04.08.2013 Views

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9.7. RENORMALIZATION GROUP THEORY. 225<br />

where M is the Jacobian m<strong>at</strong>rix of the renormaliz<strong>at</strong>ion group transform<strong>at</strong>ion.<br />

The eigenvalues of this m<strong>at</strong>rix determine the stability of the critical point. If an<br />

eigenvalue has an absolute value less than one, the direction of the corresponding<br />

eigenvector corresponds to a direction in which the fixed point is stable. The<br />

devi<strong>at</strong>ions will become smaller in this direction. Eigenvalues larger than one<br />

correspond to unstable directions. A stable fixed point has all eigenvalues less<br />

than one.<br />

For the one-dimensional Ising chain we have<br />

<br />

∂ ˜ J ′<br />

∂ ˜ <br />

=<br />

J<br />

1 sinh(2<br />

2<br />

˜ J + ˜ h)<br />

cosh(2 ˜ J + ˜ 1 sinh(2<br />

+<br />

h) 2<br />

˜ J − ˜ h)<br />

cosh(2 ˜ J − ˜ (9.175)<br />

h)<br />

<br />

∂ ˜ J ′<br />

∂˜ <br />

=<br />

h<br />

1 sinh(2<br />

4<br />

˜ J + ˜ h)<br />

cosh(2 ˜ J + ˜ 1 sinh(2<br />

−<br />

h) 4<br />

˜ J − ˜ h)<br />

cosh(2 ˜ J − ˜ 1 sinh(<br />

−<br />

h) 2<br />

˜ h)<br />

cosh( ˜ h)<br />

<br />

∂˜ h ′<br />

<br />

∂ ˜ J<br />

= sinh(2 ˜ J + ˜ h)<br />

cosh(2 ˜ J + ˜ h) − sinh(2 ˜ J − ˜ h)<br />

cosh(2 ˜ J − ˜ h)<br />

<br />

∂˜ h ′<br />

∂˜ <br />

= 1 +<br />

h<br />

1 sinh(2<br />

2<br />

˜ J + ˜ h)<br />

cosh(2 ˜ J + ˜ 1 sinh(2<br />

+<br />

h) 2<br />

˜ J − ˜ h)<br />

cosh(2 ˜ J − ˜ h)<br />

(9.176)<br />

(9.177)<br />

(9.178)<br />

and the m<strong>at</strong>rix M for the one-dimensional Ising model <strong>at</strong> the point ( ˜ J, 0) is<br />

simple<br />

tanh(2 ˜ J) 0<br />

0 1 + tanh(2 ˜ J)<br />

At the critical point (0, 0) the form is simply<br />

<br />

0 0<br />

<br />

0 1<br />

<br />

(9.179)<br />

(9.180)<br />

This means th<strong>at</strong> along the ˜ J direction the critical point (0, 0) is very stable;<br />

first order devi<strong>at</strong>ions disappear and only higher order terms remain. In the ˜ h<br />

direction the devi<strong>at</strong>ions remain constant.<br />

Suppose th<strong>at</strong> we have found a fixed point ˜ J ∗ for a more-dimensional Ising<br />

model <strong>at</strong> h = 0. Since the problem is symmetric around h = 0 the direction<br />

corresponding to ˜ J must be the direction of an eigenvector of the m<strong>at</strong>rix M.<br />

Suppose the corresponding eigenvalue is λ. For small devi<strong>at</strong>ions <strong>at</strong> constant<br />

field h = 0 we can therefore write<br />

δ ˜ J ′ = λδ ˜ J (9.181)<br />

Now assume th<strong>at</strong> we constructed this small devi<strong>at</strong>ion in ˜ J by changing the<br />

temper<strong>at</strong>ure slightly. Hence we assume th<strong>at</strong> δ ˜ J = α(T − Tc) where α is a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!