04.08.2013 Views

New Approaches to ElectroWeak Symmetry Breaking - LPSC

New Approaches to ElectroWeak Symmetry Breaking - LPSC

New Approaches to ElectroWeak Symmetry Breaking - LPSC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>New</strong> <strong>Approaches</strong> <strong>to</strong><br />

<strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong><br />

E = mc 2<br />

E = ¯hν<br />

Part Two<br />

Higgs as a (Pseudo) Gols<strong>to</strong>ne Boson: Little Higgs Theories.<br />

Higgs as a component of a Gauge Field: Gauge Higgs Unification.<br />

Ch!"ophe Grojean<br />

( chris<strong>to</strong>phe.grojean@cern.ch )<br />

Rµν − 1<br />

2 Rgµν = 16πG Tµν<br />

CERN-TH & Service de Physique Théorique - CEA Saclay


How <strong>to</strong> Stabilize the Higgs Potential<br />

Golds<strong>to</strong>ne’s Theorem<br />

spontaneously broken global symmetry massless scalar<br />

The spin trick<br />

a particle of spin s:<br />

... but the Higgs has sizable non-derivative<br />

couplings<br />

2s+1 polarization states<br />

...with the only exception of a particle moving at the<br />

speed of light<br />

... fewer polarization states<br />

Spin 1 Gauge invariance no longitudinal polarization<br />

Spin 1/2<br />

→<br />

→<br />

Chiral symmetry only one helicity<br />

→<br />

... but the Higgs is a spin 0 particle<br />

→<br />

m=0<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Symmetries <strong>to</strong> Stabilize a Scalar Potential<br />

Supersymmetry<br />

Higher Dimensional<br />

Lorentz invariance<br />

fermion ~ boson<br />

Aµ ∼ A5<br />

4D spin 1 4D spin 0<br />

These symmetries cannot be exact symmetry of the Nature.<br />

They have <strong>to</strong> be broken. We want <strong>to</strong> look for a soft breaking in<br />

order <strong>to</strong> preserve the stabilization of the weak scale.<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Li%le Higgs 'eo!es<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


U(1)<br />

φ = 1<br />

√ 2 (f + h(x)) e iθ(x)/f<br />

L = 1<br />

2∂µh∂ µ h + 1<br />

2<br />

Golds<strong>to</strong>ne Boson<br />

φ → e iα φ<br />

L = ∂µφ † ∂ µ φ − λ<br />

f+h<br />

f<br />

h → h<br />

θ → θ + αf<br />

2<br />

φ 2 2 −<br />

U(1)<br />

non-linearly realized<br />

shift symmetry forbids any mass term<br />

for θ<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

f 2<br />

2<br />

2<br />

∂µθ∂ µ θ − λ f 2 h 2 + fh 3 + 1<br />

4 h4<br />

If the U(1) symmetry is gauged, the Golds<strong>to</strong>ne boson is<br />

eaten and it becomes the longitudinal component of<br />

the massive gauge boson


Example of Uneaten Golds<strong>to</strong>ne Bosons<br />

SU(N) → SU(N − 1)<br />

〈φ〉 =<br />

⎛<br />

⎜<br />

⎝<br />

0<br />

.<br />

0<br />

f<br />

⎞<br />

⎟<br />

⎠<br />

φ = exp<br />

⎛<br />

⎜<br />

⎝<br />

(N 2 − 1) − (N − 1) 2 − 1 = 2N − 1<br />

Let us assume that only SU(N-1) is gauged: then the Golds<strong>to</strong>ne are uneaten.<br />

SU(N − 1)<br />

SU(N)<br />

SU(N − 1)<br />

i<br />

f<br />

⎛<br />

⎜<br />

⎝<br />

−π0<br />

Golds<strong>to</strong>ne bosons<br />

φ = e (N-1) complex, , and 1 real, , scalars<br />

iπ φ0 π π0<br />

φ → UN−1φ = UN−1e iπ U †<br />

φ → exp<br />

π →<br />

<br />

i<br />

UN−1<br />

α †<br />

α<br />

1<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

. ..<br />

π1<br />

−π0 πN−1<br />

π⋆ 1 . . . π⋆ N−1 (N − 1)π0<br />

π0 π<br />

<br />

exp<br />

π † π0<br />

N−1UN−1φ0 = e<br />

<br />

†<br />

U N−1 =<br />

1<br />

linear transformations<br />

<br />

i<br />

π †<br />

π<br />

<br />

φ0 ≈ exp<br />

.<br />

⎞⎞<br />

⎛<br />

⎟⎟<br />

⎜<br />

⎟⎟<br />

⎜<br />

⎟⎟<br />

⎜<br />

⎠⎠<br />

⎝<br />

†<br />

iUN−1πU<br />

N−1φ0<br />

π0<br />

π † U †<br />

N−1<br />

<br />

i<br />

non-linear transformations<br />

π † + α †<br />

UN−1π<br />

π0<br />

<br />

π + α<br />

0<br />

.<br />

0<br />

f<br />

<br />

⎞<br />

⎟<br />

⎠<br />

φ0


The Desired Properties of a Little Higgs<br />

Unbroken SU(2)xU(1) gauge symmetry<br />

At least 21/2 doublet as a Golds<strong>to</strong>ne boson<br />

Break the G/H shift symmetry that protects the Higgs potential in a way<br />

<strong>to</strong> allow a quartic coupling and a mass term, as well as Yukawa interactions<br />

