04.08.2013 Views

Lia Merminga - CASA - Jefferson Lab

Lia Merminga - CASA - Jefferson Lab

Lia Merminga - CASA - Jefferson Lab

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Course<br />

on<br />

Recirculated and Energy Recovered<br />

Linear Accelerators<br />

G. A. Krafft and L. <strong>Merminga</strong><br />

<strong>Jefferson</strong> <strong>Lab</strong><br />

and<br />

Ivan Bazarov<br />

Cornell University<br />

Lecture 10<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Outline<br />

Introduction<br />

Cavity Fundamental Parameters<br />

RF Cavity as a Parallel LCR Circuit<br />

Coupling of Cavity to an rf Generator<br />

Equivalent Circuit for a Cavity with Beam Loading<br />

• On Crest and on Resonance Operation<br />

• Off Crest and off Resonance Operation<br />

Optimum Tuning<br />

Optimum Coupling<br />

RF cavity with Beam and Microphonics<br />

Q ext Optimization under Beam Loading and Microphonics<br />

RF Modeling<br />

Conclusions<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Introduction<br />

Goal: Ability to predict rf cavity’s steady-state response and develop a differential<br />

equation for the transient response<br />

We will construct an equivalent circuit and analyze it<br />

We will write the quantities that characterize an rf cavity and relate them to the<br />

circuit parameters, for<br />

a) a cavity<br />

b) a cavity coupled to an rf generator<br />

c) a cavity with beam<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


RF Cavity Fundamental Quantities<br />

Quality Factor Q 0 :<br />

Q<br />

0<br />

ω W<br />

P<br />

0 ≡ =<br />

diss<br />

Shunt impedance R a :<br />

(accelerator definition); V a = accelerating voltage<br />

Note: Voltages and currents will be represented as complex quantities, denoted by a<br />

tilde. For example:<br />

V = V<br />

where is the magnitude of and is a slowly varying phase.<br />

c c<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

Energy stored in cavity<br />

Energy dissipated in cavity walls per radian<br />

R<br />

a<br />

≡<br />

V<br />

P<br />

2<br />

a<br />

diss<br />

( ) Re ( )<br />

in ohms per cell<br />

{ iωt} <br />

( )<br />

V t V t e V t V e φ<br />

= =<br />

c c c c<br />

V <br />

c<br />

φ<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

( )<br />

i t<br />

3 May 2005


Equivalent Circuit for an rf Cavity<br />

Simple LC circuit representing<br />

an accelerating resonator.<br />

Metamorphosis of the LC circuit<br />

into an accelerating cavity.<br />

Chain of weakly coupled pillbox<br />

cavities representing an accelerating<br />

cavity.<br />

Chain of coupled pendula as<br />

its mechanical analogue.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for an rf Cavity (cont’d)<br />

An rf cavity can be represented by a parallel LCR circuit:<br />

Impedance Z of the equivalent circuit:<br />

Resonant frequency of the circuit:<br />

Stored energy W:<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

1<br />

W =<br />

CV<br />

2<br />

2<br />

c<br />

∼ ∼<br />

i t<br />

c() = c<br />

V t v e ω<br />

ω 0 = 1/ LC<br />

1 1<br />

Z⎡ ⎤<br />

=<br />

⎢<br />

+ + iCω<br />

⎣R iLω<br />

⎥<br />

⎦<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

−1<br />

3 May 2005


Equivalent Circuit for an rf Cavity (cont’d)<br />

Power dissipated in resistor R:<br />

From definition of shunt impedance<br />

Quality factor of resonator:<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

