03.08.2013 Views

pp. 345-360 - Arabian Journal for Science and Engineering

pp. 345-360 - Arabian Journal for Science and Engineering

pp. 345-360 - Arabian Journal for Science and Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

*Address <strong>for</strong> correspondence:<br />

Department of Physics<br />

University of Baghdad<br />

Baghdad, Iraq<br />

E-mail: drmhj54@yahoo.com<br />

AN ION BEAM TRANSPORT DESIGN OPTIMIZATION IN A<br />

MEDIUM RANGE ION IMPLANTER SYSTEM<br />

Mahdi Hadi Jasim*<br />

Department of Physics, College of <strong>Science</strong>, University of Baghdad<br />

Baghdad, Iraq<br />

: ﺔـﺻﻼﺨﻟا<br />

ﺪﻳﺪﺤﺗ ﻊﻣ ﻲﻧﻮﻳأﻻا<br />

عرﺰﻟا ﺔﻣﻮﻈﻨﻣ ﻲﻓ ﺔﻠﻗﺎﻨﻟا ﺔﻣﺰﺤﻟا<br />

ﺮﻴﺌﺒﺗ جذﻮﻤﻧ ﻦﺴﺤﺗ زﺎﺠﻧإ<br />

- ﺚﺤﺒﻟا اﺬه ﻲﻓ – ﻢﺗ ﺪﻘﻟ<br />

تﻻدﺎﻌﻣ ﺖﻘُﺘﺷا<br />

ﺪﻗو . نﻮﺤﺸﻤﻟا ﻢﻴﺴﺠﻟا ﻰﻠﻋ ﺮﺛﺆﺗ ﻲﺘﻟا ﺎﻬﺗﺎﻤﻠْﻌَﻣ<br />

ﻊﻣ ﺔﻴﺴﻴﺋﺮﻟا<br />

ﺔﻳﺮﺼﺒﻟا ﺮﺻﺎﻨﻌﻟا لﺎﻤﻌﺘﺳا<br />

تﺎﻳﻮﺘﺴﻤﻟا ﺪﻨﻋ ﺔآﺮﺤﻟا نأ رﺎﺒﺘﻋﻻﺎﺑ<br />

ﻦﻳﺬﺧﺁ<br />

يﺮﺼﺑ ﺮﺼﻨﻋ ﻞﻜﻟ تﺎﻓﻮﻔﺼﻤﻟا ﻊﻣ ﺔﻧﻮﺤﺸﻤﻟا تﺎﻤﻴﺴﺠﻠﻟ ﺔآﺮﺤﻟا<br />

. ﺔﻴﻟﺎﺜﻤﻟا ﻰﻟإ بﺮﻗﻷا ﺔﻣﺰﺤﻟا تﺎﻤﻠﻌﻣ ﻰﻠﻋ لﻮﺼﺤﻟا ضﺮﻐﻟ نﺎﻴﺒﻳﺮﻘﺗ ﺪﻤﺘﻋاو<br />

. ﺎﻬﻨﻣ ﻞﻜﻟ ﺔﻠﻘﺘﺴﻣ نﻮﻜﺗ ﺔﻔﻠﺘﺨﻤﻟا<br />

: ﺪﻌﺒﻟا ﻲﻋﺎﺑر ﺪﻨﻋ ﺔﻣﺰﺤﻟا ﻞﻜﺷ لوﻻا ﺐﻳﺮﻘﺘﻟا ﻲﻓ<br />

( ) ( ) T<br />

out R.σ<br />

in . R<br />

σ =<br />

ﺐﻄﻘﻟا ﻲﻋﺎﺑر)<br />

ﻰﻟوﻷا<br />

ﺔﺟرﺪﻟاو ( ﺐﻄﻘﻟا ﻲﺋﺎﻨﺜﻟا قﺎﻴﺴﻧﻻا ﺰّﻴﺣ)<br />

ﺮﻔﺼﻟا ﺔﺟرد ﻲﻓ ﺔﻣﺰﺤﻟا ﻞﻘﻧ زﺎﺠﻧإو<br />

ﺪﻗو<br />

. ﺔﻴﺋﺎﻀﻔﻟا ﺎﻬﺗﺎﻴﺛاﺪﺣإ ﺔﺣﺎﺴﻣ ﺪﻨﻋ ﻲﺳوﺎﺟ<br />

ﻞﻜﺸﺑ تﺎﻤﻴﺴﺠﻟا ﻊﻳزﻮﺗ نﻮﻜﻳ<br />

ﻲﻧﺎﺜﻟا ﺐﻳﺮﻘﺘﻟا ﻲﻓو<br />

.( ﺲﻴﻃﺎﻨﻐﻤﻟاو<br />

ﻚﻠﺘﻤﻳ ﺎﻤهﻼآو نﻮﺤﺸﻤﻟا ﻢﻴﺴﺠﻟا ﺔﻗﺎﻄﻟ ًاﺮﻴﺛﺄﺗ<br />

ﺮﺜآأ نﻮﻳﻷا<br />

ﺔﻣﺰﺤﻟ عﻮﻄﺴﻟاو ثﺎﻌﺘﺑﻻا تﻼﻣﺎﻌﻣ<br />

تﺎﺑﺎﺴﺣ نأ<br />

ﺪﺟُو<br />

. ﺔﺘﺑﺎﺛ ﺔﻳرﺎﻴﻌﻣ ﺔﻤﻴﻗ<br />

ﺔﻣﻮﻈﻨﻣ ﻊﻣ يﺮﺼﺑ ﺮﺼﻨﻋ ﻞﻜﻟ<br />

ﺔﻴﻤﻴﻤﺼﺘﻟا<br />

تﺎﻤﻠﻌﻤﻟا ﺮﻴﺛﺄﺗو ﻊﻗﻮﻣ ﻒﻳﺮﻌﺗ ﻲﻓ ﻢﻴﻴﻘﺗو ﺔﻧرﺎﻘﻣ ءاﺮﺟا ﻢﺗو<br />

. نﻮﻳﻷا<br />

عرﺰﻠﻟ ةﺮﻓﻮﺘﻣ<br />

Paper Received 26 August 2006; Revised 30 August 2007; Accepted 28 November 2007<br />

