04.08.2013 Views

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

Statistical Mechanics - Physics at Oregon State University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

90 CHAPTER 5. FERMIONS AND BOSONS<br />

<br />

= (2S + 1)<br />

orb<br />

∞<br />

∞<br />

∞<br />

nx=1 ny=1 nz=1<br />

If h(ɛ) is an arbitrary function of the energy we have<br />

<br />

h(ɛo) = (2S + 1)<br />

orb<br />

∞<br />

∞<br />

nx=1 ny=1 nz=1<br />

(5.2)<br />

∞<br />

h(ɛ(nx, ny, nz)) (5.3)<br />

Since the orbital energies do not depend on spin the summ<strong>at</strong>ion over spins<br />

simply gives us a factor 2S + 1.<br />

Integrals are easier.<br />

Next, we transform the summ<strong>at</strong>ion variables to k and multiply by 1 =<br />

∆kx∆ky∆kz( π<br />

L )−3 . This gives:<br />

<br />

orb<br />

h(ɛo) = (2S + 1)( L<br />

π<br />

)3 <br />

k<br />

h(ɛ( k))∆kx∆ky∆kz<br />

(5.4)<br />

If L is large enough the sum can be replaced by an integral and we have ( with<br />

V = L 3 ):<br />

1<br />

V<br />

<br />

h(ɛo) =<br />

orb<br />

2S + 1<br />

π 3<br />

<br />

pos<br />

d 3 k h( 2k2 ) + error (5.5)<br />

2M<br />

where the k-integr<strong>at</strong>ion runs over all k-vectors with positive components. If we<br />

extend the integral over all of k-space, using the fact th<strong>at</strong> ɛ( k) is symmetric, we<br />

get<br />

1<br />

V<br />

<br />

h(ɛo) =<br />

orb<br />

2S + 1<br />

(2π) 3<br />

<br />

d 3 k h( 2k2 ) + error (5.6)<br />

2M<br />

This gives, of course, the additional factor 23 . The error is typically of order 1<br />

V<br />

and hence is unimportant in the limit V → ∞. Practical calcul<strong>at</strong>ions always use<br />

a finite value for V and in th<strong>at</strong> case the magnitude of the error is determined<br />

by the smoothness of the function h on a scale π<br />

L ! This is an important point<br />

to keep in mind.<br />

Grand partition function.<br />

with<br />

The grand energy for a gas of fermions is<br />

Ω(T, µ, V ) = −(2S + 1)kBT <br />

nx,ny,nz<br />

log(Znx,ny,nz(T, µ, V )) (5.7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!