P<br />

R<br />

diss<br />

a<br />

=<br />

1<br />

2<br />

V<br />

P<br />

V<br />

R<br />

2<br />

a<br />

2<br />

c<br />

≡ ∴ R = 2R<br />

diss<br />

ω W<br />

Q ≡ = ω CR<br />

0<br />

0<br />

Pdiss<br />

0<br />

−1<br />

Note:<br />

⎡ ⎛ ω ω ⎞⎤<br />

⎡ ⎛ω −ω<br />

⎞⎤<br />

0<br />

0<br />

Z= R⎢1+ iQ For<br />

0 ⎜ − ⎟⎥<br />

ω ≈ω0 ,<br />

Z≈ R⎢1+ 2iQ0⎜<br />

⎟⎥<br />

⎣ ⎝ω0ω ⎠<br />

ω<br />

⎦<br />

⎣ ⎝ 0 ⎠⎦<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

a<br />

−1<br />

3 May 2005


Cavity with External Coupling<br />

Consider a cavity connected to an rf source<br />

A coaxial cable carries power from an rf source<br />

to the cavity<br />

The strength of the input coupler is adjusted by<br />

changing the penetration of the center conductor<br />

There is a fixed output coupler,<br />

the transmitted power probe, which picks up<br />

power transmitted through the cavity<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Cavity with External Coupling (cont’d)<br />

Consider the rf cavity after the rf is turned off.<br />

Stored energy W satisfies the equation:<br />

Total power being lost, P tot, is:<br />

P e is the power leaking back out the input coupler. P t is the power coming out the<br />

transmitted power coupler. Typically P t is very small ⇒ P tot ≈ P diss + P e<br />

Recall<br />

Similarly define a “loaded” quality factor Q L :<br />

Now<br />

Q<br />

∴ energy in the cavity decays exponentially with time constant:<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

0<br />

ω0W<br />

≡<br />

P<br />

diss<br />

dW ω W<br />

dt Q<br />

0 =− ⇒ =<br />

L<br />

dW<br />

P<br />

dt =−<br />

P = P + P + P<br />

tot diss e t<br />

W W e<br />

0<br />

ω0t<br />

−<br />

Q<br />

L<br />

Q<br />

L<br />

ω0W<br />

≡<br />

P<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

tot<br />

tot<br />

τ<br />

L<br />

QL<br />

=<br />

ω<br />

0<br />

3 May 2005


Cavity with External Coupling (cont’d)<br />

Equation<br />

suggests that we can assign a quality factor to each loss mechanism, such that<br />

where, by definition,<br />

Typical values for CEBAF 7-cell cavities: Q 0=1x10 10 , Q e ≈Q L=2x10 7.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

P P + P<br />

=<br />

ω W ω W<br />

tot diss e<br />

0 0<br />

1 1 1<br />

= +<br />

Q Q Q<br />

L 0 e<br />

Q<br />

e<br />

ω0W<br />

≡<br />

P<br />

e<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Cavity with External Coupling (cont’d)<br />

Define “coupling parameter”:<br />

therefore<br />

β is equal to:<br />

It tells us how strongly the couplers interact with the cavity. Large β implies<br />

that the power leaking out of the coupler is large compared to the power<br />

dissipated in the cavity walls.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

Q<br />

β ≡<br />

Q<br />

0<br />

1 (1 + β )<br />

=<br />

Q Q<br />

L<br />

e<br />

Pe<br />

β =<br />

P<br />

0<br />

diss<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit of a Cavity Coupled to an rf Source<br />

The system we want to model:<br />

Between the rf generator and the cavity is an isolator – a circulator connected to a load.<br />

Circulator ensures that signals coming from the cavity are terminated in a matched load.<br />

Equivalent circuit:<br />

∼ ∼<br />

i t<br />

I () t i k e ω =<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

k<br />

RF Generator + Circulator Coupler Cavity<br />

Coupling is represented by an ideal transformer of turn ratio 1:k<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit of a Cavity Coupled to an rf Source<br />

