03.08.2013 Views

pp.53-60 - Arabian Journal for Science and Engineering

pp.53-60 - Arabian Journal for Science and Engineering

pp.53-60 - Arabian Journal for Science and Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SYNTHESIS, CHARACTERIZATION AND NONLINEAR<br />

OPTICAL PROPERTIES OF FOUR NOVEL SCHIFF BASE<br />

COMPOUNDS<br />

Iran Sheikhshoaie * <strong>and</strong> Samira Saeednia<br />

Department of Chemistry<br />

Shahid Bahonar University of Kerman<br />

Kerman, 76175, Iran<br />

Iran Sheikhshoaie, Samira Saeednia<br />

: ﺔـﺻﻼﺨﻟا<br />

ﻞﻴﻠﺤﺗ ماﺪﺨﺘﺳﺎﺑ ﺎﻬﻔﻴﺻﻮﺗ ﻢﺛ ﻦﻣو ،ﻒﻴﺷ عﻮﻧ ﻦﻣ ﺎﻬﻄﺑاور ﻒﺋﺎﻇﻮﻟا ةدﺪﻌﺘﻣ تﺎﺒآﺮﻣ ﺔﺳاردو ﺮﻴﻀﺤﺘﺑ - ﺚﺤﺒﻟا اﺬه ﻲﻓ - ﺎﻨﻤﻗ ﺪﻘﻟ<br />

يوﻮﻨﻟا ﻲﺴﻴﻃﺎﻨﻐﻤﻟا ﻦﻴﻧﺮﻟا فﺎﻴﻄﻣو ﺔﻴﺠﺴﻔﻨﺒﻟا قﻮﻓ ﺔﻌﺷﻷاو ءاﺮﻤﺤﻟا ﺖﺤﺗ ﺔﻌﺷﻷا ﻒﻴﻃو ، ﻦﻴﺟوﺮﺘﻴﻨﻟاو ﻦﻴﺟورﺪﻴﻬﻟاو نﻮﺑﺮﻜﻟا ﺮﺻﺎﻨﻋ<br />

ﺔﻘﻳﺮﻃ ماﺪﺨﺘﺳﺎﺑ ﺎﻬﺘﺟﺬﻤﻧ ﺖﻤﺗ ﻲﺘﻟا L1 - L4 تﺎﺒآﺮﻤﻟا ﻦﻣ بﺎﻄﻘﺘﺳﻻاو ،(<br />

تﺎﻨﺤﺸﻟا)<br />

ﺔﻴﻧوﺮﺘﻜﻟﻹا ﺺﺋﺎﺼﺨﻟاو ،ﺔﻴﺌﻳﺰﺠﻟا<br />

ﻞآﺎﻴﻬﻟا<br />

1H<br />

ﺔﻴﺋﻮﻀﻟا ﺺﺋﺎﺼﺨﻟا ﻦﻋ ﺊﺒﻨﺗ ﻲﺘﻟا ﺔﻳﺮﻔﺼﻟا ﺮﻴﻏ ﻢﻴﻘﻟا ﻦﻣ ﺮﻴﺜآ ﻰﻠﻋ L4 ءيﺰﺟ يﻮﺘﺤﻳو .( 1-<br />

ﻦﺘﺳوأ جذﻮﻤﻧأ)<br />

ﺔﻴﺒﻳﺮﺠﺘﻟا ﻪﺒﺷ AM1<br />

.( NLO)<br />

ﺔﻴﻄﺨﻟا ﺮﻴﻏ<br />

*<br />

Corresponding Author:<br />

E-mail: i_shoaie@yahoo.com<br />

Paper Received October 4, 2008; Paper Rewritten April 4, 2009; Paper Accepted October 1, 2009<br />

January 2010 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A<br />

53


54<br />

Iran Sheikhshoaie, Samira Saeednia<br />

ABSTRACT<br />

Multifunctional Schiff base lig<strong>and</strong>s 2-{(E)-[(2-hydroxypropyl)imino]methyl}phenol L1, 3-{(E)-[(2hydroxypropyl)imino]methyl}-2-naphthol<br />

L2, 2-[(E)-{[(2R)-2-hydroxypropyl]imino}methyl]-4-[(E)phenyldiazenyl]phenol<br />

L3, <strong>and</strong> 2-[(E)-{[(2R)-2-hydroxypropyl]imino}methyl]-4-[(E)-(4nitrophenyldiazenyl)]phenol<br />

