04.08.2013 Views

High Brightness Electron Beam Diagnostics and their ... - CASA

High Brightness Electron Beam Diagnostics and their ... - CASA

High Brightness Electron Beam Diagnostics and their ... - CASA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>High</strong><strong>Brightness</strong><strong>Electron</strong><strong>Beam</strong><strong>Diagnostics</strong><strong>and</strong><strong>their</strong> SuperconductingEnergy-RecoveringFree-<strong>Electron</strong> Applicationsto<strong>Beam</strong>Dynamicsina<br />

12000,JeersonAve.,NewportNewsVA23606,USA ThomasJeersonNationalAcceleratorFacility, AcceleratorDivision,Free-<strong>Electron</strong>LaserTeam Ph.Piot, Laser<br />

UniversiteJoseph-Fourier-Grenoble-I,Sciencesetgeographie DomaineUniversitairedeSaintMartind'Here 38000,Grenoble,France February8,2000<br />

<strong>and</strong>


REPORTJLAB-TN-00-0699<br />

ThisWorkhasbeenpreparedundertheUS-DOEcontractnumberDE-AC05-84ER40150,theOce ofNavalResearch,theCommonwealthofVirginia<strong>and</strong>theLaserProcessingConsortium.<br />

correspondingelectronicaddress:philippe.piot@desy.de


eratedupto48MeVpriortothelasingsystemconsistinginaplanarwigglerwhosespontaneousingacceleratorhasbeenbuilt<strong>and</strong>commissionedatThomasJeersonNationalAcceleratorFacility. Thesystemisprincipallycomposedofa10MeVphotoinjectorcapableofdeliveringahighcharged (60pC)shortbunch(1ps)electronbeamwhichisinjectedinasuperconductinglinac<strong>and</strong>accel- Abstract<br />

radiationisampliedwitharesonantcavity. Thepresentreportdetailsthediagnosticsthathavebeendeveloped<strong>and</strong>implementedintheIRFEL driver-acceleratorforcharacterizingbothtransverse<strong>and</strong>longitudinalphasespace.Wealsoreport Ahighpowerinfraredfree-electronlaser(IRFEL)facilitydrivenbyarecirculatingsuperconduct-<br />

ontheuseofthedevelopedinstrument<strong>and</strong>relatedtechniquestostudy<strong>and</strong>trytounderst<strong>and</strong>some <strong>Beam</strong>Dynamicsproblemsinthedriver-accelerator.Whenpossible,wehavetriedtobenchmark laser,Bunchlengthcharacterization,Coherentradiation,Opticaltransitionradiation. measurementswithnumericalsimulations. Keywords:<strong>Electron</strong>beamdynamics,Phasespace,Emittance,<strong>High</strong>-brightnessbeam,Free-electron<br />

temederecuperationd'energieaeteconstruitetrecemmentmisenrouteaThomasJeerson Resume Unlaseraelectronslibresinfrarouge(IRFEL)utilisantunaccelerateursupraconducteuravecsys- |||||{<br />

NationalAcceleratorFacility.Lesystemesecomposeprincipalementd'uninjecteur,dontlasource<br />

lesapplicationsdecesdiagnosticsaquelquesproblemesdedynamiquedefaisceau.Qu<strong>and</strong>celafut phasetransversauxetlongitudinaldufaisceaud'electrondel'accelerateur.Nousdecrivonsaussi pouvantatteindre48MeV.Lesystemedeproductiondelumieresecomposed'unonduleurplan dontl'emissionspontaneeestamplieegr^aceaunecaviteoptiqueresonnante. Lepresentrapportdecritlesdiagnosticsquiontetedeveloppes<strong>and</strong>ecaracteriserlesespacesde tronssontensuiteinjectesdansunaccelerateurlineaireouilssontacceleresjusqu'auneenergie d'electronsestbaseesurl'eetphotoelectrique.Cettesourcepeutproduiredespaquetsd'electron<br />

possiblenousavonstentedecomparerlesresultatsdenosmesuresavecdessimulationsnumeriques. fortementcharges(60pC)ultra-court(1ps),ayantuneenergiedel'ordrede10MeV.Ceselec-<br />

Mots-Clefs:Dynamiquedefaisceaud'electrons,Espacedephase,Emittance,Faisceaud'electrons afortebrillance,Laseraelectronslibres,Mesuredelalongueurdepaquetsd'electrons,Rayonnementcoherent,Rayonnementdetransitionoptique. |||||{


Acknowledgments<br />

metoworkononeofhisfavoritetopics:thecharacterizationofultra-shortbeam,healsogave suchastransition<strong>and</strong>diractionradiationfortheCEBAFaccelerator.GeoreyKratconded manyadvicesin<strong>Beam</strong>Dynamics.CourtBohnoeredmeapositionintheFELdepartmentto experimentallycharacterizebunchselfinteractionduetocoherentsynchrotronradiation. Ithasrequiredmanypeopletoachievetheworkthatconstitutespartofthisthesis.FirstIwishto thanksthethreepeoplethathavechronologicallydirectedmyworkatJeersonLab:Jean-Claude Denard,GeoreyKrat,<strong>and</strong>Courtl<strong>and</strong>tBohn.Jean-ClaudeDenardoeredmetocomeatCE-<br />

InFrancethisworkwasdirectedbyJean-MarieLoiseaux,Ithankhimforlettingmetotalfreedom BAFasaphDstudent<strong>and</strong>withhimIworkedonthedevelopmentofnon-interceptivediagnostics<br />

acceptedtheroleofrefereeforthepresentreport,<strong>their</strong>carefulreading,suggestions<strong>and</strong>comments havemadethismanuscriptclearer.ManythanksalsotoFern<strong>and</strong>Merchezwhochairedtheexaminationcommittee,butalsoforhisinterest<strong>and</strong>encouragementforthepresentwork. NextIwishtothanksthecolleaguesfromJeersonLabwhospenttimetoeducatemeinvarious inmyresearchwork<strong>and</strong>Iamgratefulforhistotalcondence<strong>and</strong>advises.Iwouldliketoexpress<br />

areaof<strong>Beam</strong>Physics:DavidDouglas,DaveKehne,PeterKloeppel,RobbertLegg,LiaMerminga, mygratitudetoPascalElleaumefromESRF<strong>and</strong>LouisRinolfromCERN,bothofthemhave<br />

ByungYunnhaveprovidedgeneralAcceleratorPhysicshelp<strong>and</strong>insights.RuiLihassharedher mademanycontribution,heespeciallycodedthedatareductionalgorithmforthemultislitsothat wecouldhaveresultson-line.UweHappek<strong>and</strong>MichaelJamesbuilttheinterferometersthatare workonCSR<strong>and</strong>Ihavefreelyborrowsomepassageofherpublicationsinthepresentmanuscript.<br />

dataacquisition<strong>and</strong>diagnosticscontrolsystem.SueWitherspoonhelpsettingupthemodelserver GeorgeNeil<strong>and</strong>MichelleShinnhavetaughtmethefewthingsIknowaboutFree-electronlasers.<br />

<strong>and</strong>xedtheproblemsIencouteredveryeciently. versionoftheparmelacode.AliciaHoer<strong>and</strong>AlbertGrippomademanycontributionstothe usedforbunchlengthmeasurement.ThankstoHongxiuLiuforlettingmeusehiscustomized SteveBensonhelpedmeunderst<strong>and</strong>ingtheimpactofelectronbeamparametersontheFELphoton<br />

IwouldliketoexpressmygratitudetoKevinJordan<strong>and</strong>histeam(RichHill<strong>and</strong>RichEvans), beam.ThankstoJinhuSongwhoinitiatedmetotheworldofEPICS<strong>and</strong>MEDMbutwhoalso<br />

KarelCapek,<strong>and</strong>ErichFeldlfor<strong>their</strong>excellenttechnicalsupport,withoutthemmostofthework presentedinthismanuscriptcouldnothavehappened.IoughtalottoTimothySiggins,\The Creator"(ofelectrons):despitesmany\event"weencounteredwiththeelectronsource,he<strong>and</strong> JoeGubeliwereabletoprovide"good-enough-photocathode"torunhighenoughchargeelectron beam;withoutelectronsthismanuscriptwon'texist! MyspecialthanksalsogotoDikOepts,visitorfromFOMinstituutvoorPlasmafysicaRijnhuizen formanyhelpfulcomments<strong>and</strong>suggestionshemadeontheo-lineanalysiscodeofthepolarizing ging<strong>and</strong>troubleshootingdiagnostics(<strong>and</strong>seatingmanyshiftswithme!).interferometer,<strong>and</strong>PeterMichelfromtheForschungszentrumRossendorfe.V.forhishelpdebug


IthanktheCEBAFmachineoperators,withwhomIsharedendlessnightsinthemachinecontrol center"theyhavetaughtmehowtobea\smoothoperator".<br />

Ialsothankthem! MicheleBlancfromISNtookcareofalltheadministrativepaperworkatUniversiteJosephFourier; herkindhelpisgreatlyappreciated.IalsowouldliketothankKateRoss,fromCERN,forprovidingenglishsyntax<strong>and</strong>grammarcorrections. ThisworkwassponsoredbyUStaxpayersviatheDepartmentofEnergygrantnumberDE-AC05- 84ER40150,theOceofNavalResearch,theCommonwealthofVirginia<strong>and</strong>theLaserProcessing Consortium.<br />

Lastly,IwouldliketothankmyfellowgraduatestudentswithwhomIspentmanyenjoyabletimes intheUnitedStates.IapologizeforthosethatIhavenotexplicitlymentionedhere<strong>and</strong>ofcourse


Contents<br />

2<strong>Electron</strong>Radiation<strong>and</strong>Free-<strong>Electron</strong>Lasers 1Introduction 2.2SingleParticle<strong>and</strong>Multi-particleEmission.......................4 2.1Introduction.........................................4 41<br />

2.3TransitionRadiation....................................6 2.4SynchrotronRadiation...................................10 2.5RudimentsonFEL-oscillatorTheory...........................12<br />

2.6CharacteristicsoftheIRFELdriver-accelerator.....................17 2.5.2AmplicationoftheSpontaneousUndulatorRadiation.............15 2.5.3FELGain......................................16 2.5.1UndulatorRadiation................................12<br />

3TheFELdriveraccelerator:LatticeStudy 2.7TheJeersonLabIRproject...............................19<br />

3.3MeasurementoftheTransverseResponse........................25 3.2ABriefOverviewoftheFELOpticalLattice......................22 3.1Introduction.........................................22 22<br />

3.3.2ExperimentalMethod...............................27 3.3.1TheoreticalBackground..............................26 v


3.4MeasurementoftheLongitudinalResponse.......................32 3.3.5SummaryoftheTransverseResponseMeasurements..............32 3.3.4ResultsonDispersionMeasurement.......................30 3.3.3ResultsonTransverseResponse..........................28<br />

3.4.4Simulationofhinjoutitransfermap.......................38 3.4.3ExperimentalMethod...............................37 3.4.2TheoreticalBackground..............................35 3.4.1Motivation.....................................32<br />

3.4.8ConcludingRemarksontheLongitudinalResponseMeasurement.......44 3.4.7Measurementofhinjoutitransfermap.....................43 3.4.6Simulationofhinjoutitransfermap.......................42 3.4.5Measurementofhinjoutitransfermap.....................39<br />

4TransversePhaseSpaceCharacterization 4.1Introduction.........................................49 4.1.1<strong>Beam</strong>,HamiltonianDynamics<strong>and</strong>Liouville'sTheorem.............49 4.1.2PhaseSpace<strong>and</strong>Emittance............................51 49<br />

4.2Measurementof<strong>Beam</strong>ProleUsingTransitionRadiation...............52<br />

4.3ThePossibleUseofCarbonasTRradiator.......................61 4.2.1ThelimitationofTransitionRadiationMonitor.................53<br />

4.3.1Anon-interceptiveTRbeamprolemonitor...................62 4.2.2ThermalStudies..................................54 4.2.3StudyofMultipleScatteringinAluminumfoil.................56<br />

4.4MeasurementofEmittanceinthe38+MeVRegion...................69 4.4.1GeneralConsiderations..............................69<br />

4.3.2ProleMonitorCongurationintheFEL....................66


4.4.4SimulationofEmittanceMeasurementintheIRFEL..............73 4.4.2Thequadrupolescanmethod...........................71 4.4.5EectofspuriousDispersiononEmittanceMeasurement...........74 4.4.3Themulti-monitormethod............................72<br />

4.5MeasurementofEmittanceintheInjectionTransferLine...............77 4.5.2MechanicalConsiderations............................83 4.5.1Designoftheslitsassembly............................81 4.4.6ExperimentalMethod...............................75<br />

4.5.3EmittanceCalculation&Trace-SpaceReconstruction.............84<br />

5LongitudinalPhaseSpaceCharacterization 4.6Summary..........................................90 4.5.4ErrorAnalysis...................................87 4.5.5FirstExperimentintheInjectorTestSt<strong>and</strong>...................88<br />

5.3TheoryofBunchLengthMeasurementusingFrequencyDomain...........95 5.2TheLongitudinalPhaseSpaceManipulationintheIRFEL..............93 5.1Introduction.........................................93 93<br />

5.4ObservationofCoherentTransitionRadiation......................104 5.5TheMichelsonPolarizingInterferometer.........................106 5.3.2RetrievaloftheBunchDistributionbyHilbertTransformingtheBFF....102 5.3.1TheuseoftheBFFtocompute<strong>and</strong>monitorthebunchlength........100<br />

5.5.2TheoryofOperation................................108 5.5.3RelatinganInterferogramMeasurementtoaBunchLengthMeasurement..112 5.5.1Overviewoftheexperimentalsetup.......................106<br />

5.5.5ExperimentalResultsUsinganAutocorrelationTechnique...........114<br />

5.5.4Extractingthebunchformfactor.........................113


5.6ZerophasingTechniqueforBunchLengthMeasurement................117<br />

5.7IntrinsicEnergySpreadMeasurement..........................121 5.6.3ExperimentalResults...............................120 5.6.2NumericalSimulationoftheMethod.......................120 5.6.1BasisoftheMethod................................117<br />

6<strong>Beam</strong>DynamicsStudies 5.8EstimateofLongitudinalEmittanceintheUndulatorVicinity.............122 5.7.1Method.......................................121<br />

6.1StudyofthePhotoinjector.................................137 5.8.1Conclusion.....................................124 6.1.1Introduction....................................138 6.1.2The350keVregion................................138 137<br />

6.3<strong>Beam</strong>ParametersMeasurementPriorto\Firstlasing".................153 6.2BunchCompressionStudiesintheLinac.........................151 6.1.4The10MeVRegion................................144 6.1.3Thehighgradientstructure............................140<br />

6.4StudyofPotentialEmittanceGrowth..........................154 6.4.1Chromaticity....................................155<br />

6.5PreliminaryExperimentalResultsonEmittance<strong>and</strong>EnergySpreadMeasurements.161 6.4.4BunchSelfInteractionviaCoherentSynchrotronRadiation..........159 6.4.2RF-eects......................................156<br />

6.5.1EmittanceMeasurement..............................162 6.4.3EnergySpreadinducedinaDispersiveregion..................156<br />

6.5.3Conclusion.....................................164<br />

6.5.2EnergySpreadMeasurement...........................163


B<strong>Beam</strong>Dynamics:Notes&Tools AAbbreviations 7Conclusion 172 174 165<br />

B.1Linear<strong>and</strong>SecondOrderTransport:Convention....................174 B.2Anoteonspacecharge...................................175 B.3TheSimulationTools...................................176 B.1.1TransferMatrix...................................174<br />

B.3.1DIMAD.......................................176 B.1.2<strong>Beam</strong>Matrix....................................174<br />

CDispersionRelationsforBunched<strong>Beam</strong>Distributions B.3.3PARMELA.....................................177 C.0.4Introduction....................................180 B.3.2TLIE........................................176<br />

C.0.5Background.....................................180 C.0.6TheDispersionRelationsfor^S(!)........................181 180<br />

DTheRadio-FrequencyControlSystem C.0.7TheDispersionRelationsforlog[^S(!)].....................181 185


ListofTables<br />

3.2Comparisonofcoecientsobtainedfromthenon-lineartofthemeasured<strong>and</strong> 2.1ParametersofthechosenwigglerfortheIR-DemoFEL.................17<br />

4.1PhysicalpropertiesoftheconsideredmaterialforOTRscreens.............56 3.1Twissparametersdownstreamthecryomoduleexpectedfromsimulationswiththe parmela-simulatedphase-phasetransfermap......................42 codeparmela........................................24<br />

4.3Comparisonoftheprolemeasurementswiththewirescanner<strong>and</strong>OTR-monitor..65 4.4Simulationoftheemittancemeasurementusingthequadrupolescanmethodprior 4.2SurveyofmaterialscommerciallyavailableformonitoringintensebeamswithTR<br />

ofthequadrupolebeingusedduringthemeasurement..................74 totherstrecirculationarc.Theparameterspresentedareallattheentranceface radiators;weexcludedthematerialswithlowthermalconductivity<strong>and</strong>meannumber ofcollisiongreaterthan30in<strong>their</strong>smallestthickness..................61<br />

4.7Typicalsystematicerroronemittance<strong>and</strong>Twiss-parametersforthenominalemit- 4.6Typicalerrorinpercentonthecomputedemittancefordierentsetofparameters 4.5Simulationofemittancemeasurementusingthemulti-monitormethodintheundutancevalue<strong>and</strong>twoextremecases.............................87<br />

decompressorchicane....................................74 (d,w)<strong>and</strong>forvariousemittance..............................83 latorregion.Theparameterspresentedareallattheexitfaceoflastdipoleofthe<br />

5.1Relationshipsbetween\equivalent","RMS"<strong>and</strong>"FWHM"lengthsforagaussian 4.8Comparisonofthermstransverseemittancemeasurementperformedwiththemul- <strong>and</strong>squarelongitudinalbunchdensity...........................112 tislits<strong>and</strong>theone-slit<strong>and</strong>one-harptechniques......................89 x


5.3rmsbeamhorizontalsizesimulatedwiththeparmelaparticlepushingcodeonthe 6.1Nominalinjectorsettingsbeforetherstseriesmeasurement..............150 5.2Measuredbunchlength<strong>and</strong>transversebeamdimensionforthecasesreportedin energyrecoverytransferlineprolemeasurementstation................120 Fig.5.16...........................................116<br />

6.3Comparisonoftheachieved,required<strong>and</strong>simulatedbeamparameters(thebeam 6.2Nominalinjectorsettingsbeforethesecondseriesofmeasurement...........151 parametersarespeciedforachargeperbunchof60pC)................155


ListofFigures 1.1ComparisonoftheexpectedpoweroftheIRcwfree-electronlaserofJeersonLab 2.1Geometryoftheproblem.Inthecaseofsynchrotronemission(A),theoptical withcommonhighaveragepowersource.........................2<br />

2.2Denitionoftheanglesusedinequations(2.9)<strong>and</strong>(2.10)................8 2.3DistributionofforwardTRradiationfordierentvalueof(mentionedclosetothe pulsereferencecoordinatearetheoneoftheelectronbunchattheretardedtime. Forbackwardtransitionradiation(B),thereferencecoordinatesarethespecular reectionoftheelectronbunchcoordinateasitstrokethealuminumradiator.....5 appropriatecurve)asanelectronpassesfromtheinterfacevacuum-aluminum(A).<br />

2.4Polarplotofthenormalizedradiationpatternforanaluminumfoilwithanelectron ComparisonoftherenormalizedTRforwardangulardistributionemittedbyanelec-<br />

undernormalincidence(i.e. crystaldirection.The5.7valueisthesmallestpermittivity.Privatecommunication fromGoodfellowInc.,London,U.K.)...........................9 tronpassingthroughavacuum-aluminum(solidline)<strong>and</strong>vacuum-carbon(dashed moreexactlygraphitehastwodierentelectricpermittivityforitstwodierent line)interface(B).Forcarbonthepermittivityisassumedtobe5.7.(Carbonor<br />

2.5Fractionofthetotaltransitionpoweremittedintothehemispherethatisconcen- 1=(B)............................................11 (2.9)<strong>and</strong>(2.10)wererenormalizedto<strong>their</strong>maximumvalue...............10 tratedwithinaconeofsemi-angle(A)<strong>and</strong>containswithinaconeofsemi-angle 45degincidence(B)(i.e. Lorentzfactorwaschosentobe=10forclarityofthegure,<strong>and</strong>theequations =45deginEqns.(2.9))<strong>and</strong>(2.10).Fortheseplotsthe =0deginEqns.(2.9)<strong>and</strong>(2.10))(A)<strong>and</strong>witha<br />

2.6Angular<strong>and</strong>frequencydistributionofsynchrotronradiationforthe(A)<strong>and</strong>the 2.7PlotoftheUniversalfunctionS(!=!c).Thefrequencydistributionofthetotal 2.8FEL-oscillatorprinciple(CourtesyJ.Martz,JeersonLab)...............13 synchrotronradiationisproportionaltotheUniversalfunction.............12 (B)polarization......................................11<br />

xii


2.10Anexampleofvariationofthegainversusthebunchlength(A)<strong>and</strong>thetransverse 2.11Anactualtopviewofthe\asbuilt"IRFELdriveraccelerator.............19 2.9Normalizedpoweroftheon-axisundulatorradiationforthetwodierentvalueof emittance(bothx<strong>and</strong>yplane)(B)(theseplotswerecomputedusingtheverysimple 1Dmodelexposedintheprevioussection)........................18 KconsideredfortheIRFEL................................15<br />

3.1Dispersedoverviewofthemainringofthedriveracceleratorcorrespondingtog2.12Simpliedschematicoftheelectronsource:A527nmlaserbeamthatcanbemodulatedbytwoelectro-opticscell(EO1<strong>and</strong>EO2)<strong>and</strong>attenuatedbyarotationalpolarizerilluminatestheGaAsphotocathode.Ejectedphoto-electronsareaccelerated 3.2HorizontalDispersion(topgraph)<strong>and</strong>transversebetatronfunctions(bottom ure2.11.Thepathoftheelectronbeamisindicatedwitharrows............23 throughtotheacceleratingvoltageofnominally350kVbetweenthephotocathode<br />

graph)forthenominalsettingsofthemagneticoptics.................25 <strong>and</strong>theanode........................................21<br />

3.4Exampleofcalibrationofacorrector.Theslopeofthelinearinterpolationis 3.3schematiccutofabeampositionmonitor(BPM)....................27 3.5Betatronphaseadvancebetweeneachcorrectorusedtoperturbtheorbitalongthe 0:0183mm=(G:cm)whichcorrespondstoanangulardeectionof6:54rad=(G:cm).29<br />

3.7Comparisonbetweentheexperimentaldataaftercorrection<strong>and</strong>thesimulatedlattice 3.6Comparisonbetweenthemeasured<strong>and</strong>simulatedlatticeresponseforthesixcorrec- latticeinthehorizontal(leftplot)<strong>and</strong>vertical(rightplot)plane(100meters correspondsapproximatelytotheendofthebacklegbeamline)............30<br />

3.8Comparisonbetweenanenergychangeinducedbeamdisplacementalongthelattice responseforthesixcorrectors(100meterscorrespondsapproximatelytotheendof thebacklegbeamline)....................................32 torsusedduringthedierenceorbitmeasurement(100meterscorrespondsapprox<br />

<strong>and</strong>theresponsetoanangularperturbation.......................33 imatelytotheendofthebacklegbeamline).......................31<br />

3.9<strong>Beam</strong>displacementinthebacklegtransportforarelativevariationof1%ofthe magneticeldoftherstrecirculationarc........................34


3.11Momentumcompaction<strong>and</strong>nonlinearmomentumcompactionforonearcversusthe 3.10Energycompressionscheme:Therstrow(fromlefttoright)presentsthelongitu- Theresultforthethreecasesafterdecelerationareshowninthethirdrow......35 dinalphasespaceatthelinacexit,afterthecompressionchicane,<strong>and</strong>justafterthe wigglerinteractionhastakenplace;thesecondrowshowlongitudinalphasespaceat theentranceofthelinacjustpriortodecelerationforthreedierentchoiceofR56 secondfamilyoftrimquadrupolesexcitationstrength(kq).nonlinearmomentum <strong>and</strong>T556(for(A)-0.2<strong>and</strong>0.m,for(B)0.2<strong>and</strong>0m<strong>and</strong>for(C)0.2<strong>and</strong>3.0m).<br />

3.12LocationofthepickupcavitiesalongthetransportlineintheFELdriveraccelerator.38 3.13BlockdiagramofthecompressioneciencyR55<strong>and</strong>momentumcompactionR56 compactionversusthesecondfamilysextupolesstrengthks(forthiscalculation,the<br />

3.14phase-phasebeamtransferfunctionbetweenthephotocathodesurface<strong>and</strong>thethree trimquadrupolesareunexcited)..............................36 measurement.........................................39<br />

3.16Demonstrationoflongitudinaldierence-orbit:phase-phasetransfermapmeasured 3.15Comparisonofthephase-phasebeamtransferfunctionbetweenthephotocathode (A)<strong>and</strong>simulated(B)forthreedierentsettingsofthetrimquadrupole.Plot(C) row)withtheonesimulatedusingparmela(toprow)................41 surface<strong>and</strong>thethreedierentpickupcavities(pickup#2,#3,<strong>and</strong>#4)(bottom dierentpickupcavities:pickup#2,#3,<strong>and</strong>#4.....................40<br />

3.17Phase-phasetransferfunctionsfordierentsettingsoftheopticalcavitylength.In respectivelytheexperiment<strong>and</strong>thesimulation......................43 (A)theopticalcavityiscompletelydetunedsothatthelaserdoesnotoperate.In <strong>and</strong>(D)correspondtodierenceofthemeasuredmappresentedinthetoprawfor<br />

3.18EvolutionoftheR56alongthebeamtransportintherecirculationtransport,from thelinacexittoarc3Fexit.MeasuredR56arealsopresentedaslledsquares....47 thephase-phasetransfermapismeasuredfordierentdetuningoftheopticalcavity case(B)<strong>and</strong>(E)......................................46 cavityistunedsothatthelaseroperateatthelimitofitsturno.In(C)<strong>and</strong>(D), (B)thecavityispreciselytunedtomaximizetheFELoutputpower.In(E)the<br />

3.19Comparisonofthelineartermextractedbyttingthemeasuredenergy-phasetrans-<br />

4.1Schematicsofprincipleforthedierenttypeofbeamproledensitymeasurement 3.20EectofthesextupolesintheArc3Fontheenergy-phasecorrelation.(Simulations <strong>and</strong>experimentaldataareosetforclarity)........................48 fermapwiththeexpectedmomentumcompactionR56fromthedimadcode,for<br />

devices............................................54<br />

dierenttrimquadrupolessettings.............................47


4.3Maximumaveragecurrentthatcanwithst<strong>and</strong>aTRradiatorasafunctionofthe 4.2MethodologytocomputetemperatureriseinacylindricallysymmetricTRradiator.55 4.4SteadystatetemperatureversusaveragebeamcurrentforthreedierentTRradiator equivalentbeamradius.ThreetypesofTRradiatorhavebeenconsidered:Aluminum,Gold<strong>and</strong>Carbon.Thethreeradiatorare0:8mthick.............574.6Angularscatteringdistributionexperimentallymeasuredforthreedierentthick- 4.5Anexampleoftheeectofa0:8mthickaluminumfoilonthebeamprole.The nessesofAluminumfoil...................................60 beamismeasuredusingawirescannerlocateddownstreamthefoil..........59 thickness<strong>and</strong>abeamequivalentradiusof2mm.....................58<br />

4.9OverviewofthecarbonfoilbasedOTRexperiment(CourtesyfromS.Spata)(A) 4.7ComparativeresultsofexperimentwithKeil'ssemi-empiricaltheory<strong>and</strong>geant<br />

4.10ComparisonoftheMissingmassspectraobtainedusingoneoftheexperimentalhall 4.8geantcomputationforthincarbonfoils.........................63 <strong>and</strong>atypicalbeamdensitymeasuredwithsuchdevice(B)...............64 computationforthinaluminumfoils............................62<br />

spectrometerwith(A)<strong>and</strong>without(B)thebeambeinginterceptedbythecarbon<br />

4.13Comparisonofbeamspotsizevariationversusquadrupolestrengthfortwodierent 4.11St<strong>and</strong>ardcongurationoftheOTR-basedprolemonitorintheFEL-driveraccelerator.66 4.12Rawdatabeamprole(topgraph)<strong>and</strong>beamproleafterprocessing(background foil(CourtesyofP.Gueye,HamptonUniversity,VAUSA)...............65<br />

4.14Relativeerroroncomputedemittanceforthetwocasespresentedingure4.13 versustherelativeerroronbeamsizemeasurement...................76 <strong>and</strong>6m............................................75 settingoftheupstreamopticstoachievetwodierentminimumbetatronvalue,3 subtracted,ghostpulsecontributionremoved,...).....................67<br />

4.16Relativeemittanceerrorversusdimensionlessspuriousdispersioncontributionto 4.15Monte-Carlosimulationof200emittancemeasurements.Theplots(fromtop)are theun-normalizedrmsemittance,the-function,theparameter...........77 beamsize..........................................78


4.18Overviewofthephasespacesamplingtechnique.AnincomingAmultislitmask 4.17AnexampleoftransverseemittancemeasurementinthehighenergyregionoftheIRinterceptstheincomingspace-charge-dominatedbeam.Thebeamletsissuedfrom<br />

numberarethebeamparametersdeducedfromthet.Thechargeperbunchwas Thedashedlinesareobtainedwiththeleastsquarettechnique.Thereported approximatelysetto40pC.................................79 (top)<strong>and</strong>vertical(bottom)rmsbeamsizeversustheexcitationofthequadrupole. FELusingquadrupolescanmethod.Thetwoplotspresentvariationofthehorizontal<br />

4.20Comparisonoftheexpectedphase-space,generatedviaparticleretracing(eachgrey 4.19Simulatedmulti-beamletspatternontheopticaltransitionradiationradiator....84 dotsrepresentamacroparticle),withtheretrievedphase-space(representedwith backlineiso-contours)usingthesimulatedbeampatternontheopticaltransition radiationpresentedgure4.19..............................85 theslitsareemittance-dominated.............................80<br />

4.21Fractionofincidentelectronthatscattersontheslitsedgeversusthebeamincident<br />

4.23Anexampleofreconstructedphasespaceiso-contourdensity..............90 4.22Anexampleof2Dbeamdistributionontheanalyzerscreendownstreamthemultislit mask.Theprojectionontothex-axisisalsodisplayed..................89 anglewithrespecttothenormalaxisofthemultislitmask.Thedepthoftheslits approximatelytheinteractionof10%oftheincidentelectronwiththematerial....86 is5mm.Amisalignmentofthemaskof1:2mradcomparetothebeamaxisyields<br />

4.24Emittance<strong>and</strong>betatronfunctionversusthesolenoidexcitation.............91 5.1SequencesofparmelarunsdemonstratingthebunchingprocessintheIRFEL. 4.25Emittanceasafunctionofthechargeperbunchfortwodierentmacropulsewidth (10sec<strong>and</strong>50sec)....................................92<br />

5.2AngularBFFforthreedierentvalueoftheRMSbeamdivergence..........97 (H),thearc#1(I).Notethatelectronswithpositivebelongtothebunchtail SRF-linac(F),thebunchcompressorchicane(G),thebunchdecompressorchicane whiletheonewithnegativeareinthebunchhead..................95 theSRF-cavity#1(C),theSRF-cavity#2(D),theachromaticchicane(E),the Thelongitudinalphasespaceisplottedattheexitofthegun(A),thebuncher(B),<br />

5.3Bunchformfactorcomputedfora300m(RMS)square(dashline)<strong>and</strong>gaussian 5.4Monte-Carlosimulatedbunchformfactor(right)with106macroparticleforthree (solidline)bunches.....................................98 typesofbunchlongitudinaldistribution(left)......................99


5.6EectofdierentkeyelementsinthebunchingprocessoftheelectronsontheBFF. 5.5Eectoftransversebeamsizeonthe3D-BFF.Forthreedierenttypeofbunch TheBFFcorrespondingtothenominalsettingsfortheRFelements(solidline)is width.............................................100 (ellipsoidal,pancake<strong>and</strong>linechargebunch),theBFF(A),theCTR(B)<strong>and</strong>CSR assuminganangularacceptanceof0:3rad<strong>and</strong>aregivenfora20%frequencyb<strong>and</strong>- (C)powerspectrumarenumericallycomputed.Thepowerspectrumarecomputed<br />

5.7SimpliedschematicsofaGolaycell(A)<strong>and</strong>theassociatedsignalacquisitionelec- 5.8Scalingofcoherenttransitionradiationpowerversuschargeperbunch.Thecharge tronics(B)..........................................104comparedwiththecaseswherethebuncher(dottedline),therstcavityinthein- perbunchischangedbyvaryingtheintensityofthephotocathodedrivelaser.The jector(greyline)<strong>and</strong>thephotocathodedrivelaser(dottedline)areoperated+3deg<br />

circlesaretheexperimentaldatapoint<strong>and</strong>thedashlineistheresultofaquadratic o<strong>their</strong>nominalsettings..................................102<br />

5.10CTRsignalversusbeamequivalenttransversespotsizepxy.Theerrorbars 5.9CTRsignalversustheSRFlinacoverallphase.Asthelinacphaseisvariedthe bunchlengthattheundulatorvicinityischanged....................106 interpolationoftheexperimentalpoint..........................105<br />

5.11Overviewoftheopticstoguidethecoherenttransitionradiationemittedfroman 5.12SimpliedschematicsoftheMichelsonpolarizinginterferometer............109 5.13LimitationofsomeopticalcomponentsintheMichelsonpolarizinginterferometer. correspondtothevarianceofveconsecutivemeasurements..............107 aluminumfoiltotheentranceoftheinterferometer...................108<br />

5.14Completeinterferogramstakenfewminutesapart:In(A),theghost-pulsewasnot totallysuppressedwhilein(B)itwas.(C)givesthedierencebetweenthetwo theGolaycellentrancewindow...............................114 previousplots(A)-(B)..................................125 componentperpendiculartothewires,<strong>and</strong>T[E]gcisthetransmissioncoecientof R[Ek]wgisthereectioncoecientofthewiregridfortheelectriceldcomponent paralleltothewires,R[E?]wgisthereectioncoecientofthewiregridforthe<br />

5.15FinescanofthecentralpartoftheinterferogrampresentedinFig.5.14(A).The FWHMof110m(B).Thebaselineis2.7V.......................126<br />

aninterferogramofthesumofasquare<strong>and</strong>gaussi<strong>and</strong>istributionbothhavinga fromagaussi<strong>and</strong>istribution(solidline)<strong>and</strong>asquaredistribution(dashline)bothof thesedistributionhavethesameFWHM(A).Theinterferogramiscomparedwith experimentalinterferogram(circle)iscomparedwithaninterferogramgenerated


5.16InterferogrammeasuredfordierenttransversebeamsizeontheTRradiator.The 5.17Symmetrizationoftheautocorrelationbydierentmethods(A)(seetextfordetail) 5.18Energyspectrumobtainedbyconsideringdierentnumbersofdatapointsfrom leftplotsarethemeasuredinterferogramswhereastherightplotsshowthebeam transverse(horizontal<strong>and</strong>vertical)distributions.....................127<br />

5.19EnergyspectrumobtainedbyFouriertransforminganautocorrelationwith256data alongwiththecorrespondingpowerspectrum(B)....................128 theautocorrelation.Thenumbersareallpowersoftwo,asrequiredbytheFFT algorithmweused......................................128<br />

5.21ExperimentalsetuptomeasurebunchlengthwithzerophasingmethodintheIR-FEL 5.20Recoveredlongitudinalbunchdistributionforthedierentextrapolationofthepower driveraccelerator......................................130 spectrumshowningure5.19...............................129 sidered............................................129points(solidlinewithsquares)<strong>and</strong>thedierentlowfrequencyextrapolationscon- 5.24Longitudinalphasespaceslopeevolutionalongthedriftbetweentheentranceofthe 5.23picturaleectoflongitudinalspacechargeforceonthephasespacedistribution...131 5.22Horizontalbeamenvelopeevolutionfromtheexitofthefourcavitiesinthecry- parmelaisturnedon<strong>and</strong>o...............................130 ferentnumbersofzerophasingcavities.Foreachcase,thespacechargeroutineinomoduleuptothebeamprolestationinthespectrometertransportlinefordif 5.25RMShorizontalbeamsizeattheprolemeasurementstationversusnumberof thespacechargeroutineinparmelaturnedon(uppercurve)<strong>and</strong>o(lowercurve).131 numberofcavitiesusedforthezerophasingisindicatedbeloweachcurve.Theslope isnormalizedtotheinitialenergy.Foreachcasethesimulationisperformedwith zerophasingcavities....................................132 rstzero-phasingcavityuptotheentranceplaneofthespectrometerdipole.The<br />

5.26<strong>Beam</strong>spotonthedispersiveOTRmonitorforthethreephasesofthezero-phazing 5.27Typicalzerophasingbasedmeasurement.The2Dfalsecolorimagerepresentsthe whereallthe\zerophasing"cavitiesareo(topline),arephased-90degw.r.t. themaximumaccelerationphase(middleline)<strong>and</strong>arephased+90degw.r.t.the measurement.........................................133 beamspotmeasuredonthedispersiveviewerinthespectrometerlinewhereasthe maximumaccelerationphase(bottomline)........................134<br />

rightplotistheprojectionontothehorizontalaxis.Measurementforthecase


5.28Comparisonfor=0:2%(topleft)<strong>and</strong>for=2%(topright)ofthebeamrmssize<br />

5.29Schematicsoftheavailablediagnosticsintheundulatorregionformeasuringthe dashedlineontheseplotsisthebeamsizecontributionduetodispersiononly. variationinthecenterofthebunchcompressorversustheexcitationofanupstream quadrupoleusingdimadsimulation(solidlines),usingEqn.(5.57)(crosses).The<br />

5.30ComparisonofthelongitudinalphasespaceattheCTRfoil(greydots)<strong>and</strong>the right)............................................135 Thebottomplotspresenttheratioofthebeamsizecontributionduetodispersion<br />

decompressormid-point(blackdots).Theenergydistributionareexactlythesame longitudinalemittance....................................135 onlywiththetotalbeamsizefor=0:2%(bottomleft)<strong>and</strong>=2%(bottom<br />

5.31rmsenergyspreadinducedbywakeeldsgeneratedasa60pCbunchofelectron 6.1SimpliedschematicoftheIRFELphotoinjector(seetextforexplanation)......138 travelsthroughthevacuumchambertransitionattheundulatorlocation.......136 whilethebunchlengthattheCTRfoilissmaller(dashedlines)thanatthechicane mid-point(solidlines)....................................136<br />

6.3\spacechargeoveremittanceratioforthetransverse(Rr)<strong>and</strong>longitudinal(Rz) 6.2RMStransverse(x<strong>and</strong>y)<strong>and</strong>longitudinal(z)beamsizesalongtheinjector. Thebottomschematicslocatestheopticalelementsalongthebeamline(thegun acceleratingvoltageis350keV)..............................139<br />

6.5Focallengthoftherst(cavity#4)<strong>and</strong>second(cavity#3)cryounitcavitiesversus 6.4Reducedenergygain,,alongtherst(cavity#4)<strong>and</strong>second(cavity#3)cryounit cavity.............................................142 direction...........................................141<br />

6.7Comparisonofthetransversebeamdensitymeasuredattheexitoftheaccelerating 6.6SteeringeectduetoFP<strong>and</strong>HOMcouplerinthecryounitversus,thephase structure(A)withparticlepushingnumericalsimulation(B)..............146 dierencew.r.t.themaximumenergyphase(so-called\crestphase").........145 ,thephasedierencew.r.t.themaximumenergyphase(so-called\crestphase")144<br />

6.8Measured(squares)<strong>and</strong>predictedtransverseemittances(solid<strong>and</strong>dashlines)atthe 6.9<strong>Beam</strong>densitymeasuredonthehighdispersionOTRmonitorforninedierentbunch cryounitexitversustheemittancesolenoidmagneticeld................147 gradientsettings(theimages(A)to(I)correspondstothepointspresenteding.6.10 startingfromthelowgradientvalues)..........................148


6.10Comparisonofthermstransversehorizontalbeamsizemeasuredinthehighdisper- 6.11\R55"transfermapgeneratedwithparmelafor(1)dierentcavitymodel(3Dmaa 6.12\R55"transfermapfordierentexperimentaloperatingpointsofthebunchergrasionOTRmonitorwiththeoneexpectedfromparmela................149 numericalsimulations.(Firstseriesofmeasurement)..................151 dient.Themeasurementsarealsocomparedwiththe\ideal"injectordevisedfrom thecasewherethepickupcavityislocateddownstreamthecryounitafteradriftin adispersion-freeregion...................................150 <strong>and</strong>2Dsupersh)atthepickupcavitylocatedintheinjectionchicane<strong>and</strong>(2)for<br />

6.13ComparisonofthemeasuredR55patternaftertheFELwasoptimizedwiththe 6.14rmsbunchlengthevolutionalongtheIRFELfromthephotocathodeuptotheexit 6.15Variationofthebunchlengthversusthelinacacceleratingphaseperparmelasim- \ideal"R55patterngeneratedwithparmela(usingthesecondsetup).........152 ofthesecondchicane....................................153<br />

6.16Phasespacedistortionduetochromaticaberrationatthedecompressorchicaneexit (topplots)<strong>and</strong>thearc1exit(bottomplots).......................156 coveredfromtheCTRautocorrelationusingthetechniquementionedinChapter5]. Comparisonbetweentheexperimental<strong>and</strong>simulatedbunchlongitudinaldistribution (C).TotalCTRpowersignalmeasuredduringplot(B)experiment(D).......154 ulation(A)<strong>and</strong>measured(B)["measured"meansthebunchdistributionwasre<br />

6.17Emittancegrowthduetochromaticaberrationversusthemomentumspread<strong>and</strong> 6.19SchematicsofCSRselfinteractionofabunch.......................160 6.18Evolutionofbeamparameters(bunchlengthz,rmsenergyspreadE,transverse emittances~"x;y,<strong>and</strong>rmsbeamsizesx;y)versustheoperatingacceleratingphaseof thelinac...........................................158 energyosetofthebeam..................................157<br />

6.20AnalyticalcomputationforCSR-inducedenergylossalongagaussianbunch<strong>and</strong> 6.21TransverseHorizontalemittance<strong>and</strong>totalpowerCTRsignalmeasuredasafunction 6.22Energydistributionmeasuredalongthebeamline,atthechicanemidpoint(A)<strong>and</strong> chicane(macroparticlewith>0areinthebunchtail)................161 predictionusingasimplenumericalmodelinamodiedversionofthescparmela codefor200m(A)<strong>and</strong>100m(B).Thesystemconsideredisasimpleachromatic ofthelinacgangphase...................................162 (B)<strong>and</strong>entranceofthearcs(C)<strong>and</strong>(D)[thehorizontalaxisoftheseplotrepresent therelativeenergyspread(nounits)].Thebottomplotpresentsthermsrelative energyspreadcomputedfromthedistributions......................163


C.1Exampleofphaseretrievalforabi-gaussian-likebunchdistribution.Threetypeof B.1Parmelasimpliedalgorithm................................179<br />

D.1OverviewoftheRF-controlsystemfortheIRFEL....................185<br />

<strong>their</strong>Fouriertransform(dashlinesonplot(b),(d),<strong>and</strong>(f))<strong>and</strong>therecoveredphase usingthedispersionrelation(crosses)onthesameformerplots.............184 bi-modaldistributions(a),(c)<strong>and</strong>(e)arepresentedalongwiththeexactphaseof


Chapter1<br />

UVdomain<strong>and</strong>areplannedtogenerateXrays.Theyhavefoundmanyapplicationsranging positron)accelerators.Suchlightsourceshaveproventobecapableofgeneratingphotonindeep Introduction<br />

fromfundamentalsciences(biology,crystallography,etc...)toindustrialapplications(e.g.nanoelectronics). Thegenericcongurationconsistsof,e.g.,anelectronbeamacceleratorthatgenerates<strong>and</strong>prepares (i.e.accelerates,bunches<strong>and</strong>transverselyshapes)theelectronbeambeforesendingitinaperiodic magneticeldcreatedbyanundulatormagnetwhichcausestheelectronstooscillatetransver- Inrecentyears,therehasbeenagrowinginterestincoherentlightsourcesdrivenbyelectron(or<br />

sally.Asanelectronbunchoscillates,itcreatesa(spontaneous)synchrotronradiationpulsethat lightsources:thestoragering<strong>and</strong>thefree-electronlaser(FEL).Intheformercase,theparticle mirrorsitscharacteristics(i.ebunchlength,shape,..).Twoschemesaregenerallyusedforsuch beamisstoredinaring<strong>and</strong>periodicallygoesthroughanundulatormagnet,whileinthelatter casethebeamisgeneratedbyalinac<strong>and</strong>passesthoughtheundulatoronce.Thefree-electron producehighbrightnessphotonbeamcomparedtostoragering.Furthermorebrightnessofstorage ringtendstoworsenatlowenergy,duetoTouschekintra-beamcollision,<strong>and</strong>highenergybecause oftheimportanceofquantumuctuations.Inaresonator-basedFELtheundulatormagnetis laserhasgeneratedmuchmoreinterestedintherecentyearsbecauseof<strong>their</strong>unequaledabilityto<br />

oftheincoherentsynchrotronemission.ThislattertypeofFELisespeciallysuitedtogenerate neousradiationcreatedviasynchrotronemission.InaSASE(selfampliedspontaneousemission) FEL,theundulatorismadelongenoughsothatlasingarise\naturally"fromselfamplication ultra-shortwavelength(e.g.X-rays)coherentlightsinceforsuchwavelengthsamirrormightnot quitesimilartoconventionallaser,the\free"electronsactsasmediumthatampliesasponta- coherentlysuperimposedtotheformerphotonpulse.InsuchanoscillatorFELthemechanismis insertedbetweentwomirrorswhichconstitutesaresonantopticalcavitythatrecirculatesthepho-<br />

beavailabletherebypreventingtheresonatorconguration.AmainfeatureoftheFEL-basedlight tonpulsecoincidentlywiththenextincomingelectronbunch.Itideallygeneratesaphotonpulse<br />

electronbeam. Generallythedriveracceleratorconsistsinroomtemperaturecavitiesthatdonotallowsimultane- sourceis<strong>their</strong>abilitytoprovidelaserlightoveracontinuoustunablerangeofwavelength,thatcan besubstantial,byvaryingthemagnetostaticeldoftheundulatorortheenergyoftheincoming 1


walllossesviaJouleseecttherebyallowingtheoperatingofthecavitiesathighcontinuouswave (cw)gradient.Acomparisonoftheaveragepowerthatcanbeproducedbysuchsuperconduct- consideredthroughoutthisthesis,istousesuperconductingacceleratingcavitieswhichoerlow ouslyhighacceleratinggradient<strong>and</strong>highelectronbunchrepetitionrate.Hencethecommonlight sourcecanproducehighpeakpowerbecauseofthehighchargethatcanbestoredinabunch,but cannoteasilyproducehighaveragepowerlightneededbycertainapplicationsuchaspowerbeaming,micro-machining,etc...Analternativescheme,thathasbeenusedinthedriver-acceleratoringlinearaccelerators(e.g.theIRFELfromJeersonLab),withconventionalhighaveragepower cavitydirectlysupplementstheinputpowerprovidedbytheklystrontoacceleratehigheraverage alightsourceforindustrialapplication,iscosteciency.Thiscostismainlyimpactedbytheinput laser,<strong>and</strong>recentlyweachieved1.7kWexperimentally. Anotherconcernthathasarisen,especiallyinourprojectwherethemainmotivationistodevelop powerdem<strong>and</strong>toacceleratethebeam.Thisdem<strong>and</strong>wasreducedintheJLABIRFELbyrecir- sourcegenerallyused(e.g.excimer<strong>and</strong>carbonlasers)isdepictedinFigure1.1.Amaximumoutput<br />

currentelectronbeamforagivenbeamenergytherebyreducingthedem<strong>and</strong>oninputpowerfrom poweroftheorderof2kWcanbeexpectedfromtheJeersonLabsuperconductingfree-electron<br />

klystron. culating<strong>and</strong>deceleratingthebeamusingthesamelinac.Thedeceleration-inducedvoltageinthe<br />

Figure1.1:ComparisonoftheexpectedpoweroftheIRcwfree-electronlaserofJeersonLabwith commonhighaveragepowersource. ThesuperconductingFELthatservedasexperimentalplatformforthisthesisisdedicatedtostudy thepossibleapplicationofhigh-powercwFEL's.ItisaninfrareddemoFELcapableofprovidingcontinuousphotonbeamsintheinfraredspectrum(3m-6m)withhigh-averagepowerof thedriver-accelerator. Thedriver-acceleratorneedstoprovideahigh-brightness,ultra-shortbunch,lowtransverse-emittance, electronbeam.Becauseofthehigh-chargeconcentratedinthebunchofelectrons,eectsuchas<br />

technologiesrequiredforhigh-powerfree-electronlasersespeciallythebeamdynamicsaspectsin approximately1kW.ThoughthisFELisanuser-orientedfacility,itisalsodevotedtostudythe<br />

Laser Average Power (kW)<br />

2<br />

1<br />

0<br />

Excimers<br />

Alex<strong>and</strong>rite<br />

Nd:YAG<br />

IRFEL<br />

HF<br />

10 kW<br />

100 1000<br />

Wavelength (nm)<br />

10000<br />

CO 2


space-chargeinthelowenergyregime,<strong>and</strong>wakeeld(forshortbunch)canleadtobeaminstabil-<br />

density,thetransverseemittance<strong>and</strong>thebeamenergyspread.Thepresentreportdealswithseveral phase-spaceyieldinganemittancegrowthinthebendingplane. Thebeamparametersweneedtomeasureacuratelyare:thebunchlength,thebeamtransverse CSRleadstoanincreaseinenergyspreadwhichinturncoupleviadispersiontothetransverse ity.Anotherpotentialproblemthatcanarisewithsuchbeamparametersistheselfinteractionof<br />

aspectsconcerningthedevelopmentofthe<strong>Beam</strong>Instrumentationrequiredtoproperlycharacterize abunchviacoherentsynchrotronradiation(CSR)emittedasthebunchpassesthroughdipoles.<br />

opedtocharacterizebeaminbothemittance<strong>and</strong>space-charge-dominatedregime.TheChapter theelectronbeam<strong>and</strong>performsome<strong>Beam</strong>PhysicsstudiesintheJeersonLabIRFEL.InChapter<br />

willpresentsomebeamdynamicsstudiesoftheinjector,<strong>and</strong>intherecirculatorwithanattempt electronbeamparameters.ChapterThreepresentstheFEL-driveracceleratoralongwithsomeopticallatticecharacterizationthatwerecrucialforunderst<strong>and</strong>ing<strong>and</strong>settinguptheenergyrecoveryscheme.InChapterFour,wedescribethetransversephasespaceinstrumentationwehavedevel- Fivepresentsourworkforcharacterizingultra-short(sub-picosecond)bunch.InChapterSixwe Twowewillreviewradiationsemittedbyelectrons<strong>and</strong>explaintheprincipleofFELoscillatorby usingasanexampletheIRFEL<strong>and</strong>trytounderst<strong>and</strong>whatarethespecicationontheIRFEL tomeasuretheemittancegrowthintherecirculationarcoftheIRFEL.Wewillthenconcludein aChapterSeven.