<strong>to</strong> guarantee the absence of quadratic divergences at one loop<br />

Implement the idea of Higgs = (Pseudo)-Golds<strong>to</strong>ne boson<br />

Kaplan, Georgi ‘84<br />

Kaplan, Georgi, Dimopoulos ‘84<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Collective <strong>Breaking</strong><br />

The global symmetry is explicitly broken but only “collectively” !<br />

the symmetry is broken when two or more couplings in the Lagrangian<br />

are non-vanishing.<br />

Setting any one of these couplings <strong>to</strong> zero res<strong>to</strong>res the symmetry<br />

and therefore the masslessness of the Little Higgs<br />

⎛<br />

φ1 with 〈φ1〉 = f ⎝ 0<br />

⎞<br />

0 ⎠<br />

1<br />

and φ2 with 〈φ2〉 = f<br />

[SU(3)/SU(2)] 2<br />

2x(8-3)=10 Golds<strong>to</strong>ne<br />

Let us now gauge SU(3)<br />

L = |Dµφ1| 2 + |Dµφ2| 2<br />

Dµφi = ∂µφi − igAµφi<br />

vev<br />

SU(3)V → SU(2)V<br />

the 5 Golds<strong>to</strong>ne are eaten<br />

φi → Uiφi<br />

Arkani-Hamed et al. ‘02<br />

φi → Uφi and Aµ → UAµU †<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎛<br />

⎝ 0<br />

0<br />

1<br />

requires U1 = U2<br />

Break SU(3)1 − SU(3)2. Gauge SU(3)1 + SU(3)2.<br />

in presence of the gauge coupling, only 5 Golds<strong>to</strong>ne<br />

The 5 extra would-be Golds<strong>to</strong>ne boson acquire a mass through the gauge coupling<br />

⎞<br />


[SU(3)/SU(2)] 2<br />

2x(8-3)=10 Golds<strong>to</strong>ne<br />

Collective <strong>Breaking</strong><br />

φ1 with 〈φ1〉 = f<br />

Let us now gauge SU(3)<br />

L = |Dµφ1| 2 + |Dµφ2| 2<br />

Dµφi = ∂µφi − igAµφi<br />

vev<br />

SU(3)V → SU(2)V<br />

the 5 Golds<strong>to</strong>ne are eaten<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎛<br />

⎝ 0<br />

0<br />

1<br />

⎞<br />

⎠ and φ2 with 〈φ2〉 = f<br />

φi → Uiφi<br />

φi → Uφi and Aµ → UAµU †<br />

⎛<br />

⎝ 0<br />

0<br />

1<br />

requires U1 = U2<br />

Break SU(3)1 − SU(3)2. Gauge SU(3)1 + SU(3)2.<br />

in presence of the gauge coupling, only 5 Golds<strong>to</strong>ne<br />

The 5 extra would-be Golds<strong>to</strong>ne boson acquire a mass through the gauge coupling.<br />

As soon as the coupling of either φ1 <strong>to</strong> Aμ or φ2 <strong>to</strong> Aμ is set <strong>to</strong> zero, enlarged global<br />

symmetry and 5 Golds<strong>to</strong>ne in the physical spectrum.<br />

If a diagram involves only one type of couplings,<br />

it cannot generate a mass term for the pseudo-Golds<strong>to</strong>ne bosons<br />

There is no quadratically divergent diagrams at one loop.<br />

⎞<br />


Λ 2<br />

Absence of Λ 2 divergent Diagrams<br />

SU(3)<br />

φ †<br />

i<br />

Log (Λ 2 )<br />

φ2<br />

φ †<br />

1<br />

φi<br />

φ †<br />

2<br />

φ1<br />

δL = g2 Λ 2<br />

δL = g4 f 2<br />

16π 2<br />

16π<br />

2 (φ†<br />

1 φ1 + φ †<br />

2 φ2) = g2 f 2 Λ 2<br />

8π 2<br />

independent of the Higgs field!<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

