Weak Periodic Solutions of Some Quasilinear Parabolic Systems ...

Weak Periodic Solutions of Some Quasilinear Parabolic Systems ... Weak Periodic Solutions of Some Quasilinear Parabolic Systems ...

ajse.kfupm.edu.sa
from ajse.kfupm.edu.sa More from this publisher
03.08.2013 Views

WEAK PERIODIC SOLUTIONS OF SOME QUASILINEAR PARABOLIC SYSTEMS WITH DATA MEASURES** * Address for correspondence: Cadi Ayyad University Faculté des Sciences et Techniques Gueliz Département de Mathématiques et Informatique B.P.618 Marrakech, Morocco. e-mail: alaa@fstg-marrakech.ac.ma † Cadi Ayyad University Faculté des Sciences Semlalia Département de Mathématiques, B.P.2390 Marrakech, Morocco. e-mail: iguernane@ucam.ac.ma N. Alaa* and M. Iguernane† Cadi Ayyad University Morocco N. Alaa and M. Iguernane ﺔــﺻﻼﺨﻟا ﻊﻣ ﺔﯿﻄﺨﻟا ﮫﺒﺷ ﺔﯿﻟﻮﻟﺪﮭﻟا ﺔﻤﻈﻧﻷا ﺾﻌﺒﻟ ﺔﻔﯿﻌﺿ ﺔﯾرود لﻮﻠﺣ دﻮﺟو ﺔﺳارد ﻰﻟإ ﺔﻗرﻮﻟا هﺬھ فﺪﮭﺗ .ﺔـﻘـﺘﺸﻤﻠﻟ ﺔﺒﺴﻨﻟﺎﺑ ﻲﻄﺧ ﺮﯿﻏ جﺮﺣ ءﺎﻤﻧو ، ﺔﺳﺎﻘﻣ تﺎﯿﻄﻌﻣ ﻖﺳﺎﻨﺗ ماﺪﻌﻧﻻ ً اﺮﻈﻧ ﺎﮭﺗﺎﻘﺘﺸﻣ و لﻮﻠﺤﻟا تﺎﻤﯿﯿﻘﺗ ﻰﻠﻋ ةﺪﻤﺘﻌﻤﻟا ﺔﯿﻜﯿﺳﻼﻜﻟا ﺔﻘﯾﺮﻄﻟا ﻖﯿﺒﻄﺗ ﺎﻨھ ﺎﻨﻨﻜﻤﯾ ﻻو ABSTRACT : ﻦﯿﺘﯿﻟﺎﺘﻟا ﻦﯿﺘﺠﯿﺘﻨﻟا ﻰﻟإ تّدأ ىﺮﺧأ ﺐﯿﻟﺎﺳأ ﻰﻠﻋ ﺎﻧﺪﻤﺘﻋا ﻞﺑﺎﻘﻤﻟﺎﺑو ،ﺔﺳﺎﻘﻤﻟا تﺎﯿﻄﻌﻤﻟا .ﺔﻔﯿﻌﺿ ﺔﯾرود لﻮﻠﺣ ﻰﻠﻋ لﻮﺼﺤﻟا ﻞﺟأ ﻦﻣ ﺔﺳﺎﻘﻤﻟا تﺎﯿﻄﻌﻤﻟا ﻰﻠﻋ ﺔﻣزﻻ طوﺮﺷ دﻮﺟو • .يرود ﻒﯿﻌﺿ ﻞﺣ دﻮﺟﻮﻟ ﻲﻔﻜﯾ يرود قﻮﻓ ﻒﯿﻌﺿ ﻞﺣ دﻮﺟو • The goal of this paper is to study existence of weak periodic solutions for some quasilinear parabolic systems with data measures and critical growth nonlinearity with respect to the gradient. The classical techniques based on C α -estimates for the solution or its gradient cannot be applied because of the lack of regularity and a new approach must be considered. Various necessary conditions are obtained on the data for existence. The existence of at least one weak periodic solution is proved under the assumption that a weak periodic super solution is known. Key Words: quasilinear systems, periodic, parabolic, convex nonlinearities, data measures, nonlinear capacities. MSC 2000 classification: 35K55, 35K57, 35B10, 35D05, 31C15. ** This work was supported by the “Action Integrée MA/33/02” program between the University Cadi Ayyad FST Gueliz of Marrakech-Morocco and l’ENS of Cachan, Bretagne, France July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 257

WEAK PERIODIC SOLUTIONS OF<br />

SOME QUASILINEAR PARABOLIC SYSTEMS WITH<br />

DATA MEASURES**<br />

* Address for correspondence:<br />

Cadi Ayyad University Faculté des Sciences et Techniques Gueliz<br />

Département de Mathématiques et Informatique<br />

B.P.618 Marrakech, Morocco.<br />

e-mail: alaa@fstg-marrakech.ac.ma<br />

† Cadi Ayyad University Faculté des Sciences Semlalia<br />

Département de Mathématiques, B.P.2390 Marrakech, Morocco.<br />

e-mail: iguernane@ucam.ac.ma<br />

N. Alaa* and M. Iguernane†<br />

Cadi Ayyad University<br />

Morocco<br />

N. Alaa and M. Iguernane<br />

ﺔــﺻﻼﺨﻟا<br />

ﻊﻣ ﺔﯿﻄﺨﻟا ﮫﺒﺷ ﺔﯿﻟﻮﻟﺪﮭﻟا ﺔﻤﻈﻧﻷا ﺾﻌﺒﻟ ﺔﻔﯿﻌﺿ ﺔﯾرود لﻮﻠﺣ دﻮﺟو ﺔﺳارد ﻰﻟإ ﺔﻗرﻮﻟا هﺬھ فﺪﮭﺗ<br />

.ﺔـﻘـﺘﺸﻤﻠﻟ ﺔﺒﺴﻨﻟﺎﺑ ﻲﻄﺧ ﺮﯿﻏ جﺮﺣ ءﺎﻤﻧو ، ﺔﺳﺎﻘﻣ تﺎﯿﻄﻌﻣ<br />

ﻖﺳﺎﻨﺗ ماﺪﻌﻧﻻ ً اﺮﻈﻧ ﺎﮭﺗﺎﻘﺘﺸﻣ و لﻮﻠﺤﻟا تﺎﻤﯿﯿﻘﺗ ﻰﻠﻋ ةﺪﻤﺘﻌﻤﻟا ﺔﯿﻜﯿﺳﻼﻜﻟا ﺔﻘﯾﺮﻄﻟا ﻖﯿﺒﻄﺗ ﺎﻨھ ﺎﻨﻨﻜﻤﯾ ﻻو<br />

ABSTRACT<br />

: ﻦﯿﺘﯿﻟﺎﺘﻟا ﻦﯿﺘﺠﯿﺘﻨﻟا ﻰﻟإ تّدأ ىﺮﺧأ ﺐﯿﻟﺎﺳأ ﻰﻠﻋ ﺎﻧﺪﻤﺘﻋا ﻞﺑﺎﻘﻤﻟﺎﺑو ،ﺔﺳﺎﻘﻤﻟا تﺎﯿﻄﻌﻤﻟا<br />

.ﺔﻔﯿﻌﺿ ﺔﯾرود لﻮﻠﺣ ﻰﻠﻋ لﻮﺼﺤﻟا ﻞﺟأ ﻦﻣ ﺔﺳﺎﻘﻤﻟا تﺎﯿﻄﻌﻤﻟا ﻰﻠﻋ ﺔﻣزﻻ طوﺮﺷ دﻮﺟو •<br />

.يرود ﻒﯿﻌﺿ ﻞﺣ دﻮﺟﻮﻟ ﻲﻔﻜﯾ يرود قﻮﻓ ﻒﯿﻌﺿ ﻞﺣ دﻮﺟو •<br />

The goal <strong>of</strong> this paper is to study existence <strong>of</strong> weak periodic solutions for some<br />

quasilinear parabolic systems with data measures and critical growth nonlinearity with<br />

respect to the gradient. The classical techniques based on C α -estimates for the solution<br />

or its gradient cannot be applied because <strong>of</strong> the lack <strong>of</strong> regularity and a new approach<br />

must be considered. Various necessary conditions are obtained on the data for existence.<br />

