03.08.2013 Views

Molecular vs non-Molecular Testing for MRSA/MSSA: The Case for ...

Molecular vs non-Molecular Testing for MRSA/MSSA: The Case for ...

Molecular vs non-Molecular Testing for MRSA/MSSA: The Case for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Molecular</strong> <strong>vs</strong> <strong>non</strong>-<strong>Molecular</strong><br />

<strong>Testing</strong> <strong>for</strong> <strong>MRSA</strong>/<strong>MSSA</strong>:<br />

<strong>The</strong> <strong>Case</strong> <strong>for</strong> <strong>Molecular</strong><br />

Lance R. Peterson, MD<br />

Director of Microbiology and<br />

Infectious Disease Research<br />

Epidemiologist, NorthShore University<br />

HealthSystem<br />

Clinical Professor<br />

University of Chicago, Chicago, IL USA


• Research Grants<br />

Potential COI<br />

– Bayer, Cepheid, NorthShore, GeneOhm, GSK, Johnson<br />

and Johnson, Merck, MicroPhage, Nanogen,<br />

Nanosphere, NIAID, Roche, 3M, Washington Square<br />

Health Foundation, Wyeth (Pfizer), AHRQ<br />

• Consultations (in conjunction with research<br />

projects and new diagnostics)<br />

– Cepheid, GeneOhm, GSK, MicroPhage, Nanogen,<br />

Nanosphere, Roche, 3M, Wyeth (Pfizer)<br />

• Industry support <strong>for</strong> this presentation<br />

– None


Goals of the Presentation<br />

• To present the case <strong>for</strong> molecular testing<br />

when per<strong>for</strong>ming surveillance <strong>for</strong> <strong>MRSA</strong> and<br />

<strong>MSSA</strong><br />

– <strong>MRSA</strong> control programs<br />

– Pre-surgical testing to lower surgical site<br />

infections<br />

• Will not discuss clinical disease diagnostics<br />

from direct specimens or detection of<br />

staphylococci from blood culture bottles


US Infection Mortality 2005<br />

FR DeLeo &<br />

HF Chambers<br />

JCI 119:2464, 2009


<strong>MRSA</strong> Risk Following Colonization<br />

• 43,504 patients had surveillance <strong>for</strong> <strong>MRSA</strong><br />

• 7.4% of asymptomatic <strong>MRSA</strong> carriers developed<br />

<strong>MRSA</strong> infection over 1 year<br />

• 0.5% of <strong>MRSA</strong> nasal negative patients developed<br />

infection over 1 year<br />

• Over 10-fold higher risk of disease with <strong>MRSA</strong><br />

colonization<br />

– Highest risk <strong>for</strong> <strong>MRSA</strong> infection is nasal carriage<br />

