply Voltage (V)<br />

G = 10<br />

G = 100<br />

VIN = (V +<br />

IN – V –<br />

IN )<br />

+150°<br />

+125°<br />

+25°<br />

–55°<br />

Use <strong>INA168</strong> with<br />

(V+) > 36V<br />

100k<br />

150 200<br />

60 70


TYPICAL PERFORMANCE CURVES (Cont.)<br />

At T A = +25°C, V+ = 5V, V IN + = 12V, RL = 125kΩ, unless otherwise noted.<br />

200mV<br />

G = 1<br />

100mV<br />

100mV<br />

G = 1<br />

0mV<br />

STEP RESPONSE<br />

10μs/div<br />

50mV/div<br />

5<br />

G = 25<br />

0V<br />

G = 10<br />

0V<br />

STEP RESPONSE<br />

10μs/div<br />

<strong>INA138</strong>, <strong>INA168</strong><br />

1V/div<br />

500mV/div<br />

®


OPERATION<br />

Figure 1 shows the basic circuit diagram for both the<br />

<strong>INA138</strong> and <strong>INA168</strong>. Load current, IS, is drawn from<br />

supply, VS, through shunt resistor, Rs. The voltage drop in<br />

the shunt resistor, VS, is forced across Rg1 by the internal<br />

op-amp, causing current to flow into the collector of Q1.<br />

External resistor, RL, converts the output current to a voltage,<br />

VOUT, at the Out pin.<br />

The transfer function for the <strong>INA138</strong> is:<br />

®<br />

I O = g m (V IN + – VIN – ) (1)<br />

where g m = 200μA/V (2)<br />

In the circuit of Figure 1, the input voltage, (V IN + – VIN – ), is<br />

equal to I S • R S and the output voltage, V OUT, is equal to<br />

I O • R L. The transconductance, g m, of the <strong>INA138</strong> is<br />

200μA/V. The complete transfer function for the current<br />

measurement amplifier in this application is:<br />

V OUT = (I S) (R S) (200μA/V) (R L) (3)<br />

The maximum differential input voltage for accurate measurements<br />

is 0.5V, which produces a 100μA output current.<br />

A differential input voltage of up to 2V will not cause<br />

damage. Differential measurements (pins 3 and 4) must be<br />

unipolar with a more-positive voltage applied to pin 3. If a<br />

more-negative voltage is applied to pin 3, the output current,<br />

I O, will be zero, but it will not cause damage.<br />

FIGURE 1. Basic Circuit Connections.<br />

<strong>INA138</strong>, <strong>INA168</strong><br />

V+ power can be<br />

common or<br />

indepedent of<br />

load supply.<br />

VOLTAGE GAIN EXACT R L (Ω) NEAREST 1% R L (Ω)<br />

1 5k 4.99k<br />

2 10k 10k<br />

5 25k 24.9k<br />

10 50k 49.9k<br />

20 100k 100k<br />

50 250k 249k<br />

100 500k 499k<br />

V P<br />

Load Power Supply<br />

+2.7 to 36V (1)<br />

2.7 ≤ (V+) ≤ 36V (1)<br />

6<br />

BASIC CONNECTION<br />

Figure 1 shows the basic connection of the <strong>INA138</strong>. The<br />

input pins, V +<br />

IN and VIN<br />

– , should be connected as closely as<br />

possible to the shunt resistor to minimize any resistance in<br />

series with the shunt resistance. The output resistor, RL, is<br />

shown connected between pin 1 and ground. Best accuracy<br />

is achieved with the output voltage measured directly across<br />

RL. This is especially important in high-current systems<br />

where load current could flow in the ground connections,<br />

affecting the measurement accuracy.<br />

No power supply bypass capacitors are required for stability<br />

of the <strong>INA138</strong>. However, applications with noisy or high<br />

impedance power supplies may require de-coupling capacitors<br />

to reject power supply noise. Connect bypass capacitors<br />