Mahdi Hadi Jasim<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A <strong>345</strong>


346<br />

Mahdi Hadi Jasim<br />

ABSTRACT<br />

An improvement of the transport beam focusing model in an ion implanter system<br />

has been achieved, with the definition of the main optical elements used <strong>and</strong> their<br />

parameters’ effect on charged particles. The equations of motion of charged particles<br />

<strong>and</strong> matrices in each optical element have been derived, with consideration of the<br />

motion in different planes. Two assumptions were made in obtaining the optimized<br />

beam parameters. In the first assumption, the four-dimensional beam ellipsoid<br />

( ( ) ( ) T<br />

σ out = R.σ<br />

in . R ), the beam transport is accomplished in zero order (drift space<br />

<strong>and</strong> dipole) <strong>and</strong> first order (quadrupole <strong>and</strong> magnet). In the second assumption, the<br />

particle distribution is normal in the area of its space coordinates. Calculations of the<br />

emittance <strong>and</strong> the brightness factors of the ion beam are found to be more affected by<br />

the energy of charged particles. The emittance <strong>and</strong> brightness have constant<br />

normalized values.<br />

A comparison <strong>and</strong> evaluation was made of the definition of the location <strong>and</strong> the<br />

effect of the designed parameters <strong>for</strong> each optical element within the available ion<br />

implantation design system.<br />

Key words: transport beam focusing, ion implanter system, four dimensional beam<br />

ellipsoid, emittance <strong>and</strong> brightness factors<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A July 2008


Mahdi Hadi Jasim<br />

AN ION BEAM TRANSPORT DESIGN OPTIMIZATION IN A MEDIUM RANGE ION<br />

IMPLANTER SYSTEM<br />

1. INTRODUCTION<br />

Ion implantation is a powerful technique <strong>for</strong> modifying the near surface properties of material, so it is important in<br />

CMOS a<strong>pp</strong>lications. To design an ion implanter system, the behavior of the ion beam passing through its elements must<br />

be understood. There<strong>for</strong>e, it is necessary to study the transport of charged particle ion beams during their passage<br />

through the ion implanter system. Such studies give much in<strong>for</strong>mation about the charged particle ion beam, such as the<br />

quality of implanted ions, the beam size, <strong>and</strong> the focusing regions along the ion beam path. Many studies have a<strong>pp</strong>eared<br />

in this field, which have mainly resulted in the improvement of the ion implantation systems. Gillespie et al. [1]<br />

developed a set of optical models <strong>for</strong> a variety of electrostatic lenses <strong>and</strong> accelerator columns <strong>for</strong> the computer code<br />

TRACE 3-D. This code is an envelope (matrix) code including space charge often used to model bunched beams in<br />

magnetic transport systems <strong>and</strong> radiofrequency (R.F.) accelerators when the effects of beam current may be important.<br />

TRACE 3-D uses the first-order transfer matrix (R-matrix) <strong>for</strong>malism to compute changes in the beam matrix (σ -matrix).<br />

A computer code to measure the beam emittance <strong>and</strong> beam parameters of the ATR line has been produced by Tsoupas et<br />

al. [2]. This code included a theoretical <strong>for</strong>malism <strong>for</strong> the method <strong>for</strong> the measurement of the beam emittance, <strong>and</strong> on<br />

how to obtain the σ -matrix using the R-matrix. The transverse linear optics of a charged particle storage ring has been<br />

studied [3]. This present work deals with a 4-dimensional phase space <strong>and</strong> normalized phase space in two cases. Firstly<br />

it treats the x <strong>and</strong> y spaces as an invariant subspaces, <strong>and</strong>, secondly when the x <strong>and</strong> y spaces are coupled.<br />

This work is aimed to study the behavior of a charged particles ion beam in different elements of the ion implanter<br />

system. The equations of motion of the charged particle beam passing through each element of ion implanter system<br />

have been modeled.<br />

2. THEORETICAL FORMALISM<br />

In this work a beam extracted from a medium-range ion implanter is considered to be an upright ellipse with semi<br />

axes.<br />

The general algebraic equation of an ellipse centered on the origin is:<br />

where M m is a positive definite symmetric matrix ,<br />

T<br />

X M m X = D<br />

(1)<br />

M m =<br />

T<br />

x<br />

X : is the transpose matrix of X , X = , x, x′<br />

are the particle’s position <strong>and</strong> angular divergence in the radial<br />

x′<br />

direction, respectively.<br />

The shape of the elliptical beam depends on the value of the constant: <strong>for</strong> B =0, a right plane space ellipse is obtained<br />

which is always defined as a minimum beam size or beam waist [4,5]. The existence of the latter depends on the nature<br />

of the elliptical beam.<br />

Based on Liouville's theorem [6,7] the determinant of the Mm -matrix is equal to unity (D=1). So Equation (1)<br />

becomes:<br />

X T Mm X = 1 (2)<br />

By considering (σ ) as the inverse of Mm -matrix<br />

A<br />

B<br />

C<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A 347<br />

B<br />

⎡<br />

⎤<br />

=<br />

−1<br />

σ<br />

=<br />

11 σ<br />

σ M<br />

12<br />

⎢<br />

⎥ , (3)<br />

m<br />

⎢⎣<br />

σ12<br />

σ 22 ⎥⎦<br />

where (σ ) is the phase space matrix, then the equation defining the ellipse may be written as:<br />

T −1 X σ X = 1<br />

(4)


348<br />

Mahdi Hadi Jasim<br />

Or equivalently:<br />

2<br />

2<br />

σ x − 2σ<br />

xx′<br />

+ σ x′<br />

= detσ<br />

(5)<br />

22<br />

12<br />

11<br />

A typical output elliptical beam characterized by<br />

11<br />

,<br />

22<br />

σ σ , <strong>and</strong> σ<br />

12<br />

is illustrated in Figure 1 [8].<br />

The beam envelope is represented by the maximum spatial extent of the ellipse (xmax = σ 11 ), <strong>and</strong> also the maximum<br />

angular divergence of the beam within the phase ellipse (x'max = σ 22 ). The parameter ( σ<br />

