04.08.2013 Views

1. (a) - Physics at Oregon State University

1. (a) - Physics at Oregon State University

1. (a) - Physics at Oregon State University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PRACTICE:<br />

Preface Homework 1<br />

Due 1/9/13 4 pm<br />

<strong>1.</strong> (a) For each of the following complex numbers z, find z 2 , |z| 2 , and rewrite z in<br />

exponential form, i.e. as a magnitude times a complex exponential phase:<br />

z1 = i,<br />

z2 = 2 + 2i,<br />

z3 = 3 − 4i.<br />

(b) In quantum mechanics, it turns out th<strong>at</strong> the overall phase for a st<strong>at</strong>e does not have<br />

any physical significance. Therefore, you will need to become quick <strong>at</strong> rearranging<br />

the phase of various st<strong>at</strong>es. For each of the vectors listed below, rewrite the vector<br />

as a new vector, whose top component is real, times an overall complex phase.<br />

⎛<br />

7ei π<br />

6<br />

⎞<br />

|D〉 . π<br />

= ⎝ i 3e 2 ⎠ |E〉<br />

−1<br />

. =<br />

<br />

i<br />

4<br />

2. Calcul<strong>at</strong>e the following quantities for the m<strong>at</strong>rices:<br />

|F 〉 . =<br />

A . ⎛<br />

1<br />

= ⎝ 0<br />

0<br />

0<br />

⎞<br />

0<br />

1 ⎠ B<br />

0 −1 0<br />

. ⎛<br />

a<br />

= ⎝ d<br />

b<br />

e<br />

⎞<br />

c<br />

f ⎠ C<br />

g h j<br />

. =<br />

and the vectors:<br />

(a) AB<br />

(b) tr(AB)<br />

(c) A †<br />

(d) C −1<br />

(e) A|D〉<br />

(f) |E〉 † ≡ 〈E|<br />

(g) 〈D|A|D〉<br />

|D〉 . =<br />

⎛<br />

⎝ 1<br />

i<br />

−1<br />

⎞<br />

⎠ |E〉 . =<br />

(h) det(λI − A) where λ is a scalar.<br />

1<br />

<br />

1<br />

i<br />

|F 〉 . =<br />

<br />

2 + 2i<br />

3 − 4i<br />

<br />

cos θ<br />

<br />

− sin θ<br />

sin θ cos θ<br />

<br />

1<br />

−1


(i) (A|D〉) †<br />

(j) Using explicit m<strong>at</strong>rix multiplic<strong>at</strong>ion (without using a theorem) verify th<strong>at</strong> (A|D〉) † =<br />

〈D|A †<br />

3. The Pauli spin m<strong>at</strong>rices σx, σy, and σz are defined by:<br />

σx =<br />

<br />

0 1<br />

1 0<br />

σy =<br />

<br />

0 −i<br />

i 0<br />

σz =<br />

<br />

1 0<br />

<br />

0 −1<br />

These m<strong>at</strong>rices are rel<strong>at</strong>ed to angular momentum in quantum mechanics. Prove, and<br />

become familiar with, the identities listed below.<br />

(a) Show th<strong>at</strong> each of the Pauli m<strong>at</strong>rices is hermitian. (A m<strong>at</strong>rix is hermitian if it is<br />

equal to its hermitian adjoint.<br />

(b) Show th<strong>at</strong> the determinant of each of the Pauli m<strong>at</strong>rices is −<strong>1.</strong><br />

(c) Show th<strong>at</strong> σ 2 i = I for each of the Pauli m<strong>at</strong>rices, i.e. for i ∈ {x, y, z}.<br />

