04.08.2013 Views

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6.3. MAXIMUM ENTROPY PRINCIPLE. 133<br />

Replacing the sum by an integral yields:<br />

C −1 =<br />

N <br />

Nɛ<br />

ω<br />

and with x = <br />

i xi we get<br />

C −1 =<br />

<br />

· · ·<br />

This reduces the entropy to<br />

S(U, N) = −kB<br />

1<br />

dx1 · · · dxN<br />

ɛ √ π<br />

N <br />

Nɛ<br />

ω<br />

dx g(x)<br />

<br />

−( dx g(x) e U<br />

<br />

ɛ −Nx)2<br />

log<br />

e−( U<br />

ɛ −Nx1−···−NxN ) 2<br />

1<br />

ɛ √ U<br />

e−( ɛ<br />

π −Nx)2<br />

<br />

C 1<br />

ɛ √ π<br />

dx g(x) e −( U<br />

ɛ −Nx)2<br />

<br />

− ( U<br />

<br />

ɛ − Nx)2<br />

(6.81)<br />

(6.82)<br />

(6.83)<br />

In order to prepare for taking the thermodynamic limit we now express the<br />

entropy as a function of the energy per particle u and the number of particles.<br />

The thermodynamic limit is taken in such a way th<strong>at</strong> the energy per particle is<br />

constant. This gives for the entropy per particle, s = S<br />

N :<br />

s(u, N) = −kB<br />

dx g(x) e −N 2 ( u<br />

ɛ −x)2 1<br />

N log<br />

<br />

C 1<br />

ɛ √ π<br />

dx g(x) e −N 2 ( u<br />

ɛ −x)2<br />

<br />

− N( u<br />

<br />

ɛ − x)2<br />

(6.84)<br />

This expression can be split into two parts, by separ<strong>at</strong>ing the two parts of the<br />

integral in the numer<strong>at</strong>or, and we have s(u, N) = s1(u, N) + s2(u, N) with<br />

1<br />

s1(u, N) = −kB<br />

N log<br />

<br />

C 1<br />

ɛ √ <br />

(6.85)<br />

π<br />

and<br />

s2(u, N) = NkB<br />

<br />

−N dx g(x) e 2 ( u<br />

ɛ −x)2 <br />

u ( ɛ <br />

dx g(x) e−N 2 ( u<br />

ɛ −x)2<br />

The second term can be written in the form:<br />

s2(u, N) = 1<br />

2 kB<br />

∂<br />

∂N log<br />

<br />

− x)2<br />

dx g(x) e −N 2 ( u<br />

ɛ −x)2<br />

<br />

(6.86)<br />

(6.87)<br />

In the thermodynamic limit the exponent is sharply peaked and the integral is<br />

proportional to g( u 1<br />

ɛ ) N . Hence s2(u, N) is proportional to ∂<br />

1<br />

∂N log(N) or N , and<br />

goes to zero in the thermodynamic limit.<br />

Using (6.82) for C we find<br />

1<br />

s(u, N) = kB<br />

N log<br />

Nɛ N <br />

dx g(x) e<br />

ω<br />

−N 2 ( u<br />

ɛ −x)2<br />

<br />

(6.88)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!