The existence <strong>of</strong> at least one weak periodic solution is proved under the assumption that<br />

a weak periodic super solution is known.<br />

Key Words: quasilinear systems, periodic, parabolic, convex nonlinearities, data<br />

measures, nonlinear capacities.<br />

MSC 2000 classification: 35K55, 35K57, 35B10, 35D05, 31C15.<br />

** This work was supported by the<br />

“Action Integrée MA/33/02” program between the<br />

University Cadi Ayyad FST Gueliz <strong>of</strong> Marrakech-Morocco and<br />

l’ENS <strong>of</strong> Cachan, Bretagne, France<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 257


258<br />

N. Alaa and M. Iguernane<br />

WEAK PERIODIC SOLUTIONS OF SOME QUASILINEAR PARABOLIC SYSTEMS<br />

WITH DATA MEASURES<br />

1. INTRODUCTION<br />

<strong>Periodic</strong> behavior <strong>of</strong> solutions <strong>of</strong> parabolic boundary value problems arises in many biological, chemical,<br />

and physical systems, and various methods have been proposed for the study <strong>of</strong> the existence and qualitative<br />

property <strong>of</strong> periodic solutions. Most <strong>of</strong> the work in the earlier literature is devoted to scalar semilinear parabolic<br />

equations under either Dirichlet or Neumann boundary conditions (cf. [1–13]). All these works examine the<br />

classical solutions. In recent years attention has been given to weak solutions <strong>of</strong> parabolic equations under linear<br />

boundary conditions, and different methods for the existence problem have been used (cf [14–26]).<br />

In this work we are concerned with the periodic parabolic problem<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

ut − d1∆u = f (t, x, u, v, ∇u, ∇v) + λµ in QT<br />

vt − d2∆v = g (t, x, u, v, ∇u, ∇v) + λ in QT<br />

u (t, x) = v(t, x) = 0 on <br />

T<br />

u (0, x) = u(T, x) and v (0, x) = v(T, x) in Ω<br />

where Ω is an open bounded subset <strong>of</strong> R N , N ≥ 1, with smooth boundary ∂Ω, QT = [0, T ] × Ω,<br />

<br />

T = [0, T ] × ∂Ω, T > 0, d1, d2 > 0, λ are given numbers, −∆ denotes the Laplacian operator on L 1<br />

with Dirichlet boundary conditions, the perturbation f, g : QT × R × R × R N × R N → [0, +∞) is measurable<br />

and continuous with respect to u, v, ∇u and ∇v, and µ, are given nonnegative measures on QT .<br />

The work by Amann [1] is concerned with the problem (1.1) under the hypothesis that µ, are regular enough<br />

and the growth <strong>of</strong> the nonlinearities f and g with respect to the gradient is sub-quadratic, namely<br />

<br />

|f (t, x, u, v, ∇u, ∇v)| + |g (t, x, u, v, ∇u, ∇v)| ≤ c (|u| + |v|) |∇u| 2 + |∇v| 2 <br />

+ 1 .<br />

We obtain the existence <strong>of</strong> maximal and minimal solutions in C 1 (Ω) by using the method <strong>of</strong> sub- and supersolutions<br />

and Schauder’s fixed point theorem in a suitable Banach space (see also [2], [27]).<br />

In this work we are interested in situations where µ, are irregular and where the growth <strong>of</strong> f and g with<br />

respect to (∇u, ∇v) is arbitrary and, in particular, larger than |∇u| 2 + |∇v| 2 for large |∇u| + |∇v|. The fact that<br />

µ, are not regular requires that one deals with “weak” solutions for which ∇u, ∇v, ut, vt and even u, v itself are<br />

not bounded. As a consequence the classical theory using C α -a priori estimates to prove existence fails. Let us<br />

make this more precise on a model problem like<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

ut − d1∆u + au = |∇v| p + λµ in QT<br />

vt − d2∆v + bv = |∇u| q + λ in QT<br />

u (t, x) = v(t, x) = 0 on <br />

T<br />

u (0, x) = u(T, x) and v (0, x) = v(T, x) in Ω ,<br />

where |.| denotes the R N -euclidean norm a, b ≥ 0 and p, q ≥ 1.<br />

2<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005<br />

(1.1)<br />

(1.2)


N. Alaa and M. Iguernane<br />

If p, q ≤ 2, the method <strong>of</strong> sub- and super-solutions can be applied to prove existence in (1.2) if µ and <br />

are regular enough. For instance, if a, b > 0 and µ, ∈ C α (QT ), then (1.2) has a solution since w ≡ 0 is a<br />

sub-solution and w(t, x) = ( w, w) is a super-solution <strong>of</strong> (1.2) (see Amann [1]), where ( w, w) is a solution <strong>of</strong> the<br />

elliptic system<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

a w − d1∆ w = |∇ w| p + λ µ ∞<br />

b w − d2∆ w = |∇ w| q + λ ∞<br />

in Ω<br />

in Ω<br />

w = w on ∂Ω .<br />

The situation is quite different if p, q > 2 : for instance a size condition is necessary on λµ and λ to have<br />

existence in (1.2) even when µ and are very regular, indeed we prove in Section 2.1 that there exists λ∗ < +∞<br />

such that (1.2) does not have any periodic solution for λ > λ∗ . On the other hand we obtain another critical<br />

value p∗ = 1 + 2<br />

N <strong>of</strong> the problem, indeed as proved in Section 2.2, existence in (1.2) with p, q > p∗ requires that<br />

µ and be regular enough.<br />

We prove in Section 3 that existence <strong>of</strong> a nonnegative weak periodic super solution implies existence <strong>of</strong> a<br />

nonnegative weak periodic solution in the case <strong>of</strong> sub quadratic growth. Obviously, the classical approach fails<br />

to provide existence since µ and are not regular enough and new techniques must be applied. We describe<br />

some <strong>of</strong> them here.<br />

To finish this paragraph, we recall the following notations and definitions:<br />

Notations:<br />

C ∞ 0 (QT ) = {ϕ : QT → R, indefinitely derivable with compact support in QT }<br />

Cb (Ω) = {ϕ : Ω → R, continuous and bounded in Ω}<br />

Mb (QT ) = {µ bounded Radon measure in QT }<br />

M +<br />

b (QT ) = {µ bounded nonnegative Radon measure in QT } ;<br />

Definition 1.1. Let σ ∈ C([0, T ] ; L1 (Ω)), we say that σ(0) = σ(T ) in Mb (Ω) if<br />

<br />

for all ϕ ∈ Cb (Ω) , lim (σ(t, x) − σ(T − t, x))ϕdx = 0.<br />

t→0<br />

Ω<br />

2. NECESSARY CONDITIONS FOR EXISTENCE<br />

Through this section we are given<br />

(H1) µ, are nonnegative finite measure on (0, T ) × Ω<br />

and f, g : [0, T ] × Ω × R N × R N → [0, +∞[ are such that<br />

(H2) f, g are measurable, almost everywhere (t, x) , (r, s) −→ f (t, x, r, s) , g(t, x, r, s) are continuous, convex.<br />

(H3) ∀r, s ∈ R N , f (., ., r, s) , g (., ., r, s) are integrable on [0, T ] × Ω.<br />

(H4) f (t, x, 0, 0) = g(t, x, 0, 0) = 0.<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 259<br />

