04.08.2013 Views

slides - CASA

slides - CASA

slides - CASA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Progress on the Vanderbilt<br />

Table Top THz FEL<br />

Heather Andrews<br />

Department of Physics<br />

Vanderbilt University<br />

28 April 2005


• Group at Vanderbilt<br />

– Charles Brau<br />

– Chase Boulware<br />

– Jonathan Jarvis<br />

– Carlos Hernandez<br />

• Useful discussions<br />

– Hayden Brownell<br />

Acknowledgements<br />

– Jack Donohue and Jacques Gardelle


WANTED: a narrowband THz source for<br />

spectroscopy<br />

Problem Solution Requirements<br />

• Want to do frequency<br />

domain spectroscopy at<br />

THz frequencies<br />

• No existing narrowband<br />

source provides good<br />

power in THz range<br />

• Short pulse sources -<br />

good for time-domain<br />

spectroscopy<br />

* CW - good for imaging if<br />

you have enough power<br />

• Want a source which<br />

will produce<br />

– 300-1000 micron<br />

radiation (0.3-1 THz)<br />

– ~1 Watt peak power<br />

– ~5 nanosecond<br />

pulses<br />

– Narrowband


Source requires needle cathode and<br />

Smith-Purcell effect<br />

• Needle photo-cathodes<br />

provide high brightness<br />

electron beam<br />

• Smith-Purcell (SP)<br />

radiation provides a<br />

compact, tunable<br />

radiation source<br />

• Requires a high<br />

brightness beam for<br />

high power output<br />

e-beam<br />

• Voltage = 30 - 80 kV<br />

• Current = 1-10 mA<br />

THz<br />

• Brightness ~ 10 11 A/m 2 -steradian<br />

• Wavelength 300 - 1000 µm


Examine protein secondary structure<br />

• Large molecules and<br />

structures have<br />

characteristic vibrations<br />

in THz region<br />

• Reconformation could<br />

be examined using<br />

nonlinear spectroscopy<br />

• Pump-probe nonlinear<br />

spectroscopy possible<br />

using THz/THz or<br />

THz/mid-IR radiation


• Examine protein<br />

folding<br />

• High field EPR<br />

spectroscopy<br />

Additional applications


How this compares to other THz sources<br />

THz Source<br />

UCSB FEL<br />

Synchrotron<br />

sources<br />

Optically pumped<br />

FIR lasers<br />

Optical rectification<br />

techniques<br />

Backward Wave<br />

Oscillators (BWO)<br />

Comparison to SP-FEL<br />

Longer pulses (microsecond as opposed<br />

to nanosecond), higher power<br />

Lower spectral brightness, much shorter<br />

pulses, broadband<br />

Not tunable<br />

Very short pulses, low power, broadband<br />

Low power, longer wavelengths, very<br />

similar operating mechanism


TUNGSTEN<br />

NEEDLE<br />

HOLDER<br />

Experimental Set Up<br />

Nd:YAG<br />

PUMP<br />

LASER<br />

FOCUSING<br />

MAGNET<br />

R tip ~ 45 µm<br />

STEERING<br />

MAGNETS<br />

DETECTOR<br />

GRATING<br />

FARADAY<br />

CUP<br />

POWER METER


Experimental apparatus


We have achieved current densities high<br />

enough to build tabletop FELs<br />

• Photocurrent was<br />

– Up to 100 mA<br />

– Shorter pulse than<br />

laser<br />

– Limited by damage<br />

to needle<br />

• 4th harmonic Nd:YAG<br />

at 266 µm with 7 ns,<br />

200 mJ pulse<br />

• Quantum efficiency is<br />

increased by 10 2 by<br />

laser


Needle cathode e-beam has high<br />

brightness<br />

normalized brightness (A/m 2 -steradian)<br />

10 16<br />

10 14<br />

10 12<br />

10 10<br />

10 8<br />

0.0001 0.001 0.01 0.1 1 10 100 1000<br />

rf photoinjectors current (A)<br />

storage rings<br />

field emission<br />

thermionic emission<br />

photoelectric field emission


Recent needle cathode developments<br />

• Bigger needles = more current<br />

• Use 5th harmonic Nd:YAG, 5 ns pulse, maximum 50<br />

µJ/pulse


Dimensions of the aluminum grating<br />

• Gratings are fabricated out of aluminum using very<br />

thin saw blades<br />

• Dimensions will be 12.5 mm long (1/2 inch), with 250<br />

µm period, 150 µm grove width and 200 µm depth<br />

• 173 µm period, 62 µm width and 100 µm depth used<br />

for calculations*<br />

200 µm<br />

250 µm 150 µm<br />

12.5 mm<br />

*Parameters used at Dartmouth, Urata et. al., PRL, 80, 516, (1998)