∼ ∼<br />

i t<br />

I ( t) i k e ω =<br />

k<br />

∼ ∼<br />

i t<br />

I () t i e ω i t<br />

I () t = i e ω =<br />

g g<br />

By definition,<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

⇓<br />

R R R<br />

β ≡ = ∴ Z g =<br />

β<br />

2<br />

Zgk Z0<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

2<br />

Z g = k Z 0<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

I<br />

g<br />

=<br />

I<br />

k<br />

k<br />

3 May 2005


Generator Power<br />

When the cavity is matched to the input circuit, the power dissipation in the<br />

cavity is maximized.<br />

∼ ∼<br />

i t<br />

I () t i e ω =<br />

g g<br />

We define the available generator power Pg at a given generator current g to<br />

be equal to P diss max .<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

2<br />

1 ⎛ I ⎞<br />

1<br />

P = Z ⎜ ⎟ or P = R I ≡ P<br />

2 ⎝ 2 ⎠<br />

16β<br />

max g<br />

max 2<br />

diss g diss a g g<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

I <br />

3 May 2005


Some Useful Expressions<br />

We derive expressions for W, P diss , P refl , in terms of cavity parameters<br />

Q Q V<br />

W Q V<br />

P R I<br />

16β 16β<br />

g<br />

=<br />

0 Pdiss<br />

ω 0<br />

1 2<br />

RaI g<br />

=<br />

2<br />

0 c<br />

ω 0 R a<br />

1<br />

2<br />

RaI g<br />

16β<br />

0 = 2<br />

a ω 0<br />

2<br />

c<br />

2<br />

g<br />

V = I Z<br />

Z<br />

c g TOT<br />

TOT<br />

⎡ 1 1 ⎤<br />

= ⎢ + ⎥<br />

⎢⎣ Z g Z ⎥⎦<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

− 1<br />

Z TOT =<br />

R ⎡ ⎛ a<br />

ω ω ⎞⎤<br />

0<br />

⎢(1 + β ) + iQ0⎜<br />

− ⎟⎥<br />

2 ⎣ ⎝ ω 0 ω ⎠⎦<br />

∴<br />

Q<br />

= 4 β<br />

ω<br />

1<br />

ω ω<br />

For<br />

W<br />

<br />

0<br />

W P 2 g<br />

0 2 2 ⎛ ⎞ 0<br />

(1 + β ) + Q 0 ⎜ − ⎟<br />

ω 0 ω<br />

ω ω<br />

0<br />

⇒<br />

− 1<br />

⎝ ⎠<br />

4βQ01 2<br />

(1 + β ) ω 0 ⎡ Q 0 ω − ω ⎤ 0<br />

1 + ⎢2 (1 β ) ω<br />

⎥<br />

⎣ +<br />

0 ⎦<br />

2<br />

Pg<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Some Useful Expressions (cont’d)<br />

Define “Tuning angle” Ψ:<br />

Recall:<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

<br />

4βQ1 0<br />

W P<br />

2<br />

2 g<br />

(1 + β ) ω 0 ⎡ Q 0 ω − ω ⎤ 0<br />

1+ ⎢2 (1 + β ) ω<br />

⎥<br />

⎣ 0 ⎦<br />

⎛ ω ω ⎞ ω−ω Ψ ≡− − ≈− ω ≈ω0<br />

⎝ ⎠<br />

0 0<br />

tan QL⎜ ⎟ 2QL for<br />

ω0 ω ω0<br />

∴<br />

4βQ1 W = P<br />

(1+ β) ω 1+tan Ψ<br />

P<br />

∴<br />

diss<br />

=<br />

ω 0W<br />

Q<br />

0<br />

0<br />

2 2<br />

0<br />

4β1 P =<br />

P<br />

(1 + β ) 1 + tan Ψ<br />

diss 2 2 g<br />

g<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Some Useful Expressions (cont’d)<br />

. Optimal coupling: W/P g maximum or P diss = P g<br />

which implies ∆ω = 0, β = 1<br />

this is the case of critical coupling<br />

. Reflected power is calculated from energy conservation:<br />

P = P −P<br />

refl g diss<br />

⎡ 4β1 ⎤<br />

Prefl = Pg⎢1<br />

−<br />

2 2<br />

(1 β ) 1 tan<br />

⎥<br />

⎣ + + Ψ⎦<br />

. On resonance: =<br />

4 β Q<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

0<br />

W P 2 g<br />

(1 + β ) ω 0<br />

4 β<br />

P = P<br />

(1 + β )<br />

diss 2 g<br />

⎛1−β⎞ P = ⎜ ⎟ P<br />

⎝1+ β ⎠<br />

refl g<br />

2<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Dissipated and Reflected Power<br />