3


260<br />

N. Alaa and M. Iguernane<br />

4<br />

For λ ∈ R, we consider the problem<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

u, v ∈ L 1 (0, T ; W 1,1<br />

0 (Ω)) ∩ C([0, T ] ; L 1 (Ω)), u, v ≥ 0 in QT<br />

f (t, x, ∇u, ∇v) , g (t, x, ∇u, ∇v) ∈ L 1 loc (QT )<br />

ut − d1∆u ≥ f (t, x, ∇u, ∇v) + λµ in D <br />

(QT )<br />

vt − d2∆v ≥ g (t, x, ∇u, ∇v) + λ in D <br />

(QT )<br />

u(0) = u(T ) and v(0) = v(T ) in Mb (Ω) .<br />

2.1. No Existence in Superquadratic Case<br />

We prove in this section, if (f (., ., r, s) , g (., ., r, s)) are superquadratic at infinity, then there exists λ ∗ < +∞<br />

such that (2.1) does not have any periodic solution for λ > λ ∗ . The techniques used here are similar to those<br />

in [14] for the parabolic problem with initial data measure. A rather sharp superquadratic condition on (f, g)<br />

is given next where the (t, x)-dependence is taken into account. We assume that there exists [ε, τ] open in<br />

[0, T ] , p, q > 2, and a constant c0 > 0 such that<br />

(H5) f (t, x, r, s) + g(t, x, r, s) ≥ c0(|r| p + |s| q ) almost every where (t, x) ∈ [ε, τ] ×Ω,<br />

(H6)<br />

<br />

[ε,τ]×Ω<br />

µ + > 0.<br />

Theorem 2.1. Assume that (H1) − (H6) hold. Then there exists λ ∗ < +∞ such that (2.1) does not have any<br />

solution for λ > λ ∗ .<br />

Pro<strong>of</strong>.<br />

Assume (u, v) is a solution <strong>of</strong> (2.1). By (H5), we have for ϕ ∈ C ∞ 0 ([0, T ] × Ω) , ϕ ≥ 0, and ϕ (ε) = ϕ (τ) = 0:<br />

and integrate to obtain<br />

<br />

< ut − d1∆u, ϕ > ≥ < f + λµ, ϕ > in D <br />

([ε, τ] × Ω)<br />

< vt − d2∆v, ϕ > ≥ < g + λ, ϕ > in D <br />

([ε, τ] × Ω)<br />

τ<br />

<br />

τ<br />

λ (µ + )ϕdxdt ≤<br />

Taking into account the equality<br />

ε<br />

Ω<br />

ϕt = −∆ (Gϕt) = −∆ (Gϕ) t ,<br />

ε<br />

<br />

Ω<br />

{d1∇u∇ϕ + d2∇v∇ϕ − c0(|∇u| p +<br />

|∇v| q )ϕ − (u + v)ϕt}dxdt .<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005<br />

(2.1)<br />

(2.2)<br />

(2.3)


where G is the Green Kernel on Ω, we obtain from (2.3):<br />

≤<br />

τ<br />

<br />

λ (µ + )ϕdxdt<br />

τ<br />

ε<br />

ε<br />

<br />

Ω<br />

Ω<br />

(d1∇u∇ϕ + d2∇v∇ϕ − c0(|∇u| p + |∇v| q )ϕ − ∇(u + v)∇ (Gϕ) t ) dxdt ;<br />

this can be extended for all ϕ ∈ C1 ([0, T ] ; L∞ (Ω)) ∩ L∞ <br />

We obtain:<br />

τ<br />

<br />

λ (µ + )ϕdxdt ≤<br />

ε<br />

Ω<br />

τ<br />

ε<br />

+ϕ<br />

<br />

Ω<br />

0, T ; W 1,∞<br />

0<br />

<br />

ϕ ∇u d1∇ϕ − ∇ (Gϕ) t − c0 |∇u|<br />

ϕ<br />

p<br />

<br />

<br />

∇v d2∇ϕ − ∇ (Gϕ) t − c0 |∇v|<br />

ϕ<br />

q<br />

<br />

dxdt ,<br />

N. Alaa and M. Iguernane<br />

<br />

(Ω) , ϕ ≥ 0, and ϕ (ε) = ϕ (τ) = 0.<br />

if we recall Young inequality ∀s, r ∈ R, ∀α > 0, there exists c > 0 such that sr ≤ c0 |r| α + c |s| α<br />

We see that (2.4) implies<br />

⎧<br />

τ<br />

<br />

τ<br />

<br />

λ (µ + )ϕdxdt ≤ c<br />

⎪⎨ ε Ω<br />

ε Ω<br />

⎪⎩<br />

∀ϕ ∈ C 1 ([0, T ] ; L ∞ (Ω)) ∩ L ∞<br />

ϕ ≥ 0 and ϕ (ε) = ϕ (τ) = 0.<br />

<br />

|d1∇ϕ − ∇ (Gϕ) t | p<br />

<br />

ϕ p −1<br />

0, T ; W 1,∞<br />

0<br />

+ |d2∇ϕ − ∇ (Gϕ) t | q<br />

ϕq <br />

dxdt<br />

−1<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 261<br />

<br />

(Ω)<br />

Let us prove that this implies that λ is finite (hence the existence <strong>of</strong> λ∗ ).<br />

We chose ϕ (t, x) = (t − ε) p +q <br />

(τ − t) p +q <br />

Φ (x) , Φ is a solution <strong>of</strong><br />

−∆Φ (x) = λ1Φ (x) , Φ > 0 in Ω<br />

Φ (x) = 0 in ∂Ω<br />

where λ1 is the first eigenvalue <strong>of</strong> −∆ in Ω. We then have from (2.5)<br />

where<br />

τ<br />

<br />

λ<br />

ε<br />

Ω<br />

τ<br />

<br />

≤ c<br />

ε<br />

Ω<br />

τ<br />

<br />

c<br />

ε<br />

Ω<br />

(t − ε) p +q <br />

(τ − t) p +q <br />

Φ (x) (µ + )dxdt<br />

|d1N1 (t, x) − N2 (t, x)| p<br />

(t − ε) (p +q )(p −1) (τ − t) (p +q )(p −1) Φ (x) p −1<br />

dxdt +<br />

|d2N1 (t, x) − N2 (t, x)| q<br />

(t − ε) (p +q )(q −1) (τ − t) (p +q )(q −1) Φ (x) q −1 dxdt,<br />

N1 (t, x) = (t − ε) p +q <br />

(τ − t) p +q <br />

∇Φ (x)<br />

5<br />

(2.4)<br />

, 1 1<br />

α + α = 1.<br />

(2.5)


262<br />

N. Alaa and M. Iguernane<br />

6<br />

and<br />

Which gives that<br />

it provides<br />

N2 (t, x) = p + q <br />

≤ c1<br />

τ<br />

<br />

λ<br />

c2<br />

c3<br />

c4<br />

≤ c5<br />

ε<br />

τ<br />

ε<br />

τ<br />

ε<br />

τ<br />

ε<br />

τ<br />

ε<br />

ε<br />

Ω<br />

<br />

Ω<br />

<br />

Ω<br />

<br />

Ω<br />

<br />

Ω<br />

τ<br />

<br />

λ<br />

<br />

Ω<br />

Ω<br />

λ1<br />

(t − ε) p +q −1 (τ − t) p +q −1 (τ + ε − 2t) ∇Φ (x) .<br />

(t − ε) p +q <br />

(τ − t) p +q <br />

Φ (x) (µ + )dxdt<br />

(t − ε) (p +q ) (τ − t) (p +q ) |∇Φ (x)| p <br />

Φ (x) p −1<br />

(t − ε) q<br />

(τ − t) q<br />

|∇Φ (x)| p<br />

Φ (x) p dxdt+<br />

−1<br />

(t − ε) (p +q ) (τ − t) (p +q ) |∇Φ (x)| q <br />

Φ (x) q −1<br />

(t − ε) p<br />

(τ − t) p<br />

|∇Φ (x)| q<br />

Φ (x) q dxdt<br />

−1<br />

(t − ε) p +q <br />

(τ − t) p +q <br />

|∇Φ (x)| p<br />

Φ (x) p −1<br />

dx + c6<br />

<br />

Ω<br />

Φ (x) (µ + ) dxdt<br />

|∇Φ (x)| q<br />

Φ (x) q −1 dx,<br />

dxdt+<br />

dxdt+<br />

where ci, i = 1, ..., 5 are some positives constant. By the definition <strong>of</strong> Φ we have Φ ∈ W 1,∞<br />