<strong>Electron</strong>Radiation<strong>and</strong>Free-<strong>Electron</strong> Chapter2 Lasers<br />

canbeusedtogenerateintenselightpulseoverlargedomainofwavelength,theycanalsobeused toinfercertaincharacteristicsoftheelectronbeamthatproducedthem.InthepresentChapter <strong>and</strong>diractionradiationshavebeenwidelystudiedinliterature.Thoughthesetypesofradiation changeintheelectronenvironment.Tonamefewofthem,synchrotron,transition,Smith-Purcel, 2.1Introduction<br />

wewillrecallfewpropertiesofthetwotypesofradiationthatwillbeconsideredinthisreport: Therearemanyprocessesamongwhichelectronscanemitradiation.Mostofthemaredueto<br />

2.2SingleParticle<strong>and</strong>Multi-particleEmission synchrotron<strong>and</strong>transitionradiation.Wewillthendiscussundulatorradiation<strong>and</strong>itsamplication infree-electronlaserssuchastheoneusedasexperimentalplatforminthereport.Inalastsection wewillpresenttherequiredelectronbeamparametertodrivethedesiredFEL. Inthissectionwederivetheexpressionforthetotalradiationemittedbyanensembleofparticle <strong>and</strong>introducethebunchformfactor. Radiationemittedbyelectronsdependsontheelectron'sdensitydistribution.Forpurecontinuous beam(DC),noradiationistheoreticallyemitted(theeldFouriertransformRE(t)exp(i!t)dt thatinducestemporaluctuationdependenceontheelectronmotion.Inhighenergyparticle bunches<strong>and</strong>thereforeelectromagneticwavescanberadiated. Whenanelectromagneticeldisradiatedbyacollectionofelectron,thetotalelddetectedbyan observerlocatedinP(seegure2.1)isthesuperpositionoftheeldatthispointgeneratedby iszero).Indeed,experimentallythereisanincoherentradiationresultingfromSchottkynoise accelerator,accelerationisprovidedbyradio-frequencywave:thebeammustconsistofaseriesof 4


!Vjitsthevelocity,<strong>and</strong>!Xjisthepositionvectorthatlocatesthej-thelectronwithrespecttothe bunchcenter. eachelectron[2,3]1:!ET(P)=X wherekjVj<strong>and</strong>Xjarerespectivelythewavevectoroftheelectriceldemittedbythej-electron, Underthefar-eldapproximation,wecan,withoutsignicantlychangingtheresults,replacethe j=1:::N!kj^(!kj^!Vj) j!kj^(!kj^!Vj)jj!E1e(k)jei!kj!Xj, (2.1)<br />

observationP.Introducingthenormalizedvelocity,j,theformerequationtakestheform: <strong>and</strong>bnistheunitvectorpointingfromthecenterofthechargedistributiontowardthepointof Figure2.1:Geometryoftheproblem.Inthecaseofsynchrotronemission(A),theopticalpulse referencecoordinatearetheoneoftheelectronbunchattheretardedtime.Forbackwardtransition radiation(B),thereferencecoordinatesarethespecularreectionoftheelectronbunchcoordinate asitstrokethealuminumradiator. wavevectorkjby2bn==!=cwhere(resp.!)isthewavelength(resp.frequency)ofobservation ThetotaldensitypowerradiatedatthelocationPisthenETET;itwrites: d2P(!) d!d=E1e(!)E1e(!)8


thenthecoherentpowersimplyrewritesas:<br />

wherewehaveusedthepropertiesoftheDirac-functions.Let'sconsiderthespatial<strong>and</strong>angular distributionsrespectivelyS(!X)=(1=N)Pj=1:::N(XXj)<strong>and</strong>A(!)=(1=N)Pj=1:::N(j). d2P(!) d!d="d2P(!) k=1:::N;k


equation boundarybetweenvacuum<strong>and</strong>amediumofrelativedielectricpermittivity=absolute=0(where 0isthevacuumelectricpermittivity),theproblemconsistsofsolvingthescalar<strong>and</strong>vectorpotential<br />

atthemediainterface:thefollowingcomponentsoftheelectromagneticeldmusthavecontinuity: Ek,B?,Hk,<strong>and</strong>D?(\k"<strong>and</strong>\?"correspondstothecomponentsparallel<strong>and</strong>perpendicularto theinterfacesurface).Moreovertheelectriceldsolutionofthehomogeneousequation(i.e.the electromagneticeldsolutionofEqn.(2.8)mustbematchedwiththeproperboundarycondition inthetwomediai.e.vacuum(byletting=1)<strong>and</strong>inthemediawithpermittivity.Thehomogeneoussolutionofthelatterequationgivestheradiationeld(photon;!Aphoton).Theobtained r2"!A#1c2@t"!A#=10e"(!r;t) !(!r;t)# (2.8)<br />

typesofradiationarefound:aforwardradiationwhichisemittedinthedirectioncenteredaround thedirectionofmotionoftheelectron,<strong>and</strong>abackwardradiationemittedaroundthespecularaxis ofreectionoftheinterface.Themostgeneralexpressionforthetransitionradiationemittedin is[7]: radiationpotentials)mustsatisfyr:!Eradiation=0everywhere.Whensolvingthisproblemtwo anangleofincidence thebackwarddirectionbyanelectronmovingfromvacuumtoamediumofpermittivitywith d!d= d2Wk j12z+zqsin2()2zxcos(x)sin2()xzcos(x)qsin2() 43[(12xcos2(x))22xcos2()]2sin() (denedintheplanexz)withrespecttotheinterfacenormaldirection Z0e22zcos2()j1j2<br />

d2W? d!d= 43[(1xcos(x))22zcos2()]sin2() 1+zqsin2()xcos(x)cos()+qsin2() e22x4zcos2(y)cos2()j1j2 1 (2.9) j2<br />

Z0=120isthevacuumfreespaceimpedance,<strong>and</strong>thedierentanglesarepresenteding- thedirectionofobservation<strong>and</strong>thexoryaxis.Theseanglesaredenedbycos(x)=sin()cos() Aprioritransitionradiationspectrumhasnodirectdependenceonthefrequency!ofobservation; ure2.2.Thedependenceon referencedw.r.t.thezaxis. <strong>and</strong>cos(y)=sin()sin(),istheazimuthalangleinthex-yplane<strong>and</strong> j1zqsin2()xcos(x)qsin2()+cos()j2(2.10)<br />

inrealitythisdependenceiscomingfromtheelectricpermittivity=(!). isinx=sin( )<strong>and</strong>z=cos( )<strong>and</strong>x;yaretheanglesbetween<br />

spectralenergydistributionemittedinthebackwarddirectionviatransitionradiationreducesto: Undernormalincidence,i.e. =0(x=y=0),onlythe"k"componentremains,<strong>and</strong>the istheincidenceangle<br />

d!d=e22sin2()cos2() d2W2c(12cos2())2j<br />

1+qsin2()cos()+qsin2()j2(2.11)<br />

(1)12+qsin2()


y<br />

electron<br />

ψ<br />

O<br />

z<br />

densitymeasurementwhereweusedcarbontoproducetransitionradiation.<br />

θ<br />

Finally,anotherimportantcaseistheoneofaperfectconductor(i.e.(!)!1,8!).Forsuch<br />

φ<br />

classofmaterial,<strong>and</strong>undernormalincidence,thelatterEqn.(2.11)reducestothewellknown ThiscaseisofimportanceforourdiscussionontheelaborationofanoninterceptiveTR-based Figure2.2:Denitionoftheanglesusedinequations(2.9)<strong>and</strong>(2.10).<br />

x<br />

relation3:<br />

Observation<br />

d!d=Z0e22sin2() d2W<br />

Point<br />

referencedwithrespecttothespecularaxis. wheretheelectronincomesontheinterfacewitha45degincidence;theangle,inthiscase,being TheEqn.(2.12),inthelimitofanultra-relativisticelectron(i.e.!1)isalsovalidinthecase intercepttheelectronbeamwithverythinfoil.Inourcase,thefoilismadeofaluminumorcar- Thecongurationgenerallyusedtogeneratetransitionradiationinaparticleacceleratoristo 44c(12cos2())2(1;1) !Z0e2 43(2+2)2 2 (2.12)<br />

atsmalleranglesinceitis1=()2.Intheextremecasewhere=p2themaximumoccursat angleof90degw.r.t.thespecularaxis.Ingure2.3(B),wecomparetherenormalized(compared toitsmaximumvalue)TRangulardistributionemittedbyintheforwarddirectionbyanelectron bon.Thistypeofcongurationallowstogeneratebothbackward(atthevacuum-to-aluminum<br />

normallyincidentonacarbon<strong>and</strong>aluminumfoil.Typicalradiationpatternarepresentedinthe gulardistributionofbackwardTR,forthecaseofanaluminuminterface,generatedbyanelectron undernormalincidenceispresentedingure2.3(A)forthreedierentvaluesoftheLorenzfactor interface)<strong>and</strong>forward(atthealuminum-to-vacuuminterface)transitionradiation.Atypicalan-<br />

antennadiagramingure2.4forthecaseofnormal<strong>and</strong>45degincidenceoftheelectronbeamon thefoil.Inthecaseofnormalincidence,thepatternissymmetricwithrespecttotheelectronaxis. .Astheelectronenergyincrease,themaximumoftheangulardistributiongetlarger<strong>and</strong>occur<br />

chargeusuallyusetorendereasierthetreatmentofboundaryvaluesproblem.Inthepresentcase,theproblemofan electronmovingtowardaninniteperfectlyconductingplanecanbereducetoanelectron<strong>and</strong>itselectromagnetic imagetravelingtowardeachother.Thepassagefromtheelectronintotheperfectconductoristhenequivalenttothe collisionoftheelectronwithitsimage,formalismtotreatsuch\collapsingdipole"isreadilyavailable(seereference[8] Chap.(15)).<br />

3Infactthisrelationcanbederiveddirectly,withoutsolvingthewaveequation,byusingthemethodofimage


10<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

−3<br />

10 −2<br />

10 −1<br />

10 0<br />

10 1<br />

10 2<br />

10 3<br />

10 4<br />

10<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

−4<br />

10 −3<br />

10 −2<br />

10 −1<br />

10 0<br />

(A) (B)<br />

Aluminum<br />

100<br />

therenormalizedTRforwardangulardistributionemittedbyanelectronpassingthroughavacuumaluminum(solidline)<strong>and</strong>vacuum-carbon(dashedline)interface(B).Forcarbonthepermittivity appropriatecurve)asanelectronpassesfromtheinterfacevacuum-aluminum(A).Comparisonof<br />

10<br />

twodierentcrystaldirection.The5.7valueisthesmallestpermittivity.Privatecommunication isassumedtobe5.7.(Carbonormoreexactlygraphitehastwodierentelectricpermittivityforits fromGoodfellowInc.,London,U.K.). Figure2.3:DistributionofforwardTRradiationfordierentvalueof(mentionedclosetothe<br />

2<br />

Carbon<br />

Howeverinthecaseofnon-normalincidencethereisadis-symmetryinthelobesamplitude.This inthecaseof45degincidence,forultra-relativisticelectrons.Let'sstudyhowtheradiation,in<br />

θ (rad)<br />

termofenergy,isdistributedarounditsmaximum.Forsuchapurposeweneedtoevaluatethe dis-symmetrytendstobereducedastheelectronenergyisincreased,<strong>and</strong>becomesinsignicant,<br />

θ (rad)<br />

θ (rad)<br />

integrals:dW<br />

aboveangularintegralto==2: Thereforethetotalenergyradiatedinthehemisphereisobtainedsettingtheupperlimitofthe d!=Zdd2W =+(12)argtanh() 2(21)cos()(1+2)argtanh(cos())(2+22+2cos(2)) d!d=Z2 2 0dZ0dd2W 2(2+2+cos(2)) + d!d<br />

dW d!tot=+(1+2)2log1+ 1 (2.13)<br />

Firstlywenotethatforultra-relativisticelectronthetotalenergyemittedinthehemispherehasa logarithmicdependenceontheenergyinlog(42). 1=-coneversustheenergyoftheincidentelectron.Wenotethatforultra-relativisticelectrons, Ingure2.5(B)wepresentthedependenceofthefractionofthetotalenergyencompassedinthe mostoftheenergyislocatedoutsidethis1=-cone.Despitetransitionradiationhasasharp maximumlocatedatthe1=-cone,itspowerisnot,likeforinstanceforsynchrotronradiation,<br />

TR Spectral Angular Intensity (a.u)<br />

TR Spectral Angular Intensity (a.u)<br />

OTR Distribution (a.u.)<br />

2 (2.14)


(A)<br />

120<br />

90<br />

1<br />

60<br />

(B)<br />

120<br />

90<br />

1<br />

60<br />

Figure2.4:Polarplotofthenormalizedradiationpatternforanaluminumfoilwithanelectron<br />

0.8<br />

0.8<br />

Specular Axis<br />

undernormalincidence(i.e.<br />

0.6<br />

0.6<br />

(B)(i.e.<br />

150<br />

30<br />

150<br />

30<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

electron<br />

180 0<br />

180 0<br />

weshouldbecarefulwhendetectingtransitionradiationtooptimizetheangularacceptanceofthe =0deginEqns.(2.9)<strong>and</strong>(2.10))(A)<strong>and</strong>witha45degincidence<br />

detectionsystemasafunctionoftheelectronsenergythatproducetheradiation.Forsuchpurpose =45deginEqns.(2.9))<strong>and</strong>(2.10).FortheseplotstheLorentzfactorwaschosento<br />

210<br />

330<br />

210<br />

330<br />

wehaveplottedingure2.5(A)thefractionofthetotalenergyversustheangularacceptancefor be=10forclarityofthegure,<strong>and</strong>theequations(2.9)<strong>and</strong>(2.10)wererenormalizedto<strong>their</strong> maximumvalue. locatedwithinthiscone:mostofthepowerisinfactinthetailofthedistribution.Therefore thedierentelectronenergywewillconsiderinthepresentdissertation.<br />

240<br />

300<br />

240<br />

300<br />

electron<br />

270<br />

270<br />

2.4SynchrotronRadiation Theelectromagneticradiationemittedbyachargedparticlewithnon-zeroaccelerationishistoricallytermed\synchrotronradiation"afteritsrstvisualobservationnearlyftyyearsagoina synchrotronaccelerator.Suchradiationistypicallyemittedinpresenceofamagneticdeecting beenknownasalimitationtooperatecircularacceleratorsabovethe100GeVregimetoaccelerate electrons.Nowadaysitisacommonmechanismonwhichaccelerator-basedlightsourceareworking.Also,sinceSRisgenerated\forfree"inaccelerator,examinationoftheSRpropertiesemitted byaelectronbunchcanrevealinformationonthebunchpropertiesaswewillseeinChapter5. withuniformcircularorbit.Synchrotronradiation(SR)<strong>and</strong>theassociatedenergylosshasrst ThepurposeofthissectionistoexposefewbasicpropertiesofSR.Sinceithasbeenwidelytreated inmanytextbook(e.g.see[8]),wewillnotderiveanyofitsproperties<strong>and</strong>onlyreproducethe eldsuchastheonegeneratedbydipolemagnets,becauseofthecentrifugalaccelerationassociated<br />

resultswefeelnecessaryforthepresentdiscussion. Animportantquantityisthespectralangulardistributionofthesynchrotronradiationwhichis givenby(extendedfrom[8]): "d2W d!d#1e=3rcmec2Z02 163c!2 !2c(1+22)2"K2=3()+22 1+22K21=3()# (2.15)<br />

Al foil<br />

Al foil


1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

E=10 MeV<br />

E=42 MeV<br />

E=800 MeV<br />

E=4000 MeV<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6<br />

10<br />

Angle (rad)<br />

-2<br />

10 -1<br />

10 0<br />

10 1<br />

10 2<br />

10 3<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

=2<br />

0.0<br />

Energy (MeV)<br />

-1/2 Figure2.5:Fractionofthetotaltransitionpoweremittedintothehemispherethatisconcentrated<br />

(A)<br />

(B)<br />

withinaconeofsemi-angle(A)<strong>and</strong>containswithinaconeofsemi-angle1=(B). where=1=2!=!c(1+22)3=2,!cisthecriticalfrequencyasdenedinthesynchrotron electriceldcomponentparalleltothedeectingmagneticeld.Asonecannoticefromgure2.6, theelectrontrajectorywhilethesecondterm(/K21=3())correspondstothe-polarizationi.e.the thepowerassociatedwiththe-polarizationoftheelectriceldi.e.thecomponentintheplaneof radiationformalism(!c=2=3c3=),Z0isvacuumfreespaceimpedance,metheelectronmass <strong>and</strong>rc=e2=(40mec2)istheclassicalelectronradius.Therstterminthebracket(/K2=3())is<br />

(A) (B)<br />

<strong>and</strong>thereforewhenmostofthelobecanbecapturedbyadetector,onequantityofinterestisthe<br />

1.5<br />

totalsynchrotronradiationpowerspectrumintegratedoverthewholesolidanglewhichisgiven Figure2.6:Angular<strong>and</strong>frequencydistributionofsynchrotronradiationforthe(A)<strong>and</strong>the<br />

0.2<br />

1<br />

by[10]: Becausewegenerallydealwithrelativisticbeam(1),i.e.whentheradiationisverycollimated (B)polarization. theangulardistributionofthetwopolarizationsverystronglydependonthefrequency.Forinstance theangularopeningofthe-moderadiationgetsnarrowerasthefrequencyisincreased.<br />

0.1<br />

-2<br />

0.5<br />

-2<br />

0<br />

0<br />

-2<br />

0<br />

-2<br />

0<br />

dP<br />

0<br />

0<br />

γθ<br />

γθ<br />

2<br />

d!1e=Ptot !cS(!=!c) (2.16)<br />

2<br />

2<br />

2<br />

Log (ω/ω )<br />

Log (ω/ω )<br />

10 c 10 c<br />

(no unit)<br />

(no unit)


R10S(x)dx=R11S(x)dx=1=2R10S(x)dx. ingure2.7.Itisworthwhiletomentionthatthepointx=1isthemid-totalintegralpoint: 105cE4=(22),wherethenumericalfactoristheS<strong>and</strong>'sdenitionoftheradiationconstantE wherePtotistheinstantaneoustotalSRpoweremitted:inpracticalunits(GeV/s),Ptot=8:8575 <strong>and</strong>aretheelectronenergyinGeV<strong>and</strong>theradiusoftrajectorycurvatureinmeters.S(x) inEqn.(2.16)istheso-calledUniversalfunction,S(x)=9p3 8xR1xK5=3(x)dx,whichisplotted<br />

chrotronradiationisproportionaltotheUniversalfunction. 2.5RudimentsonFEL-oscillatorTheory Figure2.7:PlotoftheUniversalfunctionS(!=!c).Thefrequencydistributionofthetotalsyn-<br />

Despitethefactthepresentreportdoesnotspecicallydealwiththephotonbeamgenerated free,indeeditmeanstheyareunbounded(contrarytoconventionallaser)butthereareconnedin amagnetostaticregionsincethefreeelectronswillnotradiateunlesstheyareexperiencingsome kindofacceleration. Asinaconventionallaser,FELconsistsinthreemainprocesses:(i)aspontaneousemissionis providedbysynchrotronradiationemittedaselectronswiggleinamagnet;(ii)theso-generated bytheIRFEL,webrieyexplainthebasesofFELtheorysincetheywillenablethereaderto all,weshouldnotethatthewordfreeinfree-electronlaserdoesnotmeanthattheelectronsare underst<strong>and</strong>bettertherequirementsonthedriver-acceleratorelectronbeamparameters.Firstof radiationisrecirculatedinaresonator;(iii)<strong>and</strong>isampliedasitcopropagateswiththeelectron<br />

amagnetthatgeneratesaspatiallyperiodicmagnetostaticeld.InthecaseoftheIRFELof InaFEL,thespontaneousemissionisgeneratedastheelectronsareinjectedintoawiggler, beam(stimulatedemission).<br />

JeersonLab,theundulatorisaplanarone:itconsistsintworowsofNupermanentmagnets ofoppositepolaritiesstackedtogetherwithaperiodu;therowareseparatedbyaxgapas<br />

2.5.1UndulatorRadiation<br />

S( ω/ω c )<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

0.001 0.01 0.1 1 10<br />

ω/ω c


000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

000000000000000000000000000000000000000<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

111111111111111111111111111111111111111<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

000<br />

000<br />

000<br />

000<br />

111<br />

111<br />

111<br />

111<br />

00<br />

00<br />

00<br />

11<br />

11<br />

11<br />

01<br />

00000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

0000000000000<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

1111111111111<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000<br />

0000<br />

0000<br />

0000<br />

0000<br />

0000<br />

1111<br />

1111<br />

1111<br />

1111<br />

1111<br />

1111<br />

0000<br />

0000<br />

0000<br />

0000<br />

0000<br />

0000<br />

0000<br />

0000<br />

0000<br />

1111<br />

1111<br />

1111<br />

1111<br />

1111<br />

1111<br />

1111<br />

1111<br />

1111<br />

0000<br />

0000<br />

1111<br />

1111<br />

00000<br />

00000<br />

00000<br />

00000<br />

00000<br />

00000<br />

00000<br />

00000<br />

11111<br />

11111<br />

11111<br />

11111<br />

11111<br />

11111<br />

11111<br />

11111<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

000000<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

111111<br />

<strong>Electron</strong><br />

<strong>Beam</strong><br />

Resonant Cavity Length = 8.02 m<br />

Photon <strong>Beam</strong><br />

λ u<br />

Figure2.8:FEL-oscillatorprinciple(CourtesyJ.Martz,JeersonLab).<br />

schematicallydescribedingure2.8.Insuchcongurationthegeneratedmagnetostaticeldis<br />

transversewithrespecttotheelectronvelocity.Aselectronstravelinthewiggler,theyareslightly<br />

deectedalternativelyup<strong>and</strong>down(seeFigure2.8)<strong>and</strong>therebyspontaneouslyemitsynchrotron<br />

radiationthatislinearlypolarized(inthecaseofaplanarwiggler).<br />

InthecaseofIRFEL,theundulatorproducesaweakmagnetostaticeldoftypically0.4Tesla.<br />

Theelectrontrajectorywhenitislocatedwithintheundulatorpolesisdescribedby:<br />

y=acos(2z=u) (2.17)<br />

dy<br />

dz=2a<br />

ucos(2z=u)<br />

Theforceontheelectronatthemaximumcurvaturecorrespondstothepeakvalueofthe<br />

magneticeld!B:=mec=(eB).Itiscommontocharacterizetheundulatormagnetbytheso<br />

calleddeectionparameterKdenedasK=dy=dzjmax=2ua.Togetherwiththerelation<br />

(2=)2a=eB=(mec),Ktakestheform:K=eBu<br />

2mec (2.18)<br />

thisdeectionparameteristhemaximumangularexcursionofthebeaminunitsof1=.Itis<br />

interestingtocomputethemaximumamplitudeinthecaseoftheIRFEL:a=Ku=(2)'60m<br />

whichissmallerthattheelectronbeamsizesatthislocation(x'y'200m).<br />

Thewavelengthoftheradiationemittedbytheundulatorisdeterminedbythetimecontraction<br />

factordt=dt0=1cos,tbeingthetimereferenceinthemovingframewhereast0isthelaboratory<br />

(i.e.undulator)time.Intheelectronrestframe,theelectron\sees"theNuperiodsofthewiggler


adiationpulseoflengthNu0u.centeredonthewavelength0s'0u.Inotherterms,theelectron asanNucounter-propagatingradiationeldwithaLorentz-contractedwavelength0u=uu.Thus itoscillatesNutimesalongaverticallineperpendiculartothewiggleraxis,therebyemittinga actsasarelativisticmirror<strong>and</strong>reecttheincomingradiationviaComptonback-scattering.Infact providedweobservewavelengththatarelargerthantheComptonwavelengthCompton=hc 0sisalsoshiftedbytheComptonwavelength,butthisshiftisnegligibleforrelativisticelectrons<br />

Usingtheaveragez-velocityhcosi=(1K2 whereistheangleofobservationreferencedtotheaxisoftheundulator. agoodassumptioninthecaseofIRFEL.Thereforethefundamentalwavelengthoftheundulator radiationis: 1=u(1hicos) 42+O(K4))(isthetrajectorydeectionangle), (2.19) mc2,<br />

onendsthatthefundamentalwavelengthis:<br />

widthwillhavethelimit=!0SincetheelectrononlymakesNuoscillationsintheundulator thegeneratedradiationcontainsthesamenumberofwavelengths<strong>and</strong>thereforethedurationof wavelengthsaresuppressed.Iftheundulatorwouldhaveainnitenumberofperiod,theline wavelengthrepresentsthewavelengthoftheeldcomponentthatinterfereconstructively.Other Infactalltheharmonicarealsopresenti.e.thewavelengthn=1=nwithn2N.The 1=u 22(1+K2 2+22) (2.20)<br />

thepulseisT=Nu=c.TheFouriertransformofaplanewavetruncatedafterNuoscillations frequencydependence: issinc-function4,hencethefrequencyspectrumofthespontaneousundulatorradiationhasthe<br />

to: on-axis(=0)componentisofinterested,i.e.isamplied,thefundamentalwawelengthreduces Whichmeanstheradiationispeakedatthefrequency!n=2c=n.Thewidthofthespectrum isabout! !=1 Nu.ItisimportanttonotethatinthecaseoftheFEL-oscillator,sinceonlythe d!d/sinc2Nu!!n d2W !n (2.21)<br />

reference[9])<strong>and</strong>areworthmentioninginthepresentdiscussion.Theopticalwavegeneratedfrom anundulatorcanbewellapproximated,ifNuislargeenough,byapureTEwave.Insuchcase, theform[9]: theon-axisradiationonlycontainsoddharmonic.Thepowerspectralangulardistributionisof Finallyweneedtoelaboratethepowerdensityspectrum.Wehavequalitativelyexplainedthe sincdependencebuttherearemanyotherpropertiesthathavebeenderived(seeforinstance 1=u 22(1+K2 2) (2.22)<br />

Thelatterequationisplottedingure2.9forthetwodierentvaluesofKthatareconsidered withKdef 4Thecardinalsinusfunctionisdenedas:sinc(x)=sin(x) =K=p1K2=2. d!d/mK(1K2=2)hJ(m+1)=2(mK2=4)J(m1)=2(mK2=4)i2def d2W x<br />

=Q (2.23)


harmonicwithproperchoiceoftheKvaluewhichcanbesetbychangingtheundulatorgap5. emissionassociatedwiththethirdharmoniccanbealmostaspowerfulastheemissionatrst Suchfeatureisveryinterestingforproducingshorterwavelengthlight.IntheIRFELoperationat thethird(=1=3)<strong>and</strong>fth(=1=5)harmonichasbeenachieved. fortheIRFELoperation(K=1:00<strong>and</strong>optionally1:39).Inthisgureoneseesthatspontaneous<br />

Figure2.9:Normalizedpoweroftheon-axisundulatorradiationforthetwodierentvalueofK consideredfortheIRFEL.<br />

oftheorderofthewavelength.Thespacingbetweenthetwomirrorsischosensothatthepulse OncearadiationpulseatthewavelengthgiveninEqn.(2.22)hasbeenestablishedviatheinteractionofanelectronbunchwiththemagneticeldoftheundulator,itisrecirculatedinaresonator cavitythatconsistsintwosphericaldielectricmirrors.Oneofthemisatotalreectorwhilethe otherisapartiallyreector<strong>and</strong>out-coupleradiationthroughasmallaperturewithadiameter 2.5.2AmplicationoftheSpontaneousUndulatorRadiation<br />

willcopropagatewiththenextincomingelectronbunch<strong>and</strong>thereforethelengthofthecavityis beasub-multipleof8:003minthecaseoftheIRFEL.Forelectronsinjectedattheresonantenergy L=c=(2)(whereisthetemporalspacingbetweentwoconsecutiveelectronbunches)<strong>and</strong>should<br />

phase,eachelectroninthebunchcan(i)giveenergytotheeld<strong>and</strong>decelerate,thatis\stimulated emission";(ii)takeenergyfromtheradiationeld<strong>and</strong>accelerate,thatis,\absorption".Thusifwe considerabunchofelectronwhosecenterenergyisresonantenergy,wecouldeasilyimaginethat ofenergybetweentheelectron<strong>and</strong>theradiation.Hence,dependingonthevalueoftherelative radiationelectriceld(!v:!E)isnon-zero<strong>and</strong>slowlyvaryingsothattherecanbeanetexchange ponentparalleltotheopticalpulseelectroneld,thescalarproductofanelectronvelocity<strong>and</strong>pulsewill,inprinciple,remainconstant.Sincetheelectronbeamvelocityhasanonzerocom- r=12qus(1+K2),therelativephasebetweentheelectrons<strong>and</strong>thecopropagatingradiation<br />

5TheKvaluedependenceonthegapdisoftheformK/exp(d=u)<br />

Intensity (a.u)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10<br />

Harmonic Number<br />

K=1.00<br />

K=1.39


halfoftheelectronisdeceleratedwhiletheotherhalfisacceleratedresultinginanullamplication. Thisistrueintherstperiodofthewigglerbutinveryshorttime,themoreenergeticelectrons catchuptotheless-energetic,introducinganenergymodulationwithintheelectronbunchwhich, inturn,leadstoalongitudinaldensitymodulationormicro-bunching:theelectronbeamthat hasaninitialdistributiondependingonthepreviousdynamics,soonconsistsinasub-bunchesof electronsspacedatthespontaneouswavelength.Itturnsoutthatiftheelectronenergyisslightly higherthantheresonantenergyitresultsinanetgaini.e.anamplicationofthelightpulses. Thissimplemodelassumesthatelectronswithinabunchdonotinteracteachwithother,thatis single-particle-dynamicsmodelisvalid.Whensuchamodelisvalid,likeinthecaseoftheIRFEL, theFELissaidtooperateintheComptonregime. 2.5.3FELGain Theamplicationofthespontaneousemissionisquantiedbythegainthatcorrespondstothe ratiooftheenergytransmittedbytheelectronbeamtothecopropagatingelectromagneticwave totheinitialenergyofthecopropagatingelectromagneticwave.Thegain6isdenedas:<br />

beendiscussedbyS.Benson[12].Thegaincanbeparametrizedas: electronbeamparametersontheFEL-gainbyconsideringtheapproximate1Dmodelthathas whereisthereducedenergytransmittedbytheelectronbeamtotheelectriceldoftheoptical mode<strong>and</strong>W0istheenergyoftheopticalmodeconsidered(i.e.theonewhichissupposedtobe amplied).ThederivationofanalyticformulafortheFELgainhasbeenperformedinreference[11] <strong>and</strong>isbeyondthescopeofthisthesis.Howeveritseemsworthwhiletostudytheeectsofthe Gdef =mc2W0 (2.24)<br />

inEqn.(2.23).The'scoecientsinEqn.(2.25)representdegradationfactorsofthegain. oftheincomingelectronbeam:sinceelectronsinabunchdonotallhaveanenergyexactly where<strong>and</strong>Iaretheelectronbeamenergy<strong>and</strong>peakcurrent.Qisafactorthathasbeendened correspondingtotheresonantenergy;thisfactorisdenedas: isthegaindegradationduetoenergyspread<strong>and</strong>isaresultofthenon-mono-energeticcharacter g=0:0004IQNuN2~"f (2.25)<br />

onthecoecient: theharmonicnumber. whereisthereducedrms-energyspreadoftheincomingelectronbunches,<strong>and</strong>h,asbefore,is ~"isthedegradationduetobeamnon-zerotransverseemittance.Thisdegradationalsodepends = 1+4p2hNu=2 1 (2.26)<br />

ofimportancewhenconsideringthestartupofFELinteraction,ourprimaryconcerninthepresentsection.<br />

6Inthisdissertation,gaindesignatestheso-called\smallsignalgain"intheFELliteraturesinceitisthequantity ~"= q1+(42~"N=)2 1 (2.27)


Bu(rms)0.28T ParameterValueUnit Nu u 40<br />

where~"isthebeamtransverserms-emittance<strong>and</strong>Nisthenumberofbetatronoscillationsalong Table2.1:ParametersofthechosenwigglerfortheIR-DemoFEL. K2 Gap 0.5 12mm 2.7cm<br />

thewiggler.fisthegainreductionduetothellingfactorfortheopticalmode;itsimplyresults fromthenonintegraloverlapoftheelectronbunch<strong>and</strong>theradiationpulse<strong>and</strong>isapproximatedby: isthegainreductionduetoslippage:=1 f=1 1+4~"= 1+hNu 3z (2.28)<br />

beamparametersrequiredtodrivetheIRFEL. wherezistherms-longitudinalbunchlength. tobemoreecient,requirehigh-charge,ultrashort-bunchelectronbeam.Wenowpresentthe FromEqn.(2.25)weseethatthegainisproportionaltopeakcurrentwhichinturnisproportional tothechargeperbunch<strong>and</strong>inverselyproportionaltothelongitudinalbunchlength.HenceFELs, (2.29)<br />

2.6CharacteristicsoftheIRFELdriver-accelerator TodiscussthecharacteristicsrequiredfortheelectronbeamgeneratedbytheIR-Demodriver accelerator,welistinTable2.1thespecicationsonthewigglermagnetwhichhavebeenderived fromtherequirementsonphotonbeamparametersdenebytheexperimentalists.IntheJLabFEL IR-demo[15](seegure2.11),thechargeperbunchwasinitiallychosentobe60pC,themaximum valuethatyieldsatolerableemittancegrowthduetospace-charge.Theaveragecurrentshouldbe ashighaspossibletomaximizetheaveragepowerofthelaser.Itisafunctionofthechargeper bunch,<strong>and</strong>thebunchrepetitionthatdependsonthephotocathodedriver-laserwhichinturnmust beasub-harmonicofthesuperconductinglinacoperatingfrequency(1497MHz).Themaximum<br />

arbitrarywavelengthbychoosingtheproperenergy.Experimentally,theoutputwavelengthislimitedtoacertain bunchrepetitionrateis74:85MHz<strong>and</strong>itislimitedbytheelectronsource.Therepetitionrate<br />

astheoneusedtolasewithanoutputwavelengthof6m<br />

rangethatdependsontheFEL-opticalcavitymirror.Forinstancethemirrorusedtolaseat3marenotthesame currentthatcanbereachisapproximately5mA. Sincetheenergydoesnotaectthegain,<strong>and</strong>itsonlyimplicationisonFELwavelength:theIR- oftheelectronbunchwasindeedinitiallysetto37:425MHzwhichmeanthemaximumaverage demoisforeseentoinitiallylaseintheregion3m-6mrange7(laterthisrangewillbeextended 7Theoreticallytheoutputwavelengthonlydependsonenergy.Hencewecould,intheIRFELoperateatany


to100mwavelengths);thisimpliesthemaximumelectronbeamenergyshouldbeintherange<br />

Thefactor=(4)isthetransversephasespaceareaoftheopticalbeamassumingitcanbewell 38-48MeV.<br />

describedbyGaussianoptics. Thetransversenormalizedemittancespecicationaresetbythewavelengthatwhichwewishto<br />

Forthelaserwavelength<strong>and</strong>energyofoperation(i.e.1'3m<strong>and</strong>'77)theEqn.(2.30)yields operatethelaser:theelectronbeamemittanceshouldbelessthantheopticalbeamemittance:<br />

value:itwasassessedfromnumericalsimulationoftheFELgainthattheemittanceshouldbeless anormalizedemittanceforbothtransverseplanethatmustbesmallerthan~"n'19mm-mradto enabletheoperationofthelaseratthefundamentalwavelength.Infactthisvalueisan\edge" ~"n


2.7TheJeersonLabIRproject usedasexperimentalplatformthroughoutthepresentreport. InthebuiltIRFEL(seetopviewingure2.11),theelectronbeamisgeneratedbya350keVphotoemissionelectrongun<strong>and</strong>acceleratedbytwosuperconductingRFCEBAF-typecavities(5-cells ThepurposeoftheconsortiumgatheredaroundJeersonLabistodevelopthetechnologiesneeded<br />

cavityoperatingon-acceleratingmode)mountedasapairintheso-called\quartercryounit" torealizehigh-powerfree-electronlaserinacosteectiveframe.Thelongtermprojectistobuild a20kWinfraredfree-electronlaserAsastartingpointitwasdecidedtobuildtheIRFELthatis<br />

paction<strong>and</strong>pathlengthuptotheentranceofthecryomodulewiththepropertimeofarrivalso\spent"beamisrecirculatedwithaquasi-isochronousrecirculatorwithvariablemomentumcom- inTable2.1)islocatedbetweenthetwoaforementionedchicanes.AftertheFELinteraction,the 48MeV.Thiscryomoduleisfollowedbytwo4-bendschicanesthatbypasstheFELopticalcavities <strong>and</strong>provideadditionallongitudinalphasespacemanipulation.TheIRundulator(seeparameters superconductingRFcavities.Thelinaccancurrentlyacceleratethebeamuptoapproximately themainlinacwhichiscomposedofonecryomodule,containing8superconductingCEBAF-type whichprovidesabeamenergygainofapproximately10MeV.Thebeamistheninjectedinto<br />

thattheelectronbunchesareonthedeceleratingphaseoftheradio-frequencywave.Thesecondary beamistherebydecelerateddownto10MeV<strong>and</strong>separatedfromtheprimarybeambeforebeing dumpedinthe\energyrecoverydump"bythemeanofthe\extractionchicane".Theenergy recoveryschemeallowtherecoveryofalmostalltheenergyprovidedtothebeambythemainlinac duringtheaccelerationphase. TheFELlightisdirectedinanopticalroomwhereitcanbediagnosed<strong>and</strong>senttooneofthe experimenttomeasurethegoldreectivityintheIRregion,theobservationoflaserlighteecton aplasma,<strong>and</strong>somepreliminarytestsinmicro-machining. sixuserlaboratories.Theexperimentsthathavebeenruntodate,includest<strong>and</strong>ardpump-probe<br />

Theelectronsource[14]isaDC-photo-emissiongunpresentedingure2.12.Itconsistsofa GalliumArsenide(GaAs)photocathodeilluminatedbyalasersystemcapableofproviding5W.<br />

Figure2.11:Anactualtopviewofthe\asbuilt"IRFELdriveraccelerator.<br />

~ 5 meters<br />

Recirculation Arc<br />

Straight Ahead Dump<br />

Extraction Chicane<br />

Decompressor<br />

Compressor<br />

Energy Recovery Dump<br />

Return Transport Line<br />

Injector Dump<br />

Recirculation Arc


Reflected Laser <strong>Beam</strong><br />

Anode Plate<br />

Figure2.12:Simpliedschematicoftheelectronsource:A527nmlaserbeamthatcanbemodulatedbytwoelectro-opticscell(EO1<strong>and</strong>EO2)<strong>and</strong>attenuatedbyarotationalpolarizerilluminates Solenoidal Lens<br />

Photocathode<br />

Insulating Ceramics<br />

theGaAsphotocathode.Ejectedphoto-electronsareacceleratedthroughtotheacceleratingvoltage ofnominally350kVbetweenthephotocathode<strong>and</strong>theanode.<br />

Incoming Laser <strong>Beam</strong><br />

Tunnel<br />

Optical Room<br />

Transport System<br />

EO2<br />

Attenuator<br />

EO1<br />

Nd:YLF laser<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01


Study TheFELdriveraccelerator:Lattice Chapter3<br />

experimentalresultsobtainedaswetriedtocharacterizethelattice<strong>and</strong>compareitwithanumerical model. reviewingtheacceleratormagneticopticswiththehelpofanumericalmodel,wepresentfew 3.1Introduction<br />

3.2ABriefOverviewoftheFELOpticalLattice ThepresentChapterdealswiththeopticallatticeoftheIRFELdriver-accelerator.Afterbriey<br />

thepurposeofthepresentdiscussion,thedriver-acceleratorcanbedividedintoveparts: InthissectionwedescribetheFELopticallatticeforthemainacceleratoronly.Ithasbeendesigned byD.Douglas<strong>and</strong>itisalsodescribedinnumerousreference(seeforinstancereference[16]).For 1.A10MeVinjector<strong>and</strong>theinjectiontransferline 2.A48MeVsuperconductingradio-frequency(SRF)linearaccelerator(itisusedbothtoac- 3.Awigglerinsertionregion, 4.Arecirculationring, 5.Areinjectiontransferline. celeratetherstpassbeam<strong>and</strong>todeceleratethesecondpassbeam);thislinacisalsotermed \cryomodule"hereafter,<br />

<strong>and</strong>5inthelistabove. Inthissectionwewillonlyconcentrateonthehighenergylattice(E'48MeV)thatisitems3,4, TherstregionencounteredbythebeamattheexitoftheSRFlinacisa\matching"region.It 22


To Linac entrance<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

Figure3.1:Dispersedoverviewofthemainringofthedriveracceleratorcorrespondingtog-<br />

0000000000000<br />

1111111111111<br />

Quadrupole<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

0000000000000<br />

1111111111111<br />

Sextupole<br />

0000000000000<br />

1111111111111<br />

ure2.11.Thepathoftheelectronbeamisindicatedwitharrows.<br />

0000000000000<br />

1111111111111<br />

Quadrupole<br />

Sextupole<br />

180 deg<br />

dipole<br />

Reinjection Line<br />

180 deg<br />

dipole<br />

Sextupole<br />

Quadrupole<br />

Sextupole<br />

Quadrupole<br />

To Backleg To Arc 2 (5F)<br />

innitelylongwigglerw=w=(2p2K),withwthewigglerperiod<strong>and</strong>Ktheundulator thebetatronfunctionsarematchedtothewiggler\natural"betatronfunctioneigenvalueofan insuresthebeamlatticefunctionsareproperlymatchedtothedesiredvalueattheundulatorcenter.<br />

parameter(seeChapter2).The\upstream"by-passchicaneprovidefurtherlongitudinalphase Thisregionconsistsoftwoquadrupoletelescopesdisposedupstream<strong>and</strong>downstreamanachromatic chicane.Thetelescopesconsisteachofthreequadrupoles.Thesetwotelescopesprovidesixfree whileinsuringthebeamsizecanstillbecontainedwithinthevacuumchamberwithacceptablylow particlelossviascraping.The-functionsaresupposedtobezeroatthewigglercenterwhereas parameters(thestrengthofthequadrupoles)toadjustthefourTwissparameters(x,y,x,y)<br />

Quad Quad Quad Quad Quad Quad Quad Quad Quad Quad Quad Quad Quad<br />

Afterthewiggler,twoadditionaltelescopeseachcomposedofquadrupoletripletsareusedtomatch theopticallatticefunctionstothedesiredvaluesattheinjectionpoint.Longitudinally,further spacerotationbecauseofitsnonisochronicity(momentumcompaction1R56=28cm).<br />

whereitisdenedastheratioofrelativepathlengthchangeforarelativeenergychange=L=L transportformalism.Thisdenitionisdierentfromtheusualdenition(generallyforclosedorbitaccelerator) phasespacerotationisprovidedbythe\downstream"by-passchicanewhichisidenticaltothe upstreamchicane. Therecirculationloopiscomposedoftwoarcslinkedbyastraightlinesection,termed\backleg" 1ThroughoutthisreportthemomentumcompactionisdenedasthetransfermatrixelementR56=z E=EE=Einthe<br />

Sextupole<br />

Quadrupole<br />

Sextupole<br />

Quadrupole<br />

first Telescope<br />

To dump<br />

Fourth Telescope<br />

To Arc 1 (3F)<br />

SRF Linac<br />

<strong>Beam</strong> Direction<br />

Third Telescope<br />

Undulator Magnet<br />

Second Telescope<br />

<strong>Beam</strong> from Injector<br />

Quadrupole<br />

Sextupole<br />

Quadrupole<br />

Sextupole


ParameterValue<br />

x -0.178<br />

x(m) 8.331<br />

y -0.124<br />

y(m) 3.979<br />

Table3.1:Twissparametersdownstreamthecryomoduleexpectedfromsimulationswiththecode<br />

parmela.<br />

thatconsistsofsixperiodofaFODOlattice.<br />

ThearcsarebasedontheMIT-Batesacceleratordesign[17];theyprovideeachatotalbendingangle<br />

of180deg.Theyincludefourwedge-typedipoles,eachbendingthebeambyanangleof'28deg<br />

alternatively,installedinpairsymmetricallyarounda180degdipole.Furthermoreprovidingthe<br />

desiredrotation,thearcsarealsousedtoadjustthetotalbeampathlengthoftherecirculated<br />

beaminasuchwaythattheelectronbuncheshavethepropertimingtobeonthedecelerating<br />

phaseoftheSRFlinac,averyimportantparameterforenergyrecovery.Forsuchapurpose,<br />

thearcisinstrumentedwithapairofhorizontalsteererslocatedupstream<strong>and</strong>downstreamthe<br />

180degdipoletovarythereferenceorbitpathlengthinsidethe180degmagnet.Twofamilies<br />

ofquadrupoles(thetrimquadrupoles)<strong>and</strong>sextupolesareinstalledinthearctoprovideboth<br />

linear<strong>and</strong>quadraticenergydependentpathlengthvariationthatarenecessaryinthe\energy-<br />

compression"schemeneededtoproperlyenergyrecoverthebeam[18]i.e.topreciselyadjustthe<br />

momentumcompactionR562(lineardependenceoflongitudinalpositionwithrelativeenergy)<strong>and</strong><br />

thenonlinearmomentumcompactionT566(quadraticdependence).Whenthequadrupoles<strong>and</strong><br />

sextupolesarenotpowered,thearcisoperatinginanon-isochronousmode(R56=13:124cm).<br />

Howeverundernominaloperation,i.e.whentheFELisoperating<strong>and</strong>thelinacisinenergyrecovery<br />

mode,becauseoftheneedofenergycompression,thesextupoles<strong>and</strong>quadrupolesofonefamily<br />

areexcitedtopropervaluesinordertoprovidetherequiredR56betweenthewigglerexitupto<br />

thelinacentrance.<br />

Thebacklegtransportlineconsistsofthirteenquadrupoles.NominallyitisoperatedasaF0D0<br />

latticewithaphaseadvancepercell=90deg,butwehavedemonstrateditsoperationwith<br />

aphaseadvanceof=60degneededduringemittancemeasurementbasedonmulti-monitor<br />

technique.Itstotaltransfermatrixis-Iforbothtransverseplane:itimagesthelatticeoptical<br />

functionsattherstarcexitintotherstarcentranceaccordinglyto!<strong>and</strong>!.<br />

Thereinjectionlineconsistsofatelescopecomposedoffourquadrupolesthatisusedtoadjustthe<br />

beamlatticefunctiontoachievereasonablebeamenvelopeattheentranceoftheSRFlinac.<br />

AstheelectronbunchesgoforthesecondtimesthroughtheSRFlinac,theyaredecelerated<strong>and</strong><br />

inducevoltageinthecavityviabeamloading.Thisinduced-voltageisatthepropermodetoserve<br />

toacceleratethenextbunchintheaccelerationphasewhichisintheneighboringRFbucket.The<br />

wastedbeam,oncedecelerated(i.e.atapproximately10MeV),bifurcatesintoadump.<br />

Typicallatticefunctions,computedwiththesecondorderopticscodedimad,areshownin<br />

gure3.2.Theinitialconditions(seeTable3.2)thatareused,havebeencomputedusingthe<br />

parmelacodesinceitincludespacechargeeectsinthelowenergyregion<strong>and</strong>alsohaveavery<br />

detailedmodeloftheSRFcavities.Forthegurepresented,theundulatormagnetisinstalled.<br />

2Rs0!s<br />

56=Rs<br />

s0=R16(x)<br />

(x)dx,where(x)isthelocalbendingradius.Sosincethepresentlymentionedquadrupole<br />

arelocatedinadispersiveregion,i.e.R166=0,sothatR56canbevaried.


Horizontal Dispersion (m)<br />

Arc 1 ‘‘back−leg’’<br />

extr. chic.<br />

Arc 2<br />

−1<br />

20<br />

Figure3.2:HorizontalDispersion(topgraph)<strong>and</strong>transversebetatronfunctions(bottomgraph)<br />

βx 15<br />

βy 10<br />

manyfactorsthatcancausetherealmachinetobedierentfromthenumericalmodel.Amongthe forthenominalsettingsofthemagneticoptics.<br />

5<br />

causesofthesediscrepancies,themostusualarealignmenterrors,magnetdisfunctions,etc...Hence itisofprimeimportance,intherstphaseofcommissioningoftheaccelerator,todiagnosethese defects<strong>and</strong>potentiallyxorunderst<strong>and</strong>themtomatchascloseaspossiblethenumericalmodel Thoughthedriver-acceleratordesignisessentiallyspeciedvianumericalsimulations,thereare 3.3MeasurementoftheTransverseResponse<br />

0<br />

0 20 40 60 80 100<br />

tothe\asbuilt"accelerator.Inthissectionwereportonmeasurementofthetransverselattice<br />

Distance From Cryomodule Exit (m)<br />

responseofthedriveracceleratoralongtherecirculator.Inthisreport,wehaveonlyconcentrated ontwotypesofmeasurements:(1)trytoverifythattherstordertransfermatrixusedinthe modelisclosetothemachine,(2)measurepreciselythedispersion(i.e.thetransverseposition dependenceonenergy)functionintheback-legtransferline.<br />

Betatron Functions (m)<br />

2<br />

1<br />

0<br />

Compressor<br />

Undulator<br />

Decompressor<br />

reinj chic.


Thepurposeofmeasuringthetransverseresponseoftheopticallatticeistogetsomeinsightsonthe 3.3.1TheoreticalBackground<br />

validity,accordinglyto: traryposition0,ispropagatedtoanotherposition,undertheassumptionofrstordertransportcitation,opticalelementsmisaligned.Wehaveperformedtwotypesofmeasurement:(1)response ofthelatticeforagivenangularexcitationbymeanofcorrectors<strong>and</strong>(2)energydependenceofthe latticei.e.measurementofthedispersion. Inadispersion-freeregion,theposition<strong>and</strong>divergencecentroidofabeam(x(0);y(0))atanarbirstordertransport<strong>and</strong>potentiallyndoutproblemswiththelatticei.e.magnetscorruptedex- anevent,the\perturbed"beampositiondownstreamnowwrites: bativeangularkickonthebeamtrajectoryatthepositionx(0)i.e.x0(0)!x0(0)+x0.Insuch Theobservablethatcaneasilybemeasuredisabeamcentroidpositionatthedownstreamlocation x(s).Henceatechniquetomeasurethetransverseresponseisdistorttheorbitbyusingapertur- x0(s)!= x(s) R0!s 11R0!s 21R0!s 12 22! x0(0)! x(0) (3.1)<br />

Moreover,foradipolewecanrelatetheangularkicktothebeammomentum:x0=1=(3:3356 ontheangularperturbationat0: Thatisthedisplacementofthebeampositionats,x(s)def xperturb(s)=R0!s x(s)=R0!s 11x(0)+R0!s 12x0 12(x0(0)+x0) =xperturb(s)x(s)isonlydependent (3.3) (3.2)<br />

ofR11requiresmoreelaboration:oneneedstocreateaperturbationthatisexactly90degoutof betatronphasewithrespecttothekickintendedtomeasuretheR12;insuchwayonecancompute p)RBdlwhereRBdlrepresentstheeldintegral(inT.m),<strong>and</strong>pisthebeammomentum(in<br />

towhatpositiondisplacementitcorresponds. ordertransfermatrixmodel,istomeasurethebeampositionalongthebeamlinefordierentperturbations(angularkickvaluesbutalsopositionofthekickermagnetused).Itisworthmentioning thatthistechniqueallowsdirectlytomeasuretheR12transfermatrixelement.Themeasurement GeV). Henceaverysimplewaytocheckifthe\realworld"machineisperformingaspredictedbyrst<br />

wecangetanestimateofthedispersionfunction.<br />

totheorbit.Notethat(s)R0!s asx(s)=x(s)+(s)(0),wherex(s)isapurebetatroninducedposition<strong>and</strong>theproductof Theothertypeofmeasurementistheenergydependenceoftheopticallattice.Thismeasurementis verysimilartothetransfermatrixresponseaforementioned:itisknowthataftermagneticelement systemssuchasdipolestherecanbepositiondependenceonenergy,i.e.thepositionx(s)writes (s),dispersionfunctionats,with(0),energyosetat0,representthedispersivecontribution !+)<strong>and</strong>measuringtheassociatedpositionchangedownstreamthebeamlinex= 16.Thereforebyvaryingtheenergyofthebunchcentroid(i.e.


3.3.2ExperimentalMethod Todetermineexperimentallythelatticeresponseduetoeitherkickexcitation(puretransverse pickupcalledbeampositionmonitors(BPMs)[25].TheseBPMsconsistofanumberofpick-up response)orenergychange(dispersion),weonlyhavetomeasurethebeamposition,theonly observablewecaneasilyaccess.Thebeampositionismeasuredbymeansofelectromagnetic antennaedistributedaroundthediameterofthevacuumchamberthatdetecttheCoulombeld associatedwithanelectronbunchasitpropagatesalongthebeamline.Basedontheasymmetry ofthesignaloneachantenna,thebeamcentroidcoordinatescanbeinferred.TwotypesofBPMs areinstalledintheIRFELaccelerator.Inthemeasurementpresentedhereafter,wehaveonly wakeeld.Thebeamcentroidcoordinateisasimplefunctionoftheelectricpotential(VR,VL,VD, usedtheso-calledstriplineBPMswhosecrosssectionisdepictedingure3.3.ThistypeofBPM consistsoffourstrip-likepickupantennaeorientedat90degfromeachother.Thistypeofgeometry forthepickupantennaehastheadvantagetominimizethebeamqualitydeteriorationbecauseof<br />

VU)inducedbythebeamoneachantenna[19]oftheBPM(R,L,D,Uongure3.3): Figure3.3:schematiccutofabeampositionmonitor(BPM).<br />

Theelectronicsystemusedtoprocessthesignalistheso-calledSwitchedElectrode<strong>Electron</strong>ics system.Andthebeampositionisinferredusingthest<strong>and</strong>ardtechniquefromthissignal.An (SEE)[24].Thesignalofperiphericalelectrodesismultiplexedtothesameprocessingelectronics y/VUVD x/VRVL VU+VD VR+VL<br />

typically30Hztostudypotentialtimedependentbeampositionuctuation. advantageofthiselectronicisthatitcanbeusedtoacquirebeampositionatveryhighrate (3.4)<br />

Thepracticalmethodtomeasuretheresponseofthelatticeisasfollows:(1)Forthenominal condition,measurethebeampositiononallthedesiredBPMsfx0;y0gi=1:::N(thesubscriptiisthe angularkickforR12measurement);(3)measurethenewbeampositionontheNBPMsfx;ygi=1:::N BPMindex);(2)impressthedesireddistortion(i.e.energychangefordispersionmeasurementor <strong>and</strong>computethedisplacement(ordierenceorbit)ofthebeamcentroidalongthebeamlineatthe<br />

L<br />

Vacuum Chamber<br />

U<br />

y<br />

y<br />

O<br />

D<br />

x<br />

<strong>Beam</strong> cross-section<br />

R<br />

Pickup Antenna<br />

x


computedusingthelatticeset-upusedduringthemeasurement;thebeamcentroidinducedbythe locationofeachBPMsfx;ygi=1:::N:<br />

angularperturbationarecomputedusingtheR12transfermatrixelement. Foratransverseresponselatticemeasurement,thetransversematrixelementsarenumerically xy!i=1:::N= xy!i=1:::N x0 y0!i=1:::N (3.5)<br />

ofthetransfermatrixbetweenthedispersiongeneratorexit<strong>and</strong>theconsideredlocation: Fordispersionmeasurement,theenergychangeisimpressedusingthelastpairofcavitiesinthecryomodule.Unfortunatelythismethoddoesnotprovidevaluableinformation(seetheexperimental sectionformoreexplanation)<strong>and</strong>wehadtouseanothertechniquetoperformsuchmeasurement. Intherstplacedispersionalwaysresultsinanon-zerolocalR16transfermatrixelemente.g.due tothepresenceofadipolemagnet.Afterithasbeengenerated,itcanpropagateinregionwithno magneticeld;forinstanceifattheexitofthedispersiongeneratorthedispersion<strong>and</strong>itsderivative are0<strong>and</strong>00,thenatadownstreamlocation,thedispersioncanbecomputedfromtheknowledge<br />

duetoarelativeenergychangeisequivalenttoarelativemagneticeldvariation: dipoleB(B=ecp),wehaveafterdierentiation(p)=p=(B)=B.Henceatransverseoset Becauseinthedispersiongeneratorthebeammomentumpisrelatedtothemagneticeldofthe Notethatinthecasethedispersiongeneratorisachromatic,wehave0=0<strong>and</strong>00=0sothat 0. =R110+R1200 (3.6)<br />

wherethesubscript0indicatetheenergychangedisimpressedbeforethemagneticsystem,<strong>and</strong> thehdBiistherelativemagneticeldvariationofthemagneticsystemdownstreamwhichthe dispersionismeasured. x(s)=(s)dp p0(s)dBB (3.7)<br />

beampositionmonitor.Thequadrupolesinbetweenthesetwoelementswerenotpowered.So Fromtheaforementionedtechniquetoassesswhethertheopticallatticeisperformingaccordingly tothemodel,weneedtohaveanaccurateknowledgeoftheangularexcitationprovidedbyacorrectormagnet.Inordertoestimatesuchangularkick<strong>and</strong>sinceallthecorrectormagnetsareofthe sametype,wehaveuseacorrectorlocatedinthebacklegtransportlinewiththenextupstream 3.3.3ResultsonTransverseResponse<br />

thetransfermatrixbetweentheBPM<strong>and</strong>thecorrectoryieldsanangularkickprovidedbythe thetransfermatrixbetweentheelementistheoneofadriftspaceoflength2.80m.Fordierent correctorexcitation,wemeasuredthebeampositionaspresentedingure3.4.Thebeamposition islinearlydependentonthecorrectorstrengthintherangeinpositiontheBPMwasused[-4mm, +4mm].Alinearinterpolationofthedatapresentedinthegure,alongwiththeknowledgeof correctormagnetofapproximately0:64mrad=(100Gauss:cm)thisvalueisveryclose,within3%,


5<br />

4<br />

3<br />

2<br />

Figure3.4:Exampleofcalibrationofacorrector.Theslopeofthelinearinterpolationis<br />

1<br />

0:0183mm=(G:cm)whichcorrespondstoanangulardeectionof6:54rad=(G:cm)<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

alongthebeamline;typicalvalueusedduringtheacquisitionofdierenceorbitmeasurementare ofthecalculatedvaluededucedfromthecorrectormagneticeldmapmeasurement3whichgivea<br />

−5<br />

excitationofthecorrector)alltheBPMreadbacksalongthebeamlineareacquiredthreetimes BPMvaluealongthebeamline,insuchawaythatthekickprovideasignicantpositionchange approximately100G:cm.ForagivencorrectorchangeBnom+B,(Bnomisthenominalmagnetic Practically,thecorrectorstrengthissetdevisobylookingattheon-linehistogramplotofthe kickof0:65mrad=(100Gauss:cm)<br />

−300 −200 −100 0 100 200 300<br />

Corrector Field Integral (G.cm)<br />

oflinearityofthesystem,theBPMreadbackshouldbetheoppositeoftheonemeasuredforthe latteroperationallowtovalidatethemeasurement,sinceforthelattercorrectorsetting,because (toquantifythebeampositionjitter).ThenthecorrectorissettothevalueBnomB.This<br />

2F04V<strong>and</strong>2F08V).Thecorrectorsarechosensothattherelativebetatronphaseadvancebetween forthehorizontalplane(2F00H,2F04H<strong>and</strong>2F08H)<strong>and</strong>threefortheverticalplane(2F00V, probedierentpartofthelattice.Inourpresentstudy,weusesixdierentcorrectors:three zeroforalltheBPMs. Theuseofonlyonecorrectortostudytheresponseofthelatticeisnotsucientsinceitonly\probe" thelatticeatlocationthathavearelativebetatronphaseadvanceofapproximately90deg4.Hence itispreferabletouseatleasttwocorrectorsseparatedbytheproperphaseadvancesothatthey rstmeasurement.Thereforethecomputationofthesumofthetwomeasurementsshouldgive<br />

istherelativebetatronphaseadvancebetweenthepointss<strong>and</strong>s0.<br />

3G.H.Biallas,privatecommunication,June99 4InthegeneralTwisstransfermatrixformalismonehas:Rs0!s 12=p(s)(s0)sin()where=(s)(s0)<br />

∆ x 2.80 meters downstream (mm)


etatronexcitationaspicturedingure3.5.Anexampleofmeasurementforthesixcorrector eachotherisapproximately60degsothatonecanaccuratelyprobethewholeperiodofthe<br />

0F00H<br />

0F00V<br />

300 0F08H<br />

0F04V<br />

0F04H<br />

0F08V<br />

Figure3.5:Betatronphaseadvancebetweeneachcorrectorusedtoperturbtheorbitalongthe latticeinthehorizontal(leftplot)<strong>and</strong>vertical(rightplot)plane(100meterscorrespondsap-<br />

200<br />

proximatelytotheendofthebacklegbeamline).<br />

100<br />

theoneeectivelyproducedaccordingtothedierenceorbitanalysisisapproximately10%.After aforementionedispresentedingure3.6.Itisexperimentalresponsewiththelattice<strong>and</strong>simulated<br />

0<br />

0 20 40 60 80 100 0 20 40 60 80 100<br />

inclusionofthisdiscrepancyinthemodel,thenewlycomputedpattern(seegure3.7)areingood fortheverticalplane).Inthepresentcase,itwasfound5thatoneofthequadrupoleswasnot varyinthemodeldierentmagneticelements<strong>and</strong>trytominimizea2-typequantitiesdenedas: producingthemagneticgradientthatitwassetto;thediscrepancybetweenthesetgradient<strong>and</strong> response.Althoughthetwopatternsgenerallymatchquitewellonecanseeinthecaseofcorrector 2F04Hthattherearelargediscrepancies.Atechniqueusedtondoutthediscrepanciesisto 2x=PNi=1(xmeasured i xsimu i)2forthehorizontalplane(thesamekindofquantityisdened<br />

Distance from Cryomodule Exit (m)<br />

beusedtodescribeaccuratelythelattice. 3.3.4ResultsonDispersionMeasurement Aswehavealreadymentioned,thedispersionmeasurementtheoreticallyreducestothemeasure- agreementwiththemeasurementindicatingthemodel(secondorderbasedtransfermatrix)can<br />

mentoftheorbittransversedisplacementforagivenenergychange.Theeasywayofvaryingthe energyintheacceleratoristochangetheacceleratinggradientortheinjectionphaseofonecavity. Unfortunately,therearetransverseeldsintheCEBAFcavitythatcansignicantlydeectthe 5D.R.Douglasrstnotedthisfact<br />

Betatron Phase Advance (Deg)


∆ x (mm), Corrector 0F00H<br />

∆ x (mm), Corrector 0F04H<br />

x 10−3<br />

5<br />

0<br />

−5<br />

0<br />

x 10−3<br />

5<br />

20 40 60 80 100<br />

∆ y (mm), Corrector 0F00V<br />

x 10−3<br />

5<br />

0<br />

−5<br />

0<br />

x 10−3<br />

5<br />

20 40 60 80 100<br />

0<br />

0<br />

−5<br />

−5<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

x 10−3<br />

x 10−3<br />

5 5<br />

problemfortheoperatingenergiesoftheIRFEL:simulationsindicatestheinduceddeectiondueto gradientchangeissignicant<strong>and</strong>canbeoftheorderoffewtensofmrad.Wehaveexperimentally Figure3.6:Comparisonbetweenthemeasured<strong>and</strong>simulatedlatticeresponseforthesixcorrectors<br />

veriedsuchresultinourpreliminarymeasurementofdispersionintheback-legtransferlineby usedduringthedierenceorbitmeasurement(100meterscorrespondsapproximatelytotheendof thebacklegbeamline). beam6.BecausethisRF-induceddeectionisinverselyproportionaltothebeamenergyitcanbea<br />

0<br />

0<br />

<strong>and</strong>compareitwiththecasewhereweoperatethecavityat<strong>their</strong>nominalgradient<strong>and</strong>useda<br />

−5<br />

−5<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

(whichisinfacttheR12-inducedpattern)isreproduced.Thisresultconrmsoursuspicionthat varyingthecavitygradient.Wepresentingure3.8thebeampositionosetalongthebeamline correctoratthelinacexittosimulatepotentialRF-inducedsteering:thesametypeofpattern<br />

Distance (meters)<br />

Distance (meters)<br />

approximately500100mforamagneticeldvariationof1%insuringthespuriousdispersion therecirculationarc.Wenotethatthemaximumtraversedisplacementofthebeamcentroidis islowerthan5cminabsolutevalue.Thisisanimportantresultforemittancemeasurementaswe shallseeinChapter4. dispersionmeasurementsperformedusingRF-gradientvariationisnotvalid.Nextwepresent,in gure3.9,ameasurementofdispersionobtainedbyvaryingthemagneticeldinallthedipolesof 6AdetailedstudyofthiseectispresentedinChapter6<br />

∆ x (mm), Corrector 0F08H<br />

∆ y (mm), Corrector 0F04V<br />

∆ y (mm), Corrector 0F08V


∆ x (mm), Corrector 0F00H<br />

∆ x (mm), Corrector 0F04H<br />

x 10−3<br />

5<br />

0<br />

−5<br />

0<br />

x 10−3<br />

5<br />

20 40 60 80 100<br />

∆ y (mm), Corrector 0F00V<br />

x 10−3<br />

5<br />

0<br />

−5<br />

0<br />

x 10−3<br />

5<br />

20 40 60 80 100<br />

0<br />

0<br />

Figure3.7:Comparisonbetweentheexperimentaldataaftercorrection<strong>and</strong>thesimulatedlattice responseforthesixcorrectors(100meterscorrespondsapproximatelytotheendofthebackleg beamline).<br />