12<br />

) defines the orientation of<br />

the ellipse relative to the x <strong>and</strong> x' axes.<br />

The correlation term (r) is given in terms of the off-diagonal elements of σ -matrix [6,9], i.e.<br />

r<br />

ij<br />

=<br />

σ<br />

ij<br />

σ σ<br />

ii jj<br />

. (6)<br />

σ<br />

In the case of a two dimensional ellipse r<br />

12<br />

12<br />

= , the particles of phase space ellipse have a normal Gaussian<br />

σ<br />

11<br />

σ<br />

22<br />

distribution [2]. Under the linear trans<strong>for</strong>mation, the normal distribution of particles in the ellipse is trans<strong>for</strong>med into<br />

another normal distribution.<br />

To find the relation between σ -matrices at two positions of the beam line, i.e. σ (out)<br />

) <strong>and</strong> ( σ (in)<br />

, the equation of<br />

the ellipse can be used at input location:<br />

X<br />

T<br />

( in)<br />

σ ( in)<br />

−1<br />

X ( in)<br />

= 1,<br />

(7)<br />

while at the output location it is:<br />

X<br />

T<br />

( out)<br />

σ ( out)<br />

−1<br />

X ( out)<br />

= 1<br />

(8)<br />

By using a linear trans<strong>for</strong>mation, Equation (1) <strong>and</strong> the identity (RR -1 =1), the equation (7) can be written as:<br />

Also equation (9) becomes:<br />

( RX ( in))<br />

T<br />

( Rσ<br />

( in)<br />

R<br />

T<br />

)<br />

−1<br />

( RX ( in))<br />

= 1<br />

(9)<br />

X<br />

T<br />

( out)(<br />

Rσ<br />

( in)<br />

R<br />

T<br />

)<br />

−1<br />

R(<br />

out)<br />

= 1<br />

(10)<br />

Equation (8) <strong>and</strong> Equation (10) after inversion can be written as:<br />

σ ( out ) = Rσ<br />

( in)<br />

R<br />

T<br />

(11)<br />

Equation (11) represents the relation between theσ -matrix in two locations of the beam line. Also based on<br />

Liouville's theorem [6, 7], the trans<strong>for</strong>mation has preserved the phase space volume of the beam <strong>and</strong> (det σ (in)<br />

=<br />

det σ (out)<br />

).<br />

The area of phase space ellipse is equal to (π det σ (out)<br />

), there<strong>for</strong>e, the emittance is:<br />

The normalized emittance isε n = βγε ; where = vi / c<br />

γ = ( 1 − β<br />

2<br />

)<br />

−1/<br />

2<br />

.<br />

ε = detσ<br />

= ( σ σ − σ )<br />

(12)<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A July 2008<br />

11<br />

22<br />

2<br />

12<br />

β ; c: velocity of light in vacuum; i<br />

v : ion velocity;


The normalized brightness ( B r ) varies across the beam by:<br />

xn<br />

yn<br />

Mahdi Hadi Jasim<br />

I<br />

Br<br />

π ε ε<br />

2<br />

2<br />

= , (13)<br />

where I is the total ion beam current.<br />

The beam distribution at any point along the transport lines can be described mathematically by a four dimensional<br />

beam ellipsoid ( x, x′<br />

, y,<br />

y′<br />

) which can be expressed by a 4× 4 symmetric matrix ( σ − matrix ), see Figure 1. As shown in<br />

the A<strong>pp</strong>endix (Tables A1, A2, <strong>and</strong> A3) the terms of theσ − matrix <strong>and</strong> the trans<strong>for</strong>mation Rij − matrix have been<br />

derived. They include the main effective parameters <strong>and</strong> the beam ellipsoid <strong>for</strong> different optical elements in the ion<br />

implanter system.<br />

x'<br />

x'int =<br />

Beam centroid<br />

3. RESULTS AND DISCUSSIONS<br />

Based on the theoretical calculations <strong>for</strong> a 4 × 4 symmetric σ − matrix <strong>and</strong> its trans<strong>for</strong>mation Rij − matrices, an<br />

optimization procedure has been per<strong>for</strong>med <strong>for</strong> different optical elements in an ion implanter system, as shown in Figure<br />

2. The main input parameters, Table 1, were used to calculate the beam profiles (beam width) <strong>for</strong> a slit extraction as a<br />

function of the system’s length, as shown in Figure 3, <strong>for</strong> the horizontal plane <strong>and</strong> vertical plane, respectively. The<br />

specifications are: bending angle 75 o 2<br />

, R=430mm, slit extraction dimensions = (5 ± 0.04)× (20 ± 0.0006) mm ,<br />

S1=410mm <strong>and</strong> S2=175mm. The phase space ellipse movement of ion implanter elements is shown in Figure 4 <strong>for</strong> the<br />

horizontal plane, where the region of divergence or convergence of the ion beam indicates the effect of the acceleration<br />

tube <strong>and</strong> the deflector units.<br />

The bending magnet works as a strong focusing element through selection of the pole-face<br />

angles( = . 3°<br />

, β = −0.<br />

5°<br />

β act a thin divergence lens in the<br />

α m 20 m ),where the entrance angle α m <strong>and</strong> exit angle m<br />

horizontal plane <strong>and</strong> as a thin convergence lens in the vertical plane. The effect of the fringe field on the ion beam is<br />

represented by the reduction of the entrance angle (ψ ) which has a small value in the case of a homogeneous magnetic<br />

field. In the present work, ψ is found to be 0.03°. The minimum <strong>and</strong> maximum beam paths inside the good field region<br />

allowed a magnetic field strength ranging from 2000 to 4000 G <strong>for</strong> the extraction voltage range (15–35 kV). The<br />

magnetic field strength reached 0.396T <strong>and</strong> the magnetic rigidity reached 0.17T.m, <strong>for</strong> Ar + ion beams.<br />