<br />

<br />

φ †<br />

1 φ2<br />

<br />

<br />

log Λ2<br />

Simplest Higgs<br />

Kaplan-Schmaltz ‘03<br />

Q2 = g4f 2<br />

Λ2<br />

log<br />

4π2 Q2 h† h<br />

log-divergent one-loop suppressed<br />

Higgs mass


Cancelation Mechanism of Λ 2<br />

<br />

φ1 = exp i<br />

<br />

φ2 = exp −i<br />

M 2 = g 2 f 2<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

h †<br />

h †<br />

1<br />

h<br />

h<br />

1 − v2<br />

f 2<br />

<br />

<br />

f<br />

<br />

≈ f<br />

<br />

≈ f<br />

ih/f<br />

1 − (h † h)/(2f 2 )<br />

W’ cancels the quadratic divergences generated by W<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

f<br />

1 − v2<br />

f 2<br />

v 2<br />

f 2<br />

v 2<br />

f 2<br />

−ih/f<br />

1 − (h † h)/(2f 2 )<br />

4<br />

3<br />

− v2<br />

f 2<br />

− v2<br />

√ 3f 2<br />

− v2<br />

√ 3f 2<br />

trM 2 is independent of v 2 ⇔ no quadratic divergence<br />

v 2<br />

f 2<br />

<br />

<br />

⎞<br />

⎟<br />


q =<br />

tL<br />

φ1 ≈ f<br />

φ2 ≈ f<br />

How <strong>to</strong> Generate a Yukawa Coupling<br />

bL<br />

<br />

<br />

<br />

y y<br />

≡ 2 of SU(2)<br />

ih/f<br />

1 − (h † h)/(2f 2 )<br />

−ih/f<br />

1 − (h † h)/(2f 2 )<br />

Q =<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎛<br />

⎝<br />

L = y √ φ<br />

2 †<br />

1QtR + y √ φ<br />

2 †<br />

<br />

<br />

x<br />

yf<br />

T− TL T+<br />

tL<br />

− y<br />

2f<br />

L = yf<br />

tL<br />

bL<br />

TL<br />

2 QTR<br />

⎞<br />

⎠ ≡ 3 of SU(3)<br />

<br />

1 − h† h<br />

2f 2<br />

<br />

with<br />

+<br />

TLT+ + yh † qT−<br />

TR<br />

T+ = 1<br />

√ 2 (TR + tR) T− = i<br />

√ 2 (TR − tR)<br />

m 2 t = y 2 v 2<br />

m 2 T = y2 f 2<br />

<br />

1 − v2<br />

f 2<br />

trM 2 is independent of v 2 ⇔ no quadratic divergence<br />

heavy <strong>to</strong>p cancels the quadratic divergences generated by <strong>to</strong>p


Collective <strong>Breaking</strong> in the Top Sec<strong>to</strong>r<br />

Without Yukawa<br />

L = y √ 2 φ †<br />

1 QtR + y √ 2 φ †<br />

2 QTR<br />

φi → Uiφi<br />

SU(3) 2<br />

Global <strong>Symmetry</strong><br />

When both Yukawa are turned on φi → Uφi and Q → UQ<br />

we need both Yukawa <strong>to</strong> align the two SU(3)<br />

more than one coupling is required <strong>to</strong> break enough global symmetry<br />

<strong>to</strong> let the Higgs acquire a potential<br />

φ1<br />

no quadratically divergent diagram at one-loop !<br />

tR<br />

Q<br />

φ1<br />

φ2<br />

Q<br />

TR<br />

φ2<br />

<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

d 4 k<br />

1<br />

(kµγ µ ∝ log Λ2<br />

− m) 4<br />

log-divergent contribution only


1. Bot<strong>to</strong>m Yukawa:<br />

Exercises<br />

Check that the bot<strong>to</strong>m mass is generated by<br />

2. Hypercharge:<br />

y φ1φ2QbR<br />

Show that you can introduce the hypercharge by simply<br />

extending the gauge symmetry <strong>to</strong> SU(3)xU(1)X<br />

hint: first determine the X charge of the two scalar triplets.<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


EWSB in Little Higgs<br />

At tree-level, no Higgs potential<br />

(well, a quartic coupling can be generated by integrating out another heavy Golds<strong>to</strong>ne)<br />

A quartic and a mass term are generated at one-loop.<br />

As in susy, the <strong>to</strong>p loop will generate a log-divergent tachyonic mass term<br />

that will trigger EWSB.<br />

Radiatively induced EWSB<br />

(that’s the dynamics of the model that drives the symmetry breaking, it is not arbitrary like in the SM)<br />

What<br />

we want<br />

Might be<br />

difficult<br />

v 2 = −m2<br />

2λ<br />

φ †<br />

1 φ2 = f 2<br />

large quartic (larger than v/f) in order <strong>to</strong> get<br />

a physical Higgs mass of order v and not v 2 /f.<br />

small mass term (of order v and not f)<br />

<br />

1 − 2 h† h<br />

f 2 + 2(h† h) 2<br />

3f 4<br />

Would be better <strong>to</strong> generate a tree-level quartic<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