4. Perform the following m<strong>at</strong>rix multiplic<strong>at</strong>ions:<br />

REQUIRED:<br />

<br />

1 1 1 3 1<br />

√<br />

2 1 −1 1 3<br />

5. The Pauli spin m<strong>at</strong>rices σx, σy, and σz are defined by:<br />

σx =<br />

<br />

0 1<br />

1 0<br />

σy =<br />

<br />

0 −i<br />

i 0<br />

<br />

1 1 1<br />

√<br />

2 1 −1<br />

σz =<br />

<br />

1 0<br />

<br />

0 −1<br />

These m<strong>at</strong>rices are rel<strong>at</strong>ed to angular momentum in quantum mechanics. Prove, and<br />

become familiar with, the identities listed below.<br />

(a) Show th<strong>at</strong> σxσy = iσz and σyσx = −iσz. (Note: These identities also hold under<br />

a cyclic permut<strong>at</strong>ion of {x, y, z}, e.g. x → y, y → z, and z → x).<br />

(b) The commut<strong>at</strong>or of two m<strong>at</strong>rices A and B is defined by [A, B] def<br />

= AB −BA. Show<br />

th<strong>at</strong> [σx, σy] = 2iσz. (Note: This identity also holds under a cyclic permut<strong>at</strong>ion<br />

of {x, y, z}, e.g. x → y, y → z, and z → x).<br />

(c) The anti-commut<strong>at</strong>or of two m<strong>at</strong>rices A and B is defined by {A, B} def<br />

= AB +<br />

BA. Show th<strong>at</strong> {σx, σy} = 0. (Note: This identity also holds under a cyclic<br />

permut<strong>at</strong>ion of {x, y, z}, e.g. x → y, y → z, and z → x).<br />

2


6. Consider the following m<strong>at</strong>rices:<br />

A =<br />

<br />

0 1<br />

1 0<br />

B =<br />

<br />

3 1<br />

1 3<br />

C =<br />

<br />

1 0<br />

<br />

0 −1<br />

(a) Explain wh<strong>at</strong> each of the m<strong>at</strong>rices “does” geometrically when thought of as a<br />

linear transform<strong>at</strong>ion acting on a vector.<br />

(b) The commut<strong>at</strong>or of two m<strong>at</strong>rices A and B is defined by [A, B] def<br />

= AB − BA. Find<br />

the following commut<strong>at</strong>ors: [A, B], [A, C], [B, C].<br />

(c) Two m<strong>at</strong>rices are said to “commute,” if their commut<strong>at</strong>or is zero. Thought of as<br />

linear transform<strong>at</strong>ions, two m<strong>at</strong>rices commute if it doesn’t m<strong>at</strong>ter in which order<br />

the transform<strong>at</strong>ions act. For all pairs of the m<strong>at</strong>rices A, B, and C, show geometrically<br />

th<strong>at</strong> the order of the transform<strong>at</strong>ions doesn’t m<strong>at</strong>ter when the m<strong>at</strong>rices<br />

commute and does m<strong>at</strong>ter when they don’t commute.<br />

7. (a) Carry out the following m<strong>at</strong>rix calcul<strong>at</strong>ions.<br />

and<br />

( 0 1 0 )<br />

( 0 1 0 )<br />

⎛<br />

⎝ a11 a12 a13<br />

a21 a22 a23<br />

⎛<br />

a31 a32 a33<br />

⎝ a11 a12 a13<br />

a21 a22 a23<br />

a31 a32 a33<br />

⎞ ⎛<br />

⎠ ⎝ 1<br />

⎞<br />

0 ⎠<br />

0<br />

⎞ ⎛<br />

⎠ ⎝ 0<br />

⎞<br />

1 ⎠<br />

0<br />

(b) Wh<strong>at</strong> m<strong>at</strong>rix multiplic<strong>at</strong>ion would you do if you wanted the answer to be a13?<br />

(c) The bra-ket language for the calul<strong>at</strong>ions in part (a) are<br />

〈2|A|1〉 =? and 〈2|A|2〉 =?<br />

Write the question to part (b) in bra-ket language.<br />

8. Consider the m<strong>at</strong>rix:<br />

A . =<br />

<br />

0 −i<br />

i 0<br />

Find the m<strong>at</strong>rix M . = e iAθ where θ is an arbitrary real scalar parameter. To do this<br />

problem, expand the exponential in a power series, without worrying too much about<br />

wh<strong>at</strong> A is. Then, you will need to compute all of the powers of A. It’s easier than it<br />

looks!<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!