L4 (Figure 1) were synthesized. These Schiff base compounds have been characterized<br />

by C, H, N elemental analysis, FT-IR, UV-Vis, <strong>and</strong> 1 H NMR spectroscopy. Molecular structures, electronic<br />

properties (charges), <strong>and</strong> hyperpolarizabilities of compounds L1–L4 were modeled with the semi-empirical AM1<br />

(Austin Model 1) method. The L4 molecule contains a lot of non-zero ß values revealing microscopic non-linear<br />

optic (NLO) properties.<br />

Key words: Schiff base, semi-empirical calculations, NLO property, ONO-tridentate lig<strong>and</strong>, amino-2-propanol, AM1<br />

method<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A January 2010


Iran Sheikhshoaie, Samira Saeednia<br />

SYNTHESIS, CHARACTERIZATION AND NONLINEAR OPTICAL PROPERTIES OF<br />

FOUR NOVEL SCHIFF BASE COMPOUNDS<br />

1. INTRODUCTION<br />

Schiff bases derived from the reaction of aromatic aldehydes <strong>and</strong> aliphatic or aromatic amines represent an<br />

important series of widely-studied organic lig<strong>and</strong>s. The chemistry of Schiff bases is a field that is being noticed.<br />

These compounds <strong>and</strong> their metal complexes had a variety of applications, including biological [1–4], clinical [5–8],<br />

analytical [9–12] <strong>and</strong> industrial [13]. They also play important roles in catalysis [14–20].<br />

The organic molecules which contain both conjugated bonds <strong>and</strong> acceptor group on one side <strong>and</strong> a donor group<br />

on the other side are known as nonlinear optical (NLO) materials [21]. A large amount of organic compounds have<br />

been studied as NLO materials [22]. It is obvious that the first <strong>and</strong> second hyperpolarizabilities (NLO property) in<br />

The donor <strong>and</strong> acceptor groups have an important role in the first <strong>and</strong> second hyperpolarizabilties of the π-electron<br />

systems increase, if the donor <strong>and</strong> acceptor groups become more powerful [23]. Organic molecules with π-electron<br />

delocalization are currently of wide interest as NLO materials in optical switches <strong>and</strong> NLO devices [24]. Materials<br />

possessing nonlinear optical properties change the propagation characteristics (phase, frequency, amplitude,<br />

polarization, etc.) of the incident light. Nonlinear optics has found many applications in the communications <strong>and</strong><br />

photonic industries. Optical switching <strong>and</strong> memory by NLO effects, which depend on light intensity, are expected to<br />

result in the realization of advanced optical devices in optical fibre communication (OFC) <strong>and</strong> optical computing,<br />

which makes the maximum use of light characteristics such as parallel <strong>and</strong> spatial processing capabilities <strong>and</strong> high<br />

speed.<br />

Quantum chemistry calculations have been shown to be useful in the description of the relationship among the<br />

electronic structure of the molecular systems <strong>and</strong> their nonlinear optical response [25,26]. The length of bonding<br />

conjugation, the nature of heteroatom participating in this bonding conjugation, the strength of donor <strong>and</strong> acceptor<br />

groups linked to the bridge, the lowest energy electronic absorption maximum, the molecular asymmetry, <strong>and</strong> the<br />

effect of geometry con<strong>for</strong>mation, have been considered among the parameters <strong>for</strong> the optimization of the first <strong>and</strong><br />

second hyperpolarizabilities [27,28]. On the other h<strong>and</strong>, theoretical calculations can be useful to describe the<br />

relationship between the electronic structure of molecular systems <strong>and</strong> their nonlinear optical (NLO) response. For<br />

the theoretical second optical hyperpolarazibility calculation of the selected systems, the structures were optimized<br />

by Austin model 1 (AM1) [29] by using the MOPAC software [30].<br />

Here we present the synthesis, spectroscopic characterization, <strong>and</strong> molecular modeling by the semi-empirical<br />

