04.08.2013 Views

Applications of Spin-Polarized Electrons in Condensed ... - CASA

Applications of Spin-Polarized Electrons in Condensed ... - CASA

Applications of Spin-Polarized Electrons in Condensed ... - CASA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Applications</strong> <strong>of</strong> <strong>Sp<strong>in</strong></strong>-<strong>Polarized</strong> <strong>Electrons</strong> <strong>in</strong><br />

<strong>Condensed</strong> Matter Physics<br />

Dan Pierce<br />

Electron Physics Group, NIST<br />

http://physics.nist.gov/epg<br />

Supported <strong>in</strong> part by the Office <strong>of</strong> Naval Research


Pr<strong>in</strong>ciple <strong>of</strong> GaAs <strong>Polarized</strong> e - Source<br />

Optical excitation <strong>of</strong> sp<strong>in</strong> polarized electrons<br />

For positive helicity σ + light, the theoretical polarization <strong>of</strong> the<br />

electrons photoexcited by bandgap radiation is<br />

N −N<br />

N + N<br />

P= ↑ ↓<br />

↑ ↓<br />

=<br />

1-3<br />

1+3<br />

= -50%<br />

Polarization is easily and rapidly reversed by switch<strong>in</strong>g helicity <strong>of</strong> light<br />

Pierce and Meier, PR B 13,5484-5500 (1976)


Negative Electron Aff<strong>in</strong>ity (NEA) GaAs<br />

Surface treatment gives world’s best photoemitter<br />

Source characteristics:<br />

P ~ 30% for bulk wafer<br />

I = 20 µA/mW<br />

cont<strong>in</strong>uous or pulsed operation<br />

low <strong>in</strong>itial energy and energy spread<br />

high figure <strong>of</strong> merit = P 2 I


Charlie’s Hippie Days


<strong>Sp<strong>in</strong></strong> <strong>Polarized</strong> Electron Gun<br />

<strong>Sp<strong>in</strong></strong> polarized e - scatter<strong>in</strong>g apparatus<br />

Measure<br />

I −I<br />

A= I + I<br />

↑↑ ↑↓<br />

↑↑ ↑↓<br />

∝M<br />

Pierce, Celotta, Wang, Unertl, Galejs, Kuyatt, Mielczarek, RSI 51, 478-499 (1980)


<strong>Polarized</strong> e - Gun for SLAC Parity Violation Experiment<br />

Beam polarization, 35% to 45% Beam current, 1 mA cw to 15 A peak


Complete <strong>Polarized</strong> e - Injection System<br />

for SLAC Parity Violation Experiment


Technical Support <strong>in</strong> the Early Days


Development <strong>of</strong> Measurement Techniques<br />

Us<strong>in</strong>g <strong>Sp<strong>in</strong></strong>-<strong>Polarized</strong> <strong>Electrons</strong><br />

<strong>Sp<strong>in</strong></strong>-polarized electron gun (NEA GaAs)<br />

<strong>Sp<strong>in</strong></strong> polarized electron scatter<strong>in</strong>g<br />

<strong>Sp<strong>in</strong></strong> polarized low energy electron diffraction (SPLEED)<br />

<strong>Sp<strong>in</strong></strong> polarized <strong>in</strong>verse photoemission spectroscopy (SPIPES)<br />

<strong>Sp<strong>in</strong></strong> polarized electron energy loss spectroscopy (SPEELS)<br />

<strong>Sp<strong>in</strong></strong> polarized low energy electron microscopy (SPLEEM)<br />

Electron sp<strong>in</strong> polarization analyzer<br />

<strong>Sp<strong>in</strong></strong> polarized photoemission<br />

<strong>Sp<strong>in</strong></strong> polarized Auger electron spectroscopy<br />

<strong>Sp<strong>in</strong></strong> polarized secondary electron emission<br />

Scann<strong>in</strong>g Electron Microscopy with Polarization Analysis (SEMPA)


Surface Sensitivity<br />

Surface sensitive due to short electron mean free paths<br />

Inelastic mean free path especially short <strong>in</strong> transition metals with many d holes<br />

<strong>Sp<strong>in</strong></strong> dependent attenuation length <strong>in</strong> ferromagnets at low energy<br />

Pappas et al, PRL 66, 504 (1991)


<strong>Sp<strong>in</strong></strong> <strong>Polarized</strong> Electron Gun<br />

<strong>Sp<strong>in</strong></strong> polarized e - scatter<strong>in</strong>g apparatus<br />

Measure<br />

I −I<br />

A= I + I<br />

↑↑ ↑↓<br />

↑↑ ↑↓<br />

∝M<br />

Pierce, Celotta, Wang, Unertl, Galejs, Kuyatt, Mielczarek, RSI 51, 478-499 (1980)


<strong>Sp<strong>in</strong></strong> <strong>Polarized</strong> Low Energy Electron<br />