The maximum acceleration voltage (180 kV) is reached using a high voltage electrostatic accelerator type (HERP<br />

Germany). It is found that an increase in the acceleration energy causes a decrease in non-linearity in the phase space<br />

ellipse at the target <strong>for</strong> both planes <strong>and</strong> a decrease in the total area. The decrease in the total area is proportional to the<br />

acceleration voltage ( ) 2 / 1<br />

U<br />

Figure 1. Two-dimensional phase space ellipse based on the σ -matrix [8]<br />

U .<br />

o<br />

detσ<br />

σ11 x'max = σ 22<br />

xmax = σ 11<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A 349<br />

σ12<br />

σ11<br />

xint =<br />

σ<br />

Slope =<br />

σ<br />

x<br />

detσ<br />

σ 22<br />

12<br />

11


350<br />

Mahdi Hadi Jasim<br />

The effect of triplet quadrupole lenses has been studied in comparison with the upright phase space ellipse in the<br />

extraction region which shows a divergence effect in the horizontal plane. The triplet quadrupole lens consists of three<br />

quadrupole parts with dimensions described in Table 1. However, in the vertical plane there is no clear effect of the<br />

quadrupole lens due to the small value of initial angular divergence (y').<br />

The deflector causes deflection of the desired charged particle beam with an angle proportional to the potential<br />

difference between the deflector plates. The deflector causes a shift in the distance <strong>and</strong> in the angular divergence of the<br />

phase space ellipse in both horizontal <strong>and</strong> vertical planes, as shown in Figure 4.<br />

The lengths of free regions were calculated <strong>and</strong> found to be consistent with the minimum physical element to element<br />

separation as well as with the overall implanter system. The length of the first field free region has a strong effect on the<br />

total area of ion beam at the target as shown in Figure 5. From this figure the minimum value of the total area of ion<br />

beam at the target is 237.29 mm 2 <strong>and</strong> that means the silicon wafer area (5cm in diameter) is covered at least by eight<br />

regions with homogenous doping.<br />

At the target region, the ion beam has divergence properties in both the horizontal <strong>and</strong> vertical plane as shown in<br />

Figures 6 <strong>and</strong> 7. This region shows a shift in the phase-space ellipse due to the influence of the deflector.<br />

80<br />

Bending<br />

system<br />

410<br />

Acceleration<br />

tube<br />

Bending<br />

line<br />

175<br />

75 o<br />

Decelerator<br />

Ion source<br />

1000<br />

Lenses tube<br />

3<br />

945<br />

Scanner<br />

Target<br />

(not to scale )<br />

Figure 2. Top view of ion implanter system with the calculated optimized positions <strong>for</strong> each optical element (all dimensions in<br />

mm)<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A July 2008<br />

25<br />

6.66 o<br />

Electron<br />

shower<br />

1150<br />

300<br />

1000


Mahdi Hadi Jasim<br />

Table 1. The Specific Optimization Values <strong>for</strong> the Optical Element Used in the Ion Implantation System <strong>and</strong><br />

Evaluation of the Available Designed Values in IMIIIS.<br />

Optical element<br />

Parameters<br />

Fixed Optimizati<br />

Slit Extractor<br />

Homogenous<br />

Magnet Analyzer<br />

Accelerating tube<br />

Quadrupole Triplet<br />

Deflector plates<br />

Drift free space<br />

between the optical<br />

elements<br />

Extraction voltage (kV)<br />

Extraction current (mA)<br />

xo (mm)<br />

x'o (rad.)<br />

yo (mm)<br />

y'o (rad.)<br />

Entrance angle (degree)<br />

Deflection angle (degree)<br />

Exit angle (degree)<br />

Fringing field effect angle (degree)<br />

Magnet radius (mm)<br />

Magnet rigidity (T. m)<br />

Magnet field strength (T)<br />

Magnet gap (mm)<br />

Acceleration voltage (kV)<br />

Final energy of charged particle(keV)<br />

Acceleration tube length (mm)<br />

Length (mm)<br />

Distance between the lenses (mm)<br />

Operation voltage (V)<br />

Distance between electrodes (mm)<br />

Total length (mm)<br />

Length (mm)<br />

Plates distance (mm)<br />

Potential difference (V)<br />

Deflection angle (degree)<br />

S1-First free region length (mm) S2-<br />

Second free region length (mm)<br />

S3-Third free region length (mm)<br />

S4-Fourth free region length (mm-)<br />

S5-Fifth free region length (mm)<br />

* Iraqi Ministry of Industry ion implantation system (IMIIIS).<br />

Design values*<br />

15–35<br />

2.23<br />

5<br />

.04<br />

20<br />

on values<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A 351<br />

.0006<br />

-----<br />

75<br />

-----<br />

-----<br />

430<br />

0.2276<br />

0.5293<br />

80<br />

0-180<br />

215<br />

1000<br />

-----<br />

-----<br />

-----<br />

-----<br />

-----<br />

------<br />

------<br />

------<br />

------<br />

------<br />

------<br />

------<br />

------<br />

------<br />

15-35<br />

2.23<br />

5<br />

0.04<br />

20<br />

0.0006<br />

20.3<br />

75<br />

–0.5<br />

0.03<br />

430<br />

0.17032<br />

0.396<br />

80<br />

0-180<br />

215<br />

1000<br />

100<br />

20<br />

250<br />

30<br />

440<br />

4. CONCLUSION<br />

Equations of motion of the charged particles <strong>and</strong> the matrices in each optical element have been derived, with the<br />

consideration that the motions in different planes are independent of each other. An optimization of the beam parameter<br />

design at the target wafer has been obtained using two assumptions; a four-dimensional beam ellipsoid equation <strong>and</strong> the<br />

normal distribution of ion beam particles in the area of its space coordinates. Also, it is concluded that the emittance <strong>and</strong><br />

the brightness factors of the ion beam are constant unless there is a change in the ion beam energy.<br />

