04.08.2013 Views

Power Switch/Amplifier - Closed

Power Switch/Amplifier - Closed

Power Switch/Amplifier - Closed

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

The CA3094 unique monolithic programmable power<br />

switch/amplifier IC consists of a high-gain preamplifier driving<br />

a power-output amplifier stage. It can deliver average power of<br />

3 watts of peak power of 10W to an external load, and can be<br />

operated from either a single or dual power supply. This Note<br />

briefly describes the characteristics of the CA3094, and<br />

illustrates its use in the following circuit applications:<br />

• Class A Instrumentations and <strong>Power</strong> <strong>Amplifier</strong>s<br />

• Class A Driver-<strong>Amplifier</strong> for Complementary <strong>Power</strong><br />

Transistors<br />

• Wide Frequency Range <strong>Power</strong> Multivibrators<br />

• Current- or Voltage Controlled Oscillators<br />

• Comparators (Threshold Detectors)<br />

• Voltage Regulators<br />

• Analog Timers (Long Time Delays)<br />

• Alarm Systems<br />

• Motor-Speed Controllers<br />

• Thyristor Firing Circuits<br />

• Battery Charger Regulator Circuit<br />

• Ground Fault Interrupter Circuits<br />

DIFF.<br />

VOLTAGE<br />

INPUT<br />

2<br />

DIFF.<br />

VOLTAGE<br />

INPUT<br />

AMPLIFIER<br />

BIAS INPUT<br />

I ABC<br />

Q4<br />

3<br />

Q1<br />

D2<br />

Q2<br />

Q5<br />

4-165<br />

D3<br />

5 Q3<br />

D1<br />

Some Applications of a Programmable<br />

<strong>Power</strong> <strong>Switch</strong>/<strong>Amplifier</strong><br />

Application Note April 1994<br />

AN6048.1<br />

Authors: L.R. Campbell and H.A. Wittlinger<br />

EXTERNAL FREQUENCY<br />

COMPENSATION OR INHIBIT INPUT<br />

Q7<br />

Q6<br />

D4<br />

Q11<br />

Q9<br />

D5<br />

Q8<br />

Q10<br />

1<br />

R1 47kΩ<br />

D6<br />

4<br />

Circuit Description<br />

FIGURE 1. CA3094 CIRCUIT SCHEMATIC DIAGRAM<br />

7<br />

V-<br />

Q12<br />

The CA3094 series of devices offers a unique combination<br />

of circuit flexibility and power-handling capability. Although<br />

these monolithic ICs dissipate only a few microwatts when<br />

quiescent, they have a high current-output capability (100mA<br />

average, 300mA peak) in the active state, and the premiumgrade<br />

devices can operate at supply voltages up to 44V.<br />

Figure 1 shows a schematic diagram of the CA3094. The<br />

portion of the circuit preceding transistors Q12 and Q13 is<br />

the preamplifier section and is generically similar to that of<br />

the CA3080 Operational Transconductance <strong>Amplifier</strong> (OTA)<br />

[1, 2]. The CA3094 circuits can be gain-programmed by<br />

either digital and/or analog signals applied to a separate<br />

<strong>Amplifier</strong>-Bias-Current (I ABC ) terminal (No. 5 in Figure 1) to<br />