0 (Ω) and<br />

1<br />

Φα (x) ∈ L1 (Ω) for all α < 1. Since p, q > 2 then α1 = q − 1 < 1 and α2 = q − 1 < 1 therefore<br />

<br />

|∇Φ (x)| p<br />

Φ (x) p <br />

|∇Φ (x)|<br />

dx < ∞ and<br />

−1 q<br />

Φ (x) q dx < ∞. This finishes the pro<strong>of</strong>. <br />

−1<br />

Ω<br />

2.2. Regularity Condition on the Data µ and ν<br />

We consider the following problem<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

Ω<br />

u, v ∈ L 1 0, T ; W 1,1<br />

0 (Ω) ∩ C( 0, T ); L 1 (Ω) ,<br />

f (., ∇u, ∇v) , g (., ∇u, ∇v) ∈ L 1 loc (QT )<br />

ut − ∆u ≥ f (t, x, ∇u, ∇v) + λµ in D <br />

(QT )<br />

vt − ∆v ≥ g (t, x, ∇u, ∇v) + λ in D <br />

(QT )<br />

u(0) = u(T ) and v(0) = v(T ) in Mb (Ω) .<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005<br />

(2.6)


where f, g, µ, satisfy (H1) – (H4) and there exists p, q > 1, c1, c2 > 0 such that<br />

f (t, x, r, s) + g (t, x, r, s) ≥ c1 (|r| p + |s| q ) − c2.<br />

For simplicity, we suppose in this subsection that p = max(p, q).<br />

N. Alaa and M. Iguernane<br />

Theorem 2.2. Assume that (H1)−(H4), (2.7) hold. Assume (2.6) hasa solution for some λ > 0. Then the<br />

.<br />

measure µ, does not charge the set <strong>of</strong> W 2,1<br />

p -capacity zero.<br />

<br />

1 1<br />

p + p = 1<br />

Remark 2.3. We recall that a compact set K in QT is <strong>of</strong> W 2,1<br />

p -capacity zero if there exists a sequence <strong>of</strong><br />

C∞ 0 (Ω)-functions ϕn greater that 1 on K and converging to zero in W 2,1<br />

p . The above statement means that<br />

<br />

K compact, W 2,1<br />

p -capacity (K) = 0<br />

K<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 263<br />

7<br />

(2.7)<br />

<br />

⇒ µ + = 0. (2.8)<br />

Obviously, this is not true for any measure µ, g as soon as p, q > 1 + 2<br />

N or p , q < N<br />

2 + 1, (see, e.g. [19] and the<br />

references there for more details).<br />

Remark 2.4. The natural question is now the following. For 1 ≤ p, q < 1 + 2<br />

N<br />

there exist (u, v) solution <strong>of</strong> (2.6) and if this solution exists is it unique?<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 2.2.<br />

From (2.6) , (2.7), we get the following inequality<br />

, and µ, ∈ M+<br />

b (QT ), does<br />

(u + v) t − ∆ (u + v) ≥ c1 (|∇u| p + |∇v| q ) − c2 + λ (µ + ) in D (QT ) . (2.9)<br />

Let K be a compact set <strong>of</strong> W 2,1<br />

p -capacity zero and ϕn a sequence <strong>of</strong> C ∞ 0 (QT )-functions such that<br />

ϕn ≥ 1 on K, ϕn → 0 in W 2,1<br />

p and a.e in QT , 0 ≤ ϕn ≤ 1. (2.10)<br />

Multiplying (2.9) by χn = ϕ p<br />

n leads to<br />

T<br />

<br />

λ χn (µ + ) dxdt + c1<br />

0<br />

Ω<br />

T<br />

≤ c2<br />

0 Ω<br />

T<br />

0<br />

<br />

Ω<br />

χn (|∇u| p + |∇v| q ) dxdt (2.11)<br />

<br />

χn − (u + v) ∂χn<br />

T<br />

<br />

dxdt + ∇χn∇ (u + v) dxdt. (2.12)<br />

∂t<br />

By the definition <strong>of</strong> χn and by the fact that 0 ≤ ϕn ≤ 1 on QT , it is easy to see that there exists a sub-sequence<br />

also denoted by ϕn such that<br />

0<br />

∂ϕn<br />

∂t −→ 0 a.e in QT , ∂χn<br />

−→ 0 a.e in Lp (QT ) and<br />

∂t ∂χn<br />

−→ 0 a.e in Lq (QT ) .<br />

∂t<br />


264<br />

N. Alaa and M. Iguernane<br />

8<br />

Then<br />

lim<br />

T<br />

n→∞<br />

0<br />

<br />

Ω<br />

<br />

(u + v) ∂χn<br />

<br />

dxdt = 0.<br />

∂t<br />

We use ∇χn = pϕp−1 n ∇ϕn, and Young’s inequality to treat last integral above:<br />

and<br />

T<br />

0<br />

T<br />

0<br />

<br />

T<br />

<br />

∇χn∇udxdt ≤ ε χn |∇u| p dxdt + cε<br />

Ω<br />

Ω<br />

0<br />

0<br />

Ω<br />

<br />

T<br />

<br />

∇χn∇vdxdt ≤ ε<br />

Ω<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005<br />

T<br />

(χn) q<br />

p |∇v| q dxdt + c ε<br />

But q ≥ p , then there exists a constant c <br />

ε > 0 such that<br />

T<br />

0<br />

<br />

T<br />

<br />

∇χn∇vdxdt ≤ ε<br />

Ω<br />

0<br />

Ω<br />

(χn) q<br />

p |∇v| q dxdt + c <br />

ε<br />

0<br />

<br />

Ω<br />

T<br />

0<br />

<br />

0<br />

T<br />

|∇ϕn| p<br />

<br />

Ω<br />

<br />

Ω<br />

|∇ϕn| q<br />

|∇ϕn| p<br />

dxdt (2.13)<br />

dxdt. (2.14)<br />

dxdt. (2.15)<br />

Due to (2.10), passing to the limit in (2.11) , (2.13) , and (2.15) with ε small enough easily leads to<br />

<br />

λ<br />

K<br />

(µ + ) = 0. (2.16)<br />

Remark 2.5. This result remains valid when the operator ∆ is replaced by −∆, which is to say<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

or also for the equation<br />

⎧<br />

⎪⎨<br />

u, v ∈ L1 <br />

0, T ; W 1,1<br />

<br />

0 (Ω) ∩ C((0, T ) ; L1 (Ω)),<br />

f (t, x, ∇u, ∇v) , g (t, x, ∇u, ∇v) ∈ L 1 loc (QT )<br />

ut + ∆u ≥ f (t, x, ∇u, ∇v) + λµ in D <br />

(QT )<br />

vt + ∆v ≥ g (t, x, ∇u, ∇v) + λ in D <br />

(QT )<br />

u(0) = u(T ) in Mb (Ω)<br />

ut − ∆u + |∇u| p = λf in QT<br />

u (t, x) = 0 on <br />

T<br />

⎪⎩ u (0, x) = u(T, x) in Ω.


