High Brightness Electron Beam Diagnostics and their ... - CASA

High Brightness Electron Beam Diagnostics and their ... - CASA High Brightness Electron Beam Diagnostics and their ... - CASA

casa.jlab.org
from casa.jlab.org More from this publisher
04.08.2013 Views

60 0.25 40 20 emittances~"x;y,andrmsbeamsizesx;y)versustheoperatingacceleratingphaseofthelinac. Figure6.18:Evolutionofbeamparameters(bunchlengthz,rmsenergyspreadE,transverse 0 0 6 1 x x 4 y 0.5 y 2 thelatterequationclearlyshowsthat,comparedtotheconstantenergyspreadequation,thereis whichcanbesolvedusingthestandardGreenfunctionperturbativetechnique[59]11Thesolution 0 0 anincrementinangleandpositionof: oftheaboveequationis: x(s)=cos(s=x)x(0)+xsin(s=x)x0(0)+x(1cos(s=x))(0)+Zs x0(s)=1=xsin(s=x)x(0)+cos(s=x)x0(0)+cos(s=x)(0)+Zs 0xsin(~s=x)(~s)d~s 0cos(~s=x)(~s)d~s(6.24) −20 −15 −10 −5 0 −20 −15 −10 −5 0 ∆φ (RF−Deg) ∆φ (RF−Deg) achromaticbendingsystem,theachromaticcharacterisbrokenbecauseofEqn.(6.25).Another interestingpointisthatdependingonthebendingsystemdesign,onecanconceiveawayofmaking andhxx0i)andsubstitutethemintheeqn.(6.20).Itisinterestingtonotethatinthecaseofan Tocomputetheemittancegrowthweneedtocomputethesecondordermoments(hx2i,hx02i x(s)=Zs x0(s)=Zs 0xsin(~s=x)(~s)d~s theaboveintegralverysmall(orideallyzero)sothatthenetemittancegrowthisnegligible.Such amethodhasbeendiscussedindetailinreferences[60]and[61]. 0cos(~s=x)(~s) (6.25) principalsolutions(S(t)andC(t))accordinglyto: equationwritesx(t)=Rt 11Ifweconsidertherighthandsideofthepreviousequationasaperturbationtermp(t;s)thesolutionofthis 0p(~t)d~tG(t;~t)whereG(t;~t)isaGreen'sfunctionthatcanbeconstructedfromthetwo G(t;~t)=S(t)C(~t)C(t)S(~t) σ z (mm) ε x,y (mm−mrad) 0.5 ∆E (keV) σ x,y (mm) 100 80

6.4.4BunchSelfInteractionviaCoherentSynchrotronRadiation CSRisalongstandingtopicinseveralsubjects,especiallyinAcceleratorPhysics.Therst comprehensivestudywasperformedbyJ.S.NodvickandD.S.Saxon[4]in1954.Theseauthors accelerator.Itisaconsequenceofthegenerallylongbunchthatarecirculatinginsuchaccelerator: aswewillseeinthischapter,CSRemissionoccursatwavelengthcomparabletothebunchlength. Therefore,forbunchlengthoftheorderofcentimeters(asitiscurrentincircularaccelerator), studiedtheinteractionofchargedparticlemovingonacurvedpathbetweentoperfectlyconducting planeandshowedhowCSRemissioncouldbepartiallysuppressatagivenwavelengthbythemeans ofthetwoconductingplanethatactasashielding.Indeed,tothebestofourknowledge,CSReect ontheBeamDynamics,andCSRemission,haveneverbeenobservedinstorageringorcircular theTohokuUniversitybyT.Nagazato[66].Thisgroupshowedexperimentallyhowitwaspossible toinferthebunchlengthandbunchstructureusingthefrequencyspectrumofCSR,usingthe beampipechamber,whichserveasawaveguidefortheCSRpropagation,arealsooftheorderof centimetersandsoistheircutowavelength.ThereforetheCSRemissionis\shielded"bythe theemissionofCSRshouldoccurinthemicrowaveregion:unfortunately,thesizeofthevacuum region,andinthefar-infra-redwavelengthhasbeenobservedina100MeVlinearacceleratorof sametechniquewepresentedinChapter4forthetransitionradiation.Theyalsodemonstrate beampipe,i.e.itdoesnotpropagate.Infact,onlyveryrecently,CSRemissioninthefareld thepossibleshieldingofCSRemissionusingtwoparallelconductingplanewithvariablegap[67]. HowevertheanticipatedeectsofCSRontheBeamDynamics,i.e.transverseemittancedilution, hasneverbeenobserveduptonow. Asimplemodel:steadystateinfreespace WeoutlineinthepresentsectionasimplepictureoftheCSRphenomenon.Forsuchapurposewe startwiththeLienard-Wietchertretardedelectriceld[8]: !E=e"bn! inthemovingframe,theradiusofcurvature,andtheanglebetweentheminthelaboratory orequivalentlyby=2sin(=2)withbeingtheanglebetweenthetwoelectrons timet0.Becauseofcausalitytheretardedt0andpresentttimesarerelatedbyt=t0+R(t0)=c Thesubscriptretmeansthatthequantitiesinsidethebracketsmustbeevaluatedattheretarded !RisavectorfromS0toS,and1bn!=1cos(=2)and=6(! 2(1bn:!)3R2#ret+ec24bn^(bn!)^!_ (1bn!)3R35ret OS0;! OS)(seegure6.19). (6.26) frame. Theproblemhasbeentreatedinseveralreferences(e.g.Ref.[69]),itrstconsistsofcalculatingthe electriceldemittedattheretardedtimeandlocationS0atthepresenttimeandlocationS.This electriceldinducesanenergychangeonS,V(ss0),thatdependsontherelativepositions,sand alongthebunch.TheenergychangeofareferenceparticleSisgivenbythesuperpositionofthe s0,ofthetwoparticles.InessenceCSRisverysimilartowakeeld:ityieldsanenergyredistribution radiationforceofallthebackparticles: d(ct)=Zs dE1(s0)V(ss0)ds0 (6.27)