0 1 2 3 4 5 6 7 8 9 10<br />

β<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for a Cavity with Beam<br />

Beam in the rf cavity is represented by a current generator.<br />

Equivalent circuit:<br />

Differential equation that describes the dynamics of the system:<br />

R L is the loaded impedance defined as:<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

dv v di<br />

iC = C , i R = , vC = L<br />

dt R /2 dt<br />

C C L<br />

L<br />

R<br />

L<br />

Ra<br />

=<br />

(1 +<br />

β )<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for a Cavity with Beam (cont’d)<br />

Kirchoff’s law:<br />

Total current is a superposition of generator current and beam current and beam<br />

current opposes the generator current.<br />

Assume that vc, ig, ib<br />

have a fast (rf) time-varying component and a slow<br />

varying component:<br />

vc iωt = V ce<br />

i iωt = Ie where ω is the generator angular frequency and c g b are complex quantities.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

i + i + i = i −i<br />

<br />

L R C g b<br />

2<br />

dvc ω0 dvc 2 ω0RL<br />

d<br />

+ + ω<br />

2<br />

0vc<br />

= ig −ib<br />

dt QL dt 2QL<br />

dt<br />

<br />

g g<br />

i= Ie b b<br />

iωt V , I , I<br />

( )<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for a Cavity with Beam (cont’d)<br />

Neglecting terms of order c c we arrive at:<br />

where Ψ is the tuning angle.<br />

For short bunches: | Ib | ≈ 2I0where<br />

I0 is the average beam current.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

<br />

2<br />

d V dI 1 dV<br />

, ,<br />

2<br />

dt dt QL dt<br />

dV ω ω R<br />

+ (1−itan Ψ ) V = ( I −I<br />

)<br />

dt Q Q<br />

c 0 0 L<br />

2 L<br />

c<br />

4 L<br />

g b<br />

<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for a Cavity with Beam (cont’d)<br />

At steady-state:<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

dV ω ω R<br />

+ (1−itan Ψ ) V = ( I −I<br />

)<br />

dt Q Q<br />

c 0 0 L<br />

2 L<br />

c<br />

4 L<br />

g b<br />

RL /2 RL<br />

/2<br />

V = I −<br />

I<br />

(1 −itan Ψ) (1 −itan Ψ)<br />

RL or V c = I g cos Ψe 2<br />

RL<br />

− I bcosΨe<br />

2<br />

or V = V iΨ cos Ψ e + V iΨ<br />

cosΨe<br />

or<br />

c g b<br />

c gr br<br />

iΨiΨ V = V + V<br />

c g b<br />

⎧<br />

V ⎪ gr<br />

⎪<br />

⎨<br />

⎪V br ⎪⎩ R L ⎫<br />

= I<br />

g<br />

2 ⎪<br />

⎬<br />

R L = − I<br />

⎪<br />

b<br />

2 ⎪⎭<br />

are the generator and beam-loading voltages on resonance<br />

⎧V ⎪ ⎫ g ⎪<br />

and ⎨ ⎬ are the generator and beam-loading voltages.<br />

⎪V ⎩ b ⎪⎭<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for a Cavity with Beam (cont’d)<br />

Note that:<br />

| V| = R I<br />

br L<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

2<br />

| Vβ gr | = PgRL ≈2<br />

PgRL for large β<br />

1+<br />

β<br />

0<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for a Cavity with Beam (cont’d)<br />

V = V cos Ψe<br />

g gr<br />

V = V cos Ψe<br />

b br<br />

iΨ<br />

iΨ<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

Im( Vg ) <br />

i<br />

V cos e Ψ<br />

Ψ<br />

gr<br />

Ψ<br />

V<br />

gr<br />

Re( Vg ) <br />

As Ψ increases the magnitude of both V g and V b decreases while their phases<br />

rotate by Ψ.<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Equivalent Circuit for a Cavity with Beam (cont’d)<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