Diffraction (SPLEED)<br />

First surface magnetization measurement with SPLEED<br />

IAA , IAB<br />

A=A(E,θ,H,T)<br />

θ<br />

A(H)<br />

Test for true magnetic effect by measur<strong>in</strong>g field and temperature dependence<br />

A(T)<br />

Celotta, Pierce, Wang, Bader, Felcher, PRL 43, 728 (1979)


<strong>Sp<strong>in</strong></strong>-<strong>Polarized</strong> Electron Scatter<strong>in</strong>g<br />

Measure low temperature surface magnetization<br />

Ni 40 Fe 40 B 20<br />

Thermal excitation <strong>of</strong> sp<strong>in</strong> waves<br />

M( T)<br />

=- 1 BT32<br />

/ + .... Theory:<br />

M(<br />

0)<br />

B<br />

B surface<br />

bulk<br />

B s /B b =3<br />

Results expla<strong>in</strong>ed by extend<strong>in</strong>g theory to <strong>in</strong>clude<br />

weaker exchange coupl<strong>in</strong>g <strong>of</strong> surface to bulk, J S⊥ 2


<strong>Sp<strong>in</strong></strong>-<strong>Polarized</strong> Electron Scatter<strong>in</strong>g<br />

Determ<strong>in</strong>e surface critical exponent<br />

A lot <strong>of</strong> theory but few experiments for<br />

magnetic critical behavior at surfaces<br />

A ex ∝ t β , where t=[1-(T/T C )]. F<strong>in</strong>d β≅0.78 for both<br />

Ni(110) and Ni(100) surfaces, <strong>in</strong>dependent <strong>of</strong> E and θ<br />

Neutron measurements give β=0.38 for bulk<br />

Alvarado, Campagna, Hopster, PRL 48, 51 (1982)


<strong>Sp<strong>in</strong></strong> <strong>Polarized</strong> Inverse Photoemission Spectroscopy<br />

A= P<br />

<strong>Sp<strong>in</strong></strong> dependent bandstructure <strong>of</strong> unfilled states<br />

Energy, angle (k), and sp<strong>in</strong>-resolved <strong>in</strong>verse photoemission<br />

Photon detector sensitivity<br />

Measure<br />

hw = 97 . ± 035 . eV<br />

F<br />

G<br />

HG<br />

1<br />

0 cosa<br />

I<br />

J<br />

KJ<br />

A B<br />

A B<br />

n -n<br />

n + n<br />

Large m<strong>in</strong>ority sp<strong>in</strong> peak just above<br />

Fermi level from the d-holes<br />

responsible for ferromagnetism <strong>in</strong> Ni<br />

Unguris, Seiler, Celotta, Pierce, Johnson, Smith, PRL 49, 1047 (1982)


Runn<strong>in</strong>g with Friends<br />

Bay to Breakers


Stopp<strong>in</strong>g to read while others catch up


Tough


Happy on top<br />

<strong>of</strong> the mounta<strong>in</strong>


A S<strong>in</strong>clair Grand Canyon<br />

Expedition


You’re not try<strong>in</strong>’ if<br />

your not bleed<strong>in</strong>’!<br />

Determ<strong>in</strong>ed


Pr<strong>in</strong>cipled<br />

Two th<strong>in</strong>gs I can’t<br />

tolerate:<br />

Incompetence and<br />

Cold C<strong>of</strong>fee


Married <strong>in</strong> 1983!


How ‘bout them legs


<strong>Sp<strong>in</strong></strong> <strong>Polarized</strong> Secondary Emission<br />

High sp<strong>in</strong> polarization where have high secondary <strong>in</strong>tensity<br />

Fe 81.5 B 14.5 Si 4<br />

Valence electron polarization<br />

n −n<br />

n<br />

P=<br />

↑ ↓<br />

n + n<br />

=<br />

n<br />

=<br />

↑ ↓<br />

B<br />

V<br />

M =-m ( n -n<br />

)<br />

B<br />

# Bohr magnetons<br />

# Valence electrons<br />

A B<br />

n B n V P<br />

Fe 2.2 8 0.28<br />

Co 1.7 9 0.19<br />

Ni 0.055 10 0.055<br />

Unguris, Pierce, Galejs, Celotta, PRL 49, 72 (1982)


Scann<strong>in</strong>g Electron Microscopy<br />

with Polarization Analysis (SEMPA)<br />

High resolution magnetization imag<strong>in</strong>g<br />

Incident <strong>Electrons</strong> From<br />

Scann<strong>in</strong>g Electron Microscope<br />

Magnetic<br />

Specimen<br />

<strong>Sp<strong>in</strong></strong>-Polarization Analyzer<br />

<strong>Sp<strong>in</strong></strong>-<strong>Polarized</strong><br />

Secondary <strong>Electrons</strong><br />

Magnetization<br />

M= -µ B (N ↑ -N ↓)<br />

P = N ↑ -N ↓<br />

N ↑ + N ↓


NIST SEMPA Apparatus<br />

Auger<br />

Electron<br />

Energy<br />

Analyzer<br />

Ion Gun<br />

Secondary &<br />

Backscatter<br />

Electron<br />

Detectors<br />

Electron<br />

Source<br />

Sample<br />

RHEED Screen<br />

In-Plane<br />

Metal<br />

Evaporators<br />

Polarization<br />

Analyzers<br />

Out-<strong>of</strong>-Plane<br />

Acquisition time (m<strong>in</strong>)<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