<br />

v ∼ f


Little Higgs with Tree Level Quartic<br />

Global symmetry<br />

Gauge symmetry<br />

v ∼ f/4π<br />

f<br />

SU(3)<br />

Σ1<br />

Σ2<br />

SU(2)<br />

x<br />

U(1)<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

Σ3<br />

Σ4<br />

<br />

SU(3)L × SU(3)R/SU(3)V<br />

4<br />

SU(3) × SU(2) × U(1) → SU(2)l × U(1)y<br />

30, 21/2, 10<br />

not protected by<br />

collective breaking<br />

two complex doublets<br />

1 complex triplet<br />

1 complex singlet<br />

32 GB<br />

8 eaten<br />

24 PGB<br />

Will generate a quartic coupling<br />

for the light PGB<br />

Minimal moose model<br />

Arkani-Hamed, Cohen, Katz, Nelson, Gregoire, Wacker ‘02


"<br />

"<br />

f<br />

v ∼ f/4π<br />

4πf<br />

EW Precision Tests<br />

1 TeV<br />

100 GeV<br />

10 TeV<br />

!/2<br />

UV completion<br />

22 18<br />

4<br />

14 10 <strong>New</strong> particles (W’, Z’,<strong>to</strong>p’...)<br />

!/4<br />

!/4<br />

SM particles (Higgs,W,Z...)<br />

The new particles @ a TeV will affect 0 the EW precision 0 observables<br />

!/2<br />

!/4<br />

0<br />

!/2<br />

!/4<br />

22<br />

22<br />

SU(5) “littlest” Higgs model<br />

18<br />

18<br />

14<br />

14<br />

10<br />

0 !/4 !/2<br />

"'<br />

14<br />

10<br />

6<br />

SU(6) little Higgs model<br />

12<br />

10<br />

8<br />

6<br />

6<br />

"R<br />

!/2<br />

!/4<br />

8<br />

SO(9) little Higgs model<br />

6<br />

10<br />

4<br />

0<br />

0 !/4 !/2<br />

!/2<br />

"L<br />

8<br />

10<br />

6<br />

2<br />

4<br />

2<br />

3<br />

is computed at 99% C.L. for 1 dof, i.e. χ<br />

1<br />

Bounds from precision data on the scale f (in TeV)<br />

2<br />

for various Little Higgs models.<br />

2 = χ2 SM<br />

"<br />

!/4<br />

Incomplete SU(6) little Higgs model<br />

3<br />

4<br />

f>3-4 TeV 5 instead of f ~ 1 TeV<br />

6<br />

0 !/4<br />

"'<br />

!/2<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 7<br />

2 Lecture<br />

"<br />

"<br />

!/2<br />

!/2<br />

!/4<br />

0<br />

22<br />

14<br />

SU(5) “littlest” Higgs model<br />

18<br />

14<br />

10<br />

6<br />

SU(6) little Higgs model<br />

12<br />

10<br />

8<br />

0 !/4 !/2<br />

"'<br />

6<br />

6<br />

"R<br />

"<br />

!/2<br />

!/4<br />

0<br />

8<br />

SO(9) little Higgs model<br />

6<br />

10<br />

0 !/4 !/2<br />

"L<br />

0 !/4 !/2<br />

2#<br />

8<br />

10<br />

Incomplete SU(6) little Higgs model<br />

Marandella, Schappacher, Strumia ‘05<br />

Figure 1: Bound from precision data on the scale f in TeV of little-Higgs models. The constraint<br />

+ 6.6. As described in the text in each model the<br />

angles φ parameterize the gauge couplings of the extra gauge groups, which become strongly coupled<br />

at φ → 0 and/or φ → π/2. The dotted iso-lines show that the constraint on f gets slightly relaxed<br />

in presence of arbitrary extra corrections <strong>to</strong> ˆ T . We assumed a light higgs, mh ∼ 115 GeV.<br />

3<br />

2<br />

6<br />

3<br />

4<br />

5<br />

6<br />

2<br />

1<br />

4<br />

2


Cus<strong>to</strong>dial <strong>Symmetry</strong> and T-parity<br />

To improve EW fits, two useful <strong>to</strong>ols:<br />

little Higgs with cus<strong>to</strong>dial symmetry<br />

T-parity<br />

Chang, Wacker ‘03 based on minimal moose with SO(5)...<br />

Cheng, Low ‘03<br />

heavy particles = odd<br />

light particles = even<br />

at each vertex, an even number of heavy fields are required<br />

no effective opera<strong>to</strong>r for light fields are generated<br />

by tree-level exchange of heavy fields<br />

tree-level exchange forbidden loop exchange allowed<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Fine-Tuning in Little Higgs<br />

!<br />

1000<br />

100<br />

10<br />

MSSM<br />

Littlest 2<br />

Littlest<br />

100 150 200 250 300 350 400<br />

m (GeV)<br />

h<br />

T-parity<br />

Simplest<br />

Figure 13: Comparative summary of the fine-tuning vs. mh for different scenarios. The curves for Little<br />

Casas, Espinosa, Hidalgo ‘05<br />

Higgs models (lines labeled “Littlest”, “Littlest 2”, “T -parity” and “Simplest”) are lower bounds on the<br />

corresponding fine-tuning, see text for details.<br />

corresponding <strong>to</strong> refs. [12, 13, 14, 15].<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