−5<br />

−5<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

x 10−3<br />

x 10−3<br />

5 5<br />

3.3.5SummaryoftheTransverseResponseMeasurements Wehavedemonstratedthatthenumericalmodeldescribeswithhighcondencethetransverse<br />

0<br />

0<br />

propertiesoftheas-builtrecirculatingaccelerator.Wehavemeasuredthedispersioninthebackleg transferlinewhenthetrimquadrupoles<strong>and</strong>sextupolesinarc1arenotexcited<strong>and</strong>havediscovered thespuriousdispersionhasanamplitudesmallerthan5cm.<br />

−5<br />

−5<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

Distance (meters)<br />

Distance (meters)<br />

compressionschemewas.Itenablestoh<strong>and</strong>lethelargemomentumspreadinducedasthelaser 3.4.1Motivation ItwasdemonstratedinReference[18]howimportant,forenergyrecoverypurpose,theenergy 3.4MeasurementoftheLongitudinalResponse<br />

operates.Thebasicsideaistosetthelongitudinallattice,intherecirculation,insuchaway<br />

∆ x (mm), Corrector 0F08H<br />

∆ y (mm), Corrector 0F04V<br />

∆ y (mm), Corrector 0F08V


2<br />

1<br />

Figure3.8:Comparisonbetweenanenergychangeinducedbeamdisplacementalongthelattice<br />

0<br />

thelinac,theenergyosetiforanelectroncanbewrittenasafunctionofitsenergyoset0<strong>and</strong> longitudinalpositionz0atthewigglerexitas: reduced.Undertheassumptionofsingledynamicsrstorderopticsthisissimplybecauseafter <strong>and</strong>theresponsetoanangularperturbation. thatduringthedecelerationphase,forenergyrecoverypurpose,therelativemomentumspreadis<br />

−1<br />

R12 pattern<br />

Cavity Gradient Pattern<br />

−2<br />

properenergyforlasing.Thereforetheonlyparameterthatcanaecttheenergyspreadatthelinac TheR65transfermatrixelementofthelinacisgenerallyxed:sincethelinacissetuptoprovidethe i=Rlinac 65z0+Rlinac 65Rwiggler!linacentrance 56 0 (3.8)<br />

0 20 40 60 80 100<br />

Distance from Cryomodule exit (m)<br />

exitafterenergyrecoveryistheR56oftherecirculationfromthewigglerexittothelinacentrance. Anexampleoftheimportanceinsettingstheenergyrecoverytransportisshowningure3.10 wherewepresentsimulationoftheenergyrecoveryscheme:theparmelacodeisusedasaskeleton<br />

Forsakeofsimplicity<strong>and</strong>inordertoexpeditenumericalsimulations,wehaveturnedospace transportissimplysimulatedbytrackingparticlesusingthelongitudinaltransformation7. slippageduetothenon-relativisticnatureofthebeamaretakenintoaccount);therecirculation tosimulatetheacceleration<strong>and</strong>decelerationofthebeam(i.e.RF-inducedcurvature<strong>and</strong>phase<br />

chargeroutineinparmela.Theproperphasetoachievetheshortestbunchatthewigglerin- cavityviabeamloadingisdirectlyusedtosupplementtheavailablepowerfortheaccelerating sertionisapproximately8degocrest.Thebeamisrecirculated<strong>and</strong>re-injected8+180deg ocrestinthecryomodulesothatitisdecelerated<strong>and</strong>theelectromagneticenergystoredinthe zi=zi+R56i+T5662i+O(3i) i=i (3.9)<br />

linecomponent,norspacechargecollectiveforcearetakenintoaccount<br />

mode.Wepresenttheobtainedresultsin3.10,thelongitudinalphasespaceatthelinacexit(after 7Inthisnumericalanalysis,neitherlongitudinalwakeeldinducedintheacceleratingstructure<strong>and</strong>variousbeam-<br />

∆x (mm)


1<br />

0.5<br />

0<br />

spreadoftheparticlewassetto:i!i+1=2Er<strong>and</strong>(1;1)where\r<strong>and</strong>"r<strong>and</strong>omlygenerate ofthewigglerwasnumericallysimulatedbygeneratinganenergyosetof:5MeV<strong>and</strong>theenergy anumberin[-1,1]interval.Thelongitudinalphasespaceaftertherecirculationfordierentvalues Figure3.9:<strong>Beam</strong>displacementinthebacklegtransportforarelativevariationof1%ofthemagnetic<br />

ofR56<strong>and</strong>T566.Thecorrespondingphasespaceafterthedecelerationinthelinacarepresented acceleration),thedownstream<strong>and</strong>upstreamthewigglerarepresentedintherstrow.Theeect eldoftherstrecirculationarc.<br />

−0.5<br />

energyspreadcanbegreatlyreduced,yieldingabeamthatcanbetransportedthroughthedump transferline. inthebottomrow.Itisseen(bottomright)thatwithproperchoiceofR56<strong>and</strong>T566,theresulting<br />

−1<br />

35 45 55 65 75<br />

Distance From the Cryomodule Exit (m)<br />

sigmamatrixelements).Thismatchingconditionisrequiredtoinsureonecanproducetheshortest possiblebunchlengthatthepointwheretheFEL-interactiontakesplace.Thisminimumbunch length,whenthematchingconditionisveried,isMIN Theoptimumpointforoperationofthelinacintermsofbothphase<strong>and</strong>acceleratingvoltagemust berelatedtothemomentumcompactionofthetransportfromthelinacexittothewigglerinorder toachievetherightlongitudinalphasespaceslopeattheentranceofthelinac.Infactthelinac ofthecompressorchicanebyfulllingtherelation:56=55=1=R56(56<strong>and</strong>55arethebeam voltage<strong>and</strong>phasearedictatedbythefactthatoneneedstomatchthelongitudinalphasetotheR56<br />

quadrupolesaswehavealreadymentioned.Anexampleofvariationofthemomentumcompaction ofonearcwithrespecttothesecondfamilyquadrupolesexcitationisshowningure3.11.Inthe freesystemtoadjusttheR56aretheend-looparcsoftherecirculationtransportbyvaryingthetrim about38MeV<strong>and</strong>isoperatedatapproximately-8dego-crest. emittance~"z<strong>and</strong>thebunchlength0zaretakenatthelinacexit. Fromparmelaoptimization8<strong>and</strong>recentexperimentaloperation,thelinacacceleratingvoltageis Theby-passchicaneshave<strong>their</strong>momentumcompactionxedbydesignto28:8cm<strong>and</strong>theonly z=R56~"z=0zwherethermslongitudinal<br />

gurewealsoplottedthenonlineartermT566forthequadrupolebutalsofordierentsextupoles 8B.C.Yunn,updatedparmelainputlesfortheIRFELdriver-accelerator,privatecommunications<br />

∆x (mm) for |∆E/E|=0.01


Energy Spread (keV)<br />

After Acceleration Before Wiggler After Wiggler<br />

Figure3.10:Energycompressionscheme:Therstrow(fromlefttoright)presentsthelongitudinal<br />

(A) (B) (C) After<br />

Recirculation<br />

phasespaceatthelinacexit,afterthecompressionchicane,<strong>and</strong>justafterthewigglerinteraction<br />

(A)<br />

(B)<br />

(C)<br />

After<br />

Deceleration<br />

compactionasafunctionofthequadrupolestrengthcanbeparameterizedbyaquadraticregression hastakenplace;thesecondrowshowlongitudinalphasespaceattheentranceofthelinacjust<br />

togivethe\h<strong>and</strong>y"formula: thethirdrow. excitation(inthislattercasethetrimquadrupolesareunexcited).Notethatthemomentum priortodecelerationforthreedierentchoiceofR56<strong>and</strong>T556(for(A)-0.2<strong>and</strong>0.m,for(B)0.2 <strong>and</strong>0m<strong>and</strong>for(C)0.2<strong>and</strong>3.0m).Theresultforthethreecasesafterdecelerationareshownin R56(kq)=0:14360:5496kq0:05255k2q (3.10)<br />

Phase (RF-deg)<br />

Thelongitudinallatticecharacterizationisverysimilartothetransverseresponsemeasurement measurement. 3.4.2TheoreticalBackground ExperimentallythisformulacanbeusedtoquicklychecktheR56ofanarc<strong>and</strong>comparewith<br />

condition<strong>and</strong>measuringthecorrespondingresponsedownstreamthesectiononewishestochar- previouslydetailed:themethodagainconsistsofimpressingaknownvariationofthebeaminitial IRFEL:thecompressioneciency(orphase-phasecorrelation)<strong>and</strong>themomentumcompaction(or<br />

acterize.Therearetwotypesoflongitudinalmeasurementthatcanbedoneveryeasilyinthe


2<br />

1<br />

−5 −3 −1 1 3 5<br />

k (m q −2<br />

) or k (m s −3<br />

0<br />

Figure3.11:Momentumcompaction<strong>and</strong>nonlinearmomentumcompactionforonearcversusthe secondfamilyoftrimquadrupolesexcitationstrength(kq).nonlinearmomentumcompactionversus<br />

−1<br />

thesecondfamilysextupolesstrengthks(forthiscalculation,thetrimquadrupolesareunexcited).<br />

M from trim quadrupoles<br />

56<br />

−2<br />

phase-energycorrelation).Inthesemeasurements,thebunchisconsideredasamacroparticle<strong>and</strong> thetime-of-ight(TOF)ofitscentroidismeasuredbetweenthelocationswherethevariationis<br />

T /10 from trim quadrupoles<br />

556<br />

−3<br />

−4<br />

Thephase-phasecorrelation,hinjoutirequiresthemeasurementoftime-of-ight(TOF)ofthe impressed<strong>and</strong>apointwherethetimeofarrivalcanbeestimated. CompressionEciency<br />

)<br />

FELdriver-accelerator,thisquantityisonlymeasuredstartingfromthephotocathodesinceitis bunchcentroidversusavariationofits\injectionphase"inthesectionwewishtostudy.Inthe theonlylocationthe\injectionphase"incanbevariedorthogonallywithrespecttotheinjection withrespecttothemasteroscillator(<strong>and</strong>alltheRF-elementsettingsarekeptconstant).Thephase variationanarbitrarylocationdownstreamthephotocathodeoutasafunctionoftheinjection phaseperturbationinwrites:out=@out energybyvaryingthephaseofthephoto-cathodedrivelaserthatilluminatesthephotocathode<br />

Thereforebyvaryinginaknownfashiontheinjectionphase<strong>and</strong>measuringtheassociatedresponse downstream,weobtainthephase-phaseresponseofthesectioncomprisedbetweentheperturbation <strong>and</strong>themeasurementstation.Fromthisphase,usingthest<strong>and</strong>ardnotationofthetransport<br />

@inindef =hinjoutiin (3.11)<br />

M 56 or T 556 /10 (meters)<br />

T 566 /10 from sextupoles


latticecode9,wehave:<br />

MomentumCompaction thisphase-phasetransfermapyieldsthearbitraryordertransfermatrixelementhinjouti. whererkisk-thco-ordinateofthevectorr=(xin;x0in;yin;y0in;in;in)Therefore,nonlineartof hinjoutiin=(R55+Xk


Experimentallythecalibrationcoecientsarestoredinsoftware,thevoltageVoutisdigitizedby Inthissectionwewillonlyconsidermeasurementperformedbythepickupcavities2,3,<strong>and</strong>4, Inthedriveracceleratorfourcavitieshavebeeninstalled;<strong>their</strong>locationsareshowningure3.12. anADCcard,<strong>and</strong>adataanalysisprogramdirectlyoutputtheTOFinunitofRF-deg(1RF-Deg is556mat1.497GHz).<br />

frequencyof60Hz). amacropulsethatconsistsof4675electronbunches(thecharacteristicsofthemacropulseusedfor themeasurementare:awidthof250sec,amicro-bunchfrequencyof18:7MHz<strong>and</strong>amacropulse themeasurementfromthecavity#1requiringsomedeeperanalysisasweshallseeinchapter6. Itisworthnotingthatcontrarytowhatwehaveimplicitlyassumedinthepreviousdiscussion goodenoughsignalovernoiseinthetimeofightmeasurement,thecavitysignalcorrespondsto themeasurementisnotasinglebunchmeasurement.Becauseoftheneededsignaltoachieve Toexpeditethemeasurements,thequantityvaried(i.e.laserphaseforhinjoutitransfermap<br />

<strong>and</strong>cavitygradientforhinjoutitransfermap),isindeedmodulatedwithafrequencyof60Hz Figure3.12:LocationofthepickupcavitiesalongthetransportlineintheFELdriveraccelerator. (seeagaing.3.13).Themodulationisperformedwithatriangularwaveformgeneratedbya cavitygradient).Thechoiceofatriangularmodulationwasdonetouniformlypopulatethetransfer map.Moreoversinusoidalmodulationisalsoplanned(butwasnotusedduringtheworkreported G.KratfortheCEBAFinjector[22]atJeersonLab. 3.4.4Simulationofhinjoutitransfermap hereafter)inordertousetheTchebytchev-polynomial-basedanalysisthathasbeendevelopedby functiongeneratorusedtovarytheproperquantity(phaseofthephoto-cathodedrivelaseror<br />

Asaforementionedthemeasurementofphase-phasetransfermapprovideimportantinformationon howthebunchingprocessisperforming<strong>and</strong>cangivesomeinsightsonthebunchlength.Because themapismeasuredbetweenthephotocathode<strong>and</strong>thepickupcavities(seeg.3.12for<strong>their</strong>locations),wecannotusest<strong>and</strong>ardsingledynamicsrelativisticcodessuchasTLieordimadbutneed touseparticletrackingcodesuchasparmelawhichincludenonrelativisticeectssuchasphase Weusetheparmelacodetogenerateuniformmacroparticledistributionoveragivenextentin<br />

slippageeectsinacceleratingcavities.Thetechniquewehaveusedtocomparemeasurementwith numericalsimulationisasfollows.<br />

Pickup #2 Pickup #1<br />

Pickup #3 Pickup #4<br />

Gun


R<br />

55<br />

R<br />

56<br />

Drive Laser<br />

Phase<br />

Cavity<br />

Gradient<br />

Function<br />

Generator<br />

1.5 GHz<br />

Voltage Controlled<br />

Phase Shifter<br />

Pickup Cavity<br />

measurement.<br />

X Y<br />

DAC DAC DAC<br />

phaseatthephotocathodesurface.Thecorrespondingphaseofemissioninofthei-thmacropar- Figure3.13:BlockdiagramofthecompressioneciencyR55<strong>and</strong>momentumcompactionR56<br />

VME VME VME<br />

ticleatthephotocathodesurfaceisrecorded<strong>and</strong>themacroparticlespopulatingthisuniformdistributionare\pushed"alongthebeamlines.Duringtrackingthespacechargesubroutineinparmela GP-IB<br />

isturnedo,<strong>and</strong>eachmacroparticleisassimilatedtoabunchcentroidofbunchesemittedatdifferentdrive-laserphase.Wethenrecordthephaseofarrivalioutatthedesiredpickupcavitiesin IOC/ VxWorks<br />

thesimulation.Thecouplefin,ioutgi=1;:::;Ngivesthephase-phasetransfermap<strong>and</strong>canreadily becomparedwiththeexperimentaldata.<br />

Ethernet<br />

Display<br />

EPICS Database<br />

Workstation<br />

bepresentedinChapter6.Thegure3.14presentsameasurementofphase-phasebeamtransfer 3.4.5Measurementofhinjoutitransfermap functionbetweenthedrivelaserphotocathode<strong>and</strong>thethreedierentpickupcavitiesaforemen-<br />

Wewillnottreatmeasurementofphase-phasecorrelationfunctionintheinjectorsincetheywill NominalSet-upMeasurement<br />

Mixer


tioned.FromthetransferfunctioninFig.3.15wec<strong>and</strong>educedbyperformingnon-lineart,an<br />

40<br />

Photcathode Drive Laser Phase (RF−deg)<br />

20<br />

Figure3.14:phase-phasebeamtransferfunctionbetweenthephotocathodesurface<strong>and</strong>thethree<br />

pickup #2<br />

dierentpickupcavities:pickup#2,#3,<strong>and</strong>#4.<br />

0<br />

pickup #3<br />

pickup #4<br />

estimateofthetransfermatrixelementtheresultsofthenon-lineartaregatheredinTable3.4.5. Themeasurementofthelinearpartareinverygoodagreementwiththesimulationexceptfor<br />

−20<br />

−40<br />

−2 0 2 4<br />

Wehaveexperimentallyinvestigatedtheeectsofthesecondfamilytrimquadrupolesonthe thecavity#4,webelievethediscrepancycomesfromabadcenteringoftheelectronbeamonthe magneticaxisofthetrimquadrupoles<strong>and</strong>sextupolesinthearc2. EectsoftheQuadrupoles<br />

Time of Flight (RF−deg)<br />

to<strong>their</strong>nominalvalues.Thenweiteratethemeasurementforboththetrimquadrupolesturnedo <strong>and</strong>with<strong>their</strong>valueoppositetonominal.Themeasurementsaregathered3.16(A).Sincenotime wasspenttore-measurethetransfermapalongthelinac<strong>and</strong>iteratethesameprocedureasbefore, i.e.setthemodelsuchthatthesametransfermapisachievedatthelinacexit,<strong>and</strong>thenusethe measurementwehavemeasuredthebeamphase-phasecorrelationwiththetrimquadrupolesset fordierentcases.Thestudyhasonlybeencarriedoutusingthepickupcavity#3.Forsuch modeltopredictthechangeatcavities#3<strong>and</strong>#4,thedisagreementisquiteimportant.However, phase-phasetransfermap.Ingure3.16wepresentmeasurementofthephase-phasecorrelation<br />

ifwelookatwhatistherelativechange,i.e.bycalculatingthedierencehoutjiniQuadSettings houtjiniNominalSettingsforboththeexperiment(seeg.3.16(C))<strong>and</strong>thenumericalmodel(see toextractquantitativenumberforR55<strong>and</strong>T555,itshowsthatthismapdoesevolvethesameway<br />

g.3.16(D))theagreementissatisfactory.Thoughinthepresentcasethemethoddoesnotallow


Time of Flight out (RF-deg)<br />

Drive Laser Phase in (RF-deg)<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

...<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

.<br />

..<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

. .<br />

. ..<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. . .<br />

-5.0 -2.5 0.0 2.5 5.0<br />

-40<br />

-20<br />

0<br />

20<br />

40<br />

Pickup #2<br />

. . .<br />

. ...<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

... .<br />

..<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

.. .<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. ..<br />

.<br />

. .<br />

..<br />

.<br />

. . ..<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

..<br />

. .. .<br />

..<br />

.<br />

..<br />

.<br />

.<br />

.<br />

-5.0 -2.5 0.0 2.5 5.0<br />

-40<br />

-20<br />

0<br />

20<br />

40<br />

Pickup #3<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

-5.0 -2.5 0.0 2.5 5.0<br />

-40<br />

-20<br />

0<br />

20<br />

40<br />

Pickup #4<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

-5.0 -2.5 0.0 2.5 5.0<br />

-40<br />

-20<br />

0<br />

20<br />

40<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

-5.0 -2.5 0.0 2.5 5.0<br />

-40<br />

-20<br />

0<br />

20<br />

40<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

-5.0 -2.5 0.0 2.5 5.0<br />

-40<br />

-20<br />

0<br />

20<br />

40<br />

Figure3.15:Comparisonofthephase-phasebeamtransferfunctionbetweenthephotocathode<br />

surface<strong>and</strong>thethreedierentpickupcavities(pickup#2,#3,<strong>and</strong>#4)(bottomrow)withthe<br />

onesimulatedusingparmela(toprow).<br />

bothexperimentally<strong>and</strong>inthemodelwhenwetrytoperformaperturbation-typemeasurement.<br />

Thisalsosuggestthatthesame\dierenceorbit"techniqueweuseforthetransverseplanecould<br />

beperformedinthepresentcase,ifthemotivationwasnottoextractmatrixelements.<br />

EectsoftheFELonthePhase-Phasemap<br />

AssessingtheeectoftheFELonthebeamhasbeenstudiedonlyexperimentally.Wewillattempt<br />

toprovideaqualitativeexplanation.Inthisexperimentwehavesetthelaserphasemodulation<br />

amplitudeto40deg,sinceitcorrespondsthefullbunchlengthatthecathodesurface.Firstlywe<br />

preventedthelasertorunbydetuningtheopticalcavity<strong>and</strong>recordedthephase-phasetransfer<br />

function.Thenwetunedtheopticalcavity,i.e.adjustthelengthtomatchthetimeofight<br />

ofelectronbunchesinsidethecavity,<strong>and</strong>recordedthephase-phasetransfermap.Theother


Pickup Experiment #2 #3 #4 Simulation #2 #3 LinearCoecientQuadraticCoecient<br />

#4 -0.0801 -0.0834 0.1172 0.0911 0.1070 0.0256 0.0016 0.0003 0.0008 0.0006 0.0007<br />

obtainedtransfermapsaregatheredingure3.17.Forthecasewherethelaseristurnedo(see parmela-simulatedphase-phasetransfermap. measurementswereperformedatvariousstagesofthedetuningcurveoftheopticalcavity.The Table3.2:Comparisonofcoecientsobtainedfromthenon-lineartofthemeasured<strong>and</strong> 0.0004<br />

fold-overduetothenon-lineareectintroducedbythelaserinteractionislessimportant.We tothe\nominalphase"havealargertimeofightbecausenowtheyarecontributingtothelaser process<strong>and</strong>thereforearelessenergetic.Atvariousstageofdetuningcurvesthephase-phasemap extractamaximumoutputpower,thefold-overissubstantial,bunchesemittedwithphaseclose havesucceededinoperatingthelaseratthelimitofitsturn-opointbyproperlyadjustingthe toT555contribution.Howeverwhenthelaseristurnedon(seeg.3.17(B)),<strong>and</strong>optimizedto cavity,inthisregion,(seeg.3.17(E))wecannoticethatthephase-phasetransfermaphastwo g.3.17(A)),thetransfermaplooksasusual,mainlylinearwithasmallparabolicbehaviordue<br />

transfermaphasthesamefold-overaswhenthelaserisoptimizedformaximumoutputpower(see contributions:forbunchcenteredaroundthezero-crossingphase(i.e.10


φ OUT (RF−Deg)<br />

5<br />

0<br />

−A−<br />

Nominal<br />

Trim Quad Off<br />

Trim Quad Reversed<br />

−5<br />

−40 −20 0 20 40<br />

5<br />

0<br />

−B−<br />

Nominal<br />

Trim Quad Off<br />

Trim Quad Reversed<br />

−5<br />

−40 −20 0 20 40<br />

−C−<br />

−D−<br />

Figure3.16:Demonstrationoflongitudinaldierence-orbit:phase-phasetransfermapmeasured<br />

5<br />

5<br />

(A)<strong>and</strong>simulated(B)forthreedierentsettingsofthetrimquadrupole.Plot(C)<strong>and</strong>(D)correspondtodierenceofthemeasuredmappresentedinthetoprawforrespectivelytheexperiment Off−Nominal<br />

<strong>and</strong>thesimulation.<br />

Off−Nominal<br />

0<br />

0 Reversed−Nominal<br />

Reversed−Nominal<br />

−5<br />

−5<br />

−40 −20 0 20 40<br />

−40 −20 0 20 40<br />

themomentumcompaction,R56.Sincethequadrupoleintroduceapathlengthvariationlinearly 3.4.7Measurementofhinjoutitransfermap EectsoftheTrimQuadrupoles Thetrimquadrupolefamilyhastwoeectsontheenergy-phasecorrelation.Firstlyitmodies<br />

φ (RF−Deg)<br />

φ (RF−Deg)<br />

IN IN<br />

Theresultsarepresentedingure3.18:alineartofthemeasuredtransfermaphasbeenper-<br />

Wehavemeasured,usingthenominalopticallatticesetuptheenergy-phasetransfermapatboth pickupcavitieslocateddownstreamarc1<strong>and</strong>2(pickupcavity#3<strong>and</strong>#4)onthegure3.12. dependentontheenergyoset.Alsoviaitssecondordercoecient,thetrimquadrupolesalso introducedaquadraticallyenergyosetdependentpathlengthvariationwhichresultsinamodicationofthenonlinearmomentumcompactionT566=houtj20i. φ OUT (RF−Deg)


FromthesebothmeasurementitispossibletodeducetheR56oftheby-passchicanes:Usingthe nominalsettingsmeasurementwend:Rchic trimquadrupoleinarc1bothpowered<strong>and</strong>turnedo.Itisseenthelevelofagreementisexcellent. TypicalR56measured<strong>and</strong>expectedforthewholerecirculation,i.e.fromthecryomoduleexitup toitsentranceisapproximately-20cmforthenominalsetupusedatthattime(February1999). themagneticopticcodedimad.Wehaveperformedthemeasurementatbothlocationwiththe formed<strong>and</strong>iscomparedinthisgurewiththeexpectedmomentumcompactioncomputedusing<br />

mentumcompactionfromthelinacexituptothepickupcavity#3.Theresultsarepresentedinexcitationbysystematicallyvaryingthequadrupolesstrength<strong>and</strong>eachtimemeasuringthemo- valuesof28cm.WehaveattemptedtoquantifytheR56dependenceonthetrimquadrupoles thecodeseemstobeaverygoodtooltopredicttheR56evolutionaroundtherecirculation. theverygoodagreement,with2cmbetweenthemeasuredR56forthechicanes<strong>and</strong>itsdesign gure3.19wherewecomparedthemeasurementwithnumericalsimulationusingthedimadcode; 56'29:60cm<strong>and</strong>Rarc 56'23:51cm,againwecannote<br />

Wehavecarriedaqualitativestudyofthesextupoleeectontheenergy-phasetransferfunction. EectsoftheSextupoles Theexperimentconsistedofmeasuringthehinjoutitransferfunctionusingthepickupcavity number3.Duringthemeasurementthetrimquadareun-powered.Ingure3.20,wepresentthe<br />

3.4.8ConcludingRemarksontheLongitudinalResponseMeasurement tointroducedapositivenon-linear(quadratic)curvature.Againonecanusethesameschemeas weusedbefore<strong>and</strong>comparenottheabsolutetransfermap,butrelativetransfermapi.e.compare thealgebraicdierencehinjoutionhinjoutioffforthesimulated<strong>and</strong>measuredset. measuredtransferfunctions.Quantitativelythereissomedisagreementbetweenthesimulated<strong>and</strong> measureddata.Howeveritisseenthatthesextupolehavethesameeect:whenturnontheytend<br />

Inthissectionwehaveshowedthat:<br />

2.phase-phasemapcanbeusedtosetthelatticei.e.tooperateinisochronousmode,e.g.by 1.phase-phaserstordermap<strong>and</strong>nonlinearitiesmeasuredcanberatherwellreproducedwith spacechargeforce. makingsurethemapbefore<strong>and</strong>afterasectionisapproximatelythesame latticecompressionrate,practically,<strong>and</strong>especiallyinthelowenergyregion,wherethebeam isinaspace-charge-dominatedregime,thecompressionisstronglyinuencedbycollective theparmelacode.Alsoitcanbeusedtodeduceboththecompressionratebetweenthepoint ofmeasurement(pickupcavitylocations)<strong>and</strong>thephoto-cathodesurface;ofcoursethisisa<br />

4.energy-phasetransfermapcanalsobeusedtocharacterize,withhighaccuracytheeect 3.energy-phasetransfermap,cangivewithfairlygoodaccuracythemomentumcompactionofa ofthesextupoleonthelongitudinaldynamics,alsointhepresentworkwewerenotable<br />

R56'12cmfromthecryomoduleexittothearc3F.Whichgivetheforthesectionwiggler tolinacentranceR56'+16cmveryclosetothedesiredvalueof20cm. section.Wehavemeasuredthemomentumcompactionoftherecirculationtoapproximately


topreciselyextracttheT566termprobablybecauseofmis-centeringinthearcstransport,<br />

itcouldbeuseforsuchpurposetoeasethepathlengthcorrectionrequiredbyintroducing<br />

linear<strong>and</strong>highorderenergychirp.


.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

-4<br />

-3<br />

-2<br />

-1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

OUT (deg)<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

-4<br />

-3<br />

-2<br />

-1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

OUT (deg)<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

-30 -20 -10 0 10 20 30<br />

IN (deg)<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

-30 -20 -10 0 10 20 30<br />

IN (deg)<br />

-4<br />

-3<br />

-2<br />

-1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

OUT (deg)<br />

(A) (B)<br />

(D)<br />

(C)<br />

(E)<br />

Figure3.17:Phase-phasetransferfunctionsfordierentsettingsoftheopticalcavitylength.In<br />

(A)theopticalcavityiscompletelydetunedsothatthelaserdoesnotoperate.In(B)thecavity<br />

ispreciselytunedtomaximizetheFELoutputpower.In(E)thecavityistunedsothatthelaser<br />

operateatthelimitofitsturno.In(C)<strong>and</strong>(D),thephase-phasetransfermapismeasuredfor<br />

dierentdetuningoftheopticalcavitycase(B)<strong>and</strong>(E).


1<br />

Trim Quad Off<br />

Meas (Quad On)<br />

in Arc 1 or Arc 2<br />

0<br />

thelinacexittoarc3Fexit.MeasuredR56arealsopresentedaslledsquares. Figure3.18:EvolutionoftheR56alongthebeamtransportintherecirculationtransport,from<br />

Meas. Arc 1<br />

Trim Quad Off<br />

Meas. w Arc 1<br />

Both<br />

−1<br />

Trim Quads Off<br />

Arcs Trim<br />

Quads Off<br />

ARC 1 ARC 2<br />

−2<br />

0 20 40 60 80 100<br />

Distance From Cryomodule Exit (m)<br />

−0.3<br />

Momentum Compaction (m)<br />

Meas (Trim Quad On)<br />

All trim Quad On<br />

−0.35<br />

Numerical Simulation<br />

−0.4<br />

quadrupolessettings.<br />

fermapwiththeexpectedmomentumcompactionR56fromthedimadcode,fordierenttrimFigure3.19:Comparisonofthelineartermextractedbyttingthemeasuredenergy-phasetrans- −0.45<br />

−0.5<br />

−40 −30 −20 −10 0 10 20 30 40<br />

Trim Quadrupole Gradient Integral (G)<br />

Momentum Compaction (m)<br />

Experiment


10<br />

5<br />

Sext. ON<br />

Figure3.20:EectofthesextupolesintheArc3Fontheenergy-phasecorrelation.(Simulations<br />

Sext. OFF<br />

<strong>and</strong>experimentaldataareosetforclarity).<br />

0<br />

Sext. ON<br />

Sext. OFF<br />

−5<br />

−10<br />

−0.01 −0.005 0 0.005 0.01<br />

δE/E (no unit)<br />

φ OUT (RF−Deg)


Characterization TransversePhaseSpace Chapter4<br />

4.1Introduction ThepresentChapterisintendedtodiscusstheemittancemeasurementthatwehavedeveloped intheIRFEL.Techniquestomeasurebothemittance-dominated1<strong>and</strong>space-charge-dominated2 beamaredescribed.BecausebeamprolemeasurementisanintegralpartofanemittancemeasurementwedescribetheOTR-basedbeamdensitymonitorthathavebeeninstalledintheIRFEL. Beforediscussingingreatdetailthetechniquesweusetomeasurethetransverseemittance<strong>and</strong> phasespaceparameters,<strong>and</strong>becauseofthedierentdenitionsthatvaryfromsourcetosourcein thecontemporarybeamdynamicsliterature,wenditimperativetosettlethedenitionofbeam<br />

Bydenition,abeamisacollectionofparticlesthatarecontainedwithinaniteregionofthephase 4.1.1<strong>Beam</strong>,HamiltonianDynamics<strong>and</strong>Liouville'sTheorem emittancethatwewillusethroughoutthisdissertation.<br />

space.Inthemostgeneralcase,thephasespaceisa6-dimensionalspace[26]<strong>and</strong>theparticles representationconcernsthesimplestcase:inothercases,additionalcoordinatesuchasspin,for (assumedtobepoint-like)arerepresentedby<strong>their</strong>positionvector(x;y;z)<strong>and</strong>kineticmomentum vector(px;py;pz),<strong>and</strong>occupiesasix-dimensionalhyper-volumegenerallyreferredas6.This<br />

repulsion) polarizedbeams,orcharge<strong>and</strong>mass,formultiple-speciesbeams,mightberequired.Thenotion whichthekineticmomentumismuchgreaterthanthemomentuminthetwootherdirections.The choiceof(x;y;z)<strong>and</strong>(px;py;pz)ascoordinateissimplycomingfromtheHamiltoni<strong>and</strong>escription oftheparticlesystemwhichrequirescanonicallyconjugatevariables.Inthesix-dimensionalphase ofabeamalsoentailstheexistenceofaprivilegeddirection,thedirectionofpropagation,along 1emittancedominatedbeammeansthatthebeamevolutionisdrivenbyexternalforces(e.g.externalfocussing) 2emittancedominatedbeammeansthatspace-chargeforcesdominatesthebeamevolution(i.e.Coulombian 49


spaceabeamthatconsistsofNparticles,isbestdescribed,atagiveninstant,intermsofa d6=dxdpxdydpydzdpzinthevicinityofthepoint(x;y;z;px;py;pz)is: densityfunctionn6(x;y;z;px;py;pz).Thenumberofparticlesinanelementofphasespacevolume Thetotalvolumein6occupiedbythebeam,atagiveninstantis: Thisquantity,generallyreferredas6D-hyper-emittance,iswelldenedprovidedthedensityfunctionn6isacompactfunction. d6N=n6(x;y;z;px;py;pz)d6 V6=ZZZZZZd6 (4.1)<br />

Ausefulsimplication,whendescribingabeam,occurswheneachdegreeoffreedomisindependent ofthetwootherdegreesoffreedom.ThenthesinceHamiltonianwriteasthesumofuncoupled (4.2)<br />

factorizesas: summarizedasfollow: projectedphasespace.Themainpropertiesoftheparticletrajectoriesintheseplanescanbe Insuchcase,thebeamdynamicscanbestudiedseparatelyineachofthethreetwo-dimension sub-hamiltoniancorrespondingforeachofthethreedegreeoffreedom,thedensitydistribution<br />

Thetrajectoriesdependontheinitialvaluesofthecoordinate<strong>and</strong>thetime.Animportant consequenceisthattwotrajectorieswithdierentinitialconditioncannotintersect.Also n6(x;y;z;px;py;pz)=n2;x(x;px)n2;y(y;py)n2;z(z;pz) (4.3)<br />

Inlinearphasespacetransformations,ellipsesmaptoellipses,straightlinestostraightlines. mapintoaboundaryatatimet0whichenclosethesamegroupofparticles. Aboundaryinthephasespacethatencloseagivennumberofparticleatagiventimetwill bifurcation. notethatatrajectoryatagiventimecanhaveseveralvaluetherebyyieldingphase-space<br />

ville'stheoremwhichstatesthatthedensityofparticleintheappropriatephasespaceisinvariantalongthetrajectoryofanygivenpoint.Thistheoremcanalsobeexpressedintermsoftheinvarianceofthephasespacehyper-volumeenclosingachosengroupofpointsastheymoveinthephase space.Theensembleofparticlebehavesasanincompressibleuid: Generallythephasespacedensityfunction,n6(x;y;z;px;py;pz)isLiouvilliani.e.itsatisesLiou- Suchgeometrymightbeappropriatetolimitphasespacedensity.<br />

WeshouldinsistthatLiouville'stheoremappliestoconservativeHamiltoniansystemsi.e.systems theoremcannotbeappliedwhen: inwhichtheforcescanbederivedfromapotential.Inthecaseofchargedparticlebeam,Liouville Emissionofelectromagneticradiation(e.g.synchrotron) dV dt=0 (4.4)<br />

Quantumexcitationeectarenonnegligible<br />

Nonnegligibleselfinteraction(e.g.spacechargeforce,coherentsynchrotronradiation,...)


istherenormalizedhorizontalmomentumortheparticledivergence.Thevariablesx<strong>and</strong>x0areno Firstlyitisalwayspreferabletoworkinthetracespacewhichistheplanexx0wherex0=px=pz thereisnocouplingbetweenthesetwosubphase-spaces.Thereforewewillconsiderthehorizontal phasespacexpx,similardiscussionisvalidfortheverticalphasespaceypy. Henceforth,wewillonlyconcentrateonthetransversephase-space,xpx<strong>and</strong>ypy<strong>and</strong>assume 4.1.2PhaseSpace<strong>and</strong>Emittance<br />

parameters,theemittance",thebetatronfunctionT<strong>and</strong>theTfunction;itsequationisgiven morecanonicallyconjugatebutthephasespacepropertiesexposedpreviouslyarestillapplicablein thetracespace.Forsakeofsimplicity,thephasespacedistributionisgenerallyarbitrarilybounded<br />

whereTisdenedasT=1+2T byellipsessincetheyhavethegoodpropertiestomapintoellipsesundercanonicaltransformation. Suchellipseisgenerallyreferredasthephasespaceellipse.Itcanbefullyspeciedwiththree by3: geometricemittance<strong>and</strong>correspondstotheareaoftheellipse: T.Inthispreviousequation,theemittanceisgenerallynamed Tx2+2Txx0+Tx02=" Zellipsedxdx0def =" (4.5)<br />

<strong>and</strong>beingthebeammatrix: ThebilinearformexpressedinEqn.(4.5),canberewritteninamatrixform!x!xTwith!x=(x;x0) def = TT!def TT = 1112 1222! (4.6)<br />

Despitethisdenitionofemittanceistheonegenerallyusedbyexperimentalist,itsuersfrommany problemespeciallyinpresenceofnon-gaussianphasespacedistributionorwhennonlineareects nonlinearprocessesgenerallyyieldnonlineardistortionsofphasespacewhichrenderthegeometric emittanceconceptdiculttoquantifyaphasespacewhichshowsagreatdealofstructure(e.g. arepresentinthetransportchannel(chromaticaberration,wakeeld,spacecharge,...).These (4.7)<br />

order,hx2i,hx02i,hxx0i,momentsofthephasespacedistribution.Thenwec<strong>and</strong>enearootmean Aconvenientwayistostatisticallycharacterizethephasespaceusingtherst,hxi,hx0i<strong>and</strong>second squareemittance[27]as: lamentation).<br />

thermsemittance.Also,mostofthetimeonerathernormalizedtheemittancewithrespecttothe momentum<strong>and</strong>denethenormalizedrmsemittanceas: Itisalsocommontondintheliteraturetheeectiveemittancewhichisthedenedas4times 3InthisSectiontheTwissparametersareindexedwiththesubscriptTtoavoidconfusionwithothervariables.<br />

~"x=hh(xhxi)2ih(x0hx0i)2ih(xhxi)(x0hx0i)i2i1=2 ~"nx=~"x (4.9) (4.8)<br />

Later,whereconfusioncannotoccur,wewillomitthissubscript.


Asforthegeometricemittanceonec<strong>and</strong>eneTwissparametersfromtherst<strong>and</strong>secondorder Thisdenitionofemittanceispracticalsinceitdoesnotvaryiftheforcesarelinear. moments:<br />

forthermsemittance: Introducingthermsbeamsize,x,<strong>and</strong>divergence,0x,itispossibletohaveasimpleexpression 8>:T=h(xhxi)2i T=hxx0ihxihx0i T=1+2T ~"x<br />

~"x=x0xq1r212=x0x 2T ~"x1+2<br />

(4.11) (4.10)<br />

Aswewillsee,bothofthesemeasurementsindeedreducetothemeasurementofabeamtrans- Wherer12isacorrelationcoecientdenedasr12=hxx0i Therefore,measuringatransverseemittance~"xalwaysreducestothemeasurementofbeamdensity alongx-axis(i.e.beamsizemeasurement)<strong>and</strong>alongx0-axis(i.e.beamdivergencemeasurement). versedensityprole.Thereforeweshallrstconcentrateourdiscussiononthislattertypeof measurement.Wewillthendiscusstheemittancecomputation. x0x;itisameasureofthetracespaceslope.<br />

theIRFELdriver-accelerator,thetransversebeamdistributionaremeasuredby: Aswehaveseenintheprevioussection,measurementoftransversetracespacegenerallyrequires measuringthebeamprolesi.e.thetransverseparticledensityalongthehorizontalorverticalaxis. Severaltechniquesarecommonlyusedforsuchapurposedependingonthebeam.Forinstancein 4.2Measurementof<strong>Beam</strong>ProleUsingTransitionRadiation<br />

linearresponse<strong>and</strong>cansaturateresultinginerroneousbeamdensitymeasurements. measurementofhigheraveragebeamcurrentisnotpossible:theceramicdoesnothavea auorescentscreen:aceramicplateisinsertedinthebeampath,<strong>and</strong>thelightemittedviathe oftheinjectortoobservelowcurrentbeam.Theuseofthesetypescreensforquantitative ofthespectrum(seeg.4.1b).Thesetypesofbeamprolemonitorareusableforquantitative measurementonlyforextremelylowaveragebeamcurrentoftypically10nA.Itisonlyused asaqualitativebeamtransversesectionmeasurementinthelowenergy(350keV)region uorescenceeectisobservedwithacamerasincetheuorescenceoccursintheopticalregion<br />

thepositionofthewiregivesthetransversebeamdensityalongthedirectionperpendicular wirescanthebeaminthetransverseplane,thepotentialacrossitsendsisproportionalto awirescanner:thebeamisinterceptedbyathin(20m)movingtungstenwire.Asthe tothewire(seeg.4.1b).Despitethistypeoftechniquecanachievedveryhighresolution, dependingonthediameterofthewire<strong>and</strong>thestepsofthescan,itasfewinconvenient:it thebeamcurrentintercepted.Thereforethemeasurementofthiselectricpotentialversus isaveryslowmeasurement,becauseofitsgenerallylargediameter(morethan20m),the


severalsynchrotronradiationmonitors:asthebeamisbentindipolemagnets,itemits components<strong>and</strong>potentiallydamageselectronicssystem. synchrotronradiation.IntheIRFELthisradiationisemittedintheinfra-redregionofthe wirecanyieldsalargelossofparticlethatcanhitthevacuumchamberorotherbeamline<br />

manytransitionradiationmonitors:thinaluminumfoilareinsertedintothebeampath electromagneticspectrum<strong>and</strong>isimagedonaverysensitiveCCDdetector(seeg.4.1c).This prolemonitorhastheadvantageofbeingnon-invasive(itdoesnotyieldbeamdegradation) <strong>and</strong>itcanbeusedtomeasurebeamdistributionatveryhighcurrent.Howeveritisnotwell<br />

radiationisdetected(seegure4.1d).Thiscongurationrequiresthefoilmaterialtohave <strong>and</strong>transitionradiation(seetheIntroductionchapter)isdetectedwithaCCDdetector. Generallythefoilmakesa45deganglewiththebeamdirection<strong>and</strong>backwardtransition suitedforemittancemeasurement:thebeamproleismeasuredinabendi.e.atadispersive<br />

agoodreectioncoecient.Sinceverythinfoilareavailable,thistypeofdevicescanst<strong>and</strong> location<strong>and</strong>thereforetheemittancecomputation,requiresasomewhattediousanalysissince<br />

highcurrentbeamwithoutyieldingsignicantbeamdegradation. weneedtodeconvolvedthedispersioncontributiontothebeamprole.<br />

Suchstudies,experimentallycarriedintheCEBAFmachineatJeersonLab,helpedwiththechoice ofthetypeofscreen(aluminum).Duringthesestudieswealsodevelopedaquasinon-interceptive screenthatwasusedtomeasurethebeamproleofthehighpowerbeamoftheCEBAFaccelerator; choicewasprincipallydrivenbythereliability,thespeed<strong>and</strong>thelowcostofthistypeofinstrument. BeforetheIRFELwasbuiltwestudymanyaspectofthistypeofapparatus:whataretheaverage beamcurrentlimit,whatarethebeamtransversephasespacedegradationafteranOTRscreen. measurementoftransversedistributionrequiredformeasuringtheemittanceintheIRFEL.This Amongthetechniqueslistedabove,transitionradiationwaschosentoprovidethequantitative<br />

alsowedidnotimplementthistypeofmonitorintheIRFELshorttermplan,itmightbesometime implementedtocontinuouslymonitortheelectronbeamqualitywithoutsignicantimpacton<br />

AswehavementionedinChapter2,whenwediscussedelectromagneticradiationemittedbymoving diagnostics<strong>and</strong>thedevelopmentofthenoninterceptiveprolemonitor. 4.2.1ThelimitationofTransitionRadiationMonitor thebeamitself.Inthefollowingsectionswediscussthelimitationsoftransitionradiation-based<br />

methodallowstheobservationoftheTRproducedasthebeamcrossestheboundaryvacuum/foil (backwardTR)orfoil/vacuum(forwardTR).Asthebeamisinterceptedbythefoilsomeconcerns mightarise: FirstlybecauseofthedE=dxofthematerialthebeamdepositssomeenergyintheTRradiator therebyincreasingitstemperature.Thereforewemuststudythethermaleectofthebeamonthe chargedparticles,thattransitionradiationcanbeobservedwheneverachargedparticleexperience<br />

TRradiator. adiscontinuityintheelectricpropertiesofitsenvironment.Acommonwayofobservingtransition<br />

Secondlywhentheelectronsthatconstitutethebeampassthroughthefoilmaterial,theyundergo radiationistointerceptthebeamtrajectorywithathinmetallicfoil(orTRradiator).Such<br />

resultinanon-interceptivediagnostics.Ontheotherh<strong>and</strong>,thedivergenceinducedviascattering<br />

scatteringonthenucleithatcanpotentiallydegradesthebeamemittance<strong>and</strong>thereforewillnot


(a)<br />

ceramic radiator<br />

beam<br />

x-wire beam transverse<br />

x+y<br />

section<br />

2<br />

y-wire<br />

wire<br />

(b)<br />

fluorescence emission<br />

vacuum chamber (spherical wave in<br />

optical region)<br />

Figure4.1:Schematicsofprincipleforthedierenttypeofbeamproledensitymeasurement<br />

vacuum window<br />

optical system<br />

direction of motion<br />

+ detector<br />

(c)<br />

(d)<br />

Metallic foil<br />

forward transition radiation<br />

synchrotron radiation<br />

beam<br />

mirror optical system<br />

anypieceofhardware(vacuumpipe,electronics,...)thatislocatedinthetunnelenclosure.Inthe devices.<br />

+ detector<br />

Magnetic Induction<br />

followingweconsiderthebehaviorofthreekindsofTRradiator:aluminum,gold<strong>and</strong>carbonfoil. acertainthresholditcantriggertheMachineProtectionSystem(MPS)whichwillturnothe canbesolargethatsomeoftheelectroncanbelost.Ifthepercentageoflostparticlesexceeds machine,alsoeveniftheMPSisnotarmed,losingalargefractionofthebeamisalwaysaconcern. Theprotectionsystemthresholddependsonthemachine,<strong>and</strong>insuresthatonecannotdamage<br />

backward transition radiation<br />

vacuum chamber<br />

vacuum window<br />

optical system<br />

4.2.2ThermalStudies<br />

+ detector<br />

foil.Theenergydepositionismainlyduetoionizationlossesoftherelativisticelectronsminusthe energycarriedonbysecondaryelectrons;itwascomputedusingtheEGS4(<strong>Electron</strong><strong>and</strong>Gamma Shower4)code4distributedbyStanfordLinearAcceleratorCenter.Iftheonlymechanismofheat heattransferequation: Theprimaryconcern,aswepreviouslyemphasized,isduetotheenergythebeamdepositsinthe transferisconduction,thetemperatureofabodyinwhichpowerisdepositedisdescribedbythe whereTisthetemperature,thedensity,cp,thespecicheat,thethermalconductivity,Vthe bodywithhighemissivity,heatevacuationviaradiationisanimportantmechanismthatshouldbe volumeofthebody,<strong>and</strong>thedepositedpower. Thisequationcanbenumericallyintegratedbyseveralnite-elementprogram.Inthecaseof 4PrivateCommunicationfromP.K.Kloeppel,November1995<br />

cp@T @tkappa52T=@P @V (4.12)


elation: willresult.AgivensurfaceofthebodydSwhoselocaltemperatureisTswillradiate<strong>and</strong>losepower atarateproportionaltoT4dS.Moreprecisely,thepowerradiatedisgivenbyStefan-Bolztman incorporatedinthecomputations.Typicallyforagivendepositedpower,atemperaturegradient<br />

atatemperatureassumedtobe300Khenceforth). Tocomputethetemperatureriseduetopowerdepositioninthesteadystatecase,weusethe T0istheambienttemperatureofthecanonicalsystemthebodyislocatedin(inourcasevacuum whereistheStefanconstant(=5:670108Wm2K4),istheemissivityofthebody,<strong>and</strong> followingnumericaliterativemethod.Firstly,let'sassume(<strong>and</strong>thisisindeedthecase)thatthe TRradiatorconsistsinacircularfoilofradiusr<strong>and</strong>thicknesstwhosenormalmakesanangle dPS=2dS(T4ST40) (4.13)<br />

withthebeamaxis.Inasuchcase,thepowerisevacuatedradiallyviatheconductionmechanism. Wec<strong>and</strong>ividethefoilbyaseriesofannuliofouter<strong>and</strong>innerradiiri<strong>and</strong>ri+1(seeg.4.2). Thereforethetemperatureoftheithannulusisrelatedtothetemperatureofthei-1thcrownby:<br />

whereRi=1 <strong>and</strong>titsthickness,<strong>and</strong>Piisthetotalpowercomingfromtheithcrown.Partofthepowerisheat radiated<strong>and</strong>theremainingistransmittedviaconductiontothenextelement.Theradiatedpower Figure4.2:MethodologytocomputetemperatureriseinacylindricallysymmetricTRradiator.<br />

is: 2tlnri+1 riisthethermalresistance(isthethermalconductivityofthefoilmaterial Pi=Pi1+2(T43004)(r2ir2i1) Ti=Ti1+RiPi (4.14)<br />

Tocomputethetemperatureriseatthebeamedgecrown,weintroducedtheparameterPext current)usingtheequations[29]:Tcenter=Tn+1 thatrepresenttheevacuatedpower.Hencevaryingthevalueofthisparameter<strong>and</strong>iteratingthe Eqns.(4.14)<strong>and</strong>(4.15)fromtheedgeofthefoiluptotheedgeofthebeamallowstodetermine thetemperatureatthebeamcenter<strong>and</strong>thedepositedpower(fromwhichwecangetthebeam (4.15)<br />

4tPn (4.16)<br />

beam <strong>and</strong> screen center<br />

rxry<br />

rn-1<br />

beam edge<br />

R n R n-1 R n-2<br />

T n<br />

rn-2<br />

T n-1 T n-2<br />

R 3 R 2 R 1<br />

T 3 T 2<br />

screen edge<br />

T=300K<br />

P ext


<strong>and</strong> validundertheassumptionofauniformlypopulatedbeam.Usingthismethodwehavecomputed Eqn.4.16relatesthetemperatureatthebeamcenter<strong>and</strong>thetemperatureatthebeamedge.Itis Aluminum MaterialMeltingPointThermalConductivitydE=dx (K) 933I=PnEtcos W=m:K 237 eV=m 410 (4.17)<br />

themaximumbeamcurrentdierentfoilscanst<strong>and</strong>versustheequivalentbeamsizedenedas Table4.1:PhysicalpropertiesoftheconsideredmaterialforOTRscreens. Gold Carbon 1337 3700 317 333 6380<br />

Theconsideredmaterialwith<strong>their</strong>propertiesaregatheredinTable4.1.Theresultsarepresented prxrywhererx<strong>and</strong>ryarethefullbeamsizerespectivelyinthehorizontal<strong>and</strong>verticaldirection. 130<br />

typicalbeamsizeexpectedinthefree-electronlaser,aluminumfoilcaneasilywithst<strong>and</strong>average currentupto500Aevenwithabeamof300mradius.Eveninthelow-emittanceCEBAF radiusassumingtheTR-radiatorhasa0:8mthickness5.Forinstance,wecanseethatwiththe acceleratorthemaximumdesignof200Acanbereachedwithoutmeltingthefoilfortypical intheg.4.3whichdepictsthemaximumaveragecurrentthatcanbereachedforagivenbeam envelopeof200m. notst<strong>and</strong>higherbeamaveragecurrentduetoitshigherdE=dxcoecient.Ingure4.4wepresent thesteadystatetemperatureversustheincomingbeamaveragecurrentfordierentaluminumfoil thickness<strong>and</strong>abeamof2mm. observebackwardTR. Finallywenotethatdespiteitshigherthermalmeltingpointcomparedtoaluminum,golddoes onlyareconsidered.Unfortunatelythemaindrawbackofcarbon,aswewillseelater,isitslow coecientofreectionincomparisontoaluminumorgoldwhichdoesnotfacilitateitsuseto Obviously,wecannoticeingure4.3thatcarbonisthebestchoiceasfarasthermalaspects<br />

aluminumfoils.TheexperimentwasperformedintheCEBAFinjectorregion(foradescriptionof theinjectorseeReference[28]).Wecomparedthedatawithasemi-empiricalmodel<strong>and</strong>numerical simulations. WenowturntothestudyofbeamdegradationduetoscatteringintheTRradiator.Inthissection, wepresentanexperimentdevotedtostudyscatteringofa45MeVelectronbeamonverythin 4.2.3StudyofMultipleScatteringinAluminumfoil<br />

degradation)stillhavingagoodsurfacereectioncoecient.Alsothicknessislimitedbytheframeonwhichthefoil ismounted:toothinfoilcouldnotbemountedonourholdingsupportbecausetheywouldanymoreself-support.<br />

5thisthicknessisanoptimumvalue:itcorrespondstothethinnestfoilwecanhave(inordertominimizebeam


Maximum Average <strong>Beam</strong> Current ( A)<br />

10 4<br />

5<br />

2<br />

C foil<br />

Al foil<br />

Au foil<br />

10 -1<br />

2 5 10 0<br />

2 5 10 1<br />

2<br />

Equivalent <strong>Beam</strong> Size (rx ry) 1/2 10<br />

5<br />

2<br />

(mm)<br />

2<br />

10<br />

5<br />

2<br />

3<br />

Figure4.3:Maximumaveragecurrentthatcanwithst<strong>and</strong>aTRradiatorasafunctionofthe equivalentbeamradius.ThreetypesofTRradiatorhavebeenconsidered:Aluminum,Gold<strong>and</strong> Carbon.Thethreeradiatorare0:8mthick. Experiment WehaveperformedanexperimentintheCEBAFinjectorat45MeVtostudyscatteringeect asthebeampassthroughaluminumfoilofdierentthickness.Theexperimentalsetupisas scannerhasthreewires(seeg.4.1b)thatrespectively(fromrighttoleftinthegure)givesthe beamprolealongthehorizontal,vertical<strong>and</strong>45degaxes.Thefactthatthebeamsizeinthe prolemeasurementstation:awire-scanner.Allthequadrupole<strong>and</strong>correctormagnetsbetween thefoils<strong>and</strong>thewirescannerareturnedo.Ingure4.5wecomparetwotypicalwirescanner tracesobtainedwith<strong>and</strong>withouta0:8maluminumfoilinsertedinthebeampath.Thewire follow:dierentaluminumfoilaremountedonasupport,<strong>and</strong>canbeinsertedintothebeampath remotely.Thescatteredbeamthendriftsthroughalengthof7:43muptoatransversebeam horizontaldirectionismuchsmallerthantheverticaldirectiononeissimplyduetotheopticstune upstream.Asonecanexpectthebeamproleislargerasthe0:8mfoilisinserted.Moregenerally itgetswiderasthefoilthicknessincreases.Forquantitativeanalysisofthescattering,weonly theconvolutionofthebeamproleBwiththefoil\scatteringtransferfunction"T(orscattering<br />

considerthetailofthebeamprolelocatedontherightsideofthehorizontalprole(rightpeak) becausetheotherpeaksoverlap<strong>and</strong>wouldyieldatediousdeconvolution.Wealsoassumethatwe havescanned100%ofthebeam.LetS()bethefunctionassociatedtothetail.S()isindeed


1000<br />

900<br />

800<br />

700<br />

Figure4.4:SteadystatetemperatureversusaveragebeamcurrentforthreedierentTRradiator thickness<strong>and</strong>abeamequivalentradiusof2mm.<br />

600<br />

distribution):<br />

500<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

00000<br />

11111<br />

400<br />

2 m 00000<br />

11111 0.5 micron<br />

00000<br />

11111<br />

00000<br />

11111 2 1micron m 00000<br />

11111<br />

00000<br />

11111<br />

RewritingtheaboveequationintheFourierspaceyieldsthescatteringdistributionfunctionofthe whereistheconvolutionproduct. S()=(TB)() (4.18)<br />

00000<br />

11111 1 0.5 micron m 00000<br />

11111<br />

00000<br />

11111<br />

300<br />

0 100 200 300 400 500 600 700<br />

Average <strong>Beam</strong> Current ( A)<br />

Fromthisgurewecanseethatthelargerthethicknessis,thelargerthermsscatteringangle(i.e. varianceofthescatteringdistribution)is. ComparisonwiththeTheory TheF1istheinverseFouriertransformation.Wehavenumericallyperformedthisdeconvolution, <strong>and</strong>thecalculatedscatteringfunctionsforthreedierentfoilthicknessareshowningure4.6.<br />

Itisusefultocomparethepreviousresultswiththetheory,inordertoseehowaccuratelyweare abletopredicttheeectsofanOTRradiatoronthebeam.Thereareseveraltheoreticalmodel<br />

Temperature ( o K)<br />

Melting point<br />

foil: T=F1SB (4.19)


Wire Scanner Readback (mV)<br />

1200<br />

1000<br />

Foil out<br />

800<br />

600<br />

400<br />

whichdependsonthemeanaverageofcollisionanelectronexperiencesasitpassthroughthe foil:simplescattering(1), beamismeasuredusingawirescannerlocateddownstreamthefoil. describingscatteringinsideverythintargetseachofthemhave<strong>their</strong>owndomainofapplicability Figure4.5:Anexampleoftheeectofa0:8mthickaluminumfoilonthebeamprole.The<br />