close to the device pins.<br />

POWER SUPPLIES<br />

The input circuitry of the <strong>INA138</strong> can accurately measure<br />

beyond its power supply voltage, V+. For example, the V+<br />

power supply can be 5V while the load power supply is<br />

voltage is up to +36V (or +60V with <strong>INA168</strong>). However, the<br />

output voltage range of the Out terminal is limited by the<br />

lesser of the two voltages (see “Output Voltage Range”).<br />

SELECTING R S AND R L<br />

The value chosen for the shunt resistor, R S, depends on the<br />

application and is a compromise between small-signal accuracy<br />

and maximum permissible voltage loss in the measurement<br />

line. <strong>High</strong> values of R S provide better accuracy at<br />

V+<br />

5<br />

R G1<br />

5kΩ<br />

<strong>INA138</strong><br />

Shunt<br />

R S<br />

V + –<br />

IN<br />

VIN 3 4<br />

2<br />

I S<br />

R G2<br />

5kΩ<br />

Q1<br />

OUT<br />

1<br />

I 0<br />

Load<br />

R L<br />

+<br />

VO –<br />

NOTE: (1) Maximum V P and V+ voltage is 60V with <strong>INA168</strong>.


lower currents by minimizing the effects of offset, while low<br />

values of RS minimize voltage loss in the supply line. For<br />

most applications, best performance is attained with an RS value that provides a full-scale shunt voltage of 50mV to<br />

100mV. Maximum input voltage for accurate measurements<br />

is 500mV.<br />

RL is chosen to provide the desired full-scale output voltage.<br />

The output impedance of the <strong>INA138</strong> Out terminal is very<br />

high which permits using values of RL up to 500kΩ with<br />

excellent accuracy. The input impedance of any additional<br />

circuitry at the output should be much higher than the value<br />

of RL to avoid degrading accuracy.<br />

Some A/D converters have input impedances that will significantly<br />

affect measurement gain. The input impedance of<br />

the A/D converter can be included as part of the effective RL if its input can be modeled as a resistor to ground. Alternatively,<br />

an op-amp can be used to buffer the A/D converter<br />

input. See Figure 1 for recommended values of RL. OUTPUT VOLTAGE RANGE<br />

The output of the <strong>INA138</strong> is a current, which is converted to<br />

a voltage by the load resistor, RL. The output current remains<br />

accurate within the compliance voltage range of the output<br />

circuitry. The shunt voltage and the input common-mode<br />

and power supply voltages limit the maximum possible<br />

I S<br />

3 4<br />

<strong>INA138</strong><br />

R L<br />

OPA340<br />

FIGURE 2. Buffering Output to Drive A/D Converter.<br />

3 4<br />

<strong>INA138</strong><br />

Z IN<br />

Buffer of amp drives A/D converter<br />

without affecting gain.<br />

FIGURE 4. Offsetting the Output Voltage.<br />

1<br />

Gain Set by R 1 ⎥⎥ R 2<br />

Output Offset = (V R )R 2<br />

R 1 +R 2<br />

a). Using resistor divider.<br />

V R<br />

R 1<br />

R 2<br />

V 0<br />

7<br />

output swing. The maximum output voltage compliance is<br />

limited by the lower of the two equations below:<br />

Vout max = (V+) – 0.7V – (V +<br />

IN – VIN<br />

– ) (4)<br />

or<br />

Vout max = V –<br />

IN – 0.5V (5)<br />

(whichever is lower)<br />

BANDWIDTH<br />

<strong>Measurement</strong> bandwidth is affected by the value of the load<br />

resistor, RL. <strong>High</strong> gain produced by high values of RL will<br />

