04.08.2013 Views

BED, BANK & SHORE PROTECTION

BED, BANK & SHORE PROTECTION

BED, BANK & SHORE PROTECTION

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Faculty of Coastal Engineering<br />

<strong>BED</strong>, <strong>BANK</strong> & <strong>SHORE</strong><br />

<strong>PROTECTION</strong><br />

Lecturer: Pham Thu Huong


Chapter 6<br />

Waves - Loads<br />

(6 class hours)


6.1 Introduction<br />

Content<br />

6.2 Non breaking waves<br />

6.3 Breaking waves<br />

6.4 Wave on the slope<br />

6.4 Reduction of wave loads<br />

6.5 Summary


Wave issues<br />

Generation: H, T characteristic = f (u wind, h, fetch)<br />

Hydrodynamics: u, p, τ = f (H,T,h)<br />

Statistics:p(H) = f (H characteristic, distribution function)<br />

3. Wave statistics<br />

1. Wave generation<br />

2. Wave hydrodynamics


Examples of wave loads<br />

In which:<br />

(A) - standing wave<br />

(B) - breaking wave on a mild slope<br />

(C) - breaking wave on a steeper slope


Wave motion in periodic,<br />

unbroken wave


Validity of wave theories


Application of linear theory


gradient in filter under breakwater


Friction under waves


with:<br />

friction factor and cf uˆ= ω a =<br />

b b<br />

u = uˆbsinω t<br />

1 c u<br />

2<br />

w 2 f b<br />

ˆ ˆ<br />

τ = ρ<br />

ω a<br />

sinh kh<br />

( ) 0.19 −<br />

a k<br />

⎡<br />

⎢<br />

− 6.0+ 5.2<br />

⎣ b/ r<br />

⎤<br />

⎥⎦<br />

f f max<br />

a b: wave amplitude at<br />

bottom<br />

ω : angular frequency<br />

in waves (=2π/T)<br />

c = e with: c = 0.3


Shoaling<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Diffraction<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Diffraction<br />

Reflection<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Diffraction<br />

Reflection<br />

Breaking<br />

Near-shore Near shore effects


eaking waves<br />

⎛2π⎞ H = 0.142 L tanh h<br />

b<br />

⎜ ⎟<br />

⎝ L ⎠<br />

Hb<br />

0.78 ( solitary wave)<br />

h ≈<br />

H<br />

h<br />

s<br />

≈0.4 −0.5


the Iribarren number<br />

(surf similarity parameter)<br />

ξ =<br />

tan<br />

α<br />

H L<br />

tan α slope of the shoreline/structure<br />

H wave height<br />

L0 wave length at deep water<br />

0


eaker types


eaker types<br />

spilling ξ < 0.5<br />

plunging 0.5 < ξ < 3<br />

collapsing ξ = 3<br />

surging ξ > 3<br />

(sóng vỗ bờ)<br />

(Sóng cuộn đổ)<br />

(sóng đổ)<br />

(sóng cồn,<br />

sóng dâng)


ore and hydraulic jump


H R 2<br />

Kr = ≈0.1ξ<br />

H<br />

I<br />

reflection<br />

Battjes, 1974<br />

small ξ less reflection<br />

K r = 1 seawall (standing wave)


Loads due to breaking


Breaker-depth<br />

Breaker depth<br />

γ b = H/h = 0.78 (solitary wave limit)<br />

γ b = 0.88 (Miche formula)


change of distribution in<br />

shallow water


un up


Run-up Run up calculation<br />

Hunt’s Formula (for regular waves)<br />

Ru<br />

H ξ =<br />

CUR/TAW, 1992 (for Irregular waves)<br />

R = 1.5 γ γ γ γ H ξ ( R = 3 H )<br />

u2% r β B f s p u 2% max s<br />

correction factors:<br />

• γr roughness<br />

• γβ approach angle<br />

• γB berm reduction<br />

• γf foreshore reduction


Wave run-up run up irregular wave<br />

H s = significant wave height<br />

ξ 0 = breaker parameter based on T m-1,0<br />

For smooth slope


γr 1.0<br />

friction values<br />

Type of revetment<br />

Asphalt, concrete, smooth blocks, grass,<br />

Sand-asphalt<br />

Sand asphalt<br />

0.95 Blocks in asphalt or concrete matrix,<br />

blocks with grass<br />

0.90 Placed block revetment<br />

0.80 riprap penetrated with asphalt<br />

0.70 Single layer of riprap<br />

0.55 Double layer of riprap


Angle of attack<br />

For long crested waves (swell)<br />

γγ ββ = √cos cos ββ<br />

(with minimum of 0.7)<br />

For short crested waves (wind wave)<br />

γγ ββ = 1 - 0.0022 (ββ in degrees)<br />

(with with a minimum of 0.8)