control circuit sensitivity. Response of the amplifier is<br />

essentially liner as a function of the current at terminal 5.<br />

This additional signal input “port” provides added flexibility in<br />

may applications. Thus, the output of the amplifier is a<br />

function of input signals applied differentially at terminals 2<br />

and 3 and/or in a singly-ended configuration at terminal 5.<br />

The output portion of the monolithic circuit in the CA3094<br />

consists of a Darling connected transistor pair with access<br />

provided to both the collector and emitter terminals to<br />

provide capability to “sink” and/or “source” current.<br />

The CA3094 series of circuits consists of six types that differ<br />

only in voltage-handling capability and package options, as<br />

shown below; other electrical characteristics are identical.<br />

V+<br />

R 1<br />

2kΩ<br />

8<br />

“SINK”<br />

OUTPUT<br />

Q13<br />

6<br />

“SOURCE”<br />

(DRIVE)<br />

OUTPUT<br />

OUTPUT<br />

MODE<br />

OUTPUT<br />

TERM<br />

INPUTS<br />

INV NON-INV<br />

“Source” 6 2 3<br />

“Sink” 8 3 2<br />

1-800-4-HARRIS or 407-727-9207 | Copyright © Harris Corporation 1994


PACKAGE OPTIONS MAXIMUM VOLTAGE RATING<br />

CA3094S, CA3094T 24V<br />

CA3094AS, CA3094AT 36V<br />

CA3094BS, CA3094BT 44V<br />

The suffix “S” indicates circuits packaged in TO-5 enclosures<br />

with leads formed to an 8 lead dual in line configuration (0.1<br />

inch pin spacing). The suffix “T” indicates circuits packaged<br />

in 8 lead TO-5 enclosures with straight leads. The generic<br />

CA3094 type designation is used throughout the Note.<br />

Class A Instrumentation <strong>Amplifier</strong>s<br />

One of the more difficult instrumentation problems frequently<br />

encountered is the conversion of a differential input signal to<br />

a single-ended output signal. Although this conversion can<br />

be accomplished in a straightforward design through the use<br />

of classical op amps, the stringent matching requirements of<br />

resistor ratios in feedback networks make the conversion<br />

particularly difficult from a practical standpoint. Because the<br />

gain of the preamplifier section in the CA3094 can be<br />

defined as the product of the transconductance and the load<br />

resistance (g m R L ), feedback is not needed to obtain<br />

predictable open-loop gain performance. Figure 2 shows the<br />

CA3094 in this basic type of circuit.<br />

DIFFERENTIAL<br />

THERMOCOUPLE<br />

10kΩ<br />

100Ω<br />

IABC 260μA<br />

110kΩ<br />

7<br />

5<br />

2kΩ<br />

2kΩ<br />

8<br />

1W<br />

3 +<br />

RO 2kΩ<br />

EDIFF CA3094A<br />

≤13kΩ<br />

2 -<br />

6<br />

IO IO 10kΩ RL 36kΩ<br />

1<br />

4<br />

RE 560Ω<br />

NOTES:<br />

-30V<br />

1. Preamp gain (AV ) = gm RL = (5) (10 -3 ) (36) (10 3 ) = 180<br />

(Output at terminal 1).<br />

2. For linear operation: Differential Input ≤| ±26mV |<br />

(With approx. 1% deviation from linearity).<br />

3. Output voltage (EO ) = AV (±eDIFF ) = (180) (±26mV) = ±4.7V<br />

4.7V<br />

( g<br />

4.<br />

m<br />

R<br />

L<br />

) ( e<br />

DIFF<br />

)<br />

IO ≈ -------------- = 8.35mA<br />

560Ω<br />

IO ≈ -----------------------------------------<br />

RE FIGURE 2. OPEN LOOP INSTRUMENTATION AMPLIFIER<br />

WITH DIFFERENTIAL INPUT AND SINGLE<br />

ENDED OUTPUT<br />

The gain of the preamplifier section (to terminal No. 1) is g m<br />

R L = (5 x 10 -3 ) (36 x 103) = 180. The transconductande g m<br />

is a function of the current into terminal No. 5, I ABC , the<br />

4-166<br />

Application Note 6048<br />

amplifier-bias-current. In this circuit an I ABC of 260μA results<br />

in a g m of 5mS. The operating point of the output stage is<br />

controlled by the 2kΩ potentiometer. With no differential input<br />

signal (e DIFF = 0), this potentiometer is adjusted to obtain a<br />

quiescent output current I O of 12mA. This output current is<br />

established by the 560Ω emitter resistor, R E , as follows:<br />

( gm R<br />

L<br />

) ( e<br />

DIFF<br />

)<br />

I<br />

O<br />

≈ -------------------------------------------<br />

R<br />

E<br />

Under the conditions described, an input swing e DIFF of<br />

±26mV produces a variation in the output current I O of<br />

±8.35mA. The nominal quiescent output voltage is 12mA<br />

times 560Ω or 6.7V. This output level drifts approximately<br />

-4mV, or -0.0595%, for each o C change in temperature. Output<br />

drift is caused by temperature induced variations in the base<br />

emitter voltage of the two output transistors, Q12 and Q13.<br />

R<br />

(NOTE 5)<br />

5kΩ<br />

50kΩ/ARM<br />

TRANSDUCER<br />

BRIDGE<br />

97.6kΩ<br />

100kΩ<br />

±1%<br />

10μA<br />

750kΩ<br />

3<br />

2<br />

+<br />

-<br />

5<br />

7<br />

CA3094<br />

4<br />

82Ω<br />

1000pF<br />

8<br />

1<br />

6<br />

0-1mA<br />

8.4V<br />

820Ω<br />

200Ω<br />

CAL<br />

M<br />

NOTE:<br />

5. Set to optimize CMRR.<br />

FIGURE 3. SINGLE SUPPLY DIFFERENTIAL BRIDGE AMPLIFIER<br />

1kΩ<br />

100Ω<br />

±1%<br />

THERMO-<br />

COUPLE<br />

240kΩ<br />

1kΩ<br />

100kΩ<br />

ZERO ADJ<br />

120K<br />

100Ω<br />

±1%<br />

110kΩ<br />

3<br />

2<br />

+<br />

5<br />

7<br />

CA3094<br />

-<br />

4<br />

1000pF<br />

8<br />

1<br />

100kΩ<br />

±1%<br />

6<br />

82Ω<br />

+12V<br />

M<br />

910Ω<br />

±1%<br />

200Ω<br />

V OUT<br />

OUTPUT 1V FULL SCALE<br />

0-1mA<br />

1mV FROM<br />

THERMO-<br />

COUPLE<br />

FULL SCALE<br />

OUTPUT<br />

CURRENT<br />

IN914<br />

FIGURE 4. SINGLE SUPPLY AMPLIFIER FOR THERMO-<br />

COUPLE SIGNALS


Figure 3 shows the CA3094 used in conjunction with a<br />

resistive-bridge input network; and Figure 4 shows a singlesupply<br />

amplifier for thermocouple signals. The RC networks<br />

connected between terminals 1 and 4 in Figure 3 and Figure<br />

4 provide compensation to assure stable operation.<br />

The components of the RC network are chosen so that<br />

1<br />

--------------- ≈ 2MHz<br />

2πRC<br />

Class A <strong>Power</strong> <strong>Amplifier</strong>s<br />

The CA3094 is attractive for power-amplifier service<br />

because the output transistor can control current up to<br />

100mA (300mA peak), the premium devices.<br />

CA3094B can operate at supply voltages up to 44V, and the<br />

TO-5 package can dissipate power up to 1.6W when<br />

equipped with a suitable heat sink that limits the case<br />

temperature to 55 o C.<br />

Figure 5 shows a Class A amplifier circuit using the CA3094A<br />

that is capable of delivering 280mW to a 350Ω resistive load.<br />

This circuit has a voltage gain of 60dB and a 3dB band width<br />

of about 50kHz. Operation is stable without the use of a<br />

phase-compensation network. Potentiometer R is used to<br />

establish the quiescent operating point for class A operation.<br />

E IN<br />

-15V<br />

10kΩ<br />

R<br />

10kΩ<br />

+15V<br />

3<br />

2<br />

100Ω 100Ω<br />

The circuit of Figure 6 illustrates the use of the CA3094 in a<br />

class a power-amplifier circuit driving a transformer-coupled<br />

load. With dual power supplies of +7.5V and -7.5V, a base<br />

resistor R B of 30kΩ, and an emitter resistor R E of 50Ω,<br />

CA3094 dissipation is typically 625mW. With supplies of<br />