V = V + V<br />

c g b<br />

Cavity voltage is the superposition of the generator and beam-loading voltage.<br />

This is the basis for the vector diagram analysis.<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Example of a Phasor Diagram<br />

Idec <br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

ψ<br />

Vbr <br />

Vb <br />

ψ b<br />

I b<br />

<br />

Vg <br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Iacc <br />

Vc <br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


On Crest and On Resonance Operation<br />

Typically linacs operate on resonance and on crest in order to receive<br />

maximum acceleration.<br />

On crest and on resonance<br />

Vbr <br />

⇒<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

I b<br />

<br />

where V a is the accelerating voltage.<br />

Vc <br />

Va= Vgr −Vbr<br />

Vgr <br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


More Useful Equations<br />

We derive expressions for W, V a , P diss , P refl in terms of β and the loading parameter K,<br />

defined by: K=I 0 /2 √R a /P g<br />

From:<br />

2<br />

| Vβ | = P R<br />

gr g L<br />

1+<br />

β<br />

⇒<br />

=<br />

| V| R I<br />

br L<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

0<br />

V = V −V<br />

a gr br<br />

⎧⎪ 2 β ⎛ K ⎞⎫⎪<br />

Va = PgRa ⎨ ⎜1− ⎟⎬<br />

⎪⎩ 1+<br />

β ⎝ β ⎠⎪⎭<br />

4β<br />

Q ⎛ K ⎞<br />

= ⎜1− ⎟<br />

(1 )<br />

0<br />

W P<br />

2<br />

+ β ω0⎝ β ⎠<br />

4β<br />

⎛ K ⎞<br />

P = ⎜1− ⎟ P<br />

(1 + β ) ⎝ β ⎠<br />

diss 2<br />

g<br />

IV = I RP<br />

η<br />

0 a 0 a diss<br />

IV 2 β ⎛ K ⎞<br />

2K⎜1 ⎟<br />

Pg<br />

1+<br />

β ⎝ β ⎠<br />

0 a ≡ = −<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

2<br />

2<br />

⎡( β −1) −2Kβ<br />

⎤<br />

P = P −P −I V ⇒ P =<br />

⎣ ⎦<br />

P<br />

( β +<br />

1)<br />

refl g diss 0 a refl 2<br />

g<br />

g<br />

3 May 2005<br />

2


More Useful Equations (cont’d)<br />

For β large,<br />

For P refl =0 (condition for matching) ⇒<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

1<br />

P ( V + I R )<br />

g a 0 L<br />

4RL<br />

1<br />

P ( V − I R )<br />

refl a 0 L<br />

4RL<br />

R<br />

M<br />

a<br />

L = M<br />

I0<br />

and<br />

P<br />

V<br />

I V ⎛ V I ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

M M<br />

g <br />

0 a<br />

4<br />

a 0 + M M<br />

VaI0 2<br />

2<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

2<br />

3 May 2005


Example<br />

For V a =20 MV/m, L=0.7 m, Q L =2x10 7 , Q 0 =1x10 10 :<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

Power I 0 = 0 I 0 = 100 µA I 0 = 1 mA<br />

P g 3.65 kW 4.38 kW 14.033 kW<br />

P diss 29 W 29 W 29 W<br />

I 0 V a 0 W 1.4 kW 14 kW<br />

P refl 3.62 kW 2.951 kW ~ 4.4 W<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Off Crest and Off Resonance Operation<br />

Typically electron storage rings operate off crest in order to ensure stability<br />

against phase oscillations.<br />

As a consequence, the rf cavities must be detuned off resonance in order to<br />

minimize the reflected power and the required generator power.<br />

Longitudinal gymnastics may also impose off crest operation operation in<br />

recirculating linacs.<br />

We write the beam current and the cavity voltage as<br />

The generator power can then be expressed as:<br />

P<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

I b<br />

iψ<br />

b = 2I0e<br />

i c V ψ<br />

= V e and set ψ = 0<br />

c c c<br />

2 2<br />

2<br />

Vc (1 + β ) ⎧⎪ ⎡ I0R ⎤ ⎡ L I0R ⎤ ⎫<br />

L ⎪<br />

g = ⎨⎢1 + cosψb⎥ + ⎢tan Ψ− sinψb⎥<br />

⎬<br />

RL 4β<br />

Vc Vc<br />

⎪⎩⎣⎦ ⎣ ⎦ ⎭⎪<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Off Crest and Off Resonance Operation (cont’d)<br />