AM1 method of tridentate Schiff base compounds L1-L4 (Figure 1).<br />

H<br />

3<br />

6<br />

4<br />

N<br />

5<br />

2<br />

OH<br />

1<br />

N<br />

N<br />

H<br />

H<br />

CH3 7<br />

OH<br />

9<br />

L1 L2<br />

3<br />

8<br />

6<br />

4<br />

N<br />

5<br />

2<br />

OH<br />

1<br />

H<br />

8<br />

CH3 7<br />

OH<br />

9<br />

O 2 N<br />

January 2010 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A<br />

H<br />

N<br />

N<br />

6<br />

4<br />

N<br />

5<br />

2<br />

OH<br />

1<br />

L3<br />

L4<br />

Figure 1. The molecular structures of L1, L2, L3, <strong>and</strong> L4 Schiff base compounds<br />

3<br />

H<br />

3<br />

H<br />

8<br />

CH3 7<br />

OH<br />

9<br />

6<br />

4<br />

N<br />

5<br />

2<br />

OH<br />

1<br />

H<br />

8<br />

CH3 7<br />

OH<br />

9<br />

55


56<br />

Iran Sheikhshoaie, Samira Saeednia<br />

2. EXPERIMENTAL SECTION<br />

2.1. Reagents <strong>and</strong> Techniques<br />

All chemicals <strong>and</strong> solvents were purchased from Aldrich or Merck Chemical Companies <strong>and</strong> were used as<br />

received without further purification. Elemental (C, H, N) analyses were carried out by st<strong>and</strong>ard methods. The FT-IR<br />

spectra (KBr disk) were recorded on a Shimadzu DR-8001 spectrophotometer in the range of 400–4000 cm -1 . In this<br />

study, to calculate dipole moments <strong>and</strong> all the components of the hyperpolarizability, the origin of the Cartesian<br />

coordinate system (x, y, z) = ( 0, 0, 0) has been chosen at the center of mass of each Schiff base in Figure 1.<br />

2.2. Preparation of L1-L4 Schiff Base Compounds<br />

2-{(E)-[(2-hydroxypropyl)imino]methyl}phenol L1 was prepared by condensation of 2-hydroxy-1salicylaldehyde<br />

(0.01 mol 1.22g) <strong>and</strong> 1-amino-2-propanol (0.01 mol 0.75 g) in 40 ml ethanol. The reaction m p<br />

46°C, 85% yields. Found: C, 66.91; H, 7.11; N, 7.69. C10H13NO2; C, 67.039; H, 7.262; N, 7.821%. L2, L3, <strong>and</strong><br />

L4 Schiff base compounds were also synthesized with the same method <strong>and</strong> their important properties are shown in<br />

Table 1. Relevant results of the FT-IR measurements (b<strong>and</strong> assignments) are tabulated in Table 2.<br />

Table 1. Some Important Properties With C. H. N. Analysis of the L1-L4 Schiff Base Compounds<br />

Compound<br />

Yield Found (calcd) (%)<br />

Formula<br />

(<strong>for</strong>mula) Color (%) C H N weight(gmol -1 Melting point<br />

) (°C)<br />

L1<br />

C10H13NO2<br />

L2<br />

C14H15NO2<br />

L3<br />

C16H17N3O2<br />

L4<br />

C16H16N4O4<br />

Yellow 85 66.91<br />

( 67.039)<br />

Yellow 78<br />

73.11<br />

(73.363)<br />

Orange 82 67.78<br />

(67.844)<br />

Red 85 58.51<br />

(58.536)<br />

7.11<br />

(7.262)<br />

6.43<br />

(6.550)<br />

5.94<br />

(6.007)<br />

4.83<br />

(4.878)<br />

7.69<br />

(7.821)<br />

5.98<br />

(6.113)<br />

14.86<br />

(14.840)<br />

17.11<br />

(17.073)<br />

179 46-48<br />

229 118-120<br />

283 123<br />

328 180<br />

Table 2. Some Important Absorption B<strong>and</strong>s in the FT-IR Spectra (400-4000 cm -1 )<br />

<strong>for</strong> L1-L4 Schiff Base Compounds<br />

Schiff base νC=N (cm -1 ) νOH (cm -1 ) νC-O(phenolic) (cm -1 )<br />

3. UV-VIS SPECTROSCOPY<br />

L1 1641 3354 1236<br />

L2 1613 3348 1227<br />

L3 1666 3280 1232<br />

L4 1620 3289 1230<br />

Apart from the NLO responses it is very helpful to check spectroscopic absorbance in the appropriate<br />

wavelength. The wavelengths obtained by UV-Vis spectra analysis can be helpful in planning the synthesis of the<br />

promising NLO materials [31].<br />

The UV-Vis spectra of the compounds L1-L4 have been studied in dimethyl<strong>for</strong>mamid (DMF). The maximum<br />

absorption wavelengths <strong>for</strong> L1-L4 compounds are shown in Table 3.<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A January 2010


