04.08.2013 Views

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

196 CHAPTER 9. GENERAL METHODS: CRITICAL EXPONENTS.<br />

〈V〉λ = −〈 <br />

(σi − µ)(σj − µ)〉λ = − 1<br />

2 Nq〈(σi − µ)(σj − µ)〉λ<br />

<br />

We now introduce the average magnetiz<strong>at</strong>ion mλ and write<br />

(9.30)<br />

〈V〉λ = − 1<br />

2 Nq〈(σi − mλ)(σj − mλ)〉λ − 1<br />

2 Nq〈2(mλ − µ)σi〉λ + 1<br />

2 Nq(m2λ − µ 2 )<br />

(9.31)<br />

Next we approxim<strong>at</strong>e the correl<strong>at</strong>ions between the fluctu<strong>at</strong>ions around the average<br />

by zero and obtain<br />

or<br />

or<br />

This gives<br />

〈V〉λ ≈ − 1<br />

2 Nq〈2(mλ − µ)σi〉λ + 1<br />

2 Nq(m2 λ − µ 2 ) (9.32)<br />

〈V〉λ ≈ −Nq(mλ − µ)mλ + 1<br />

2 Nq(m2 λ − µ 2 ) (9.33)<br />

〈V〉λ ≈ − 1<br />

2 Nq(mλ − µ) 2<br />

<br />

∂G<br />

= −<br />

∂λ T,h,N<br />

1<br />

2 Nq(mλ − µ) 2<br />

The magnetic moment is rel<strong>at</strong>ed to the Gibbs like free energy via<br />

<br />

∂G<br />

Nmλ = −<br />

∂h<br />

and hence<br />

T,N<br />

<br />

∂m <br />

2 ∂m<br />

∂ G<br />

N<br />

= −<br />

= Nq(m − µ)<br />

∂λ h,T ∂h∂λ T,N<br />

∂h<br />

λ,T<br />

−<br />

<br />

∂µ<br />

<br />

∂h T<br />

(9.34)<br />

(9.35)<br />

(9.36)<br />

(9.37)<br />

where we have m(h, λ, T ) and µ(h, T ). This equ<strong>at</strong>ion shows th<strong>at</strong> if mλ = µ the<br />

magnetiz<strong>at</strong>ion will not change as a function of λ. Also, because for large fields<br />

the magnetiz<strong>at</strong>ion approaches one, we see th<strong>at</strong> if m > µ one needs dm dµ<br />

dh < dh and<br />

hence the right hand side of the partial differential equ<strong>at</strong>ion is zero. This means<br />

th<strong>at</strong> for large values of λ the solutions for m will approach µ. Now suppose th<strong>at</strong><br />

we use the mean field solution for the magnetiz<strong>at</strong>ion with λ = J for µ. Then<br />

we conclude th<strong>at</strong> the true magnetiz<strong>at</strong>ion of the system will be smaller than the<br />

mean field value, because we integr<strong>at</strong>e to J only and not to infinity. Of course,<br />

this uses an approxim<strong>at</strong>ion for the correl<strong>at</strong>ion function, so the conclusion does<br />

not have to be general.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!