An optimization analysis has been adopted to evaluate the Iraqi Ministry of Industry ion implantation system, which<br />

+<br />

reflects the results <strong>for</strong>m the design revision <strong>for</strong> each element. Using Ar ions the optimum values are 30–180 keV <strong>and</strong><br />

2.23 mA. The maximum value of normalized emittance <strong>for</strong> the present configuration system is 0.077 mm.mrad, while<br />

the normalized brightness of the emittance is equal to 0.356 A/(mm.mrad) 2 , <strong>and</strong> the current- normalized brightness is<br />

2.<br />

256 ×<br />

10<br />

−4<br />

A/(mm.mrad)<br />

2<br />

.<br />

500<br />

30<br />

3000<br />

6.66<br />

410<br />

175<br />

3<br />

3<br />

25


352<br />

Mahdi Hadi Jasim<br />

1<br />

Beam width in x <strong>and</strong> y<br />

directions (mm)<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 1000 2000 3000<br />

Length (mm)<br />

Horizontal plane<br />

Vertical plane<br />

Figure 3. Beam profiles <strong>for</strong> a 75 o homogenous magnetic analyzer <strong>for</strong> a slit extraction system<br />

with an α = 20. 3<br />

o<br />

, = −0.<br />

5<br />

o<br />

m βm<br />

, ψ =0.03°, S1=410mm <strong>and</strong> R=430mm in IMIIIS<br />

2 3 4 5 6 7 8 9<br />

Figure 4. Phase space ellipse movement along the ion implanter in horizontal plane. 1. Extraction system, 2. first field free<br />

region, 3. 3.75 ° magnetic analyzer, 4. second field free region, 5. acceleration tube, 6. third field free region, 7. triplet<br />

Quadrupole, 8. <strong>for</strong>th field free, region, 9. deflector <strong>and</strong> Fifth free region<br />

Figure 5. Effect of first free region length S1 (slit extraction-magnetic analyzer length) on the total area of ion beam at the<br />

target<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A July 2008


Brightness (mA/(m.rad. 2 ))<br />

X' (rad.)<br />

0.13<br />

0.12<br />

0.11<br />

0.10<br />

(a) Beam profile map<br />

20 25 30 35 40<br />

X (mm)<br />

(c) Beam profile image<br />

Brightness (mA/(m.rad. 2 ))<br />

Mahdi Hadi Jasim<br />

0.00<br />

10 20 30 40 50<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A 353<br />

X' (rad.)<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.13<br />

0.12<br />

0.11<br />

0.10<br />

Figure 6. Horizontal phase space profile at the target region<br />

20 25 30 35 40<br />

X (mm)<br />

(b) Beam profile contours<br />

X (mm)<br />

(d) Beam Gaussian curve


354<br />

Mahdi Hadi Jasim<br />

Brightness (mA/(m.rad. 2 ))<br />

Y' (rad.)<br />

0.125<br />

0.120<br />

0.115<br />

0.110<br />

0.105<br />

(a) Beam profile map<br />

20 25 30 35 40<br />

Y (mm)<br />

(c) Beam profile image<br />

0.00<br />

10 20 30 40 50<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A July 2008<br />

Y' (rad.)<br />

Brightness (mA/(m.rad. 2 ))<br />

0.125<br />

0.120<br />

0.115<br />

0.110<br />

0.105<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

Figure 7. Vertical phase space profile at the target region<br />

20 25 30 35 40<br />

Y (mm)<br />

(b) Beam profile contours<br />

Y (mm)<br />

(d) Beam Gaussian curve


APPENDIX<br />

Table A1. The σ– Matrix of the Beam Ellipsoid Terms in an Ion Implanter System<br />