Iran Sheikhshoaie, Samira Saeednia<br />

Table 3. The Maximum Absorption Wavelengths (λ, nm) Respectively,<br />

Obtained from UV-Vis Spectral Analysis of L1-L4 Compounds in Dimethyl<strong>for</strong>mamid (DMF)<br />

Compound λ, nm (coefficient)<br />

L1<br />

L2<br />

L3<br />

L4<br />

271.7(0.366)<br />

2<strong>60</strong>.5(0.445)<br />

248.790.420)<br />

296.6(0.503)<br />

294.9(0.423)<br />

285.3(0.463)<br />

334.9(0.803)<br />

325.5(0.652)<br />

283.9(0.620)<br />

259.2(0.493)<br />

252.0(0.699)<br />

385.7(0.940)<br />

358.3(0.853)<br />

311.1(0.582)<br />

258.5(0.629)<br />

243.5(0.579)<br />

4. 1 H NMR SPECTROSCOPY<br />

The 1 HNMR data <strong>for</strong> L1-L4 compounds are shown in Table 4.<br />

Table 4. 1 HNMR Data (ppm) <strong>for</strong> L1-L4 Compounds in CDCl3<br />

Compound δOH δCH=N δAr-H δCH δCH2 δCH3<br />

L1 8.62 8.40 (7.09-7.25) 3.74 4.12 1.35<br />

L2 8.69 8.80 (7.07-8.02) 3.71 4.3 1.31<br />

L3 8.25 8.45 (7.11-8.03) 3.77 4.6 1.33<br />

L4 7.20 8.46 (7.11-7.91) 3.74 3.91 1.36<br />

It is found that the maximum wavelengths of the π→π* transition <strong>for</strong> all these compounds (L1- L4) are almost<br />

within 271–334 nm (see Table 3). The maximum absorption wavelengths of the L4 compound found shorter than<br />

400 nm show that such a compound might have non-zero rather high first hyperpolarazibility.<br />

5. COMPUTATIONAL METHOD<br />

Quantum chemical calculations <strong>for</strong> Schiff bases L1-L4 were done by using the AM1 semi-empirical method with<br />

the MOPAC program package. All geometries were pre-optimized by molecular mechanics <strong>and</strong> then fully optimized<br />

by the AM1 semi-empirical method. The first hyperpolarizability (βµ value) <strong>and</strong> total dipole moment (µ) <strong>for</strong> all<br />

compounds were calculated by AM1 semi-empirical method (see Table 5).<br />

The vector part of the molecular hyperpolarizability, ß-V, is calculated according to the following equations:<br />

β –V = (βx 2 +βx 2 +βx 2 ) 1/2 (1)<br />

where βi (i = x, y, z) is given by,<br />

ßi = (1/3) ∑j=x,y,z (βijj + βjij + βjji ) (2)<br />

January 2010 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A<br />

57


58<br />

Iran Sheikhshoaie, Samira Saeednia<br />

Table 5. The First Hyperpolarazibilitie (Esu.) <strong>and</strong> Dipole Moment (Debye) of L1-L4 Schiff Base Compounds<br />

by AM1 Semi-Empirical Method<br />

Schiff base Hyperpolarizability<br />

(Esu.)<br />

Dipole moment<br />

(Debye)<br />

L1 0.0032×10 -30 0.980<br />

L2 0.124×10 -30 1.325<br />

L3 0.012×10 -30 0.920<br />

L4 15.418×10 -30 6.244<br />

Table 6 shows the net charge density on O1, N5, <strong>and</strong> O9 atoms (coordination sites) <strong>for</strong> L1-L4 Schiff base<br />

compounds computed by the AM1 semi-empirical method.<br />

Table 6. Calculated Charge Density on Coordination Sites of L1-L4 Schiff Base Compounds<br />

by AM1 Semi-Empirical Method<br />

Schiff base O1 N5 O9<br />

L1 -0.259 -0.223 -0.326<br />

L2 -0.261 -0.229 -0.337<br />

L3 -0.253 -0.238 -0.336<br />

L4 -0.249 -0.236 -0.335<br />

6. RESULTS AND DISCUSSION<br />

We have designed <strong>and</strong> synthesized four derivatives of salicylaldehyde <strong>and</strong> naphtaldehyde Schiff base compounds<br />

