04.08.2013 Views

2-D Niblett-Bostick magnetotelluric inversion - MTNet

2-D Niblett-Bostick magnetotelluric inversion - MTNet

2-D Niblett-Bostick magnetotelluric inversion - MTNet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. RODRÍGUEZ et al. 2-D <strong>Niblett</strong>-<strong>Bostick</strong><br />

( t)<br />

( t)<br />

σ = σ .<br />

(15)<br />

j w l ( j+<br />

l)<br />

l=<br />

−n<br />

of the data in such a way that the averaging functions<br />

resemble boxcar functions for the averages to have the usual<br />

meaning. The resulting models are not intended to produce<br />

responses that fit the data, but to address the non-uniqueness<br />

character of the inverse problem. Within the limitations of<br />

linearization, they can be called true averages. More rigorous<br />

approaches for computing averages have been developed for<br />

the 1-D <strong>magnetotelluric</strong> problem (e.g. Weidelt, 1992), but their<br />

extension to higher dimensions are far from trivial.<br />

Simulated averages<br />

The shortcut that we take consists of computing models<br />

that are averages of themselves everywhere with a given<br />

neighborhood, and that at the same time their responses fit<br />

the data at an optimal level. Consider that<br />

(15)<br />

The dynamics of the HANN in (14) transforms to<br />

(16)<br />

Following Zhang and Paulson (1997), we will refer to<br />

this as the regularized version of the HANN or RHANN.<br />

The updated conductivities sj<br />

Geologica Acta, 8(1), 15-30 (2010)<br />

19<br />

DOI: 10.1344/105.000001513<br />

(t+l) are obtained from averages<br />

of the original values sj (t) . The choice of the appropriate<br />

filter depends on the application. Zhang and Paulson (1997)<br />

found binomial filters useful to stabilize their solution.<br />

In our case, we use boxcar functions, for this leads to the<br />

simplest and most intuitive type of averages. The filter, with<br />

2n+1 uniform weights wk = (2n+1) -1 its performance in 1-D, and compare its results with<br />