Optical Elements<br />

Drift space<br />

Magnet analyzer<br />

Magnet edge<br />

Good field region<br />

σ − matrix Terms in Radial <strong>and</strong> axial directions<br />

σ 11<br />

x<br />

σ 12<br />

x<br />

2<br />

( o)<br />

= σ x11(<br />

i)<br />

+ 2Sσ<br />

x12(<br />

i)<br />

+ S σ x 22(<br />

i)<br />

( o)<br />

= σ x 21(<br />

o)<br />

= σ x12(<br />

i)<br />

+ Sσ<br />

x 22(<br />

i)<br />

( o)<br />

= σ 22(<br />

i)<br />

σ x 22 x<br />

Axial terms are similar to radial terms but replace x by y<br />

σ 11(<br />

o)<br />

= σ 11(<br />

i)<br />

x<br />

σ x11(<br />

i)<br />

σ x12(<br />

o)<br />

= + σ x12(<br />

i)<br />

f<br />

σ 21(<br />

o)<br />

= σ 12(<br />

o)<br />

x<br />

σ x11(<br />

i)<br />

2σ<br />

x12(<br />

i)<br />

σ x 22(<br />

o)<br />

= + + σ 22(<br />

)<br />

2<br />

x i<br />

f f<br />

σ 11(<br />

o)<br />

= σ 11(<br />

i)<br />

y<br />

σ y11(<br />

i)<br />

σ y12(<br />

o)<br />

= − + σ y12(<br />

i)<br />

f<br />

σ 21(<br />

o)<br />

= σ 12(<br />

o)<br />

y<br />

σ y11(<br />

i)<br />

2σ<br />

y12(<br />

i)<br />

σ y 22(<br />

o)<br />

= − + σ 22(<br />

)<br />

2<br />

y i<br />

f f<br />

exit edge<br />

Ro<br />

Ro<br />

= , f y =<br />

β tan( β −ψ<br />

)<br />

Mahdi Hadi Jasim<br />

Ro<br />

=<br />

tan( α −ψ<br />

)<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A 355<br />

x<br />

x<br />

y<br />

y<br />

x<br />

x<br />

y<br />

Ro<br />

H int : entrance edge f x =<br />

tanα<br />

1<br />

2<br />

+ σ x 22(<br />

i).<br />

sin kxl<br />

2<br />

k<br />

σ 21(<br />

o)<br />

= σ 12(<br />

o)<br />

+ σ 22(<br />

i).<br />

cos k l<br />

y<br />

f<br />

x<br />

2 1<br />

σ x12(<br />

i).<br />

cos kxl<br />

+ σ x 22(<br />

i).<br />

sin kxl.<br />

cosk<br />

xl<br />

k<br />

m<br />

x<br />

y<br />

2 2<br />

σ x11(<br />

o)<br />

= σ x11(<br />

i).<br />

cos kxl<br />

+ σ x12(<br />

i).<br />

cosk<br />

xl.<br />

sin kxl<br />

k<br />

σ 12(<br />

o)<br />

= −σ<br />

11(<br />

i).<br />

k . cosk<br />

l.<br />

sin k l −σ<br />

12(<br />

i).<br />

sin k l +<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

2<br />

x<br />

x<br />

x<br />

2<br />

x<br />

2<br />

x<br />

σ 22(<br />

o)<br />

= σ 11(<br />

i).<br />

k . sin k l − 2σ<br />

12(<br />

i).<br />

k . sin k l.<br />

cosk<br />

l<br />

Terms in the axial direction are similar to radial terms but x must be<br />

replaced by y<br />

x<br />

x<br />

m<br />

x<br />

x<br />

,<br />

m<br />

f<br />

x<br />

y<br />

x<br />

x<br />

2<br />

m<br />

x<br />

x


Mahdi Hadi Jasim<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A July 2008<br />

356<br />

Ratio<br />

Energy<br />

Particle<br />

U<br />

U<br />

R<br />

H<br />

R<br />

i<br />

o<br />

o<br />

o<br />

i<br />

R<br />

R<br />

L<br />

R<br />

i<br />

o<br />

i<br />

R<br />

L<br />

i<br />

R<br />

L<br />

i<br />

o<br />

o<br />

r<br />

r<br />

x<br />

x<br />

x<br />

x<br />

x<br />

r<br />

r<br />

a<br />

r<br />

x<br />

x<br />

x<br />

r<br />

a<br />

x<br />

r<br />

a<br />

x<br />

x<br />

,<br />

:<br />

int<br />

)<br />

(<br />

22<br />

)<br />

(<br />

22<br />

)<br />

(<br />

12<br />

)<br />

(<br />

21<br />

)<br />

(<br />

22<br />

)<br />

1<br />

(<br />

2<br />

)<br />

(<br />

12<br />

)<br />

(<br />

12<br />

)<br />

(<br />

22<br />

)<br />

1<br />

(<br />

4<br />

)<br />

(<br />

12<br />

1<br />

4<br />

)<br />

(<br />

11<br />

)<br />

(<br />

11<br />

2<br />

1<br />

2<br />

2<br />

2<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

=<br />

=<br />

+<br />

+<br />

=<br />

+<br />

+<br />

+<br />

+<br />

=<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

Terms in<br />

axial direction are similar to radial terms but x must be replaced by y<br />

Accelerating tube<br />

1<br />

)<br />

(<br />

33<br />

)<br />

(<br />

23<br />

)<br />

(<br />

32<br />

)<br />

(<br />

13<br />

)<br />

(<br />

31<br />

)<br />

(<br />

23<br />

)<br />

(<br />

22<br />

).<br />

1<br />

(<br />

)<br />

(<br />

12<br />

).<br />

1<br />

(<br />

4<br />

)<br />

(<br />

11<br />

.<br />

4<br />

)<br />

(<br />

22<br />

)<br />

(<br />

12<br />

)<br />

(<br />

21<br />

.<br />

2<br />

1<br />

)<br />

(<br />

13<br />

.<br />

2<br />

1<br />

)<br />

(<br />

22<br />

.<br />

).<br />

1<br />

)(<br />

2<br />

1<br />

(<br />

)<br />

(<br />

12<br />

).<br />

1<br />

(<br />

)<br />

(<br />

12<br />

).<br />

2<br />

1<br />

(<br />

2<br />

)<br />

(<br />

11<br />

).<br />

1<br />

(<br />

2<br />

)<br />

(<br />

12<br />

.<br />

4<br />

1<br />

)<br />

(<br />

22<br />

.<br />

.<br />

)<br />

2<br />

1<br />

(<br />

)<br />

(<br />

12<br />

.<br />

)<br />

2<br />

1<br />

1<br />

)(<br />

1<br />

(<br />

2<br />

)<br />

(<br />

11<br />

).<br />

1<br />

(<br />

)<br />

(<br />

11<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

=<br />

=<br />

=<br />

=<br />

+<br />

−<br />

+<br />

−<br />

−<br />

=<br />

=<br />

=<br />

+<br />

−<br />

−<br />

+<br />

−<br />

+<br />

−<br />

−<br />

−<br />

−<br />

=<br />

+<br />

−<br />

+<br />

−<br />

−<br />

+<br />

−<br />

=<br />

o<br />

o<br />

o<br />

x<br />

o<br />

o<br />

o<br />

i<br />

i<br />

L<br />

o<br />

L<br />

o<br />

o<br />

o<br />

L<br />

o<br />

L<br />

i<br />

L<br />

i<br />

i<br />

i<br />

L<br />

o<br />

L<br />

i<br />

L<br />

i<br />

L<br />

i<br />

o<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

d<br />

x<br />

d<br />

x<br />

x<br />

x<br />

d<br />

x<br />

d<br />

x<br />

d<br />

x<br />

x<br />

x<br />

d<br />

x<br />

q<br />

x<br />

q<br />

x<br />

q<br />

x<br />

x<br />

σ<br />

σ<br />

σ<br />

σ<br />

σ<br />

α<br />

σ<br />

α<br />

σ<br />

α<br />

σ<br />

α<br />

α<br />

σ<br />

α<br />

σ<br />

σ<br />

σ<br />

α<br />

σ<br />

α<br />

σ<br />

α<br />

α<br />

σ<br />

α<br />

σ<br />

α<br />

α<br />

σ<br />

α<br />

α<br />

σ<br />

α<br />

σ<br />

α<br />

σ<br />

α<br />

α<br />

σ<br />

α<br />

σ<br />

Electrostatic deflector


Mahdi Hadi Jasim<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A 357<br />