Condition for optimum tuning:<br />

Condition for optimum coupling:<br />

Minimum generator power:<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

IR<br />

V<br />

0 L tan Ψ= sin<br />

c<br />

IR<br />

ψ<br />

0 a β0 = 1+ cosψb<br />

Vc<br />

P<br />

g,min<br />

2<br />

Vc<br />

β0<br />

=<br />

R<br />

a<br />

b<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


RF Cavity with Beam and Microphonics<br />

δ f ± δ f δ f<br />

0 m<br />

0<br />

The detuning is now: tan Ψ=− 2Q tanψ 0 =−2Q<br />

L L<br />

f f<br />

Frequency (Hz)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

90 95 100 105 110 115 120<br />

Time (sec)<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

0<br />

0 0<br />

where δ f is the static detuning (controllable)<br />

and δ f is the random dynamic detuning (uncontrollable)<br />

m<br />

Probability Density<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Probability Density<br />

Medium β CM Prototype, Cavity #2, CW @ 6MV/m<br />

400000 samples<br />

-8 -6 -4 -2 0 2 4 6 8<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Peak Frequency Deviation (V)<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Q ext Optimization under Beam Loading and Microphonics<br />

Beam loading and microphonics require careful optimization of the external Q<br />

of cavities.<br />

Derive expressions for the optimum setting of cavity parameters when<br />

operating under<br />

a) heavy beam loading<br />

b) little or no beam loading, as is the case in energy recovery linac cavities<br />

and in the presence of microphonics.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


P<br />

Q ext Optimization (cont’d) 2 2<br />

2<br />

Vc(1 + β ) ⎧⎪⎡ ItotRL = ⎨⎢1+ cosψ RL 4β<br />

⎪ V<br />

⎩⎣ c<br />

⎤<br />

⎥<br />

⎦<br />

⎡ ItotRL + ⎢tanΨ− sinψ<br />

⎣ Vc<br />

⎤ ⎫⎪<br />

⎥ ⎬<br />

⎦ ⎪⎭<br />

δ f<br />

g tot tot<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

tan Ψ=−2QL<br />

f<br />

where δf is the total amount of cavity detuning in Hz, including static detuning and<br />

microphonics.<br />

Optimization of the generator power with respect to coupling gives:<br />

βopt =<br />

2 ⎡ δ f ⎤<br />

( b+ 1) + ⎢2Q0+ btanψtot<br />

⎥<br />

⎣ f0<br />

⎦<br />

ItotRa where b ≡<br />

cosψ<br />

tot<br />

V<br />

c<br />

where I tot is the magnitude of the resultant beam current vector in the cavity and ψ tot is the<br />

phase of the resultant beam vector with respect to the cavity voltage.<br />

0<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

2<br />

3 May 2005


P<br />

Q ext Optimization (cont’d)<br />

2 2<br />

2<br />

Vc(1 + β ) ⎪⎧⎡ItotR ⎤ ⎡ L ItotR ⎤<br />

L ⎪⎫<br />

g = ⎨⎢1+ cosψtot⎥ + ⎢tan Ψ− sinψtot⎥<br />

⎬<br />

RL 4β<br />

Vc Vc<br />

where:<br />

To minimize generator power with respect to tuning:<br />

⇒<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

⎪⎩⎣⎦ ⎣ ⎦ ⎪⎭<br />

δ f + δ f<br />

0 m<br />

tan Ψ=−2QL<br />

f0<br />

f<br />

δ = − tan Ψ<br />

0 f0b 2Q0<br />

2<br />

2<br />

c (1 + β) ⎧⎪ 2 ⎡ δ ⎤ ⎫<br />

m ⎪<br />

⎨(1 β ) ⎢20⎥ ⎬<br />

L 4β<br />

0<br />

V f<br />

Pg= + b+ + Q<br />

R ⎪ ⎣ f<br />

⎩ ⎦ ⎭⎪<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Q ext Optimization (cont’d)<br />