0.8 m Foil in<br />

200<br />

0<br />

0 10 20 30 40 50 60<br />

pluralscattering(1 20),<br />

Position (mm)<br />

thatdescribesmultiplescattering.ThedetailedstudyofKeilmodelisoutofthescopeofthis thesis.Inbrief,KeilusedtheFouriertransformofthescatteringdistributionderivedbyMoliere Inthecaseofaluminumfoilwiththicknessthinnerthan5m,themeannumberofcollisionbeing lessthen20weareinthepluralscatteringregime.Thistypeofscatteringiswelldescribedby thesemi-empiricalmodelelaboratedbyKeil[30]whichisanextrapolationoftheMolieremodel multiplescattering(20).<br />

<strong>and</strong>onlyconsideredthetworsttermsofthisseries,avalidapproximationifthemeannumber ofcollisionisbelow20.Hethenempiricallycalculatedthenumericalcoecientoftheseriesusing theexperimentalmeasurementsperformedbyLeisegang[31]ashewasexperimentallystudying scatteringthroughverythingoldfoils.Therelationthatgivestheangularscatteringdistribution


Fraction of <strong>Beam</strong> enclosed within (%)<br />

100<br />

90<br />

80<br />

t=0.25 m<br />

t=0.8 m<br />

t=1.5 m<br />

70<br />

60<br />

Figure4.6:Angularscatteringdistributionexperimentallymeasuredforthreedierentthicknesses<br />

50<br />

ofAluminumfoil.<br />

40<br />

30<br />

20<br />

10<br />

0<br />

numberofcollisionisafunctionoftheatomicweightA,theatomicnumberZ,<strong>and</strong>thethickness foragivenmeannumberofcollisionsasafunctionofthereducedanglesisgivenby: wherethecoecentsc1<strong>and</strong>c2areconstantthatwheredeterminedfromexperiment.Themean F(;s)=eXk=0mk Xl=0CkmCmk l bk1Bl2((c1l+c2k)2+2s)3=2 lc1kc2 (4.20)<br />

0.0 0.0002 0.0004 0.0006 0.0008 0.001<br />

(rad)<br />

ofthefoil: whereisthereducedvelocity. Thereducedangle,s,inthelatterequationisrelatedtotheprojectedangleviatherelation: =8:83103tAZ4=3 2 (4.21)<br />

inMeV.ItisworthwhiletonotethattheworkofKeil(asMoliere)wastoshowthattheangular scatteringdistributioninthepluralscatteringregimedoesnotexactlyfollowagaussi<strong>and</strong>istribution<br />

wherethecriticalangleisdenedas=4:23Z1=3 E,Ebeingtheenergyoftheincidentelectrons<br />

s= (4.22)


Table4.2:SurveyofmaterialscommerciallyavailableformonitoringintensebeamswithTRra- corresponding #ofcollisionperm7.58.78.313.628516290127 material thinnestfoilavailable0.250.250.50.510.50.250.250.1 1.92.24.26.828261522.622 BeCMgAlTiFeCuAgAu<br />

diators;weexcludedthematerialswithlowthermalconductivity<strong>and</strong>meannumberofcollision greaterthan30in<strong>their</strong>smallestthickness. (sincetheaveragenumberofcollisionistoolowtofulllthevalidityofthecentrallimittheorem). NumericalSimulations Thegaussiancharacterofthedistributionespeciallydeterioratesatlargeangle,wherelargetail<br />

Tocompletearestudies,wehaveperformednumericalsimulationusingthemonte-carlocode behaviorcorrespondingtothecasek=0<strong>and</strong>l=0intheEqn.(4.20). tendtodevelop.Italsobreaksdownforsmallanglewherethescatteringdistributionhasadirac-like<br />

experiment. AComparisonbetweenExperiment,Theory<strong>and</strong>Simulation scatterings.Wehaveusedthiscodetosimulateeachofthefoilsusedinthepreviouslydescribed GEANTfromtheCERNLIBwhichisapopularsimulationtoolintheParticlePhysicscommunity.ThiscodehasascatteringroutinethatusestheMolieremodel.Howeveriftheparameters aresothattheMolieremodelisnotapplicable,GEANTwillsimulateaseriesofsingleCoulomb<br />

withasafetymargin,thefractionofthebeamwemayloseasthebeampassthroughathinfoilof material. worstcase.ThereforeitseemswecanusethenumericalsimulationsortheKeilmodeltopredict, theworstcase.Howeverbothofthemareoverestimationsofthemeasurementbyfactorof5inthe 70%,95%ofthebeam.Clearly,theKeilmodel<strong>and</strong>thenumericalsimulationagreewithin50%in Wesummarizetheresultsgivenbytheexperiment,thetheory<strong>and</strong>thenumericalsimulationin gure4.7wherethedierentcurvesshowtheeectofthefoilthicknessonthesemi-anglecontaining<br />

carbon;theyareequivalentbutwepreferthelatterbecauseofthechemicaltoxicityofberyllium. 4.3ThePossibleUseofCarbonasTRradiator WehavesurveyedthecommerciallyavailableverythinmaterialthatmaybeusedasTRradiator. Intable4.3wegatherseveralmaterialthatcouldbeused<strong>and</strong>canselfsupportona10mmdiameter holder,withthecorrespondingmeannumberofcollision.Thebestc<strong>and</strong>idatesareberyllium<strong>and</strong> veryhighmeltingtemperature.UsingtheGEANTcodeweestimatedtheangularscattering<br />

Anotheradvantageofcarbonisitscapabilityofwithst<strong>and</strong>ingveryhighcurrentbecauseofits


5<br />

2<br />

2 3 4 5 6 7 8 9 10 0<br />

10<br />

5<br />

2<br />

Foil Thickness ( m)<br />

-1<br />

10<br />

5<br />

2<br />

0<br />

Keil 70%<br />

Geant 70%<br />

Figure4.7:ComparativeresultsofexperimentwithKeil'ssemi-empiricaltheory<strong>and</strong>geantcom-<br />

Meas 95%<br />

putationforthinaluminumfoils.<br />

Meas 70%<br />

distributionforcarbon.Ingure4.8wepresenttheprojectedscatteringangle(normalizedtothe energy)containing70%,95%<strong>and</strong>99.5%ofthebeamversusthemeannumberofcollisionforin thecaseofrelativisticelectrontraversingverythinfoils.Usingthisplots<strong>and</strong>knowingthemachine dynamicsacceptance,wecancomputethefractionofthebeamwecanloseasthefoilisinserted intothebeampath.<br />

transferlinestooneofthenuclearphysicsexperimentalendstation. beamprole.TheexperimentwasperformedintheCEBAFaccelerator<strong>and</strong>locatedinoneofthe Inanattempttocheckourpreviousestimationswehavedevelopedaprototypeformeasuring 4.3.1Anon-interceptiveTRbeamprolemonitor<br />

Experimentalsetup ThebackwardTRdependsonthereectioncharacteristicsofthesurface.Thereareseveralproblemsthatarisewithverythinfoils:surfaceinhomogeneitymakes<strong>their</strong>coecientofreection nonuniform,<strong>and</strong>itisalsodiculttostretchthemenoughtoobtainaveryatsurface.These<br />

(mrad)<br />

Keil 95%<br />

Geant 95%


Prjected Semi-Angle Energy (mrad MeV)<br />

100<br />

90<br />

80<br />

=2.18 for 0.25 m C-foil<br />

99.5 %<br />

70<br />

60<br />

50<br />

95 %<br />

40<br />

30<br />

70 %<br />

20<br />

abeamnormallyincidentontheradiatorhasashorterpathinthematerialwhichinturnreduces thescatteringangle.Basedontheseconsiderations,webuiltaprototypethatusestheforward problemsdisappearwithforwardTRsinceitisemittedinconecenteredonthebeamaxisregardlessoftheangleorreectionpropertiesoftheTRradiator.Therearetwoadditionaladvantagesto theforwardoverbackwardTRwitha45degfoil:(i)thedepthofeldeectbecomesnegligible,(ii) Figure4.8:geantcomputationforthincarbonfoils.<br />

10<br />

TRemittedfroma0:25mthickcarbonfoilpresentedingure4.9(A).Thefoilismountedona supportwhichisU-shaped<strong>and</strong>openonthesidecrossingthebeampath,sothatitcanbeinserted<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

withoutobligingthebeamtobeturnedo.AmirrorcollectspartoftheTRradiation.With<br />

Mean Number of Collision<br />

edge4mmclosetothebeamtrajectory.Themirrorsendsthecollectedlighttoachargecoupled amagnicationof1=2whichyieldsapixelsizeofapproximately20mintheobjectplane. device(CDD)viatwoachromaticlenses.ThelensesimagethefoilplaneontotheCCDarraywith asthefoil.Themirroris175mmdownstreamfromthefoil;thisinsertionmechanismbringsits anglesfromthebeamaxis.Wedidthisbylocatingthemirroronthesameinsertionmechanism theTRthatisstronglydirectionalina1=cone,weneedtocollectthelightemittedatsmall<br />

ExperimentalResults WetestedourprototypeatthehighestbeamcurrentdeliverableinCWmodebytheCEBAF accelerator:200Aatanenergyof3:2GeV(i.e.beampowerof640kW).Thecarbonfoilwasnot


Actuator Inserts<br />

Foil <strong>and</strong> Mirror<br />

CID<br />

Camera<br />

10000<br />

9500<br />

Lens<br />

9000<br />

8500<br />

Lens<br />

8000<br />

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200<br />

x (µm)<br />

e- ~ 1 mm (full width)<br />

atypicalbeamdensitymeasuredwithsuchdevice(B). Figure4.9:OverviewofthecarbonfoilbasedOTRexperiment(CourtesyfromS.Spata)(A)<strong>and</strong> damaged,aspredictedbyourthermalstudies. Ongure4.9(B)weshowtypicalmeasuredbeamdensity.Thebeamsize(deneastherms<br />

Transition<br />

Radiation<br />

rmsbeamsizewiththeoneobtainedusingthewirescannerincloseproximity<strong>and</strong>obtainedthe<br />

Mirror<br />

samebeamwidthwithintheuncertaintytoleranceasshowninTable4.3.1.<br />

Horizontal axis<br />

Carbon Foil<br />

<strong>Beam</strong><br />

TothebestofourknowledgethisisthersttimeTRwasusedtomeasuredbeamsizeofhundredsof compatiblewiththeoneexpectedusingthemagneticopticscodeDIMAD.Wealsocomparethese value),obtainedperforminganonlineartofthetransverseproleswithaGaussi<strong>and</strong>istribution, are255m<strong>and</strong>130mforrespectivelythehorizontal<strong>and</strong>verticaldirections.Thesevaluesare<br />

(A) (B)<br />

FORWARD OTR MONITOR<br />

resolutionthathadbeenclaimedwasthatforagivenreducedenergytheminimumrmsbeamsize thatcouldberesolvedbydetectingTRatthewavelengthisoftheorderoftheproduct=(4). beusetomeasuremicron-sizedbeamprolesforrelativisticbeams.Thehypotheticallimitin ofacommonargumentinthebeaminstrumentationcommunityaccordingtowhichTRcannot micronsforanultrarelativisticbeam('6300).Thismeasurementistheproofofthenonvalidity Inourcasesuchcriterionwouldset,atawavelengthofobservationof500m,thesmallestrms thesmallestbeamsizewemeasured.ResolutionissuesconcerningOTRhavebeendiscussedin beamsizewecouldobservedtoapproximately250mrms,i.e.approximately2timeslargerthan toSR,isnotcollimatedwithina1=-cone:forinstancetheTRemissionassociatedwitha1GeV numerouspaper[33].Inbrief,theaforementionedcriterionconcerningtheminimumrmsbeamsize source<strong>and</strong>itsextentareboundedbytherelation0>=(4).InthecaseofTR,thecommon mistakeistowrite0'1=whichnallyyieldtotherelation0


ofP.Gueye,HamptonUniversity,VAUSA). spectrometerwith(A)<strong>and</strong>without(B)thebeambeinginterceptedbythecarbonfoil(Courtesy Figure4.10:ComparisonoftheMissingmassspectraobtainedusingoneoftheexperimentalhall<br />

Table4.3:Comparisonoftheprolemeasurementswiththewirescanner<strong>and</strong>OTR-monitor. Simulation0:250mm OTR-monitor0:2550:060mm0:1300:060mm wirescanner0:2040:050mm0:0820:050mm horizontaldirectionverticaldirection 0:114mm<br />

(A)<br />

(B)<br />

incomingelectronbeamthathitsthetarget,thispeaksasanonzerowidth.Onestraightforward experimentwiththecarbonfoilistodetermineifthefactofinsertingthecarbonfoilinthe lookatthemissingmassspectrum.Inthismissingmassspectrum,wehaveapeakcenteredon theprotonmass(945MeV=c).Duetotheniteresolutionofthedetector,theemittanceofthe todeterminewhetherthefoilhassignicantimpactonthenuclearphysicsmeasurementwasto Namelywewereobservingthereactione+p!e0+p0intheelasticscattering.Acriterion observetherecoilelectronissuedfromthescatteringoftheelectronbeamonahydrogentarget. accelerator.Theexperimentconsistedofsettingtheangle<strong>and</strong>thedipolesofthespectrometerto<br />

800MeV,theprototypewebuiltconstitutesanoninvasivebeamprolemonitor.<br />

theelasticpeakwassimilarwellwithinexperimentalnoise.Thismeasurementwereperformedat 3GeV.LatterincollaborationwithanotherexperimentalHall,thesimilarexperimentwasiterated atlowerenergy800MeVyieldingasimilarconclusion.Therefore,atleastatenergyhigherthan foil.Figure4.10showsthemissingmassspectrainthetwocases.Inbothcases,thermswidthof datawiththespectrometerwhileinasecondsetdatawereacquiredwithoutinsertingthecarbon measurementswereperformed:InarstoneweinsertedthecarbonTRradiator<strong>and</strong>acquired beampathdownstreamthetargetyieldanenlargementofthepeakwidth.Hencetwosetsof


shortterm,touseasbeamdensitymonitorintheFELdriver,aluminumfoilsinthepopularcon- ExperimentalSetup Althoughthecarbonfoilmonitorisveryusefulasanoninterceptivedevice,wedecided,forthe 4.3.2ProleMonitorCongurationintheFEL<br />

serted/withdrawnfromthebeampathbythemeansofanaircylinderactuator.Inthiscongurationthebackwardtransitionradiationemittedat90degwithrespecttothebeamaxisshinesout ofthevacuumchamberthroughasilicaopticalwindow.Itisthencollectedbyaplanarmirror<strong>and</strong> diameterthatmakesa45deganglew.r.t.thebeamdirection.Thefoilcanberemotelyin- diagnosethebeamqualityinacontinuous<strong>and</strong>nonintrusivefashion. Thesystemweuseconsistsof0:8mthickaluminumfoilsmountedonacircularframesof19mm verythincarbonfoilonlargesupport.AlsointhecaseoftheFEL,thelaseritselfcanserveto gurationaspicturedingure4.11.Thischoiceisinpartduetothedicultytoreliablymount<br />

thehighestpossibleresolutionwithareasonableeldofview.Thecircularframeonwhichthefoil ismounteddeterminestheeldofview:this19mmdiameterframeisusedtoaccuratelycalibrate theimage<strong>and</strong>therebydeterminewhatistheconversionfactorbetweentheCCDarraypixels<strong>and</strong> triggered.ThesystemissettoimagethefoilplaneontheCCDarraydetectorwithmagnication ofapproximately1=3.Thechoiceofthemagnicationratioisdictatedbytheneedofachieving senttoanopticalsystemcomposedofacommerciallyavailabletelephotolens(optimizedtoreduce chromatic<strong>and</strong>sphericalopticalaberration)<strong>and</strong>ahighresolutionCCDcamerawhosevideooutput signalisdigitizedbyaVME-basedDATACUBEimageprocessingboardthatcanbeexternally realdistancesinthefoilplane. Toavoiddamagingthealuminumfoil,<strong>and</strong>sincethebeamdynamicsisonlydominatedbysinperbunch,thebunchrepetitionrateinamacropulse,themacropulsewidth<strong>and</strong>themacropulse<br />

repetitionrate.Sinceonlythechargeperbunchaectsthephasespace<strong>and</strong>consequentlythebeam<br />

Therearefourindependentparametersthatcaninuencethebeamaveragecurrent:thecharge Figure4.11:St<strong>and</strong>ardcongurationoftheOTR-basedprolemonitorintheFEL-driveraccelerator. glebuncheect,i.e.thebeamphasespacedensityonlydependsonthechargeperbunch<strong>and</strong> notonthebunchrepetitionrate,thebeamaveragecurrentisdecreasedtoapproximately0:5A.<br />

Incident <strong>Beam</strong><br />

OTR Radiator<br />

<strong>Beam</strong> Sync<br />

Mirror<br />

Telephoto Lens<br />

Charge Coupled Device Camera<br />

VIDEO IN<br />

EXT TRIGG<br />

To EPICS<br />

control system


densityprole,byactingontheotherthreeparametersitispossibletoreducethebeamcurrent withoutaectingonthephasespacedistribution.Naturallythefactwehavetouseareduced beamcurrentduringthemeasurementofthebeamparameterimpactsontheFELoperation<strong>and</strong> subsequentexperiments.Thereforesuchameasurementisinvasive.AswehaveseeninChapter2,<br />

Intensity (a.u)<br />

2<br />

7<br />

6<br />

5<br />

8<br />

109 4<br />

4<br />

3<br />

2<br />

-6 -3 0 3 6<br />

. .. ..... ...<br />

. ........ .. ..<br />

.<br />

... . .. . ..<br />

. .... ....................................................................................... .. .. .......<br />

.. .... .... ..<br />

.... .. ..<br />

. .<br />

. ..<br />

.. . .. .. . .. ... .. . ... ..<br />

. . ..<br />

. ..<br />

. .. . .<br />

. ..<br />

.. ...<br />

....<br />

.... .<br />

. .<br />

10<br />

5<br />

2<br />

-6 -3 0 3 6<br />

Distance (mm)<br />

12<br />

10<br />

5<br />

22<br />

10<br />

5<br />

32<br />

10<br />

5<br />

42<br />

Figure4.12:Rawdatabeamprole(topgraph)<strong>and</strong>beamproleafterprocessing(background whichalsosynchronouslygeneratea5Vrectangularpulsewhosewidth<strong>and</strong>repetitionratearethe replicaofthemacropulse.Suchsignalcalledthe\beamsync"isavailablefromthecontrolsystem totriggerdataacquisitionsystems. Inthepresentcase,wetriggertheimageprocessingboardtograbonlythevideoframethatcon- atarepetitionrateupto74:85MHz.Allthebeamstructureisgeneratedbyamasteroscillator subtracted,ghostpulsecontributionremoved,...).<br />

tainsthebeamimage.Forsuchapurposeweusethefollowingsetup:the\beamsync"isdelayed by0:435msbeforebeingsenttothe\externaltrigger"inputoftheimageprocessingboard.The eachmacropulsecontainsbunches(whosechargecanbearbitraryvariedfrom0pCto135pC6)<br />

SomeprimaryoperationsonthisdatastreamcanbedirectlyperformedbytheCPUoftheimage processingboardinrealtime[39].Suchoperationsincludethecalculationof: delayissetsothatthedigitizeristriggeredatthenextincomingpulse. Thedigitizeddatastreamattheimageboardoutputconsistsofa660484arraymatrix,I(x;y). 6Intheresultspresentedinthisreportthemaximumchargeusedisapproximately60pC<br />

Intensity (a.u)


Alongwiththeseimplementedoperations,somesignalprocessingfunctionssuchasltering,back- thebeamcentroidpositiondenedasx0=RxdxI(x;y)<br />

groundsubtraction,etc...,areavailable. thebeamspotthermswidthdenedas=R(xx0)2I(x;y)dx<br />

Duringourpreliminarymeasurementswehavenoticedthatdirectlycomputingthevarianceofthe beamprolecomputedontherawdatamatrixwasyieldingerroneousvaluesforthermsbeam <strong>and</strong>theHoughtransforms(i.e.projection)alonghorizontal<strong>and</strong>verticalaxis(i.e.P(x)= RI(x;y)dy)<br />

photo-electronemittedasthedrivelaserpulseifo.These\ghostbunches"areindeedduetothe inabilitytohaveaperfectextinctionratioof0betweendrivelaserpulsethatservetocreate\real" bunches.Physicallythisisduetotheelectro-opticscellthatareusedtoswitchthelaserpulseon size.Thiswastracedbacktobeduetotheso-called\ghostpulse"eect:alongwiththemain interestforourmeasurement,thereareparasiticbunchescalled\ghostbunches"thatconsistsof <strong>and</strong>oonthephotocathode.Thereforewemodiedouracquisitionalgorithmtotakeintoaccount thiseectbyusingthefollowingstepsduringameasurement: macropulsethatcontainsaseriesofelectronbunches,whosetransversedensityisthequantityof<br />

5.mathematicallyperformtheoperationMbeam=MghostMbeam+ghost 3.increasethemacropulsetotheappropriatewidth 4.acquirethepixelmatrixMbeam+ghost<strong>and</strong>storeitinthecurrentbuer 1.reducemacropulsewidthto100nstoonlydetect\ghost"pulses, 2.acquirethepixelmatrixMghost<strong>and</strong>storeitinamemorybuer,<br />

methodyieldsreasonableresults. Intheabovestep3,weneedtoclarifythemeaningof\appropriate"macropulseduration:it TheresultsofthisoperationisgraphicallyshowninFigure4.12.Wehavealsoveriedthatthis dependsonthebeamsize,<strong>and</strong>itisexperimentallydeterminedbyinsuringtheCCDarrayisstill operatedinitslineardomain.Typicallythepowersurfacedensity,dP=dS,onthepixelarray,scales 6.computeparameterusingthematrixMbeam<br />

withthetransversermsbeamsizeimage,x<strong>and</strong>y,<strong>and</strong>withthepoweroftheemittedradiation, P,accordingtotherelation:<br />

conditionchangeswecanusethescalinglawofthelatterequationtore-adjustthemacropulse widthdynamically.<br />

determinedfortypicalbeamsizeoneachofthebeamprolemeasurementstation.Itisthenautomaticallyrecalledwhenameasurementisperformed.Alsotoaccommodatepotentialoperating Duringourexperiments,foreachmeasurementstation,themacropulsewidthwasexperimentally dP dS/P1xy (4.23)


Resolutionofbeamsizemeasurement Itisveryimportanttohaveapreciseknowledgeofthesystematicerroronabeamsizemeasurement sincewewillhavetoincludetheseerrors<strong>and</strong>propagatethemtondtheerrorbarduetosystematic<br />

function,istoimageviathissystemasharpedge[43].Forsuchapurposeatargetimagethat errorsonthetransverseemittancecomputation. Thereareprincipallytwotypesofeectsthatenterintheresolutionofthistypeofimagingdevices systemweuse:opticalresolution<strong>and</strong>electronicresponse.Theformereectcanbeevaluatedin consistsofansharpedgebetweenanopticallyblack<strong>and</strong>opticallywhiteregionispositionedat waytocharacterizetheresolutionofthewholesystemi.e.includingoptical<strong>and</strong>electronictransfer ourcasesinceoursystemisoptimizedtominimizespherical<strong>and</strong>chromaticaberration,theoptical degradationofresolutionisessentiallyduetothedepthofeldeectthatresultsbecausethe planeweareimaging,thefoil,makesa45deganglewithrespecttotheCCDarray.Thebest TRradiatorlocation.Thederivativeofthecorrespondingdigitizedimagewillprovideinformation ontheimpulseresponseofthesystem<strong>and</strong>itswidthcanbeusedtoquantifytheresolutionof thesystem.Typicalresolutionmeasuredwereatmaximum1:5timesthepixelsizeintheobject plane.Fortypicalmagnicationweuse,thepixelsizeintheobjectplaneisabout40mwhich givesatypicalrmsresolutionof60mwellbelowthetypicalbeamsizemeasured(oftheorderof approximately1mmrms).<br />

ThemethodtomeasureemittanceinthehighenergyregionoftheFEListheusualenvelope 4.4.1GeneralConsiderations 4.4MeasurementofEmittanceinthe38+MeVRegion<br />

betweenthehorizontal<strong>and</strong>verticalplanes,<strong>and</strong>thatthedispersionisnegligibleatthelocationof themeasurement.Ifthelatterassumptionsarefullledthenonecanusetransportformalismto transfermatrixbetweenthemR ttingtechnique.Itassumesthatthebeamcanberstordertransport,thatthereisnocoupling<br />

Exp<strong>and</strong>ingtheabovematrixrelation(recallisthebeammatrix)wecanrelatetheRMSbeam ndtherelationbetweenbeamparametersattwodierentlocationsinthebeamlineknowingthe<br />

systemofNequations(correspondingtoNdierenttransfermatrices)withonly3unknowns.Such sizeatthelocationiwiththeRMSdivergence,beamsize<strong>and</strong>beamcorrelationofthebeamatthe location0.Hencevaryingthetransfermatrixforagivensetofinitialvaluesin0,providesdierent beamsizeatthestationlocationi.Thereforeonecaneasilygeta(generallyoverdetermined) (i)=R(0)RT<br />

systemistraditionallyinvertedbythemeansoftheleastsquaremethod:GiventheNsquared- (4.24)<br />

the2: beamsizemeasurements,oneneedstondthesetofparameter((0) 2=NXi=1h(i)(R211(i)(0) 11+R212(0) (i)2 22+R11R12(0) 11,(0) 12)i212,(0)<br />

22)thatminimizes (4.25)


whereiistheerrorontheithbeamsizemeasurement. Itiswellknown[40]thatthevalueof0thatminimizedthe2satises: 0B@PNi=1R211(i)(i) PNi=12R11(i)R12(i)(i) PNi=1R212(i)(i) 2(i) 1CA=0B@PNi=1R411(i) PNi=12R311(i)R12(i) 2(i)PNi=12R311(i)R12(i) 2(i)PNi=14R211(i)R212(i) 2(i)PNi=1R211(i)R212(i) 2(i)PNi=12R11(i)R312(i) 2(i) matricesequation.Itisworth(forsoftwareimplementation)tonotethatthecurvaturematrixhas The3x3matrixisnamedcurvaturematrix.Thesolutionfor0isobtainedinvertingtheprevious PNi=1R211(i)R212(i) c,b=C0 2(i)PNi=12R11(i)R212(i) 2(i) PNi=1R412(i) 2(i) 2(i)1CA0B@(0) (4.26) 11 12 221CA (0)<br />

thefollowingform: (0)<br />

whichyieldsaverytractableformforitsinverse,theerrormatrix: E=1 jCj0B@4(CED2)2(BECD)4(BDC2) 2(BECD)(AEC2)2(ADBC) 4(BDC2)2(ADBC)4(ACB2)1CA C=0B@A2BC 2B4C2B C2BE1CA (4.28) (4.27)<br />

matrixelementnamely: Theelementsoftheerrormatrixarethevariance<strong>and</strong>covariancenumbersonthecomputed(0) wherejCjdenotesthedeterminantofC: jCj=4(ACEAD2B2E+2BCDC3) 8>:11=pE11 11;12=E12 12=pE22 22=pE33 (4.29)<br />

Twissparametersatthelocation(0).Letbethecomputedparameteri.e.theemittanceorthe Twissparameters.Thentheerroronisgivenby: Usingthest<strong>and</strong>arderrorpropagationtheory[40]onecanestimatetheerrorsonthecomputed 11;22=E13 12;22=E23 (4.30)<br />

Thepartialderivativeintheerrorpropagationformulaearegivenby: ()2= +2@ @11@ @T @112(11)2+@ @12(11;12)2+2@ @ @11=T2,@~" @~" @122(12)2+@ @11@ @12=T,@~" @22(11;22)2+2@ @22=T2, @222(22)2+ @12@ @22(12;22)2(4.32)<br />

(4.31)<br />

@11=TT @T@11=2TT<br />

2~",@T 2~",@T @12=1+2T @12=TT ~",@T ~",@T @22=TT @22=2T 2~". 2~", (4.33)


Finallyafterabitofalgebraonecancomputetheuncertaintiesontheemittance,<strong>and</strong>theT<strong>and</strong> ()2= Tparameters:(~")2= +21221131111 1~"6212211(12)2+1112 12112211+1122 1~"2212(12)2+212 22122(11)2+411 2112212221112 4(11)2+211 4(22)2 4(22)2 (4.34)<br />

()2=1~"6222211(12)2+212211 12112121211+2121122 221222211+212211222312111112123111122 24(11)2+212222 11221221122 4(22)2 2 1112 (4.36) (4.35)<br />

ment,istakentobeequaltothemeasuredresolutionofthebeamprolemeasurementsystemi.e. computedelementsofthe-matrix<strong>and</strong>thenpropagatetheseuncertaintiesontheestimatedvalues fortheemittance<strong>and</strong>Twissparameters.Lastlythevalueof(i),theerroronbeamsizemeasure- Thereforebybuildingthecurvaturematrixwecangetanestimateoftheuncertaintiesonthe<br />

Onewayofvaryingthetransfermatrixbetweenareferencepoint<strong>and</strong>themeasurementistochange thestrengthofaquadrupole<strong>and</strong>observethevariationofbeamsizeonanOTRscreenupstream. 4.4.2Thequadrupolescanmethod (i)=60m:<br />

Althoughthismethodisgenerallyeasytoimplementspecialcaremustbetaken: theminimumbeamsizeshouldbechosentobelargewithrespecttotheresolutionofthe themaximumbeamspotsizeinbothdirectionmustbesmallerthatthedimensionofthe OTRscreen<br />

casewherethequadrupole<strong>and</strong>theprolemonitorareseparatedbyadrift(seereference[34]).In amoregeneralcasewherethetransfermatrixbetweenthequadrupoleexit<strong>and</strong>theprolemonitor Onequestionthatarisesishowtosettheopticsdownstreamthequadrupolethatisbeingvariedto getthewantedbeamsizevariationontheprolemonitor?Suchproblemhasbeenstudiedinthe beamsizemeasurement<strong>and</strong>largeenoughnottoproduceanysaturationontheCCDcamera<br />

isR,wec<strong>and</strong>eriveasimilarcriteriononthelatticefunctionsattheprolemonitorlocation:the thatisusedtomeasurethebeamsize.<br />

by: x;y<strong>and</strong>x;yTwissparametersattheentranceofthequadrupolebeingvariedshouldberelated x=R11 y=R33 R12x R34y<br />

(4.37)


Let'sassumethethinlensapproximationtobevalid7.Thenthetransfermatrixbetweenthe entranceofthequadrupole<strong>and</strong>theprolemonitoris: Thex;yinthepreviousrelationaretheminimum-functiononewishestoachieveattheprole monitorstation.Thechoiceoftheminimum-functionhastwoimplications.<br />

betatronfunctionatthequadrupoleentrance(forinstanceinthehorizontalplane): HencethebetatronfunctionattheOTRlocationcanbeexpressedasafunctionoftheinitial R= x(k)=R212 R21R22! R11R12 f2x;0+R212 1=f1! 10 x;0 (4.38)<br />

wherewehaveusethefactthatx;0=x;0=Lwhenonehastakencareofsettingtheupstream opticstosatisfytherelationderivedpreviouslyinEqn.(4.37). Introducingthefocallength(1=f=k1l)<strong>and</strong>recallingthatR12=x;0=x(k=0)yields: x(k)=x(0)+R412k21l2 x(0) (4.39)<br />

whosederivativewithrespecttothequadrupolestrengthk1is: dx(k) dk=2R212k21l2 x(0) (4.40)<br />

latterequationshowsthatthechoiceofx;0,whichwehavesuggestedearliertobeaslargeas possibletoreducetheerroronthebeamsizemeasurement,directlyaectstheslopeofthebeam sizevariationontheprolemonitor:atoolargex;0willgivea\atlooking"variation.Therefore thereisanoptimumbeamvalueforx;0;thisoptimumshouldbedeterminedviaaniterative withthesamekindofrelationintheverticalplane(replacingxindexbyy<strong>and</strong>R12byR34).The processusingnumericalsimulations. (4.41)<br />

4.4.3Themulti-monitormethod<br />

theTwissparametersatthereferencepointbyEqns.(4.24).Indeed,weneedtomakesurethat Anotherwayofvaryingthetransfermatrixbetweenthereferencepointwhereonewishestocompute<br />

thesetwoequationsarenotredundant,namelythat: ofthismeasurementisthatnoelementhastobevaried.Howevertogetaprecisemeasurementa dedicatedopticallatticesettinggenerallyneedtobeelaborated. Letanalyzequantitativelythemethod.Thebeamsizeonaprolestationk<strong>and</strong>larerelatedto requiresatleastthreemonitorsbutoneshouldusemoreofthemforredundancy.Anadvantage thebeamparameters<strong>and</strong>thebeamprolemeasurementstationistomeasurethebeamproleat dierentpositionalongthebeamlinewhichareseparatedbynon-dispersiveoptics.Thismethod<br />

20)butitprovideseasieranalyticalresults<strong>and</strong>doesnotchangesignicantlythephysicsofthepresentdiscussion. Thetreatmentofthefullproblemincludingthethicklenstransfermatrixisdonevianumericalmodeling.<br />

7Thisisafalsestatementifweconsiderthewholerangeofthemagneticstrengthforthequadrupoles(20


zero): Thesethreedeterminantsyieldthesameequation(assumingtheR11<strong>and</strong>R12tobedierentfrom<br />

Henceinorderthelatterequationtobeveried,onemusttakecaretosettheopticallatticeso advancebetweenk<strong>and</strong>l: whichimplies,usingthegeneralformulationofabeamtransfermatrixintermofbetatronphase R11;kR12;lR12;kR11;i6=0 sin()6=0 (4.44) (4.43)<br />

Anothercarethathastobetakenistomakesurethatattheprolemeasurementstationthebeam isnotatawaist;thiswillenlargetheerrorbarsonthemeasurement(oneshouldmakethebeam aslargeaspossiblecomparedtotheerroronthebeamsizemeasurement). 4.4.4SimulationofEmittanceMeasurementintheIRFEL (withn2N). thatthebetatronphasebetweentheviewersbeingusedinthemeasurementisdierentfromn<br />

Afterthedecompressorchicane,thebeamlineconsistsofaquadrupoletriplet<strong>and</strong>isinstrumented<br />

theOTRlocation(suchoptimizationwillbediscussedinmoredetailinChapter5).Afterhaving makesurewecanhavea\right"beamsizevariationoverthequadrupoleexcitationrange.Typically theprolemonitor.Toperformsuchmeasurementoptimallyweneedtosettheupstreamopticsto weusethemagneticopticscodedimadtottheupstreamquadrupolestosatisfyEqn.(4.37)at scanmethod,weusetheOTRmonitorlocatedinthedumpbeamline3.43mdownstreamtheexitof thelastquadrupoleofthistripletquadrupole.Thereforeinthiscasewehaveinvestigatedwhether thisquadrupolecouldbeusetovarythetransfermatrixwhileobservingbeamsizevariationon withtwoOTRviewers.Forthesimulationoftheemittancemeasurementusingthequadrupole<br />

minimumbetatronvalueattheOTRlocationminimizestheerrorbarsonthededucedemittance (<strong>and</strong>ontheotherdeducedTwissparameters).Itisseenthat6misareasonablenumberforwhich thesystematicerrorsachievedonemittancemeasurementcanbewellwithinthedesired10%level. plottedinFigure4.14.Fromthisgureonecanobviouslynoticethatthechoiceofthelargest sizevariationispresentedingure4.13.Thededuceduncertaintiesontheemittanceforthesetwo dierentvaluesoftheminimumbetatronfunctionversustheerrorsonbeamsizemeasurementis properlytunedtheseupstreamquadrupoles,wehavenumericallystudiedthevariationofbeam<br />

Tofullysimulatethewholemeasurement<strong>and</strong>benchmarkourdataanalysisalgorithm,wepropagate sizefortwodierentminimum-functionsatthelocationoftheOTRviewer.Atypicalbeam<br />

wesimulatethemeasurement:wevarythequadrupolestrength<strong>and</strong>foreachsettingpropagatethe parametersuptothelocationoftheOTRmonitorwherewecompute<strong>and</strong>recordthebeamsize. theentranceofthevaryingquadrupole(i.e.lastquadrupoleofthetripletaforementioned).Then usingthedimadcodetheexpectedparameteratthelinacexit(ascomputedwithparmela)upto Intable4.4wecomparetheresultsobtainedonthecomputedbeamparametersatthequadrupole entrancefacewiththedimadinitialparameters:theresultsareinexcellentagreement.Wealso comparetheerrorbarsobtainedwithourerroranalysiswiththeerrorbarsstatisticallycomputed onasetof200simulationsofthemeasurementinwhichthebeamsizeisr<strong>and</strong>omlygeneratedalong anormaldensitycenteredonthebeamsizecomputedwiththeopticscodewithavarianceequalto thermsresolution(60m).Theconclusionisthattheerrorpropagationagreeswiththevariances


obtainedviathestatisticalanalysis.Theuctuationfrommeasurementtomeasurementusingthe MonteCarlotechniqueispresentedingure4.15. Whentheundulatormagnetisinstalledontothebeamline,thetworsttripletareusetomatch Parameter ~"x(mm-mrad)0.170000:169930:004790:169900:00431 x(m) x DIMADErrorPropagationMonte-CarloSimulation 5.56 1.39 5:560:18 1:390:05 5:560:17<br />

therstrecirculationarc.Theparameterspresentedareallattheentrancefaceofthequadrupole Table4.4:Simulationoftheemittancemeasurementusingthequadrupolescanmethodpriorto ~"y(mm-mrad)0.149600:149640:004490:149690:00441 y(m) y 1.39 5.56 1:390:05 5:560:19 1:390:05 5:560:19 1:390:04<br />

energy<strong>and</strong>thewigglerparameter)inbothplanes.Suchmatchingisrealizedbythemeanofthe centerwithavalueforbetatronfunctionofapproximately0.5meters(dependingonthebeam beingusedduringthemeasurement. thelatticefunctionatthemiddleofthewigglerinsuchawaytoobtainawaistattheundulator tomeasureemittanceinthisregion:unfortunatelywefounddicultinsimulationtoachievelarge betatronfunctionontheviewerusedintheundulatorchamber.Thispointisillustratedinthe theerrorbarsaremuchlargerthanthosegenerallyobtainedwithquadrupolescantechnique. tablebelowwhere,asbefore,wevalidatetheerrorpropagationforthemulti-monitortechnique: twoupstreamquadrupoletripletsthatcanadjustthefourbeamparameters(x,x<strong>and</strong>y,y) whilekeepingthebeamenvelopewithinthemachineaperture.Afterthewigglertwoothertriplets areusetomatchthebeamtotherecirculationtransport.Wehaveimplementedanopticstotry Parameter ~"x(mm-mrad)0.170000:170050:012330:167530:01268 x(m) DIMADErrorPropagationMonte-CarloSimulation<br />

Table4.5:Simulationofemittancemeasurementusingthemulti-monitormethodintheundulator ~"y(mm-mrad)0.149600:146600:011860:147260:01214 y(m) x 5.48 3.09 1.25 5:480:46 3:080:30 1:250:19 5:580:53<br />

region.Theparameterspresentedareallattheexitfaceoflastdipoleofthedecompressorchicane. y -0.13 0:130:13 0:150:14 3:170:31 1:270:20<br />

ofmagneticelements,thedispersionmaynotexactlyvanishafterthearcs.Henceitisvery<br />

Uptonowwehaveassumedthebeamprolemeasurement,forthesubsequentestimationof operateinachromaticmode)intheIRFEL.Insuchasystembecauseofpotentialmisalignment 4.4.5EectofspuriousDispersiononEmittanceMeasurement transverseemittance,isperformedinadispersionfreeregion.Practicallythisassumptionisnot afortioritrue:especiallyafterlargebendingsystemssuchastherecirculationarcs(whensetto


.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. . . .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. . .<br />

. .<br />

. .<br />

. . .<br />

.<br />

.<br />

-15 -10 -5 0 5 10 15<br />

k1MQG2F09 (1/m 2 0.006<br />

quadscan with min=3m -x direction<br />

quadscan with min=3m -y direction<br />

quadscan with min=6m -x direction<br />

0.005<br />

quadscan with min=6m -y direction<br />

0.004<br />

0.003<br />

0.002<br />

intheseregions.Thenpriortomeasuringemittance,thedispersionshouldbemeasured<strong>and</strong> insignicantimpactonthetransversemeasurementperformedwithbeamprolemonitorlocated eventuallycorrectedsothatspuriousdispersioniswithinthetoleratedvalue.Toestablishsuch settingoftheupstreamopticstoachievetwodierentminimumbetatronvalue,3<strong>and</strong>6m. importanttoassesswhatarethetoleranceonthevalueofthis\spurious"dispersiontohavean Figure4.13:Comparisonofbeamspotsizevariationversusquadrupolestrengthfortwodierent<br />

0.001<br />

criterion,wewritethebeamrmsspotsizeasx=p~"(1+2)whereisadimensionless<br />

0.0<br />

spuriousdispersionfordierentvaluesof,<strong>and</strong>thencomputetheemittance.Ingure4.16we beamprolemeasurementstationbyusingamagneticopticscode<strong>and</strong>superimposetheeectsof constant(2(E=E)2)=(~")(Eisthermsenergyspread).Wesimulatethebeamsizeatagiven<br />

)<br />

giveanupperlimitonthespuriousdispersion


20<br />

18<br />

16<br />

.<br />

14<br />

.<br />

12<br />

.<br />

Figure4.14:Relativeerroroncomputedemittanceforthetwocasespresentedingure4.13versus<br />

.<br />

10<br />

.<br />

8<br />

.<br />

6<br />

.<br />

. 4 .<br />

quadscan with min=3m -x direction<br />

.<br />

quadscan with min=3m -y direction<br />

theemittancemeasurementbycodingthemeasurementprocedure[35],dataacquisition<strong>and</strong>data therelativeerroronbeamsizemeasurement.<br />

2<br />

quadscan with min=6m -x direction<br />

analysisinaCprogramwithaTcl/Tkuserinterface.Fromthisprogramtheuserdenethe ticetoachievedesiredbetatronfunctionvariationforoptimizingtheerrorbarsonthemulti-monitor measurements<strong>and</strong>sincewedesiredtohavethesamemethodtomeasureemittanceeverywherein theaccelerator,wedecidedtoonlyusethequadrupolescantechnique.Wetotallyautomated betatronfunctionvariation.Becausewendwecouldnotreliablysettheacceleratoropticallat-<br />

quadscan with min=6m -y direction<br />

0<br />

20 40 60 80 100 120 140 160 180 200<br />

programthenautomaticallyscanthequadrupolestrength.Foreachquadrupolesetting,thebeam quadrupole<strong>and</strong>viewershe/hedesirestouseforthemeasurement<strong>and</strong>fewotherparameters.The<br />

x,y ( m)<br />

prolemeasurementstationarecomputed<strong>and</strong>storedinale.Oncetheprogramhascompleted sizeontheOTRprolemonitor,thetransfermatrixbetweenthequadrupoleentrance<strong>and</strong>the thequadrupolescan,itcomputestheemittanceusingthealgorithmdetailedabove.Thisprogram canalsobeusedtopropagatethebeamparametersalongtheaccelerator<strong>and</strong>observethebeam envelope,usefulinformatione.g.toquantifylatticemismatch. Theprogramcanbedividedintothreeparts:(1)auserinterfacefromwhichtheuserentersparameters<strong>and</strong>readresultsofdataanalysis,(2)amachinemodel,Artemis8,thatisautomatically updatedtoreectthecurrentacceleratorsettings(magnetstrength,cavitygradient,...);<strong>and</strong>(3) subsystems(i.e.varyquadrupoles,inserttransitionradiationscreenintothebeampath,...). Atypicalemittancemeasurement,performedinthebacklegtransportlineforachargeperbunch of40pC,usingthequadrupolescanmethodispresentedingure4.17.Itshowsthevariationof acontroltoolboxthatcontainsaseriesofepics-protocolsequencesusedtocontrolthemachine 8theon-lineModelServerArtemiswasimplementedintheFELbySueWitherspoon<strong>and</strong>BruceBowling<br />

(%)<br />

.


0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Emittance (mm−rad)<br />

0<br />

10<br />

un-normalizedrmsemittance,the-function,theparameter. Figure4.15:Monte-Carlosimulationof200emittancemeasurements.Theplots(fromtop)arethe<br />

5<br />

β (meters)<br />

0<br />

2<br />

1.5<br />

1<br />

0.5<br />

α (no units)<br />

ticledynamics.IntheInjectiontransferline,thebeamenergyisapproximately10MeVinthisTheenvelopettingtechniqueexposedintheprevioussectionreliesonthevalidityofsinglepar- beamspotsizeversusthequadrupoleexcitation. 4.5MeasurementofEmittanceintheInjectionTransferLine<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

regime,thespacechargecollectiveforce(i.e.Coulombianrepulsionbetweenelectroninthebunch)<br />

Measurement Number<br />

envelope.Inanycasetheenvelopettingaredicultforcharacterizing,e.g.measuringemittance, aresignicantthebeamenvelopemustbedescribedwithadierentialequation:theSachererrms envelopeequation[37].Propagationofthebeamthroughamagneticelementthenrequiresthe usingthesingleparticleformalismbasedontransfermatrix.Inthecasewherespacechargeforces integrationofthisequation;generallyspeakingthisintegrationhastobeperformedusingnumericalmethodsbutinsomecaseonecanuseperturbativetheorytondgoodapproximationofthe aresignicantfora60pCchargeperbunch.Therefore,thebeamenvelopecannotbepropagated<br />

trace-spacedensity. samplingtechniques[36].Thislattertypeofmeasurementcanalsobeusedtodirectlymeasurethe ofsuchspace-charge-dominatedbeam.Analternativemethodisbasedonthesocalledphasespace tures4.18.Thebeamletgeneratedbyeachapertureretainsthetransversetemperatureofthe beam.Itisdriftedthroughafreespaceuptoabeamprolemonitor.Thedriftlengthischosenso<br />

Thetechniqueconsistsofinterceptingthespace-charge-dominatedbeambyaseriesofaper


100<br />

10 −3<br />

10 −2<br />

10 −1<br />

10<br />

thatthetransversemomentumimpartsasignicantcontributiontothetransverseprole.Hence Figure4.16:Relativeemittanceerrorversusdimensionlessspuriousdispersioncontributiontobeam size.<br />

1<br />

0<br />

1<br />

toperformveryfastmeasurementwithasimple<strong>and</strong>robustdatareductionalgorithm. thebeaminthedirectionwewishtoperformthemeasurement.Thischoicewasessentiallydone themeasureofthebeamletprolesontheuncorrelatedtransversemomentumspread. Thedierencesamongthevariousapparatusbasedonthisinterceptivetechniqueistheshape downstreamtoanalyzethebeamlets(wire-scanner,uorescentviewer,opticaltransitionradiation screen). Inthepresentcase,theselectingaperturewechoseiscomposedofparallelslits[38]thatsamples oftheselectingaperture(hole,slitsormatrixofaperture),<strong>and</strong>thekindofprolemonitorused<br />

ξ (no unit)<br />

Mathematically,theeectoftheslitscanbeseenasasampling:Ifbeforetheslitsthedensityin<br />

IftheprojectionisobservedafteradriftoflengthL,themulti-beamletproleis: wherenisthenumberofslits. spacedensity,thentheprojectioninthex-x0-planeaftertheslitsis: thespatialplane(x;y)isRR4(x;x0;y;y0)dx0dy0,where4(x;x0;y;y0)isthefourdimensionaltrace i=n Xi=1Zxi+w=2 xiw=2dx2(x;x0)'i=n ()=i=n Xi=1w2(xi;=L) Xi=1w2(xi;x0) (4.45)<br />

thesimplecaseofanormaldistributioninthetrace-space: whereisthehorizontalcoordinateinthebeamletobservationplane.Itisinstructivetoconsider 2(x;x0)=1 p2Nexp"Tx2+2Txx0+Tx02 2~"2 # (4.47)<br />

(4.46)<br />

(ε(ξ)−ε(0))/ε(0) (%)


σ x (mm)<br />

1.5<br />

Figure4.17:Anexampleoftransverseemittancemeasurementinthehighenergyregionofthe<br />

1<br />

<strong>and</strong>vertical(bottom)rmsbeamsizeversustheexcitationofthequadrupole.Thedashedlines<br />

2.5<br />

deducedfromthet.Thechargeperbunchwasapproximatelysetto40pC. areobtainedwiththeleastsquarettechnique.Thereportednumberarethebeamparameters IRFELusingquadrupolescanmethod.Thetwoplotspresentvariationofthehorizontal(top)<br />

2<br />

1.5<br />

ε =8.70 mm−mrad<br />

y<br />

α =1.02 y<br />

1<br />

β =1.44 m<br />

y<br />

0.5<br />

−1000 0 1000 2000 3000<br />

Henceeachbeamletwidthyieldsameasureofthewidthofthetransversedivergenceatthecor- whereNisthenumberofparticlesinthebeam.Forsuchadistribution,theprojectionwrites: ()=Nw 2i=n Xi=1exp2442 2L2~" 2xi+!235exp1~"L22 2 (4.48)<br />

Quadrupole Excitation B’dl (Gauss)<br />

respondingslit(i.e.uncorrelateddivergence),whereasthebeamletscentroidsgiveinformationon theslopeofthetransversephasespace(i.e.thecorrelateddivergencedistribution). Asweunderlinedpreviously,oneadvantageofsuchdeviceistobeabletomeasuretheemittanceof<br />

Iftheincomingbeamonthemultislitmaskisemittance-dominated,SCwillbeinsignicantwith shouldincludetheangularspreadSCinducedbyspace-chargeforce: aspace-charge-dominatedbeam.Infact,intheEqn.(4.46)thereplacementofthedivergencex0by<br />

respecttox0.However,inthecaseofaspace-charge-dominatedincomingbeam,theslitswidth =Lispermittedprovidedthebeamletscanberst-ordertransported.Otherwisethedivergence<br />

shouldbeoptimizesothatthebeamletsbecomeemittance-dominated. AcriteriontodeterminatetheneededslitwidthcanbederivedbyintroducingtheDebyelength D,afundamentalparameterinPlasmaPhysicsthatcanalsobebyappliedto<strong>Beam</strong>Physics:<br />

=Lx0+ZdsdSC ds(s) (4.49)<br />

σ y (mm)<br />

2.5<br />

2<br />

ε x =10.41 mm−mrad<br />

α x =−0.704<br />

β x =1.12 m


multislits mask (copper)<br />

Aluminum Foil<br />

Incoming<br />

Emittance-Dominated<br />

<strong>Beam</strong><br />

<strong>Beam</strong>lets<br />

D<br />

w<br />

Foranelectronbeam,Dwrites tentialintroducedbythistestparticleisscreenedduetoreorganizationoftheneighborcharges. interceptstheincomingspace-charge-dominatedbeam.Thebeamletsissuedfromtheslitsare Figure4.18:Overviewofthephasespacesamplingtechnique.AnincomingAmultislitmask emittance-dominated.<br />

Tele-photo lens<br />

whereistheLorenzfactor,kBtheBoltzmanconstant,Tbthebeamtemperature,measuredinthe qualitatively,thislengthcharacterizetheregioncenteredaroundatestparticleinwhichthepo- D=s0kBTb<br />

5 mm L=620 mm<br />

CCD detector<br />

onthemagnitudeofDversustheinter-distanceparticleswithinthebeamlinter<strong>and</strong>thebeam beamreferenceframe,ntheparticledensity<strong>and</strong>0isthedielectricconstantofvacuum.Depending size,therearetwomainregimes: InthecaseDtheDebyescreeningwillbeineective<strong>and</strong>singleparticledynamicswilldominate<br />

Thereforetransversespace-chargecontributionisinsignicantifD>>eq,eqbeingtheequivalentbeamradius(eq=[xy]1=2).ForthesimplecaseofaK-Vdistributionthetransverse temperatureisgivenby[41]: toitsnearestneighborsthantothecollectiveeldofthebeamdistributionasawhole. forthecharge<strong>and</strong>theself-eldmaybeused;IfD'linterthenaparticleismoresensible ontheDebyelengthcomparedtotheinter-particlesdistance:IfD>linter,smoothfunction<br />

IntroducingtheAlfvencurrentIA=40mc3 Where~"ndenotesthenormalizedemittance. kBTb=8mc2~"2n e,thepeakcurrentIp=Nec z(withzbeingthebunch<br />

e2n (4.50)<br />

2eq (4.51)


length<strong>and</strong>NthenumberofparticleswithinabunchN'n2eqz)yieldsfortheexpressionofthe Henceameasureofthedegreeofself-elddominanceoversingleparticledynamicsisdeducedfrom theratioR=2eq=2D: Debyelength:<br />

R'I 2D=2~"2nIA 2IA()(~"2n) IP 2 (4.52)<br />

CollimatingthebeamwithaslitwillscaleRby,denedastheratiooftheslitrms-width(=p12) totherms-beamsize: whereisthebeamsize(assumedtoberound). ! (4.53)<br />

Therefore,inthecaseofaroundbeam,<strong>and</strong>undertheassumption


TheReductionoftheSpaceChargecondition: ory),theratioR0uaftertheslitswrites: Thenonoverlappingcondition: Thisconditionisdirectlydeducedfromratioofspacechargeterm<strong>and</strong>emittancecontribution intheK-Vequationsexposedpreviouslyinthisnote.Ifuistheconsidereddirection(u=x Theobservedpatterninthescreen,aswealreadyshow,consistsinpeaksassociatedtoeach slits.WemustinsureinchoosingthedriftlengthL<strong>and</strong>thatthepeaksdonotoverlap,i.e.: R0u=Ru 4uL


.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

..<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

...<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

..<br />

...<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. ..<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

-6 -4 -2 0 2 4 6<br />

x (mm)<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

y (mm)<br />

Figure4.19:Simulatedmulti-beamletspatternontheopticaltransitionradiationradiator<br />

4.5.3EmittanceCalculation&Trace-SpaceReconstruction<br />

FromtheOTRimageofthemulti-beamletpattern,aprojectionisgenerated.Thisprojection<br />

consists,aswehavepreviouslydiscussed,inasuiteofpeaks.Eachpeakisautomaticallyidentied<br />

usinga\recognitionalgorithm"[39].<br />

Fromtheprojection,thebeamaveragepositionhxBicanbecalculated<strong>and</strong>usedasthereference<br />

forx-axis.Thebeamletsarethenreferencedtoaslit<strong>and</strong>therebytoaposition(withrespecttothe<br />

beamaverageposition)accordinglyto:xi=wihxBi (4.58)<br />

whereiisanindexthatcanbepositiveornegative<strong>and</strong>identifytheslits<strong>and</strong>wis,aspreviously,<br />

theslitswidth.<br />

Measuringtheaveragepositionofeachbeamletalsogiveinformationonthecorrelatedspread<br />

inthedivergencewhichinturngiveinformationonthe-Twissparameter.Formthebeamlet<br />

distributionwi;jwec<strong>and</strong>educedthebeamdivergencedistributionx0jatthespecicpositionxi<br />

usingtherelation: x0j=jxi<br />

Lhx0Bi (4.59)


.<br />

. . . . . .<br />

. . .<br />

.<br />

. . .<br />

. .<br />

.<br />

. . . . .<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .. . .<br />

.. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . . . .<br />

.<br />

. . ..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . . . .<br />

.<br />

.<br />

. . . .<br />

.<br />

. .<br />

. . . .<br />

. .<br />

. . . . .<br />

.<br />

.<br />

. .<br />

. . . .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

. . .<br />

. . .<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

. .<br />

.<br />

. . . . . .<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. . . . .<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. . .<br />

.<br />

. . . . .<br />

. . . . . .<br />

. . . .<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. . .<br />

.<br />

.<br />

. . . .<br />

. . . . .<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

. .<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . . .<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. . .<br />

. .<br />

. .. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . . . . .<br />

. . . .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. . .<br />

.<br />

. .<br />

. .<br />

.<br />

. . . .<br />

. . . . . . .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.. .<br />

. . .<br />

.<br />

.<br />

. . .<br />

. . . .<br />

.<br />

.<br />

. . .<br />

. . . . . .<br />

. .<br />

. . . . .<br />

. . . .<br />

.<br />

. . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

. . . .<br />

.<br />

.<br />

.<br />

. . .<br />

. . . . .<br />

. . .<br />

.<br />

. .<br />

. . . . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

. . .<br />

. . . . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.. .<br />

.<br />

. . .<br />

.<br />

. .<br />

. . . .<br />

.<br />

.<br />

.<br />

. . . . . .<br />

. . . .<br />

.<br />

.<br />

. .<br />

. . . .<br />

. .<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . . . .<br />

. . . . .<br />

.<br />

. .<br />

. . . .<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

. . . .<br />

.<br />

. . . . . .<br />

. . . .<br />

. .<br />

. . .<br />

.<br />

.<br />

. . . .<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. .. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

. . . .<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. . . .<br />

. . .<br />

. .<br />

.<br />

. . . . .<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. .. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . . .. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. . .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

. . . .<br />

.<br />

. . . . . . .<br />

.<br />

. . .<br />

.<br />

. . . . . .<br />

.<br />

.<br />

. . . .<br />

. . .<br />

.. . .<br />

. . .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. .<br />

. . . .<br />

.<br />

.<br />

. .<br />

. . . .<br />

. . . .<br />

.<br />

.. . .<br />

.<br />

.<br />

. . .<br />

. . . . .<br />

.<br />

. .<br />

.<br />

. .<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . . .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

. . .<br />

.<br />

.<br />

. . .<br />

. . . .<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

. . .<br />

. . . .<br />

. .<br />

. . . . . .<br />

. .<br />

.<br />

. . . . .<br />

. . . . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. . . .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. . .<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

. . .<br />

.<br />

. . . . . . .<br />

.<br />

.<br />

. . .<br />

. . .<br />

. . . .<br />

. .<br />

.<br />

. .<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

. . . .<br />

. . .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . . . . . . .<br />

. .<br />

.<br />

.<br />

. .<br />

. . .<br />

. . .<br />

. .<br />

. .<br />

. .<br />

. . . .<br />

.<br />

. . . . .<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . . . .<br />

. . .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. . . .<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. . .<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

. . .<br />

. . . . .<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. . . . . . . . .<br />

. .<br />

. .<br />

.<br />

. . .<br />

. . .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

. .<br />

. . . . . .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

. .<br />

. . . . ..<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. . . . .<br />

. . . . . . . . . . .<br />

. . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

. . . . . .<br />

.<br />

. . .<br />

. .<br />

.<br />

. . .<br />

.<br />

. . . . . .<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

. . . .<br />

.<br />

. . . .<br />

. .<br />

.<br />

. .<br />

.<br />

. . . .<br />

. .<br />

. .<br />

. . .<br />

. . .<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

..<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . ..<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