+10V and -10V, R B of 40kΩ, and R E of 45Ω, the dissipation<br />

is 1.5W. Total harmonic distortion is 0.4% at a power output<br />

level of 220mW with a reflected load resistance R P of 310Ω,<br />

and is 1.4% for an output of 600mW with an R P of 128Ω. The<br />

setting of potentiometer R establishes the quiescent<br />

operating point for class A operation. The 1kΩ resistor<br />

connected between terminals 6 and 2 provides DC feedback<br />

to stabilize the collector current of the output transistor. The<br />

AC gain is established bye the ratio of the 1MΩ resistor<br />

4-167<br />

56kΩ<br />

-<br />

5<br />

+<br />

7<br />

CA3094A<br />

1<br />

4<br />

RL 100kΩ 350Ω<br />

8<br />

6<br />

-15V<br />

+15V<br />

V OUT<br />

FIGURE 5. CLASS A AMPLIFIER -280mW CAPABILITY INTO<br />

A RESISTIVE LOAD<br />

Application Note 6048<br />

connected between terminals 8 and 3 the 1kΩ resistor<br />

connected to terminal 3. Phase compensation is provided by<br />

the 680pF capacitor connected to terminal 1.<br />

-V<br />

10kΩ<br />

1kΩ<br />

51Ω<br />

R<br />

10kΩ<br />

1kΩ<br />

3<br />

2<br />

+V<br />

R B<br />

680pF<br />

-<br />

5<br />

+<br />

CA3094A<br />

1<br />

Class A Driver <strong>Amplifier</strong> for<br />

Complementary <strong>Power</strong> Transistors<br />

7<br />

4<br />

1MΩ<br />

0.01μF<br />

The CA3094 configuration and characteristics are ideal for<br />

driving complementary power-output transistors [3]; a typical<br />

circuit is shown in Figure 7. This circuit can provide 12W of<br />

audio power output into an 8Ω load with intermodulation<br />

distortion (IMD) of 0.2% when 60Hz and 2kHz signals are<br />

mixed in a 4:1 ratio. Intermodulation distortion is shown as a<br />

function of power output in Figure 8.<br />

The large amount of loop gain and the flexibility of feedback<br />

arrangements with the CA3094 make it possible to<br />

incorporate the tone controls into a feedback network that is<br />

closed around the entire amplifier system. The tone controls<br />

in the circuit of Figure 7 are part of the feedback network<br />

connected from the amplifier output (junction of the 330Ω<br />

and 47Ω resistors driven by the emitters of Q2 and Q3) to<br />

terminal 3 of the CA3094. Figure 9 shows voltage gain as a<br />

function of frequency with tone controls adjusted for “flat”<br />

response and for responses at the extremes of tone-control<br />

rotation. The use of tone controls incorporated in the feedback<br />

network results in excellent signal to noise ratio. Hum and<br />

noise are typically 700μV (83dB down) at the output.<br />

8<br />

6<br />

R P<br />

R E<br />

+V<br />

-V<br />

R L<br />

GEN. RADIO<br />

TYPE 1840-A<br />

OUTPUT POWER<br />

METER OR<br />

EQUIVALENT<br />

+<br />

1000μF<br />

-<br />

TYPICAL DATA<br />

DEVICE<br />

DISSIPATION 625MW 1.5W<br />

RB 30kΩ 40kΩ<br />

V+ +7.5V +10V<br />

V- -7.5V -10V<br />

RE 50Ω 45Ω<br />

PO 220mW 600mW<br />

THD 0.4% 1.4%<br />

RP 310Ω 128Ω<br />

FIGURE 6. CLASS A AMPLIFIER WITH TRANSFORMER<br />

COUPLED LOAD


In addition to the savings resulting from reduced parts count<br />

circuit size, the use of the CA3094 leads to further savings in the<br />

power supply system. Typical values of power supply rejection<br />

and common mode rejection are 90dB and 100dB, respectively.<br />

An amplifier with 40dB gain and 90dB power supply rejection<br />

would require a 31mV power-supply ripple to produce 1mV of<br />

hum at the output. Therefore, no filtering is required other than<br />

that provided by the energy storage capacitors at the output of<br />

the rectifier system shown in Figure 7.<br />

For application in which the operating temperature range is<br />

limited (e.g., consumer service the thermal compensation<br />

network (shaded area) can be replaced by a more<br />

economical configuration consisting of a resistor diode<br />

combination (8.2Ω and 1N5391) as shown in Figure 7.<br />

“BOOST”<br />

(CW) 15kΩ<br />

0.12μF<br />

1800Ω<br />

68Ω<br />

INPUT<br />

25μF<br />

+<br />

0.001μF<br />

C 1<br />

TREBLE<br />

R 1<br />

0.2μF<br />

1kΩ<br />

“CUT”<br />

(CCW)<br />

0.001μF<br />

VOLUME<br />

2<br />

3<br />

0.01μF<br />

5600Ω<br />

5μF<br />

+<br />

680<br />

kΩ<br />

4-168<br />

+<br />

5<br />

<strong>Power</strong> Multivibrators (Astable and<br />

Monostable)<br />

The CA3094 is suitable for use in power multivibrators<br />

because its high current output transistor can drive low<br />

impedance circuits while the input circuitry and the frequency<br />

determining elements are operating at micropower levels. A<br />

typical example of an astable multivibrator using the CA9034<br />

with a dual power supply is shown in Figure 10. The output<br />

frequency fOUT is determined as follows:<br />

1<br />

fOUT = --------------------------------------------------------------<br />

2RC<br />

IN<br />

[ ( 2R1 ⁄ R2)<br />

+ 1]<br />

If R2 is equal to 3.08 R1, then f OUT is simply the reciprocal<br />

of RC.<br />

TYPICAL PERFORMANCE DATA FOR 12W AUDIO AMPLIFIER CIRCUIT<br />

<strong>Power</strong> Output (8Ω load, Tone Control set at “Flat”)<br />

Music (at 5% THD, regulated supply). . . . . . . . . . . . . . . . . . . 15W<br />

Continuous (at 0.2% IMD, 60Hz and 2kHz<br />

mixed in a 4:1 ratio, unregulated supply)<br />

See Figure 8 in AN6048. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12W<br />

Total Harmonic Distortion<br />

At 1W, unregulated supply . . . . . . . . . . . . . . . . . . . . . . . . . .0.05%<br />

At 12W, unregulated supply . . . . . . . . . . . . . . . . . . . . . . . . .0.57%<br />

NOTES:<br />

6. For standard input: Short C2 ;R1 = 250kΩ,C1 = 0.047μF; remove R2 .<br />

7<br />

CA3094B<br />

“BOOST” 100kΩ “CUT”<br />

(CW)<br />

(CCW)<br />

BASS<br />

-<br />

4<br />

820Ω<br />

0.47<br />

μF<br />

0.02μF<br />

1<br />

10kΩ<br />

6<br />

6.8pF<br />

1Ω<br />

8<br />

8 LEAD<br />

TO-5<br />

Application Note 6048<br />

220Ω<br />

1W<br />

220Ω<br />

1W<br />

30Ω†<br />

27Ω<br />

15μF<br />

+<br />

Q2 2N6292<br />

Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40dB<br />

Hum and Noise (below continuous power output) . . . . . . . . . . .83dB<br />

Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250kΩ<br />

Tone Control Range. . . . . . . . . . . . . . . . . . .See Figure 9 in AN6048<br />

7. For ceramic cartridge input: C 1 = 0.0047μF, R 1 = 2.5MΩ, remove jumper from C 2 ; leave R 2.<br />

FIGURE 7. 12W AUDIO AMPLIFIER CIRCUIT FEATURING TRUE COMPLEMENTARY SYMMETRY OUTPUT STAGE WITH CA3094 IN<br />

DRIVER STAGE<br />

Q 1<br />

Q 3<br />

THERMAL<br />

COMPENSATION<br />

NETWORK†<br />

C 2<br />

0.47μF<br />

JUMPER<br />

+<br />

2N6292<br />

0.47Ω<br />

0.47Ω<br />

2N6107<br />

4700μF<br />

+<br />

D1 - D4 1N5391<br />

4700<br />

μF<br />

330Ω<br />

47Ω<br />

V+<br />

V-<br />

D 1<br />

D 2<br />

D 3<br />

D 4<br />

3μH<br />

22Ω<br />

R 2<br />

1.8MΩ<br />

R L<br />

8Ω<br />

120V<br />

60Hz<br />

STANCOR<br />

NO. P-8609<br />

OR EQUIVALENT<br />

(120VAC TO<br />

26.8VCT AT 1A)<br />

†OPTIONAL THERMAL<br />

COMPENSATION<br />

NETWORK<br />

8.2Ω<br />

1N5391


INTERMODULATION DISTORTION (%)<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