SWL<br />

H s<br />

γ<br />

B<br />

berm effect<br />

h B<br />

B B<br />

L B<br />

2<br />

⎛ ⎡ ⎤ ⎞<br />

B B<br />

B h<br />

= 1− ⎜1−0.5 ⎟<br />

L ⎜<br />

⎢ ⎥<br />

B H ⎟<br />

⎝ ⎣ s⎦⎠<br />

limits: 0.6 < γ B < 1 and -1 < d h /H s < 1<br />

H s


Shallow foreshore<br />

γ f = H 2% / 1.4H s


Battjes formula, 1994:<br />

R = R 1− 0.4ξ=<br />

d u<br />

( )<br />

= H 1−0.4ξ ξ<br />

( )<br />

run-down run down<br />

R = −0.33<br />

H ξ<br />

d 2%<br />

s p<br />

( R =−1.5<br />

H )<br />

d 2% max<br />

s


Example<br />

A dike with concrete block revetment, slopes 1:3 and a<br />

2 m berm at design level is attacked by perpendicular<br />

(swell) waves with Hs = 1 m and a steepness of 0.01.<br />

What is the wave run-up? run up?<br />

H S = 1<br />

Wave Slope = 0.01<br />

1:3 Ru ?<br />

1:3<br />

2m


γ<br />

B<br />

2<br />

⎛ ⎡ ⎤ ⎞<br />

B B<br />

B h<br />

= 1− ⎜1−0.5 ⎟<br />

L ⎜<br />

⎢ ⎥<br />

B H ⎟<br />

⎝ ⎣ s⎦⎠<br />

solution<br />

Starting point is equation for run-up run up irregular wave R u2%. u2% .<br />

R = 1.5 γ γ γ γ H ξ ( R = 3 H )<br />

u2% r β B f s p u 2% max s<br />

γγ r = 0.9<br />

γγ ββ = 1 and γγ f = 1<br />

hB = 0<br />

LB = 2Hs 2Hscot<br />

cotαα + 2 = 8 m<br />

hence, γγ B = 0.75<br />

The surf similarity parameter is tanαα/0.1 tan /0.1 = 3.33 > 2, hence ξ = 2. 2.<br />

The wave run-up, run up, finally, is then: Ru2% u2% = 1.5*0.9*0.75*1*2 ≅ 2m<br />

above the design level.


Samphire Hoe,<br />

United Kingdom<br />

overtopping<br />

Ostia, Italy


Overtoping in Jaade Siel, Germany<br />

22-12-1954


Measured overtopping (breaking)


Measured overtopping<br />

(non-breaking)<br />

(non breaking)


Seaward slope seadike Haiphong


Sea dike near Haiphong


After Durian (2005)