. . . . .<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

1.0<br />

.<br />

. .<br />

0.5<br />

. 10%<br />

. .<br />

.<br />

.<br />

...<br />

..<br />

.<br />

.<br />

..<br />

.<br />

90%<br />

0.0<br />

.<br />

contours)usingthesimulatedbeampatternontheopticaltransitionradiationpresentedgure4.19<br />

90%<br />

50%<br />

-0.5<br />

wherehx0Biistheaveragedivergenceofthebeamcomputedfromthebeamlet:x0B=PiPjwi;jx0j Figure4.20:Comparisonoftheexpectedphase-space,generatedviaparticleretracing(eachgrey dotsrepresentamacroparticle),withtheretrievedphase-space(representedwithbacklineiso-<br />

10%<br />

Fromallthepreviouscalculationsitisthenstraightforwardtocomputetheemittance<strong>and</strong>Twiss parameters:<br />

-1.0<br />

-8 -6 -4<br />

hx2i'Pix2iPjwi;j PiPjwi;j.<br />

-2 0 2 4 6 8<br />

x<br />

PiPjwi;j<br />

(mm)<br />

hxx0i'PixiPjx0jwi;j hx02i=PiPjx02 PiPjwi;j jwi;j<br />

thenumberofsampleinpositiondoesnotexceed5<strong>and</strong>thereforesomenedetailonthedistributioncouldbemissed.Indeeditispossibletomovethebeamonthemultislitmaskbymeansoftrace-spacedistributioniso-contourcanbededucedfromthebeamletprolesincethislattercorrespondstosampleofthedistributioninposition(2(xi;x0)).Unfortunatelyundernormaloperation Aswealreadypointedoutitisalsointerestingtohaveaccesstothetrace-spacedistribution.The (4.60)<br />

upstreammagneticsteerers,<strong>and</strong>foreachsettingofthismagnetrecordthebeamlets'projection.In suchacaseitispossibletollthetrace-spacecompletely;ofcoursethisrelyonaperfectstability<br />

x (mrad)


30<br />

25<br />

20<br />

Figure4.21:Fractionofincidentelectronthatscattersontheslitsedgeversusthebeamincident<br />

15<br />

anglewithrespecttothenormalaxisofthemultislitmask.Thedepthoftheslitsis5mm.A of10%oftheincidentelectronwiththematerial.<br />

10<br />

oftheelectronbeam.<br />

5<br />

Theacquireddata,inourcaseaprojectionthatcontainsthebeamletproles,isdigitizedby misalignmentofthemaskof1:2mradcomparetothebeamaxisyieldsapproximatelytheinteraction<br />

0<br />

theframegrabber<strong>and</strong>thentransferredtoanIOConwhichVxWorksroutineshavebeenimple-<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

mented[39].Afteridentifyingeachbeamletprole<strong>and</strong>theslititcomesfrom,thecodecomputes<br />

<strong>Beam</strong> Incident Angle (mrad)<br />

theEPICSchannel-accessprotocol.WedevelopedX-windowbasedscreensthatdisplayemittance, Twiss-parameters<strong>and</strong>possiblyphase-spaceisocontours.Theachievedspeedsare,respectively, theemittance<strong>and</strong>Twissparameters.TheresultscanthenbeaccessedfromanyX-stationvia phasespaceparametersinrealtimewhiletuningtheinjector.Storingrawdata<strong>and</strong>projectionsis alsopossibleateachstageoftheprocessformoredetailedo-lineanalysis,e.g.using(time<strong>and</strong> about1<strong>and</strong>2secforupdatingparameters<strong>and</strong>plotrefresh,aspeedthatallowsobservingthe CPUconsuming)powerfulimageprocessingtools.<br />

N Edge/N IN (%)<br />

= Parmela<br />

=0.5 Parmela<br />

=3 Parmela


Table4.7:Typicalsystematicerroronemittance<strong>and</strong>Twiss-parametersforthenominalemittance value<strong>and</strong>twoextremecases. 1.15972.5 0.39569.9 0.204019.9 ~" ~"=~"(%)=(%)=(%) 2.6 9.9 19.9 2.6 10.4 20.9<br />

priorifollowanykindofanalyticalfunction.Forthesereasonsweperformthiserrorpropagation alotofapproximation<strong>and</strong>assumptions,especiallysincethetrace-spacedistributiondoesnota 4.5.4ErrorAnalysis ErrorPropagation Theerrorpropagationisquitetedioustoperformanalyticallysincedirectcalculationsrequire errorontherms-emittanceasafunctionofthesecond-ordermoments: Theerroronthehxx0iisgivenby: numerically.Followingpreviousderivation[45],itisstraightforwardtocomputethesystematic (~")2=1~"20@hxx0i2hxx0i2+ (hxx0i)2=PihPjw2i;jx2i(hx0i)2+Pjw2i;jhx0i2i(x)2i hx02i2 PiPjwi;j 4!2hx0i2 hx2i2 4!2(hxi)21A (4.61)<br />

Similarly,theerroronhx02iwrites:hx02i=PjhPi2wi;jx0ji2 Wheretheuncertaintyontheaveragethedivergenceissimplyhx0i'x0.Theerroronhx2iis: hx2i=Pih2Pjwi;j(x0j)i2 PiPjwi;j (4.63) (4.62)<br />

Wheretheerroronthedivergenceisestimatedtox0=1Lq2+D2(L)2 oftheOTRmonitor('60m),hasbeenaddedinquadrature.Theuncertaintyonthedriftlength tocomputeerrorsondierentsetsofdata.Typicaluncertaintiesassociatedwiththeemittance<strong>and</strong> TwissparametersarepresentedonTable4.7forthenominalexpectedemittance<strong>and</strong>twoextreme L,isapproximately5mm.Allthepreviousformulaehavebeengatheredinaprogramthatallows PiPjwi;j L2where,theresolution (4.64)<br />

chargeeld.thiseectisduetothefactthatwhenanelectronbunchgetveryclosetotheslits<br />

OtherSourceofErrors cases;asexpected,thiserrorincreasesastheemittancevaluedecreases. Asmentionedinreference[44],theslits(directedalongyaxis)willreducethex-transversespace


(sayonebunchlength),thetransverseselfeldisshort-circuited.Thiseectisconsideredtobe Anothersourceoferroristheeectofnon-zerospace-chargeforceinthebeamlets.Sucheecthas insignicantinourexperiment. beenstudiednumericallyforthemaximumchargeperbunch(135pC)<strong>and</strong>wasobservedtoenlarge<br />

Wechosetocommissionthemultislitassemblyintheinjectortestst<strong>and</strong>(ITS)ofJeersonLab thantheresolutionofthemonitor<strong>and</strong>thereforeisneglected. 4.5.5FirstExperimentintheInjectorTestSt<strong>and</strong> thebeamletswidthontheOTR-monitorbyapproximately12m(4-).Thisenlargementisless<br />

photocathodegun,asolenoid,<strong>and</strong>adiagnosticbeamlinethanincorporatesatransverseemittance measurementbasedontheone-slit<strong>and</strong>wire-scannermethod[14].Thegunenergycanbevaryup to500keV<strong>and</strong>themaximumavailablechargecanbesettoapproximately135pC.Sincethemask acceptanceisrangingfrom0:6mm-mradto1:1mm-mrad(unormalizedrmsemittance)wehadto couldusetocomparetheresultsobtainedwiththemultislitmask.Thecongurationconsistsina sincethiso-linefacilitywasinstrumentedwithanotheremittancemeasurementsystemthatwe<br />

wasarbitrarysetto250keV. Preliminarytest<strong>and</strong>crosscheckwiththemonoslitmethod emittance;initiallythechargewasvaryfrom5pCupto10pCtoperformourtest.Thegunenergy lowerthechargeperbunchaccordinglytoparmelanumericalsimulationstoachieveanadequate<br />

generatedemittance-dominatedbeamletisanalyzeddownstreambythemeanofawirescanner themultislits,basedonphasespacesamplingmethod:amovableslitselectsaposition<strong>and</strong>the prolemonitor.Theadvantageofthis\oneslit<strong>and</strong>collector"techniqueisitsabilitytoresolvethe phasespacedistributionforawidedynamicalrangeinemittancebyadjustingtheslitspositions toperformveryaccurateemittancemeasurementforawiderangeofcharge.Thetechniqueis,as steps.Suchsystemhasbeensuccessfullyusedtofullycharacterizetheemittanceofthebeam producedoutofthephotoemissiongun.Unfortunatelythismethodistimeconsuming:thetime Asmentionedabove,theinjectortestst<strong>and</strong>isequippedwithone-slit<strong>and</strong>wire-scannerapparatus<br />

requiredtoperformoneemittancemeasurementistypically45mins<strong>and</strong>thereforerelyonthe assumptionofperfectbeamstabilityoverthistime.Duringourtestswendthebeamnotso could.Unfortunatelybecauseoftechnicalproblemwewereonlyabletoilluminateuptofourslits. stableoverthislargetime. Forarsttest,wesetthechargeto10pC<strong>and</strong>actedonthesolenoidstrength(theonlyparameter onwhichwecanplayon-line)totrytoilluminatewiththeelectronbeamasmanyslitsaswe Atypicalbeamletsproleobtainedperformingourtestsispresentedingure4.22alongwitha agreesatthe15percentlevel.<br />

typicalreconstructionoftrace-spacewhoseiso-contourdensityplotispicturedingure4.23. Thetable4.8presentstheresultsofourcrosscheckbetweenthetwomethods.Bothtechnique


180<br />

8<br />

160<br />

6<br />

Figure4.22:Anexampleof2Dbeamdistributionontheanalyzerscreendownstreamthemultislit<br />

4<br />

140<br />

mask.Theprojectionontothex-axisisalsodisplayed.<br />

2<br />

120<br />

0<br />

100<br />

−2<br />

80<br />

−4<br />

60<br />

−6<br />

40<br />

Table4.8:Comparisonofthermstransverseemittancemeasurementperformedwiththemultislits ~"x(mm-mrad)~"x(mm-mrad) Dierence(%)<br />

−8<br />

<strong>and</strong>theone-slit<strong>and</strong>one-harptechniques. 0.4669 0.5607 0.5594 multislitmethodone-slit-oneharpmethod 0.5071 0.5070 0.4859 811<br />

15<br />

−10<br />

20<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

x (mm)<br />

MeasurementofEmittanceintheInjectorTestSt<strong>and</strong> Wethenvariedthesolenoidstrengthfrom237:5Gupto307:5Gtoseehowwasevolvingthe around280G(seeFig.4.24)asobservedinnumericalsimulation.The-functionpresentsas emittancevaluefordierentsettingsoftherstsolenoid.Theemittancepresentsagapatvalues<br />

Chapter1).Thenumberofproducedelectronsdependsontheselectedwidthforthemacropulse.<br />

thenumberofphotonwasstillhighenoughtoproducedunwantedelectrons(seeourcommentin theoutputoftheswitchwhenitiscloseoropen)wasnotoptimized<strong>and</strong>thenevenwhenclosed, factthiswasduetoproblemwiththeopticalswitchofthephotocathodelaseryieldingalightleak creatinglowemittance\ghostpulses":extinctionratio(ratiobetweentheintensityofthelightat expectedaminimumcorrespondingtothebeamwaist.Chargewasvariedusingthelaserattenuator <strong>and</strong>thebunchchargewasmeasuredusingabeamdumpedequippedwithaFaradaycup.Asitcan beseeningure4.25below,theemittancewasfoundtobedependentonthemacropulsewidth.In<br />

y (mm)<br />

10


6<br />

550<br />

500<br />

4<br />

450<br />

2<br />

400<br />

4.6Summary<br />

350<br />

0<br />

300<br />

Inthischapterwehavepresentedthetechniqueswehavedevelopedtoperformemittancemeasure-<br />

250<br />

−2<br />

mentintheinjectortransferline,aregionwherethebeamisstillinthespacechargeregime,<strong>and</strong>in Figure4.23:Anexampleofreconstructedphasespaceiso-contourdensity.<br />

200<br />

the38+MeVlinac<strong>and</strong>recirculationregion.Wehaveshownthatundertheexpectedexperimental<br />

−4<br />

conditionbothmeasurementcouldbeperformedwithsystematicerroroftheorderof10%.<br />

150<br />

100<br />

−6<br />

50<br />

−8 −6 −4 −2 0 2 4 6 8<br />

position (mm)<br />

divergence (mrad)


4.0<br />

3.5<br />

3.0<br />

2.5<br />

Figure4.24:Emittance<strong>and</strong>betatronfunctionversusthesolenoidexcitation.<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

230 240 250 260 270 280 290 300 310<br />

Solenoid Magnetic field (Gauss)<br />

x x<br />

RMS<br />

x ( .mm.mr)<br />

(m)


2.0<br />

1.8<br />

10 -1<br />

2 5 10 0<br />

2 5 10 1<br />

1.6<br />

SOLENOID FIELD 275 G<br />

Figure4.25:Emittanceasafunctionofthechargeperbunchfortwodierentmacropulsewidth<br />

1.4<br />

(10sec<strong>and</strong>50sec).<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

2<br />

Charge (pC)<br />

(mm-mr)<br />

pulse 10 sec<br />

pulse 50 sec


Characterization LongitudinalPhaseSpace Chapter5<br />

5.1Introduction Asmentionedearlier,inChapter2,theFELgainstronglydependsonthebunchlength<strong>and</strong> Thebunchingprocess,alongthebeamtransport,iscontrolledbyseveralelements:awarmbuncher energyspreadachievedinthevicinityoftheundulatormagnet.Henceitisofprimeimportanceto properlyinstrumentthedriver-acceleratorinordertomeasurethesequantitiesatcriticalpointof thebunchingstage.<br />

whichconsistsinestimatingthebunchpropertiesbydetectingcoherentradiationemittedfromthe bunch,<strong>and</strong>time-basedmethods. thereforecanallowtoisolateaproblemormonitordriftsinthesystem.Forsuchapurpose severaldiagnosticshavebeendeveloped.Thesediagnosticsincludefrequencydomainmethods, chicanes.Inordertomakesurethebunchingprocessisperformingadequately,itisworthwhileto havemanylongitudinaldiagnosticsthatcanprovideinformationonhowthebunchingisperforming. Alsotheycanbeusefultoidentifyatwhichstagethebunchdynamicsisnotasexpected<strong>and</strong> cavity,SRF-cavitieslocatedintheinjector<strong>and</strong>inthemainlinac,<strong>and</strong>theinjection<strong>and</strong>by-pass<br />

Alongwithbunchlengthmeasurement,thelongitudinalphasespaceemittancecanbeestimated, 5.2TheLongitudinalPhaseSpaceManipulationintheIRFEL manipulationinthedriveraccelerator. undercertainconditions,providedonecanmeasuretheintrinsicenergyspread.<br />

IntheIRFEL,bunchformationstartsattheelectrons'emissionfromthephotocathodewhichis Bothmeasurementsaredescribedinthischapter,afterdiscussingthelongitudinalphasespace<br />

illuminatedbyadriver-laserwhoseopticalpulseisapproximately47psec(FWHM),asmeasuredby autocorrelationtechnique1.Thereforeatthecathodesurface,theelectronsaregatheredinbunch ofapproximately47psec(FWHM),ifweignorethebunchlengtheningduetotheGaAswafertime 1M.D.Shinn,privatecommunication 93


theendofthemagneticdecompressorisbestdescribedintermsofsequencesofparmelaruns response.Theevolutionofthelongitudinalphasespacefromtheelectronbunchemissionupto showningure5.1.Inthefollowingweonlyconcentrateonthecaseof60pCchargeperbunch withlasingturnedo. 2.Therstelementthatsignicantlyaectsthelongitudinalbunchdistributionisthebuncher 1.Thelengthoftheelectronbunchafteremissionviaphotoelectriceect<strong>and</strong>accelerationto cavity.Thiscavityisoperatedatzero-crossingsothattheaveragearrivaltimeofthebunch coincideswithazeroacceleratingeld.Theelectronsarrivingsooner(i.e.thatbelongtothe bunchhead)aredeceleratedwhereasthelateelectrons(i.e.thatarelocatedinbunchtail)are accelerated(seeFig.5.1(B)).Hencetheprincipaleectofthiscavityistoprovideanenergy rampacrossthebunch.Thisenergymodulationtranslatesasthebunchpropagatesthough 350keVintheDC-gunstructureisapproximately15ps(RMS)(seeFig.5.1(A)).<br />

3.Afterdriftingthroughalongitudinallyfreespace,thebunchenterstherstaccelerating adriftspacetoa\bunching"oftheelectrons:becauseoftheelectrons'averageenergyof ofappropriatelengthwillbunchtheelectrons(mathematicallythistraducestothenonzero approximately350keV,whichmakethemnonrelativistic,<strong>their</strong>propagationinadriftspace valueofthemomentumcompactionofadriftspaceoflengthL:R56=L=2).<br />

4.Approximately7cmaftertheexitofthepreviouscavity,thebunchentersasecondSRF- constantuptothecavityexitwhiletherelativeenergyspreadisgreatlyreduced. ofthecavity(thatactsasacapturesection),thenthebunchlengthisfrozen<strong>and</strong>remains acceleratingelectriceld).Thereisastrongcompressionoccurringinthersttwocells Thecavityisoperatedformaximumenergygain(whichdoesnotmean,becauseofthenonrelativisticnatureoftheelectron,thatthebunchisinjectedinphasewiththemaximum ve-cellCEBAF-typeSRF-cavitywithanominalaverageacceleratinggradientof11MV=m.<br />

themaximumenergygainphase,sothatitprovidesfurtherbunchcompression.Indeedthe choiceofthephaseismadetoimpressthelongitudinalphasespacewiththeproperslope cavitywithanominalaverageacceleratinggradientof9MV=m.Thiscavityisoperatedo neededtomatchtheslopedesiredattheentranceoftheupstreamachromaticchicanefor optimumbunchingthroughthischicane.Atthecavityexit,theparametersare:1.2psfor<br />

6.ThenthebunchisinjectedintheSRFlinac.Thegradientofeachcavity<strong>and</strong>theoverallphase 5.Theelectronsthendriftthroughanachromaticthree-bendchicane.Thislattercanreduce thebunchlengthbymeansofmagneticcompressionthatisbasedonthefactthatpathlength insidebendsisenergydependent. thebunchlength,4%fortherelativeenergyspread<strong>and</strong>approximately10MeVforthebeam<br />

ofthelinacisadjustedtogivepreciselythedesiredenergy(whichwilldeterminetheFEL averageenergy.<br />

7.Thecompressorchicanewillcompressthebunchdownto120m(RMS)toachievethe 8.Afterthewigglerasecondchicanethatactsasadecompressorchicanelengthensthebunch chicane. minimumbunchlengthatthewigglerlocation. wavelength)<strong>and</strong>toadjusttheincomingbunchlength<strong>and</strong>energyspreadinthecompressor length.


concentrateonthebeamparametersintheundulatorvicinity,whichareofimportancetostartup oftheFELprocess<strong>and</strong>quantifyfewofitsproperties. Thebeamdynamicsintherecirculationwillbedescribedlater.Inthepresentchapterweonly 9.Thebeamisthenrecirculated.<br />

E (keV)<br />

. . .<br />

. . . . .<br />

.<br />

.. . .<br />

... .. .<br />

.<br />

.<br />

.. .<br />

. . . ..<br />

.. .<br />

. .. .<br />

. . .<br />

. . . . .<br />

.<br />

. .. . . .. . .<br />

. . ... . .. . .. ..<br />

. . .. . . . .. .. .<br />

.. .. . . . .<br />

... .. . .... ... .<br />

. .. . .. . ... .. . . .. . . .<br />

.<br />

.<br />

..<br />

. .. . .. . .. ..<br />

. . .. .<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.. . . ..<br />

.<br />

. .. . .. .<br />

.<br />

. . . ... ...<br />

.<br />

.. . . .... .. .. . . . . .. .<br />

. . ..<br />

.. .<br />

. .<br />

. .. . ..<br />

.<br />

.<br />

. .. . ..<br />

. . . ...<br />

. . . .<br />

. .. . .<br />

.<br />

. .<br />

. . .<br />

. . ... . .. . .<br />

.<br />

. . .<br />

. . .. . .<br />

... . . .<br />

.<br />

. .. . .<br />

.. . .. .<br />

. . ... . .<br />

..<br />

..<br />

..<br />

. .<br />

. .<br />

.. . .<br />

.. . . . .. . .. .<br />

.<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

.. .. ... .. . .<br />

. .. . . . . ... .<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-30 -15 0 15 30<br />

. . .. .<br />

. .<br />

. . . .<br />

. .<br />

. .. .<br />

. .<br />

.... . ..<br />

.<br />

.. .. ...<br />

..<br />

.. . . . ...<br />

. .<br />

. ... .. . . ... . . . . .<br />

.... . ...<br />

.. . . ... . .. ..... . ... . . .. .<br />

. ..<br />

. . .. ... . .<br />

. .<br />

. .. .<br />

.. .<br />

.<br />

. .. .. .<br />

.. .<br />

.. ..... .. ... . .. .. . . . .. .<br />

. .. . .. .<br />

.. .. . . . .. . .. .<br />

. . . . .. . .. . .. . . ... . . . . . .. . . .<br />

..<br />

. .<br />

....<br />

.. ... ..... .. . .. . .<br />

.. .<br />

. . .. . . . . .. .. . .. . . . ... . .. ..... .. . . .<br />

. ... . .. .<br />

. .<br />

. . . .<br />

.<br />

.. .. .<br />

. ... . ..... .<br />

. . . ... .. .. .... . ... . . ..<br />

. .<br />

. .... .. . .. .. . .. .... . .<br />

. .<br />

.. . .. . . .. .<br />

. .. .. . .... .<br />

. . . . .. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

20<br />

..<br />

. ... .<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-30 -15 0 15 30<br />

. . .<br />

. .<br />

. .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

. . . . .<br />

. . .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. . . .<br />

. . . .<br />

. . . . .<br />

. . .<br />

.<br />

. . . .<br />

.<br />

. . .<br />

.. .<br />

.<br />

.<br />

. .<br />

.<br />

. . . .<br />

. .<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

. .<br />

. .<br />

. . . .<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

. . . . .<br />

.<br />

. .. .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

. . .<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. . . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. . . . .<br />

. . . .<br />

.<br />

.<br />

. .<br />

.. . .<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . . .<br />

. . . .<br />

.<br />

.<br />

. . . .<br />

.<br />

.. . . . .<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

. . .<br />

. .<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

20<br />

15<br />

.<br />

10<br />

. . . .<br />

.<br />

.<br />

.<br />

5<br />

. . . .<br />

. . .<br />

. .<br />

. .<br />

0<br />

.<br />

. .<br />

. . .<br />

. . . . ... . . .<br />

. . .<br />

-5<br />

. . .<br />

. .<br />

.<br />

-10<br />

-15<br />

-20<br />

-5.0 -2.5 0.0 2.5 5.0<br />

.. .<br />

. .<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

. . . . .<br />

.<br />

.<br />

.<br />

. . .<br />

. . .<br />

. . . .. .<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

. ..<br />

. . .<br />

.<br />

. .<br />

. .<br />

. .. .<br />

.<br />

.. .<br />

. . .<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. . .<br />

. . .<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. . . . .<br />

. . . . . . .<br />

. .<br />

. . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. ..<br />

. . .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . ..<br />

. . . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.. .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

..<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. . ..<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

. . . . . .<br />

. . .<br />

. .<br />

. . . .. .<br />

. . .<br />

.<br />

. .<br />

.<br />

. . . . .<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . . .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

. . .<br />

. .. .<br />

. . .<br />

100<br />

80<br />

60<br />

.<br />

.<br />

40<br />

. .<br />

. . .<br />

20<br />

. . . .<br />

.<br />

.<br />

. .<br />

.<br />

0<br />

. .<br />

.. .<br />

.<br />

.<br />

.. . ...<br />

. -20 . .<br />

. .<br />

.<br />

.<br />

-40<br />

.<br />

-60<br />

-80<br />

-100<br />

-5.0 -2.5 0.0 2.5 5.0<br />

..<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. . .<br />

. . . .<br />

. .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

. . .<br />

.<br />

. . .<br />

.<br />

. . .<br />

. . .<br />

. .<br />

. . .<br />

.<br />

. . .<br />

. . ... .<br />

. .<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.. . .<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. . .<br />

. .<br />

. .<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

. . . . .<br />

. . . ..<br />

. .<br />

.<br />

. .<br />

. . . .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.. .<br />

. .<br />

. .<br />

. . .<br />

. .<br />

.<br />

. . .<br />

. . .. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

. . . . .<br />

. . . . .<br />

.<br />

.<br />

. .<br />

. .<br />

. . .<br />

. . . .<br />

.<br />

.<br />

. . .<br />

. . .<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

. .<br />

. . .<br />

. .<br />

. . .<br />

.<br />

. . . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . . . . .<br />

. . .<br />

..<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. . .<br />

. . . .<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. . . .<br />

.<br />

. . .<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

100<br />

.<br />

80<br />

.<br />

60<br />

.<br />

.<br />

.<br />

40<br />

. .<br />

20<br />

.<br />

0<br />

.<br />

. .<br />

.<br />

. . . .<br />

.<br />

.<br />

-20<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

-40<br />

. . .<br />

. .<br />

.<br />

.<br />

-60<br />

.<br />

.<br />

-80<br />

-100<br />

-5.0 -2.5 0.0 2.5 5.0<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .. .<br />

.<br />

. .<br />

. .. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. ..<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. . . .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

. . . . .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

.<br />

. .<br />

. .. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

. . .<br />

..<br />

. .<br />

.<br />

. .<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. .<br />

. .<br />

.<br />

. . .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. .<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-5.0 -2.5 0.0 2.5 5.0<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . . .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.. . .<br />

. .<br />

.<br />

. .<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . . . .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

..<br />

.<br />

. .<br />

.<br />

.. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. . ..<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

. .<br />

. .. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .. .<br />

. . . .<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

..<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

100<br />

.<br />

80<br />

.<br />

.<br />

.<br />

.<br />

. . .. .<br />

60<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

40<br />

.<br />

.<br />

20<br />

. .<br />

. .<br />

0<br />

. . .<br />

. .<br />

.<br />

-20<br />

.<br />

.<br />

-40<br />

-60<br />

-80<br />

-100<br />

-5.0 -2.5 0.0 2.5 5.0<br />

(RF-deg.)<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . . .<br />

.<br />

. ... .<br />

. . . .<br />

. .<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .. . .<br />

.<br />

. . .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.. . .<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

. . . . .. .<br />

. ..<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

. .<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

. . .<br />

. . ..<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. ..<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. ..<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

..<br />

.<br />

.<br />

.<br />

. .<br />

..<br />

.<br />

..<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

. .. .<br />

.<br />

. . .<br />

. .. . .<br />

.<br />

.<br />

.<br />

.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

.<br />

-40<br />

.<br />

.<br />

. .<br />

-60<br />

.<br />

-80<br />

-100<br />

-5.0 -2.5 0.0 2.5 5.0<br />

(RF-deg.)<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

..<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. ..<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. . .<br />

.<br />

.<br />

. .<br />

. . .<br />

. . ..<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. .. .<br />

.<br />

.<br />

.<br />

.<br />

.. . .<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. . .<br />

. .<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

. . . .<br />

. . . .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.. . .<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

. . .<br />

. . .<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. . .<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .<br />

. . .<br />

. . .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. ...<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . . .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

.. .<br />

. .<br />

. .<br />

. . .<br />

(D) (E) (F)<br />

longitudinalphasespaceisplottedattheexitofthegun(A),thebuncher(B),theSRF-cavity#1 (C),theSRF-cavity#2(D),theachromaticchicane(E),theSRF-linac(F),thebunchcompressor chicane(G),thebunchdecompressorchicane(H),thearc#1(I).Notethatelectronswithpositive Figure5.1:SequencesofparmelarunsdemonstratingthebunchingprocessintheIRFEL.The<br />

100<br />

80<br />

.<br />

.<br />

(G) (H) 60<br />

(I)<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-10 -5 0 5 10<br />

WepresentedinChapter2theformalismassociatedtotheemissionofelectromagneticwaves 5.3TheoryofBunchLengthMeasurementusingFrequencyDomain belongtothebunchtailwhiletheonewithnegativeareinthebunchhead.<br />

(RF-deg.)<br />

possiblefromthelattertoextractinformationonthelongitudinalbunchdistribution.<br />

namedthespatial<strong>and</strong>angularBFF.InthenextsectionwestudybothBFFs<strong>and</strong>showhowitis (d2P=(d!d))bysuchsystemhasacontributionthatisproportionaltoN2,whereNisthe byamulti-particledistribution.Wehaveseenthatthetotalspectralangularpoweremitted calledbunchformfactor(BFF)f(!;bn)thatinturncanbewrittenastheproductoftwofactors numberofelectronsinthemulti-particlesystem.Thiscontributionisalsoproportionaltotheso<br />

E (keV)<br />

E (keV)<br />

(A) (B) (C)


TheAngularBFF ThesecondterminEqn.(2.5)inChapter2isthedependenceofthecoherentemissionwithrespect totheangularbeamproperties.Itisinterestingtonotethatthistermiswavelengthindependent <strong>and</strong>thereforeisnotgoingtoinuencethespectrumoftheradiation:itactsasamultiplicative is: factorthatcanreducethetotalpoweremittedbyabunchedbeam.ItsexpressionfromEqn.(1.5) Itisrelativelydiculttoevaluatethisfactorforanarbitrarybunchdistribution.Howeverunderthe assumptionoftransversecylindricallysymmetricbunches,<strong>and</strong>introducingtheangles=6(bn;b), =6(bnyz;bz), =6(bn;dbz),<strong>and</strong>=6(bnxy;dbz)itreducesto[2]: ~A()=jZd ~A(bn)def ZdA( =jZA(!) )cossin (!)d!j2 cossincos sin j2 (5.2) (5.1)<br />

whichinturncanbeexpressedasacompleteellipticintegral(extendedfromRef.[2])ifweassume theangulardistributionwritesasaGaussi<strong>and</strong>istribution:A( ~A()=j202Z=(2) 0x[(1x)K(2x1=2 1+x)+(1+x)E(2x1=2 1+x)]exp[2 )=1=p202exp( 202x2]j2dx 2=(202)<br />

divergenceisoftheorderof0'1mrad,wesatisfytherelation0'1=forthenominal radiation,thespectralpowerhasitsmaximumatanglesoftheorderof'1=<strong>and</strong>sincetheRMS angulardistributioningure5.2.Itisnoticedthattypicallythisintegralisunityinthecasewhere thebeamdivergence0ismuchsmallerthantheangleofobservation.Inthecaseoftransition introduced2.ThenumericalintegrationofEqn.(5.3)ispresentedfordierentRMSwidthofthe wherethecompleteellipticintegraloftherstkind,K(u),<strong>and</strong>secondkind,E(u),havebeen (5.3)<br />

energyof38MeV(i.e.'77).Henceforthwewillassume,exceptwhenexplicitlymentioned,that<br />

equationmoreexplicit.Ifbnyzistheprojectionofthebnunityvectorinthe(y;z)plane,let thisfactorisalwaysunityforourtypicalbeamparameters. TheSpatialBFF TheEqn.(2.5)iswritteninavectorform.WewillworkinCartesiancoordinatestomakethis<br />

wherewehaveassumedwecouldfactorthe3D-spatialbeamdensitydistributionSastheproduct ofthe1DprojectionsSx,Sy<strong>and</strong>Sz. bn!X=(xsinsin+ysincos+zcos),<strong>and</strong>thisequationrewrites: =6(bn;bz)<strong>and</strong>=6(bnyz;bx)thentheargumentoftheexponentialfunctioninEqn.(2.5)writes<br />

Inordertousefrequency-domainanalysistodeduceinformationonthebunchlongitudinaldistribution,itisnecessarythatthe!-dependencecomeonlyfromlongitudinalcoordinatez.Fromthe 2Theellipticintegraloftherst<strong>and</strong>secondkindarerespectivelydenedasK(u)=R=2 ~S(!;bn)def =jZSx(x)Sy(y)Sz(z)expi!c(xsinsin+ysincos+zcos) 0[1u2sin2()]1=2d (5.4)<br />

<strong>and</strong>E(u)=R=2 0[1u2sin2()]1=2d


1.1<br />

1 mrad<br />

0.9<br />

5 mrad<br />

mainlyduetothelongitudinaldistribution: zeff=zcos;<strong>and</strong>deriveacriteriononthermsbeamsizetoensurethewavelengthdependenceis latterequation,wec<strong>and</strong>enetheeectivecoordinatesxeff=xsinsin,yeff=ysincos<strong>and</strong> Figure5.2:AngularBFFforthreedierentvalueoftheRMSbeamdivergence.<br />

0.7<br />

10 mrad<br />

0.5<br />

0 0.02 0.04 0.06<br />

whichcanbeexpressedintermofRMSquantitieswithoutlossofgenerality: or ztanhx2sin2+y2cos2i1=2 zeffhx2eff+y2effi1=2 (5.6) (5.5)<br />

θ (rad)<br />

Ifthislattercriterionisfullledwecanusethelinechargeapproximation,i.e.,treatabunchasaline witha1Dchargedistribution.Insuchcase,analysisofthecoherentemissionofthebunchreveals informationonthebunchlongitudinaldistribution<strong>and</strong>isnotcontaminatedbythetransverseeect aforementioned,<strong>and</strong>wecanwritetheBFFasitisgenerallywrittenintheliterature: ~S()=jZ+1 ztanh2xsin2+2ycos2i1=2 (5.7)<br />

ThecomputationoftheBFFforanormaldistributionorasquaredistributionissimple;theresults arepresentedinFig.5.3wherewehaveassumedthebunchisacontinuum<strong>and</strong>itsRMSextentis withthebunch.Wehaveintroducedthewavenumber=1==!=(2c)forconvenience. 300m.Forbothtypesofdistribution,theBFFssuddenlytakeoatwavelengthoftheorderof<br />

whereasbeforeSz(z)isthelongitudinalbunchdensityalongthelongitudinalaxiszmovingalong 1Sz(z)exp(2iz)dzj2 (5.8)<br />

Angular Bunch Form Factor (a.u.)


structure<strong>and</strong>length.Alsowecannoticethatthesquaredistribution,<strong>and</strong>generallyalltypeof distributionwithsharpedge,inducesBFFwithlowwavelength(highfrequency)components.It thebunchlength.Hencemeasuringthecoherentradiationpoweratwavelengthcomparabletothe bunchlength,i.e.wherethecoherentenhancementoccurs,canprovideinformationonthebunch<br />

10 -4<br />

2 5 10 -3<br />

2 5 10 -2<br />

10<br />

(m)<br />

8<br />

10 9<br />

10 10<br />

10 11<br />

10 12<br />

10 13<br />

10 14<br />

10 15<br />

10 16<br />

10 17<br />

10 18<br />

N<br />

N<br />

2<br />

(solidline)bunches. isinterestingtonumericallycomputetheBFFusingaMonte-Carlosimulationtechnique,fora factorfor106macro-particles.Inthecaseofthebunchchargeweareinterestedini.e.60pC,the Figure5.3:Bunchformfactorcomputedfora300m(RMS)square(dashline)<strong>and</strong>gaussian<br />

distribution: macro-particlerepresents375electrons.Thechoicetosimulateonly106macro-particleinsteadof thewholenumberofelectroni.e.3:75108wasimposedbythedesiretoeconomizeCPUtime<strong>and</strong> expeditesimulations.TheMonte-CarlogenerateddistributioncanbewrittenasaKlimontovich nitenumberofmacro-particlesinthebunch.Ingure5.4wepresentcomputationofbunchform<br />

<strong>and</strong>theassociatedbunchformfactor,underthelinechargeassumption,reducestoasum: S(z)=i=N Xi=1(zzi) Weseeingure5.4thatbecauseofthenitenumberofparticles,thebunchdistribution<strong>and</strong> ~S()=i=N Xi=1jsin2zij2+jcos2zij2 (5.10) (5.9)<br />

theBFFcannotbetreatedascontinuum.Thesefeaturesshouldbekeptinmindevenifinthe followingwewillassumethebunchdistributiontobecontinuum. Ifoneusesst<strong>and</strong>ardbeamparametersexperimentallyachievedintheIRFELaccelerator,i.e.transversebeamsizeofapproximately1mm,minimumbunchlengthof140m,Eqn.(5.7)isnotafortiori P tot/P 1e - (no unit)


Population<br />

Population<br />

100000<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

-5.0<br />

100000<br />

-2.5 0.0 2.5 5.0<br />

90000<br />

80000<br />

70000<br />

60000<br />

BFF (a.u.)<br />

BFF (a.u.)<br />

10 13<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 -5 10 -4<br />

10 -3 10 -2<br />

10 -1<br />

105<br />

10 13<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

-5.0 -2.5 0.0 2.5 5.0 10 -5 10 -4<br />

10 -3 10 -2<br />

10 -1<br />

10 0<br />

10 1<br />

10 2<br />

105<br />

10 6<br />

10 7<br />

10 8<br />

10 9<br />

100000<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

-5.0 -2.5 0.0 2.5 5.0 10<br />

z/ z<br />

-5 10 -4<br />

10 -3 10 -2<br />

10 -1<br />

10 0<br />

10 1<br />

10 2<br />

10<br />

/ z<br />

5<br />

10 6<br />

10 7<br />

10 8<br />

10 9<br />

10 10<br />

10 11<br />

10 12<br />

10 13<br />

coherentradiationsetupthecollectingopticshasanangularacceptanceof0:3rad.Westudythe synchrotronradiationmostofthepowerresidesinaconethatisoftheorderof1=:IntheFEL natelywearealsohelpedbythedirectionalityoftheradiation:inthecaseofbothtransition<strong>and</strong> typesofbunchlongitudinaldistribution(left). satised:transverseeectcanyieldnon-negligiblecontributiontothebunchformfactor.Fortu- Figure5.4:Monte-Carlosimulatedbunchformfactor(right)with106macroparticleforthree<br />

eectoftransversebeamspotsizenumericallybyperformingtheintegration:<br />

(r=10z),<strong>and</strong>a\pancake"bunch(z=0).<strong>Beam</strong>sizesignicantlyaectstheregionofcoherent resultsofthenumericalintegrationofEqn.(5.11)isdepictedinFig.5.5wherewecomparethe Forsimplicity,let'sassumethatthebunchiscylindrically-symmetrici.e.x=ydef eectofthetransversebeamsizeonthebunchformfactor.ThetotalTR<strong>and</strong>SRpowerspectral densityiscomputedforthreetypicalbunchshape:alinechargebunch(r=0),anellipsoidalbunch P(!)=Z1:1! 0:9!d!Zdd2P1e(!) d!d =r.The (5.11)<br />

enhancementintheBFF:ifoneusethetherebycomputedBFFtoretrievethebunchlength,the<br />

Population<br />

BFF (a.u.)<br />

10 12<br />

10 11<br />

10 10<br />

10 0<br />

10 1<br />

10 2


transversebeamsizeeectleadstoanunderestimateofthebunchlengthbyaapproximatelya factorof2.However,theeectofthebeamspotsizeisverysmallontheCSR<strong>and</strong>CTRspectrum. Inthecaseofellipsoidalbunch,i.e.theworstcasethatcanhappenintheIRFEL,theerrorisat the10%level. Hence,wewillassumethemeasurementofCTRorCSRintheIRFELisdirectlyrelatedtothe<br />

BFF (no unit)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

10 8<br />

10 9<br />

10 10<br />

10 11<br />

10 12<br />

10 13<br />

10 14<br />

10 15<br />

10 16<br />

0.2<br />

0.0<br />

10 8<br />

10 9<br />

10 10<br />

10 11<br />

10 12<br />

10 13<br />

10 14<br />

10 15<br />

10 16<br />

10<br />

(Hz)<br />

-12<br />

10 -11<br />

10 -10<br />

10 -9<br />

10 -8<br />

10 -7<br />

10 -6<br />

10 -5<br />

10 -4<br />

10 -3<br />

10 -2<br />

10 -1<br />

10 0<br />

10 8<br />

10 9<br />

10 10<br />

10 11<br />

10 12<br />

10 13<br />

10 14<br />

10 15<br />

10 16<br />

10<br />

(Hz)<br />

-12<br />

10 -11<br />

10 -10<br />

10 -9<br />

10 -8<br />

10 -7<br />

10 -6<br />

10 -5<br />

10 -4<br />

10 -3<br />

10 -2<br />

10 -1<br />

10 0<br />

Figure5.5:Eectoftransversebeamsizeonthe3D-BFF.Forthreedierenttypeofbunch(ellipsoidal,pancake<strong>and</strong>linechargebunch),theBFF(A),theCTR(B)<strong>and</strong>CSR(C)powerspectrum (B) (C)<br />

sizeeectorfromtheangularbunchformfactor. 5.3.1TheuseoftheBFFtocompute<strong>and</strong>monitorthebunchlength 0:3rad<strong>and</strong>aregivenfora20%frequencyb<strong>and</strong>width. longitudinalbunchdistribution,withoutany\contamination"comingfromthetransversebeam arenumericallycomputed.Thepowerspectrumarecomputedassuminganangularacceptanceof<br />

Underthe\linecharge"assumptionmentionedearlier,theBFFonlydependsonthebunchlength. Inthissection,wederiveasimplerelation,withoutmakinganyassumptionsonthebunchdensity function,thatallowsonetocomputethermsbunchlengthfromthebunchformfactor.Let'sstart withtheBFFdenition,byintroducingthewavelengthnumber=1=forconvenience,<strong>and</strong>by replacingtheexponentialfunctionintheFouriertransformbyitsTaylorexpansion:<br />

Power W/ A/20%BW<br />

(A)<br />

Power W/ A/20%BW<br />

z=100 m, r=1000 m<br />

(ellipsoidal bunch)<br />

z=0 m, r=1000 m<br />

(pancake bunch)<br />

z=100 m, r=0 m<br />

(line charge bunch)


Theequation5.8yields: f()=jZ+1 11Xn=0(2iz)n n!(z)dzj2=j1Xn=0(2i)n exp()=1Xn=0n n! n!Z+1 1znS(z)dzj2 (5.12)<br />

Deningthen-ordermomentnasn=Z+1 Eqn.(5.13)becomes: 1znS(z)dz (5.14) (5.13)<br />

thepreviousequationreducesto: Incaseweareathighwecanapproximatetheseriesbyitsrstthreetermsonly.Insuchcase, ~Sz()=j1+2i1+(2i)2 ~Sz()=j1Xn=0(2i)n n!nj2 22+O(3)j2 (5.15)<br />

exp4222whoseTaylorexpansionatsmallfrequencyisalsogivenbyEqn.(5.16).Itis veryinformativetodeveloptheBFFtohigherordertoseewhetherwecanextractinformationon ofthegaussi<strong>and</strong>istributionexpz2=(22)case:forsuchadistributiontheformfactorwrites wherewehaveintroducedthevariance2=221(def thebunchformfactorwithaparabolicfunctionathighfrequency.Thisresultisageneralization FromEqn.(5.16)wenotethatitisstraightforwardtoextractthebunchlength,,bytting =14222+O(3) =z). (5.16)<br />

thehighermomentsofthebunchlongitudinaldistribution.Performingsuchderivationyieldsthe generalformoftheBFF[46](with=2): ~Sz()=j1Xn=0(1)n2n = =1Xn=04n 1Xn=0(1)n2n2n (2n)!2n+i1Xn=0(1)n2n+1 (2n)!!2+ 1Xn=0(1)n2n+12n+1 (2n+1)!2n+1j2<br />

+1Xn=04n+2 ((2n)!)22n+21Xn=0Xm


powermeasurement,yieldingthelossofphaseinformation. Wehavealsonoticedfromexperimentusingaparticlepushingcodethatthenestructureofthe BFFisaecteddierentlydependingonhowthebunchingprocessisperformed.Forinstance ingure5.6weplottheBFFcomputedfromnumericalsimulationfordierentsettingsofradiofrequencyelementsthatplayakeyroleinthebunchingprocess.Thoughthebunchlengthdoesnot varysignicantly,wecannoticethateachelementaectstheBFFatdierentwavelength.Such parametricstudiesbysystematicallyvaryingeachRF-elements. featurescanbeexperimentallyusedtodeterminewhichelementisnotoperatedatitsnominaloperationpoint(e.g.becauseofdrift,...).Beforeitsapplicationwewillneedtoperformexperimental 2 5 10 -3<br />

2 5 10 -2<br />

10<br />

Wavelength (m)<br />

-5<br />

10 -4<br />

10 -3<br />

10 -2<br />

10 -1<br />

10 0<br />

Nominal<br />

Buncher +3 deg<br />

Cavity 1 +3 deg<br />

Laser +3 deg<br />

Figure5.6:EectofdierentkeyelementsinthebunchingprocessoftheelectronsontheBFF.<br />

5.3.2RetrievaloftheBunchDistributionbyHilbertTransformingtheBFF photocathodedrivelaser(dottedline)areoperated+3dego<strong>their</strong>nominalsettings. TheBFFcorrespondingtothenominalsettingsfortheRFelements(solidline)iscomparedwith thecaseswherethebuncher(dottedline),therstcavityintheinjector(greyline)<strong>and</strong>the<br />

tiveindexofamaterialfromfromknowledgeoftherealpart.Thistechniquehasbeenrstapplied tothepresentproblembyLaietal.[48];howeverintheliteraturethereisnoclearderivationthat provestheuseofthedispersionrelationforretrievingthephaseoftheBFFislegitimate.We arecommonlyusedinSolidStatePhysicse.g.forreconstructingtheimaginarypartoftherefrac- possibletogetsomeinsightonthephaseinformationusingtheso-calleddispersionrelations3that Aswementionedearlier,theonlyobservablewecanmeasureisthepowerofthecoherentradiation i.e.thesquareamplitudeoftheelectriceld;allthephaseinformationislost.However,itisstill 3AlsoreferredasKramers-Kronig'srelations<br />

Bunch Form Factor (no units)


presentanoutlineofthisproofbelow,<strong>and</strong>adetailedproofinAppendixC.Fromthedenitionof<br />

where canbewrittenas: thebunchformfactorwecanwrite:~S()=^S()^S() mathematicstextbooks(seeforinstance[50])<strong>and</strong>canbeappliedtoS()tocalculateitsimaginary partknowingitsrealpartbecauseS()isasquareintegrablefunction.Inthepresentcase,the isthewavenumber<strong>and</strong>^S()istheFouriertransformofthebunchlongitudinaldistribution;it ()isthephaseassociatedtotheFouriertransform.Themethodisdiscussedinst<strong>and</strong>ard ^S()=q~S()exp(i ()) (5.19) (5.18)<br />

(=+i0isthecomplexwavenumber): Now,log(^S())isnotsquareintegrable<strong>and</strong>theCauchyintegralonlog(^S())doesnotconverge problemisslightlydierent:weknowthemodulusofS()<strong>and</strong>needtocomputethephase.By takingthelogarithmofthelatterequation,wecomebacktothedeterminationoftheimaginary partofthefunctionlog[S()]fromtheknowledgeofitsrealpartlog[jS()j]: log(^S())=log(q~S())+i Ilog(^S())log(^S()) ()=1=2log(j~S()j)+i jj!1 !Z0log(^S())!1 () (5.20)<br />

dispersionrelationsfor^S(seeAppendixCforadetailedderivation),<strong>and</strong>nallythephaseof^S Let'sintroducethefunction()denedas: ()isnotsingularat=<strong>and</strong>issquareintegrable.Wecanthenderiveasetof\modied" ()def =log[^S()]log[^S()] (5.22) (5.21)<br />

takestheform: Letting0=0<strong>and</strong>usingthefact^S()=^S()wenallynd: Thislatterequationiswidelyknown,intheliterature,<strong>and</strong>issometimesreferredasdispersion wherePdesignatestheCauchyprincipalvaluefortheintegral. ()= (0)1(0)PZ+1 ()= (0)2PZ+1 1log[j^S()j]log[j^S()j] 0log[j^S()j] ()(0)d 22d (5.24) (5.23)<br />

relation.Oncethephase inverseFouriertransform:S(z)=Z1 ()iscomputedwecanrecovertheinitialdistributionbyusingthe<br />

discussionisprovidedinAppendixC).<br />

contributiontothephasethatmustbeconsidered.Inthefollowingwewillnotconsidersuchcases byassumingthest<strong>and</strong>ardbunchdistributionisanalyticintheupperhalf-plane(afullydetailed thecomplexplane.Ifithassingularitiesthen,invirtueoftheresiduetheorem,thereareother TwofactsshouldbeemphasedaboutEqn.(5.24)(1)the bezero,<strong>and</strong>(2)thisequationisapplicableprovidedlog[S()]isanalyticintheupperhalf-partof 0^S()cos(2z (0)termisunknown<strong>and</strong>isassumedto ())d (5.25)


tectorconsistsofagas-lledcellenclosedbytwomembranes.Theincomingradiationisabsorbed IntheearlystageoftheIRFELcommissioning,theexperimentalsetupdescribedingure5.12was usedtoimagetheCTRbeamemissionsourceproducedbytheelectronbeamasitpassesthrough analuminumfoilontoaGolaycelldetector.TheGolaycell(seeFig.5.7(A))isathermaldetector withanearlyuniformenergyresponsefromtheultravioletuptothemicrowaveregion.Thede- 5.4ObservationofCoherentTransitionRadiation<br />

overabroadrangeofwavelengths.Theabsorbedradiationheatsthegaswhichinturnincreases chosensothatthecorrespondingsurfaceimpedanceyieldsthemaximumabsorptionofradiation thepressureinsidethecell<strong>and</strong>distortsthesecond(exible)membrane.Thedistortionissensedby aphotodetectorcellthatdetectsalightbeamreectedfromthemembrane.Thiseectisamplied bytwolargegridsarrangedsothatinitially,i.e.whennoradiationisdetected,thelinesofonegrid areimagedonthespaceofthesecondgridresultinginnolightdetectionbythephotodetector. byathinaluminumlayerdepositedonthe\input"membrane.Thealuminumlmthicknessis Whenthemembraneisdistorted,theimageoftherstgridshifts,allowingsignicantlymorelight toreachthephotodetector.Thisgridsystemisinfactamechanicalmeansofenhancingtheeect<br />

workstationcommunicatingtothecontrolsystem. factor10usingasimpleoperationalamplierlocatedintheacceleratortunnelenclosure,thenthe signalisbroughtintheservicebuildinglocatedupstairsthetunnelwhereitisshapedusinganoise ofsmalldisplacementsofthemembrane.Theoutputanalogsignalfromthephotodetectorinthe samplerateequaltothebeammacropulserepetitionrate.Thedigitalsignalisbroadcastviaa VMEinput/outputcontroller(IOC)totheEthernetnetworksothatitcanbeaccessedfromany GolaycellsetupiselectronicallyprocessedasdescribedinFig.5.7(B):First,itisampliedbya lter.Afterward,itisfedintoaAnalogtoDigitalConverter(ADC)whereitisdigitized,ata Itispossibletoverifythenonlinearityoftheradiationversusthebunchchargeaspicturedin<br />

Figure5.7:SimpliedschematicsofaGolaycell(A)<strong>and</strong>theassociatedsignalacquisitionelectronics(B). pronouncedcomparedtotheonemeasuredintheCEBAFaccelerator[20]forexample.Thisis<br />

gure5.8.ThequadraticdependenceoftheCTRsignalversusthechargeperbunchisnotvery<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

000000<br />

111111 0000000<br />

1111111<br />

bi-convex lenses<br />

000000<br />

111111 0000000<br />

1111111<br />

000000<br />

111111<br />

light emitting diode 0000000<br />

1111111<br />

000000<br />

111111 LED 000000<br />

111111<br />

Grid<br />

0000000<br />

1111111000<br />

111 grid<br />

0000000<br />

1111111<br />

0000000<br />

1111111<br />

photodiode Photodiode detector 000 111<br />

000 111<br />

0000000<br />

1111111000<br />

111<br />

0000000<br />

1111111<br />

Detector 0000000<br />

1111111<br />

bi-convex lenses<br />

(A)<br />

000 111<br />

000 111<br />

0000000<br />

1111111 000 111<br />

0000000<br />

1111111 000 111<br />

0000000<br />

1111111<br />

refecting membrane 000 111<br />

0000000<br />

1111111 000 111<br />

0000000<br />

1111111 000 111<br />

0000000<br />

1111111 000 111<br />

0000 1111 000 111<br />

0000 1111 000 111<br />

000 111 absorbing<br />

Reflecting<br />

Membrane<br />

adjustable<br />

000000<br />

111111<br />

adjustable length<br />

000000<br />

1111110000<br />

1111<br />

000000<br />

1111110000<br />

1111<br />

gas cell<br />

length 0000 1111<br />

0000 1111<br />

0000 1111<br />

Absorbing<br />

Membrane<br />

00 110 00 11 00 11 000 111 00 1100<br />

11 00 11 00 11 00 11<br />

00 11 00 11 00 11 00 1100<br />

11 00 11 00 11 00 11<br />

0000000<br />

0000 1111<br />

0000 1111 000 111<br />

membrane 1<br />

0000 1111 000 111<br />

0000 1111 000 111 1<br />

1<br />

Golay<br />

1<br />

Cell<br />

Output 1<br />

1<br />

1<br />

1<br />

Gas<br />

Cell<br />

01<br />

01<br />

01<br />

01<br />

ADC<br />

01<br />

input<br />

01<br />

01<br />

01 01 01 01 01 01 01 01 01 01<br />

01<br />

01 01 01 01 01<br />

01 01 01 01 01 01 01 01 01 01<br />

01 01 01 01 Amplification System <strong>Electron</strong>ic Filter<br />

(B)


contrastintheCEBAFmachine,varyingaslitapertureopeninginachoppercavityvariesthe chargeperbunch.Forallthepracticalslitsopenings,thebeamisneverspace-chargedominated <strong>and</strong>sotheslitopeningdoesnotsignicantlyaectthebunchingprocess. duetothemethodweusetovarythecharge:weusearotationalpolarizertoattenuateorincrease thedrivelaserpoweronthephotocathodethatalsosignicantlyaectsthebeamdynamicsinthe machine(especiallyinthelowenergyregionwherethebeamdynamicsisstronglydependent,via spacechargeforces,onthecharge).Thereforevaryingthechargealsoaectsthebunchlength, <strong>and</strong>thereforetheCTRsignalsinceitisdependentonboththecharge<strong>and</strong>thebunchlength.By Figure5.9depictsthedependenceoftheCTRsignalversustheoverallphaseofthemainlinac:<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

perbunchischangedbyvaryingtheintensityofthephotocathodedrivelaser.Thecirclesare<br />

2.0<br />

1.5<br />

1.0<br />

ergy,is4deg<strong>and</strong>theexpectedphaseformaximumbunching(i.e.minimumbunchlength)is Figure5.8:Scalingofcoherenttransitionradiationpowerversuschargeperbunch.Thecharge theexperimentaldatapoint<strong>and</strong>thedashlineistheresultofaquadraticinterpolationofthe<br />

0.5<br />

approximately6degwhichisingoodagreementwiththephasevalueforwhichthemaximumCTR signalisobservedingure5.9('6:3deg). experimentalpoint. duringthisexperimentthemachinesettingswerekeptconstant<strong>and</strong>onlythelinac\gang"phase4 wasvaried.Themaximumaccelerationphase,determinedexperimentallybymaximizingtheen-<br />

0.0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

AlastexperimentconsistedofvaryingthebeamspotsizeontheTRradiator<strong>and</strong>eachtime<br />

Charge per Bunch (pC)<br />

recordingtheCTRsignal.Thevariationofthissignalversustheequivalentbeamradiuswedene aspxyispresentedingure5.10.Atthispointitisdiculttotellwhetherthedecreaseoftotal otherradio-frequencyelementsintheIRFEL(seeAppendixD)<br />

powerdetectedisduetothespatialortheangularBFF. 4the\gangphase"knoballowstoshiftalltheacceleratingcavitiesinthelinacbythesamephasecomparetothe<br />

CTR Signal (Volts)


3<br />

Crest Phase is −4 deg<br />

2<br />

lengthattheundulatorvicinityischanged. Figure5.9:CTRsignalversustheSRFlinacoverallphase.Asthelinacphaseisvariedthebunch<br />

1<br />

performaninterferometricmeasurement.Inadditiontoprovidingtheenergyspectrumofthe 5.5TheMichelsonPolarizingInterferometer Onewayofaccessingthefrequencyspectrumofanelectronbunchlongitudinaldistributionisto radiationemitted,itcanalsogiveanestimateofthebunchlengthdirectlyfromtheinterferogram.<br />

0<br />

2 4 6 8 10<br />

Suchestimatesmustbetakenwithcareaswewillseeinthefollowing.WeequippedtheIRFEL 5.5.1Overviewoftheexperimentalsetup<br />

SRF−Linac Gang Phase (RF−deg)<br />

acceleratorwithtwo\polarizing"MichelsoninterferometerbuiltbytheDepartmentofPhysics<strong>and</strong> AstronomyoftheUniversityofGeorgia.Thelocationofthedevicesare:<br />

thatisparalleltothispreferreddirection<strong>and</strong>transmitsitsorthogonalcomponent. adichroicpolarizerthathasapreferreddirection.Itreectsthepolarizationoftheincomingeld Theadjective\polarizing"referstothenatureofthebeamsplitterusedintheinterferometer:itis thewigglerinsertionregion,tocheckthebunchlengthisadequatetogettheFELlasing. theinjectorfrontend,toverifythebunchingprocessintheinjectoriscorrect,<br />

Becauseelectronsinanacceleratorarer<strong>and</strong>omlydistributedfrombunchtobunch,autocorrelation ofradiationatwavelengthsmallerthanthebunchlengthwillnotprovideanyinformationonthe thanthebunchlength:thisistheregimeofcoherentemission<strong>and</strong>thisinsuresbunch-to-bunch coherenceoftheradiation. IntheIRFEL,thisinterferometerisusedtomeasuretheautocorrelationfunctionofcoherent<br />

bunchstructure.Hencethewavelengthofobservationmustbechosentobecomparableorlarger<br />

Coherent Transition Radiation Signal (Volt)


1.5<br />

1<br />

correspondtothevarianceofveconsecutivemeasurements. transitionradiation(CTR)pulsesemittedastheelectronbunchespassthrougha0:8mthick, Figure5.10:CTRsignalversusbeamequivalenttransversespotsizepxy.Theerrorbars<br />