(L1-L4). All four Schiff base compounds show the characteristic azomethine (-CH=N), OH, <strong>and</strong> C-O phenolic<br />

vibration at 1620–1641, 3354–3389, <strong>and</strong> 1236–1230 cm -1 , respectively (see Table 2). The molecular first<br />

hyperpolarizabilities of these compounds have been calculated by using the AM1 semi-empirical method. The<br />

computational approach allows the determination of molecular NLO properties as an inexpensive way to design<br />

molecules by analyzing their potential be<strong>for</strong>e synthesis. Table 5 shows the L4 compound has a large first<br />

hyperpolarizabilities (β) or NLO property <strong>and</strong> dipole moment (µ), because the NO2 group plays an important role in<br />

the NLO property <strong>for</strong> this compound.<br />

In organic NLO molecules, the Schiff base, especially that derived from the reaction of salicyaldehyde with<br />

amines, have attracted interest [32], because of their relative delocalization of the π–electronic clouds. The donor-<br />

(π–electron bridge)-acceptor (D-π-A) structures, as a simple molecular model, have been successfully used in the<br />

development of second-order NLO compounds.<br />

The negative charge density on O(1), N(5), <strong>and</strong> O(9) atoms (see Figure 1 <strong>and</strong> Table 6) indicates that all L1-L4 Schiff<br />

base compounds have three coordination sites (O(2), N(5), <strong>and</strong> O(9)) <strong>for</strong> binding to the metal ions in the metal complex<br />

<strong>for</strong>mation.<br />

REFERENCES<br />

[1] K. P. Balasubramanian, et al., “Synthesis, Spectral, Catalytic, <strong>and</strong> Antimicrobial Studies of PPh3/AsPh3<br />

Complexes of Ru(II) With Dibasic Tridentate O, N, S Donor Lig<strong>and</strong>s”, Spectrochimica Acta Part A:; Molecular<br />

<strong>and</strong> Biomolecular Spectroscopy, 68(2007), p. 50.<br />

[2] M. Tümer, D. Ekinci, <strong>and</strong> F. A. Tümer, “Synthesis, Characterization <strong>and</strong> Properties of Some Divalent Metal(II)<br />

Complexes: Their Electrochemical, Catalytic, Termal <strong>and</strong> Antimicrobial Activity Studies”, Spectrochimica Acta<br />

Part A: Molecular <strong>and</strong> Biomolecular Spectroscopy, 67(2007), p. 916.<br />

[3] K. P. Balasubramanian, et al., “Synthesis, Characterization, Electrochemistry, Catalytic, <strong>and</strong> Biological Activities<br />

of Ruthenium(III) Complexes With Bidentate N, O/S Donor Lig<strong>and</strong>s”, Spectrochimica Acta Part A: Molecular <strong>and</strong><br />

Biomolecular Spectroscopy, 65(2006), p. 678.<br />

[4] Lv Jian, et al., “Synthesis, <strong>and</strong> Biological Activity of Cobalt(II) <strong>and</strong> Copper(II) Complexes of Valin-Derivated<br />

Schiff Base”, <strong>Journal</strong> of Inorganic Biochemistry, 100(2006), p. 888.<br />

[5] Z. Huang, et al., “A Comparitive Study on Half-Inhibitory Concentration of Schiff Base Metal Complexes Reacting<br />

With Bacteria”, Thermochimica Acta, 320(1998), p. 121.<br />

[6] T. Taguchi, et al., “In Vivo Formation of a Schiff Base of Aminoguanidine With Pyridoxal Phosphate”, J. Am. Soc.<br />

Nephrol, 13(2002), p. 2478.<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A January 2010


Iran Sheikhshoaie, Samira Saeednia<br />

[7] R. G. Khalifah, J. W. Baynes, <strong>and</strong> B. G. Hudson, “Novel Post-Amadori Inhibitors of Advanced Glycation<br />

Reactions”, Biochemical <strong>and</strong> Biophysical Research Communications, 257(1999), p. 251.<br />

[8] S. P. Ashish, D. Gupta, <strong>and</strong> R. Prasad, “Arabinogalactan Protein From Arachis Hypogaea Role as Carrier in Drug-<br />