3. AN EXISTENCE RESULT FOR SUBQUADRATIC GROWTH<br />

3.1. Assumptions and Statement <strong>of</strong> the Result<br />

First, we clarify in which sense we want to solve problem (1.1).<br />

Definition 3.1. A function (u, v) is called a weak periodic solution <strong>of</strong> (1.1) if<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

u, v ∈ L 2 0, T, H 1 0 (Ω) ∩ C [0, T ] , L 2 (Ω) ,<br />

f (t, x, u, v, ∇u) , g (t, x, u, v, ∇v) ∈ L 1 (QT )<br />

ut − ∆u = f (t, x, u, v, ∇u) + µ in D <br />

(QT )<br />

vt − ∆v = g (t, x, u, v, ∇v) + in D <br />

(QT )<br />

u (0) = u(T ) ∈ L 2 (Ω) and v (0) = v(T ) ∈ L 2 (Ω) .<br />

In (3.1) µ, are nonnegative, integrable functions and<br />

(H7) f, g: QT × R × R × R N → [0, +∞) are Caratheodory functions.<br />

(H8) f (t, x, s1, s2, 0) = g (t, x, s1, s2, 0) = 0<br />

(H9) f(t, x, s1, s2, r) + g(t, x, s1, s2, r) ≤ c(|s1| + |s2|) |r| 2 + H(t, x) ,<br />

where c : [0, +∞[ → [0, +∞[ is nondecreasing and H ∈ L 1 (QT ).<br />

(H10) f, g are nondecreasing with respect to (s1, s2) and convex with respect to r.<br />

Remark 3.2. (H7) means that:<br />

(t, x) −→ f (t, x, s1, s2, r) and (t, x) −→ g (t, x, s1, s2, r) are measurable<br />

(s1, s2, r) −→ f (t, x, s1, s2, r) and (s1, s2, r) −→ g (t, x, s1, s2, r)<br />

are continuous for almost every (t, x) .<br />

N. Alaa and M. Iguernane<br />

Definition 3.3. We call a weak periodic sub-solution (resp, super-solution) <strong>of</strong> (3.1) a function (u, v) satisfying<br />

(3.1) with “ = ” replaced by “ ≤ ” (resp. ≥ ).<br />

We state now the main result <strong>of</strong> this section.<br />

Theorem 3.4. Suppose that hypotheses (H7) – (H10) hold and problem (3.1) has a nonnegative weak supersolution<br />

( w, w). Then (3.1) has a weak periodic solution (u, v) such that: 0 ≤ u ≤ w and 0 ≤ v ≤ w.<br />

In the sequel we will give pro<strong>of</strong> <strong>of</strong> this theorem, we begin with an approximating problem, then we give some<br />

a priori estimate, and we end by passing to the limit.<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 265<br />

9<br />

(3.1)


266<br />

N. Alaa and M. Iguernane<br />

10<br />

3.2. Approximating Problem<br />

For n ≥ 1, we consider fn (t, x, s1, s2, .) (resp gn (t, x, s1, s2, .)), the Yosida-approximation <strong>of</strong> f (t, x, s1, s2, .)<br />

(resp g (t, x, s1, s2, .)), which increases to f (t, x, s1, s2, .) (resp g (t, x, s1, s2, .)) as n tends to ∞ and satisfies<br />

fn (t, x, s1, s2, r) ≤ f (t, x, s1, s2, r) and fnr (t, x, s1, s2, r) ≤ n<br />

gn (t, x, s1, s2, r) ≤ f (t, x, s1, s2, r) and gnr (t, x, s1, s2, r) ≤ n.<br />

Where fnr (resp gnr) denotes a section <strong>of</strong> the subdifferential <strong>of</strong> fn (resp gn) with respect to r. We set<br />

fn (t, x, s1, s2, r) = fn (t, x, s1, s2, r) 1 [ w≤n]<br />

gn (t, x, s1, s2, r) = gn (t, x, s1, s2, r) 1 [ w≤n] ,<br />

where ( w, w) is a supersolution <strong>of</strong> (3.1). Then fn, gn satisfy (H7) – (H10) and<br />

fn ≤ f1 [ w≤n], fn ≤ fn+1<br />

gn ≤ g1 [ w≤n], gn ≤ gn+1.<br />

Consider the sequence (un, vn) , n ∈ N ∗ , defined by: (u0, v0) = (0, 0),<br />

with<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

un, vn ∈ L 2 0, T ; H 1 0 (Ω) ∩ C [0, T ] , L 2 (Ω) ∩ L ∞ (QT )<br />

unt − ∆un = fn (t, x, un−1, vn−1, ∇un) + µn<br />

vnt − ∆vn = gn (t, x, un−1, vn−1, ∇vn) + n<br />

in D <br />

(QT )<br />

in D <br />

(QT )<br />

un (0) = un (T ) ∈ L 2 (Ω) and vn (0) = vn (T ) ∈ L 2 (Ω) ,<br />

µn = µ × 1 [ w


To do this, we first consider the periodic problem<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

u1 ∈ L 2 0, T ; H 1 0 (Ω) ∩ C [0, T ] , L 2 (Ω) ∩ L ∞ (QT )<br />

u1t − ∆u1 = f1 (t, x, 0, 0, ∇u1) + µ1 in D <br />

(QT )<br />

u1 (0) = u1 (T ) ∈ L 2 (Ω) .<br />

N. Alaa and M. Iguernane<br />

We remark that w1 is a supersolution <strong>of</strong> (3.4) and thanks to the result in [3], there exists u1 such that<br />

0 ≤ u0 ≤ u1 ≤ w1.<br />

In the same manner, there exists a solution v1 <strong>of</strong><br />

such that<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

v1 ∈ L 2 0, T ; H 1 0 (Ω) ∩ C [0, T ] , L 2 (Ω) ∩ L ∞ (QT )<br />

v1t − ∆v1 = g1 (t, x, 0, 0, ∇v1) + 1 in D <br />

(QT )<br />

v1 (0) = v1 (T ) ∈ L 2 (Ω)<br />

0 ≤ v0 ≤ v1 ≤ w1.<br />

Suppose that (3.3) is satisfied for n − 1. We have<br />

and<br />

( wn) t − ∆ wn ≥ fn (t, x, wn, wn, ∇ wn) + µn<br />

≥ fn (t, x, un−1, vn−1, ∇ wn) + µn,<br />

(un−1) t − ∆un−1 = fn−1 (t, x, un−2, vn−2, ∇un−1) + µn−1<br />

≤ fn (t, x, un−1, vn−1, ∇un−1) + µn.<br />

Then, wn (respectively un−1) is a weak super-solution (respectively sub-solution) <strong>of</strong><br />

⎧<br />

⎪⎨<br />

un ∈ L 2 0, T ; H 1 0 (Ω) ∩ C [0, T ] , L 2 (Ω) ∩ L ∞ (QT )<br />

unt − ∆un = fn (t, x, un−1, vn−1, ∇un) + µn in D <br />

(QT )<br />

⎪⎩ un (0) = un (T ) ∈ L2 (Ω) .<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 267<br />

11<br />

(3.4)


268<br />

N. Alaa and M. Iguernane<br />

12<br />

Again, thanks to the result in [3], there exists un such that<br />

un−1 ≤ un ≤ wn ≤ w.<br />

In the same manner, there exists a solution vn <strong>of</strong><br />

such that<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

vn ∈ L 2 0, T ; H 1 0 (Ω) ∩ C [0, T ] , L 2 (Ω) ∩ L ∞ (QT )<br />

vnt − ∆vn = gn (t, x, un−1, vn−1, ∇vn) + n in D <br />

(QT )<br />

vn (0) = vn (T ) ∈ L 2 (Ω) ,<br />

vn−1 ≤ vn ≤ wn ≤ w.<br />

Which proves (3.3) by induction.<br />

3.3. A priori Estimate<br />

In this section, we are going to give several technical results as lemmas that will be very useful for the pro<strong>of</strong><br />

<strong>of</strong> the main result.<br />

Lemma 3.5. Let u, w ∈ L 2 (0, T ; H 1 0 (Ω)) ∩ C [0, T ] , L 2 (Ω) , such that<br />