yield a narrower measurement bandwidth (see Typical Performance<br />

Curves). For widest possible bandwidth, keep the<br />

capacitive load on the output to a minimum. Reduction in<br />

bandwidth due to capacitive load is shown in the Typical<br />

Performance Curves.<br />

If bandwidth limiting (filtering) is desired, a capacitor can be<br />

added to the output, as shown in Figure 3. This will not<br />

cause instability.<br />

APPLICATIONS<br />

The <strong>INA138</strong> is designed for current shunt measurement<br />

circuits as shown in Figure 1, but its basic function is useful<br />

in a wide range of circuitry. A creative engineer will find<br />

many unforeseen uses in measurement and level shifting<br />

circuits. A few ideas are shown.<br />

3 4<br />

<strong>INA138</strong><br />

FIGURE 3. Output Filter.<br />

3 4<br />

<strong>INA138</strong><br />

1<br />

f –3dB =<br />

R L<br />

V+<br />

R L<br />

Gain Set by R L<br />

Output Offset = (100µA)(R L )<br />

(independent of V+)<br />

b). Using current source.<br />

1<br />

2πRLCL V 0<br />

C L<br />

REF200<br />

100µA<br />

<strong>INA138</strong>, <strong>INA168</strong><br />

f –3dB<br />

V O<br />

®


FIGURE 5. Bipolar Current <strong>Measurement</strong>.<br />

+5V<br />

5<br />

FIGURE 6. Bipolar Current <strong>Measurement</strong> Using Differential Input of A/D Converter.<br />

®<br />

V+<br />

1 2<br />

R L<br />

25kΩ<br />

+<br />

48V<br />

+5V<br />

4 3<br />

<strong>INA138</strong><br />

<strong>INA138</strong>, <strong>INA168</strong><br />

5<br />

IN4148<br />

R S<br />

1 2<br />

10KΩ<br />

3<br />

<strong>INA138</strong><br />

A/D converter programmed for differential input.<br />

Depending on polarity of current, one <strong>INA138</strong> provides<br />

an output voltage, the other's output is zero.<br />

2<br />

3<br />

4<br />

4<br />

<strong>INA168</strong><br />

±1A<br />

1<br />

1Ω<br />

5<br />

+5V<br />

R L<br />

25kΩ<br />

4 3<br />

5kΩ 5kΩ<br />

<strong>INA168</strong><br />

2<br />

8<br />

IN4148<br />

1<br />

+5V<br />

5<br />

10KΩ<br />

Digital<br />

I/O<br />

MUX<br />

Clock<br />

Divider<br />

Oscillator<br />

+5V<br />

100KΩ<br />

REFOUT BUFIN REF<br />

Charger<br />

PGIA<br />

Load<br />

Comparator<br />

SIGN<br />

ADS7870<br />

0 to 1V<br />

VO BUF<br />

BUF OUT<br />

12-Bit<br />

A/D<br />

Serial<br />

I/O


Other <strong>INA168</strong>s<br />

––<br />

––<br />

<strong>INA168</strong><br />

<strong>INA168</strong><br />

FIGURE 7. Multiplexed <strong>Measurement</strong> Using Logic Signal for Power.<br />

V+<br />

V+<br />

IN4148<br />

R L<br />

9<br />

+5V<br />

Digital I/O on ADS7870 provides power to<br />

select the desired <strong>INA168</strong>. Diodes prevent<br />

output current of " on" <strong>INA168</strong> from flowing<br />

into "off" <strong>INA168</strong>.<br />

Digital<br />

I/O<br />

MUX<br />

Clock<br />

Divider<br />

Oscillator<br />

REFOUT BUFIN REF<br />

PGIA<br />

ADS7870<br />

BUF<br />

Serial<br />

I/O<br />

<strong>INA138</strong>, <strong>INA168</strong><br />

BUF OUT<br />

12-Bit<br />

A/D<br />

®


IMPORTANT NOTICE<br />

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue<br />

any product or service without notice, and advise customers to obtain the latest version of relevant information<br />

to verify, before placing orders, that information being relied on is current and complete. All products are sold<br />

subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those<br />

pertaining to warranty, patent infringement, and limitation of liability.<br />

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in<br />

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent<br />

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily<br />

performed, except those mandated by government requirements.<br />

Customers are responsible for their applications using TI components.<br />

In order to minimize risks associated with the customer’s applications, adequate design and operating<br />

safeguards must be provided by the customer to minimize inherent or procedural hazards.<br />

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent<br />

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other<br />

intellectual property right of TI covering or relating to any combination, machine, or process in which such<br />

semiconductor products or services might be or are used. TI’s publication of information regarding any third<br />

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.<br />

Copyright © 2000, Texas Instruments Incorporated

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!