Formulations”, International <strong>Journal</strong> of Pharmaceutics, 333(2007) p. 79.<br />

[9] M. B. Gholiv<strong>and</strong>, et al., “Highly Selective <strong>and</strong> Sensitive Copper Membrane Electrode Based on the New<br />

Synthesized Schiff Base”, Talanta, 73(2007), p. 553.<br />

[10] N. M. Sivasankaran <strong>and</strong> J. R. Selwin, “Synthesis <strong>and</strong> Characterization of Co(II), Ni(II), Cu(II) <strong>and</strong> Zn(II)<br />

Complexes of Tridentate Schiff Base Derived From Vanillin <strong>and</strong> DL-α-Aminobutyric Acid”, Spectrochimica Acta<br />

Part A: Molecular <strong>and</strong> Biomolecular Spectroscopy, 70(2007), p. 749.<br />

[11] A. R. Fakhari, A. R. Khorrami, <strong>and</strong> H. Naeimi, “Synthesis <strong>and</strong> Analytical Application of a Novel Tetradentate<br />

N2O2 Schiff Base as a Chromogenic Reagent <strong>for</strong> Determination of Nickel in Some Natural Food Samples”,<br />

Talanta, 66(2005), p. 813.<br />

[12] M. H. Mashhadizadeh, E. Pour Taheri, <strong>and</strong> I. Sheikhshoaie, “A Novel Mn +2 PVC Membrane Electrode Based on a<br />

Recently Synthesized Schiff Base”, Talanta, 72(2007), p. 1088.<br />

[13] T. L. Yang <strong>and</strong> W. W. Qin, “Synthesis <strong>and</strong> Novel Fluorescence Phenomenon of Terbium Complex With a New<br />

Schiff Base Lig<strong>and</strong> Derived from Condensation of Triaminotriethylamine <strong>and</strong> 3-Indolemethanal”, Spectrochimica<br />

Acta Part A: Molecular <strong>and</strong> Biomolecular Spectroscopy, 67(2007), p. 568.<br />

[14] G. Venkatachalam <strong>and</strong> R. Ramesh, “Catalytic <strong>and</strong> Biological Activities of Ru(III) Mixed Lig<strong>and</strong> Complexes<br />

Containing N, O Donor of 2-Hydroxy-1- Naphthylideneimines”, Spectrochimica Acta Part A: Molecular <strong>and</strong><br />

Biomolecular Spectroscopy, 61(2005), p. 2081.<br />

[15] I. K. Biernacka, et al., “Direct Immobilisation Versus Covalent Attachment of a Mn(III) Salen Complex onto an<br />

Al-Pillared Clay <strong>and</strong> Influence in the Catalytic Epoxidation of Styrene”, <strong>Journal</strong> of Molecular Catalysis A:<br />

Chemica, 278(2007), p. 82.<br />

[16] C. Virginie, et al., “Design <strong>and</strong> Synthesis of a Tridentate Lig<strong>and</strong> <strong>for</strong> Asymmetric Bifunctional Catalysis”,<br />

Tetrahedron Letters, 48(2007), p. 5561.<br />

[17] X.-H. Lu, et al., “Synthesis, Characterization <strong>and</strong> Catalytic Property of Tetradentate Schiff-Base Complexes <strong>for</strong> the<br />

Epoxidation on Styrene”, <strong>Journal</strong> of Molecular Catalysis A: Chemical, 250(2006), p. 62.<br />

[18] K. E. Edmund, et al., “Chiral Dioxovanadium(V) Complexes With Single Condensation Products of 1,2-<br />

Diaminocyclohexane <strong>and</strong> Aromatic O-Hydroxycarbonyl Compounds: Synthesis, Characterization, Catalytic<br />

Properties <strong>and</strong> Structure”, Polyhedron, 26(2007), p. 2559.<br />

[19] T. I. Danilova, et al., “Planar- Chiral Salen <strong>and</strong> Hemisalen [2,2] Paracyclophane Lig<strong>and</strong>s <strong>for</strong> Asymmetric Diethyl<br />

Zinc Addition to Aldehydes”, Tetrahedron: Asymmetry, 15(2004), p. 223.<br />

[20] J. Tong, Z. Li, <strong>and</strong> C. Xia, “Highly Efficient Catalysts of Chitosan–Schiff Base Co(ii) <strong>and</strong> Pd(II) Complexes <strong>for</strong><br />