(p


Do Colonized Patients Spread <strong>MRSA</strong>?<br />

• Compared 58 patients with <strong>MRSA</strong> disease to<br />

57 with nasal colonization to determine risk <strong>for</strong><br />

skin and environmental contamination<br />

– Skin and environment contaminated 50 <strong>vs</strong> 47%<br />

– Various skin sites 38-66% <strong>vs</strong> 30-63%<br />

– Various environment sites 27-60% <strong>vs</strong> 21-63%<br />

• Glove acquisition from skin 14-45% <strong>vs</strong> 16-38%<br />

• “Strategies to limit transmission must address<br />

colonized patients”<br />

S Chang et al, CID 48: 1423-8, 2009


Risk <strong>for</strong> S. aureus Infection<br />

• Systematic review (10 studies) to estimate of<br />

the risk of infection following colonization with<br />

<strong>MRSA</strong> compared with colonization by <strong>MSSA</strong><br />

• Random effects model was used to obtain<br />

pooled odds ratio estimates<br />

• Overall, colonization by <strong>MRSA</strong> was<br />

associated with a 4-fold increase in the risk of<br />

infection (odds ratio 4.08, 95% confidence<br />

interval = 2.10-7.44) N Safdar et al. Am J Med 121:310-15, 2008


Critical Review of <strong>MRSA</strong><br />

Screening by Rapid Methods<br />

• Review and meta-analysis of randomized, <strong>non</strong>randomized,<br />

and observational studies<br />

– Random-effects model was used<br />

– Ten studies (nine interventional studies and one<br />

unblinded, cluster-randomized, crossover trial) reviewed<br />

• Between wards applying rapid screening tests and<br />

those without screening, noted a significantly<br />

decreased risk <strong>for</strong> <strong>MRSA</strong> bloodstream infections<br />

• Overall, concluded that active screening <strong>for</strong> <strong>MRSA</strong><br />

is more important than the type of test used<br />

E Tacconelli et al. Lancet Infect Dis 9: 546–54, 2009


Critical Review of <strong>MRSA</strong><br />

Screening by Rapid Methods:<br />

Surveillance <strong>vs</strong> no Surveillance<br />

E Tacconelli et al. Lancet Infect Dis 9: 546–54, 2009


Critical Review of <strong>MRSA</strong><br />

Screening by Rapid Methods:<br />

Surveillance <strong>vs</strong> no Surveillance<br />

E Tacconelli et al. Lancet Infect Dis 9: 546–54, 2009


Influence of Test Impact on Cost<br />

Impact of a <strong>MRSA</strong> Program<br />

• Excel-based decision-analytic model to<br />

compare hospital costs and <strong>MRSA</strong> infection<br />

rates <strong>for</strong> PCR or culture-based screening<br />

• Simulated 370-bed hospital in the US<br />

• Screening different populations gave savings<br />

of $12,158–$76,624/month over no program<br />

• Same-day PCR testing resulted in fewer<br />

infections and the lowest total cost<br />

N Olchanski et al. ICHE 32:250-7, 2011


How Can We Explain the<br />

Variation in Results?


Per<strong>for</strong>mance of rtPCR and Culture<br />

• 250 rtPCR positive and 250 rtPCR negative<br />

samples tested by BD GeneOhm and two<br />

Chromogenic media (direct and enriched)<br />

• True Positive = culture positive or <strong>MRSA</strong><br />

history (n = 186)<br />

CHROMagar<br />

<strong>MRSA</strong> (Direct)<br />

<strong>MRSA</strong>Select<br />

(Direct)<br />

CHROMagar<br />

<strong>MRSA</strong><br />

(Enriched)<br />

<strong>MRSA</strong>Select<br />

(Enriched)<br />

Sensitivity 80.6% 78.5% 86.6% 90.3%<br />

Specificity 100% 97.4% 99.7% 91.6%<br />

• Past per<strong>for</strong>mance showed rtPCR to be 98.2%<br />

sensitive and 97.5% specific<br />

SM Paule et al, AJCP 131:532-9, 2009<br />

SM Paule et al, JCM 45:2993-8, 2007


Test Comparison<br />

• Examined impact of turnaround time,<br />

sensitivity, specificity and <strong>MRSA</strong> prevalence<br />

on the characteristics of a surveillance<br />

program<br />

• Studied 37,179 consecutive <strong>MRSA</strong>-tested<br />

admissions to NorthShore (one year)<br />

Ari Robicsek, ICAAC/IDSA 2008<br />

SM Paule et al, Am J Clin Pathol 131:532-9, 2009


% of isolation days missed<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Missed Isolation Day Percentage: Method Comparison<br />