Then<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

<br />

QT<br />

0 ≤ u ≤ w in QT<br />

ut − ∆u ≥ 0 in D <br />

(QT )<br />

wt − ∆w ≥ 0 in D <br />

(QT )<br />

u (0) = u (T ) ∈ L 2 (Ω)<br />

w (0) = w (T ) ∈ L 2 (Ω) .<br />

|∇u| 2 <br />

≤ 4<br />

QT<br />

|∇w| 2 .<br />

Lemma 3.6. Let un, vn be a solution <strong>of</strong> (3.2), then there exists a constant c8 > 0, such that<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

<br />

QT<br />

<br />

QT<br />

|f (t, x, un−1, vn−1, ∇un)| dxdt ≤ c8<br />

|g (t, x, un−1, vn−1, ∇vn)| dxdt ≤ c8.<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005<br />

(3.5)


Lemma 3.7. Let u, un ∈ L 2 0, T, H 1 0 (Ω) ∩ C [0, T ] , L 2 (Ω) , such that<br />

N. Alaa and M. Iguernane<br />

0 ≤ un ≤ u in QT and u (0) = u (T ) ∈ L 2 (Ω) (3.6)<br />

un u weakly in L 2 0, T, H 1 0 (Ω) <br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

unt − ∆un = ρn in D <br />

(QT )<br />

un (0) = un (T ) ∈ L 2 (Ω)<br />

ρn ∈ L 1 (QT ) , ρn ≥ 0 and ρn L 1 (QT )<br />

where c is a positive constant independent <strong>of</strong> n. Then un → u strongly in L 2 0, T, H 1 0 (Ω) .<br />

Pro<strong>of</strong> <strong>of</strong> Lemma 3.5.<br />

Let us recall the definition <strong>of</strong> the Lebesgue–Steklov average uh <strong>of</strong> the solution u, for h > 0<br />

uh (t, x) := 1<br />

h<br />

t+h<br />

t<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 269<br />

≤ c<br />

13<br />

(3.7)<br />

(3.8)<br />

u (s, x) ds. (3.9)<br />

This function is well-defined by definition <strong>of</strong> weak solution and takes values in the Sobolev space H 1 0 (Ω).<br />

Moreover, it is differentiable in time for all h > 0, and its derivative equals<br />

that there exists a function ε (h), such that lim<br />

h→0 ε (h) = 0 and<br />

We have<br />

<br />

QT −h<br />

T −h<br />

0<br />

|∇uh| 2 ≤ ε (h) + 4<br />

<br />

Ω<br />

<br />

QT −h<br />

|∇uh| 2 dxdt =<br />

=<br />

=<br />

u (t + h) − u (t)<br />

h<br />

. We will prove<br />

|∇wh| 2 . (3.10)<br />

T −h<br />

0<br />

T −h<br />

0<br />

T −h<br />

0<br />

uh, −∆uh dt<br />

uh, uht − ∆uh dt −<br />

T −h<br />

uh, uht − ∆uh dt + ε1 (h) ,<br />

where , denotes the product duality between H 1 0 (Ω) and H −1 (Ω) and<br />

ε1 (h) = −<br />

T −h<br />

0<br />

uh, uht dt.<br />

0<br />

uh, uht dt


270<br />

N. Alaa and M. Iguernane<br />

14<br />

It follows that<br />

with<br />

Then<br />

It follows that<br />

T −h<br />

0<br />

<br />

Ω<br />

<br />

ε2 (h) =<br />

T −h<br />

0<br />

T −h<br />

0<br />

<br />

<br />

Ω<br />

Ω<br />

|∇uh| 2 dxdt ≤<br />

[whuh]<br />

T −h<br />

0<br />

≤<br />

dx.<br />

≤ −<br />

≤ −<br />

T −h<br />

0<br />

T −h<br />

0<br />

T −h<br />

0<br />

T −h<br />

0<br />

wh, uht − ∆uh dt + ε1 (h)<br />

whuht +<br />

T −h<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005<br />

0<br />

<br />

whtuh +<br />

|∇uh| 2 dxdt ≤ ε1 (h) + ε2 (h) + 1<br />

2<br />

Ω<br />

<br />

∇wh∇uh + ε1 (h)<br />

Ω<br />

T −h<br />

T −h<br />

0 dx +<br />

0<br />

T −h <br />

[whuh]<br />

uh, wht − ∆wh dt + 2<br />

T −h<br />

|∇uh|<br />

Ω<br />

2 T −h<br />

dxdt ≤ 2 (ε1 (h) + ε2 (h)) + 4<br />

0<br />

0<br />

<br />

Ω<br />

0<br />

|∇uh| 2 dxdt + 2<br />

<br />

Ω<br />

|∇wh| 2 dxdt.<br />

<br />

∇wh∇uh + ε1 (h)<br />

Ω<br />

∇wh∇uh + ε1 (h) + ε2 (h) ,<br />

Ω<br />

T −h<br />

If we take ε (h) = 2 (ε1 (h) + ε2 (h)), we obtain (3.10). To finish the pro<strong>of</strong>, it suffices to prove that<br />

However<br />

lim ε (h) = 0.<br />

h→0<br />

ε1 (h) = −<br />

= −<br />

T −h<br />

0<br />

T −h<br />

0<br />

uh, uht dt<br />

<br />

uhuht<br />

Ω<br />

= − 1<br />

<br />

2 T −h<br />

uh 2<br />

0<br />

Ω<br />

since uh ∈ C [0, T ] , L 2 (Ω) , we obtain<br />

lim<br />

h→0 ε1 (h) = 0.<br />

dx<br />

= − 1<br />

<br />

2<br />

uh (0) − u<br />

2 Ω<br />

2 h (T − h) dx,<br />

0<br />

<br />

Ω<br />

|∇wh| 2 dxdt.


In the other part<br />

lim<br />

h→0 ε2 (h) = lim<br />

h→0<br />

<br />

(uh (T − h) wh (T − h) − uh (0) wh (0)) dx<br />

Ω<br />

=<br />

<br />

= 0.<br />

(uh (T ) wh (T ) − uh (0) wh (0)) dx<br />

Ω<br />

N. Alaa and M. Iguernane<br />

Then the lemma yields. <br />

Pro<strong>of</strong> <strong>of</strong> Lemma 3.6.<br />

Remark that<br />

We note<br />

<br />

QT<br />

I1 =<br />

I2 =<br />

Hypothesis (H9) yields<br />

|f (t, x, un−1, vn−1, ∇un)| dxdt =<br />

<br />

I1 ≤ c (1)<br />

<br />

QT ∩[un+vn≤1]<br />

<br />

QT ∩[un+vn>1]<br />

QT<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 271<br />

<br />

QT ∩[un+vn≤1]<br />

+<br />

f (t, x, un−1, vn−1, ∇un) dxdt<br />

f (t, x, un−1, vn−1, ∇un) dxdt<br />

<br />

|∇un| 2 <br />

+ H (t, x) dxdt<br />

<br />

QT ∩[un+vn>1]<br />

f (t, x, un−1, vn−1, ∇un) dxdt<br />

f (t, x, un−1, vn−1, ∇un) dxdt<br />

But H ∈ L 1 (QT ) and 0 ≤ un ≤ w, then Lemma 3.5, implies that there exists a positive constant c4 such that<br />

On the other hand, we have<br />

I1 ≤ c4 . (3.11)<br />

I2 ≤<br />

<br />

QT<br />

(un + vn) (f + g) (t, x, un−1, vn−1, ∇un) dxdt.<br />

Addition <strong>of</strong> the two equations from the system (3.2), multiplying the sum by un + vn and integrating by parts<br />

yields:<br />

I2 ≤<br />

<br />

QT<br />

<br />

|∇un| 2 + |∇un| 2<br />

dxdt.<br />

Using Lemma 3.5 and inequality (3.11), we finish the pro<strong>of</strong>. <br />