SM


from the diagrams involving the BH. Certain choices of<br />

the fermion charges and the angle ψ ′ can help minimize<br />

these constraints [6]; alternately, the extra U(1) can be<br />

eliminated completely [9] without introducing significant<br />

fine tuning due <strong>to</strong> the smallness of the coupling g ′ . Given<br />

this model uncertainty in the U(1) sec<strong>to</strong>r, we will con-<br />

Experimental Signatures<br />

little Higgs models require a heavy <strong>to</strong>p and heavy gauge bosons<br />

centrate on the production and decay of the SU(2) heavy<br />

bosons.<br />

In pp collisions at the LHC, the heavy gauge bosons are<br />

predominantly produced through q¯q annihilation. The<br />

sub-process qg → WHq is considerably smaller and could<br />

be separately identified due <strong>to</strong> the presence of a high<br />

<strong>to</strong> guarantee the cancellation of the Λ2 divergences, the couplings<br />

of the new gauge bosons <strong>to</strong> the SM fermions is fixed<br />

pT jet. Fig. 3 shows the leading order production cross<br />

section of WH as a function of its mass, for the case<br />

ψ = π/4. The general case may be obtained from Fig.<br />

by simply scaling by cot2 ψ.<br />

Burdman, Perelstein, Pierce ‘02<br />

100 fb-1 (three years of LHC)<br />

FIG. 3. Production cross sections for W 3 H (solid) and W ±<br />

H<br />

(dashed) at the LHC, for ψ = π/4. We use the CTEQ5L<br />

par<strong>to</strong>n distribution function.<br />

production cross section<br />

of heavy W’ and Z’<br />

From our discussion thus far, it is clear that the twobody<br />

decay channels of the W 3 H include W 3 H → ¯ ff, where<br />

Partial width of ZH <strong>to</strong> fermions<br />

is proportional <strong>to</strong> cotan 2 θ<br />

Partial width of ZH in<strong>to</strong> boson pairs<br />

(Zh and W + W - )<br />

is proportional <strong>to</strong> cotan 2 2θ<br />

(this follows from the particuliar coupling of the<br />

Higgs <strong>to</strong> the two SU(2) gauge groups)<br />

cotan θ=g1/g2 (two SU(2) gauge couplings)<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Gau)-Higgs Unification<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Symmetries <strong>to</strong> Stabilize a Scalar Potential<br />

Higher Dimensional<br />

Lorentz invariance<br />

Aµ ∼ A5<br />

4D spin 1 4D spin 0<br />

These symmetries cannot be exact symmetry of the Nature.<br />

They have <strong>to</strong> be broken. We want <strong>to</strong> look for a soft breaking in<br />

order <strong>to</strong> preserve the stabilization of the weak scale.<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


