04.08.2013 Views

slides - CASA

slides - CASA

slides - CASA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Progress on the Vanderbilt<br />

Table Top THz FEL<br />

Heather Andrews<br />

Department of Physics<br />

Vanderbilt University<br />

28 April 2005


• Group at Vanderbilt<br />

– Charles Brau<br />

– Chase Boulware<br />

– Jonathan Jarvis<br />

– Carlos Hernandez<br />

• Useful discussions<br />

– Hayden Brownell<br />

Acknowledgements<br />

– Jack Donohue and Jacques Gardelle


WANTED: a narrowband THz source for<br />

spectroscopy<br />

Problem Solution Requirements<br />

• Want to do frequency<br />

domain spectroscopy at<br />

THz frequencies<br />

• No existing narrowband<br />

source provides good<br />

power in THz range<br />

• Short pulse sources -<br />

good for time-domain<br />

spectroscopy<br />

* CW - good for imaging if<br />

you have enough power<br />

• Want a source which<br />

will produce<br />

– 300-1000 micron<br />

radiation (0.3-1 THz)<br />

– ~1 Watt peak power<br />

– ~5 nanosecond<br />

pulses<br />

– Narrowband


Source requires needle cathode and<br />

Smith-Purcell effect<br />

• Needle photo-cathodes<br />

provide high brightness<br />

electron beam<br />

• Smith-Purcell (SP)<br />

radiation provides a<br />

compact, tunable<br />

radiation source<br />

• Requires a high<br />

brightness beam for<br />

high power output<br />

e-beam<br />

• Voltage = 30 - 80 kV<br />

• Current = 1-10 mA<br />

THz<br />

• Brightness ~ 10 11 A/m 2 -steradian<br />

• Wavelength 300 - 1000 µm


Examine protein secondary structure<br />

• Large molecules and<br />

structures have<br />

characteristic vibrations<br />

in THz region<br />

• Reconformation could<br />

be examined using<br />

nonlinear spectroscopy<br />

• Pump-probe nonlinear<br />

spectroscopy possible<br />

using THz/THz or<br />

THz/mid-IR radiation


• Examine protein<br />

folding<br />

• High field EPR<br />

spectroscopy<br />

Additional applications


How this compares to other THz sources<br />

THz Source<br />

UCSB FEL<br />

Synchrotron<br />

sources<br />

Optically pumped<br />

FIR lasers<br />

Optical rectification<br />

techniques<br />

Backward Wave<br />

Oscillators (BWO)<br />

Comparison to SP-FEL<br />

Longer pulses (microsecond as opposed<br />

to nanosecond), higher power<br />

Lower spectral brightness, much shorter<br />

pulses, broadband<br />

Not tunable<br />

Very short pulses, low power, broadband<br />

Low power, longer wavelengths, very<br />

similar operating mechanism


TUNGSTEN<br />

NEEDLE<br />

HOLDER<br />

Experimental Set Up<br />

Nd:YAG<br />

PUMP<br />

LASER<br />

FOCUSING<br />

MAGNET<br />

R tip ~ 45 µm<br />

STEERING<br />

MAGNETS<br />

DETECTOR<br />

GRATING<br />

FARADAY<br />

CUP<br />

POWER METER


Experimental apparatus


We have achieved current densities high<br />

enough to build tabletop FELs<br />

• Photocurrent was<br />

– Up to 100 mA<br />

– Shorter pulse than<br />

laser<br />

– Limited by damage<br />

to needle<br />

• 4th harmonic Nd:YAG<br />

at 266 µm with 7 ns,<br />

200 mJ pulse<br />

• Quantum efficiency is<br />

increased by 10 2 by<br />

laser


Needle cathode e-beam has high<br />

brightness<br />

normalized brightness (A/m 2 -steradian)<br />

10 16<br />

10 14<br />

10 12<br />

10 10<br />

10 8<br />

0.0001 0.001 0.01 0.1 1 10 100 1000<br />

rf photoinjectors current (A)<br />

storage rings<br />

field emission<br />

thermionic emission<br />

photoelectric field emission


Recent needle cathode developments<br />

• Bigger needles = more current<br />

• Use 5th harmonic Nd:YAG, 5 ns pulse, maximum 50<br />

µJ/pulse


Dimensions of the aluminum grating<br />

• Gratings are fabricated out of aluminum using very<br />

thin saw blades<br />

• Dimensions will be 12.5 mm long (1/2 inch), with 250<br />

µm period, 150 µm grove width and 200 µm depth<br />

• 173 µm period, 62 µm width and 100 µm depth used<br />

for calculations*<br />

200 µm<br />

250 µm 150 µm<br />

12.5 mm<br />

*Parameters used at Dartmouth, Urata et. al., PRL, 80, 516, (1998)