15


272<br />

N. Alaa and M. Iguernane<br />

16<br />

Pro<strong>of</strong> <strong>of</strong> Lemma 3.7.<br />

To prove that un → u strongly in L 2 0, T, H 1 0 (Ω) , it suffice to prove that<br />

<br />

lim<br />

n→∞<br />

|∇un|<br />

QT<br />

2 <br />

dxdt ≤ |∇u|<br />

QT<br />

2 dxdt. (3.12)<br />

For h > 0, let uh and (un) h the sequences given by (3.9). We have<br />

<br />

QT<br />

|∇un| 2 dxdt = lim<br />

h→0<br />

<br />

|∇ (un) h |<br />

QT −h<br />

2 dxdt<br />

= lim<br />

h→0<br />

= lim<br />

h→0<br />

Since un ≤ u, then (un) h ≤ uh and we obtain<br />

It follows that<br />

<br />

QT<br />

<br />

lim<br />

n→∞<br />

|∇un| 2 dxdt ≤ lim<br />

h→0<br />

QT<br />

≤ lim<br />

h→0<br />

T −h<br />

0<br />

T −h<br />

0<br />

T −h<br />

0<br />

<br />

QT −h<br />

|∇un| 2 dxdt ≤ lim<br />

n→∞ lim<br />

h→0<br />

(un) h , −∆ (un) h <br />

<br />

(un) h , ((un) h ) t − ∆ (un) h .<br />

<br />

uh, ((un) h ) t − ∆ (un) h<br />

<br />

<br />

∇uh∇ (un) h dxdt +<br />

QT −h<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005<br />

QT −h<br />

<br />

∇uh∇ (un) h dxdt +<br />

uh ((un) h ) t dxdt<br />

QT −h<br />

<br />

uh ((un) h ) t dxdt<br />

It is easy to see that un u weakly in L 2 0, T, H 1 0 (Ω) , implies (un) h uh weakly in L 2 0, T, H 1 0 (Ω) . Then<br />

we obtain<br />

<br />

lim<br />

n→∞<br />

QT<br />

|∇un| 2 dxdt ≤ lim<br />

h→0 lim<br />

n→∞<br />

≤ lim<br />

h→0<br />

≤<br />

≤<br />

<br />

<br />

QT<br />

QT<br />

<br />

<br />

QT −h<br />

QT −h<br />

<br />

∇uh∇ (un) h dxdt +<br />

<br />

∇uh∇uhdxdt +<br />

QT −h<br />

QT −h<br />

uh (uh) t dxdt<br />

|∇u| 2 dxdt + 1<br />

2 lim<br />

2<br />

uh (T − h) − u<br />

h→0<br />

2 h (0) <br />

|∇u| 2 dxdt,<br />

.<br />

<br />

uh ((un) h ) t dxdt<br />

which give (3.12). <br />

<br />

.


3.4. Passing to the Limit<br />

N. Alaa and M. Iguernane<br />

According to Lemma 3.5 and estimate (3.3), (un) n , (vn) n are bounded in L 2 0, T ; H 1 0 (Ω) . Therefore there<br />

exists u, v ∈ L 2 0, T ; H 1 0 (Ω) , up to a subsequence still denoted (un, vn) for simplicity, such that<br />

(un, vn) → (u, v) strongly in L 2 (QT ) × L 2 (QT ) and a.e. in QT × QT<br />

(un, vn) (u, v) weakly in L 2 0, T ; H 1 0 (Ω) × L 2 0, T ; H 1 0 (Ω) .<br />

But Lemma 3.7 implies that the last convergence is strong in L 2 0, T ; H 1 0 (Ω) × L 2 0, T ; H 1 0 (Ω) . Then to<br />

ensure that (u, v) is a solution <strong>of</strong> problem , it suffice to prove that<br />

f (., ., un−1, vn−1, ∇un) → f (., ., u, v, ∇u) in L 1 (QT )<br />

g (., ., un−1, vn−1, ∇vn) → g (., ., u, v, ∇v) in L 1 (QT ) .<br />

It is obvious by Lemma 3.6 and the strong convergence <strong>of</strong> un, vn in L 2 0, T, H 1 0 (Ω) that<br />

f (., ., un−1, vn−1, ∇un) → f (., ., u, v, ∇u) a.e in QT<br />

g (., ., un−1, vn−1, ∇vn) → g (., ., u, v, ∇v) a.e in QT .<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 273<br />

17<br />

(3.13)<br />

To conclude that (u, v) is a solution <strong>of</strong> (3.1), we have to show, in view <strong>of</strong> Vitali’s theorem (cf [28]) that<br />

f (., ., un−1, vn−1, ∇un) (respectively g (., ., un−1, vn−1, ∇vn)) is equi-integrable in L 1 (QT ).<br />

Let K be a measurable subset <strong>of</strong> QT , ε > 0, and k > 0, we have<br />

we note<br />

<br />

K<br />

I1 =<br />

I2 =<br />

f (x, t, un−1, vn−1, ∇un) dxdt =<br />

<br />

K∩[un+vn≤k]<br />

<br />

K∩[un+vn>k]<br />

To deal with the term I2, we write<br />

<br />

K∩[un+vn≤k]<br />

+<br />

<br />

K∩[un+vn>k]<br />

f (x, t, un−1, vn−1, ∇un) dxdt<br />

f (x, t, un−1, vn−1, ∇un) dxdt.<br />

I2 ≤ 1<br />

<br />

(un + vn) (f + g) (x, t, un−1, vn−1, ∇un) dxdt<br />

k<br />

K<br />

f (x, t, un−1, vn−1, ∇un) dxdt<br />

f (x, t, un−1, vn−1, ∇un) dxdt


274<br />

N. Alaa and M. Iguernane<br />

18<br />

which yields from the system (3.7)<br />

I2 ≤ 1<br />

<br />

((un + vn) (un + vn) t − (un + vn) ∆ (un + vn)) dxdt<br />

k<br />

K<br />

≤ 1<br />

<br />

k<br />

K<br />

<br />

|∇un| 2 + |∇vn| 2<br />

dxdt.<br />

Thanks to Lemma 3.5, there exists a constant c7 > 0 such that<br />

I2 ≤ c7<br />

k<br />

. (3.14)<br />

Then, there exists k0 > 0, such that, if k > k0 then<br />

I2 ≤ ε<br />

. (3.15)<br />

3<br />

By hypothesis (H9), we have for all k > k0<br />

The sequence<br />

I1 ≤ c (k)<br />

<br />

|∇un| 2<br />

c (k)<br />

n<br />

<br />

K∩[un+vn≤k]<br />

<br />

|∇un| 2 <br />

+ H (t, x) dxdt.<br />

is equi-integrable in L 1 (QT ). So there exists δ1 > 0 such that if |K| ≤ δ1, then<br />

<br />

K∩[un+vn≤k]<br />

<br />

|∇un| 2<br />

dxdt ≤ ε<br />

. (3.16)<br />

3<br />

On the other hand H ∈ L 1 (QT ), therefore there exists δ2 > 0, such that<br />

c (k)<br />

whenever |K| ≤ δ2.<br />

<br />

K∩[un+vn≤k]<br />

Chose δ0 = inf (δ1, δ2), if |K| ≤ δ0, we have<br />

In the same manner, we obtain<br />

<br />

K<br />

H (t, x) dxdt ≤ ε<br />

. (3.17)<br />

3<br />

f (x, t, un−1, vn−1, ∇un) dxdt ≤ ε.<br />

<br />

g (x, t, un−1, vn−1, ∇un) dxdt ≤ ε.<br />

K<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005


ACKNOWLEDGMENT<br />

The authors thank a referee for interesting comments and suggestions.<br />

REFERENCES<br />

N. Alaa and M. Iguernane<br />

[1] H. Amann, “<strong>Periodic</strong> <strong>Solutions</strong> <strong>of</strong> Semilinear <strong>Parabolic</strong> Equations”, in Nonlinear Analysis. New York: Academic Press, 1978,<br />

pp. 1–29.<br />

[2] D.W. Bange, “<strong>Periodic</strong> Solution <strong>of</strong> a <strong>Quasilinear</strong> <strong>Parabolic</strong> Differential Equation”, J. Differential Equation, 17 (1975), pp. 61–72.<br />