How <strong>to</strong> Get a Doublet from an Adjoint<br />

Consider a 5D<br />

gauge symmetry G<br />

1<br />

2<br />

H ∼ A a 5<br />

will belong tho the adjoint rep. of G<br />

The SM Higgs is not an adjoint of SU(2)xU(1), it is a doublet !<br />

⎛<br />

⎜<br />

⎝<br />

SU(3)<br />

Consider a bigger gauge group<br />

G → SU(2)l × U(1)y<br />

Adj doublet + other rep.<br />

W3 + W8/ √ 3 W1 − iW2 W4 − iW5<br />

W1 + iW2 −W3 + W8/ √ 3 W6 − iW7<br />

W4 + iW5 W6 + iW7 −2W8/ √ 3<br />

Adj<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎞<br />

⎟<br />

⎠<br />

SU(2)xU(1)<br />

2 √ 3/2


h+ = W4 − iW5<br />

h0 = W6 − iW7<br />

δT W = g 1<br />

2 √ 3<br />

⎛<br />

⎝<br />

U(1) Charge of the Doublet<br />

δT W = g [T, W ] T = 1<br />

2 √ 3<br />

1<br />

1<br />

−2<br />

= g 1<br />

2 √ 3<br />

⎞ ⎛<br />

⎠ ⎝<br />

⎛<br />

⎝<br />

−2h ⋆ +<br />

h ⋆ + h ⋆ 0<br />

−2h ⋆ 0<br />

= g 3<br />

2 √ 3<br />

h+<br />

h0<br />

⎛<br />

⎝<br />

⎛<br />

⎝ 1<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎞<br />

⎠ − g 1<br />

2 √ 3<br />

h+<br />

h0<br />

⎞<br />

⎛<br />

⎝<br />

⎠ − g 1<br />

2 √ 3<br />

−h ⋆ + −h ⋆ 0<br />

h ⋆ + h ⋆ 0<br />

⎛<br />

⎝<br />

h+<br />

h ⋆ +<br />

h+<br />

U(1) charge of the doublet = 3<br />

2 √ 3<br />

h0<br />

⎞<br />

⎠<br />

h ⋆ 0<br />

h0<br />

1<br />

⎞ ⎛<br />

⎠ ⎝<br />

−2h+<br />

−2h0<br />

−2<br />

1<br />

⎞<br />

⎠<br />

⎞<br />

⎠<br />

1<br />

−2<br />

⎞<br />


Weak Mixing Angle<br />

δ U(1)<br />

h+<br />

h0<br />

<br />

= 3g<br />

2 √ 3<br />

h+<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

h0<br />

<br />

=<br />

√ 3g<br />

2<br />

h+<br />

Proper U(1) normalization<br />

(such that the doublet has a hypercharge 1/2) g ′ = √ 3g U(1)y = T8/ √ 3<br />

sin 2 θW = g′2<br />

g2 3g2<br />

=<br />

+ g ′2 g2 3<br />

=<br />

+ 3g2 4<br />

By embedding SU(2)xU(1) in<strong>to</strong> a simple group, we got a<br />

prediction for the weak mixing angle<br />

experimentally: sin 2 θW ≈ 0.23<br />

h0<br />

<br />

Man<strong>to</strong>n ‘79<br />

Fairlie ‘79


How <strong>to</strong> Get a Good Weak Mixing Angle<br />

Repeat the previous construction with another gauge group<br />

G2 gauge group<br />

adjoint = 14 fundamental = 7<br />

SU(3) decomposition<br />

14 = 8 + 3 + ¯3 7 = 3 + ¯3 + 1<br />

T8 normalization<br />

14 =<br />

<br />

30 + (2 + ¯2) √ 3/2<br />

U(1)y normalization<br />

14 =<br />

<br />

+ 10<br />

30 + (2 + ¯2) 3/2 + 10<br />

<br />

+<br />

<br />

+<br />

SU(2)xU(1) decomposition<br />

<br />

2 + ¯2<br />

1/2 √ 3 +<br />

<br />

1 + ¯1<br />

−1/ √ 3<br />

<br />

2 + ¯2<br />

1/2 +<br />

U(1)y = √ 3 T8<br />

<br />

1 + ¯1<br />

−1<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

7 =<br />

7 =<br />

Man<strong>to</strong>n ‘79<br />

Csáki, Grojean, Murayama ‘02<br />

<br />

2 + ¯2<br />

1/2 √ 3 +<br />

<br />

1 + ¯1<br />

−1/ √ 3<br />

<br />

2 + ¯2<br />

1/2 +<br />

<br />

1 + ¯1<br />

−1<br />

sin 2 θW = 1/4<br />

+ 10<br />

+ 10


fundamental rep.<br />

14 7x7 matrices<br />

T 9 = i<br />

2 √ 3<br />

λ 1 =<br />

⎛<br />

⎝<br />

λ 4 =<br />

⎛<br />

⎝<br />

0 1 0<br />

1 0 0<br />

0 0 0<br />

⎛<br />

⎝<br />

λ 7<br />

v 1†<br />

⎞<br />

0 0 1<br />

1 0 0<br />

0 0 0<br />

⎠ λ 2 =<br />

⎞<br />

v 1 =<br />

T a = 1<br />

2 √ 2<br />

v 1<br />

⎛<br />

⎝<br />

⎠ λ 5 =<br />

⎛<br />

⎞<br />

G2 Gymnastic<br />

0 −i 0<br />

i 0 0<br />

0 0 0<br />

⎛<br />

⎝<br />

⎝ −i√ 2<br />

0<br />

0<br />

⎛<br />

⎝<br />

0 0 −i<br />

0 0 0<br />

i 0 0<br />

⎞<br />

λ a<br />

⎠ T 10 = −i<br />

2 √ 3<br />

⎠ v 2 =<br />

−λ at<br />

⎛<br />

⎝<br />

with<br />

⎞ ⎛<br />

⎠ λ 3 =<br />

⎞<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎝<br />

⎠ λ 6 =<br />

⎛<br />

⎝<br />

λ 5<br />

0<br />

i √ 2<br />

0<br />

⎞<br />

⎠ for a = 1 . . . 8<br />

v 2†<br />

1 0 0<br />

0 −1 0<br />

0 0 0<br />

⎛<br />

⎝<br />

⎞<br />

v 2<br />

⎠ v 3 =<br />

⎞<br />

⎠ T 11 = i<br />

2 √ 3<br />

T 12 = T 9† T 13 = T 10† T 14 = T 11† ,<br />

0 0 0<br />

0 0 1<br />

1 0 0<br />

⎛<br />

⎝<br />

⎞<br />

⎠ λ 8 = 1<br />

√ 3<br />

⎞<br />

⎠ λ 7 =<br />

0<br />

0<br />

−i √ 2<br />

Csáki, Grojean, Murayama ‘02<br />

⎞<br />

⎠ .<br />

⎛<br />

⎝<br />

⎛<br />

⎝<br />

⎛<br />

⎝<br />

λ 2<br />

v 3†<br />

1 0 0<br />

0 1 0<br />

0 0 −2<br />

0 0 0<br />

0 0 −i<br />

0 i 0<br />

⎞<br />

⎠<br />

v 3<br />

⎞<br />

⎠<br />

⎞<br />


6D for a Tree-level Quartic Coupling<br />

L = − 1<br />

4 F 2 µν + 1<br />

2 F 2 µ5 + 1<br />

2 F 2 µ6 − 1<br />

2 F 2 56<br />

F56 = ∂5A6 − ∂6A5 − g[A5, A6]<br />

A5 = H + . . . A6 = H + . . .<br />

L = −g 2 H 4<br />

An<strong>to</strong>niadis, Benakli, Quiros ‘01<br />

the 6D gauge kinetic term contains a Higgs quartic coupling<br />

and<br />

λ ≡ g 2<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


SU(3) model<br />

A5 =<br />

Explicit Tree-level Quartic<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