Traditional or Chrom. Agar<br />

Enrichment + Chrom. Agar<br />

rtPCR<br />

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84<br />

Turnaround Time (hours)<br />

Ari Robicsek, ICAAC/IDSA 2008


Predictors of Program Success<br />

Author<br />

Disease<br />

reduced with<br />

<strong>MRSA</strong> Mean Length of<br />

Prevalence pre-emptive Hospital Stay<br />

isolation<br />

Test<br />

Sensitivity<br />

Time to<br />

Result<br />

Reporting<br />

Length of<br />

Intervention<br />

Period<br />

Estimated<br />

<strong>MRSA</strong> Days<br />

Captured<br />

Program was<br />

Successful<br />

Harbarth et al 6.7% 3.7 to 4 days 84% ≥22.2 hours 5 to 17 months 63% No reduction in<br />

disease<br />

Harbarth et al 5.1% 6.4 days 84% ≥22 to23 hours 9 months 72% No reduction in<br />

disease<br />

Robicsek et al 6.3% 4.6 days 98% 15 hours 21 months 85% Reduction in<br />

disease with<br />

universal<br />

surveillance<br />

Jeyaratnam et al 6.7% 3.8 days 87.8% ≥22 hours 5 months 67% No reduction in<br />

transmission or<br />

disease<br />

Hardy et al 6.3% 7.2 days 98% 22 hours 8 months 86% Reduction in<br />

transmission<br />

Hardy et al 5.2% 6.5 days ≤73% 42 hours 8 months 53% No reduction in<br />

(direct culture)<br />

transmission<br />

Bowler et al 14.6% > 1 year 80% 48 hours 2 years 80% Reduction in<br />

disease<br />

L Peterson, JCM, 48:683-9, 2010


% of isolation days missed<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Missed Isolation Day Percentage: Method Comparison<br />

† = Failed Programs<br />

* = Successful Program<br />

†<br />

Program † likely successful if capture<br />

>80% of <strong>MRSA</strong> potential isolation days<br />

*<br />

*<br />

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84<br />

Turnaround Time (hours)<br />

Traditional or Chrom Agar<br />

Enrichment + Chrom Agar<br />

rtPCR<br />

Ari Robicsek, ICAAC/IDSA 2008; A Robicsek et al, An Int Med, 48:409-18, 2008; D Jeyaratnam et al, BMJ ,<br />

336;927-30, 2008; S Harbarth et al, Crit Care 10:R25, 2006; Ari Robicsek, ICAAC/IDSA 2008; K Hardy et al,<br />

Clin Microbiol Infect 10.1111/j.1469-0691.2009; WA Bowler et al. ICHE 31:269-75, 2010; WC Huskins et al.<br />

NEJM 364:1407-18, 2011<br />

†<br />

*<br />

†<br />


Effectiveness of Various Strategies<br />

Hospital-associated <strong>MRSA</strong> BSI incidence in December 2004:<br />

Declined from a projected 4.6/1,000 to 1.5/1,000 patients<br />

<strong>MRSA</strong> colonized patient LOS = 35 days<br />

SS Huang et al, CID 43:971-8, 2006


Veterans Administration<br />

Healthcare System (153 Hospitals)<br />

• Reported 21-month results of all admission<br />

screening <strong>for</strong> <strong>MRSA</strong> based on 1,312,840<br />

admissions covering 8,318,675 patient days<br />

• 45% reduction in <strong>MRSA</strong> disease in <strong>non</strong>-ICU<br />

patients (P = 0.001) throughout the system<br />

• 62% reduction in <strong>MRSA</strong> disease <strong>for</strong> ICU<br />

patients (P < 0.001)<br />

– 2 year baseline in ICU patients had no change in<br />

disease<br />

R Jain et al. NEJM 364:1419-30, 2011<br />

• <strong>Testing</strong> primarily (92%) with rtPCR methods


Cluster Randomized Trial of ICU:<br />

Demonstrated <strong>non</strong>-Utility of Culture<br />

• Assessed VRE and <strong>MRSA</strong> surveillance plus<br />

enhanced barrier precautions in the ICU<br />

• 5,434 admissions to 10 intervention ICUs, and 3,705<br />

to 8 control ICUs over 6 months<br />

– Centralized, broth enriched culture used <strong>for</strong> testing<br />

• Incidence of colonization or infection with <strong>MRSA</strong> or<br />

VRE per 1000 patient-days at risk did not differ<br />

significantly (P = 0.35)<br />

• Mean (±SD) number of days from when surveillance<br />

swab obtained until it was reported was 5.2±1.4<br />

– 41% of patient days captured after reporting<br />

WC Huskins et al. NEJM 364:1407-18, 2011


What About Surgical Site<br />

Infections?