0.5<br />

0<br />

0 0.5 1 1.5 2<br />

Thewindowthicknessis4:826mm.Afterthewindow,aplano-convexlenswithafocallength ThebackwardCTRemittedfromthefoildirectlyshinesoutofthevacuumchamberthroughan <strong>and</strong>thereforeissomewhatmorediculttoanalyze. opticalwindowlocatedat90degwithrespecttothebeamtrajectory.Thisopticalwindowismade ofsinglecrystalquartzsothatitcantransmitfarinfraredradiationwithoutsignicantlosses. independentintheregionofinterestwhereastheCSRspectrumdependsonthefrequency(/!3=2) havepreviouslydiscussed,itwaspreferredtoCSRbecausetheTRpowerspectrumisfrequency <strong>and</strong>50:8mmdiameteraluminumfoil.ThoughtheuseofCTRisadestructivemeasurementaswe<br />

Equivalent Transverse <strong>Beam</strong> Size (mm)<br />

intheFIRdomainof125mmisusedtocollimatetheCTRbeamtoparallelrays(thelensis bywaterabsorptioninthemicrowaveregionofthespectrum.Inthepolarimetercomponentsare: twobeamsplitters,twoplanarmirrors,oneo-axisparabolicreector,<strong>and</strong>aGolaycelldetector: <strong>and</strong>theinterferometercanbelledwithnitrogensothatthemeasurementisnotcontaminated approximatelylocated125mmfarfromthepointofemissiononthefoil).Thecollimatedbeamis senttotheMichelsonpolarimeterviaoneplanarmirrorM0(seeFig.5.11).Theopticalbeamline Thebeamsplittersaremadeofparalleltungstenwiresof20mdiameterspacedby50m. convertedtoenergyofthecurrent.Thelatteristhenconvertedtoheat,becauseofthesmall butsignicantelectricalresistanceofthewires.Hencetoobeytheboundaryconditionat spacesbetweenthewires,nocurrentcanowperpendiculartothem.Hencetheelectriceld componentperpendiculartothewiresproducenocurrents<strong>and</strong>losenoenergy,thereforeitis transmitted.<br />

thewires.Sucheldsproduceelectriccurrentsinthewires,<strong>and</strong>theenergyoftheeldsis Beingmetallic,thetungstenwiresprovidehighconductivityforelectriceldsparallelto thewire,theeldparalleltothewiresisreected.However,becauseofthenon-conducting<br />

CTR signal (Volts)


Parabolic<br />

off-axis<br />

reflector<br />

~ 300 mm<br />

Wire Grid Polarizer<br />

Figure5.11:Overviewoftheopticstoguidethecoherenttransitionradiationemittedfroman aluminumfoiltotheentranceoftheinterferometer.<br />

Air Actuator<br />

to insert TR radiator<br />

Plano-convex<br />

into the beam path<br />

Light shield<br />

lens (f<br />

IR<br />

=125 mm)<br />

mirror(M1)ismountedonamicropositionerthatcantranslateby1msteps.Twopicomo-<br />

<strong>Beam</strong><br />

direction<br />

optical port<br />

Aluminum Foil<br />

sitivearea.Itisan-oaxisgold-sputteredreectorwithafocallengthof10cm. Theplanarmirrorsarest<strong>and</strong>ardopticalcircularmirrorsof50:8mmdiameter.Themovable Theparabolicreectorisusedtofocusanincomingcollimatedbeamontothedetectorsentorsarealsomountedonthemirrorgimbalmountsthatcanbeusedremotelytoadjustthe horizontal<strong>and</strong>verticalinclinationofthemirrortomakesureitiscoplanarwiththeimageof thexedmirror(M2)throughthebeamsplitter.<br />

"Switcher" Mirror<br />

~ 600 mm 125 mm<br />

ThepolarizinginterferometerisdepictedinFig5.12:Let'srstanalyzehowapolarizinginterfer- 5.5.2TheoryofOperation ometerworksinthesimplistic(usual)caseofaplaneTEMwave.Afterward,wewillrenethis TheGolaycell(seeFig.5.7)<strong>and</strong>itsacquisitionsystemhavebeendescribedpreviously.<br />

analysisincludingtheeectduetoTRelectriceld. Let!E(t)betheelectriceldincomingintotheinterferometer.Whenthiseldentersthe<br />

~ 400 mm<br />

~ 300 mm<br />

Fixed Mirror<br />

Wire Grid Polarizer<br />

Movable Mirror<br />

Golay Cell Detector


Ε’<br />

2<br />

B<br />

Mirror M<br />

2<br />

Ε2<br />

Polarizer P<br />

2<br />

A<br />

w<br />

Ω<br />

Ε Ε’<br />

1 1<br />

v^<br />

Ε’’<br />

1<br />

Parabolic<br />

u^<br />

Movable Mirror M<br />

Reflector<br />

Ε’’<br />

1<br />

2<br />

M<br />

3 EG Golay Cell<br />

Direction of propagation<br />

E0 Polarizer P<br />

1<br />

O<br />

TR from Al foil<br />

M<br />

0<br />

^<br />

polarizercanbewrittenas: vertical,bu<strong>and</strong>bv,coordinatesystem(seegure5.11fordetail),theelectriceldafterthe withrespecttothehorizontalplane.Theeectofthispolarizerisonlytotransmittheeld polarizationwhosedirectionisparalleltothewires.Thereforeinthest<strong>and</strong>ardhorizontal- MichelsoninterferometeritrstencountersapolarizerP1whosewiresareorientedat45deg Figure5.12:SimpliedschematicsoftheMichelsonpolarizinginterferometer.<br />

!E0(t)=bu+bv<br />

Inthevariablelengtharm(1):thereectedeldwrites: verticalpolarizationistransmittedtothexedarm(2),(!E2). polarizationoftheelectriceldgetreectedinthevariablelengtharm(1)(!E1)whereasthe ThenasecondpolarizerP2,locatedatapproximately130mmfromP1,thatplaystherole ofbeamsplitter,interceptstheopticalbeam.Sinceitswiresarehorizontal,thehorizontal p2E0(t) (5.26)<br />

<strong>and</strong>propagatesuptothemobilemirrorM1whereitisreected.Thereectedeld!E01is (thereectionintroducesafactorexp(i): !E01(t)=Rp2E0(t+)bu !E1(t)=Rp2E0(t)bu (5.28) (5.27)<br />

theelectriceldwrites: whereisatimedelayintroducedbythemirror.Byconvention,=0whenthemirrorM1 isatthesamedistancefromthebeamsplitterasM2.Theelectriceld!E01back-propagates tothebeamsplitter<strong>and</strong>isreectedasecondtimeonP2.Finallyattheexitofthearm(1) !E00 1(t)=R2 p2E0(t+)bu (5.29)


Inthexedlengtharm(2):thetransmittedeldwrites: writes: <strong>and</strong>propagatesuptothexedmirrorM2whereitisreected.Theeld!E02afterreection !E02(t)=Tp2E0(t)bv !E2(t)=Tp2E0(t)bv (5.31) (5.30)<br />

totalelectriceldwrites: Afterre-combinationoftheelectriceldissuedfromthetwoarmsoftheinterferometer,the throughP2.Finally,attheexitofthearm(2),theresultingelectriceldis: Theelectriceld!E02back-propagatestothebeamsplitter<strong>and</strong>istransmittedasecondtime<br />

E0(t)=1 p2R2E0(t+)buT2E0(t)bv !E00 2(t)=T2 p2E0(t)bv (5.33) (5.32)<br />

ThiseldisthetotalelectriceldincidentontheP1polarizer.Thispolarizerreectselectriceld withcomponent/(bubv)=p2<strong>and</strong>transmitthecomponents/(bu+bv)=p2.Henceonlythelatter polarizationcomponentistransmittedtotheGolaycellafterreection<strong>and</strong>focusingontheo-axis parabolicmirror;ittakestheform:<br />

IndeedtheGolaycellissensitivetotheaveragepowerhjEg(t)j2itwhichis: Ifweassumethepolarizertobeperfectconductor,thenR2=T2=1=2<strong>and</strong>theelddetected reducedto: EG(t)=R EG(t)=R 2p2R2E0(t+)T2E0(t) 2p2[E0(t+)+E0(t)] (5.35) (5.34)<br />

whichcanbeexpressedintheintegralform: I()/2hjE0(t)j2it[E0(t)E0(t+)+E0(t)E0(t+)] I()/2Z+1 | 1jE0(t)j2dt baseline2


FinallyitisinterestingtonotethatFourier-transformingEqn.(5.37)gives: Inthefollowingwewillreplacethetimedelay,,byanopticalpathdierence(OPD),,(=c).<br />

whichmeanthattheautocorrelationistheFouriertransformoftheenergyspectrumoftheincom- Thereforetheautocorrelationpartcanbewritten(sinceeE(!)=eE(!)): I()/2Z+1 1jfE0(!)j2d!2


Withr1=r+c(==cwhereisthemirrorsrelativeposition),r2=r,Eqn.(5.42)takesthe Itisimportanttonotethatthequantity,intheaboveequation,isoftheorderofthebunch form: image<strong>and</strong>thexedmirror,oftheorderof1m;hencereplacingr+cinEqn.(5.43)withrisa 5104eect.Therefore,withoutintroducingsignicanterrortheintensityonthedetectorcan planewithrespectofthepointofemissionwillresultinavalueofr,thedistancebetweenTR length(i.e.atmaximum500mforthepresentcase).A10%errorinthelocationofthefocal I()/1 r+c(0)()+cr((0)()) (5.43)<br />

abovecanbeusedtoextractinformationfromatransitionradiationinterferogram. 5.5.3RelatinganInterferogramMeasurementtoaBunchLengthMeasurement Bymeasuringthefull-widthhalf-maximum(FWHM)oftheautocorrelation,onecanveryeasily bewrittenasforaTEMwave,thatisI()/((0)());<strong>and</strong>thest<strong>and</strong>ardanalysispresented<br />

getanestimateofthebunchlength.Let'sanalyzehowtheFWHMisrelatedtotheRMSvalues oftwotypicalparticledistributions:anormaldistributionthatischaracterizedbyitsrmsvalue<br />

Table5.1:Relationshipsbetween\equivalent","RMS"<strong>and</strong>"FWHM"lengthsforagaussian<strong>and</strong> relatesFWHM,RMS<strong>and</strong>equivalentlengthforthesedistributions. (variance)z<strong>and</strong>asquaredistributionwhosecharacteristiclengthisitsfullwidthw.Table5.1<br />

squarelongitudinalbunchdensity. DistributionEqu.LengthRMSFWHM Gaussian Square p2z w w=p12 z2zpln(2) w<br />

CaseofaGaussi<strong>and</strong>istribution:<br />

CaseofaSquaredistribution: HencetheRMSvalueoftheconvolutionisp2timestheRMSvalueofthedistribution.Using Table5.1,wededucethat S(z)=1=p22zexp(z2=(2z)).Forsuchdistribution,theautocorrelationis()=1=(2pz)exp(2=(42z)).<br />

Wewritethisdistributionas:S(z)=((1=w)ifw=2


Itsautocorrelationis:S(z)=8>:(1=w2)[+w]ifw


Reflection <strong>and</strong> Transmission Coefficents<br />

10 0<br />

10 0<br />

2 5 10 1<br />

2 5 10 2<br />

2 5 10 3<br />

2 5 10 4<br />

Wavenumber (cm -1 10<br />

)<br />

-2<br />

10<br />

5<br />

2<br />

-1<br />

5 R[E ||] wg<br />

2<br />

R[Ek]wgisthereectioncoecientofthewiregridfortheelectriceldcomponentparalleltothe<br />

T[E] gc<br />

TheenergyspectrumcanbederivedbyFouriertransformingtheautocorrelationdeducedfromthe wires,<strong>and</strong>T[E]gcisthetransmissioncoecientoftheGolaycellentrancewindow. wires,R[E?]wgisthereectioncoecientofthewiregridforthecomponentperpendiculartothe Figure5.13:LimitationofsomeopticalcomponentsintheMichelsonpolarizinginterferometer.<br />

R[E ] wg<br />

data.SincetheFouriertransformofasampledfunctionwithsamplingintervaltisa1=t-periodic FastFourierTransformalgorithm(FFT)[47]becauseofthesamplednatureoftheexperimental interferogram.However,wecannotperformanexactFouriertransform<strong>and</strong>havetousest<strong>and</strong>ard function,thefrequencyresolutionwillbeoftheorderof1=(2Nt)ifNisthenumberofsamplings 5.5.5ExperimentalResultsUsinganAutocorrelationTechnique acquired.Againnotethatt==cisrelatedtotheOPD<strong>and</strong>therefore,foraninterferogram acquiredwithmirrorstepsof,thefrequencyspectrumresolutionis1=(4N). ArstsetofmeasurementswasperformedintheperiodpriorrstlasingoftheIRFEL.Typically,it wasfoundthattheGolaycellcouldeasilydetect,withafairlygoodsignalovernoise,thecoherent transitionradiationpowergeneratedastheelectronbeamwasinlowdutycyclemode(theso-called tune-upmode);signalswithamplitudeoftheorderof1Vwereseeninthiscase.


drivelaserwhereasin(A),suchoperationwasproperlyperformed.Figure.5.14(C)whichreprecorrespondstothelongitudinalphasespacesetupusedfortherstFELlightgeneration.ThedifferencebetweenFigures(A)<strong>and</strong>(B)comesfromtheghostpulsebackground.In(B)theghostpulse wasnotcautiouslyminimizedbyproperlysettingtheelectro-opticscrystalofthephotocathode Figure.5.14(A)<strong>and</strong>(B)depictstwoautocorrelationmeasurementsperformedthesameday,it Autocorrelationmeasurement<br />

metric<strong>and</strong>doesnotvanishwhenthepathlengthinthetwoarmsareidentical.Thisfaultwassentthealgebraicdierencebetweenthetwomeasurements,showsthattheonlydierencebetween thetwoaforementionedmeasurementsresidesinthepresenceofaDCosetforthecasewherethe ghostpulseisnotminimized.Thereforetheautocorrelationitselfisnotatallcontaminatedbythe ghostpulse. initiallythoughttobeduetoanonperfectorthogonalitybetweenthetwomirrorsinthetwo 18002=3600mcorrespondstothedistancebetweentheopticalvacuumwindow<strong>and</strong>theplano- arms;wetriedtocorrectforitbyinstallingpiezoelectricpicomotorsonthemovablemirrorso managedtogettheinterferogramtovanishatthislocation.(2)Therearesecondarybumpslocated atapproximately1800mthatprobablycorrespondstoreectionsinthesystem(thedistance thatitstiltcanbeadjustedremotelywhileperformingameasurement.Unfortunatelywenever Fromtheseinterferogramswecanalsonoticeotherfeatures:(1)TheautocorrelationisnotsymtralpeakoftheinterferogramshowninFig.5.14(A).Fromthispeakwec<strong>and</strong>educethermswidth('110m)<strong>and</strong>alsodistinguishwhetherthecoreofthebeamlongitudinaldistributionisagaussianlikeorsquare-likebunchdistribution.Forsuchapurposewehaveplottedonthesameguretheconvexlens).InFig.5.15(A)wepresentanescan(mirrorstepsizeforthedisplacementis5m)ofthecen-<br />

equivalentgaussian<strong>and</strong>squaredistributionthathavethesameFWHM<strong>and</strong>thesameintegral.<br />

Asecondsetofexperimentsweperformedwastostudyhowsensitivethebunchlengthmeasurement thatconsistsofthesumofthetwopreviousdistributionsbettermatchestheinterferogramcore. DependenceoftheinterferogramonthebeamtransversesizeontheTRscreen Neitherofthesest<strong>and</strong>arddistributionsreallyttheinterferogramcore.Howeveradistribution<br />

waswithrespecttothebeamtransversesizeontheTRradiator.Theprocedureconsistedin<br />

withthecorrespondingtransversebeamsizesaregatheredinTab.5.5.5.<br />

varyinganupstreamquadrupoletriplettovarythebeamspotsizeatthepointofbunchlength prole<strong>and</strong>rmswidtharethencomputed.Theresultsofthemeasurementsforvedierentsettings oftheupstreamopticsarepresentedingure5.16whiletheFWHMoftheinterferogramalong theinterferometeroraCCDcamerabymovingthe\switchermirror".Theimagesrecordedbythe CCDcameraareprocessedaccordinglytothedescriptionofChapter3<strong>and</strong>thebeamtransverse measurement.Foreachsettingofthetripletwemeasured,atthesametime,thebeamtransverse spotsize<strong>and</strong>thenthebunchlength.Forsuchpurposewec<strong>and</strong>irectthetransitionradiationto


CaseInterferogramx (b) (d) (a) (c) (e) FWHM(m)(mm)(mm)(mm) 200 240 320 280 0.42150.34150.3794 0.53160.39870.4604 0.78430.57630.6723 1.25541.11641.1839 1.46671.62401.5433 ypxy<br />

Table5.2:Measuredbunchlength<strong>and</strong>transversebeamdimensionforthecasesreportedinFig.5.16. Computationofthelongitudinalbunchdistribution Usingthemethodologypreviouslyexposed,wehavedevelopedano-lineanalysiscodethatallows thecomputationofthebunchlongitudinaldistribution.<br />

henceforthisthe\average"method. theinterferogram,ortherightpart;wecanalsosymmetrizetheinterferogrambycomputingthe Fouriertransform.Wehaveimplementedthreemethods:wecaneitheruseonlytheleftpartof averageoftheleft<strong>and</strong>rightpartoftheinterferogram.Theautocorrelationsso-obtained<strong>and</strong><strong>their</strong> correspondingFouriertransformsarepresentedrespectivelyinFig.5.17-A<strong>and</strong>Fig.5.17-B.Wecan noticethatthereisnotmuchdierencebetweenthecomputedspectra.Themethodwewilluse form,i.e.theenergyspectrum,willnotbereal.HencetherststepconsistsofsymmetrizingtheBecausetheexperimentallyobtainedinterferogramisnotperfectlysymmetric,itsFouriertransmirrordisplacement.Howevertheinformationcontainedatlargedisplacementmightnotberelevanttocomputetheenergyspectrum.Toverifysuchassumption,wehaveuseddierentlengthof thecentralpartofautocorrelationpresentedingure5.14:weused64,128,256,<strong>and</strong>512points; pointsinthesequencemustbeapowerof2.Fromourpreviousdiscussionwenoticedthatthe stepsizeintheFourierplane(i.e.theenergyspectrum)increasesinverselytothenumberofpoints inthest<strong>and</strong>ardplane(i.e.,theinterferogram).Thereforeanaiveargumentwouldbe,foragiven notethatbecauseweusedanFFTalgorithmthatemploysaradix-2algorithm,thenumberof Moreover,theinterferogram(<strong>and</strong>thereforetheautocorrelation)canbemeasuredforarbitrary<br />

smoothed.Ontheopposite,ifthenumberofpointsistoolarge,becausepointscorrespondingto notprovideanyinformationforthepowerspectrum(i.e.theautocorrelationistheoreticallyzero). Fromgure5.18weseethatindeedthereisacompromiseonthenumberofpoints;ifthisnumber istoosmall,thenestructureofthespectrumislost<strong>and</strong>thereconstructedbunchdistributionis twoargumentsagainstthisfact:(1)themeasurementcantakeuptoonehours(dependingon themirrordisplacementstepsize)<strong>and</strong>(2)forlargevaluesofthedisplacementthetwoTRpulses associatedwiththeelectronbunchdonotoverlapanymore<strong>and</strong>thereforetheinterferogramdoes mirrordisplacementstep,tomeasuretheinterferogramoveralargerange.Practicallythereare<br />

Thislowfrequencypartofthespectrummustsomehowbereconstructed,otherwisetheexperi- frequencycutoinducedbytheniteaperturesizeoftheGolaycelldetectorentrancewindow. pointitseemstovanish.Inourcasetypicalvaluesare1:5mm. mentallycomputedenergyspectrumcannotbeusedtorecoverthebunchlongitudinaldistribution. Forsuchapurposeweextrapolatethislowfrequencyregionofthespectrumusingthefactthat<br />

largedisplacementsconsistsonlyofnoise,thisnoisepropagatesonthespectrum<strong>and</strong>agreatdetail offakestructureappears.Aproperchoiceisto\manually"cutadvisotheautocorrelationatthe Experimentallywecanclearlydistinguish,forawavenumberofapproximately10cm1,thelow


expansionoftheBFFderivedinthischapter,thespectrumcanbeextrapolatedusingtheequation: I()=a0+a22+O(3).Thepointofattachmentofthisparabolaischosentobeintheneighbor- thefrequency;theCTRspectrumhasthesamedependence.Hence,usingthegeneralpolynomial hoodofthelowfrequencycuto.Thecoecienta2<strong>and</strong>a0arecomputedbyusingthecontinuity conditionsatthecutopoint:weassumeboththespectrum<strong>and</strong>itslocalderivativewithrespect towavelengtharecontinuous.Ingure5.19weperformdierentlowfrequencyextrapolationsof forlargefrequency(i.e.lowwavelength),thebunchformfactorhasaquadraticdependenceon<br />

ontherecoveredlongitudinalbunchdistributionisshowningure5.20.Itisinterestingtonote thatonewaytorejectunphysicaldistributionistorejectalltheparabolicextrapolationsthatgive asignicantnumberofnegativevaluesinthebunchlongitudinaldistributions. atthecut-opointtocomputethecoecienta0.Theinuenceofthesedierentextrapolations theenergyspectrumbyvaryingtheparametera2<strong>and</strong>usingonlythecontinuityofthespectrum<br />

5.6ZerophasingTechniqueforBunchLengthMeasurement<br />

awaythatthebunchcentroidcoincideswithazeroacceleratingelectriceld.Hencethecavities investigatedthepossibilityofitsapplicationtomeasurethebunchlengthintheIRFELaccelerator. ThezerophasingmethodusesRFacceleratingcavitiesphased90degreesocresti.e.insuch Ithasbeendemonstratedtoresolvebunchlengthinthesubpicosecondregime[52].Thereforewe Theso-calledzerophasing(orbackphasing)techniquehasproventobeaverypowerfulmethod. 5.6.1BasisoftheMethod<br />

inducealongitudinallydependentenergyrampalongthebunch.Then,bymeansofaspectrometer, theenergydistributionismappedintothetransversedirection,<strong>and</strong>thebeamtransversedensity thedispersioninthechicaneatthebeamprolemeasurementstationisabout2timeslessthan anoptimumchoice:themaximumbeamenergythatcanbedeectedintothedumpisabout readilyavailabletoperformsuchmeasurements:wecanusetheenergyrecoverydumplineorthe thismethodweonlyneedacceleratingcavities<strong>and</strong>spectrometers.Therearetwospectrometers theoneattheOTRprolemonitorlocatedintheenergyrecoverydump. Despitethefactthattheenergyrecoverydumphasbeenchosenasaspectrometer,itisnot ismeasuredwithabeamprolestationlocatedinthedispersiveregion.Thereforetoimplement<br />

24MeV5whichimpliesthatthefourlastcavitiesofthecryomodulemustbeturnedo<strong>and</strong>/or usedaszerophasingcavities.Thenon-zerophasedcavitiesareoperatedunder<strong>their</strong>nominalsettings (acceleratinggradient7.33MV/m,phase-9.6deg)givingabeamenergyof23.74MeV.Atsuchan rst4-bendchicane.Preliminaryconsiderationshaveshownthatthelatterisnoteasilyworkable:<br />

intermediateenergy,thedynamicsof60pCbunchesisnotemittancedominated,requiringastudy ofspacechargeeectsonthemeasurement. IntheFEL,theenergyrecoverydumplineconsistsofaquadrupole<strong>and</strong>anOTRprolemonitor. ThedispersionattheOTRlocationwhenthequadrupoleisturnedoisexpectedtobe=75cm; thislattervaluecanbereduced,ifneeded,usingtheupstreamquadrupole. Itshouldbestressedthatthemeasuredbunchlengthisthebunchlengthattheexitofthefourth cavityi.e.inthemiddleoftheSRF-linac(theparmelapredictedbunchlength<strong>and</strong>phasespace slopeatthislocationare370m<strong>and</strong>-48.74MeV/mrespectively). FollowingnotationofReference[52],wewritethehorizontalpositionxonthebeamprole 5PrivatecommunicationfromR.Legg,January1998


as: measurementstationofoneelectronwithlongitudinalpositionzwithrespecttothebunchcenter<br />

1497MHzitis20:05cm),thedispersionatthebeamprolemeasurementlocation,<strong>and</strong>theaverage thecavitiesusedduringthemeasurement(i.e.operatedatzero-crossing),theRF-wavelength(for beamenergyattheentranceoftherstcavityoperatedatzero-crossing.dE E0arerespectivelythepurebetatroncontributiontotheposition,thetotalacceleratingvoltageof energyspread<strong>and</strong>thespacechargeenergyspreadinducedasthebeamdrifts.x,VRF,RF,<strong>and</strong> whereC0isthecontributionfromRF-inducedenergyspread<strong>and</strong>C1isthesumofinitialintrinsic x=x+2eVRF RF+dE dzE0zdef =x+(C0+C1)z dzisthelongitudinal (5.49)<br />

tor,withthecavitiesrespectivelyturnedo<strong>and</strong>turnedonat<strong>their</strong>90degzero-crossingpoint.Let0x,x,bethebeamsizesmeasuredafterthespectrometerdipoleontheOTRprolemoni- phaseslope;itcanbeexpressedusingthebeammatrixelementasdE Sincethebeamproleontheprolemonitoristheconvolutionofpurebetatroncontributioni.e. theenergypositioncorrelationi.e.56=hzEi. transverse<strong>and</strong>longitudinalphasespace,thesebeamsizescanbeexpressedas: dz=56=(2z)where56is<br />

Becausethesignoftheproduct2C0C1isalternatedasthecavitiesareoperatedat90deg,this quantitycanbeeliminated<strong>and</strong>bycomputingthepuredispersivecontributionduetotheenergy isthehorizontalbetatroncontributiontothebeamspotsize. (x)2=2+(C1C0)22z (0x)2=2+C212z (5.51) (5.50)<br />

spreadinducedbythecavitiesat90degi.e.6(XRMS)2=(x)2(0x)2,itisstraightforwardto deduceananalyticalexpressionforthebunchlength: slope,usingtheformula: Notethatinthecaseofsmallenergyspreadtheseformulaereducetotheonederivedinrefer- FinallywecanalsoestimatethecoecientC1,whichcanprovideinformationonthephasespace C1=jC0j z=h(X+RMS)2+(XRMS)2i1=2 2(X+RMS)2(XRMS)2 (X+RMS)2+(XRMS)2 p2jC0j (5.53) (5.52)<br />

ence[52]. FromEqn.(5.53)thelongitudinalphasespaceslopeis: dE<br />

theenergydistribution.Thermsvalueofafunctiong=fh(istheconvolutionproduct)ishg2i=hf2i+hh2i<br />

Insummary,themeasurementofbunchlength(<strong>and</strong>potentiallyphasespaceslope)reducestothree beamprolemeasurementsforthreedierentsettingsofthezerophasingcavities(90deg,<strong>and</strong> 0deg). 6Thebeamtransversedensityattheprolemeasurementstationisaconvolutionofthebetatrondistributionwith dz=VRF RF(X+RMS)2(XRMS)2 (X+RMS)2+(XRMS)2 (5.54)


Asarstapproximation,wecanestimatetransversespacechargeusingtheK-Venvelopeequations bycalculatingtheratiooftheemittancetermwiththespace-chargeterm(weassumethebeamis cylindrical-symmetric): TransverseSpaceChargeEects<br />

beapproximately0.6atthecavity#5exit.Thereforespacecharge<strong>and</strong>emittancetermsareofthe sameorderindrivingthetransversebeamenvelope. Inequation5.51,onemustinsistthatcontainsthetransversespacechargeeect.Inorder whereIpisthepeakcurrent,I0theAlfvencurrent(17000Aforelectrons),<strong>and</strong>aretheusual relativisticfactors.FortheexpectedvaluesobtainedvianumericalsimulationweestimatedRto R=14Ip I02 ()3x2 (5.55)<br />

tovalidatethederivedequationstocomputethebunchlength<strong>and</strong>phasespaceslope,wemust makesurethat,asitisimplicitlyassumedintheprevioussection,remainsthesameasthe<br />

areturnedwith<strong>their</strong>phasesetat90deg.Hencethetransversespacechargecontributionis inwhichismeasuredwhenthecavitiesareturnedo.Alsoitremainsthesameasthecavities withtheparmelaspacechargeroutineturnedon<strong>and</strong>o.Theeectonthebeamsizebeforethe spectrometer,inallthecases,remainsthesame<strong>and</strong>increasesthebeamrmssizebyapproximately 36m.ThereforethetransversespacechargecontributiontothebeamsizeontheOTRisincluded suchassumptionusingtheparmelacode:thebeamenvelopesalongthebeamlineareplottedin zerophasingcavitiesphasedareturnedon<strong>and</strong>phasedat<strong>their</strong>twozerocrossing7.Wehaveveried<br />

indeeddeconvolvedunambiguouslywhenoneusestheEqn.(5.52)tocomputethebunchlength. gure5.22fordierentcases(dierentnumberofzero-phasingcavitiesused):eachcaseistreated<br />

LongitudinalSpaceChargeEect Thelongitudinalspacechargetendstoinducebunchlengtheningwhichinturnrotatesthelongitu-<br />

wherehdE theslopeatthedipoleentranceisapproximately: dinalphasespace.Henceonewayofassessingtheassociatedeectistostudyhowthephasespace<br />

thespacechargeinducedphasespacerotation. slopeevolvesasthecavitiesarezero-phased.Onecanconceivethatbecauseofthespacecharge<br />

AgainweneedtojustifythatjC1jremainsthesameasthezerophasingcavitiessettingsarechanged: namelywemustmakesurethatthespacechargeinducedslopeisthesameinthedierentcases. dE<br />

Thiscanbeunderstoodsincethezerophasingcavitiesarenotprovidingenergy.Wehavechecked dziinitisthephasespaceslopeupstreamtherstzerophasingcavity,<strong>and</strong>hdE dz=dE dzinit+dE dzSC dziSCrepresents (5.56)<br />

focusingeect.Sucheectisinvestigatedlaterinthisdissertation<strong>and</strong>wasanywayfoundtobeverysmallforthe thisusingparmela:theslopeevolutionforthedierentcasesofzerophasingarepresentedin purposeofthepresentdiscussion;thereforeweignoreitforsakeofsimplicity.<br />

gure5.24.Foreachcasewecomparetheslopecomputedwiththespacechargeroutineturned 7Thereisanothereectthatcansignicantlyaectthetransversebeamsizeontheprolemonitor:thecavity


Slope(Mev/m)36.170633.741231.206727.9008 C1 X+RMS(mm)1.84343.28604.72586.1368 #zero.cav1 C0 XRMS(mm)0.87892.42823.93525.4319 z(mm) 1.16561.08731.00560.8991 3.70287.405711.108514.8114 0.39000.39010.39150.3913 2 3 4<br />

cases<strong>and</strong>wehaveestimatedthisvariationforthenormalizedslopeddzto0.54%/m. Table5.3:rmsbeamhorizontalsizesimulatedwiththeparmelaparticlepushingcodeonthe<br />

5.6.2NumericalSimulationoftheMethod energyrecoverytransferlineprolemeasurementstation.<br />

Wehavenumericallyperformedabunchlengthmeasurementforthenominalsettingsusingthe on<strong>and</strong>o.Itisnoticedthatthevariationoftheslopeduetospacechargeisthesameforallthe<br />

distance).ThebeamsizemeasuredattheOTRlocationareshowningure5.25,forthetwozerophasingvalues90deg,versusthenumberofzero-phasingcavities.Inthegurewealsosimulate bunchlengthof370mthecomputedbunchlengthisalwaysoverestimatedbyabout20m. statementthatwecouldunambiguouslydeconvolvetransversespacechargeeectcontributionto Ontheotherh<strong>and</strong>thecoecientC1isdependentonthenumberofcavities(infactonthedrift themeasurementwiththeparmelaspace-chargeroutineturnedotoverifyagainourprevious checktheconstancyofthemethod.Table1summarizestheresultsweobtained.Forthenominal relationsderivedabove.Wehavedonesuchmeasurementusing1,2,3,<strong>and</strong>4zerophasingcavitiesto<br />

thebeamsize.Ingure5.26,wepresentthebeamdistributioninthetransverseplanealongwith thehorizontalbeamprojection,inthecasewherefourcavitiesareusedaszerophasingcavities. 5.6.3ExperimentalResults Duringtheearlystageofthecommissioningofthelinac,weattemptedabunchlengthmeasurement usingthezerophasingmethod.Wetriedtozerophasedierentnumbersofcavities<strong>and</strong>sincethe bunchlengthwaslargerthanexpectedweneededonlytousetwocavities.<br />

phasespaceslopedE UsingEqn.(5.52)wegetanrmsbunchlengthestimateofz'488112m<strong>and</strong>thelongitudinal thesevaluesyieldXRMS'1:9mm<strong>and</strong>X+RMS'4:7mm. Thermssizeofthehorizontalprojectionofthebeamspots,presenteding.5.27,recordedduring thezerophasingexperimentarerespectively:0x'3:5mm,90 Duringourexperiment,thegradientofthetwozerophasingcavitieswassetto7:33MV=m,the C0denedinEqn.(5.49)isapproximatelyC0'7:19. totalenergyoftheincomingbeamwasestimatedtobe23.75MeV;withsuchvaluetheconstant<br />

optimized.Alsonotethattheerrorbaronthebunchlengthmeasurementisobtainedusingthe<br />

wasperformed:theinjectorbeamdynamicswasnotyetfullyunderstood<strong>and</strong>thesettingsnot predictedwithparmela.Thesediscrepancieswerenotrelevantatthetimethemeasurement dz'82MeV=m.Bothofthesevaluesareindisagreementwiththeparameters x'5:8mm<strong>and</strong>+90 x'4:0mm;


errorpropagation8theoryappliedonEqn.(5.49),assuminganuncertaintyof10%on,VRF,<strong>and</strong><br />

5.7.1Method thebeamsizesmeasurement,<strong>and</strong>arelativeerrorof2%onthebeamenergyinferredfromthedipole magnetstrength.<br />

Theestimationofthebeamenergyspreadisperformedbymeasuringtransversebeamproleina planewherethereissignicantdispersion.InthecaseoftheIRFEL,severallocationscanbeused 5.7IntrinsicEnergySpreadMeasurement<br />

horizontalplaneinourcase,thermsbeamsizeiswritten: <strong>and</strong>variouslocationintherecirculationarc.Intheplanewheredispersionoccurs,i.e.inthe tomeasuretheenergyspread.Typicalhigh-dispersionpointare,symmetrypointsofthechicane<br />

suredorestimatedviamagneticopticscode,thelatterrequiresanemittancemeasurement(ina dispersionfreeregion)<strong>and</strong>thepropagationoftheTwissparameterstothedispersiveregionwhere FromEqn.(5.57)weseethattodeducetheenergyspreadwemustknowthedispersionfunction, Thiscommonlyusedrelationisvalidaslongasnonlinearitiesinthetransportisnegligible.Typically,forthenominalenergy(withoutlasing)spreadintheIRFEL(0.2%RMS)itcanbeused.,butalsothebetatroncontribution~"tothebeamsize.Thoughtheformercanbeeasilymea- x=h()2+~"i1=2 (5.57)<br />

energyspreadistobemeasured.Indeedwecanavoidtheemittancemeasurement9byvaryingthe strengthofanupstreamquadrupolewhileobservingthebeamsizeonthedispersivelocation,until thebeamsizeisminimum.Atthatpointthebetatrontermcontributiontothebeamsizeisthe smallestpossible.Ingure5.28,wepresentthebeamsizevariationfortwoscenariiofenergyspread (i.e.thecasewerethelaserisoi.e.'0:2%<strong>and</strong>oni.e.'2%).Forthelowestenergyspread entranceofamagneticsystem,withazero-energyspread,<strong>and</strong>letx0;,x0;bethesamecoordinates onederivedfromEqn.(5.57).Thisdisagreementcomesfromthenon-negligiblenonlineardispersion atthelocationofthebeamsizemeasurementwhichrendersEqn.(5.57)diculttouse(becauseit onlycontainslineardispersion):Letx0;0,x0;0betheposition<strong>and</strong>divergenceofanelectronatthe theminimumbeamrmssizesimulatedwithdimadiscomparabletothequantity.Howeverfor associatedtoanelectronwithanenergyspread.Insidethebendingsystemthatgeneratesenergy largerenergyspread,weobservediscrepanciesbetweenthevaluecomputedfromdimad<strong>and</strong>the spread,wewillhave: 8Thesystematicerror,z,onthebunchlengthcomputationis: E202RF(X+RMS)2+(XRMS)2 (z)2=2RF(X+RMS)2+(XRMS)2 xf;0=R11x0;0+R12x0;0 xf;=R11x0;+R12x0;+R16+T1662 822V2RF (E0)2+E202RF(X+RMS)2+(XRMS)2 842V2RF ()2+ (5.58)<br />

9SuggestionfromD.R.Douglas<br />

822V4RF (VRF)2+E202RF16(0x)2(0x)2+4(x)2(x)2+4(+x)2(+x)2 3222V2RF(X+RMS)2+(XRMS)2


electronwithnoenergyoset=0,as: Thereforewec<strong>and</strong>eneanorbitosetwithrespecttothe\referenceorbit",i.e.theorbitofthe xdef =xf;xf;0=R12x0;+R16+T1662 =xf;0+R16+T1662<br />

in<strong>and</strong>takingthephysicalsolution: Hencetheenergyspreadcanbeexpressedasafunctionofxbysolvingtheseconddegreeequation =R16 2T166"11+4T166 R216(x)21=2# (5.59)<br />

InthecaseofpracticalvalueinthebendingsystemsoftheIRFEL,athird-orderTaylorexpansion islargelysucient,thereforetheenergyosetofanelectronatpositionxwithrespecttothe referenceorbitis: =x R16+T166(x)2 R3162T166(x)3 R516<br />

(5.60)<br />

monitorlocatedinthecenterofoneoftheby-passchicanes:Usingthesecondordermagneticoptics codedimad,wecomputedtransferthematrixelementstobeR16'42cm<strong>and</strong>T166'45cm. Asanexampleweshallconsideranenergy-spreadmeasurementperformedusingabeamprole (5.61)<br />

Animportantparametertopermitthelasertoturnon,aswewilldiscussindetailinChapter6, 5.8EstimateofLongitudinalEmittanceintheUndulatorVicinity isthelongitudinalemittance.Wedeneitas:<br />

(seeg.5.29).Howeveranenergyspreadmeasurementcanbeperformedonlyinahighdispersion whereisthelongitudinalcoordinateexpressedinunitsofRF-degree<strong>and</strong>isthemomentum spread. energyspread.AttheundulatorlocationwecanmeasurethebunchlengthusingCTRmethods coecienthivanishes<strong>and</strong>thereforetheemittanceissimplytheproductofrmsbunchlength<strong>and</strong> Attheundulatorlocation,thelongitudinalphasespaceisatalongitudinalwaisti.e.thecorrelation ~"=qh2ih2ihi2 (5.62)<br />

thereforeimportanttocheckhowthemeasuredenergyspreadrelatestotheenergyspreadatthe pointi.e.inthemiddleofoneofchicanethankstoanOTRprolemonitor(seeg.5.29).Itis bunchlengthmeasurementstation.Underthevalidityoflineartransfermatrixformalism,itis force<strong>and</strong>wakeeldeects.Theformerhasbeenstudiedbyperformingnumericalsimulationsusing thecodeparmela.Aspicturedingure5.30,wherewecomparethelongitudinalphasespaceat clearthatenergyspreadshouldbethesameoverthewholeregionprovidedtheFEListurnedo. However,wemustbecautiousabouttheapplicabilityoflinearoptics:thereareafeweectsthat chicanemidpoint,theenergydistributionchangeisinsignicant.Thedegradationofenergyspread<br />

thewigglerinsertion<strong>and</strong>theoneatonepotentialpointofmeasurement,namelythedownstream cansignicantlyspoiltheenergyspread.Theprincipaleectsarethelongitudinalspacecharge


inducedbyspacechargeisnotaconcerninthepresentdiscussion.<br />

undulatorvacuumchamberwhichhasarectangularsectionof489mm2. bunchlengthmeasurement<strong>and</strong>theenergyspreadmeasurementstation,thelargestdiscontinuityis introducedbythebeampipesizevariationclosethewigglermagnet:thereisatransitionbetween thest<strong>and</strong>ardbeamvacuumchamber,thathasacircularsectionof50.8mmdiameter,<strong>and</strong>the Thesecondmechanismthatcanpotentiallydeterioratethebeamenergyspreadisduetowakeeld generationasthebeamencountersdiscontinuitiesinthevacuumchamber.Betweenthepointof<br />

functionwrites:!W(x;y;s)=1eZ1 Wakeeldforcesareduetothechangeinboundaryconditionssurroundingaparticle,whichobligate theCoulombeldtoreorganize.Anelectronintheheadofthebunchcancauseanelectriceld atthelocationwheretheboundaryconditionchanges.Anelectronbehindcaninteractwiththis Foranelectrontraversingastructurewithanoset(x;y),withitsvelocityparalleltoz,thewake Ifweassumealltheelectronsarecenteredinthestructure,i.e.x=y=0,theprincipaleect ofwakeeldistointroduceenergyvariationalongthebunchwhichinturncanspoiltherms electriceld<strong>and</strong>therebymodifyitsorbit.Typicallywakeeldsaredescribedbywakefunctions.<br />

energyspread.Thermsenergyspreadinducedbythiseectispurelycomingfromthelongitudinal wakeeld,Wk;itwrites:;wake=e2Z1 1dz!E(x;y;z;t)+cbz^!B(x;y;z;t) (5.63)<br />

where(s)isthebunchdistributionfunction,<strong>and</strong>kkdef energyspreadincreasetothewakeeldeectispresentedingure5.31:itisnoticedthatthe factor. Inthepresentcasethecomputationofthewakeeldisestimatedbyusinga2Dcodetbciwhichalso assumesthebunchisarigidlinechargedistributedalongagaussi<strong>and</strong>istribution.Theexpected 1ds(s)W2k(s)k2k1=2 =1=eR11Wk(s)(s)dsisthetotalloss (5.64)<br />

<strong>and</strong>thecircularvacuumchamberhasbeensmoothedbyintroducinga\trumpet"shapedcopper piece. expectedtohaveasignicantcontributionsincethetotalenergyspreadisthequadraticsumofthe intrinsic<strong>and</strong>wakeeldinducedenergyspread.Moreoverthesteptransitionbetweenthewiggler spread(oftypically50keVat38MeVasachievedinnumericalsimulations).Henceitisnot associatedenergyspreadis,intheworstcase25timeslessthanthebeamintrinsicrmsenergy<br />

Thisismuchlargerthantheexpectedvaluefromtheparmelacode(11:7deg-keV)butstillwithin <strong>and</strong>=0:250:05%whichyieldalongitudinalemittanceofapproximately18:85:5deg-keV. undulatorvicinity<strong>and</strong>istheenergyspreadmeasuredinoneofthehighdispersionlocationsin thechicanes).Typicalbunchlength<strong>and</strong>energyspreadmeasuredduringthecommissioningofthe IRFEL,intheperiodjustpriortorstlaserlightproduction,arerespectivelyz=11030m thelongitudinalemittancereducesto~"z'z(wherezisthebunchlengthmeasuredinthe Henceundertheassumptionthatthereisnomechanismtospoilsignicantlytheenergyspreadof<br />

thespecication33deg-keV.<br />

thebeam,whenthelongitudinalenvelopeisatawaistclosetotheundulatorlocation(.e.hzi'0),


5.8.1Conclusion Inthischapterwehavedevelopedtechniquestomeasurebunchlength.Thesestechniquesincludebothafrequency-basedmethodthatconsistsofmeasuringtheenergyspectrumofcoherent transition(<strong>and</strong>potentiallysynchrotron)radiation,<strong>and</strong>atime-basedmethod.Bothtechniquesare capableofresolvingpicosecond-time-scalebunchlengths.Alongwithbunchlengthmeasurement, someinsightsonthelongitudinalphasespacecanbeobtainedbymeasuringtheenergyspreadfrom which,knowingthebunchlength,thelongitudinalemittancecanbecomputed.


Golay Cell Signal (V)<br />

Golay Cell Signal (V)<br />

-3000<br />

4.0 (A)<br />

3.5<br />

-1500 0 1500 3000<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

(B)<br />

0.0<br />

2.0 (C)<br />

1.5<br />

1.0<br />

totallysuppressedwhilein(B)itwas.(C)givesthedierencebetweenthetwopreviousplots Figure5.14:Completeinterferogramstakenfewminutesapart:In(A),theghost-pulsewasnot<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-3000 -1500 0 1500 3000<br />

Mirror Position ( m)<br />

(A)-(B) .<br />

Difference (A)-(B) (V)


Golay Cell Output Signal (Volts) Golay Cell Output Signal (Volts)<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

−400 −300 −200 −100 0 100 200 300 400<br />

4<br />

3.5<br />

Figure5.15:FinescanofthecentralpartoftheinterferogrampresentedinFig.5.14(A).The<br />

3<br />

experimentalinterferogram(circle)iscomparedwithaninterferogramgeneratedfromagaussian distribution(solidline)<strong>and</strong>asquaredistribution(dashline)bothofthesedistributionhavethe sameFWHM(A).Theinterferogramiscomparedwithaninterferogramofthesumofasquare<br />

2.5<br />

<strong>and</strong>gaussi<strong>and</strong>istributionbothhavingaFWHMof110m(B).Thebaselineis2.7V.<br />

2<br />

1.5<br />

1<br />

−400 −300 −200 −100 0 100 200 300 400<br />

Mirror Displacement (microns)<br />

(A)<br />

(B)


Golay Cell Ouput (V)<br />

Golay Cell Ouput (V)<br />

Golay Cell Ouput (V)<br />

Golay Cell Ouput (V)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

(a)<br />

. . ..... .. . ... . . .... ... .... ..... .......... .<br />

..... ....... ... ..<br />

.<br />

. .<br />

.<br />

..<br />

.<br />

............<br />

. ....<br />

.<br />

. . . . . ....... . .... ....... .. . ... .... ..<br />

... .....<br />

(b)<br />

........... .... .... . ...... ..<br />

.. ... ... . . . . .. ... ....... ... ... .<br />

.<br />

.<br />

... . ...<br />

... ..<br />

... ..... ... ........ . ... . .. ..... ....... . ..... ...... ..<br />

...<br />

(c)<br />

.......... ... .... .....<br />

.<br />

..<br />

............... ...... .. .. ....... .<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

..<br />

.<br />

..<br />

.<br />

.. ......<br />

... .<br />

. .. . . ...................... ... .. . ...... ......<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

3.0<br />

2.5<br />

2.0<br />

(d)<br />

............ ............................<br />

(e)<br />

........... ..... .....<br />

.<br />

. .<br />

...<br />

..<br />

.......... ... ............................................ ..<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

. .. .... . . .... .. . .. .. ..<br />

... . . .<br />

. .. . ..<br />

. .... ..<br />

.. . .<br />

. ..... . .. . . .<br />

. ...... ... ....... ... . .... .<br />

. . . ... . ..... . .. ... ..<br />

. . .. .. . . . ... . ... . .. .... -2.5 0.0 2.5 5.0<br />

3.0<br />

Figure5.16:InterferogrammeasuredfordierenttransversebeamsizeontheTRradiator.Theleft plotsarethemeasuredinterferogramswhereastherightplotsshowthebeamtransverse(horizontal<br />

2.5<br />

<strong>and</strong>vertical)distributions.<br />

2.0<br />

1.5<br />

1.0<br />

..<br />

0.5<br />

0.0<br />

-1280 -640 0 640 1280<br />

-2.5 0.0 2.5 5.0<br />

Mirror Position ( m)<br />

distance (mm)<br />

Golay Cell Ouput (V)<br />

horizontal (solid lines) <strong>and</strong> vertical (dashed lines) transverse beam distribution (a.u.)<br />

-2.5 0.0 2.5 5.0<br />

-2.5 0.0 2.5 5.0<br />

-2.5 0.0 2.5 5.0


Average<br />

Left<br />

1.5<br />

Right<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-3000 -2000 -1000 0 1000 2000 3000<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Mirror Position ( m)<br />

Wavenumber (cm -1 50<br />

Average<br />

(A) 45 (B)<br />

alongwiththecorrespondingpowerspectrum(B). Figure5.17:Symmetrizationoftheautocorrelationbydierentmethods(A)(seetextfordetail)<br />

Left<br />

Right<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

)<br />

Autocorrelation (a.u.)<br />

40<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Wavenumber (cm -1 35<br />

30<br />

Figure5.18:Energyspectrumobtainedbyconsideringdierentnumbersofdatapointsfromthe<br />

25<br />

autocorrelation.Thenumbersareallpowersoftwo,asrequiredbytheFFTalgorithmweused.<br />

20<br />

15<br />

10<br />

5<br />

0<br />

)<br />

Energy Spectrum (a.u.)<br />

Energy Spectrum (a.u.)<br />

64 points<br />

128 points<br />

256 points<br />

512 points


150<br />

100 5<br />

4<br />

Figure5.19:EnergyspectrumobtainedbyFouriertransforminganautocorrelationwith256data points(solidlinewithsquares)<strong>and</strong>thedierentlowfrequencyextrapolationsconsidered.<br />

3<br />

50 2<br />

1<br />

Raw Spectrum<br />

0<br />

0 100 200<br />

Wavenumber (1/cm)<br />

1<br />

0.9<br />

Power Spectrum (a.u.)<br />

0.8<br />

0.7<br />

5<br />

0.6<br />

0.5<br />

spectrumshowningure5.19.<br />

Figure5.20:Recoveredlongitudinalbunchdistributionforthedierentextrapolationofthepower<br />

0.4<br />

0.3<br />

3 4<br />

0.2<br />

0.1<br />

2<br />

0<br />

1<br />

−0.1<br />

−0.1 −0.05 0 0.05 0.1<br />

Distance (cm)<br />

Bunch Popoulation (a.u.)


driveraccelerator Figure5.21:ExperimentalsetuptomeasurebunchlengthwithzerophasingmethodintheIR-FEL<br />

Cavities tuned off<br />

24 MeV dipole<br />

Quadrupole<br />

OTR<br />

To ER dump<br />

12<br />

10<br />

0.036 mm<br />

2 cavities -90 deg (SC OFF)<br />

2 cavities -90 deg (SC ON)<br />

2 cavities +90 deg (SC OFF)<br />

4<br />

8 2 cavities +90 deg (SC ON)<br />

Figure5.22:Horizontalbeamenvelopeevolutionfromtheexitofthefourcavitiesinthecryomodule<br />

3 cavities -90 deg (SC OFF)<br />

4 3<br />

3 cavities -90 deg (SC ON)<br />

uptothebeamprolestationinthespectrometertransportlinefordierentnumbersofzerophasing<br />

3 cavities +90 deg (SC OFF)<br />

3<br />

3 cavities +90 deg (SC ON)<br />

6<br />

cavities.Foreachcase,thespacechargeroutineinparmelaisturnedon<strong>and</strong>o.<br />

4 cavities -90 deg (SC OFF)<br />

2<br />

4 cavities -90 deg (SC ON)<br />

4 cavities +90 deg (SC OFF)<br />

2<br />

4 cavities +90 deg (SC ON)<br />

4<br />

1<br />

1<br />

2<br />

All cavity off<br />

0<br />

1600 1800 2000 2200 2400 2600<br />

Distance (cm)<br />

x (mm)<br />

cavities off (SC OFF)<br />

cavities off (SC ON)<br />

1 cavity -90 deg (SC OFF)<br />

1 cavity -90 deg (SC ON)<br />

1 cavity +90 deg (SC OFF)<br />

1 cavity +90 deg (SC ON)


Figure5.23:picturaleectoflongitudinalspacechargeforceonthephasespacedistribution.<br />

δp/p<br />

Space charge force<br />

RF focussing<br />

z<br />

Space charge force RF focussing<br />

25<br />

20<br />

15<br />

Cav #4,3,2 +90 deg<br />

10<br />

Cav #4,3 +90 deg<br />

5<br />

Cav #4 +90 deg<br />

therstzero-phasingcavityuptotheentranceplaneofthespectrometerdipole.Thenumberof Figure5.24:Longitudinalphasespaceslopeevolutionalongthedriftbetweentheentranceof<br />

0<br />

cavitiesusedforthezerophasingisindicatedbeloweachcurve.Theslopeisnormalizedtothe<br />

Cavities turned off<br />

initialenergy.Foreachcasethesimulationisperformedwiththespacechargeroutineinparmela<br />

-5<br />

Cav #4 -90 deg<br />

turnedon(uppercurve)<strong>and</strong>o(lowercurve).<br />

-10<br />

Cav #4,3 -90 deg<br />

-15<br />

Cav #4,3,2 -90 deg<br />

-20<br />

Cav #4,3,2,1 -90 deg<br />

-25<br />

1600 1700 1800 1900 2000 2100<br />

Distance (cm)<br />

d /dz (%/cm)<br />

Cav #4,3,2,1 +90 deg


8.0<br />

7.0<br />

6.0<br />

5.0<br />

rophasingcavitiesFigure5.25:RMShorizontalbeamsizeattheprolemeasurementstationversusnumberofze-<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0 1 2 3 4 5<br />

Number of Zerophasing Cavities<br />

x on ITV1G01 (mm)<br />

cavities -90 deg<br />

cavities +90 deg<br />

cavities -90 deg (SC ON)<br />

cavities +90 deg (SC ON)


. .. .. . .. .<br />

. .. . ..<br />

.<br />

. ..<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . . ..<br />

. . . .. ...<br />

. . .<br />

. . . .<br />

. ....<br />

. . . . . .<br />

.<br />

. .<br />

. .. . . .. . .<br />

..<br />

. .<br />

.<br />

.<br />

. . ..<br />

. .<br />

. .. . . . . . .<br />

. . . . .<br />

. . .<br />

.. . .<br />

. . .. . .<br />

. .... . .<br />

.<br />

..<br />

. .. . . ... . .<br />

.... . .<br />

.<br />

.<br />

.<br />

.<br />

.. . . .<br />

. .<br />

.. ..<br />

.<br />

. . . .<br />

. ..<br />

.<br />

. . ... .<br />

. .<br />

. . . .. .<br />

. . . .<br />

. . ..<br />

. . . . .<br />

.<br />

.. .<br />

. .<br />

.<br />

. . .. . . ... .. . .. . .<br />

.<br />

.<br />

. .. .<br />

. .. . .<br />

. . . .. . ..<br />

. . ..<br />

. .. .<br />

. . .<br />

. .<br />

. . . .. .. ... .. ....<br />

.<br />

. . .<br />

. .<br />

. . .<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

. .. .<br />

. . .. . ..<br />

. .. . .<br />

. . .<br />

. . .<br />

. .. .. .<br />

.<br />

. . .<br />

. . .<br />

. . . . .<br />

...<br />

. .<br />

.<br />

.<br />

.. .<br />

.<br />

. .. . .<br />

. .<br />

..<br />

. .<br />

. .<br />

... . ..<br />

. . .<br />

...... .<br />

. . . .<br />

.<br />

... . . . . . . . .<br />

. . ..<br />

. . . .<br />

.<br />

.<br />

.. .<br />

. . .. . .<br />

.<br />

. . ... . .<br />

.. . . . ..<br />

. .<br />

. . ..<br />

. .. .<br />

. . . . . . .<br />

. . .<br />

. . .<br />

.. .<br />

. . . ..<br />

. . . .<br />

.<br />

.<br />

... . ... . . ..<br />

.<br />

. ... . . . .<br />

. . .. . . .<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

.... . .<br />

. .... .<br />

.<br />

. . ...<br />

. . . ..<br />

. . .<br />

.<br />

. . .. . .<br />

.<br />

.<br />

. .. . .. . .<br />

.<br />

. .<br />

. .. .<br />

.<br />

. . . . .<br />

.. . . . .<br />

.<br />

.<br />

. . .<br />

. . .<br />

. .<br />

. .<br />

. .<br />

. . . . . .<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

. . . . . .<br />

. . . .<br />

. . .<br />

.<br />

. . .. .<br />

. . . . .. .<br />

. . .<br />

. .. .<br />

.<br />

.<br />

. .. .<br />

. . .<br />

. .. . . .<br />

. . . .<br />

. ..<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. ...<br />

..<br />

. . ..<br />

.<br />

. . ..<br />

. . . .<br />

. .. . . .<br />

.. . .<br />

. . . . . ..<br />

. . ..<br />

.<br />

. . .<br />

.<br />

..<br />

. . ...<br />

. ..<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

. . ... .<br />

. . . . . . .<br />

. . . . . . . .<br />

. . . . . .<br />

.<br />

. .. . .. . ..<br />

... . . .. . . . .<br />

. . . . .. . .. .. . . . ...... .<br />

. . . . .<br />

. .. . . . ... . .. .<br />

. . .<br />

. .<br />

cavities turned off<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

. . . .<br />

.<br />

.<br />

. . . .<br />

. .. .<br />

.<br />

-20<br />

-30<br />

-40<br />

-50<br />

-50 -25 0 25 50<br />

x (mm)<br />

.. .<br />

. . . . . .<br />

. . . .. .<br />

. . . .<br />

.<br />

. .<br />

. .<br />

. . . . .<br />

. .<br />

. . .. .. . .<br />

. . . . ... ..<br />

.<br />

. . .. .<br />

. . . .<br />

.<br />

.. .... . . .<br />

. . . .<br />

. ... . .<br />

. . . . .<br />

. .<br />

. .<br />

. . .. .<br />

. .<br />

.<br />

. . . . .. . . . . . .. .. .<br />

. .. . ..<br />

.<br />

. . ... . .<br />

. . . . . .<br />

. .<br />

.<br />

.<br />

. .. .<br />

. .<br />

.<br />

. . .. .. . . . ..<br />

.. .. . .<br />

. .. .<br />

. .<br />

. .. . .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .. .<br />

. .<br />

.<br />

.<br />

. .<br />

..<br />

.<br />

.. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

. .. .<br />

. . .<br />

. .<br />

. .<br />

. . .<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

. . .. .<br />

.<br />

. .. . . . .<br />

.<br />

. . ..<br />

.<br />

. . .. . .<br />

. .<br />

.<br />

.<br />

.<br />

. . . . . . . .<br />

.<br />

.<br />

. .. .<br />

. . .. . .<br />

. . . . .<br />

.<br />

.<br />

.<br />

.<br />

. . . . .<br />

. .. . .<br />

.<br />

. .<br />

.<br />

. . .. .<br />

. .. . .<br />

..<br />

.<br />

.<br />

. .<br />

.. .<br />

. . .. .<br />

. . . .<br />

. . . .<br />

. . .<br />

.<br />

.<br />

.<br />

. . .. .<br />

. . . ..<br />

. . .<br />

.<br />

.<br />

. . . . .<br />

. . . . .<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

. . .. .<br />

.<br />

.<br />

. .<br />

. .<br />

. . . .<br />

. .<br />

. . .<br />

. .<br />

. . . . . . . ..<br />

. .<br />

.<br />

.<br />

.. .<br />

. . .. .<br />

. . . .<br />

. . . .<br />

.<br />

.. . .<br />

. . .<br />

. .<br />

.<br />

.. . .<br />

. .<br />

. . .. . . . .<br />

.<br />

. . . . .<br />

.<br />

. . . . .<br />

. . .<br />

. ... .. .<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

. . . . .<br />

. . .<br />

. . . .<br />

. . .. . .. .<br />

... . .<br />

.<br />

.<br />

. . . .. . .<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

. .<br />

. . . .<br />

. .<br />

. . . .<br />

. .<br />

.. . .<br />

. .<br />

.. . . .<br />

.<br />

. .. .<br />

.<br />

.<br />

. . . .. . .<br />

. . . . . . .<br />

.<br />

. . . . .<br />

. . . .<br />

.. .<br />

. .. .<br />

.<br />

.. .<br />

. . . . .<br />

.<br />

. . . . . . . .. . . .<br />

. . . . . . . .<br />

.<br />

. . . . .<br />

. ... . ..<br />

. .. . . . .. . . . . . . .<br />

. . .. . . .<br />

.<br />

. ... .<br />

.<br />

. .. . .. .<br />

.<br />

.<br />

. .... ... . .. . . .. . .. .<br />

.<br />

.<br />

.<br />

. . . .. .<br />

. . .<br />

cavities phased -90<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

. . .. .. . ...<br />

. .. . .<br />

-20<br />

-30<br />

-40<br />

-50<br />

-50 -25 0 25 50<br />

x (mm)<br />

o on-crest<br />

. .<br />

. .<br />

.<br />

. . . . . . ..<br />

.<br />

. . .<br />

.<br />

.<br />

. . .<br />

. . . . . . . . ..<br />

. . .<br />

. . .<br />

. .<br />

.. . . .. . ... .<br />

. .<br />

.<br />

.<br />

. . .<br />

. . . . . . . . . .<br />

. .<br />

.<br />

. . .. . .. . . .<br />

.<br />

.<br />

.<br />

.<br />

. . . . .<br />

. .<br />

. . . .<br />

. .. .<br />

. .<br />

. . .<br />

.. . .<br />

.<br />

. . .<br />

.<br />

. . . . . .<br />

. . .<br />

. . .<br />

. . .<br />

. .<br />

. . .<br />

.<br />

.<br />

. . . . . .<br />

. . .<br />

. . . . . . . .. . .<br />

. . . . . .<br />

.. .<br />

. . .<br />

. .<br />

. . . . . .<br />

. . . .<br />

.<br />

. . .<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

. . .. . . .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . . .<br />

. . . .<br />

. . .<br />

. . . .<br />

. . . . . .<br />

.<br />

. . . . .<br />

.<br />

. . .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

. . . .. . .<br />

.<br />

.<br />

. . . .<br />

.<br />

. .. . . .<br />

. .<br />

. . . . . . ..<br />

. . ..<br />

. .<br />

.<br />

.. . .. .. .<br />

.<br />

.<br />

. .<br />

. . . . .<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

. . . ..<br />

. . .<br />

.<br />

.<br />

. .<br />

. . . . .<br />

. . .<br />

. .<br />

.<br />

. . .<br />

. . . . ..<br />

.<br />

. . . .<br />

.. . . .<br />

. . . .<br />

.<br />

. .<br />

. . . . . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

. .. . .<br />

. .<br />

. .<br />

.<br />

. .<br />

. . . .<br />

.<br />

.<br />

. . . .<br />

.<br />

. . . .<br />

.<br />

. .<br />

.<br />

. .<br />

. . . . .<br />

. . .<br />

. .<br />

.<br />

. . . . . . . .<br />

. . . . . . . . . . .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. . .. . .<br />