2 h⋆ +<br />

Aµ = 1<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

2 h⋆ 0<br />

1<br />

2 h+<br />

1<br />

2 h0<br />

A 3 µ + 1<br />

3 A8 µ<br />

A 1 µ + iA 2 µ<br />

⎞<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎛<br />

⎟<br />

⎠ A6<br />

⎜<br />

= ⎜<br />

⎝<br />

A 1 µ − iA 2 µ<br />

−A 3 µ + 1<br />

3 A8 µ<br />

i<br />

2 h⋆ +<br />

i<br />

2 h⋆ 0<br />

− 2<br />

√ 3 A 8 µ<br />

−i<br />

2 h+<br />

−i<br />

2 h0<br />

L = − 1<br />

2 Tr F 2 µν + Tr F 2 µ5 + Tr F 2 µ6 − Tr F 2 56<br />

L = DµH † DµH − g2<br />

2 (H† H) 2<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

after orbifold<br />

projection...


πR<br />

−πR<br />

Towards a Complete Construction<br />

so far we haven’t broken any symmetry... we even enlarged the gauge group<br />

y<br />

−y<br />

We need <strong>to</strong> break G down <strong>to</strong> SU(2)xU(1)<br />

we can achieve this breaking while compactifying the extra-dimension<br />

0<br />

Orbifold Compactification <strong>Breaking</strong><br />

circle y ∼ y + 2πR<br />

⤶<br />

Z2 orbifold y ∼ −y<br />

U 2 = 1<br />

Aµ(−y) = UAµ(y)U † A5(−y) = −UA5(y)U †<br />

zero mode: is independent of<br />

Aµ<br />

Aµ = UAµU †<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

y<br />

A5 = −UA5U †<br />

- signs are compensating<br />

gauge symmetry breaking + chiral fermions


Orbifold Projection as Boundary Conditions<br />

H subgroup<br />

A H µ (−y) = A H µ (y)<br />

A H 5 (−y) = −A H 5 (y)<br />

G/H coset<br />

A G/H<br />

µ<br />

A G/H<br />

5<br />

−πR<br />

(−y) = −A G/H<br />

µ<br />

(−y) = A G/H<br />

5<br />

y<br />

−y<br />

G → H by orbifold projection<br />

(y)<br />

(y)<br />

⤶Z2<br />

which is equivalent <strong>to</strong> the BCs<br />

at the fixed points<br />

which is equivalent <strong>to</strong> the BCs<br />

at the fixed points<br />

∂5A H µ = 0<br />

A H 5 = 0<br />

A G/H<br />

µ<br />

∂5A G/H<br />

5<br />

πR<br />

0<br />

U 2 ≈<br />

= 1 BC BC<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

= 0<br />

= 0


SU(3) → SU(2)xU(1) 5D Orbifold <strong>Breaking</strong><br />

massless Aµ<br />

[Aµ, U] = 0 Aµ = 1<br />

2<br />

massless A5<br />

U =<br />

⎛<br />

⎝ −1<br />

⎛<br />

⎜<br />

⎝<br />

{A5, U} = 0 A5 = 1<br />

2<br />

A 3 µ + A 8 / √ 3 A 1 µ − iA 2 µ<br />

⎛<br />

⎜<br />

⎝<br />

−1<br />

A 1 µ + iA 2 µ<br />

1<br />

A 4 5 + iA 5 5<br />

−A 3 µ + A 8 µ/ √ 3<br />

A 6 5 + iA 7 5<br />

A 4 5 − iA 5 5<br />

A 6 5 − iA 7 5<br />

−2A 8 µ/ √ 3<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

⎞<br />

⎠ U ∈ SU(3) U 2 = 1<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

SU(2) × U(1)<br />

SU(3)<br />

SU(2) × U(1)