60<br />

0.25<br />

40<br />

20<br />

emittances~"x;y,<strong>and</strong>rmsbeamsizesx;y)versustheoperatingacceleratingphaseofthelinac. Figure6.18:Evolutionofbeamparameters(bunchlengthz,rmsenergyspreadE,transverse<br />

0<br />

0<br />

6<br />

1<br />

x<br />

x<br />

4<br />

y<br />

0.5<br />

y<br />

2<br />

thelatterequationclearlyshowsthat,comparedtotheconstantenergyspreadequation,thereis whichcanbesolvedusingthest<strong>and</strong>ardGreenfunctionperturbativetechnique[59]11Thesolution<br />

0<br />

0<br />

anincrementinangle<strong>and</strong>positionof: oftheaboveequationis: x(s)=cos(s=x)x(0)+xsin(s=x)x0(0)+x(1cos(s=x))(0)+Zs x0(s)=1=xsin(s=x)x(0)+cos(s=x)x0(0)+cos(s=x)(0)+Zs 0xsin(~s=x)(~s)d~s 0cos(~s=x)(~s)d~s(6.24)<br />

−20 −15 −10 −5 0<br />

−20 −15 −10 −5 0<br />

∆φ (RF−Deg)<br />

∆φ (RF−Deg)<br />

achromaticbendingsystem,theachromaticcharacterisbrokenbecauseofEqn.(6.25).Another interestingpointisthatdependingonthebendingsystemdesign,onecanconceiveawayofmaking <strong>and</strong>hxx0i)<strong>and</strong>substitutethemintheeqn.(6.20).Itisinterestingtonotethatinthecaseofan Tocomputetheemittancegrowthweneedtocomputethesecondordermoments(hx2i,hx02i x(s)=Zs x0(s)=Zs 0xsin(~s=x)(~s)d~s<br />

theaboveintegralverysmall(orideallyzero)sothatthenetemittancegrowthisnegligible.Such amethodhasbeendiscussedindetailinreferences[60]<strong>and</strong>[61]. 0cos(~s=x)(~s) (6.25)<br />

principalsolutions(S(t)<strong>and</strong>C(t))accordinglyto: equationwritesx(t)=Rt 11Ifweconsidertherighth<strong>and</strong>sideofthepreviousequationasaperturbationtermp(t;s)thesolutionofthis 0p(~t)d~tG(t;~t)whereG(t;~t)isaGreen'sfunctionthatcanbeconstructedfromthetwo G(t;~t)=S(t)C(~t)C(t)S(~t)<br />

σ z (mm)<br />

ε x,y (mm−mrad)<br />

0.5<br />

∆E (keV)<br />

σ x,y (mm)<br />

100<br />

80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!