Smith-Purcell laser produces two types of<br />

radiation<br />

Below threshold current: Above threshold current:<br />

λ = l<br />

n<br />

⎛ 1 ⎞<br />

− cosθ<br />

⎝<br />

⎜<br />

β ⎠<br />

⎟<br />

θ<br />

Electron<br />

beam<br />

Radiating<br />

wave<br />

Evanescent<br />

wave


• Evanescent wave:<br />

Details of laser radiation<br />

– Phase velocity<br />

parallel to electon<br />

beam, group velocity<br />

opposite<br />

– Bunches electrons<br />

– Produces harmonics<br />

within the SP<br />

spectrum which<br />

radiate<br />

Bound wave<br />

Radiating harmonic waves<br />

Electrons bunching


Wavelength (microns)<br />

1 10 3<br />

800<br />

600<br />

400<br />

200<br />

Expected wavelengths<br />

1st Smith-Purcell range<br />

Second SP range<br />

Laser fundamental wavelength<br />

Laser 2nd harmonic<br />

Laser 4th harmonic<br />

Laser 3rd harmonic<br />

0<br />

20 25 30<br />

Beam Voltage (kV)<br />

35 40


Amplitude growth rate, µ (m -1 )<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Comparison of gain theories<br />

Schaechter and Ron<br />

Present theory<br />

Kim and Song<br />

0<br />

28 30 32 34 36 38 40 42<br />

Electron energy, V (keV)<br />

Schaechter and Ron, Phys. Rev., A40, 876 (1989)<br />

Kim and Song, Nucl. Inst. Meth., A475, 159 (2001)


Gain/attenuation (m -1 )<br />

10 5<br />

10 4<br />

10 3<br />

100<br />

Gain and attenuation peak at v g=0<br />

Gain<br />

Gain ∝ ( 1 v ) g<br />

1<br />

3 Attenuation ∝1 vg Attenuation<br />

10<br />

20 40 60 80 100 120 140 160<br />

Electron energy (keV)


Net gain (m -1 )<br />

200<br />

150<br />

100<br />

50<br />

Net gain peaks before v g=0<br />

0<br />

20 40 60 80 100 120 140 160<br />

Electron energy (keV)<br />

Net gain = gain - attenuation


Refresher on Smith-Purcell parameters<br />

λ = l<br />

n<br />

⎛ 1 ⎞<br />

− cosθ<br />

⎝<br />

⎜<br />

β ⎠<br />

⎟ θ<br />

• n = order number, θ = angle from electron beam,<br />

φ = azimuthal angle<br />

φ


Angular power (nW/steradian)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Spontaneous azimuthal power<br />

-1 order<br />

-3 order<br />

-2 order<br />

0<br />

0 20 40 60 80 100<br />

Azimuthal angle (degrees)<br />

θ = 90°


Spontaneous power peaks near 90 degrees<br />

Angular power (nW/steradian)<br />

200<br />

150<br />

100<br />

50<br />

φ = 0°<br />

-2 order<br />

-1 order<br />

-3 order<br />

0 50 100 150 200<br />

Angle from beam (degrees)


We will conduct the following experiments<br />

• Verify that we observe the laser emission<br />

– Hard to see because it will scatter<br />

– Should be strongest radiation in the chamber<br />

• Observe harmonics of laser radiation<br />

– Do angular intensity scan - verify increase in<br />

intensity at predicted harmonic angles<br />

– Verify wavelengths of emission at different angles<br />

• Observe intensity as a function of beam voltage<br />

– Look for peak intensity at voltage for peak gain<br />

– Look for intensity drop near voltage for v g=0


Summary<br />

• Vanderbilt table top THz source will produce:<br />

– wavelengths of 300-1000 microns (0.3-1 THz)<br />

– peak power ~1 W<br />

– pulse length ~5 ns<br />

• Will use the Smith-Purcell effect in conjunction with a<br />

high brightness tungsten needle cathode<br />

• Expect to be able to confirm recent theoretical<br />

developments experimentally<br />

• Eventually will use device in conjunction with other<br />

sources available at Vanderbilt FEL Center

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!