!<br />

2 R<br />

0<br />

U =<br />

⎛<br />

⎝ i<br />

z<br />

i<br />

0<br />

U 4 = 1<br />

T O<br />

−1<br />

⎞<br />

⎠<br />

6D Orbifold <strong>Breaking</strong><br />

!<br />

2 R<br />

Ay =<br />

⎛<br />

⎜<br />

⎝<br />

Fundamental domain<br />

of the <strong>to</strong>rus<br />

Fundamental domain<br />

y<br />

1<br />

2 h⋆ +<br />

of the orbifold<br />

Fixed points<br />

of the orbifold<br />

T 2 /Z 4 orbifold<br />

y<br />

z<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

1<br />

2 h⋆ 0<br />

1<br />

2 h+<br />

1<br />

2 h0<br />

⎞<br />

<br />

∼<br />

−z<br />

y<br />

<br />

Aµ(−z, y) = UAµ(y, z)U †<br />

Ay(−z, y) = −UAz(y, z)U †<br />

Az(−z, y) = UAy(y, z)U †<br />

⎛<br />

⎟<br />

⎠ Az<br />

⎜<br />

= ⎜<br />

⎝<br />

i<br />

2 h⋆ +<br />

i<br />

2 h⋆ 0<br />

−i<br />

2 h+<br />

−i<br />

2 h0<br />

⎞<br />

⎟<br />


In the bulk<br />

Residual <strong>Symmetry</strong><br />

higher dimensional gauge invariance forbids a mass term for A5<br />

At the fixed points<br />

G → H<br />

δA A M = ∂M ɛ A + gf ABC A B µ ɛ C<br />

⎧<br />

⎨<br />

⎩<br />

∂5A H µ = 0 A H 5 = 0 ∂5ɛ H = 0<br />

A G/H<br />

µ = 0 ∂5A G/H<br />

5 = 0 ɛ G/H = 0<br />

(since [H, H] ⊂ H [H, G/H] ⊂ G/H,<br />

the only non-vanishing structure constants are f HHH , f G/H G/H H )<br />

δA H µ = ∂µɛ H + gf HHH A H µ ɛ H<br />

δA H 5 = 0<br />

δA G/H<br />

µ<br />

δA G/H<br />

5<br />

= 0<br />

= ∂5ɛ G/H + gf G/H G/H H A G/H<br />

5<br />

G/H acts non-linearly on the Higgs at the fixed points.<br />

No local mass term allowed<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture<br />

ɛ H<br />

Gersdorff, Irges, Quiros ‘02


Finite Mass from Wilson Line<br />

there is no local counter term that will give a mass <strong>to</strong> the Higgs<br />

the mass term can only be generated non locally<br />

the mass term will be finite then<br />

Wn = e i R 2nπR<br />

0 A5dy Wilson’s line. Gauge invariant object.<br />

The radiative corrections will generate a (finite) effective potential<br />

Veff (A5) = f(Wn)<br />

controlled by finite size effects<br />

UV insensitive<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Tadpole Opera<strong>to</strong>r<br />

the situation complicates in 6D<br />

F56 contains a mass term for the Higgs<br />

Tr (U F56) is a local invariant opera<strong>to</strong>r at a fixed point<br />

Tr (UF56(0)) → Tr (Ug(0)F56(0)g −1 (0)) = Tr (UF56(0)g −1 (0)g(0)) = Tr (UF56(0))<br />

gauge loop<br />

at the fixed points, U and g commute<br />

Unless forbidden by a discrete symmetry,<br />

we expect this opera<strong>to</strong>r <strong>to</strong> be generated at one loop<br />

ghost loop<br />

Csáki, Grojean, Murayama ‘02<br />

Gersdorff, Irges, Quiros ‘02<br />

For Z2 or Z2 x Z2 orbifolds can define a parity<br />

that forbids the tadpole<br />

For Z4 orbifold, no such symmetry<br />

a Λ 2 tadpole is generated at one loop<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Direct coupling:<br />

Non local couplings:<br />

Fermion Masses<br />

4D chiral matter U(1)y fractional charges<br />

Higgs Coupling<br />

<br />

localize fermions at the fixed points<br />

Λ 2 divergences<br />

forbidden by G/H shift symmetry<br />

W = Pe i R Aidx i<br />

Extra Massive Fermion in the Bulk<br />

d 5 x ¯ ψ(i¯σ µ ∂µ − m)ψ + δ(y1)ψχ + δ(y2)ψξ <br />

integrating out<br />

massive fermion<br />

<br />

d 4 x e −m|y1−y2|)<br />

ξ(y2)e i R Aidx i<br />

χ(y1)<br />

Froggatt-Nielsen<br />

mass suppression<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


Experimental Signatures<br />

the collider signals haven’t been studied in details<br />

(lack of fully realistic models?)<br />

the main predictions of these models are<br />

KK excitations of W,Z around 500 GeV ~ 1 TeV<br />

KK excitations of G/H: gauge bosons with the quantum numbers of the Higgs doublets<br />

extra scalar fields<br />

extra fermions (<strong>to</strong> cancel the <strong>to</strong>p loop quadratic divergence)<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture


In 6D models<br />

enlarge the gauge group?<br />

Open Issues<br />

start with SU(3) and add kinetic terms at the fixed points <strong>to</strong> change the<br />

prediction of the weak mixing angle?<br />

In 5D models<br />

add large boundary kinetic terms<br />

add appropriate matter fields in the bulk<br />

warped space<br />

generate a large Higgs quartic<br />

good prediction for the weak mixing angle<br />

generate a large Higgs quartic coupling at one-loop<br />

Seems <strong>to</strong> be a promising way <strong>to</strong> proceed.<br />

Weakly coupled dual of composite Higgs models<br />

See Agashe, Contino, Pomarol ‘04-’05<br />

Ch!"ophe Grojean <strong>New</strong> approaches <strong>to</strong> <strong>ElectroWeak</strong> <strong>Symmetry</strong> <strong>Breaking</strong> 2 Lecture

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!