Aerobic Oxidation of Cyclohexane in the Absence of Reductance <strong>and</strong> Solvents”, <strong>Journal</strong> of Molecular Catalysis A:<br />

Chemical, 231(2005), p. 197.<br />

[21] C. G. Liu, et al., “DFT Study on Second-Order Nonlinear Optical Properties of a Series of Mono Schiff Base M(II)<br />

(M=Ni, Pd, Pt) Complexes”, Chemical Physics Letters, 429(2006), p. 570.<br />

[22] P. G. Lacroix, et al., “Synthesis, Crystal Structures <strong>and</strong> Molecular Hyperpolarizibilities of a New Schiff Base<br />

Lig<strong>and</strong> <strong>and</strong> its Copper(II). Nickel(II) <strong>and</strong> Cobalt(II) Metal Complexes”, Inorganica Chimica Acta, 357(2004),<br />

p. 3825.<br />

[23] I. Sheikhshoaie <strong>and</strong> W. M. F. Fabian, “Quantum Chemical Study on the Electronic Structure <strong>and</strong> Second-Order<br />

Nonlinear Optical Properties of Salen-Type Schiff Bases”, Dyes <strong>and</strong> Pigments, 70(2006), p. 91.<br />

[24] L. Zhao, et al., “Multistate/Multifunctional Switches Based on Phtochromic Schiff Base”, Spectrochimica Acta<br />

Part A: Molecular <strong>and</strong> Biomolecular Spectroscopy, 67(2007), p. 1120.<br />

[25] J. L. Bredas, et al., “Third-Order Nonlinear Optical Response in Organic Materials: Theoretical <strong>and</strong> Experimental<br />

Aspects”, Chemical Review, 94(1994), p. 243.<br />

[26] Y. P. Tian, et al., “Synthesis, Crystal Structure, <strong>and</strong> Second-Order Optical Nonlinearity of Bis(2-<br />

Chlorobenzaldehyde Thiosemicarbazone) Cadmium Halides (CdL2X2; X=Br, I)”, Inorganic Chemistry, 36(1997),<br />

p. 1247.<br />

[27] M. Jalali-Heravi, A. A. Kh<strong>and</strong>ar, <strong>and</strong> I. Sheikshoaie, “Characterization <strong>and</strong> Theoretical Investigation of the<br />

Electronic Properties <strong>and</strong> Second-Order Nonlinearity of Some Three Dentate Salicylaldiminato Schiff Base<br />

Lig<strong>and</strong>s”, SpectroChimica Acta, Part A, 56(2000), p. 1575.<br />

January 2010 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A<br />

59


<strong>60</strong><br />

Iran Sheikhshoaie, Samira Saeednia<br />

[28] C. W. Dirk, et al., “A Simplified Three-Level Model Describing the Molecular Third-Order Nonlinear Optical”,<br />

International <strong>Journal</strong> of Quantum Chemistry, 43(1992), p. 27.<br />

[29] M. J. S. Dewar Michael, et al., “Development <strong>and</strong> Use of Quantum Mechanical Molecular Models. 76. AM1: A<br />

New General Purpose Quantum Mechanical Molecular Model”, <strong>Journal</strong> of American Chemical Society, 107(1985),<br />

p. 3902.<br />

[30] J. J. P. Stewart, “MOPAC, A Semiempirical Molecular Orbital Program” QCPE, 455(1983), Version 6, (1990).<br />

[31] S. Di Bella, et al., “Synthesis, Characterization, Optical Spectroscopic, Electronic Structure, <strong>and</strong> Second-Order<br />

Nonlinear Optical (NLO) Properties of a Novel Class of Donor-Acceptor Bis(Salicylaldiminato)Nickel(II) Schiff<br />

Base NLO Chromophores”, J. Am. Chem. Soc., 119(1997), p. 9550.<br />

[32] M. Jalali-Heravi, A. A. Kh<strong>and</strong>ar, <strong>and</strong> I. Sheikshoaie, “A Theoretical Investigation of the Structure, Electronic<br />

Properties <strong>and</strong> Second-Order Nonlinearity of Some Azo Schiff Base Lig<strong>and</strong>s <strong>and</strong> Their Monoanions”,<br />

Spectrochimica Acta Part A: Molecular <strong>and</strong> Biomolecular Spectroscopy, 55(1999), p. 2537.<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 35, Number 1A January 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!