[3] P. Hess, “<strong>Periodic</strong>-<strong>Parabolic</strong> Boundary Value Problem and Positivity”, Pitman Res. Notes Math Ser. 247. New York: Longman<br />

Scientific and Technical, 1991.<br />

[4] T. Kusamo, “<strong>Periodic</strong> Solution <strong>of</strong> the First Boundary Value Problem for <strong>Quasilinear</strong> <strong>Parabolic</strong> Equations <strong>of</strong> Second Order”,<br />

Funckcial. Ekvac, 9 (1966), pp. 129–137.<br />

[5] B.P. Liu and C.V. Pao, “<strong>Periodic</strong> <strong>Solutions</strong> <strong>of</strong> Coupled Semilinear <strong>Parabolic</strong> Boundary Value Problems”, Nonlinear Anal.,<br />

6 (1982), pp. 237–252.<br />

[6] X. Lu and W. Feng, “<strong>Periodic</strong> Solution and Oscillation in a Competition Model with Diffusion and Distributed Delay Effect”,<br />

Nonlinear Anal., 27 (1996), pp. 699–709.<br />

[7] M. Nakao, “On Boundedness <strong>Periodic</strong>ity and Almost <strong>Periodic</strong>ity <strong>of</strong> <strong>Solutions</strong> <strong>of</strong> <strong>Some</strong> Nonlinear <strong>Parabolic</strong> Equations”,<br />

J. Differential Equations, 19 (1975), pp. 371–385.<br />

[8] A. Tineo, “Existence <strong>of</strong> Global Coexistence for <strong>Periodic</strong> Competition Diffusion <strong>Systems</strong>”, Nonlinear Anal., 19 (1992),<br />

pp. 335–344.<br />

[9] A. Tineo, “Asymptotic Behavior <strong>of</strong> <strong>Solutions</strong> <strong>of</strong> a <strong>Periodic</strong> Reaction–Diffusion System <strong>of</strong> a Competitor–Mutualist Model”,<br />

J. Differential Equation, 108 (1994), pp. 326–341.<br />

[10] L.Y. Tsai, “<strong>Periodic</strong> <strong>Solutions</strong> <strong>of</strong> Nonlinear <strong>Parabolic</strong> Differential Equations”, Bull. Inst. Math. Acad. Sinica, 5 (1977),<br />

pp. 219–247.<br />

[11] H.A. Levine, “The Role <strong>of</strong> Critical Exponents in Blowup Theorems”, SIAM Review, 32 (1990), pp. 262–288.<br />

[12] H.A. Levine and B. Sleeman, “A System <strong>of</strong> Reaction–Diffusion Equations Arising in the Theory <strong>of</strong> Reinforced Random Walks”,<br />

SIAM Journal Appl. Math, 57(3) (1997), pp 683–730.<br />

[13] C.Y. Chan and K. Deng, “Impulsive Effects on Global Existence <strong>of</strong> <strong>Solutions</strong> <strong>of</strong> Semilinear Heat Equations”, Nonlinear Anal.<br />

TMA, 26 (1996), pp. 1481–1489.<br />

[14] N. Alaa, “<strong>Solutions</strong> Faibles d’Equations Paraboliques Quasilinéaires avec Données Initiales Mesures”, Ann. Math. Blaise Pascal,<br />

3(2) (1996), pp. 1–15.<br />

[15] N. Alaa and I. Mounir, “Global Existence for Reaction–Diffusion <strong>Systems</strong> with Mass Control and Critical Growth with Respect<br />

to the Gradient”, J. Math. Anal. App., 253 (2001), pp. 532–557.<br />

[16] N. Alaa and M. Pierre, “<strong>Weak</strong> <strong>Solutions</strong> <strong>of</strong> <strong>Some</strong> <strong>Quasilinear</strong> Elliptic Equations with Data Measures”, SIAM J. Math. Anal.,<br />

24(1) (1993), pp. 23–35.<br />

[17] N. Alaa and M. Iguernane, “<strong>Weak</strong> <strong>Periodic</strong> <strong>Solutions</strong> <strong>of</strong> <strong>Some</strong> <strong>Quasilinear</strong> <strong>Parabolic</strong> Equations with Data Measures”, JIPAM,<br />

3(3) (2002), Article 46.<br />

[18] P. Baras, “Semilinear Problem with Convex Nonlinearity”, in Recent Advances in Nonlinear Elliptic and <strong>Parabolic</strong> Problems,<br />

Proc. Nancy 88. ed. Ph. Bénilan, M. Chipot, L.C. Evans, and M.Pierre. Pitman Res. Notes in Math., 1989.<br />

[19] P. Baras and M. Pierre, “Problèmes Paraboliques Semi-Linéaires avec Données Mesures”, Applicable Analysis, 18 (1984),<br />

pp. 11–149.<br />

[20] L. Boccardo, F. Murat, and J.P. Puel, “Existence Results for some <strong>Quasilinear</strong> <strong>Parabolic</strong> Equations”, Nonlinear Anal., 13 (1989),<br />

pp. 373–392.<br />

[21] L. Boccardo and T. Gallouet, “Nonlinear Elliptic and <strong>Parabolic</strong> Equations Involving Measure Data”, Journal <strong>of</strong> Functional<br />

Analysis, 87 (1989), pp. 149–768.<br />

[22] A. Dalla’Aglio-L. Orsina, “Nonlinear <strong>Parabolic</strong> Equations with Natural Growth Conditions and L1 Data”, Nonlinear Analysis,<br />

27 (1996), pp. 59–73.<br />

[23] J. Deuel and P. Hess, “Nonlinear <strong>Parabolic</strong> Boundary Value Problems with Upper and Lower <strong>Solutions</strong>” Israel Journal <strong>of</strong><br />

Mathematics, 29(1), 1978.<br />

[24] A.W. Leung and L.A. Ortega, “Existence and Monotone Scheme for Time-<strong>Periodic</strong> Nonquasimonotone Reaction–Diffusion<br />

<strong>Systems</strong>. Application to Autocatalytic Chemistry”, J. Math. Anal. App., 221 (1998), pp. 712–733.<br />

[25] C.V. Pao, “<strong>Periodic</strong> <strong>Solutions</strong> <strong>of</strong> <strong>Parabolic</strong> <strong>Systems</strong> with Nonlinear Boundary Conditions”, J. Math Anal. App., 234 (1999),<br />

pp. 695–716.<br />

July 2005 The Arabian Journal for Science and Engineering, Volume 30, Number 2A. 275<br />

19


276<br />

N. Alaa and M. Iguernane<br />

20<br />

[26] A. Porretta, “Existence Results for Nonlinear <strong>Parabolic</strong> Equations via Strong Convergence <strong>of</strong> Truncations”, Annali di Matematica<br />

pura ed applicata (IV), 177 (1989), pp. 143–172.<br />

[27] W. Feng and X. Lu, “Asymptotic <strong>Periodic</strong>ity in Logistic Equations with Discrete Delays”, Nonlinear Anal., 26(1996),<br />

pp. 171–178.<br />

[28] W. Rudin, Analyse Réelle et Complexe. Masson, 1973.<br />

Paper Received 21 December 2002; Revised 12 May 2004; Accepted 1 June 2005.<br />

The Arabian Journal for Science and Engineering, Volume 30, Number 2A. July 2005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!