Changing Prevalence of<br />

S. aureus in Surgery<br />

• Percentage of S. aureus as a cause of<br />

Surgical Site Infection in Coronary Artery<br />

Bypass Grafting, Cholecystectomy,<br />

Colectomy and Total Hip Arthroplasty rose<br />

from 17% to 31% between 1992-2002<br />

JA Jernigan, Maryland Patient Safety Center (NNIS), January 12, 2006


NorthShore Program <strong>for</strong> Detection of<br />

Staphylococcus aureus Colonization:<br />

Process Overview<br />

• <strong>The</strong> patient is screened <strong>for</strong> S. aureus in the<br />

nose 0-28 days prior to surgery<br />

• If the test is positive, the physician will then<br />

prescribe a 5-day course of mupirocin ointment<br />

• <strong>The</strong> patient administers the nasal ointment<br />

twice a day <strong>for</strong> the 5 days in the month prior to<br />

surgery DM Hacek et al. Clin Orthop Relat Res 466:1349-55, 2008


Results of Preoperative Screening<br />

<strong>for</strong> NorthShore Hip and Knee Surgery<br />

Patients (n = 1,495)<br />

• S. aureus SSI rate of decolonized S. aureus<br />

carriers reduced 3.8-fold (p≤0.05)<br />

• Overall S. aureus infection rate in screened<br />

versus unscreened group was 0.8% versus<br />

1.7% DM Hacek et al Clin Orthop Relat Res 466:1349-55, 2008


Prospective, Randomized Trial of<br />

S. aureus decolonization<br />

• Multicenter, prospective placebo controlled trial of<br />

6,771 patients between 2005 and 2007<br />

– Intervention was rtPCR screening with nasal<br />

mupirocin/chlorhexidine bath <strong>for</strong> positive patients<br />

• 808 positive patients had surgery<br />

– 4 deep infections (0.9%) occurred in the treated group<br />

– 16 infections (4.4%) occurred in the placebo group<br />

» RR 0.21; 95% CI = 0.07-0.62<br />

– LOS 1.8 days shorter in the treated group (p=0.04)<br />

– Time to infection was shorter in the placebo group<br />

(p=0.005) LGM Bode et al. NEJM 362: 9-17, 2010


What is the Role of PCR?


Per<strong>for</strong>mance of rtPCR and Culture<br />

• Tested 5,838 paired nasal swabs to compare<br />

Roche rtPCR <strong>MRSA</strong> assay and Chromogenic<br />

<strong>MRSA</strong> agar (direct and broth enriched)<br />

• True Positive = culture positive or <strong>MRSA</strong><br />

history (n = 397)<br />

CHROMagar<br />

<strong>MRSA</strong><br />

(Direct)<br />

CHROMagar<br />

<strong>MRSA</strong><br />

(Enriched)<br />

rtPCR<br />

Sensitivity 57.7% 67% 98.3% (96.3% to 99.2%)<br />

Specificity 99.7% (98.6% to 99.1%)<br />

P Patel et al, IDSA 2011


Summary<br />

• <strong>MRSA</strong> surveillance in acute care settings at<br />

modest prevalence likely requires a rapid<br />

molecular test <strong>for</strong> success<br />

• In long term care or where <strong>MRSA</strong> prevalence<br />

is high, culture may be satisfactory<br />

• For surgery patients, the higher sensitivity of<br />

rtPCR likely makes this the preferred testing<br />

approach

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!