UNREGULATED SUPPLY LOAD 8Ω<br />

60Hz AND 12kHz<br />

60Hz AND 2kHz<br />

60Hz AND 7kHz<br />

0 2 4 6 8 10 12 14<br />

POWER OUTPUT (W)<br />

FIGURE 8. INTERMODULATION DISTORTION vs POWER OUTPUT<br />

VOLTAGE GAIN (dB)<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

51kΩ<br />

43kΩ<br />

10<br />

R2<br />

R1<br />

BASS CUT<br />

2 4 68<br />

100<br />

BASS BOOST<br />

2 4 68 2 4 6 8 2 4 68<br />

1000 10K 100K<br />

FREQUENCY (Hz)<br />

Figure 11 is a single supply astable multivibrator circuit which<br />

illustrates the use of the CA3094 for flashing an incandescent<br />

lamp. With the component values shown, this circuit produces<br />

one flash per second with a 25% “on” time while delivering<br />

output current in excess of 100mA. During the 75% “off” time<br />

it idles with micropower consumption. The flashing rate can<br />

be maintained with in ±2% of the nominal value over a battery<br />

voltage range from 6V to 15V and a temperature excursion<br />

from 0 o C to 70 o C. The CA3094 series of circuits can supply<br />

peak-power output in excess of 10W when used in this type of<br />

4-169<br />

TREBLE BOOST<br />

TREBLE CUT<br />

FLAT<br />

FIGURE 9. VOLTAGE GAIN vs FREQUENCY<br />

1000pF<br />

R<br />

100kΩ<br />

2<br />

3<br />

C<br />

300kΩ<br />

+<br />

-<br />

5<br />

7<br />

CA3094A<br />

4<br />

8<br />

6<br />

-15V<br />

1kΩ<br />

+15V<br />

OUTPUT<br />

f OUT ≈ 5kHz<br />

FIGURE 10. ASTABLE MULTIVIBRATOR USING DUAL SUPPLY<br />

Application Note 6048<br />

circuit. The frequency of oscillation f OSC is determined by the<br />

resistor rations, as follows:<br />

I<br />

fOSC = ------------------------------------------------------------------<br />

( 2RCln)<br />

[ ( 2R1 ⁄ R2)<br />

+ 1]<br />

where:<br />

R<br />

A<br />

R<br />

B<br />

R1 = ---------------------<br />

R<br />

A<br />

+ R<br />

B<br />

3MΩ<br />

12MΩ<br />

where:<br />

R A<br />

R B<br />

R2<br />

18MΩ<br />

C<br />

0.47μF<br />

R<br />

4.3MΩ<br />

2<br />

3<br />

1.2MΩ<br />

NOTES:<br />

1. Flash/s.<br />

I<br />

f<br />

OSC<br />

= ------------------------------------------------------------------<br />

( 2RCln)<br />

[ ( 2R1 ⁄ R2)<br />

+ 1]<br />

R<br />

A<br />

R<br />

B<br />

R1 = ----------------------<br />

R<br />

A<br />

+ R<br />

B<br />

CA3094<br />

Provisions can easily be made in the circuit of Figure 11 to<br />

vary the multivibrator pulse length while maintaining an<br />

essentially constant pulse repetition rate. The circuit shown<br />

in Figure 12 incorporates a potentiometer R P for varying the<br />

width of pulses generated by the astable multivibrator driving<br />

light emitting diode (LED).<br />

+<br />

-<br />

5<br />

4<br />

7<br />

6<br />

8<br />

+V<br />

NO. 57<br />

2. 25% Duty Cycle<br />

3. Frequency Independent of V+ from 6V - 15VDC FIGURE 11. ASTABLE MULTIVIBRATOR USING SINGLE SUPPLY<br />

27kΩ<br />

50kΩ<br />

27kΩ<br />

R P<br />

100kΩ<br />

R<br />

2<br />

3<br />

300kΩ<br />

100kΩ<br />

C<br />

560pF<br />

+<br />

-<br />

5<br />

CA3094A<br />

4<br />

7<br />

8<br />

6<br />

+30V<br />

510Ω<br />

LED<br />

FIGURE 12. ASTABLE POWER MULTIVIBRATOR WITH<br />

PROVISIONS FOR VARYING DUTY CYCLE


Figure 13 shows a circuit incorporating independent controls<br />

(r ON and r OFF ) to establish the “on” and “off” periods of the<br />

current supplied to the LED. The network between points “A”<br />

and “B” is analogous in function to that of the 100kΩ resistor R<br />

in Figure 12.<br />

47kΩ<br />

47kΩ<br />

“A” IN914<br />

r OFF<br />

“B”<br />

r ON<br />

100kΩ<br />

C<br />

560pF<br />

The CA3094 is also suitable for use in monostable<br />

multivibrators as shown in Figure 14. In essence, this circuit<br />

is a pulse counter in which the duration of the output pulses<br />

is independent of trigger pulse duration. The meter reading<br />

is a function of the pulse repetition rate which can be<br />

monitored with the speaker.<br />

Current or Voltage Controlled Oscillators<br />

Because the transconductance of the CA9034 varies linearly<br />

as a function of the amplifier bias current (I ABC ) supplied to<br />

terminal 5, the design of a current or voltage controlled<br />

oscillator is straightforward, a shown in Figure 15. Figure 16<br />

and Figure 17 show oscillator frequency as a function of I ABC<br />

for a current controlled oscillator for two different values of<br />

2<br />

3<br />

4-170<br />

300kΩ<br />

+<br />

5<br />

7<br />

CA3094A<br />

-<br />

4<br />

8<br />

6<br />

+30V<br />

510Ω<br />

LED<br />

FIGURE 13. ASTABLE POWER MULTIVIBRATOR WITH<br />

PROVISIONS FOR INDEPENDENT CONTROL OF<br />

LED “ON-OFF” PERIODS<br />

100pF<br />

1V<br />

0V<br />

1MΩ<br />

1N914<br />

33kΩ<br />

0.1μF<br />

TRIGGER<br />

INPUT<br />

220kΩ<br />

1N914<br />

1MΩ<br />

100μF<br />

+15V<br />

0.005μF<br />

300kΩ<br />

2<br />

3<br />

+<br />

5<br />

CA3094A<br />

-<br />

4<br />

+<br />

-<br />

7<br />

+5V<br />

270Ω<br />

8<br />

6<br />

†<br />

M<br />

200Ω<br />

200μF<br />

-3V<br />

0-1mA<br />

5V<br />

0V<br />

+<br />

-<br />

OUTPUT<br />

1KΩ<br />

100Ω<br />

100Ω<br />

SPEAKER<br />

1N914<br />

1ms<br />

† Full Scale Deflection = 83P/s<br />

FIGURE 14. POWER MONOSTABLE MULTIVIBRATOR<br />

Application Note 6048<br />

capacitor C in Figure 15. The addition of an appropriate resistor<br />

(R) in series with terminal 5 in Figure 15 converts the circuit into<br />

a voltage controlled oscillator. Linearity with respect to either<br />

current or voltage control is within 1% over the middle half of<br />

the characteristics. However, variation in the symmetry of the<br />

output pulses was a function of frequency is an inherent<br />

characteristic of the circuit in Figure 15, and leads to distortion<br />

when this circuit is used to drive the phase detector in phaselocked-loop<br />

applications. This type distortion can be eliminated<br />

by interposing an appropriate flip-flop between the output of the<br />

oscillator and the phase locked discriminator circuits.<br />

47kΩ<br />

47kΩ<br />

20kΩ<br />

1N914<br />

100Ω<br />

C<br />

2<br />

CURRENT INPUT<br />

OR<br />

VOLTAGE INPUT<br />

+<br />

7<br />

CA3094A<br />

3 -<br />

6<br />

5<br />

R<br />

4<br />

8<br />

1kΩ<br />

+15V<br />

OUTPUT<br />

FIGURE 15. CURRENT OR VOLTAGE CONTROLLED OSCILLATOR<br />

FREQUENCY (Hz)<br />

SUPPLY VOLTAGE V+ = 15V<br />

500<br />

C = 1000pF TERMINAL NO. 3 TO GND IN FIGURE 15<br />

AMBIENT TEMPERATURE TA = 25<br />

400<br />

o C<br />

300<br />

200<br />

100<br />

0 100 200 300 400 500<br />

AMPLIFIER BIAS CURRENT (μA)<br />

600<br />

FIGURE 16. FREQUENCY vs I ABC FOR C = 1000pF FOR<br />

CIRCUIT IN FIGURE 15<br />

FREQUENCY (kHz)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

SUPPLY VOLTAGE V+ = 15V<br />

C = 1000pF TERMINAL NO. 3 TO GND IN FIGURE 15<br />

AMBIENT TEMPERATURE T A = 25 o C<br />

0 100 200 300 400 500<br />

AMPLIFIER BIAS CURRENT (μA)<br />

600<br />

FIGURE 17. FREQUENCY vs I ABC FOR C = 100pF FOR<br />

CIRCUIT IN FIGURE 15


Comparators (Threshold Detectors)<br />

Comparator circuits are easily implemented with the CA3094,<br />

as shown by the circuits in Figure 18. The circuit of Figure 18A<br />

is arranged for dual supply operation; the input voltage<br />

exceeds the positive threshold, the output voltage swings<br />

essentially to the negative supply voltage rail (it is assumed<br />