Condition for optimum coupling:<br />

and<br />

In the absence of beam (b=0):<br />

and<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

β<br />

opt<br />

⎛ δ f ⎞<br />

2<br />

m<br />

= ( b+ 1) +⎜2 Q0⎟ f0<br />

⎝ ⎠<br />

2<br />

2 ⎡<br />

opt V 2 ⎛ c δ f ⎞<br />

⎤<br />

m<br />

g = ⎢ + 1 + ( + 1) +⎜2 ⎥<br />

0 ⎟<br />

2R<br />

⎢ a<br />

f ⎥ 0<br />

P b b Q<br />

⎣<br />

⎝ ⎠<br />

⎦<br />

β<br />

opt<br />

⎛ δ f ⎞ m<br />

= 1+⎜2Q0⎟ ⎝ f0<br />

⎠<br />

2<br />

2 ⎡<br />

opt V ⎛ c δ f ⎞<br />

⎤<br />

m<br />

g = ⎢1+ 1+⎜2 0 ⎟<br />

⎥<br />

2R<br />

⎢ a<br />

f ⎥ 0<br />

P Q<br />

⎣<br />

⎝ ⎠<br />

⎦<br />

2<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

2<br />

3 May 2005


Homework<br />

Assuming no microphonics, plot β opt and P g opt as function<br />

of b (beam loading), b=-5 to 5, and explain the results.<br />

How do the results change if microphonics is present?<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Example<br />

ERL Injector and Linac:<br />

δf m =25 Hz, Q 0 =1x10 10 , f 0 =1300 MHz, I 0 =100 mA, V c =20 MV/m, L=1.04 m,<br />

R a /Q 0 =1036 ohms per cavity<br />

ERL linac: Resultant beam current, I tot = 0 mA (energy recovery)<br />

and β opt =385 ⇒ Q L =2.6x10 7 ⇒ P g = 4 kW per cavity.<br />

ERL Injector: I 0 =100 mA and β opt = 5x10 4 ! ⇒ Q L = 2x10 5 ⇒ P g = 2.08 MW<br />

per cavity!<br />

Note: I 0 V a = 2.08 MW ⇒ optimization is entirely dominated by beam loading.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


RF System Modeling<br />

To include amplitude and phase feedback, nonlinear effects from the klystron<br />

and be able to analyze transient response of the system, response to large<br />

parameter variations or beam current fluctuations<br />

• we developed a model of the cavity and low level controls using<br />

SIMULINK, a MATLAB-based program for simulating dynamic systems.<br />

Model describes the beam-cavity interaction, includes a realistic representation<br />

of low level controls, klystron characteristics, microphonic noise, Lorentz<br />

force detuning and coupling and excitation of mechanical resonances<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


RF System Model<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


RF Modeling: Simulations vs. Experimental Data<br />

Measured and simulated cavity voltage and amplified gradient error signal (GASK) in<br />

one of CEBAF’s cavities, when a 65 µA, 100 µsec beam pulse enters the cavity.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005


Conclusions<br />

We derived a differential equation that describes to a very good<br />

approximation the rf cavity and its interaction with beam.<br />

We derived useful relations among cavity’s parameters and used phasor<br />

diagrams to analyze steady-state situations.<br />

We presented formula for the optimization of Q ext under beam loading and<br />

microphonics.<br />

We showed an example of a Simulink model of the rf control system which<br />

can be useful when nonlinearities can not be ignored.<br />

Thomas <strong>Jefferson</strong> National Accelerator Facility<br />

USPAS Recirculating Linacs Krafft/<strong>Merminga</strong>/Bazarov<br />

Operated by the Southeastern Universities Research Association for the U. S. Department of Energy<br />

3 May 2005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!