)<br />

(<br />

22<br />

)<br />

3<br />

2<br />

).(<br />

).(<br />

(<br />

21<br />

4<br />

)]<br />

3<br />

2<br />

(<br />

).[<br />

(<br />

11<br />

4<br />

)<br />

(<br />

22<br />

)<br />

(<br />

12<br />

)<br />

(<br />

21<br />

)]<br />

1<br />

(<br />

1<br />

).[<br />

2<br />

).(<br />

(<br />

22<br />

2<br />

)]<br />

1<br />

(<br />

1<br />

).[<br />

2<br />

).(<br />

3<br />

2<br />

(<br />

)<br />

4<br />

1<br />

).(<br />

(<br />

12<br />

)<br />

3<br />

2<br />

)(<br />

).(<br />

(<br />

11<br />

2<br />

)<br />

(<br />

12<br />

)]<br />

1<br />

(<br />

1<br />

.[<br />

)<br />

2<br />

).(<br />

(<br />

22<br />

4<br />

)]<br />

1<br />

(<br />

1<br />

)[<br />

2<br />

).(<br />

(<br />

12<br />

4<br />

)<br />

(<br />

11<br />

)<br />

(<br />

11<br />

)<br />

(<br />

22<br />

)<br />

3<br />

2<br />

)(<br />

)(<br />

(<br />

21<br />

4<br />

)]<br />

3<br />

2<br />

(<br />

).[<br />

(<br />

11<br />

4<br />

)<br />

(<br />

22<br />

)<br />

(<br />

12<br />

)<br />

(<br />

21<br />

))<br />

1<br />

(<br />

1<br />

).(<br />

2<br />

)(<br />

(<br />

22<br />

2<br />

))]<br />

1<br />

(<br />

1<br />

)(<br />

2<br />

).(<br />

3<br />

2<br />

.(<br />

4<br />

1<br />

)[<br />

(<br />

12<br />

)<br />

3<br />

2<br />

).(<br />

).(<br />

(<br />

11<br />

)<br />

(<br />

12<br />

)]<br />

1<br />

(<br />

1<br />

[<br />

)<br />

2<br />

).(<br />

(<br />

22<br />

4<br />

)]<br />

2<br />

1<br />

(<br />

1<br />

).[<br />

2<br />

).(<br />

(<br />

12<br />

4<br />

)<br />

(<br />

11<br />

)<br />

(<br />

11<br />

4<br />

2<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

2<br />

2<br />

2<br />

4<br />

2<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

2<br />

2<br />

2<br />

i<br />

L<br />

s<br />

L<br />

i<br />

L<br />

s<br />

L<br />

i<br />

o<br />

o<br />

o<br />

L<br />

s<br />

s<br />

L<br />

i<br />

L<br />

s<br />

s<br />

L<br />

L<br />

s<br />

L<br />

i<br />

L<br />

s<br />

L<br />

i<br />

o<br />

L<br />

s<br />

s<br />

L<br />

i<br />

L<br />

s<br />

s<br />

L<br />

i<br />

i<br />

o<br />

i<br />

L<br />

s<br />

L<br />

i<br />

L<br />

s<br />

L<br />

i<br />

o<br />

o<br />

o<br />

L<br />

s<br />

s<br />

L<br />

i<br />

L<br />

s<br />

s<br />

L<br />

L<br />

s<br />

L<br />

i<br />

L<br />

s<br />

L<br />

i<br />

o<br />

L<br />

s<br />

s<br />

L<br />

i<br />

L<br />

s<br />

L<br />

i<br />

i<br />

o<br />

y<br />

q<br />

q<br />

y<br />

q<br />

q<br />

y<br />

y<br />

y<br />

y<br />

q<br />

q<br />

y<br />

q<br />

q<br />

q<br />

q<br />

y<br />

q<br />

q<br />

y<br />

y<br />

q<br />

q<br />

y<br />

q<br />

q<br />

y<br />

y<br />

y<br />

x<br />

q<br />

q<br />

x<br />

q<br />

q<br />

x<br />

x<br />

x<br />

x<br />

q<br />

q<br />

x<br />

q<br />

q<br />

q<br />

q<br />

x<br />

q<br />

q<br />

x<br />

x<br />

q<br />

q<br />

x<br />

q<br />

q<br />

x<br />

x<br />

x<br />

σ<br />

θ<br />

σ<br />

θ<br />

σ<br />

σ<br />

σ<br />

σ<br />

θ<br />

σ<br />

θ<br />

θ<br />

σ<br />

θ<br />

σ<br />

σ<br />

θ<br />

σ<br />

θ<br />

σ<br />

σ<br />

σ<br />

σ<br />

θ<br />

σ<br />

θ<br />

σ<br />

σ<br />

σ<br />

σ<br />

θ<br />

σ<br />

θ<br />

θ<br />

σ<br />

θ<br />

σ<br />

σ<br />

θ<br />

σ<br />

θ<br />

σ<br />

σ<br />

σ<br />

+<br />

+<br />

−<br />

+<br />

=<br />

=<br />

+<br />

−<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

×<br />

−<br />

+<br />

+<br />

−<br />

=<br />

+<br />

−<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

=<br />

+<br />

+<br />

−<br />

+<br />

=<br />

=<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

−<br />

=<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

=<br />

Quadrupole Triplet


358<br />

Mahdi Hadi Jasim<br />

Table A2. The Trans<strong>for</strong>mation R-Matrix Elements <strong>for</strong> Different Optical Elements in the Ion Implanter System<br />

