High Brightness Electron Beam Diagnostics and their ... - CASA

High Brightness Electron Beam Diagnostics and their ... - CASA High Brightness Electron Beam Diagnostics and their ... - CASA

casa.jlab.org
from casa.jlab.org More from this publisher
04.08.2013 Views

InthecaseofarigidlinechargewithaGaussiandistribution(s)=N=p22zexps2=(22z), presentedingure6.20alongwithsimulationresultsusingamodiedversionofparmelathat oneobtainsfortheenergychange[68]: withthefunction12FdenedasF()=R1d0 wakeeldwherethetrailingelectronsinthebunchgenerallyloseenergy,CSReectsyieldanenergy d(ct)= dE(2)1=231=32=34=3 2Ne2 gainforelectronslocatedintheheadofthebunch. includesasimplemodelforCSRbunchselfinteraction(seeAppendixB).Contrarytostandard (0)1=3d zF(s=z) d0e02=2Aplotofthisenergychangeis (6.28) Bunch at Present time Bunch Trajectory R Limitationsofthepreviousmodel Figure6.19:SchematicsofCSRselfinteractionofabunch. S’ Bunch at Retarded time ∆Θ thestraightsectiontothebendsection.(2)thebunchpropagatesinmetallic(e.g.stainlesssteel) intwoways:(1)itassumesthebunchhasbeenorbitingonacircularpathforever(steadystate assumption)and(2)itassumethebunchisinfreespace.Bothofthisassumptionsarenottruein practice:(1)anaccelerator(evencircular)consistsofstraightsectionsjoinedbybendingelements thereforeamorerealisticpictureofCSRshouldincludethetransientCSR,i.e.thepassagefrom ThemodelofCSRbunchselfinteractionbrieyoutlinedintheprevioussectionisoversimplied O cut-ofrequencyassociatedwiththegeometricparametersofthevacuumchamber). vacuumchambersandthereforeCSRcanbeshielded(i.e.notallowtopropagatebecauseofthe 12sometimetermedas\overtake"function S

100 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . ... . . . . . . . . . . ... . . . . . . . . .. . . . . 100 . 50 . 0 -50 -100 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 (deg.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 50 . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . .. . . .. . . . 0 . . . . . . . . . . . . . .. . . . . . -50 predictionusingasimplenumericalmodelinamodiedversionofthescparmelacodefor200m Figure6.20:AnalyticalcomputationforCSR-inducedenergylossalongagaussianbunchand -100 (A)and100m(B).Thesystemconsideredisasimpleachromaticchicane(macroparticlewith >0areinthebunchtail). (B) TheprimarypurposeoftheexperimentthatwasattemptedintheIRFEListomeasurewhether locatedinthebacklegtransport. 6.5PreliminaryExperimentalResultsonEmittanceandEnergySpreadMea- AnothermotivationwastotrytosetuptheIRFELopticssothatwecouldgenerateemittance thetransversehorizontalemittanceissignicantlydegradedaftertherecirculationarc1.ThereasonistoconrmtheviabilityoftheenvisionedUpgradeIRFELinwhichseveralwigglerswillbesurements Theexperimentwasattemptedintwoseriesofruns.Duringtherstrun,wevariedthelinac degradationandperformsomeparametricstudies. TheexperimentalsetuptomeasureemittancefollowsourdiscussionofChapter3. ofrun,becausetheemittancewasfoundtobelarge(technicalproblemwiththeinjector),we acceleratingphaseandmeasuredtheemittancebeforeandafterthearc1.Inthesecondseries concentratedonmeasuringtheenergyspreadmeasurementonly. E (keV) (A)

InthecaseofarigidlinechargewithaGaussi<strong>and</strong>istribution(s)=N=p22zexps2=(22z),<br />

presentedingure6.20alongwithsimulationresultsusingamodiedversionofparmelathat oneobtainsfortheenergychange[68]: withthefunction12FdenedasF()=R1d0 wakeeldwherethetrailingelectronsinthebunchgenerallyloseenergy,CSReectsyieldanenergy d(ct)= dE(2)1=231=32=34=3<br />

2Ne2<br />

gainforelectronslocatedintheheadofthebunch. includesasimplemodelforCSRbunchselfinteraction(seeAppendixB).Contrarytost<strong>and</strong>ard (0)1=3d zF(s=z) d0e02=2Aplotofthisenergychangeis (6.28)<br />

Bunch at Present time<br />

Bunch<br />

Trajectory<br />

R<br />

Limitationsofthepreviousmodel Figure6.19:SchematicsofCSRselfinteractionofabunch.<br />

S’<br />

Bunch at Retarded time<br />

∆Θ<br />

thestraightsectiontothebendsection.(2)thebunchpropagatesinmetallic(e.g.stainlesssteel) intwoways:(1)itassumesthebunchhasbeenorbitingonacircularpathforever(steadystate assumption)<strong>and</strong>(2)itassumethebunchisinfreespace.Bothofthisassumptionsarenottruein practice:(1)anaccelerator(evencircular)consistsofstraightsectionsjoinedbybendingelements thereforeamorerealisticpictureofCSRshouldincludethetransientCSR,i.e.thepassagefrom ThemodelofCSRbunchselfinteractionbrieyoutlinedintheprevioussectionisoversimplied<br />

O<br />

cut-ofrequencyassociatedwiththegeometricparametersofthevacuumchamber). vacuumchambers<strong>and</strong>thereforeCSRcanbeshielded(i.e.notallowtopropagatebecauseofthe 12sometimetermedas\overtake"function<br />

S

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!