existing methods of average estimations. In the following<br />

lines, we test the performance of equation (16) as it applies<br />

to the solution of equation (6). The elements of the matrix<br />

are computed using equation (7) which represents the 1-D<br />

version of the proposed approximation. The synthetic data<br />

for the tests, shown in Fig. 1A, correspond to apparent<br />

conductivity responses of the model shown in Fig. 1B.<br />

The tests are intended to demonstrate that the proposed<br />

approach for the computation of averages has the same<br />

properties as the simple formula for averages in Gómez-<br />

Treviño (1996). The formula is<br />

(18)<br />

n<br />

( t)<br />

( t)<br />

σ where represents the average of conductivity<br />

j = ∑ w lσ<br />

( j+<br />

l)<br />

.<br />

(15)<br />

1 2<br />

n<br />

l=<br />

−n<br />

between zi ( t)<br />

( t)<br />

= 0.707da(Ti),i = 1,2. The averages are assigned<br />

σ j = ∑ w lσ<br />

( j+<br />

l)<br />

.<br />

(15) to the mean geometrical depth z = √ z z . Any two data<br />

1 2<br />

l=<br />

−n<br />

points can be used in the formula regardless of how far<br />

1 1 ⎧ N n<br />

⎫<br />

( t+<br />

1)<br />

( t)<br />

apart they are in the sounding curve. If the points are<br />

i = + sgn⎨<br />

∑ Tij[ ∑ wlσ<br />

( j+<br />

l)<br />

] + I i ⎬.<br />

(16)<br />

2 2 ⎩ j≠i1<br />

= 1 1 l=<br />

−n<br />

⎧ N n<br />

⎭ ⎫<br />

( t+<br />

1)<br />

( t)<br />

contiguous, the windows are narrow and the average<br />

σ i = + sgn⎨<br />

∑ Tij[ ∑ wlσ<br />

( j+<br />

l)<br />

] + I i ⎬.<br />

(16)<br />

2 2<br />

model, the average of the real earth, has the highest<br />

⎩ j≠i<br />

= 1 l=<br />

−n<br />

⎭<br />

possible resolution. If, on the other hand, the chosen<br />

t+<br />

1)<br />

points are wide apart, the windows are themselves wide,<br />

t )<br />

for z and z tend to separate. As the windows widen, the<br />

1 2<br />

− n,..., n<br />

models tend to flatten, as they should. This intuitively<br />

1<br />

= , k = −n,...,<br />

n<br />

appealing feature of spatial averages is built into equation<br />

2n<br />

+ 1<br />

(18) in spite of its simplicity. Figures 1C and 1D show<br />

N<br />

n<br />

1 1<br />

( t)<br />

( t)<br />

+ sgn{<br />

this feature developing when considering averages taken<br />

∑ [( 1−<br />

b ) Tijσ<br />

j + β ∑ Tijwlσ<br />

( j+<br />

l)<br />

] + I i}.<br />

(17)<br />

2 2<br />

N<br />

n<br />

from data values 1 and 5 periods apart, respectively, for<br />

( t+<br />

1)<br />

j≠i<br />

= 1 1<br />

l=<br />

−n<br />

( t)<br />

( t)<br />

σ i = + sgn{ ∑ [( 1−<br />

b ) Tijσ<br />

j + β ∑ Tijwlσ<br />

( j+<br />

l)<br />

] + I i}.<br />

(17)<br />

2 2<br />

the synthetic data presented in Fig. 1A.<br />

j≠i<br />

= 1<br />

l=<br />

−n<br />

σ<br />

, k = -n,..., n (square<br />

a ( T2<br />

) δ a ( T2<br />

) −σ<br />

a ( T1<br />

) δ a ( T1<br />

)<br />

σ ( z1,<br />

z2<br />

) >= window), can be of different widths. , We introduce (18) a further A corresponding sequence of full filtered models (β =1)<br />

parameter β δ ato<br />

( Taccommodate<br />

2 ) σ−<br />

δ ( T )<br />

a ( Ta<br />

2 ) 1 δ a ( Ta<br />

2traditional<br />

) −σ<br />

a ( T1<br />

) trade-off δ a ( T1<br />

)<br />

< σ ( z<br />

between is presented in Figs. 1E and 1F when the RHANN algorithm<br />

1,<br />

z2<br />

) >=<br />

, (18)<br />

two contrasting features. δWe<br />

modified the dynamics to is applied to the same set of data. It can be observed that<br />

a ( T2<br />

) −δ<br />

a ( T1<br />

)<br />

the behavior of the averages follows that of the averages<br />

i ), ( i = 1,<br />

2 1, 2 ) ><br />

shown in Figs. 1C and 1D. There are some differences<br />

that can be traced back to basic differences between the<br />

two approaches. One is that equation (18) is based on the<br />

(17) original <strong>Niblett</strong>-<strong>Bostick</strong> approximation that assumes a<br />

boxcar function as the kernel of equation (5). The RHANN<br />

When β =1 Hwe<br />

( xget<br />

, 0)<br />

the full filtered solution. On the other hand, algorithm uses the kernel as indicated in equation (5) which<br />

x 2<br />

| when σ a | = ωµ β =0 0 | we return to | , the original unfiltered solution (A.1) given includes a small negative sidelobe (Gómez-Treviño, 1987b)<br />

E y ( x,<br />

0)<br />

by equation (14). In this way, by varying this parameter we and extends to infinity. This is a somewhat less restrictive<br />

can gradually control the effect of the averaging process. approximation than the rather simpler boxcar function. The<br />

δE<br />

( x,<br />

0)<br />

H ( x,<br />

0)<br />

other difference originates in the fact that the windows in<br />

y δ x<br />

| σ a | = −2<br />

| σ a | Re[ − ]. (A.2)<br />

each approach are necessarily different, because in the first<br />

E ( x,<br />

0)<br />

H ( x,<br />

0)<br />

APPLICATIONS y<br />

x<br />

case they cannot be uniform, for they are determined by the<br />

data, and in the second case they are uniform for all depths.<br />

1-D averages<br />

The overall effect is a somewhat better performance for<br />

the approximation given by equation (5) judging by the<br />

Before proceeding to the application in 2-D of the above resemblance of the average models to the original model<br />

numerical averaging technique, it is convenient to illustrate from which the data were drawn.<br />