TAW formula, 2000:<br />

wave impacts on slope<br />

pmax 50% ≈ 8ρw gHs<br />

tanα<br />

pmax 0.1% ≈16<br />

ρw gHs<br />

tanα


Waves<br />

Load reduction<br />

transmission<br />

Coastal line<br />

reflection<br />

absorption<br />

Costs Effectiveness


Linear wave theory


definitions and behaviour of<br />

hyperbolic functions


standing wave


Relative depth<br />

Wave Celerity<br />

Wave Length<br />

Group<br />

Shallow Water<br />

h 1<br />

<<br />

L 20<br />

c =<br />

L<br />

= gh<br />

c =<br />

L<br />

=<br />

T<br />

T<br />

L = T g h<br />

Velocity c = c = g h<br />

g<br />

Energy Flux<br />

1<br />

2<br />

(per m width) F = E c = ga g h<br />

Particle<br />

velocity<br />

Horizontal<br />

Vertical<br />

Particle<br />

displacement<br />

Horizontal<br />

Vertical<br />

Subsurface<br />

pressure<br />

g<br />

Transitional water depth<br />

L<br />

=<br />

1 h 1<br />

< <<br />

20<br />

L<br />

2<br />

Deep Water<br />

h 1<br />

><br />

gT<br />

L<br />

tanh kh<br />

c = c = =<br />

0<br />

2 π<br />

T<br />

2<br />

gT<br />

gT<br />

tanh kh<br />

L = L =<br />

0<br />

2 π<br />

2 π<br />

L<br />

NM<br />

O<br />

QP<br />

1 2 kh<br />

c<br />

g<br />

= n c =<br />

2<br />

1 +<br />

sinh 2 kh<br />

∗ c<br />

L<br />

2<br />

gT<br />

2 π<br />

1 gT<br />

c<br />

g<br />

= c<br />

0<br />

2<br />

=<br />

4 π<br />

1<br />

T<br />

2<br />

ρ F = E c = ρ ga n c<br />

F = ρ g a<br />

g<br />

2<br />

2<br />

8 π<br />

u = a<br />

g<br />

h<br />

sin θ<br />

e j cos<br />

z<br />

w = ω a 1 + θ<br />

h<br />

a g<br />

ξ = − cos θ<br />

ω h<br />

( )<br />

cosh k h + z<br />

u = ω a<br />

sin θ<br />

sinh kh<br />

( )<br />

sinh k h + z<br />

w = ω a<br />

cos θ<br />

sinh kh<br />

( )<br />

cosh k h + z<br />

ξ = − a<br />

cos θ<br />

sinh kh<br />

( )<br />

sinh k h + z<br />

ζ = a<br />

sin θ<br />

sinh kh<br />

( )<br />

cosh k h + z<br />

p = − ρ g z + ρ g a sin θ<br />

p = − ρ g z + ρ g a<br />

cosh kh<br />

sin θ<br />

a<br />

H<br />

2 π 2 π<br />

= ω = k = θ = ω t − k x<br />

2<br />

T<br />

L<br />

2<br />

2 2<br />

u a e kz<br />

= ω sin θ<br />

w a e kz<br />

= ω sin θ<br />

ξ = − ae θ<br />

kz<br />

cos<br />

ζ = ae θ<br />

kz<br />

sin<br />

p g z g a e kz<br />

= − ρ + ρ sin θ<br />

linear wave<br />

theory<br />

basic equations


parameters<br />

in linear<br />

wave theory


definition of H and T


wave definitions and wave height<br />

distribution


Rayleigh distribution<br />

2 2<br />

⎡ ⎤ ⎡ ⎤<br />

⎛ H ⎞ ⎛ H ⎞<br />

P{ H > H}<br />

= exp ⎢− ⎜ ⎟ ⎥ = exp ⎢−2⎜ ⎟ ⎥<br />

⎢ Hrms H<br />

⎣ ⎝ ⎠ ⎥⎦ ⎢⎣ ⎝ s ⎠ ⎥⎦<br />

H ≡ H ≡ H ≡ H ≡ H ≈4m<br />

s visual 1/3 13.5% m0<br />

0


wave height and wave period


wave registration in the North Sea<br />

Spectral moments: m 0 = surface of energy density spectrum<br />

m -1 = first negative moment of spectrum<br />

T m-1,0 = m -1 /m 0 = spectral wave period ≈ 0.9


spectrum types


two types of spectra


wave spectra across shallow bar


wave generation<br />

Deep water (no limitations of depth and fetch):<br />

gH s gTs<br />

= 0.283 and = 1.2<br />

2<br />

u 2π<br />

u<br />

w w<br />

Shallow water (limitations of depth and fetch) :<br />

⎡ 0.42 ⎤<br />

⎢ ⎛ gF ⎞<br />

0.75 0.0125<br />

⎥<br />

2<br />

gH ⎡ ⎜ ⎟<br />

⎛ s<br />

gh ⎞ ⎤ ⎢ u ⎥<br />

w<br />

= 0.283tanh ⎢0.578 tanh<br />

⎝ ⎠<br />

2 ⎜ 2 ⎟ ⎥ ⎢ ⎥<br />

0.75<br />

uw u ⎡ w<br />

gh ⎤<br />

⎣<br />

⎢ ⎝ ⎠ ⎦<br />

⎥ ⎢ ⎛ ⎞ ⎥<br />

⎢tanh ⎢0.578⎜ ⎥ 2 ⎟ ⎥<br />

⎢ ⎢ uw<br />

⎥<br />

⎣ ⎣ ⎝ ⎠ ⎦ ⎥⎦<br />

⎡ 0.25 ⎤<br />

⎢ ⎛ gF ⎞<br />

0.375 0.077<br />

⎥<br />

2<br />

gT ⎡ ⎜ ⎟<br />

⎛ s<br />

gh ⎞ ⎤ ⎢ u ⎥<br />

w<br />

= 1.20 tanh ⎢0.833 tanh<br />

⎝ ⎠<br />

⎜ 2 ⎟ ⎥ ⎢ ⎥<br />

0.375<br />

2π<br />

uw ⎢ u<br />

⎣ ⎝ w ⎠ ⎥<br />

⎦<br />

⎢ ⎡ ⎛ gh ⎞ ⎤ ⎥<br />

⎢tanh ⎢0.833⎜ ⎥ 2 ⎟ ⎥<br />

⎢ ⎢ uw<br />

⎥<br />

⎣ ⎣ ⎝ ⎠ ⎦ ⎥⎦


wave height as function of wind,<br />

depth and fetch


wave period as function of wind,<br />

depth and fetch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!