that there is negligible resistive loading on the output<br />

terminal). An input voltage that exceeds the negative<br />

threshold value results in a positive voltage output essentially<br />

equal to the positive supply voltage. The circuit in Figure 18B,<br />

connected for single supply operation, functions similarly.<br />

± THRESHOLD =<br />

± SUPPLY<br />

R1<br />

R1 + R2<br />

300kΩ<br />

2kΩ<br />

R =<br />

INPUT<br />

R1 R2<br />

R1 + R2<br />

3<br />

5<br />

+<br />

7<br />

8<br />

51kΩ<br />

2<br />

CA3094A<br />

-<br />

6<br />

R1<br />

100kΩ<br />

R2<br />

4 -15V<br />

51kΩ<br />

RA<br />

200kΩ<br />

150kΩ<br />

3<br />

2<br />

100kΩ<br />

FIGURE 18A. DUAL SUPPLY<br />

+<br />

200kΩ RB<br />

R1<br />

100kΩ<br />

5<br />

7<br />

CA3094<br />

-<br />

4<br />

8<br />

6<br />

Figure 19 shows a dual limit threshold detector circuit in<br />

which the high level limit is established by potentiometer R1<br />

and the low level limit is set by potentiometer R2 to actuate<br />

the CA3080 low limit detector [1, 2]. A positive output signal<br />

exceeds either the high limit or the low limit values<br />

established by the appropriate potentiometer settings. This<br />

output voltage is approximately 12V with the circuit shown.<br />

The high current handling capability of the CA3094 makes it<br />

useful in Schmitt power trigger circuits such as that shown in<br />

Figure 20. In this circuit, a relay coil is switched whenever<br />

the input signal traverses a prescribed upper or lower trip<br />

point, as defined by the following expressions:<br />

4-171<br />

+15V<br />

2kΩ<br />

V+<br />

OUTPUT<br />

V-<br />

+15V<br />

OUTPUT<br />

RB<br />

R1 RA<br />

R1 + RA +RB<br />

R1 RB<br />

R1 + RB<br />

R1RB<br />

R1 + RB +RA<br />

FIGURE 18B. SINGLE SUPPLY<br />

FIGURE 18. COMPARATORS (THRESHOLD DETECTORS)<br />

DUAL AND SINGLE SUPPLY TYPES<br />

R3<br />

Upper Trip Point = 30⎛------------------------------------<br />

⎞<br />

⎝R1 + R2 + R3⎠<br />

Lower Trip Point ( 30 – 0.026R1 ) R3<br />

≅<br />

---------------------<br />

R2 + R3<br />

Application Note 6048<br />

The circuit is applicable, for example, to automatic ranging.<br />

With the values shown in Figure 20, the relay coil is energized<br />

when the input exceeds approximately 5.9V and remains<br />

energized until the input signal drops below approximately 5.5V.<br />

-15V<br />

INPUT<br />

1.5kΩ<br />

HIGH<br />

DEAD<br />

ZONE<br />

LOW<br />

INPUT<br />

5kΩ<br />

10kΩ<br />

3.9kΩ<br />

5kΩ<br />

10kΩ<br />

33kΩ<br />

33kΩ<br />

+15V<br />

<strong>Power</strong> Supply Regulators<br />

2<br />

3<br />

3<br />

2<br />

150kΩ<br />

-<br />

CA3094<br />

The CA3094 is an ideal companion device to the CA3085<br />

series regulator circuits [4] in dual voltage tracking regulators<br />

that handle currents up to 100mA. In the circuit of Figure 21,<br />

the magnitude of the regulated positive voltage provided by<br />

the CA3085A is adjusted voltage supplies the power for the<br />

CA3094A negative regulator and also supplies a reference<br />

voltage to its terminal 3 to provide tracking. This circuit<br />

provides a maximum line regulation equal to 0.075% per volt<br />

of input voltage change and a maximum load regulation of<br />

0.075% of the output voltage.<br />

7<br />

+<br />

+<br />

-<br />

5<br />

CA3080<br />

30kΩ<br />

4<br />

5<br />

7<br />

4<br />

8<br />

6<br />

100Ω<br />

6<br />

1N914<br />

FIGURE 19. DUAL LIMIT THRESHOLD DETECTOR<br />

100kΩ<br />

3<br />

2.7MΩ 100Ω<br />

5<br />

2 -<br />

1<br />

100kΩ<br />

+<br />

CA3094A<br />

4<br />

6<br />

7<br />

8<br />

0.01μF<br />

12V<br />

450Ω<br />

COIL<br />

620Ω<br />

R1<br />

82Ω<br />

R2<br />

24kΩ<br />

R3<br />

5.9kΩ<br />

+15V<br />

OUTPUT<br />

1kΩ<br />

+30V<br />

FIGURE 20. PRECISION SCHMITT POWER TRIGGER CIRCUIT


Figure 22 shows a regulated high voltage supply similar to the<br />

type used to supply power for Geiger-Mueller tubes. The<br />

CA3094, used as an oscillator, drives a step-up transformer<br />

which develops suitable high voltages for rectification in the<br />

IN4007 diode network. A sample of the regulated output<br />

voltage is fed to the CA3080A operational transconductance<br />

amplifier through the 198MΩ and 910kΩ divider to control the<br />

pulse repetition rate of the CA3094. Adjustment of<br />

potentiometer R determines the magnitude of the regulated<br />

output voltage. Regulation of the desired output voltage is<br />

maintained within 1% despite load current variations of 5μAto<br />

26μA. The DC to DC conversion efficiency is about 48%.<br />

Timers<br />

The programmability feature inherent in the CA3094 (and<br />

operational transconductance amplifiers in general) simplifies<br />

the design of presettable timers such as the one shown in<br />

Figure 23. Long timing intervals (e.g., up to 4hrs) are achieved<br />

by discharging a timing capacitor C1 into the signal input<br />

terminal (e.g., No. 3) of the CA3094. This discharge current is<br />

controlled precisely by the magnitude of the amplifier bias<br />

current I ABC programmed into terminal 5 through a resistor<br />

selected by switch S2. Operation of the circuit is initiated by<br />

charging capacitor C1 through the momentary closing of<br />

switch S1. Capacitor C1 starts discharging and continues<br />

discharging until voltage E1 is less than voltage E2. The<br />

differential input transistors in the CA3094 then change state,<br />

and terminal 2 draws sufficient current to reverse the polarity<br />

of the output voltage (terminal 6). Thus, the CA3094 not only<br />

has provision for readily presetting the time delay, but also<br />

provides significant output current to drive control devices<br />

such as thyristors. Resistor R5 limits the initial charging<br />

current for C1. Resistor R5 limits the initial charging current for<br />

C1. Resistor R7 establishes a minimum voltage of at least 1V<br />

at terminal 2 to insure operation within the common mode<br />

input range of the device. The diode limits the maximum<br />

910kΩ<br />

R<br />

2MΩ 1.8MΩ<br />

2<br />

3<br />

3.6MΩ<br />

1MΩ<br />

-<br />

7<br />

1.8MΩ<br />

CA3080A<br />

+<br />

4<br />

4-172<br />

5<br />

+6V<br />

1.5μA<br />

6<br />

560pF<br />

0.47μF<br />

820<br />

kΩ<br />

Application Note 6048<br />

430<br />

kΩ<br />

820<br />

kΩ<br />

2<br />

differential input voltage to 5V. Gross changes in time range<br />

selection are made with switch S2, and vernier trimming<br />

adjustments are made with potentiometer R6.<br />

V+ INPUT<br />

(NOTE 1)<br />

V- INPUT<br />

(NOTE 2)<br />

REF 1.6V<br />

2 CA3085A<br />

VOLTAGE<br />

REG<br />

3<br />

0.0056μF<br />

5.1kΩ<br />

4<br />

6<br />

7<br />

0.01μF<br />

100Ω<br />

1<br />

200kΩ<br />

5<br />

2<br />

+<br />

CA3094A<br />

7<br />

1<br />

8<br />

R<br />

5kΩ<br />

10kΩ<br />

1.5kΩ<br />

3<br />

-<br />

8<br />

6<br />

4 10kΩ<br />

±1%<br />

10kΩ ±1%<br />

5.6Ω<br />

NOTES:<br />

1. V+ input range = 19V to 30V for 15V output<br />

2. V- input range = -16 to -30V for -15V output<br />

3. REGULATION:<br />

47μF 150kΩ<br />

+<br />

7<br />

3 -<br />

6<br />

470kΩ<br />

1N914<br />

4<br />

MAX I OUT = ±100mA<br />

+15V<br />

REG OUTPUT<br />

COMMON<br />

RETURN<br />

0.03μF<br />

MAX LINE =<br />

ΔVOUT --------------------------------------------------------------- × 100<br />

