P. Schmoldt, PhD - MTNet - DIAS

P. Schmoldt, PhD - MTNet - DIAS P. Schmoldt, PhD - MTNet - DIAS

mtnet.dias.ie
from mtnet.dias.ie More from this publisher
04.08.2013 Views

A. Appendix Anisotropy Resistivity Misfit r xx Depth (km) 100 150 200 250 300 0 rAA 50 Depth (km) Depth (km) RMS -1 0 1 2 3 4 TM -1 0 1 2 3 4 Log 10(periods) -2 S N 0 50 100 150 200 250 300 0 ryy 50 TE Log 10(periods) -2 100 150 200 250 300 pic020 pic019 0 15 30 45 60 75 90 105 120 135 Distance (km) Apparent resistivity Log10(Wm) Phase degrees pic020 pic019 pic017 pic015 pic013 pic011 pic009 pic007 pic006 pic005 pic004 pic003 pic002 pic001 pic017 pic015 pic013 pic011 pic009 Log 10(Wm) pic007 pic006 pic005 pic004 pic003 pic002 pic001 Total: Log10(rxx)-Log10(ryy) Log10(Wm) Log10(Wm) pic020 pic019 pic017 pic015 pic013 pic011 pic009 pic007 pic006 pic005 pic004 pic003 pic002 pic001 4.30 4.0 3.4 2.8 2.2 1.6 4.0 3.4 2.8 2.2 1.6 degrees Fig. A.11.: Result of anisotropic 2D inversion for the 3D-mantle profile with stations pic001 - pic020 on top of the synthetic 3D model (cf. Figs. 8.3, 8.4, and 8.5 for synthetic 3D model, station location, and profile location) following the second anisotropic inversion approach (cf. 8.3.3). Station data is decomposed according to the strike direction of the mantle (N45E), and laplacian regularisation and an increased smoothing parameter (τ = 6) are used for the inversion. Isotropic inversion of long-period data in the first sequence (hence the similarity of ρxx and ρyy at depth > 30 km) is followed by anisotropic inversion of short-period data in the second sequence. See Section 8.3.3 regarding current limitations of the approach. 304

Anisotropy Resistivity Misfit r xx Depth (km) 100 150 200 250 300 0 rAA 50 Depth (km) Depth (km) RMS -1 0 1 2 3 4 TM -1 0 1 2 3 4 Log 10(periods) -2 0 50 100 150 200 250 300 0 ryy 50 TE Log 10(periods) -2 100 150 200 250 300 pic020 pic019 A.4. Auxiliary figures of the Tajo Basin subsurface investigation pic017 S N 0 17 34 51 68 85 102 119 136 153 Distance (km) Apparent resistivity Log10(Wm) Phase degrees pic020 pic019 pic017 pic015 pic013 pic011 pic009 pic007 pic006 pic005 pic004 pic003 pic002 pic001 pic015 pic013 pic011 pic009 pic007 pic006 pic005 pic004 pic003 pic002 pic001 Log 10(Wm) Log 10(Wm) Log 10(r xx)-Log 10(r yy) Total: 0.53 3.40 2.95 2.50 2.05 1.60 3.20 2.80 2.40 2.00 1.60 Log 10(Wm) degrees pic020 pic019 pic017 pic015 pic013 pic011 pic009 pic007 pic006 pic005 pic004 pic003 pic002 pic001 Fig. A.12.: Result of anisotropic 2D inversion for the 3D-crust profile with stations pic001 - pic020 on top of the synthetic 3D model (cf. Figs. 8.3, 8.4, and 8.5 for synthetic 3D model, station location, and profile location). Station data is decomposed according to the strike direction of the crust (N45W), and inversion is carried out with resistivity gradient regularisation and an increased smoothing parameter (τ = 6), following the first inversion approach: isotropic inversion of short-period data in the first sequence and anisotropic inversion of long-period data in the second sequence. 305

A. Appendix<br />

Anisotropy Resistivity<br />

Misfit<br />

r xx<br />

Depth (km)<br />

100<br />

150<br />

200<br />

250<br />

300<br />

0<br />

rAA 50<br />

Depth (km)<br />

Depth (km)<br />

RMS<br />

-1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

TM<br />

-1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

Log 10(periods) -2<br />

S N<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

300<br />

0<br />

ryy 50<br />

TE<br />

Log 10(periods) -2<br />

100<br />

150<br />

200<br />

250<br />

300<br />

pic020<br />

pic019<br />

0 15 30 45 60 75 90 105 120 135<br />

Distance (km)<br />

Apparent resistivity Log10(Wm) Phase<br />

degrees<br />

pic020<br />

pic019<br />

pic017<br />

pic015<br />

pic013<br />

pic011<br />

pic009<br />

pic007<br />

pic006<br />

pic005<br />

pic004<br />

pic003<br />

pic002<br />

pic001<br />

pic017<br />

pic015<br />

pic013<br />

pic011<br />

pic009<br />

Log 10(Wm)<br />

pic007<br />

pic006<br />

pic005<br />

pic004<br />

pic003<br />

pic002<br />

pic001<br />

Total:<br />

Log10(rxx)-Log10(ryy) Log10(Wm) Log10(Wm) pic020<br />

pic019<br />

pic017<br />

pic015<br />

pic013<br />

pic011<br />

pic009<br />

pic007<br />

pic006<br />

pic005<br />

pic004<br />

pic003<br />

pic002<br />

pic001<br />

4.30<br />

4.0<br />

3.4<br />

2.8<br />

2.2<br />

1.6<br />

4.0<br />

3.4<br />

2.8<br />

2.2<br />

1.6<br />

degrees<br />

Fig. A.11.: Result of anisotropic 2D inversion for the 3D-mantle profile with stations pic001 - pic020 on top of the synthetic 3D<br />

model (cf. Figs. 8.3, 8.4, and 8.5 for synthetic 3D model, station location, and profile location) following the second anisotropic<br />

inversion approach (cf. 8.3.3). Station data is decomposed according to the strike direction of the mantle (N45E), and laplacian<br />

regularisation and an increased smoothing parameter (τ = 6) are used for the inversion. Isotropic inversion of long-period data in the<br />

first sequence (hence the similarity of ρxx and ρyy at depth > 30 km) is followed by anisotropic inversion of short-period data in the<br />

second sequence. See Section 8.3.3 regarding current limitations of the approach.<br />

304

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!