Old LaB 6<br />

New Field Emission<br />

10 keV<br />

20 keV<br />

0.01<br />

1 10 100 1000<br />

Beam diameter (nm)


4 cm<br />

Low Energy Diffuse Scatter<strong>in</strong>g Analyzer<br />

Input Optics<br />

Anode<br />

MCP<br />

G2<br />

G1<br />

E2<br />

Drift Tube<br />

E1<br />

Au & C Targets<br />

150 eV e -<br />

Y<br />

A<br />

D B<br />

C<br />

End View<br />

Au evaporator<br />

X


SEMPA Example – Iron Crystal<br />

Measure the topography and two magnetization components<br />

(simultaneously but separately):<br />

Intensity<br />

Then derive the<br />

magnetization<br />

direction and<br />

magnitude:<br />

M x<br />

Direction<br />

θ = tan -1 (M x/M y)<br />

M y<br />

Magnitude<br />

⏐M⏐ = (M x 2 + My 2 ) 1/2


Out-<strong>of</strong>-plane M<br />

M contour<br />

In-plane M<br />

Cobalt Vector Magnetization


SEMPA – MFM Comparison<br />

Hard disk test sample with Au patterned overlay<br />

SEMPA<br />

Intensity M AFM MFM<br />

350 nm


Interlayer Exchange Coupl<strong>in</strong>g<br />

Cr wedge schematic<br />

Cr Wedge<br />

∼ 500 µm<br />

Fe Whisker<br />

M<br />

Fe Film<br />

∼ 1-2 nm<br />

0 - 20 nm<br />

Unguris, Celotta, Pierce, PRL 67, 140 (1991)


Fe/Cr/Fe Oscillatory Exchange Coupl<strong>in</strong>g<br />

M<br />

P(Fe)<br />

P(Cr)<br />

0.2<br />

0.0<br />

-0.2<br />

0.04<br />

0.0<br />

-0.04<br />

Precise measurement <strong>of</strong> coupl<strong>in</strong>g periods<br />

RHEED<br />

0 10 20 30 40 50 60 70 80<br />

Cr Thickness (layers)<br />

Interlayer Measured period<br />

(layers)<br />

Cr<br />

0.144 nm/layer<br />

Ag<br />

0.204 nm/layer<br />

Au<br />

0.204 nm/layer<br />

2.105 ±0.005<br />

12 ±1<br />

2.37 ±0.07<br />

5.73 ±0.05<br />

2.48 ±0.05<br />

8.6 ±0.3


Leadership


Vision<br />

We’ll get there if<br />

you can keep up<br />

with me


Between a rock and a hard place


Magnetic Depth Pr<strong>of</strong>il<strong>in</strong>g Co/Cu Multilayers<br />

Magnetoresistance and doma<strong>in</strong> structure<br />

Current through magnetic multilayer depends on magnetization alignment,<br />

but real doma<strong>in</strong> structures can be complex:<br />

Cu<br />

Co<br />

Ion milled crater<br />

(2 keV Ar + )<br />

i<br />

M<br />

Top Co layer<br />

2 nd Co layer<br />

Top layer magnetization predom<strong>in</strong>antly<br />

antiparallel to 2 nd layer<br />

Borchers, Dura, Unguris, Tulch<strong>in</strong>sky, Kelley, Majkrzak, Hsu, Loloee, Pratt, Bass, PRL 82, 2796 (1999)


Interlayer Doma<strong>in</strong> Correlations<br />

Quantify layer-by-layer angle distributions<br />

Angle images:<br />

1st layer 2nd layer<br />

P(∆φ)<br />

Correlation distribution:<br />

FM AFM<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 90 180<br />

∆φ (°)


Magnetic materials<br />

Air Side Wheel Side<br />

Transformer core ferromagnetic glass<br />

(Allied Signal)


Cr<br />

Magnetic Nanostructures<br />

Fe “nanowires”<br />

Fe<br />

Fe evaporated at graz<strong>in</strong>g <strong>in</strong>cidence on Cr l<strong>in</strong>es<br />

fabricated by laser focused atom deposition<br />

M<br />

213 nm<br />

Tulch<strong>in</strong>sky, Kelley, McClelland, Gupta, Celotta, JVST A16, (1998)


Ready to retire???


Acknowledgements<br />

<strong>Sp<strong>in</strong></strong>-polarized electron work at NBS/NIST<br />

Many contributors,<br />

especially Bob Celotta and John Unguris<br />

Pictures <strong>of</strong> Charlie<br />

Joel Falk<br />

Jim Murray<br />

Roger Route

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!