VOUT( INITIAL)<br />

ΔVIN = 0.075%/V<br />

-15V<br />

REG OUTPUT<br />

MAX LINE =<br />

ΔVOUT ------------------------------------------- × 100 =<br />

VOUT( INITIAL)<br />

0.075% V<br />

OUT<br />

(IL FROM 1mA to 50mA)<br />

CA3094<br />

FIGURE 21. DUAL VOLTAGE TRACKING REGULATOR<br />

5<br />

25μA<br />

FIGURE 22. REGULATED HIGH VOLTAGE SUPPLY<br />

8<br />

198MΩ<br />

(NINE 22MΩ RESISTORS IN SERIES)<br />

1N914<br />

0.01μF<br />

IN4007<br />

MINIATURE<br />

MICROPHONE<br />

INPUT TRANSFORMER<br />

600Ω CT TO 50kΩ<br />

R L<br />

IN4007<br />

IN4007<br />

0.01μF<br />

+900V<br />

0.01μF


120V<br />

AC<br />

+<br />

30V<br />

DC<br />

COMMON<br />

R5<br />

START<br />

SWITCH<br />

R6<br />

R7<br />

S1<br />

E1<br />

100Ω<br />

3<br />

2<br />

C1 E2<br />

2μF<br />

+<br />

7<br />

CA3094A<br />

-<br />

4<br />

In some timer applications, such as that shown in Figure 24, a<br />

meter readout of the elapsed time is desirable. This circuit uses<br />

the CA3094 and CA3083 transistor array [5] to control the<br />

meter and a load switching triac. The timing cycle starts with<br />

the momentary closing of the start switch to charge capacitor<br />

C1 to an initial voltage determined by the 50kΩ vernier timing<br />

adjustment. During the timing cycle the output of the CA3094,<br />

4-173<br />

TIME RANGE<br />

SECTOR<br />

S2<br />

8<br />

5<br />

6<br />

R8<br />

R1<br />

R2<br />

R3<br />

R4<br />

R LOAD<br />

G<br />

40529 TURNS “OFF” AFTER<br />

EXPIRATION OF TIME DELAY<br />

TIME RESISTOR VALUE<br />

3Min R1 = 0.5MΩ R5 = 2.7kΩ<br />

30Min R2 = 5.1MΩ R6 = 50kΩ<br />

2Hrs R3 = 22MΩ R7 = 2.7kΩ<br />

4Hrs R4 = 44MΩ R8 = 1.5kΩ<br />

FIGURE 23. PRESETTABLE ANALOG TIMER<br />

+30V<br />

5.1kΩ<br />

50kΩ<br />

5.1kΩ<br />

START<br />

SWITCH<br />

VERNIER<br />

TIME<br />

ADJUST<br />

+30V<br />

3<br />

68kΩ<br />

68kΩ<br />

C1<br />

0.5μF<br />

0.01μF<br />

270kΩ<br />

2<br />

3<br />

2<br />

7<br />

+<br />

-<br />

7<br />

MT2<br />

MT1<br />

8<br />

CA3094<br />

4<br />

5<br />

which is also the collector voltage of Q1, is “high”. The base<br />

drive for Q1 is supplied from the positive supply through a 91kΩ<br />

resistor. The emitter of Q1, through the 75Ω resistor, supplies<br />

gate-trigger current to the triac. Diode connected transistors Q4<br />

and Q5 are connected so that transistor Q1 acts as a constant<br />

current source to drive the triac. As capacitor C1 discharges,<br />

the CA3094 output voltage at terminal 6 decreases until it<br />

becomes less than the V CESAT of Q1. At this point the flow of<br />

drive current to the triac ceases and the timing cycle is ended.<br />

The 20kΩ resistor between terminals 2 and 6 of the CA3094 is<br />

a feedback resistor. Diode connected transistor Q2 and Q3 and<br />

their associated networks serve to compensate for<br />

nonlinearities in the discharge circuit network by bleeding<br />

corrective current into the 20kΩ feedback resistor. Thus, current<br />

flow in the meter is essentially linear with respect to the timing<br />

period. The time periods as a function of R1 and indicated on<br />

the Time-Range Selection <strong>Switch</strong> in Figure 24.<br />

Alarm Circuit<br />

Q2 Q3 6<br />

Q1 16 Q4<br />

4<br />

Application Note 6048<br />

8<br />

20kΩ<br />

68kΩ<br />

R1<br />

METER<br />

READOUT<br />

(0-200μA)<br />

M<br />

Figure 25 shows an alarm circuit utilizing two “sensor” lines. In<br />

the “no-alarm” state, the potential at terminal 5 (I ABC ) is driven<br />

with sufficient current though resistor R5 to keep the output<br />

voltage “high”. If either “sensor” line is opened, shorted to<br />

ground, or shorted to the other sensor line, the output goes<br />

“low” and activates some type of alarm system. The back-toback<br />

diodes connected between terminals 2 and 3 protect the<br />

CA3094 input terminals against excessive differential voltages.<br />

22MΩ<br />

1.5MΩ 4MIN<br />

1HR<br />

500kΩ 1.5MIN<br />

100MΩ 20s<br />

6<br />

1<br />

15<br />

TIME RANGE<br />

SELECTION SWITCH<br />

75Ω<br />

9<br />

11<br />

14<br />

12<br />

1kΩ<br />

FIGURE 24. PRESETTABLE TIMER WITH LINEAR READOUT<br />

Q5<br />

10<br />

13<br />

CA3083<br />

91kΩ<br />

G<br />

120V<br />

60Hz<br />

R L<br />

MT2<br />

MT1


R5<br />

100kΩ<br />

R4<br />

100kΩ<br />

SENSOR<br />

LINES<br />

Motor-Speed Controller System<br />

Figure 26 illustrates the use of the CA3094 in a motor-speed<br />

controller system. Circuity associated with rectifiers D1 and D2<br />

comprises a full wave rectifier which develops a train of<br />

half-sinusoid voltage pulse to power the DC motor. The motor<br />

speed depends on the peak value of the half-sinusoids and the<br />

period of time (during each half cycle) the SCR is conductive.<br />

The SCR conduction, in turn, is controlled by the time<br />

duration of the positive signal supplied to the SCR by the<br />

phase comparator. The magnitude of the positive DC voltage<br />

supplied to terminal 3 of the phase comparator depends on<br />

motor-speed error as detected by a circuit such as that<br />

shown in Figure 27. This DC voltage is compared to that of a<br />

MOTOR SPEED<br />

ERROR<br />

SIGNAL<br />

R3<br />

150kΩ<br />

INPUT TO<br />

TERMINAL 2<br />

INPUT TO<br />

TERMINAL 3<br />

(NOTE 1)<br />

R1<br />

510kΩ<br />

1N914<br />

D2<br />

R2<br />

510kΩ<br />

4-174<br />

3<br />

D1<br />

2<br />

+<br />

7<br />

5<br />

100Ω<br />

CA3094<br />

-<br />

I ABC<br />

FIGURE 25. ALARM SYSTEM<br />

SEE FIGURE 27<br />

MOTOR SPEED<br />

ERROR<br />

DETECTOR<br />

SEE FIGURE 28<br />

SYNCHRONOUS<br />

RAMP<br />

GENERATOR<br />

+<br />

MOTOR<br />

CURRENT<br />

1N914<br />

510kΩ<br />

510kΩ<br />

3<br />

1N914<br />

2<br />

8<br />

4<br />

Application Note 6048<br />

+12V<br />

OUTPUT<br />

FOR<br />

TRIGGERING<br />

ALARM<br />

5<br />

6<br />

Ø COMPARATOR<br />

330kΩ<br />

+<br />

7<br />

CA3094A<br />

-<br />

8<br />

4<br />

-15V<br />

+15V<br />

6<br />

OUTPUT<br />

FOR<br />

TRIGGERING<br />

ALARM<br />

FIGURE 26A.<br />

fixed amplitude ramp wave generated synchronously with<br />

the AC line voltage frequency. The comparator output at<br />

terminal 6 is “high” (to trigger the SCR into conduction)<br />

during the period when the ramp potential is less than that of<br />

the error voltage on terminal 3. The motor current<br />

conduction period is increased as the error voltage at<br />

terminal 3 is increased in the positive direction. Motor-speed<br />

accuracy of ±1% is easily obtained with this system.<br />

Motor-Speed Error Detector<br />

Figure 27A shows a motor-speed error detector suitable for use<br />

with the circuit of Figure 26. A CA3080 operational<br />

transconductance amplifier is used as a voltage comparator.<br />

The reference for the comparator is established by setting the<br />

potentiometer R so that the voltage at terminal 3 is more<br />

positive than that at terminal 2 when the motor speed is too low.<br />

An error voltage E1 is derived from a tachometer driven by the<br />

motor. When the motor speed is too low, the voltage at terminal<br />

2 of the voltage comparator is less positive than that at terminal<br />

3, and the output voltage at terminal 6 goes “high”. When the<br />

motor speed is too high, the opposite input conditions exist, and<br />

the output voltage at terminal 6 goes “low”. Figure 27B also<br />

shows these conditions graphically, with a linear transition<br />

region between the “high” and “low” output levels. This linear<br />

transition region is known as “proportional bandwidth”. The<br />

slope of this region is determined by the proportional bandwidth<br />

control to establish the error correction response time.<br />

1.5kΩ<br />

SCR<br />

TIME<br />

FIGURE 26B.<br />

FIGURE 26. MOTOR SPEED CONTROLLER SYSTEM<br />

DC MOTOR<br />

+<br />

0<br />

LINE<br />

D2<br />

D1<br />

NOTE:<br />

1. This level will vary depending on<br />

motor speed. (See Text).