.<br />

. .<br />

.<br />

. . . .. .<br />

.<br />

. .<br />

. .. . .<br />

. .<br />

. .<br />

.<br />

. . . . .<br />

. . . . . ..<br />

.<br />

. .<br />

. .<br />

. . .<br />

. . .<br />

. . . . .<br />

.. .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. . . .<br />

.<br />

.. .<br />

. . . .. .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

. . . . . .<br />

.<br />

.<br />

.<br />

. . . .<br />

. .<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

. . .<br />

. .<br />

. . . . .<br />

.<br />

. . .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . . .<br />

. .<br />

. . . .<br />

. . . .<br />

. . .<br />

.<br />

. .<br />

. . .. . .<br />

.<br />

. . . ..<br />

.. . .<br />

. .<br />

.<br />

. . .<br />

.<br />

. . .<br />

. . .<br />

. . . .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. . . . .<br />

.<br />

.<br />

. .<br />

. . . . .<br />

.<br />

.<br />

.<br />

. .<br />

. . . . .<br />

. .<br />

.<br />

.<br />

. . . . . .<br />

. . .<br />

.<br />

.<br />

. .<br />

. . .<br />

. .<br />

.<br />

. . .<br />

.<br />

. .. . ..<br />

. ... .<br />

. . .<br />

. . . . .<br />

. . .<br />

. . .<br />

.<br />

. . . .<br />

. . . . . . .<br />

. . .<br />

. . . . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

. . .<br />

. .<br />

. . . . .. .<br />

. .<br />

. .<br />

.<br />

.<br />

.. .. . .<br />

.<br />

. . . .<br />

.<br />

.<br />

cavities phased +90<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

.. .<br />

-20<br />

-30<br />

-40<br />

-50<br />

-50 -25 0 25 50<br />

x (mm)<br />

o on-crest<br />

measurement.<br />

Figure5.26:<strong>Beam</strong>spotonthedispersiveOTRmonitorforthethreephasesofthezero-phazing<br />

120<br />

120<br />

120<br />

100<br />

100<br />

100<br />

80<br />

80<br />

80<br />

60<br />

60<br />

60<br />

40<br />

40<br />

40<br />

20<br />

20<br />

20<br />

0<br />

0<br />

0<br />

-50 -25 0 25 50 -50 -25 0 25 50 -50 -25 0 25 50<br />

x (mm)<br />

x (mm)<br />

x (mm)<br />

y (mm)<br />

Population<br />

y (mm)<br />

Population<br />

y (mm)<br />

Population


500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400 500 600<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Cavities Off<br />

Cavities -90 deg<br />

0<br />

0 100 200 300 400 500 600<br />

0<br />

500<br />

200<br />

180<br />

450<br />

160<br />

400<br />

350<br />

140<br />

300<br />

120<br />

250<br />

100<br />

200<br />

80<br />

150<br />

60<br />

100<br />

40<br />

...<br />

. ..<br />

..<br />

50<br />

20<br />

0<br />

0<br />

0 100 200 300 400 500 600<br />

... .. . .. . .. . .. . .<br />

. ... .. . . .<br />

. . . .. .. . . ... ... . . .. . . .<br />

. .. .. .. . .. . ... ...<br />

... .<br />

. .. . . .. .. ... . .<br />

. .. .<br />

. ...<br />

. .. . .. ..<br />

.<br />

.. . ..<br />

. ..<br />

.<br />

... .. Figure5.27:Typicalzerophasingbasedmeasurement.The2Dfalsecolorimagerepresentsthe<br />

Cavities +90 deg<br />

100<br />

beamspotmeasuredonthedispersiveviewerinthespectrometerlinewhereastherightplotisthe<br />

90<br />

projectionontothehorizontalaxis.Measurementforthecasewhereallthe\zerophasing"cavities<br />

80<br />

areo(topline),arephased-90degw.r.t.themaximumaccelerationphase(middleline)<strong>and</strong>are<br />

70<br />

phased+90degw.r.t.themaximumaccelerationphase(bottomline).<br />

60<br />

50<br />

40<br />

30<br />

..<br />

20<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Distance (mm)<br />

Horizontal (energy) axis 40 mm<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

OTR intensity<br />

OTR intensity<br />

OTR intensity<br />

100<br />

.<br />

.. .... .. . . ... .. .<br />

. ...<br />

.<br />

.<br />

.<br />

.<br />

. . ..<br />

. .... .. . . ..<br />

. . .... . .<br />

.<br />

. . .<br />

... . ... .....<br />

. . ..<br />

.. . .. . . . .. . . . .<br />

.<br />

. .. . .. .<br />

. . .... . ... . .. . . .. . .. . .. ... .<br />

.. .. .. . .<br />

.<br />

.<br />

.<br />

. . ..<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Distance (mm)<br />

100<br />

90<br />

80<br />

70<br />

. .. .<br />

..<br />

. .. . . ... . . .. . .. . .<br />

.. . . .. .<br />

. .. . ... ...<br />

. ..<br />

... . ..<br />

. .<br />

. .. .<br />

..<br />

.<br />

..<br />

.<br />

.<br />

. .. . .. ..... .. . .. ..<br />

..<br />

.<br />

..<br />

.. .<br />

. ....<br />

. .. . ..<br />

.. .. . . ...<br />

60<br />

50<br />

40<br />

30<br />

..<br />

20<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Distance (mm)<br />

. .


σ x (m)<br />

x 10−3<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 5 10 15 20<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0 5 10 15 20<br />

Quadrupole Strength (m −2 7<br />

6<br />

5<br />

0 5 10 15 20<br />

1<br />

0.98<br />

0.96<br />

0.94<br />

0.92<br />

0.9<br />

0 5 10 15 20<br />

)<br />

Quadrupole Strength (m −2 <strong>and</strong>=2%(bottomright) beamsizecontributionduetodispersiononlywiththetotalbeamsizefor=0:2%(bottomleft) thebeamsizecontributionduetodispersiononly.Thebottomplotspresenttheratioofthe variationinthecenterofthebunchcompressorversustheexcitationofanupstreamquadrupole Figure5.28:Comparisonfor=0:2%(topleft)<strong>and</strong>for=2%(topright)ofthebeamrmssize usingdimadsimulation(solidlines),usingEqn.(5.57)(crosses).Thedashedlineontheseplotsis<br />

)<br />

Figure5.29:Schematicsoftheavailablediagnosticsintheundulatorregionformeasuringthe longitudinalemittance.<br />

Undulator Magnet<br />

OTR foil<br />

OTR foil<br />

e- beam<br />

from linac<br />

CTR foil<br />

Chicane 1 (Compressor)<br />

Chicane 2 (Decompressor)<br />

σ x (δ)/σ x (no units)<br />

x 10−3<br />

10<br />

9<br />

8


.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. . .<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.. .<br />

. .<br />

.<br />

.<br />

. . . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. ..<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. . . .<br />

. .<br />

.. .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. ..<br />

.<br />

.<br />

..<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

. . .<br />

. .<br />

. . .<br />

.<br />

.. .<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

. . .<br />

.<br />

.<br />

..<br />

.<br />

.<br />

. . . .<br />

.<br />

. .<br />

. . ..<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

..<br />

. .<br />

.<br />

. .<br />

. . .<br />

. .<br />

. . .<br />

.<br />

.<br />

. .. .<br />

. . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . . .<br />

. . .<br />

. . .<br />

.<br />

.<br />

. . . .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. .. .<br />

. .<br />

. .<br />

. .<br />

. . . .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .. .<br />

. .<br />

.<br />

.<br />

. . . .<br />

. .<br />

..<br />

.<br />

.. .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. . .. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

. . .<br />

..<br />

.<br />

. . .<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.. .<br />

.<br />

.<br />

. .. .<br />

.<br />

.<br />

..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

.<br />

.. . .<br />

.<br />

.<br />

. .<br />

.<br />

...<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. .. . .. .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.. .<br />

..<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .. .<br />

.. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

150<br />

100<br />

.<br />

50<br />

Figure5.30:ComparisonofthelongitudinalphasespaceattheCTRfoil(greydots)<strong>and</strong>the<br />

.<br />

0<br />

bunchlengthattheCTRfoilissmaller(dashedlines)thanatthechicanemid-point(solidlines). decompressormid-point(blackdots).Theenergydistributionareexactlythesamewhilethe<br />

. .<br />

.<br />

-50<br />

-100<br />

-150<br />

-4 -2 0 2 4<br />

(RF-deg)<br />

E (keV)<br />

10<br />

10<br />

0 200 400 600 800 1000<br />

Bunch Length σz (µm)<br />

−2<br />

10 −1<br />

1<br />

Figure5.31:rmsenergyspreadinducedbywakeeldsgeneratedasa60pCbunchofelectrontravels throughthevacuumchambertransitionattheundulatorlocation.<br />

10<br />

Energy Spread ∆E (keV)


<strong>Beam</strong>DynamicsStudies Chapter6<br />

undulatorinthebacklegtransportasitispresentlyenvisionedfortheIRFELUpgrade. ues.Recentlywestartedtostudytransverseemittancegrowthtoassessifwecouldrelocatedthe<strong>and</strong>verifythatthebeamparametersclosetotheundulatorinsertionarewithinthespeciedval- optimize<strong>and</strong>underst<strong>and</strong>thephotoinjector.Theyhavebeenusedtooptimizethebunchingscheme, InthepresentChapterwewouldliketopresentfewapplicationsofthediagnosticswehaveprevi-<br />

6.1StudyofthePhotoinjector ouslydescribed.Essentially,tothepresentdate,theseinstrumentshavebeenhelpfulintryingto<br />

driver-accelerator;everycaremustbetakentopreventanybeamdegradation<strong>and</strong>insurethebeam parametersremainwithinthespeciedvalues.Sincetheinjectortransportslowenergy,highcharge bunches,eectssuchasspacechargehavetobetakenintoaccount. AfewfeaturesoftheDCphotoemission-basedinjector,especiallythebeamgenerationusingthe GaAsphotocathode,havebeendescribedinChapter1.Hereweshallonlyconcentrateonthebeam transportfromthegunexituptothefrontend. Theinjectorbeamlineproispictureding.6.1;itcanbedividedintothreemainregions: Thebeamgeneration<strong>and</strong>lowenergytransportisprobablyoneofthemostcrucialissueforthe<br />

2.Thehighgradientacceleratingstructure,composedoftwoCEBAF-typesuperconducting 1.The350keVtransportlinethatconsistsoftwosolenoidlenses<strong>and</strong>awarmbunchercavity,<br />

Inthissectionwewillstudyeachregion,trytoprovideasimplemodelofbeamevolution,wewill comparewithsimulations,<strong>and</strong>whenpossible,benchmarkwithexperimentalresults<strong>and</strong>provide 3.The10MeVregionthatcanbesubdividedintotwoparts:aquadrupoletelescopethatis chicanethatconsistsofthreebendsarrangedina\staircase"conguration. usedtomatchthetransversephasespaceintothemainlinac<strong>and</strong>anachromaticinjection cavitiescapableofacceleratingthebeamuptoatotalenergyofapproximately10MeV,<br />

tentativeexplanationofdiscrepancies.However,wewillnotdescribethephotoemissionprocess <strong>and</strong>accelerationinthegunchambersinceithasbeentreatedinReference[14]. 137


Solenoidal Lens #2<br />

Accelerating Cavity #4 & #3<br />

Achromatic Chicane<br />

OTR viewer<br />

Figure6.1:SimpliedschematicoftheIRFELphotoinjector(seetextforexplanation).<br />

OTR viewer<br />

Linac Entrance<br />

<strong>High</strong> Voltage<br />

Buncher<br />

Power Supply<br />

GaAs Photocathode<br />

<strong>High</strong> Dispersion<br />

Multislit Mask #1<br />

particlepushingcodeisusedasskeletonforthesimulation[53],theelectrostaticeldinthegun Theinjectorhasbeensubjecttoextensiveintegratedmodelingusingseveralcodes.Theparmela 6.1.1Introduction Thenumericalmodel<br />

Solenoidal lens #2<br />

Multislit Mask #2 OTR viewer<br />

<strong>and</strong>inthesolenoidlensesarecomputedwiththepoissoncode,whereastheelectromagneticeld<br />

pickup cavity<br />

parametershavebeensetaftermanyiterativeoptimizationrunsusingparmela.Theresulting intheRFcavitiesareobtainedfroma3Dmodelusingthemafiafamilycode.Theinjector<br />

Matching Telescope<br />

rmsbeamtransverse<strong>and</strong>longitudinalenvelopesthroughouttheinjectortransport,optimizedfor<br />

betweenthephotocathode<strong>and</strong>theanodecanreach500kV.Ideallyonewouldliketomaintain ThebeamisgeneratedwithaDCphotocathodegunaforementioned.Theacceleratingvoltage agunvoltageof350keVarepresentedingure6.2.<br />

thehighestacceleratingvoltagetominimizethespace-charge-inducedemittancegrowthsincethis forceisproportionalto1=2.Unfortunatelybecauseweencounteredtechnicaldiculties(e.g.eld emissionofthecathodesupport)duringtheguncommissioning,wehadtooperatethegunwith 6.1.2The350keVregion<br />

modelingthatevenwiththisloweracceleratingvoltage,wecouldstillndadequatesettingsto acceleratedinthegun,itsrmstransverse(i.e.radial)beamsizeisstronglydiverging<strong>and</strong>the aloweracceleratingvoltageof350keV(<strong>and</strong>sometime330keV).Itwasassessedvianumerical providetherequiredbeamparametersattheundulatorlocation.Asabunchisemitted<strong>and</strong> bunchiselongatingaspicturedingure6.2.Tocorrectforthestrongdivergence<strong>and</strong>collectall particleofthebunch,asolenoidlenshasbeenlocatedimmediatelydownstreamtheanodeplate.


x,y (mm)<br />

6.0<br />

4.8<br />

3.6<br />

2.4<br />

1.2<br />

x<br />

y<br />

0.0<br />

0 120 240 360 480 600 720 840 960 1080 1200<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

is350keV).<br />

1.0<br />

0 200 400 600 800 1000 1200<br />

Thissolenoid,thatwillbereferredhenceforthasthe\emittancesolenoid",becauseofitsimpact<br />

z (cm)<br />

onthebeamemittance,shouldbeoperatedwiththeoptimummagneticeldtominimizespace- Figure6.2:RMStransverse(x<strong>and</strong>y)<strong>and</strong>longitudinal(z)beamsizesalongtheinjector.The charge-inducedemittancegrowth<strong>and</strong>makesurethereisnobeamlossdownstreamduetoscraping onthevacuumchambers.Typicallytheoptimummagneticelddependsonthechargeperbunch bottomschematicslocatestheopticalelementsalongthebeamline(thegunacceleratingvoltage<br />

GUN BUNCHER CAV1 CAV4 QUAD1 QUAD4 DIP1<br />

DIP3<br />

solenoidarereferredasthebeamgenerationline1.Usually,thisregionisentirelysimulatedwith <strong>and</strong>electronenergy(i.e.acceleratingvoltageofthegun).Generallythegunalongwiththisrst<br />

SOL1 SOL2 CAV2 CAV3 QUAD3 QUAD2<br />

DIP2<br />

numericalmethods:themagnetostaticeld2Dmapinthegun<strong>and</strong>inthesolenoid2arecomputed withmagnetostaticsolvercodesuchaspoisson<strong>and</strong>parmelaisusedtosimulatephotoemission ofelectronmacroparticles<strong>and</strong>trackthemalongthisgenerationline. Inthefollowingwearegoingtoprovideanalyticdescriptionoftheevolutionofthebeamparameters alongthe350keVtransportbeamline.Thisanalyticdescriptionisbasedoncoupleddierential 1thisgenerationlineasbeenthesubjectofaPhDthesisseeReference[14] 2Thegun<strong>and</strong>thesolenoidarecylindricallysymmetricelements<br />

z (mm)


equationthatrequiresomeinitialconditions,thatwewilltaketobeattheemittancesolenoidexit.<br />

Letr<strong>and</strong>zberespectivelythermstransverse<strong>and</strong>longitudinalbeamenvelope.Itiswellknow<br />

(e.g.seereference[54])thatonec<strong>and</strong>escribestheevolutionofthebeamenvelopeviatheso-called<br />

coupledrmsenvelopeequationthatwrite(extendedfromreference[54]):<br />

@2r(s)<br />

@s2+k20r(s)3<br />

10p5Nrc<br />

20301<br />

r(s)z(s) 1g22r<br />

202z!~"2r3r=0 (6.1)<br />

@2z(s)<br />

@s2+k20r(s)3<br />

10p5Nrc<br />

2050g<br />

z(s)2~"z(s)2<br />

z(s)3=0<br />

whereg=g(z=r;b=r)afunctionofthebeamrmssize<strong>and</strong>thevacuumpipediameterb,de-<br />

scribestheeectofthebunchinteractionwithitsimageonthebeamlinevacuumchamber;<br />

rc=e2=(40mc3)istheclassicalradiusofanelectron<strong>and</strong>0isthebunchreducedenergy(from<br />

nowonwewillassumeanenergyof350keV,i.e.0=0.8048<strong>and</strong>0=1.6849.Toconvinceourselves<br />

onthenecessityofusingtheaboveequationsystem,wecanstudythedependenceofthe\space<br />

chargeoveremittanceratio".Forthelongitudinaldirectionwedenethisratioas:<br />

Rrdef<br />

=3<br />

10p5Nrc<br />

30gz<br />

(~"nr)2 (6.2)<br />

Thesamekindoffactorcanbedenedforthetransversedirection:<br />

Rzdef<br />

=3<br />

10p5Nrc<br />

02r<br />

(~"nz)2z 1g22r<br />

202z! (6.3)<br />

Theevolutionoftheseratiosalongthebeamlineusingrmsenvelopenumericallycomputedwith<br />

parmelaareshowningure6.3.Inthe350keVlineitisseenthatspacechargecontributionin<br />

theenvelopeequationcanbeafactor100largerthantheemittancetermcontribution.Evenin<br />

the10MeVregion,thereisstillapredominanceofspacechargetermbyafactor10exceptinthe<br />

bunchingchicanewheredispersionincreasetransversebeamsize<strong>and</strong>thereforelocallyreducespace<br />

chargeforce.Ontheotherh<strong>and</strong>,thelongitudinalratioissignicantlylargerthanunityonlyin<br />

the350keVregion.Itisstronglydampedasthebeamisacceleratedinthe10MeVstructure<strong>and</strong><br />

downstreamthecryounitthelongitudinalenvelopeequationisonlydrivenbytheemittanceterm.<br />

Toapplythermsenvelopeequationtothedierentelementswecanusethefollowingsteps:<br />

foradriftspace,theexternalfocusingparameters,kr<strong>and</strong>kzaresettozero.<br />

thebunchercavityismodeledasa\slopeimpulse":z0buncher<br />

!z0+2RFeV<br />

mc223z<br />

thesolenoidexternalfocusingparameterisestimatedusingtherelationk0=eB0<br />

2mcwhereB0<br />

istheintegratedmagneticeld,whichwehaveestimatedusingapoissongeneratedmagnetic<br />

eldprole.<br />

6.1.3Thehighgradientstructure<br />

Inthissectionwewouldliketodiscussfewinterestingeectsinducedonthetransversebeam<br />

dynamicsbytheCEBAF-typeacceleratingcavities.Thediscussionwillenablethereadertoun-<br />

derst<strong>and</strong>experimentalresultspresentedinthenextsection.


Space Charge over Emittance Ratio (no unit)<br />

10 2<br />

10<br />

0 200 400 600 800 1000 1200<br />

Distance from the Photocathode (cm)<br />

-4<br />

10 -3<br />

10 -2<br />

10 -1<br />

10 0<br />

10 1<br />

Rr tion. EnergyGain Theaccelerationinacceleratingcavitiesisprovidedbythelongitudinalcomponentoftheelectric Figure6.3:\spacechargeoveremittanceratioforthetransverse(Rr)<strong>and</strong>longitudinal(Rz)direc- eldofthefundamentalmode.Sucheldcanbewrittenapproximately:<br />

Rz betweentheparticle<strong>and</strong>theRF-wave.Becauseof<strong>their</strong>energyattherstcavityentrance,350keV, theelectronsarenotrelativistic<strong>and</strong>thereforeoneelectronisnotgoingtokeepthesamerelative phasewithrespecttotheRF-wave,sucheectisnamedphaseslippage.Let'sdenethephase E0isthepeakeld,zisthepositionwithrespecttothecavitycenter,<strong>and</strong>istheosetphase (z)as: Ez=E0cos(kz)cos(!t+)=E0 2(cos(!t+kz)+cos(!t++kz)) (6.4)<br />

TheEqns.(6.5)<strong>and</strong>(6.6)togetherformacoupleddierentialequationsystemthatcanbesolved Moreoverthenormalizedenergygainis: d(z) dz=eE0 (z)def =!tkz=kZz 2mc21(cos((z)+2kz)+cos((z))) 0 p211!dz+ (6.6) (6.5)<br />

numericallyusingst<strong>and</strong>ardtechnique.Figures6.4presentstheenergygaininthetwocavitywith


w.r.t.theRF-wave.ThisfactisaconsequenceofphaseslippagebetweentheRFwave<strong>and</strong>the cavity#4,oneneedstoinjectthebunchwith'40deg. bunchwhichisnotyetrelativistic.Infacttoobtainthemaximumpossibleenergyattheexitof anelectronbeamofinitialenergyof350keV.Itisnotablyseenthatmaximumenergygainprovided bytherstcavity(cavity#4)isnotobtainedbyinjectingthebunchwitharelativephase=0<br />

Reduced Energy Gain (no unit)<br />

2<br />

Cav #4<br />

10<br />

-0.25 -0.125 0.0 0.125 0.25<br />

Distance (m)<br />

0<br />

10<br />

5<br />

2<br />

1<br />

=10 deg.<br />

=-10 deg.<br />

=0 deg.<br />

10<br />

-0.25 -0.125 0.0 0.125 0.25<br />

Distance (m)<br />

0<br />

10<br />

5<br />

2<br />

1<br />

10 0<br />

10<br />

5<br />

2<br />

1<br />

cavity. Radio-FrequencyinducedFocusing Figure6.4:Reducedenergygain,,alongtherst(cavity#4)<strong>and</strong>second(cavity#3)cryounit<br />

=-16 deg.<br />

Thefundamentalmodelongitudinalacceleratingeldalsoinduces,byvirtueofMaxwell'sequations,<br />

=0 deg.<br />

Thisradialeldtogethercombinedwiththeequationofmotion@tp=eEryieldsatransverse equationofmotion,e.g.forthehorizontalplane: aradialelectriccomponentthatwrites: d2x(z) dz2+0(z) Er(z)=r(z) (z)dx(z) dz+d2(z) 2d dzEz dz2x(z)=0 (6.8) (6.7)<br />

Thisequationcanbesolvednumerically,butsomeapproximatedsolutionhavebeenderivedby Chambers[58,57],forpure-modeacceleratingcavities,<strong>and</strong>areinverygoodagreementwiththe<br />

2<br />

Cav #3<br />

2


numericalsolution[56].Thisapproximatesolutioniswrittenintermoftransfermatrix(e.g.in thex-x0phasespace)as: M=0@cos()p2cos()sin() 0icos() p2+1 p8cos()sin()ifcos()+p2cos()sin1A p8i0cos()sin()<br />

elementsattheexitofthecavityofthecavityarerelatedtothebeammatrixelementatthecavity istheaveraged(overtheRFstructure)energygradient:0=eG <strong>and</strong>is,asusual,thephaseoftheinjectionoftheparticlewithrespecttotheon-crestphase.0 estimatedinastraightforwardfashion:usingrstordermatrixformalism,the11beammatrix wherei;faretheinitial<strong>and</strong>nalreducedLorentzfactors,theangleis=1 mc2cos().Thefocallengthcanbe p8cos()ln(f=i) (6.9)<br />

entranceby:<br />

Sincethefocallengthisdenedbythelengthfwherewehaved(ff) Afteradriftalongadistancel,thebeamsizewrites: 11=m211(0) (f) 11,(f) 11=(f) ff12=m11m21(0)<br />

112l(f) 12+l2(f) 11,(f) 22 22=m21(0) 11=dl=0,ityields: 11 (6.11) (6.10)<br />

notthecase:intheCEBAF-typecavities,forinstance,thereareasymmetriesinthevicinityof thehighordermode(HOM)<strong>and</strong>theforwardpower(FP)couplers.Theseasymmetries,inturn, inducedtransverseelectromagneticelds.Thusitrequiresacomplete3Dmodeltoaccurately studytheeectofthesecouplersonthebeamdynamics.Sucha3Dmodelisreadilyavailable Unfortunatelythismodelisderivedassumingperfectaxi-symmetricRFstructurewhichisgenerally fdef =(f) 22=m11 11 (f) m12cosp2cossin 0fsinp2+q181 cossin (6.12)<br />

beamsizethatisequaltothehallowradius,<strong>and</strong>zero-emittance.Aftertheacceleratingcavitiesthe parameterf11<strong>and</strong>f22arecomputed<strong>and</strong>thefocallengthisdeducedusingtheequation6.12.The <strong>and</strong>hasbeenimplementedintheJeersonLabversionofparmelausing3Delectromagneticeld resultscomputedforthetwocavitiesintheinjector,takingintoaccountnon-relativisticeect,are presentedingure6.5. mapgeneratedwiththeeigensolvermafia[64].Inordertocharacterizethefocusingeectofthe cavitywegenerateahallowsheetbeaminthexyspatialcoordinatespacewithzerodivergence<br />

Radio-FrequencyinducedSteering (i.e.x0=y0=0forallmacroparticleinthebeam).Thepropertiesofthiskindofbeamhasa<br />

yieldemittancedilutionviatwoeects:theheadtaileect<strong>and</strong>theskewcoupling.Theformeris<br />

Inasimilarfashionwehavestudied,fortheinjectorcavities,theRF-kickeectonthebeamcentroid.Thekickimpartedduetothepresenceoftransverseeldintheacceleratingstructureversus thephaseoftheelectronbunchwithrespecttotheRF-waveareplottedingure6.6. TheRF-inducedkickduetothepresenceoftheforwardpower<strong>and</strong><strong>High</strong>ordermodecouplerscan


20<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. . .<br />

.<br />

.<br />

. ..<br />

. .<br />

15<br />

10<br />

5<br />

0<br />

. . .. .. . .<br />

.<br />

-5<br />

.<br />

-10<br />

.<br />

hor.<br />

-15<br />

ver.<br />

.<br />

.<br />

-20<br />

-100 -80 -60 -40 -20 0 20 40 60 80 100<br />

(RF-deg)<br />

. ..<br />

.<br />

.<br />

...<br />

..<br />

.<br />

.<br />

.<br />

. .<br />

. . . . .<br />

.<br />

. . . . .<br />

............ . .. . . . . .<br />

.<br />

. .<br />

. .<br />

. ....... ...<br />

. ..<br />

. . . . 9<br />

Energy .<br />

8<br />

.<br />

7<br />

Figure6.5:Focallengthoftherst(cavity#4)<strong>and</strong>second(cavity#3)cryounitcavitiesversus<br />

6<br />

.<br />

5<br />

.<br />

4<br />

Energy<br />

duetothefactthatthekickisdependentontheparticlepositioninsidethebunch,<strong>and</strong>therefore yieldsadierentialmotionbetweenthehead<strong>and</strong>thetailofthebunch.Thisinturnreultsin<br />

3<br />

.<br />

anincreaseofthebunch(projected)emittance.Itisstraightforwardtoestimatetheemittance<br />

hor. 2<br />

growthduetothiseect:itdependsonthebunchlength<strong>and</strong>thebeamparametersatthelocation<br />

.<br />

oftheconsideredcoupler.Thegeneralexpressionfortheemittancegrowthis[62]: ,thephasedierencew.r.t.themaximumenergyphase(so-called\crestphase")<br />

1 ver. .<br />

0<br />

~"x'z<br />

-200 -150 -100 -50 0 50 100 150 200<br />

2~"x0A2x+B02 x (6.13)<br />

(RF-deg)<br />

thecorrespondingeectonemittancegrowthissmallerthanthehead-taileectinduceddilution emittanceistheskewcouplingeectinducedbytheskewquadrupolemomentoftheelectriceldin thecavity:itintroducesacouplingbetweenthevertical<strong>and</strong>horizontaltransverseplane.Generally <strong>and</strong>itcanbereducedwithapropercorrectionscheme[62];thislattereectwillbeignoredinthe forthcomingdiscussion. atthecouplerlocation,<strong>and</strong>A<strong>and</strong>Baccountsforthesteeringeectsofthecavity,theselattertwo termscanbeestimatedusingtrackingcode.Theothercontributionthatcanspoilthetransverse where~"0istheinitialemittance,z,x<strong>and</strong>0xarerespectivelythermsbeamsize<strong>and</strong>divergence<br />

6.1.4The10MeVRegion Aspreviouslymentioned,wehaveinstrumentedthe10MeVregionwithavarietyofdiagnostics devices:beamdensitymonitors,emittancemeasurementdevices,atime-of-ightpickup<strong>and</strong>a<br />

Focal Length (m)<br />

Cav #4<br />

Cav #3<br />

10<br />

E out (MeV)


0.03<br />

.<br />

....<br />

. .. ...<br />

. ..<br />

..... . ..... 0.02<br />

0.01<br />

...<br />

0.0<br />

.<br />

. . -0.01<br />

.<br />

. .<br />

-0.02<br />

hor. . .<br />

ver. . .<br />

-0.03<br />

-150 -100 -50 0 50 100 150<br />

(RF-deg)<br />

.....<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. . . . . . .<br />

. . . ......<br />

50<br />

Figure6.6:SteeringeectduetoFP<strong>and</strong>HOMcouplerinthecryounitversus,thephase<br />

. . . . ... 0<br />

surementswithnumericalsimulations<strong>and</strong>attempttoexplainpotentialdiscrepancies<strong>and</strong>trytoelectromagneticbeampositionmonitor.Therefore,wecantrytocomparetheexperimentalmea- dierencew.r.t.themaximumenergyphase(so-called\crestphase"). renethemodeltoincorporatetheeectsthatmayaccountforthesediscrepancies.<br />

-50<br />

hor.<br />

ver.<br />

Transverse<strong>Beam</strong>Properties<br />

-100<br />

-150 -100 -50 0 50 100 150<br />

(RF-deg)<br />

themultislitsmaskrevealedemittance70%largerthansimulated.Manyparametricstudieswhere conductedtodetermineifthisemittancegrowthcouldbeminimizedbyuseofavailableparameters: themagneticeldintherst<strong>and</strong>secondsolenoids,<strong>and</strong>thebunchergradient.Mostofoureort Asarstqualitativeobservation,wemeasuredbeamdensityproleontheOTRdensitymonitor beamdensityisshowningure6.7.Thebeamshapearequitesimilar,<strong>and</strong>rmsvalueareinagreementatthe30%level:simu locatedjustdownstreamtheacceleratingstructure.Acomparisonofthemeasured<strong>and</strong>expected<br />

adjustbecauseitalsoaectthebunchingscheme<strong>and</strong>someotheradjustment(acceleratingcavities <strong>and</strong>phasesalongthelinac)arethenneededtopreserveanultrashortbunchlengthinthemain concentratedonthesolenoidlenses<strong>and</strong>thebunchergradient,alsothislatterknobisdicultto rstmeasurementsoftransverseemittancebasedonthephasespacesamplingmethodutilizing x'simu y=1:47mm,<strong>and</strong>exp x=1:77,<strong>and</strong>exp y=1:60mm.However<br />

linacattheundulatorlocation.Anexampleofparametricstudyofthetransverseemittanceversus the\emittance"solenoidmagneticeldispresentedingure6.8.Thisgureclearlyrevealsthe injectoremittancesaredegradedcomparedtotheonepredictedvianumericalmodeling.Onehypotheticexplanationofsuchadisagreementisathemisalignmentofthecryounitwithrespecttothe Angular kick (rad)<br />

Cav #4<br />

Cav #3<br />

100<br />

Equivalent Dipole Strength (G.cm)


15<br />

200 15<br />

180<br />

(A)<br />

(B)<br />

10<br />

10<br />

160<br />

structure(A)withparticlepushingnumericalsimulation(B).<br />

140<br />

5<br />

5<br />

120<br />

beamaxis.Suchhypothesishasbeeninferredfromotherobservationsduringthecommissioning<br />

0<br />

100 0<br />

80<br />

ourdesiretoobtainamorerealisticmodeloftheIRFELelectronbeamtransport,weincludedthe Figure6.7:Comparisonofthetransversebeamdensitymeasuredattheexitoftheaccelerating<br />

−5<br />

−5<br />

60<br />

misalignmentinparmela<strong>and</strong>getemittancevaluesclosertowhatweexperimentallymeasured. misalignmentcurvewasgeneratedbysteeringthebeamby50mradupstreamthecryomodule.In oftheinjectorincludinganoxiousorbitthatcouldnotbestraightened3out.Inthegure6.8,the<br />

40<br />

−10<br />

−10<br />

20<br />

−15<br />

0 −15<br />

EnergySpread<br />

−15 −10 −5 0 5 10 15<br />

−15 −10 −5 0 5 10 15<br />

Horizontal Axis (mm)<br />

Horizontal Axis (mm)<br />

measurementofthermshorizontalbeamsizegivesaccesstothequantity: Theenergyspreadcanbeestimatedbymeasuringthehorizontalbeamproleatthehighdispersion OTR(seegure6.1).Atthislocationthedispersioniscomputedtobe'42cm<strong>and</strong>thereforea<br />

thehighdispersionOTRdensitymonitor.Fromtheseimageswecomputethermsvaluesforthe thislatterstatementisindeedalsoveriedvianumericalsimulationusingthecodeparmela.In Usingtheroutinelymeasuredrmshorizontalemittance(~"x'5-6mm-mrad<strong>and</strong>betafunction gure6.9wepresenttheeectofthebuncherelectriceldonthebeamOTRimagerecordedon x5m)wededucethatthedispersivecontributiontothebeamhorizontalsizeisdominant, x=sx~"x+EE2 (6.14)<br />

horizontal(energyaxis)projection<strong>and</strong>compare<strong>their</strong>valueswiththeoneexpectedfromnumerical simulationingure6.10.Theagreementisseentobereasonable,i.e.within30%,exceptforlarge bunchervoltage,thoughinthisrangewebelievethebeamwasscrapingonthebeamlinevacuum chamberupstreamthelocationofthemeasurement. 3Unfortunatelybecauseoftimeconstraintsthisproblemwasnotaddressed<br />

Vertical Axis (mm)


ε x (mm−mrad)<br />

Nominal<br />

6<br />

4<br />

2<br />

cryounitexitversustheemittancesolenoidmagneticeld.<br />

10<br />

Misaligned<br />

9<br />

Phase-PhaseCorrelationMeasurement Figure6.8:Measured(squares)<strong>and</strong>predictedtransverseemittances(solid<strong>and</strong>dashlines)atthe<br />

8<br />

7<br />

6<br />

5<br />

4<br />

Nominal<br />

3<br />

2<br />

RF-inducedsteeringwhich,inturn,dependsontheinjectionofthebuncheswithrespecttothe<br />

3000 3200 3400 3600 3800<br />

RFacceleratingeldinthecryounit.Henceatthepickupcavitylocation,theTOFofthebunch SimilarlytothebunchcompressioneciencydiagnosticsdescribedintheChapter3,theinjectoris instrumentedwithapickupcavitythatcanbeusedtomeasurethetimeofarrivalofabunch<strong>and</strong> consequentlydeterminephase-phasecorrelationbymodulatingtheRF-phaseofthephotocathode drivelaser.UnfortunatelyinthecaseoftheFELinjector,thepickupcavityislocatedinadispersive regionwhichrendersthetime-of-ight(TOF)dependentonotherparameters4,inparticularto<br />

Solenoid Magnetic Field (Gauss cm)<br />

centroidemittedatthephotocathodesurfacewithinitialphaseiwithrespecttothe\zerocrossing"bunch(i.e.thebunchforwhichtheTOFiszerobydenition)is: whereRFistheTOFcontributionduetotheRF-inducedsteering:RF=Rc!f ;c,i,<strong>and</strong>farerespectivelythelocationofthecryounitexit,thephotocathodesurface,<strong>and</strong>the pickupcavity. TheRFsteeringisdueto(1)theRFtransverseequationofmotioninanacceleratingcavity,<strong>and</strong> (2)theforwardpower<strong>and</strong>highordermodecouplerinducedkicks.Toquantifythecontribution oftheRF-steeringinthephase-phasecorrelationmeasurement,wehavecomparedphase-phase f=RF+Ri!f 55i+Ri!f 56i 51xc+Rc!f 52x0c (6.15)<br />

correlationmapsgeneratedvianumericalsimulationusingparmelawithtwodistinctmodelsof 4ThenecessityofstudyingcarefullythispointwasbroughttomyattentionbyD.R.Douglas<br />

ε y (mm−mrad)<br />

12<br />

10<br />

8<br />

Misaligned


Vertical axis (arbitrary units)<br />

100<br />

150<br />

200<br />

250<br />

300<br />

350<br />

100 200 300 400<br />

100<br />

150<br />

(D)<br />

100<br />

(A) (B) (C)<br />

150<br />

200<br />

250<br />

300<br />

350<br />

100 200 300 400<br />

100<br />

150<br />

100<br />

150<br />

200<br />

250<br />

300<br />

350<br />

100 200 300 400<br />

200<br />

200<br />

200<br />

250<br />

250<br />

250<br />

Figure6.9:<strong>Beam</strong>densitymeasuredonthehighdispersionOTRmonitorforninedierentbunch<br />

300<br />

300<br />

300<br />

350<br />

350<br />

350<br />

100 200 300 400 100 200 300 400 100 200 300 400<br />

100<br />

100<br />

100<br />

(G)<br />

(H)<br />

(I)<br />

150<br />

150<br />

150<br />

200<br />

200<br />

200<br />

250<br />

250<br />

250<br />

thereisnotsignicantdierencebetweenthegeneratedtransfermapsexceptsomebroadeningin fromthelowgradientvalues) theCEBAFcavity:a3Dmafiamodel(whichincludesthecoupler-inducedeects)<strong>and</strong>a2Dcylindricalsymmetricsuperfishmodel.Theresultsarepresentedingure6.11,whichshowsthat gradientsettings(theimages(A)to(I)correspondstothepointspresenteding.6.10starting<br />

300<br />

300<br />

300<br />

350<br />

350<br />

350<br />

100 200 300 400 100 200 300 400 100 200 300 400<br />

thecavitywaslocateddownstreamthecryounitafteradriftofsimilarlengthtoitspresentlocation intheinjectorchicane;sincethecalculationcorrespondstoadispersion-freedrift,thistransfermap givesinsightsontheeectsoftheRFintheaboveequation.Wecanclearlyobservethatthis tocouplers).Inthesamegurewealsocomparethephase-phasecorrelationpatterngeneratedif thecasetheofthemapgeneratedfromthe3Dmafiamodel(whichincorporatestheRF-kickdue<br />

Horizontal axis (arbitrary units)<br />

eectdoesnotwashouttheTOFvariationduetoenergychanges;smalleectsareobservable<br />

Anapplicationofthistypeofmeasurementwastondtheproperoperatingpointofthebuncher<br />

accelerator[22]thatconsistsofcomparingthephase-phasepatternexperimentallymeasuredwith onenumericallygeneratedforanidealsetup. inChapter3).Infact,wecanuseasimilartechniquetotheonealreadyinuseintheCEBAF onlyforlargephotocathodedrivelaserphase.Despitethefactthattheeectissmall,itprevents usfromextractingquantitativeinformationfromthemap(i.e.byperformingnonlineartsas<br />

100<br />

(E) (F)<br />

150


2.2<br />

2<br />

1.8<br />

Figure6.10:Comparisonofthermstransversehorizontalbeamsizemeasuredinthehighdispersion<br />

1.6<br />

OTRmonitorwiththeoneexpectedfromparmela.<br />

1.4<br />

1.2<br />

PARMELA<br />

1<br />

0.8<br />

theinjectorfrontendmatchedtheexperimentallyestimatedkineticenergyof9.56MeV(inferred cavityelectriceld:devisinga\good"bunchingschemeintheinjectorisathreeparametersprob-<br />

0.1 0.2 0.3 0.4 0.5<br />

fromthestrengthoftheinjectionchicanedipoles);duringthesimulationsthecavity#4wasset werenotpreciselycalibrated).Sincethecavity'scontrolelectronics<strong>and</strong>softwareareidentical,<strong>and</strong> becausecavity#4isoperatedatagradient30%higherthancavity#3,weestimatedthegradient withthehelpofparmela:usingthiscodewehavevariedthegradientofthetwocryounitcavities (keepingcavity#4atagradient1.3timeshigherthancavity#3)untilthesimulatedenergyat thebuncher,cavity#4,<strong>and</strong>cavity#3gradients(atthetimeofthemeasurement<strong>their</strong>gradients lemwithonepossiblemeasurement:thephase-phasecorrelationpattern.Thethreeunknownsare<br />

Buncher Gradient (MV/m)<br />

modelishenceforthtermedas\ideal"injector. Firstseriesofmeasurementsperformed pointsatthattime).Thebuncherwasoperatedatagradientof0.32MV/m.Theso-generated tooperateoncrestwhilethecavity#3was-20dego-cresttoreecttheexperimentaloperating<br />

gunchamberwhichinturnwillremovethecesiumfromthephotocathodewafer.<br />

Wehaveinvestigatedthebunchereectonthe320kVgunsetup5aftertheinjectorRF-phases alongwiththepatterngeneratedwithparmelafortheidealinjector.Fromthisgurewedecided wereproperlyreset.TheoptimizedphasearegatheredinTable6.1.4.Thebunchergradientwas initiallysetto0.28MV/m,<strong>and</strong>weinvestigatedtheeectonthe\R55"transfermappatternby systematicallyvaryingthebunchergradient.Therecordedpatternsarepresentedingure6.12 5Atthetimeofthepresentexperimentwewerelimitedtothisvoltage;highervoltagewouldinducearcinginthe<br />

σ x (mm)<br />

MEASUREMENT


4<br />

2<br />

thepickupcavityislocateddownstreamthecryounitafteradriftinadispersion-freeregion. <strong>and</strong>2Dsupersh)atthepickupcavitylocatedintheinjectionchicane<strong>and</strong>(2)forthecasewhere Figure6.11:\R55"transfermapgeneratedwithparmelafor(1)dierentcavitymodel(3Dmaa<br />

0<br />

3D−MAFIA model<br />

−2<br />

2D−Superfish model<br />

MAFIA + Dispersion Free<br />

Table6.1:Nominalinjectorsettingsbeforetherstseriesmeasurement. Buncherzero-crossing0.28MV/m ElementsPhase Laser Cavity#4on-crest Cavity#3-20dego-crest9.10MV/m referencephaseN/A Gradient 11.8MV/m<br />

−4<br />

−40 −20 0 20 40<br />

Drive Laser Phase (RF−Deg)<br />

tooperatethebuncherat0.32MV/msinceitprovidesapatternveryclosetothesimulatedone.<br />

AsecondseriesofmeasurementwasperformedaftertheFELphotonbeamwasoptimizedfor imentalphase-phasecorrelationpatternwiththesimulatedoneoccursforabunchergradientof approximately0.32MV/m;suchagradientdoesnotcorrespondtotheminimumenergyspreadon thedispersiveviewer. Secondseriesofmeasurementsperformed Itisseenfromthegure6.10thatthe\best"bunchergradientdevisedbymatchingtheexper-<br />

60pC/bunch6.Thevalueforthephases<strong>and</strong>gradientsrecordedbeforethemeasurement,after theFELwasoptimized,aregatheredintable6.2.Thephase-phasepatternmeasurediscompared ingure6.13withthe\ideal"oneobtainedbynumericalsimulations.Theagreementbetweenthe measurement<strong>and</strong>simulationisexcellent.Thisagreementvalidatesthemethodforsettingup thelongitudinaldynamicsmanipulationintheIRFELinjector.Basicallythetechniqueconsistsof 6thisoptimizationconsistedofmaximizingtheoutputFELpowerbyvaryingthebunchergradient<br />

T−O−F. at Pickup cavity (RF−Deg)


6<br />

4<br />

2<br />

Figure6.12:\R55"transfermapfordierentexperimentaloperatingpointsofthebunchergradient. Themeasurementsarealsocomparedwiththe\ideal"injectordevisedfromnumericalsimulations. (Firstseriesofmeasurement)<br />

0<br />

−2<br />

gradient=0.28<br />

−4<br />

gradient=0.30<br />

gradient=0.32<br />

Simulation<br />

Table6.2:Nominalinjectorsettingsbeforethesecondseriesofmeasurement. Buncherzero-crossing0.32Mv/m ElementsPhase Laser Cavity#4on-crest Cavity#3-20dego-crest9.10MV/m referencephaseN/A Gradient 11.8MV/m<br />

−6<br />

−40 −20 0 20 40<br />

Drive Laser Phase φIN (RF−Deg)<br />

reproducingthe\optimum"correlationpatternbyonlyplayingwiththebunchergradient. 6.2BunchCompressionStudiesintheLinac Uptonowwehaveonlymentionedthecompressorchicane,withoutmuchdiscussion.Thischicane consistsoffourrectangular-edgedipole-magnetsarrangedsymmetrically.Thoughitspurposeis tobypasstheopticalcavityoftheFEL,italsoservesasabunchcompressorusingthest<strong>and</strong>ard longitudinaltransfermatrixofthechicane<strong>and</strong>letseehowhz2ipropagatefromthechicaneentrance<br />

magneticcompressionscheme.Again,asimplewayofdemonstratingtheprincipleistopropagate thegeneralizedmomentsofthelongitudinaldistributionacrossthechicane.LetRbethe22<br />

T−O−F. at Pickup Cavity φ OUT (RF−Deg)


4<br />

2<br />

0<br />

R55patterngeneratedwithparmela(usingthesecondsetup). (positioni)toitsexit(positionf): Figure6.13:ComparisonofthemeasuredR55patternaftertheFELwasoptimizedwiththe\ideal"<br />

−2<br />

Measurement<br />

Simulation<br />

−4<br />

whichindeedessentiallymodifythecorrelationtermhzii.Hence,undertheassumptionthatthe<br />

−6<br />

bunchisnotsignicantlyvaryingwiththelinacsetpoint,theminimumbunchlengthisgivenby wherewehaveusedthedenitionofrmslongitudinalemittancetowritethefarrightexpression. Inthepresentconguration,theparameterattheentranceofthechicanearesetbythelinac; hz2if=R255hz2ii+2R55R56hzii+R256h2ii=R255hz2ii+2R55R56hzii+R256~"2z+hzi2i hz2ii(6.16)<br />

−40 −20 0 20 40<br />

Drive−Laser Phase φIN (RF−Deg)<br />

caneispresentedingure6.14.Experimentallythetypicalbunchlengthmeasuredintheundulatorcomputedaccordingtoparmelafromthephotocathodesurfaceuptotheexitofthesecondchiditionforachievingminimalbunchlengthafterthecompressorsystemis(dE=dz)i=1=R56.By settingthelinacphase<strong>and</strong>acceleratinggradientsuchthattheaforementionedmatchingcondition isfullled,<strong>and</strong>becauseoftheinitialemittance,theminimumbunchlengthachieved,vianumerical simulations,attheundulatorlocationisabout140m(rms).Theevolutionofthebunchlength introducethelongitudinalphasespaceslope(dE=dz)i=hzii=hz2ii;thereforethe\matching"con- thecondition@hz2if=@hzii=0,whichgivestherelationhzii=hz2ii=1=R56;bydenitionwe<br />

vicinityisapproximately100m(rms),anexampleofreconstructedbunchshape(usingtheinverse HilberttransformtechniquedetailedinChapter5)iscomparedwithabeamprolegeneratedwith parmelaingure6.15(C).Withinthelevelofaccuracy7,wehavegoodagreement.Byvaryingthe phaseofthelinac(therebychangingthequantityhzii)wecanvarythebunchlength;wepresent theresultofsuchanexperimentingure6.15(B)alongwithresultsfromnumericalsimulation(in donotgiveauniquelongitudinaldistribution,<strong>and</strong>therearealotofassumptionsthathavetobeconsidered(e.g. extrapolationoftheCTRspectrumatlowfrequency,...)<br />

7(1)weonlyused500macroparticlesinthenumericalsimulation,(2)theHilberttransformation,aswehaveseen<br />

T−O−F at Pickup Cavity φ OUT (RF−deg)


10 1<br />

5<br />

10<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Distance from photocathode (cm)<br />

-1<br />

10<br />

5<br />

2<br />

0<br />

2<br />

thesecondchicane. Figure6.14:rmsbunchlengthevolutionalongtheIRFELfromthephotocathodeuptotheexitof<br />

Injector Chicane<br />

Chicane<br />

plot(B));forcompletenesswealsoincludeingure6.15(D)thetotalCTRpowerdetected.Wend<br />

Aswementionedintheverybeginningofthisreport,onemotivation,foroperationalpurpose,of tothemeasuredvariation. 6.3<strong>Beam</strong>ParametersMeasurementPriorto\Firstlasing" thatthebunchlengthpredictedvianumericalmodelinghasalesspronouncedvariationcompared<br />

sucientbeamqualitytoenabletheFELtooperatehowevertheachievedparametersaresomewhat largerthantheonethatcouldbetheoreticallyreachedaspredictedfromnumericalmodeling,except theexperimentallyachieved<strong>and</strong>thenumericallyexpectedvalues.Itisseenthatwehaveachieved damagedtheundulatorbecauseofradiationshowersinducedastheelectronbeam"scrapes"on thevacuumchamber.Intable6.3wepresentsomeofthebeamparametersrequiredalongwith magnetwasremoved,themainreasonbeingthatduringthis\tuningperiod"wecouldhave thediagnosticsdevelopedhereinistoverifytheelectronbeamqualityiswithinthespecications<br />

forthebunchlength.Withtheaboveparametersrstlightwasachievedatlowdutycyclewithina toenabletheFELtolase.IntheearlystageofthecommissioningoftheIRFEL,theundulator<br />

betweenthenumericalmodel<strong>and</strong>theachievedparameter.<br />

beam.Onthe<strong>Beam</strong>Physicspointofviewitisinterestingtotrytounderst<strong>and</strong>thediscrepancies coupleofhoursafterweinstalledtheundulatormagnet,<strong>and</strong>twodayslaterwewereabletooperate theFELwithanoutputpowerof150W(cw),therebydemonstratingthequalityoftheelectron<br />

RMS bunch length (mm)<br />

Wiggler Location


σ z (mm)<br />

0.2<br />

0.1<br />

Figure6.15:Variationofthebunchlengthversusthelinacacceleratingphaseperparmelasimu-<br />

0.1<br />

0<br />

−15 −10 −5 0 5 6 7 8 9<br />

lation(A)<strong>and</strong>measured(B)["measured"meansthebunchdistributionwasrecoveredfromthe<br />

∆φ (Deg) (parmela)<br />

∆φ (Deg) (experiment)<br />

CTRautocorrelationusingthetechniquementionedinChapter5].Comparisonbetweentheex-<br />

4<br />

3<br />

(C) Simulation<br />

(D)<br />

3<br />

2<br />

2 Measurement<br />

1<br />

1<br />

extentenergyspread)degradationinthebendingsystemoftheIRFEL.Forsuchapurposeswe perimental<strong>and</strong>simulatedbunchlongitudinaldistribution(C).TotalCTRpowersignalmeasured<br />

0<br />

0<br />

needtoconsiderinthefewfollowingsectionswhatarethemechanismsthatcanleadtoanincrease duringplot(B)experiment(D).<br />

−0.4 −0.2 0 0.2 0.4 5 6 7 8 9<br />

oftheemittance.Itseemswec<strong>and</strong>ividesuchmechanismintotwocategories:therstonearedue Inthislastsectionwewouldliketoreportonanattempttomeasureemittance(<strong>and</strong>toalesser 6.4StudyofPotentialEmittanceGrowth<br />

z (mm)<br />

∆φ (Deg) (experiment)<br />

tothelattice(betatronmismatch,lamentation,chromaticity);thesecondtypeareduetobunch selfinteraction(becauseofCoulombeldorradiationeld). Agrowthofemittancecomesfromanincreaseofoneoftheposition<strong>and</strong>/ordivergence,i.e.xorx0 inthex-x0phasespace.Let'sstartwithaninitialemittanceattheentranceofabeamlinesection Ifweassume,thatduetoperturbationinthebeamlinesection,theposition<strong>and</strong>divergenceofa particlechangeaccordinglyto: ~"0:8<br />

8Wevoluntaryomitthesubscriptxfortheemittance.inthissection<br />

~"0=hx20ihx02ihx0x0i21=2 x0!x0+x (6.17)<br />

Bunch Population (a.u)<br />

0.4<br />

0.3<br />

(A)<br />

σ z (mm)<br />

CTR signal (Volts)<br />

0.4<br />

0.3<br />

0.2<br />

(B)<br />

x0!x0+x0 (6.18)


EnergySpread(%) BunchLength(mm) Parameter Emittances(mm-mrad) LongitudinalEmittance(deg-keV)


0.000125<br />

−0.000125<br />

0.000125<br />

Figure6.16:Phasespacedistortionduetochromaticaberrationatthedecompressorchicaneexit<br />

x−x’<br />

(C) y−y’<br />

(D)<br />

acceleratingphasesincewewillattempttomeasurethetransversehorizontalemittanceversusthe linacgangphase9.Thesimulationswereperformedwithparmela;<strong>and</strong>theresultsshowingthe (topplots)<strong>and</strong>thearc1exit(bottomplots).<br />

dependenceofthebeamparametersversusthelinacphasearepresentedingure6.18;thelinac 6.4.2RF-eects Inthehighenergyregion,wehaveinvestigatedthechangeinparametersduetovariationof<br />

−0.000125<br />

energyduringthesesimulationswassetto38MeV<strong>and</strong>thegangphasethatprovideminimum<br />

Thegeneralclassofeectsthatcanleadtoenergyspreadarebunchselfinteractionviaselfeld atthelinacexitdonotdependontheacceleratingphase. 6.4.3EnergySpreadinducedinaDispersiveregion bunchlengthattheundulatorlocationis'9:5deg.Bothhorizontal<strong>and</strong>verticalemittances<br />

radiation).WehavealreadybrieyconsideredlongitudinalwakeeldattheendofChapter5<strong>and</strong> (spacecharge)orradiationeld(wakeeldduetovacuumchamberirregularities,synchrotron 9AreminderthatinAppendixDweprovideaschematicsoftheRF-controlsystem<br />