Smith-Purcell laser produces two types of<br />

radiation<br />

Below threshold current: Above threshold current:<br />

λ = l<br />

n<br />

⎛ 1 ⎞<br />

− cosθ<br />

⎝<br />

⎜<br />

β ⎠<br />

⎟<br />

θ<br />

Electron<br />

beam<br />

Radiating<br />

wave<br />

Evanescent<br />

wave


• Evanescent wave:<br />

Details of laser radiation<br />

– Phase velocity<br />

parallel to electon<br />

beam, group velocity<br />

opposite<br />

– Bunches electrons<br />

– Produces harmonics<br />

within the SP<br />

spectrum which<br />

radiate<br />

Bound wave<br />

Radiating harmonic waves<br />

Electrons bunching


Wavelength (microns)<br />

1 10 3<br />

800<br />

600<br />

400<br />

200<br />

Expected wavelengths<br />

1st Smith-Purcell range<br />

Second SP range<br />

Laser fundamental wavelength<br />

Laser 2nd harmonic<br />

Laser 4th harmonic<br />

Laser 3rd harmonic<br />

0<br />

20 25 30<br />

Beam Voltage (kV)<br />

35 40


Amplitude growth rate, µ (m -1 )<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Comparison of gain theories<br />

Schaechter and Ron<br />

Present theory<br />

Kim and Song<br />

0<br />

28 30 32 34 36 38 40 42<br />

Electron energy, V (keV)<br />

Schaechter and Ron, Phys. Rev., A40, 876 (1989)<br />

Kim and Song, Nucl. Inst. Meth., A475, 159 (2001)


Gain/attenuation (m -1 )<br />

10 5<br />

10 4<br />

10 3<br />

100<br />

Gain and attenuation peak at v g=0<br />

Gain<br />

Gain ∝ ( 1 v ) g<br />

1<br />

3 Attenuation ∝1 vg Attenuation<br />

10<br />

20 40 60 80 100 120 140 160<br />

Electron energy (keV)


Net gain (m -1 )<br />

200<br />

150<br />

100<br />

50<br />

Net gain peaks before v g=0<br />

0<br />

20 40 60 80 100 120 140 160<br />

Electron energy (keV)<br />

Net gain = gain - attenuation


Refresher on Smith-Purcell parameters<br />

λ = l<br />

n<br />

⎛ 1 ⎞<br />

− cosθ<br />

⎝<br />

⎜<br />

β ⎠<br />

⎟ θ<br />

• n = order number, θ = angle from electron beam,<br />

φ = azimuthal angle<br />

φ


Angular power (nW/steradian)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Spontaneous azimuthal power<br />

-1 order<br />

-3 order<br />

-2 order<br />

0<br />

0 20 40 60 80 100<br />

Azimuthal angle (degrees)<br />

θ = 90°


Spontaneous power peaks near 90 degrees<br />

Angular power (nW/steradian)<br />

200<br />

150<br />

100<br />

50<br />

φ = 0°<br />

-2 order<br />

-1 order<br />

-3 order<br />

0 50 100 150 200<br />

Angle from beam (degrees)


We will conduct the following experiments<br />

• Verify that we observe the laser emission<br />

– Hard to see because it will scatter<br />

– Should be strongest radiation in the chamber<br />

• Observe harmonics of laser radiation<br />

– Do angular intensity scan - verify increase in<br />

intensity at predicted harmonic angles<br />

– Verify wavelengths of emission at different angles<br />

• Observe intensity as a function of beam voltage<br />

– Look for peak intensity at voltage for peak gain<br />

– Look for intensity drop near voltage for v g=0


Summary<br />

• Vanderbilt table top THz source will produce:<br />

– wavelengths of 300-1000 microns (0.3-1 THz)<br />

– peak power ~1 W<br />

– pulse length ~5 ns<br />

• Will use the Smith-Purcell effect in conjunction with a<br />

high brightness tungsten needle cathode<br />

• Expect to be able to confirm recent theoretical<br />

developments experimentally<br />

• Eventually will use device in conjunction with other<br />

sources available at Vanderbilt FEL Center

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!