2<br />

∇ E y − iωµ<br />

0σ<br />

( x,<br />

z)<br />

E y = 0,<br />

(A.3)<br />

z<br />

− 2i δ<br />

E y ( x,<br />

z)<br />

= E(<br />

0)<br />

e ,<br />

(A.4)<br />

2 2<br />

δ = .<br />

(A.5)<br />

ωµ 0σ<br />

z z<br />

= 0 . 707δ<br />

a ( Ti ), i = 1,<br />

2<br />

1 2 z z<br />

n<br />

( t)<br />

( t)<br />

σ j = ∑ w lσ<br />

( j+<br />

l)<br />

.<br />

(15)<br />

l=<br />

−n<br />

1 1 ⎧ N n<br />

⎫<br />

( t+<br />

1)<br />

( t)<br />

σ i = + sgn⎨<br />

∑ Tij[ ∑ wlσ<br />

( j+<br />

l)<br />

] + I i ⎬.<br />

(16)<br />

2 2 ⎩ j≠i<br />

= 1 l=<br />

−n<br />

⎭<br />

( t+<br />

1)<br />

σ i<br />

(t )<br />

σ j<br />

1<br />

wk = , k = −n,...,<br />

n<br />

2n<br />

+ 1<br />

N<br />

n<br />

( t+<br />

1)<br />

1 1<br />

( t)<br />

( t)<br />

σ i = + sgn{ ∑ [( 1−<br />

b ) Tijσ<br />

j + β ∑ Tijwlσ<br />

( j+<br />

l)<br />

] + I i}.<br />

(17)<br />

2 2 j≠i<br />

= 1<br />

l=<br />

−n<br />

σ a ( T2<br />

) δ a ( T2<br />

) −σ<br />

a ( T1<br />

) δ a ( T1<br />

)<br />

< σ ( z1,<br />

z2<br />

) >=<br />

, (18)<br />

NEXES<br />

δ a ( T2<br />

) −δ<br />

a ( T1<br />

)<br />

< ( 1, 2 ) ><br />

H x ( x,<br />

0)<br />

2<br />

| σ a | = ωµ 0 | | ,<br />

(A.1)<br />

E y ( x,<br />

0)<br />

x , z)<br />

δE<br />

y ( x,<br />

0)<br />

δH<br />

x ( x,<br />

0)<br />

δ | σ a | = −2<br />

| σ a | Re[ − ]. (A.2)<br />

E y ( x,<br />

0)<br />

H x ( x,<br />

0)<br />

( x , z)<br />

x ( x,<br />

z)<br />

y ( x,<br />

z)<br />

2<br />

∇ E y − iωµ<br />

0σ<br />

( x,<br />

z)<br />

E y = 0,<br />

(A.3)<br />

z<br />

− 2i δ<br />

E y ( x,<br />

z)<br />

= E(<br />

0)<br />

e ,<br />

(A.4)<br />

2 2<br />

δ = .<br />

(A.5)<br />

ωµ 0σ<br />

( x , z)<br />

z z σ<br />

zi = 0 . 707δ<br />

a ( Ti<br />

), i = 1,<br />

2<br />

1 2 z z<br />

1 1 ⎧ N n<br />

⎫<br />

( t+<br />

1)<br />

( t)<br />

σ i = + sgn⎨<br />

∑ Tij[ ∑ wlσ<br />

( j+<br />

l)<br />

] + I i ⎬.<br />

(16)<br />

2 2 ⎩ j≠i<br />

= 1 l=<br />

−n<br />

⎭<br />

( t+<br />

1)<br />

σ i<br />

(t )<br />

σ j<br />

1<br />

wk = , k = −n,...,<br />

n<br />

2n<br />

+ 1<br />

N<br />

n<br />

( t+<br />

1)<br />

1 1<br />

( t)<br />

( t)<br />

σ i = + sgn{ ∑ [( 1−<br />

b ) Tijσ<br />

j + β ∑ Tijwlσ<br />

( j+<br />

l)<br />

] + I i}.<br />

(17)<br />

2 2 j≠i<br />

= 1<br />

l=<br />

−n<br />

σ a ( T2<br />