+<br />

E1<br />

-<br />

10kΩ<br />

100kΩ<br />

R<br />

82kΩ<br />

1N914<br />

1N914<br />

1N914<br />

2<br />

1N914<br />

Synchronous Ramp Generator<br />

Figure 28 shows a schematic diagram and signal waveforms<br />

for a synchronous ramp generator suitable for use with the<br />

motor controller circuit of Figure 26. Terminal 3 is biased at<br />

approximately +2.7V (above the negative supply voltage). The<br />

input signal E IN at terminal 2 is a sample of the half-sinusoids<br />

(at line frequency) used to power the motor in Figure 26. A<br />

synchronous ramp signal is produced by using the CA3094 to<br />

charge and discharge capacitor C1 in response to the<br />

synchronous toggling of E IN . The charging current for C1 is<br />

supplied by terminal 6. When terminal 2 swings more positive<br />

than terminal 3, transistors Q12 and Q13 in the CA3094<br />

(Figure 1) lose their base drive and become non-conductive.<br />

Under these conditions, C1 discharges linearly through the<br />

external diode D3 and Q10, D6 path in the CA3094 to<br />

produce the ramp wave. The E OUT signal is supplied to the<br />

phase comparator in Figure 26.<br />

Thyristor Firing Circuits<br />

Temperature Controller<br />

In the temperature control system shown in Figure 29, the<br />

differential input of the CA3094 is connected across a bridge<br />

circuit comprised of a Positive Temperature Coefficient<br />

(PTC) temperature sensor, two 75kΩ resistors, and an arm<br />

containing the temperature set control. When the<br />

temperature is “low”, the resistance of the PTC type sensor<br />

is also low; therefore, terminal 3 is more positive than<br />

terminal 2 and an output current from terminal 6 of the<br />

CA3094 drives the triac into conduction. When the<br />

temperature is “high”, the input conditions are reversed and<br />

the triac is cut off. Feedback from terminal 8 provides<br />

hysteresis to the control point to prevent rapid cycling of the<br />

system. The 1.5kΩ resistor between terminal 8 and the<br />

3<br />

4-175<br />

PROPORTIONAL<br />

BANDWIDTH CONTROL<br />

-<br />

7<br />

CA3080A<br />

+<br />

4<br />

330kΩ<br />

5<br />

-15V<br />

RECTIFIED AND FILTERED SIGNAL DERIVED FROM<br />

TACHOMETER DRIVEN BY MOTOR BEING CONTROLLED<br />

FIGURE 26A. VOLTAGE COMPARATOR<br />

EOUT HIGH<br />

MOTOR SPEED<br />

MOTOR SPEED FAST<br />

SLOW<br />

EOUT LOW<br />

1MΩ<br />

PROPORTIONAL<br />

BANDWIDTH<br />

+15V<br />

6<br />

EOUT TO PHASE<br />

COMPARATOR<br />

FIGURE 26B.<br />

FIGURE 26. MOTOR SPEED ERROR DETECTOR<br />

Application Note 6048<br />

positive supply limits the triac gate current and develops the<br />

voltage for the hysteresis feedback. The excellent power<br />

supply rejection and common mode rejection ratios of the<br />

CA3094 permit accurate repeatability of control despite<br />

appreciable power supply ripple. The circuit of Figure 29 is<br />

equally suitable for use with Negative Temperature<br />

Coefficient (NTC) sensors provided the positions of the<br />

sensor and the associated resistor R are interchanged in the<br />

circuit. The diodes connected back to back across the input<br />

terminals of the CA3094 protect the device against<br />

excessive differential input signals.<br />

E IN<br />

330kΩ<br />

33kΩ<br />

D1<br />

1N914<br />

2<br />

1N914<br />

D2<br />

3<br />

Thyristor Control from AC Bridge Sensor<br />

Figure 30 shows a line operated thyristor firing circuit<br />

controlled by a CA3094 that operates from an AC Bridge<br />

sensor. This circuit is particularly suited to certain classes of<br />

sensors that cannot be operated from DC. The CA3094 is<br />

inoperative when the high side of the AC line is negative<br />

because there is no IABC supply to terminal 5. When the<br />

sensor bridge is unbalanced so that terminal 2 is more<br />

positive than terminal 3, the output stage of the CA3094 is<br />

cut off when the AC line swings positive, and the output level<br />

at terminal 8 of the CA3094 goes “high”. Current from the<br />

line flows through the IN3193 diode to charge the 100μF<br />

reservoir capacitor, and also provides current to drive the<br />

triac into conduction. During the succeeding negative swing<br />

of the AC line, there is sufficient remanent energy in the<br />

reservoir capacitor to maintain conduction in the triac.<br />

When the bridge is unbalanced in the opposite direction so that<br />

terminal 3 is more positive than terminal 2, the output of the<br />

CA3094 at terminal 8 is driven sufficiently “low” to “sink” the<br />

current supplied through the 1N4003 diode so that the triac<br />

gate cannot be triggered. Resistor R1 supplies the hysteresis<br />

feedback to prevent rapid cycling between turn on and turn off.<br />

+<br />

7<br />

5<br />

330kΩ<br />

8<br />

CA3080A<br />

- 1<br />

4<br />

FIGURE 27A.<br />

1.5kΩ<br />

6<br />

1N914<br />

+15V<br />

E OUT<br />

TO PHASE<br />

COMPARATOR<br />

D3<br />

C1<br />

0.033<br />

μF<br />

-15V<br />

+<br />

BIAS LEVEL<br />

E AT TERMINAL NO. 3<br />

IN<br />

0<br />

C1 DISCHARGING (RAMP)<br />

+<br />

C1 CHARGING<br />

EOUT 0<br />

FIGURE 27B.<br />

FIGURE 27. SYNCHRONOUS RAMP GENERATOR WITH INPUT<br />

AND OUTPUT WAVEFORMS


T<br />

117V<br />

60Hz<br />

IN4001<br />

10Ω<br />

26V<br />

60Hz<br />

+<br />

-<br />

47μF<br />

50V<br />

Battery Charger Regulator Circuit<br />

The circuit for battery charger regulator circuit using the<br />

CA3094 is shown in Figure 31. This circuit accurately limits<br />

the peak output voltage to 14V, as established by the zener<br />

diode connected across terminals 3 and 4. When the output<br />

voltage rises slightly above 14V, signal feedback through a<br />

100kΩ resistor to terminal 2 reduces the current drive<br />

supplied to the 2N3054 pass transistor from terminal 6 of the<br />

CA3094. An incandescent lamp serves as the indicator of<br />

charging current flow. Adequate limiting provisions protect<br />

the circuit against damage under load short conditions. The<br />

advantage of the circuit over certain the types of regulator<br />

circuits is that the reference voltage supply doesn’t drain the<br />