Optical elements Trans<strong>for</strong>mation R-matrix elements<br />

Drift space<br />

1<br />

R x =<br />

0<br />

S<br />

,<br />

1<br />

Ry<br />

= Rx<br />

Magnet analyzer<br />

Rx<br />

=<br />

1<br />

tanα<br />

m<br />

Ro<br />

0<br />

1<br />

cosk<br />

xl<br />

− kx<br />

sin kxl<br />

sin kxl<br />

kx<br />

cosk<br />

xl<br />

1<br />

tanα<br />

m<br />

Ro<br />

0<br />

1<br />

1<br />

R tan( m )<br />

y = β −ψ<br />

−<br />

R<br />

0<br />

1<br />

cosk<br />

yl<br />

− k sin k l<br />

sin k yl<br />

k y<br />

cosk<br />

l<br />

1<br />

tan( α m −ψ<br />

)<br />

−<br />

R<br />

0<br />

1<br />

Accelerating tube<br />

Quadrupole triplet<br />

Electrostatic deflector<br />

1<br />

R r<br />

x = , Ry<br />

=<br />

R<br />

±<br />

0<br />

o<br />

La<br />

2<br />

( R + 1)<br />

1<br />

R<br />

= 4<br />

θ L<br />

− 2(<br />

)( +<br />

L 3<br />

q<br />

H int : + CDDC<br />

R<br />

x<br />

=<br />

2<br />

2α<br />

−<br />

Ld<br />

0<br />

r<br />

1<br />

( 1−<br />

α )<br />

2<br />

s<br />

Lq<br />

,<br />

0<br />

)<br />

2<br />

α<br />

( 1−<br />

)<br />

2<br />

2<br />

( 1−<br />

α )<br />

y<br />

R<br />

2(<br />

2<br />

x<br />

L<br />

− DCCD<br />

1<br />

The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A July 2008<br />

q<br />

1<br />

α.<br />

L<br />

2<br />

α<br />

y<br />

+ s).(<br />

1±<br />

θ ( 1+<br />

d<br />

1<br />

2<br />

y<br />

s<br />

L<br />

q<br />

))<br />

o


Table A3. Some of the Parameter Symbols <strong>and</strong> Definitions Used in Tables A1 <strong>and</strong> A2<br />

Parameters Symbols definitions<br />

x , ′ Particle position <strong>and</strong> divergence (mm.mrad) in radial direction<br />

o o x<br />

o o y<br />

y , ′ Particle position <strong>and</strong> divergence (mm.mrad) in axial direction<br />

z Beam line length (mm)<br />

s Particle displacement (mm)<br />

S Drift space length (mm)<br />

α The magnet analyzer entrance angle (degree)<br />

m<br />

β The magnet analyzer exit angle (degree)<br />

R<br />

m<br />

o<br />

k x , k y<br />

Radius of the magnet analyzer (mm)<br />

The wave number <strong>for</strong> the radial (<br />

kx<br />

n Field index<br />

l Path length inside the magnet (mm)<br />

L a<br />

The accelerator tube length(mm)<br />

R r Particle energy ratio<br />

α Electric deflection angle (degree)<br />

L Path length along lens (mm)<br />

L Effective length of the lens (mm)<br />

q<br />

REFERENCES<br />

θ The change of particle direction in horizontal plane<br />

CDDC Convergent–divergent–divergent–convergent<br />

DCCD Divergent–convergent–convergent–divergent<br />

Mahdi Hadi Jasim<br />

1<br />

( 1−<br />

n)<br />

2<br />

n<br />

= ) <strong>and</strong> axial ( k y = ) oscillations<br />

Ro<br />

Ro<br />

[1] G.H. Gillespie <strong>and</strong> T.A. Brown, “Optics Elements <strong>for</strong> Modeling Electrostatic Lenses <strong>and</strong> Accelerator Components I.<br />

Einzel Lenses”, IEEE Tran. Nucl. Sci., NS-45(1998), <strong>pp</strong>. 2559–2561.<br />

[2] N. Tsoupas, W. Glenn, S. Tepikian, W. MacKay, <strong>and</strong> L. Ahrens, "A Computer Code to Measure the Beam Emittance<br />

<strong>and</strong> Beam Parameters of the AIR Line", C-A/AP/42. Collider-Accelerator Department, Brookhaven National<br />

Laboratory, Upton, NY-11973, 2001.<br />

[3] P. Tanedo, "Modeling the Transverse Linear Optics of a Charged Particle Storage Ring", Stan<strong>for</strong>d Linear Accelerator:<br />

Report, 2003, 14 <strong>pp</strong>.<br />

[4] H. Glawischnig, "Ion Implantation System Concepts" in Ion Implantation Techniques, ed. H. Ryssel <strong>and</strong> H.<br />

Glawischnig. Springer Series in Electrophysics, vol. 10, 1982, <strong>pp</strong>. 3–20.<br />

[5] Intesar Hatto Hashim, “A Study of the Main Parameters Effects in Designing the Medium Range Ion Implanter”,<br />

Ph.D. Thesis , Al-Mustansiryah University, College of <strong>Science</strong> , 2004<br />

[6] H.F. Glavish, “Magnet Optics <strong>for</strong> Beam Transport”, Nucl. Instr. <strong>and</strong> Meth., 189(1981), <strong>pp</strong>. 43–53.<br />

[7] K.L. Brown, “Beam Envelope Matching <strong>for</strong> Beam Guidance System”, Nucl. Instr. <strong>and</strong> Meth., 187(1981), <strong>pp</strong>. 51–65.<br />

[8] W.B. Thompson, I. Honjo, <strong>and</strong> N. Turner, “Use of Computers <strong>for</strong> Designing <strong>and</strong> Testing Beam Systems” in Ion<br />

Implantation: Equipment <strong>and</strong> Techniques, ed. H. Ryssel <strong>and</strong> H. Glawischnig. Springer Series in Electrophysics, vol. 11,<br />

1983, <strong>pp</strong>. 86–96.<br />

[9] D.C. Cary, “High Energy Charged-Particle Optics Computer Programs”, Nucl. Instr. <strong>and</strong> Meth., 187(1981) <strong>pp</strong>. 97–102.<br />

July 2008 The <strong>Arabian</strong> <strong>Journal</strong> <strong>for</strong> <strong>Science</strong> <strong>and</strong> <strong>Engineering</strong>, Volume 33, Number 2A 359

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!