) δ a ( T2<br />

) −σ<br />

a ( T1<br />

) δ a ( T1<br />

)<br />

< σ ( z1,<br />

z2<br />

) >=<br />

,<br />

δ a ( T2<br />

) −δ<br />

a ( T1<br />

)<br />

(18)<br />

< ( 1, 2 ) ><br />

n<br />

( t)<br />

( t)<br />

σ j = ∑ w lσ<br />

( j+<br />

l)<br />

.<br />

(15)<br />

l=<br />

−n<br />

( 1)<br />

1 1 ⎧ N n<br />

⎫<br />

t+<br />

( t)<br />

i = + sgn⎨<br />

∑ Tij[ ∑ wlσ<br />

( j+<br />

l)<br />

] + I i ⎬.<br />

(16)<br />

2 2 ⎩ j≠i<br />

= 1 l=<br />

−n<br />

⎭<br />

− n,..., n<br />

N<br />

n<br />

1 1<br />

( t)<br />

( t)<br />

+ sgn{ ∑ [( 1−<br />

b ) Tijσ<br />

j + β ∑ Tijwlσ<br />

( j+<br />

l)<br />

] + I i}.<br />

(17)<br />

2 2 j≠i<br />

= 1<br />

l=<br />

−n<br />

σ a ( T2<br />

) δ a ( T2<br />

) −σ<br />

a ( T1<br />

) δ a ( T1<br />

)<br />

σ ( z1,<br />

z2<br />

) >= , (18)<br />

δ a ( T2<br />

) −δ<br />

a ( T1<br />

)<br />

z =<br />

3<br />

i ), i = 1,<br />

2<br />

ANNEXES<br />

H x ( x,<br />

0)<br />

2<br />

| σ a | = ωµ 0 | | ,<br />

(A.1)<br />

E y ( x,<br />

0)<br />

σ ( x,<br />

z)<br />

H x ( x,<br />

0)<br />

2<br />

| σ a | = ωµ 0 | | ,<br />

(A.1)<br />

E y ( x,<br />

0)<br />

δE<br />

y ( x,<br />

0)<br />

δH<br />

x ( x,<br />

0)<br />

δ | σ a | = −2<br />

| σ a | Re[ − ]. (A.2)<br />

E y ( x,<br />

0)<br />

H x ( x,<br />

0)<br />

δE<br />

y ( x,<br />

0)<br />

δH<br />

x ( x,<br />

0)<br />

| σ a | = −2<br />

| σ a | Re[ − ]. (A.2)<br />

E y ( x,<br />

z)<br />

E y ( x,<br />

0)<br />

H x ( x,<br />

0)<br />

H x ( x,<br />

z)<br />

E y ( x,<br />

z)<br />

z z σ<br />

zi = 0 . 707δ<br />

a ( Ti<br />

), i = 1,<br />

2<br />

1 2 z z z =<br />

ANNEXES<br />

H x ( x,<br />

0)<br />

2<br />

| σ a | = ωµ 0 | | ,<br />

(A.1)<br />

E y ( x,<br />

0)<br />

σ ( x,<br />

z)<br />

δE<br />

y ( x,<br />

0)<br />

δH<br />

x ( x,<br />

0)<br />

δ | σ a | = −2<br />

| σ a | Re[ − ]. (A.2)<br />

E y ( x,<br />

0)<br />

H x ( x,<br />

0)<br />

E y ( x,<br />

z)<br />

H x ( x,<br />

z)<br />

E y ( x,<br />

z)<br />

2<br />

∇ E y − iωµ<br />

0σ<br />

( x,<br />

z)<br />

E y = 0,<br />

(A.3)<br />

z<br />

− 2i δ<br />

E y ( x,<br />

z)<br />

= E(<br />

0)<br />

e ,<br />

(A.4)<br />

2 2<br />

δ = .<br />

(A.5)<br />

ωµ 0σ<br />

H x ( x,<br />

z)<br />

∇<br />

× E = −iωµ<br />

0H<br />

n<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!