battery when the power supply is disconnected. This feature<br />

is important in portable service applications, such as in a<br />

trailer where a battery is kept “on-charge” when the trailer is<br />

parked and power is provided from an AC line.<br />

AC IN<br />

12V TO 24V<br />

RMS<br />

D2<br />

D1<br />

2.2kΩ<br />

D3<br />

D4<br />

D5<br />

4-176<br />

PTC TEMP.<br />

SENSOR<br />

75kΩ<br />

100Ω<br />

100kΩ<br />

100kΩ<br />

5<br />

R<br />

7<br />

75kΩ<br />

68kΩ<br />

10kΩ<br />

TEMP.<br />

SET<br />

75kΩ<br />

1N914<br />

FIGURE 28. TEMPERATURE CONTROLLER<br />

MURALITES<br />

LAMP L10/20<br />

680Ω<br />

1/2W<br />

16Ω<br />

10W<br />

2 +<br />

8<br />

2N3054<br />

100Ω<br />

1N914 CA3094A 6<br />

100kΩ<br />

3 - 1<br />

14V<br />

4<br />

0.001μF<br />

1kΩ<br />

EOUT TO<br />

BATTERY<br />

14V PEAK<br />

FIGURE 29. BATTERY CHARGER REGULATOR CIRCUIT<br />

Application Note 6048<br />

2<br />

3<br />

1.5MΩ 1N914<br />

330kΩ<br />

7<br />

1.5kΩ<br />

5<br />

8<br />

CA3094B 6<br />

4<br />

HEATER<br />

MT 2<br />

MT 1<br />

Ground Fault Interrupters (GFI)<br />

1kΩ<br />

0.01μF<br />

Ground fault interrupter systems are used to continuously<br />

monitor the balance of current between the high and neutral<br />

lines of power distribution networks. <strong>Power</strong> is interrupted<br />

whenever the unbalance exceeds a preset value (e.g., 5mA).<br />

An unbalance of current can occur then, for example,<br />

defective insulation in the high side of the line permits<br />

leakage of current to an earth ground. GFI systems can be<br />

used to reduce the danger of electrocution from accidental<br />

contact with “high” line because the unbalance caused by<br />

the leakage of current from the “high” line through a human<br />

body to ground results in an interruption of current flow.<br />

The CA3094 is ideally suited for GFI applications because it<br />

can be operated from a single supply, has adequate<br />

sensitivity, and can drive a relay or thyristor directly to effect<br />

power interruption. Figure 32 shows a typical GFI circuit.<br />

Vernier adjustment of the trip point is made by the R TRIP<br />

potentiometer. When the differential current sensor supplies<br />

a signal that exceeds the selected trip-point voltage level<br />

(e.g., 60mV), the CA3094 is toggled “on” and terminal 8<br />

goes “low” to energize the circuit breaker trip coil. Under<br />

quiescent conditions, the entire circuit consumes<br />

approximately 1mA. The resistor R, connected to one leg of<br />

the current sensor, provides current limiting to protect the<br />

CA3094 against voltage spikes as large as 100V. Figure 32<br />

also shows the pertinent waveform for the GFI circuit.<br />

Because hazards of severe electrical shock are a potential<br />

danger to the individual user in the event of malfunctions in<br />

GFI apparatus, it is mandatory that the highest standard of<br />

good engineering practice be employed in designing<br />

equipment for this service. Every consideration in design<br />

and application must be given to the potentially serious<br />

consequences of component malfunction in such<br />

equipment. Use of “reliability through redundancy” concepts<br />

and so called “fail-safe” features is encouraged.<br />

G<br />

NOTE: All Resistors<br />

are 1/2W.


200mV<br />

RANGE<br />

R<br />

47K<br />

L C<br />

0.02μF<br />

0.1μF C2<br />

120V<br />

AC LINE<br />

4-177<br />

HIGH<br />

27kΩ<br />

1kΩ<br />

SENSOR<br />

LOW<br />

1MΩ<br />

27kΩ<br />

27kΩ<br />

R1 180kΩ<br />

330kΩ<br />

0.01μF<br />

2<br />

3<br />

1kΩ<br />

+<br />

-<br />

7<br />

CA3094B<br />

5<br />

4<br />

6<br />

8<br />

2kΩ<br />

5W<br />

1N4003<br />

10kΩ<br />

References<br />

510Ω<br />

+<br />

- 100μF<br />

G<br />

15V<br />

LOAD E OUT<br />

FIGURE 30. LINE OPERATED THYRISTOR FIRING CIRCUIT CONTROLLED BY AC BRIDGE SENSOR<br />

33K<br />

200Ω<br />

3.3K<br />

47K<br />

100K<br />

3<br />

2<br />

-<br />

5<br />

3.3MΩ<br />

7<br />

CA3094B<br />

+<br />

6<br />

4<br />

100Ω<br />

DIFFERENTIAL CURRENT<br />

SENSOR PROVIDES<br />

1K 0.001μF<br />

60mV SIGNAL<br />

≈ 5mA<br />

OF UNBALANCE<br />

(TRIP) CURRENT<br />

NOTES:<br />

1. All resistors in Ω, 1/2W, 10%.<br />

2. RC selected for 3dB point at 200Hz.<br />

3. C2 = AC bypass.<br />

4. Offset ADJ included in RTRIP. CIRCUIT<br />

BREAKER<br />

CONTROL<br />

SOLENOID<br />

5. Input impedance from 2 to 3 equals 800K.<br />

6. With no input signal terminal 8 (Output) at +36V.<br />

3<br />

VOLTS<br />

R TRIP<br />

1mA<br />

3V<br />

CIRCUIT TRIPS ON POSITIVE<br />

PEAKS - WILL SWITCH<br />

WITHIN 1.5 CYCLES<br />

60mV<br />

TYPICAL<br />

t<br />

GROUND FAULT<br />

SIGNAL 60Hz<br />

10μA<br />

IABC 8<br />

+36V<br />

20μA<br />

IA VOLTAGE BETWEEN<br />

TERMINALS 2 AND 4<br />

I LOAD<br />

VOLTAGE BETWEEN<br />

TERMINALS 3 AND 4<br />

(ADJUSTABLE WITH R TRIP )<br />

FIGURE 31. GROUND FAULT INTERRUPTER (GFI) AND<br />

WAVEFORM PERTINENT TO GROUND FAULT<br />

DETECTOR<br />

Application Note 6048<br />

MT 2<br />

MT 1<br />

For Harris documents available on the internet, see web site<br />

http://www.semi.harris.com/<br />

Harris AnswerFAX (407) 724-7800.<br />

[1] CA3080 and CA3080A Data Sheet, Harris Corporation,<br />

Semiconductor Communications Division, FN475.<br />

[2] AN6668 Application Note, Harris Corporation,<br />

Semiconductor Communications Division, “Applications<br />

of the CA3080 and CA3080A High Performance<br />

Operational Transconductance <strong>Amplifier</strong>s”.<br />

[3] AN6077 Application Note, L. Kaplan and H. A.<br />

Wittlinger, Harris Corporation, Semiconductor<br />

Communications Division, “An IC Operational<br />

Transconductance <strong>Amplifier</strong> (OTA) with <strong>Power</strong><br />

Capability”. Paper originally presented at the IEEE<br />

Chicago Springs Conference on Broadcast and TV<br />

Receivers, June 1972. Reprinted as AN6077.<br />

[4] CA3085 Data Sheet, Harris Corporation, Semiconductor<br />

Communications Division, FN491.<br />

[5] CA3083 Data Sheet, Harris Corporation, Semiconductor<br />

Communications Division, FN481.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!