−0.000125<br />

(A) (B)<br />

0<br />

x−x’ y−y’<br />

0.000125<br />

−0.00025<br />

0<br />

0.00025


15<br />

Effect of RMS energy Spread<br />

10<br />

Figure6.17:Emittancegrowthduetochromaticaberrationversusthemomentumspread<strong>and</strong><br />

5<br />

bendssystem)cancoupletothetransverseplane<strong>and</strong>yieldemittancedegradation.Thelinearized energyosetofthebeam.<br />

Effect of Energy Centroid Offset<br />

equationofmotionofanelectroninabend,assumingnoexternalfocusing<strong>and</strong>nocouplingbetween thetwotransversephasespaces,forthebendingplane(thex-x'planeinthecaseoftheIRFEL) is[59]: haveshowthatitisverysmallforourbeamparameters.Infactallthebeamlinecomponentshave beenspeciedinsuchawaythatthetotallongitudinallossfactoriswithinsomeimpedancebudget sothatthepotentialbeamdegradationisverysmall[65]. Inthissectionwewouldliketoshowhowenergyspreadgeneratedinadispersiveregion(i.e.a<br />

0<br />

0 0.5 1 1.5<br />

δ (%)<br />

radiusofcurvatureofthetrajectory<strong>and</strong>istherelativeenergyosetw.r.t.thereferenceorbit. wheresisthelongitudinalpositionreferredw.r.t.theentranceofthebendingsystem,xisthe Let'sassume,forsimplicity,thatthemechanismgeneratesanenergyspreadthatisonlydependent onthecurvilinearcoordinates10,i.e.=(0)+(s).Undersuchanassumption,thelatter equationtakestheform: d2x<br />

10generallyspeakingthemechanismisalsodependentontime,foracompletetreatmentsee[69]<br />

d2x ds2+x2x=(0)+(s)<br />

∆ε/ε (%)<br />

ds2+x2x=x (6.22)<br />

x (6.23)


60<br />

0.25<br />

40<br />

20<br />

emittances~"x;y,<strong>and</strong>rmsbeamsizesx;y)versustheoperatingacceleratingphaseofthelinac. Figure6.18:Evolutionofbeamparameters(bunchlengthz,rmsenergyspreadE,transverse<br />

0<br />

0<br />

6<br />

1<br />

x<br />

x<br />

4<br />

y<br />

0.5<br />

y<br />

2<br />

thelatterequationclearlyshowsthat,comparedtotheconstantenergyspreadequation,thereis whichcanbesolvedusingthest<strong>and</strong>ardGreenfunctionperturbativetechnique[59]11Thesolution<br />

0<br />

0<br />

anincrementinangle<strong>and</strong>positionof: oftheaboveequationis: x(s)=cos(s=x)x(0)+xsin(s=x)x0(0)+x(1cos(s=x))(0)+Zs x0(s)=1=xsin(s=x)x(0)+cos(s=x)x0(0)+cos(s=x)(0)+Zs 0xsin(~s=x)(~s)d~s 0cos(~s=x)(~s)d~s(6.24)<br />

−20 −15 −10 −5 0<br />

−20 −15 −10 −5 0<br />

∆φ (RF−Deg)<br />

∆φ (RF−Deg)<br />

achromaticbendingsystem,theachromaticcharacterisbrokenbecauseofEqn.(6.25).Another interestingpointisthatdependingonthebendingsystemdesign,onecanconceiveawayofmaking <strong>and</strong>hxx0i)<strong>and</strong>substitutethemintheeqn.(6.20).Itisinterestingtonotethatinthecaseofan Tocomputetheemittancegrowthweneedtocomputethesecondordermoments(hx2i,hx02i x(s)=Zs x0(s)=Zs 0xsin(~s=x)(~s)d~s<br />

theaboveintegralverysmall(orideallyzero)sothatthenetemittancegrowthisnegligible.Such amethodhasbeendiscussedindetailinreferences[60]<strong>and</strong>[61]. 0cos(~s=x)(~s) (6.25)<br />

principalsolutions(S(t)<strong>and</strong>C(t))accordinglyto: equationwritesx(t)=Rt 11Ifweconsidertherighth<strong>and</strong>sideofthepreviousequationasaperturbationtermp(t;s)thesolutionofthis 0p(~t)d~tG(t;~t)whereG(t;~t)isaGreen'sfunctionthatcanbeconstructedfromthetwo G(t;~t)=S(t)C(~t)C(t)S(~t)<br />

σ z (mm)<br />

ε x,y (mm−mrad)<br />

0.5<br />

∆E (keV)<br />

σ x,y (mm)<br />

100<br />

80


6.4.4BunchSelfInteractionviaCoherentSynchrotronRadiation CSRisalongst<strong>and</strong>ingtopicinseveralsubjects,especiallyinAcceleratorPhysics.Therst comprehensivestudywasperformedbyJ.S.Nodvick<strong>and</strong>D.S.Saxon[4]in1954.Theseauthors accelerator.Itisaconsequenceofthegenerallylongbunchthatarecirculatinginsuchaccelerator: aswewillseeinthischapter,CSRemissionoccursatwavelengthcomparabletothebunchlength. Therefore,forbunchlengthoftheorderofcentimeters(asitiscurrentincircularaccelerator), studiedtheinteractionofchargedparticlemovingonacurvedpathbetweentoperfectlyconducting plane<strong>and</strong>showedhowCSRemissioncouldbepartiallysuppressatagivenwavelengthbythemeans ofthetwoconductingplanethatactasashielding.Indeed,tothebestofourknowledge,CSReect onthe<strong>Beam</strong>Dynamics,<strong>and</strong>CSRemission,haveneverbeenobservedinstorageringorcircular<br />

theTohokuUniversitybyT.Nagazato[66].Thisgroupshowedexperimentallyhowitwaspossible toinferthebunchlength<strong>and</strong>bunchstructureusingthefrequencyspectrumofCSR,usingthe beampipechamber,whichserveasawaveguidefortheCSRpropagation,arealsooftheorderof centimeters<strong>and</strong>sois<strong>their</strong>cutowavelength.ThereforetheCSRemissionis\shielded"bythe theemissionofCSRshouldoccurinthemicrowaveregion:unfortunately,thesizeofthevacuum region,<strong>and</strong>inthefar-infra-redwavelengthhasbeenobservedina100MeVlinearacceleratorof sametechniquewepresentedinChapter4forthetransitionradiation.Theyalsodemonstrate beampipe,i.e.itdoesnotpropagate.Infact,onlyveryrecently,CSRemissioninthefareld thepossibleshieldingofCSRemissionusingtwoparallelconductingplanewithvariablegap[67]. HowevertheanticipatedeectsofCSRonthe<strong>Beam</strong>Dynamics,i.e.transverseemittancedilution, hasneverbeenobserveduptonow. Asimplemodel:steadystateinfreespace WeoutlineinthepresentsectionasimplepictureoftheCSRphenomenon.Forsuchapurposewe startwiththeLienard-Wietchertretardedelectriceld[8]: !E=e"bn!<br />

inthemovingframe,theradiusofcurvature,<strong>and</strong>theanglebetweentheminthelaboratory orequivalentlyby=2sin(=2)withbeingtheanglebetweenthetwoelectrons timet0.Becauseofcausalitytheretardedt0<strong>and</strong>presentttimesarerelatedbyt=t0+R(t0)=c Thesubscriptretmeansthatthequantitiesinsidethebracketsmustbeevaluatedattheretarded !RisavectorfromS0toS,<strong>and</strong>1bn!=1cos(=2)<strong>and</strong>=6(! 2(1bn:!)3R2#ret+ec24bn^(bn!)^!_ (1bn!)3R35ret OS0;! OS)(seegure6.19). (6.26)<br />

frame. Theproblemhasbeentreatedinseveralreferences(e.g.Ref.[69]),itrstconsistsofcalculatingthe electriceldemittedattheretardedtime<strong>and</strong>locationS0atthepresenttime<strong>and</strong>locationS.This electriceldinducesanenergychangeonS,V(ss0),thatdependsontherelativepositions,s<strong>and</strong> alongthebunch.TheenergychangeofareferenceparticleSisgivenbythesuperpositionofthe s0,ofthetwoparticles.InessenceCSRisverysimilartowakeeld:ityieldsanenergyredistribution radiationforceofallthebackparticles: d(ct)=Zs dE1(s0)V(ss0)ds0<br />

(6.27)


InthecaseofarigidlinechargewithaGaussi<strong>and</strong>istribution(s)=N=p22zexps2=(22z),<br />

presentedingure6.20alongwithsimulationresultsusingamodiedversionofparmelathat oneobtainsfortheenergychange[68]: withthefunction12FdenedasF()=R1d0 wakeeldwherethetrailingelectronsinthebunchgenerallyloseenergy,CSReectsyieldanenergy d(ct)= dE(2)1=231=32=34=3<br />

2Ne2<br />

gainforelectronslocatedintheheadofthebunch. includesasimplemodelforCSRbunchselfinteraction(seeAppendixB).Contrarytost<strong>and</strong>ard (0)1=3d zF(s=z) d0e02=2Aplotofthisenergychangeis (6.28)<br />

Bunch at Present time<br />

Bunch<br />

Trajectory<br />

R<br />

Limitationsofthepreviousmodel Figure6.19:SchematicsofCSRselfinteractionofabunch.<br />

S’<br />

Bunch at Retarded time<br />

∆Θ<br />

thestraightsectiontothebendsection.(2)thebunchpropagatesinmetallic(e.g.stainlesssteel) intwoways:(1)itassumesthebunchhasbeenorbitingonacircularpathforever(steadystate assumption)<strong>and</strong>(2)itassumethebunchisinfreespace.Bothofthisassumptionsarenottruein practice:(1)anaccelerator(evencircular)consistsofstraightsectionsjoinedbybendingelements thereforeamorerealisticpictureofCSRshouldincludethetransientCSR,i.e.thepassagefrom ThemodelofCSRbunchselfinteractionbrieyoutlinedintheprevioussectionisoversimplied<br />

O<br />

cut-ofrequencyassociatedwiththegeometricparametersofthevacuumchamber). vacuumchambers<strong>and</strong>thereforeCSRcanbeshielded(i.e.notallowtopropagatebecauseofthe 12sometimetermedas\overtake"function<br />

S


100<br />

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. . . .<br />

. . .<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

. .<br />

.<br />

. .<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

. .<br />

.<br />

. .<br />

. .<br />

.<br />

. . .. . .<br />

.<br />

. . . . .<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

. . . . .<br />

.<br />

.<br />

. . .<br />

.<br />

. . .. .<br />

.<br />

.<br />

.. .<br />

... .<br />

.<br />

. .<br />

. .<br />

. .<br />

.<br />

. ... .<br />

.<br />

.<br />

. .<br />

.<br />

.<br />

.<br />

.. .<br />

.<br />

.<br />

.<br />

100<br />

.<br />

50<br />

.<br />

0<br />

-50<br />

-100<br />

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0<br />

(deg.)<br />

. . . .<br />

. . .<br />

. .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

.<br />

. .<br />

. .<br />

.<br />

. . . . . . .<br />

.<br />

.<br />

. .. . . .<br />

. . . . . .<br />

50<br />

.<br />

. .<br />

.<br />

. . .<br />

. .<br />

. ... . .<br />

. . . . . . .<br />

. .<br />

.<br />

. . . . .<br />

.<br />

.<br />

. . . . . .. .<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. . .. . . . .<br />

. . . .. . .<br />

.. .<br />

. .<br />

0<br />

. . . . . . .<br />

. . .<br />

. .<br />

. .. . .<br />

.<br />

. .<br />

-50<br />

predictionusingasimplenumericalmodelinamodiedversionofthescparmelacodefor200m Figure6.20:AnalyticalcomputationforCSR-inducedenergylossalongagaussianbunch<strong>and</strong><br />

-100<br />

(A)<strong>and</strong>100m(B).Thesystemconsideredisasimpleachromaticchicane(macroparticlewith >0areinthebunchtail).<br />

(B)<br />

TheprimarypurposeoftheexperimentthatwasattemptedintheIRFEListomeasurewhether locatedinthebacklegtransport. 6.5PreliminaryExperimentalResultsonEmittance<strong>and</strong>EnergySpreadMea-<br />

AnothermotivationwastotrytosetuptheIRFELopticssothatwecouldgenerateemittance thetransversehorizontalemittanceissignicantlydegradedaftertherecirculationarc1.ThereasonistoconrmtheviabilityoftheenvisionedUpgradeIRFELinwhichseveralwigglerswillbesurements Theexperimentwasattemptedintwoseriesofruns.Duringtherstrun,wevariedthelinac degradation<strong>and</strong>performsomeparametricstudies. TheexperimentalsetuptomeasureemittancefollowsourdiscussionofChapter3. ofrun,becausetheemittancewasfoundtobelarge(technicalproblemwiththeinjector),we acceleratingphase<strong>and</strong>measuredtheemittancebefore<strong>and</strong>afterthearc1.Inthesecondseries concentratedonmeasuringtheenergyspreadmeasurementonly.<br />

E (keV)<br />

(A)


6.5.1EmittanceMeasurement Arstexperimentconsistedinvaryingthebunchlengthattheundulatorlocation<strong>and</strong>measuring<br />

interaction,ifthosearepresent.Afullyself-consistentcode,writtenbyR.LiofJeersonLab[70], implementedinparmelawefoundthatatsuchpointtheemittanceincreasescomparedtothecase intheundulatorvicinity(asinferredfromthemaximumCTRsignal).Fromasimplisticmodel whereCSRisnotincludedinthecalculationisapproximately10%.Atthetimeofthemeasurement weoperatedthegunwithaverypoorphotocathode<strong>and</strong>couldnotextractmorethat20pCcharge perbunch,atoolowchargetounambiguouslymeasurepotentialeectsfromCSRbunchself ingure6.21.Theemittanceseemstogothroughamaximumforaminimumbunchlength thehorizontalemittanceafterthedecompressorchicane.Atypicalplotobtainedispresented<br />

ranfor60pC<strong>and</strong>anominalemittanceofapproximately7mm-mradyieldeda20%increasein emittance13. Wealsoattemptedtocomparethetransversehorizontalemittancebefore<strong>and</strong>afterthearc1.Inthe casecorrespondingtothenominaloperationofthelinac,whichcorrespondstoaminimumbunch lengthintheundulatorvicinity,noemittancegrowthwasobservedwithintheerrorbars(transverse horizontalemittancesmeasuredwereapproximately18mm-mradnormalizedat38MeV).<br />

22<br />

20<br />

18<br />

Before Arc<br />

16<br />

14<br />

Unfortunatelynoparametricstudyhasbeencompletedtothepresentdate<br />

Figure6.21:TransverseHorizontalemittance<strong>and</strong>totalpowerCTRsignalmeasuredasafunction ofthelinacgangphase. 13R.Li,privatecommunication,thisincreasewasnoticedtobeverydependentontheopticallatticesetup.<br />

12<br />

10<br />

bunch length<br />

CTR signal<br />

8<br />

4 6 8 10 12 14 16 18 20<br />

Linac Phase (RF−deg)<br />

Horizontal Norm. Emittance (mm−mrad)


Inthesecondseriesofrun,wewereabletoextracthighchargeperbunchfromthephotocathode (typically60pC)butwewereneverabletoestablishsucientlylowtransverseemittanceinthe 6.5.2EnergySpreadMeasurement IRFEL14toprovidealowenoughsignal-to-noisetoseedenitivelyapotentialemittancegrowth hadremovedalltransverseeectsoftransportfromtheviewerimages,somethingthatneedstobe donetobesureonlyenergyspreadisbeingobservedontheviewers.However,forafewselectcases atthearcexit.Inthecaseofenergyspread,itwasgenerallydiculttoconvinceourselvesthatwe correspondingtoshortbunchlengthsclosetotheundulator,webelievewehavegooddata,<strong>and</strong> whichindicatestheenergyspreadincreasebetweenthecompressorchicanemidpoint<strong>and</strong>thearc1 exitshouldbeoftheorderof5%15. withintheresolutionofthesemeasurements,theyshownoincreaseinenergyspreadaspicturedin gure6.22.ThisresultisconsistentwithsimulationperformedwiththeJLabselfconsistentcode<br />

−0.01 0 0.01 −0.01 0 0.01 −0.01 0 0.01 −0.01 0 0.01<br />

0.5<br />

energyspread(nounits)].Thebottomplotpresentsthermsrelativeenergyspreadcomputedfrom<br />

0.4<br />

thedistributions. Figure6.22:Energydistributionmeasuredalongthebeamline,atthechicanemidpoint(A)<strong>and</strong> (B)<strong>and</strong>entranceofthearcs(C)<strong>and</strong>(D)[thehorizontalaxisoftheseplotrepresenttherelative<br />

0.3<br />

14thereasonisstillnotunderstoodatthepresenttime 15R.Li,privatecommunication<br />

0.2<br />

0.1<br />

0<br />

0 20 40 60 80<br />

Distance from the cryomodule exit (meters)<br />

δ (%)<br />

Energy Distrib.<br />

(A) (B) (C) (D)


wetriedtoperformedthemeasurements.Howeverapreliminaryconclusionwouldindicatethat CSRisnotasignicanteectintheIRFEL,inthesensethatnotremendousgrowthofthe 6.5.3Conclusion<br />

thefuture,oncethebeamdynamicsinthemachineisfullyoptimized,oneshouldtrytotransport transverseemittanceortheenergyspreadwasobservedevenat60pC.Onlyonemeasurementhas beenperformed<strong>and</strong>theremightbeopticallatticesetupsthatmayprovidealargerenergyspread <strong>and</strong>emittancegrowth.AtminimumwecanconcludethatwiththenominalsetupoftheIRFEL OurexperimentonCSRwasnotverysuccessfulbecauseofbadbeamqualityduringtheperiod<br />

highercharge(e.g.thefull135pCrequiredfortheUpgradeIRFEL),<strong>and</strong>attempttogenerate<strong>and</strong> measurebeamdegradationduetobends.<br />

acceleratorneithersignicantemittancedilutionnorenergyspreadgenerationweremeasured.In


Conclusion Chapter7<br />

Therecirculatortransverseresponsefunctions,thelatticedispersion,<strong>and</strong>thelongitudinaltransfer Theworkpresentedinthepresentreportdescribesindetailtheimplementationofdierenttypesof<br />

functionsR56<strong>and</strong>R55(alongwithnonlinearities)havebeenmeasured<strong>and</strong>comparedwithamag- commissioning,underst<strong>and</strong>ing<strong>and</strong>operatingthersthighaveragepower(kW-level)infra-redfree electronlaseroscillatorthathasbeenbuiltatThomasJeersonNationalAcceleratorFacility. diagnosticsforarelativelyhighbrightnesselectronbeam<strong>and</strong>theapplicationsofthesediagnostics tostudysomebeamdynamicsproblems.Thisworkhadasignicantcontributioninthesuccessof neticopticscodesuchasdimad<strong>and</strong>particlepushingcodesuchasparmela. Wehaveimplementedtwotransversephasespacecharacterizationtechniquestostudythephase theemittancedominatedregime.Theformertechniquebasedontransversephasespacesampling usingamultislitmaskhasallowedsomepreliminaryparametricstudiesofthephasespaceof60pC chargeperbunchbeamproducedatthefrontendofa10MeVphotoinjector<strong>and</strong>hasbeencapable toresolveemittanceaslowas1mm-mradinatestinjectorst<strong>and</strong>. Alongwiththetransversephasespace,afullsix-dimensionalcharacterizationofthephasespacehas spacedensityoftheelectronbeamasitisstillinthespace-chargedominatedregime,butalsoin<br />

coherenttransitionradiationproducedbythebunchedelectronbeam.Thisinterferometerhasalso beenusedtoperformparametricstudyofthebunchlengthevolutionversussomeradio-frequency elementthatplayakeyroleinthebunchingscheme. FinallyafullmodelbasedonmultiparticlesimulationoftheIRFELhasbeenelaborated<strong>and</strong>com- beenattemptedbymeasuringbothbunchlength<strong>and</strong>energyspreadoftheelectronbeam.Because<br />

paredwhenpossiblewithexperiments.Atentativeexperimenttomeasureenergyspreadgeneration oftheultra-shortbeamrequiredtodriveafree-electronlaser(typically


undulatorvicinity.Wehavenotmanaged,uptothepresentdate,tounambiguouslydemonstrate whetherthiseectwasduetocoherentsynchrotronradiation.Asecondseriesofrunswereper-<br />

measurementreportedinthisreport)wouldroughlydoubletheeectprovidedallelsewereequal, formed,whereweconcentratedonthemeasurementofenergyspreadalongthetransportchannel,butthenitstillwouldnotbesignicant.OncethelatticedesignoftheIRFELUpgradehasma-<br />

resultinginnoobservation,withintheprecisionofthemeasurement,ofenergyspreadgeneration (alsothisdataweretakenforoneoperatingpointofthelinaconly). Wecanconclude,ataminimum,thatitshouldbepossiblesetupabeamthatwilltransportaround theBatesarcwithoutsignicantgrowthinenergyspread(whichtranslatestonosignicantgrowth inemittance),<strong>and</strong>thereforefortheFELUpgradeitseemsreasonabletoplanonputtingtheFEL systemsinthebacklegtransferline-abunchchargeof135pC(versusthe60pCusedforthe tured,thenoneshouldbeabletousetheIRDemotosetupabeamattheentrancetotherst ofmeasurements(emittance<strong>and</strong>energyspread)the135pCcase.<br />

BatesbendthatmimicstheIRFELUpgradebeamparameters,<strong>and</strong>trytoperformthesametype


[2]Y.Shibata,T.Takahashi,T.Kanai,K.Ishi,<strong>and</strong>M.Ikezawa,\<strong>Diagnostics</strong>ofanelectronbeam Bibliography<br />

[3]C.Hirschmugl,M.Sagurton,<strong>and</strong>G.Williams,\Multiparticlecoherencecalculationsfor [1]C.L.Bohn<strong>and</strong>S.V.Benson,\RadiofrequencySuperconductivityAppliedtofree-electron ofalinearacceleratorusingcoeherentradiation",Phys.Rev.,E50num.2,pp.1479-1484(1994) lasers",Part.Acc.,69,pp.623-635(1998)<br />

[6]L.Wartsky,\EtudeduRayonnementdetransitionoptiqueproduitpardeselectronsd'energie [5]I.M.Frank,\TransitionRadiation<strong>and</strong>OpticalPropertiesofMatter",Sov.Phys.Uspekhi,8 [4]Nodvick<strong>and</strong>Saxon,\Multiparticlecoherencecalculationsforsynchrotron-radiationemission", num.5,pp.729-742(1966) Phys.Rev.,A44num.2,pp.1316-1320(1991) synchrotron-radiationemission",Phys.Rev.,A44num.2,pp.1316-1320(1991)<br />

[9]A.Hofmann,\TheoryofSynchrotronRadiation",reportSSRLACD-NOTE38,StanfordUni- [7]M.L.Ter-Mikaelian,<strong>High</strong>EnergyElectromagneticProcessesinCondensedMedia,Wiley- [8]J.D.Jackson,ClassicalElectrodynamics,WileyEdt,NewYork(1975) 30a70MeV.Applicationauxdiagnosticsdefaisceauxdeparticuleschargees",Ph.DThesis, Universited'Orsay,France<br />

[10]M.S<strong>and</strong>s,\ThePhysicsof<strong>Electron</strong>StorageRings,AnIntroduction",reportSLAC-121,Stanversity,CA(1986)ford(1970)(alsopublishedasreportUS-28,<strong>and</strong>UniversityofCalifornia,SantaCruz,CA Interscience,NewYork(1972)<br />

[13]S.V.Benson<strong>and</strong>M.D.Shinn,\DriveLaserforaDCphotocathodegun",Proc.Part.Acc. [11]G.Dattoli,<strong>and</strong>A.Torre,\Free-<strong>Electron</strong>LaserTheory",reportCERN89-03,CERN,Geneva, [12]S.V.Benson,\TunableFree-<strong>Electron</strong>Lasers",inTunableLasersH<strong>and</strong>book,AcademicPress Inc.,pp.443-469(1995) (1970))<br />

[14]D.A.Engwall,\<strong>High</strong><strong>Brightness</strong><strong>Electron</strong><strong>Beam</strong>sfromaDC,<strong>High</strong>-Voltage,GaAsPhotoemis- Conf.'95IEEEcatalog#97CH35843,pp.1052-1054,Dallas(1995) Switzerl<strong>and</strong>(1989)Stanford(1986)<br />

sionGun",Ph.DThesis,UniversityofIllinoisatUrbana-Champaign(1998) 167


[15]C.L.Bohn,S.Benson,G.Biallas,I.Campisi,D.Douglas,R.Evans,J.Fugitt,R.Hill,K. Jordan,G.A.Krat,R.Li,L.Merminga,G.Neil,P.Piot,J.Preble,M.Shinn,T.Siggins, R.Walker,<strong>and</strong>B.Yunn,\PerformanceoftheAcceleratorDriveroftheJeersonLaboratory's<br />

[18]D.R.Douglas,\LatticeIssuesAectingLongitudinalPhaseSpaceManagementDuringEnergy [17]J.B.Flanz,<strong>and</strong>C.P.Sargent,\OperationofanIsochronous<strong>Beam</strong>RecirculationSystem", [16]D.R.Douglas,\LatticeDesignfora<strong>High</strong>-PowerInfraredFEL",Proc.Part.Acc.Conf.'97 Nucl.Instr.Meth.,A241,pp.325-333(1985) IEEEcatalog#97CH36167,pp.1351-1355,Vancouver(1997) free-electronlaser",toappearinProc.Part.Acc.Conf.'99,NewYork(1999)<br />

[19]C.R.Carman,<strong>and</strong>J.-L.Pellegrin,\The<strong>Beam</strong>PositionsoftheSpearStorageRing",preprint [20]G.A.Krat,M.Croord,D.R.Douglas,S.L.Harwood,R.Kazimi,R.Legg,W.Oren,K. Recovery,Or,WhytheFELNeedsSextupoles",reportTN-98-025,JeersonLab,Newport NewsVA,USA(1997)<br />

[21]D.Hardy,J.Tang,R.Legg,MTiefenback,M.Croord,<strong>and</strong>G.A.Krat,\Automated SLAC-PUB-1227(A),SLAC,StanfordUniversityCA-USA(1973)<br />

[22]G.A.Krat,\CorrectingM56<strong>and</strong>T556toobtainshortbunchesatCEBAF",AIPConference pathlength<strong>and</strong>M56measurementatJeersonLab",Proc.Part.Acc.Conf.'97IEEEcatalog Tremblay,<strong>and</strong>D.X.Wang,\Measuring<strong>and</strong>adjustingthepathlengthatCEBAF",Proc.Part. Acc.Conf.'95,pp2429-2431(1995) #97CH36167,pp.1351-1355,Vancouver(1997)<br />

[24]T.PowersL.Doolittle,R.Ursic,<strong>and</strong>J.Wagner,\Design,Commissioning<strong>and</strong>Operational [23]J.vanZeijts,TLieversion2.03privatecommunication;foradescriptionofofthecodeseeJ. onNonlinearProblemsinAcceleratorPhysics,pp.135-145,Inst.ofPhysicsConf.Series131, EditedbyM.Berz,S.Matin,&K.Ziegler(1992) Proceedings367,E.Blum<strong>and</strong>A.SieversEd.,pp257-265(1996) vanZeijts<strong>and</strong>F.Neri,\ThearbitraryorderdesigncodeTlie1.0",Proc.oftheInt.Workshop<br />

[25]P.Piot,G.A.Krat,K.Jordan,A.Grippo,<strong>and</strong>J.Song,\Performanceofthe<strong>Electron</strong><strong>Beam</strong> [26]C.Lejeune<strong>and</strong>J.Aubert,\Emittance<strong>and</strong><strong>Brightness</strong>:Denitions<strong>and</strong>Measurements",in ceedings390,A.H.Lumpkin<strong>and</strong>C.E.EybergerEd.,pp257-265(1996) <strong>Diagnostics</strong>attheJeersonLab's<strong>High</strong>PowerFEL",toappearinProc.Part.Acc.Conf.'99, NewYork(1999) ResultsofWideDynamicRangeBPMSwitchedElectrode<strong>Electron</strong>ics",AIPConferencePro-<br />

[28]R.Abbott,S.V.Benson,M.Croord,D.Douglas,R.Gonzales,R.Kazimi,D.Kehne,G.A. [27]P.Lapostolle,\Quelqueseetsessentielsdelacharged'espacedanslesfaisceauxcontinus", AppliedChargedParticleOptics,A.SeptierEd.,Advancesin<strong>Electron</strong>Physics,Supp.13A,pp. Krat,P.Liger,H.Liu,D.Machie,C.K.Sinclair,\Design,Commissionning,<strong>and</strong>Operationof theupgradedCEBAFinjector",Proc.InternationalLinearAcceleratorConference,pp777-779, reportCERN/DI70-36,CERN,Geneva,Switzerl<strong>and</strong>(1970) 159-259(1980)<br />

Tsukuba(1994)


[29]J.-C.Denard,C.Bochetta,G.Traomba,\DesignConsiderationsRelatedtotheThermal [30]E.Keil,E.Zeitler,undW.Zinn,\ZurEinfach-undMehrfachstreuunggeladenerTeilchen",Z. LoadoftheFluorescentScreenMonitors",InternalNoteST/m-TN-91/14,SincrotroneTriestre, Societaconsortileperazioni,Triestre,Italia(1991)<br />

[33]V.A.Lebedev\Diraction-limitedresolutionoftheopticaltransitionradiationmonitor", [32]P.Piot,J.-C.Denard,P.Adderley,K.Capek<strong>and</strong>E.Feldl,\<strong>High</strong>PowerCW<strong>Beam</strong>Prole [31]S.Leisegang,Z.Phys.132,pp183-187(1952) pp298-305,(1996) MonitoratCEBAF",AIPConferenceProceedings390,A.H.Lumpkin<strong>and</strong>C.E.EybergerEd., Naturforschg.15a,pp1031-1038(1960)<br />

[34]D.Douglas,\Anobservationpointformeasurementofthe45MeVemittanceintheFront [35]P.Piot,\ATcl/TkPackageforCollecting<strong>and</strong>Analyzing<strong>Beam</strong>TranverseDensityMeasure- EndTest",reportTN-90-265,JeersonLab,NewportNewsVA,USA(1990) Nucl.Instr.Meth.,A372,pp.344-348(1996)<br />

[36]P.Piot,G.A.Krat,R.Li,J.Song,\Real-TimeTransverseEmittanceMeasurement",pp. [37]F.J.Sacherer,\rmsenvelopeequationswithspacecharge",reportCERN/SI/Int.DL/70-12, mentsusingOTRintheIRFEL",reportTN-99-031,JeersonLab,NewportNewsVA,USA (1999) 684-689,Proc.InternationalLinearAcceleratorConference,Chicago(1998)<br />

[40]P.Bevington,DataReduction<strong>and</strong>ErrorAnalysisforthePhysicalSciences,McGraw-Hill [39]J.Song,P.Piot,R.Li,etal.\Real-TimePhaseSpaceMonitor",Nucl.Instr.Meth.,A407, [38]M.Crescenti<strong>and</strong>U.Raich,\SecondEuropeanWorkshopon<strong>Beam</strong><strong>Diagnostics</strong><strong>and</strong>Instru- pp.343-349(1998) mentationsforParticleAccelerator"DESYM95-07,pp66-68(1995) CERNGenevaSwizerl<strong>and</strong>(1970)<br />

[43]E.C.Reichenbach,S.K.Park,R.Narayanswamy,"Characterizingdigitalimageacquisition [42]D.E.Groom,\Passageofparticlestroughmatter",Eur.Phys.Jour.C3num(1-4),pp. [41]J.D.Lawson,ThePhysicsofCharged-Particle<strong>Beam</strong>s,2ndEdition,InternationalSeriesof 144-151(1998) MonographsonPhysics75,OxfordSciencePublications(1988) Book(1969)<br />

[44]M.G.Tiefenback,\Space-ChargeLimitsonthetransportofIon<strong>Beam</strong>sinalongalternating [45]B.M.Dunham,D.Douglas,R.Legg,<strong>and</strong>B.Bowling,\AnalysisofEmittanceMeasurement devices",Opt.Eng.30(2),pp170-177(1991) UsingSingle<strong>and</strong>MultipleHarps",reportTN-96-014,JeersonLab,NewportNewsVA,USA gradientsystem",Ph.D.Thesis,LawrenceBerkleyLaboratory,UniversityofCalifornia,report LBL-22465(1986) (1996)


[48]R.Lai,<strong>and</strong>A.J.Sievers,\Phaseproblemassociatedwiththedeterminationofthelongitudinal [47]W.H.Press,S.A.Teukolsky,W.T.Vetterling,<strong>and</strong>B.P.Fannery,NumericalRecipesinC: [46]P.Piot,<strong>and</strong>G.A.Krat,\MonitoringLongitudinalPhaseSpaceofaCharged-Particle<strong>Beam</strong> TheArtofScienticComputing,2ndEdition,CambridgeUniversityPress(1992) withaMultifrequencyCoherentRadiationDevice",reportTN-97-030,JeersonLab,Newport<br />

pp.45764579(1995) shapeofachargedparticlebunchfromitscoherentfar-irspectrum",Phys.Rev.,E52num.2, NewsVA,USA(1997)<br />

[49]R.E.Burge,M.A.Fiddy,A.H.Greenway,<strong>and</strong>G.Ross,\ThePhaseProblem",Proc.R.Soc.<br />

[52]D.X.Wang,G.A.Krat,<strong>and</strong>C.K.Sinclair,\Measurementoffemtosecondelectronbunches [51]T.Larsen,\ASurveyoftheTheoryofWireGrids",IRETrans.Micr.Theo.&Tech.,pp. [50]N.Levinson,<strong>and</strong>R.Redheer,ComplexeVariable,Holden-DayInc.,SanFransisco,Cam- 191-201(1962) bridge,London<strong>and</strong>Amsterdam(1970) Lond.A.350,pp.191-212(1976)<br />

[53]H.Liu,etal.,Nucl.Instr.<strong>and</strong>Meth.A358,pp475-478(1995) [55]P.Piot,G.Biallas,C.L.Bohn,D.R.Douglas,D.Engwall,K.Jordan,D.Kehne,G.A.Krat, [54]M.Reiser,Theory<strong>and</strong>Designofchargedparticlebeams,JohnWiley&Sons,(1994) usingarfzero-phasingmethod",Phys.Rev.,E57num.2,pp.2283-2286(1998)<br />

[56]P.Piot,G.A.Krat,\TransverseRF-focussinginJLABRFCavity",Proc.Euro.Part.Acc. [57]J.B.Rosenzweig,<strong>and</strong>L.Serani,\Transverseparticlemotioninradio-frequencylinearaccel- R.Legg,L.Merminga,J.Preble,T.Siggins,<strong>and</strong>B.C.Byunn,\ExperimentalResultsfroman InjectorforanIRFEL",Proc.Euro.Part.Acc.Conf.'98,pp.1447-1449(1998) Conf.'98,pp.1327-1330(1998)<br />

[60]P.Emma,<strong>and</strong>R.Brikmann,\EmittanceDilutionTroughCoherentEnergySpreadGeneration [59]H.Wiedemann,ParticleAcceleratorPhysicsII,Springer-VerlagBerlinHeidelberg(1995) [58]E.Chambers,unpublishedwork,SLAC,St<strong>and</strong>fordUniversity(1965) inBendingSystem",Proc.Part.Acc.Conf.'97,pp.1679-1681(1997) erator",Phys.Rev.,E49num.2,pp.1599-1602(1994)<br />

[62]Z.Li,\<strong>Beam</strong>DynamicsintheCEBAFSuperconductingCavities",PhDthesis,Collegeof [63]A.W.Chao,PhysicsofCollective<strong>Beam</strong>Instabilitiesin<strong>High</strong>EnergyAccelerators,JohnWiley [61]P.G.O'Shea,\Reversible<strong>and</strong>irreversibleemittancegrowth",Phys.Rev.,E57num.1,pp.<br />

[64]Z.Li,\<strong>Beam</strong>DynamicsintheCEBAFSuperconductingCavities",Proc.Part.Acc.Conf.'93 1081-1087(1998) &Sons,(1993) William&MaryVA-USA(1995) IEEEcatalog#93CH3279-7,pp.179-182,Chicago(1993)


[65]B.C.Yunn,\ImpedancesintheIRFEL",reportTN-96-049,JeersonLab,NewportNews<br />

[68]E.L.Saldin,E.A.Schneidmiller,M.V.Yurkov,reportTESLA-FEL96-14,Deutsches [66]T.Nagazato,etal.,\ObservationofCoherentSynchrotronRadiation",Phys.Rev.Let.,63 [67]R.Kato,etal."Suppression<strong>and</strong>enhancementofcoherentsynchrotronradiationinthepresence VA,USA(1996)<br />

[69]R.Li,C.L.Bohn,<strong>and</strong>J.Bisognano,\Shieldedtransientself-interactionofabunchenteringa Elektronen-Synchrotron-DESY,Hamburg(Deutchl<strong>and</strong>) num.12,pp.1245-1248(1989)<br />

[70]R.Li,\SelfConsistentSimulationofCSR",Proc.Euro.Part.Acc.Conf.'98,pp.1230-1232 circlefromastraightpath",reportTN-97-048,JeersonLab,NewportNewsVA,USA(1997) oftwoparallelconductingplates",Phys.Rev.E57,num3,pp3454-3460(1998).<br />

(1998)


Abbreviations AppendixA<br />

CCD:chargecoupleddevice. BPM:beampositionmonitor. BFF:bunchformfactor.<br />

FWHM:fullwidthhalfmaximum. CW:continuouswave. FFT:fastfouriertransform. CTR:coherenttransitionradiation. CSR:coherentsynchrotronradiation.<br />

ISR:incoherentsynchrotronradiation. IRFEL:infraredfree-electronlaser. HOMcoupler:highordermodecoupler(onacceleratingcavities). HF:high-frequency. FPcoupler:forwardpowercoupler(onacceleratingcavities).<br />

SC:spacecharge. RMS:rootmeansquare. OTR:opticaltransitionradiation. RF:radio-frequency. ODP:opticalpathdierence.<br />

SR:synchrotronradiation. SRF:superconductingradio-frequency.172


TEM:transverseelectricmagnetic.<br />

TOF:timeofight.<br />

TR:transitionradiation.


AppendixB<br />

B.1Linear<strong>and</strong>SecondOrderTransport:Convention <strong>Beam</strong>Dynamics:Notes&Tools<br />

B.1.1TransferMatrix Inthepresentreportweworkinthecoordinatesystem(x;x0;y;y0;;)where: x,y,arethecoordinateinthest<strong>and</strong>ard3Dpositionspace(notethat=2z=RFrepresentsthelongitudinalpositionoftheparticleinunitoftheRFwavelengthoftheacceleratorTopropagateavector!rinalongasectionofbeamline,weuse,providedthesecond-orderapprox- x0<strong>and</strong>y0arethedivergenceinthetransverseplane (withinafactor2))<br />

imationoftheequationofmotionisapplicable: reportcoincidentwiththeenergyaverageofthebunch). istherelativeenergyosetoftheparticlewithareferenceparticle(whichisinthepresent<br />

Rijistherstordermatrix<strong>and</strong>Tijkarethesecondorderterms. B.1.2<strong>Beam</strong>Matrix rout;i=XjRijrin;j+XkXj>kTijkrin;jrin;k+O(r3) (B.1)<br />

Thebeamormatrix,e.g.forthex-x0phasespaceisdenedasfollows: Thesamematrixcanbedenedforthey-y0phasespaces(3j4)or-longitudinalphasespaces (5j6).wehavethefollowingdenitions/properties: xdef =1j2def = 1112 1222!= 174hxx0ihx02i!<br />

hx2ihxx0i (B.2)


B.2Anoteonspacecharge Wedenetheslopeofthephasespaceas:dx=dx0=hxx0i=hx02i thetransversermsemittanceisthedeterminantdet(z)<br />

originatesfromCoulombrepulsionbetweenelectronswithinabunch.Spacechargetendstoinduce emittancegrowth.Inthissection,wewouldliketoshowthattheseforcesareonlyaconcernfor lowenergybeam,inourcase(Q'60pCthespacechargecollectiveeectisonlyimportantin Wehavealreadymentionedthatchargedparticlebeamaresubjecttospacechargeforcethat theinjectorbeamline.Forsuchapurposeweconsideraverysimplemodelofauniformlycharged<br />

Thelongitudinaleldcanalsobecomputedconsideringthebeaminsideapuremetalliccylindrical magneticeldsinsidethebeam,<strong>and</strong>inthebeamreferenceframe,caneasilybecomputedfromthe Maxwellequation<strong>and</strong>are(forr


B.3.1DIMAD TheprogramDIMAD2studiesparticlebehaviorincircularmachines<strong>and</strong>inbeamlines.Thetra- B.3TheSimulationTools<br />

chargedparticlecomputercodes. B.3.2TLIE likeitspredecessorDIMAT,istheresultofmanyyearsofexperimentingwithseveraldierent jectoriesoftherelativisticparticlesarecomputedaccordingtothesecondordermatrixformalism. Itdoesnotprovidesynchrotronmotionanalysisbutcansimulateit.Theprogramprovidestheuser withthepossibilityofdeningarbitraryelementstotailortheprogramtospecicuses.DIMAD,<br />

tosecondorderlikedimad.ThePhysicsbehindthiscodeisbasedontheuseoftheLieAlgebra vectorspacewithaproductverifyingtheproperties(1)(xy)=(x)y=x(y)<strong>and</strong>(2) operatortopropagatetransfertmapalongabeamlinesection.ALiealgebraisanalgebra(i.e.a Tlie3isageneral6DrelativisticdesigncodewithaMADcompatibleinputlanguage.The particularityofTLieisitsabilitytocomputetransfermapatanarbitraryorder<strong>and</strong>notonlyup Pi@f TheLiealgebraoperatorusedin<strong>Beam</strong>DynamicsisthePoissonbracketdenedas:[f;g]= forsuchachoiceisthefactthatwiththehelpofthecanonicalHamiltonequations,wecanwrite y(x1+x2)=yx1+yx2)thatalsoveriestheJocobiidentity:x(yz)+y(zx)+z(xy)=0. forafunctionf(pi;qi): @qi@g @pi@g @qi@f @piwhereg<strong>and</strong>farefunctionsofthegeneralizedvariablespi<strong>and</strong>qi.Thereason<br />

thatfisnotanexplicitfunctionoftimei.e.@f :f:isaLieoperator.ToillustratehowtheTliecodeworks,let'sassume,forthetimebeing, (pi;qi).Inst<strong>and</strong>ardnotation,thePoissonbracketoperatorisoftenwritten:f:g=[f;g]where whereHistheHamiltonianthatgovernstheevolutionofthedistributionfintheconjugatespace df dt=[f;H]=:f:H=:H:f,<strong>and</strong>usingpurelysymbolicequationwehaveintermofoperator: df dt=@f @t+[f;H] @t=0inEqn.(B.8).ThenEqn.(B.8)becomes: (B.8)<br />

e:H:f=f+[H;f]+1=2[H;[H;f]]+:::. ThebeautyofLieAlgebratechniqueresidesinthatthecomputationofthefunctionfatatime dierentialequationise:H:fwheretheexponentiationofLieoperatorisdenedastheseries order,thisistheprincipleonwhichTlieisbased:thehamiltonianHalongwiththecorresponding operatore:H:arecomputedforeachbeamlinepiece<strong>and</strong>areconcatenedusingtheCampbell-Baker- calculationcanbecarriedatanyorderbycomputingthePoissonbracketseriesatthedesired t=t0+,knowingthefunctionfattimet0,justconsistsofcomputingft=e:H:ft0;such dt=:H:sotheLieoperator:H:reducestoasimpletimederivative.Thesolutionofthis<br />

REPORT285SLAC-StanfordUniversityCA-USA(1985) Hausdortheorem,thatstatese:HA!C:=e:HA!B:e:HB!C:,toobtaintheLieoperatorforawhole beamlinesection[A,C]. 3ThecodewaswrittenbyJohannesvanZeijts<strong>and</strong>FilippoNeri<br />

2R.Sevranckx,K.L.Brown,L.Scachinger,<strong>and</strong>D.Douglas,\UsersGuidetotheProgramDIMAD",SLAC


B.3.3PARMELA FeaturesofJeersonLabVersion \Phase<strong>and</strong>RadialMotionin<strong>Electron</strong>LinearAccelerators."Itisaversatilemulti-particlecode thattransformsthebeam,representedbyacollectionofmacroparticles,throughauser-specied linac<strong>and</strong>/ortransportsystem.Itincludesa2-Dspace-chargecalculation<strong>and</strong>anoptional3-D point-to-pointspace-chargecalculation.PARMELAintegratestheparticletrajectoriesthrough theelds.Thisapproachisespeciallyimportantforelectronswheresomeoftheapproximations nothold.PARMELAworksequallywellforeitherelectronsorions.PARMELAcanreadeld usedbyothercodes(e.g.the"drift-kick"methodcommonlyusedforlow-energyprotons)would<br />

AtJeersonLab,amodiedversionofparmelahasbeenproducedbyH.Liu.Itincorporatesa3D distributionsgeneratedbyeitherFISHforrfproblemsorPOISSONformagnetproblems. ModiedSpacechargealgorithm point-by-pointspacechargealgorithmfromK.T.Mc.Donald4.Anoutlineofthealgorithmisas follows.parmelauseatwo-stepmethodtogenerateaspacechargeimpulseoneachmacroparticle: (!)itdeterminesthenetelectromagneticspacechargeeldatthelocationofeachmacroparticle duetoallothermacroparticle,(2)applythespacechargeimpulsetoeachmacroparticle.Then trackthemacroparticlethroughaslice(widthdenedbytheuser)ofthebeamline(forsimple elementthetrackingisperformedusingsecondordertransfermatrix,buttheusercanifdesired eachslice).Thisspacepoint-by-pointalgorithmisverysimplebutbecauseofthe1=r2dependence denethe3Dmapoftheelectromagneticeld.Insuchcasetheequationofmotionisintegratedin (whichcanleadtosingularityornumericalnoise)itmustbeimplementedcarefully.Forinstancein theeventualitytwomacroparticlescomeveryclosetoeachotherthechargeofthemacroparticles inthealgorithmisreduced.Thealgorithmtoreducethemacroparticlechargeisdiscussedindetail elsewhere5 AsimplemodelforCoherentSynchrotronRadiation chargeQi<strong>and</strong>lengthiorbitingonacirculartrajectoryofradiusRidetectedatthepresenttime byanobserverelectronjderived<strong>and</strong>expressedas: TheimplementationoftheCSRinteractionintothePARMELAcodecloselyfollowsthemethod describedbyCarlsten6wheretheelectriceldgeneratedataretardedangle0byalineiofuniform<br />

forshortelectronbunchesincircularmotionusingtheretardedGreen'sfunctiontechnique"Phys.RevE54num1, TN-94-040,JeersonLab,NewportNews,VA-USA(1994) pp838-845(1996)<br />

4K.T.McDonald,IEEETrans.Elect.Dev.35p2052(1988) 6B.E.Carlsten,\Calculationofthenoninertialspace-chargeforce<strong>and</strong>thecoherentsynchrotronradiationforce 5H.Liu,\ConceptofVariableParticleSizeFactorforaPoint-by-PointSpaceChargeAlgorithm",CEBAFreport Ei;j=Qi i"1 r(1!ibnij)"12i2ixj Ri+2i(1cos(0))##fr (B.9)


ofthelinecharge<strong>and</strong>theobserverelectron.Theretardedangle0isrelatedtothepresentangle directionfromthelinecenter<strong>and</strong>theobserverelectron.Thequantityinbracketmustbeevaluated forthepresentanglesrij(resp.fij)thatcorrespondstotheanglebetweentherear(resp.front) wherei,iaretheusualLorentzfactorsfortheorbitinglinei,bnijisthenormedvectoralongthe<br />

wherejisthetotaltransversedisplacementoftheobserverelectronwithrespecttothetrajectory ofthelinecharge. ThedenominatorofEqn.(B.9)canalsobeexpressedasafunctionoftheretardedtimeusinggeo- i<strong>and</strong>theobserverjwehave: byatranscendequationderivedfromgeometricalconsideration.Forinstanceforthelinecharge<br />

metricalconsideration. 2iR2i(0)2=2j+2Ri(Ri+xj)(1cos(0)) (B.10)<br />

linechargecanbereplacedbyamacroparticlewhichcarry,asinPARMELA,auniformcharge. Theextensiontoabunchofelectrondescribedbyamacroparticlemodelisstraightforward:the<br />

whereNisthenumberofmacroparticleinthemodel. Infactthis\pointbypoint"typemacroparticlealgorithmhasalreadybeenimplementedinthe Thereforethetotalelectriceldproducedbythebunchofmacroparticleataretardedtimeonan<br />

JLabPARMELAversiontosimulatemacropaticleinteractionviaspace-chargeforce.Hencewe observermacroparticleatthepresenttimesimplywritesasthesum:<br />

caneasilymodifytheexistingalgorithmtosimulateCSRselfinteraction. TheretardedangleisevaluatedasdescribedbyCarlstenusinganiterativeprocesstosolvethe Etotal j=NXi=1Ei;j (B.11)<br />

transcendentequationEqn.(B.10).ThemodeldescribedintheprevioussectionasbeenimplementedintheJLabversionofPARMELA(bothaHP9000<strong>and</strong>aCrayC90versions).Pratically, whenthebunchentersabendinwhichtheuserwishtoincludeCSRinteraction,theradiusofthe trajectoryofeachmacroparticleisealuated<strong>and</strong>then,basedongeometricalconsideration,allthe parameterinEqn.(B.9)arecomputed<strong>and</strong>theeldduetobunchonamacroparticleisevaluated. intheBENDCSRcardthesubroutinecsriscalled.<br />

Thisoperationisperformedforeachmacroparticle<strong>and</strong>thereforealargenumberofiterationis BENDcard.Thiscardmustbeusedtoindicatethebendingmagnetwheretheuserwishtosimulate CSRinteraction.Secondly,wehavemodiedtheprogramPARMDYNsothatwhentheelectronsare showningrey:rstlywehaveintroducedanewcardBENDCSRwhichfollowthesamesyntaxasthe needed.TypicalCPUtimeneededtorunoneFELchicaneisapproximately1hrwallclock.A blockdiagramofthePARMELAcodeispresentedinFig.B.1.Themodicationperformedare


Initialization MAIN<br />

Stop<br />

INPUT DECK INPUT BEAM START/RESTART<br />

PARMDYM (particle dynamics)<br />

SCHEFF<br />

Space-Charge<br />

Loop on time steps<br />

Loop on particles<br />

SAVE<br />

CSR<br />

Csr Interaction<br />

FigureB.1:Parmelasimpliedalgorithm.<br />

BENDCSR BEND DRIFT QUAD POISSON CELL<br />

SWAP/ OUPUT BRANCHES<br />

Yes<br />

No<br />

LAST<br />

PARTICLE<br />

OUPUT<br />

No End Yes<br />

END


AppendixC<br />

C.0.4Introduction <strong>Beam</strong>Distributions DispersionRelationsforBunched<br />

emissionfromabunchedelectronbeamhavebeenusedbymanyauthors.Howeverwebelieve givethephase,butonlyonetermcontributingtothephase(dependingonthebunchlongitudinal distributionproperties). Dispersionrelationstocomputethephaseassociatedtotheelectriceldgeneratedviacoherent<br />

C.0.5Background themathematicalproofisnotalwaysproperlyderived:thesedispersionrelationsareappliedto aderivationofsuchrelations<strong>and</strong>discussthefactthatthesedispersionrelationdonotafortiori functionswhichcannotbeexpressedasCauchyintegrals.Inthepresentaddendumwepresent<br />

showninthecaseofbunchedelectronbeamthatiftheemittedradiationisobservedatwavelength comparableorlargerthatthebunchlength,theelectronsinthebunchemitcoherently.Insucha Therearemanywayselectronscanemitradiationas<strong>their</strong>environmentismodied.Ithasbeen<br />

where^S(!)istheFouriertransformofthelongitudinaldistributionS(t).Theproblemthathas case,thespectrumoftheradiationwritesas: transformoftheelectriceld,tocomputethebunchformfactorphase. Inthemanypapers,thefunctionlog(^S(!))isdened<strong>and</strong>thecomplexpartofthisfunction(which beenstudiedistousethepowerspectrum,whichisproportionaltothemodulusoftheFourier isthephaseof^S(!))iscalculatedusingthest<strong>and</strong>arddispersionrelations.Howeverweshallsee Etotal(!)=qN(N1)qj^S(!)jE1e(!) (C.1)<br />

belowthatlog^S(!)doesnothavethe\right"properties<strong>and</strong>cannotbegenerallywrittenasa log^S(!)function. Cauchyintegral<strong>and</strong>morecareshouldbeusedwhentryingtorecovertheimaginarypartofthe 180


C.0.6TheDispersionRelationsfor^S(!) WhenS(t),thebunchdistributionhasthe\right"properties,itsFouriertransformhassome interestingproperties:itsimaginary<strong>and</strong>realpartareHilbertconjugate,i.e.theyarerelatedvia Hilberttransformation.The\right"propertiesS(t)mustsatisfyareasfollows:<br />

ThelastiteminsureS(t)isacausalfunction<strong>and</strong>thetwootherareequivalenttoS(t)2L2,the limt!1S(t)=0<strong>and</strong>S(t)!0fasterthan1=t, S(t)=08t


Unfortunatelylog[^S(!)]cannotbeexpressedasaCauchyintegralbecauselog[^S(!)]isnotan dispersionrelationshavebeenappliedtothisfunctiontoretrieveitsimaginarypart(i.e.thephase of^S(!)). analyticinthefullupperhalf-plane.Moreover: Obviouslylog[^SS()]isnota\good"function!Acommonlyusedruseistodenethefunction Ilog[~S()] ()def jj!1 =log^S()log^S() !Z0log[~S()]6=0 (C.5)<br />

whereisanarbitrarypointoftheupperhalf-planewherelog[~S]isanalytic(notethat()isnot Thedispersionrelationsappliedto()yields: singularat=). i()=PZ+1 1(x)dx x (C.7) (C.6)<br />

UsingEqn.(C.6)weget: whichexp<strong>and</strong>sto: ilog[^S()]=ilog[^S()]+()24PZ+1 ilog[^S()]=ilog[^S()]+()24PZ+1 1log[^S(x)]dx 1log[^S(x)]dx (x)(x)PZ+1 (x)(x)log[^S()]PZ+1 1log[^S()]dx (x)(x)35(C.8)<br />

ThetwofarRHStermsarezero,sothatwenallyget: log[^S()]=log[^S()]+iPZ+1+log[^S()]PZ+1<br />

1dx 1dx x(C.9) x<br />

relatelog[j^S()j]tothephaseof^S(),(): Byidentifyingthereal<strong>and</strong>imaginarypartsweobtainthedispersionrelationsforlog[^S()]which log[j^S()j]=log[j^S()j]+PZ+1 1log[^S(x)]dx 1 (x)(x) (x)(x) (x)dx (C.10)<br />

whichaftertakingintoaccountthesymmetryof^S(^S()=^S()yieldsfor=0: ()=()1()PZ+1 ()=(0)2PZ1 1logj^S(x)jlogj^S()j 0logj^S(x)jdx (x)(x)dx x22 (C.12)<br />

(C.11)


have: Howeveritshouldbenotedthatwehaveassumedfromthebeginningthat^S()isanalyticin ^S(0)=12R,sinceS(t)isarealfunctionnormalizedtounity;therefore(0)=0.Sonallywe (0)canbeestimatedbecausetheFouriertransformat!=0istheintegralofS(t);itgives<br />

particularthepointwhere^S()=0willgivesingularityon()whichinturnmustbetakeninto theupperplane.Unfortunatelyitdoesnotimplylog[^S()]hasthesameregionofanalyticity;in accountinthephaseby,whenwriting()asaCauchyintegral,takinginaccountthecontribution totheintegralviatheresiduetheorem. ()=2PZ1 0logj^S(x)jdx x22 (C.13)<br />

Inthegure(gureC.1)belowwepresentresultsforasimplebi-modaldistributionthatconsists ofasumoftwonormaldistributions:wehavegeneratedthreetypesofdistribution(a)(c)<strong>and</strong> (e)<strong>and</strong>foreachofthemwecomparethephasecalculateddirectlyfromthecomputationofthe FouriertransformofthedistributionwiththephaseretrieveusingEqn.(C.13).Onthisverysimple examplewenoticethatthisequationdoesnotafortiorireproducetheveritablephaseoftheFourier transformofthedistribution.


6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

−8<br />

0 1 2 3 4 5 6 7 8 9 10<br />

x 10 6<br />

−10<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

0 1 2 3 4 5 6 7 8 9 10<br />

x 10 6<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

0<br />

−2<br />

−4<br />

−6<br />

−8<br />

−10<br />

0 1 2 3 4 5 6 7 8 9 10<br />

x 10 6 FigureC.1:Exampleofphaseretrievalforabi-gaussian-likebunchdistribution.Threetypeof<br />

(c)<br />

(e)<br />

transform(dashlinesonplot(b),(d),<strong>and</strong>(f))<strong>and</strong>therecoveredphaseusingthedispersionrelation (crosses)onthesameformerplots.<br />

bi-modaldistributions(a),(c)<strong>and</strong>(e)arepresentedalongwiththeexactphaseof<strong>their</strong>Fourier<br />

Distance (a.u.)<br />

Distance (a.u.)<br />

0<br />

(d)<br />

(f)<br />

−5<br />

−10<br />

−15<br />

−20<br />

Frequency (a.u.)<br />

Frequency (a.u.)<br />

Phase (rad) Bunch Population (a.u.)<br />

Phase (rad) Bunch Population (a.u.)<br />

Distance (a.u.)<br />

Frequency (a.u.)<br />

Bunch Population (a.u.)<br />

Phase (rad)<br />

(a)<br />

(b)


FigureD.1:OverviewoftheRF-controlsystemfortheIRFEL. 185<br />

Buncher<br />

Photocathode<br />

Laser<br />

Cryounit<br />

(2 Cavities)<br />

GANG PHASE<br />

SRF- Linac (8 Cavities)<br />

RF Reference (Master Oscillator)<br />

<strong>Beam</strong><br />

- LEGEND -<br />

Phase Shifter<br />

Attenuator<br />

Klystron<br />

AppendixD TheRadio-FrequencyControlSystem

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!