03.08.2013 Views

A study on the Immobilizaton of Enzymes on Polymeric Supports

A study on the Immobilizaton of Enzymes on Polymeric Supports

A study on the Immobilizaton of Enzymes on Polymeric Supports

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A STUDY ON THE IMMOBILIZATION<br />

. .<br />

\ '.<br />

OF ENZYMES ON POLYMERIG<br />

SUPPORTS<br />

Thesis submitted to<br />

Cochin University <strong>of</strong> Science and Technology<br />

in partial fulfillment <strong>of</strong> <strong>the</strong> requirements<br />

for <strong>the</strong> Degree <strong>of</strong><br />

DQCTQR OF PHILQSQPHY<br />

in<br />

CHEMISTRY<br />

by<br />

Ashly P. C.<br />

DEPARTMENT OF APPLIED CHEMISTRY<br />

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY<br />

KOCHI-22<br />

INDIA<br />

April 2009


CERTIFICATE<br />

This is to certify that <strong>the</strong> <strong>the</strong>sis entitled “A STUDY ON THE<br />

IMMOBILIZATION OF ENZYMES ON POLYMERIC SUPPORTS” submitted for<br />

<strong>the</strong> award <strong>of</strong> <strong>the</strong> Degree <strong>of</strong> Doctor <strong>of</strong> Philosophy <strong>of</strong> <strong>the</strong> Cochin University <strong>of</strong> Science and<br />

Technology is a record <strong>of</strong> original research work carried out by Ms. Ashly P. C. under my<br />

supervisi<strong>on</strong> and guidance in <strong>the</strong> Department <strong>of</strong> Applied Chemistry, and fur<strong>the</strong>r that it has<br />

not formed <strong>the</strong> part <strong>of</strong> any o<strong>the</strong>r <strong>the</strong>sis previously.<br />

\~\%/<br />

Dr. P. V. Mohanan<br />

Lecturer<br />

(Supervising Guide)<br />

Department <strong>of</strong> Applied Chemistry<br />

Cochin University <strong>of</strong> Science and Technology<br />

Kochi-22 06.04.09 Kochi INDIA<br />

— 682022


DECLARATION<br />

I hereby declare that <strong>the</strong> <strong>the</strong>sis entitled “A STUDY ON THE<br />

IMMOBILIZATION OF ENZYMES ON POLYMERIC SUPPORTS” submitted for<br />

<strong>the</strong> award <strong>of</strong> Ph. D. Degree, is based <strong>on</strong> <strong>the</strong> original research work d<strong>on</strong>e by me under <strong>the</strong><br />

guidance<br />

Kochi-22<br />

<strong>of</strong> Dr. P. V. Mohanan, Lecturer, Department <strong>of</strong> Applied Chemistry, Cochin<br />

University <strong>of</strong> Science and Technology and fur<strong>the</strong>r that it has not previously formed <strong>the</strong><br />

basis for <strong>the</strong> award <strong>of</strong> any o<strong>the</strong>r degree.<br />

06.04.2009 Ashly P. c.


flCK,7VO"VVL£q)gf9/IE.“/71'<br />

I wouidlilie to eagpress my gratitude to afftliose w/io gave me t/ie possi6ili'ty to compfete<br />

tfizls tfiesis.<br />

(Dr. G’. ‘V. 9i/l<strong>of</strong>ianan - my supervising guide, for fiis stimufizting suggesti<strong>on</strong>s,<br />

understanding and c<strong>on</strong>stant encouragement during my researcfi<br />

~Dr. K. gm:/i Kumar - Head <strong>of</strong> t/ie department qfflpplied C/iemistry, for air fielps<br />

especiafly in czfjqciafformafities, made easy road in my researcfi "work<br />

G)r. K. Sreefiumar -forgiving guidelines in my tliesis -writing<br />

®r. M. fl. josepfi - for detailed and c<strong>on</strong>structive ideas<br />

flit tfie otfier facidty memfiers, administrative staff, lifirarian - for lielping me run<br />

smootfiiy and for assisting me in many difierent ways<br />

Wai/ya fint<strong>on</strong>y, Qlnya Rajan - my laiimatesfor tfieir compani<strong>on</strong>sfiip<br />

Rajesfi, Wlafiesfi, £[iza6etfi, 9Vianga[a, Rema, (Pead Geena, §indliu, Litfia, ~Res"mi, Golie,<br />

Rosfiini, flvlanju, §‘zsfia - friends <strong>of</strong>®epartment cy‘jIpp[iedCfiemistry<br />

0):":/ya, Giji -fiiends <strong>of</strong>H’1ffor tfieir support and caring<br />

Remya ‘I/aradarajan, ‘I/anzlsree - my room mates in fiosteffor tfieir emoti<strong>on</strong>af support,<br />

ad’:/‘ice, care, and t/ie w<strong>on</strong>degqd moments sfiaredwitfi<br />

jisfia, Sini - my fiostefinates for every entertainments<br />

Q31. C. (P. 5e6astian - my lius6andf0r liis inspirati<strong>on</strong>af and moraf support and great<br />

patience<br />

My parents and sister -for rising, teac/Zing and [oving me<br />

find my dearfiiends


PREFACE<br />

<strong>Enzymes</strong> are very efficient catalysts for biochemical reacti<strong>on</strong>s produced by living<br />

organisms. Many <strong>of</strong> <strong>the</strong> biological processes such as c<strong>on</strong>versi<strong>on</strong> <strong>of</strong> food in to energy are<br />

governed by this classical biomaterial. From <strong>the</strong> beginning, enzymes were existed in <strong>the</strong><br />

earth, and <strong>on</strong>ly 100 years back it was noticed by scientists. Even though enzymes showed<br />

its remarkable importance in c<strong>on</strong>trolling <strong>the</strong> life cycle <strong>of</strong> human being and o<strong>the</strong>r organisms,<br />

<strong>the</strong> instability, ra<strong>the</strong>r, <strong>the</strong> denaturati<strong>on</strong> after a prol<strong>on</strong>ged time limited <strong>the</strong>ir applicati<strong>on</strong> in<br />

industry. Since <strong>the</strong>n many people devoted <strong>the</strong>ir life in <strong>the</strong> field <strong>of</strong> enzymes in order to<br />

improve its catalytic activity and stability. During <strong>the</strong> past few decades <strong>the</strong> technique <strong>of</strong><br />

enzyme or whole cell immobilizati<strong>on</strong> has revoluti<strong>on</strong>ized <strong>the</strong> prospects <strong>of</strong> enzyme<br />

applicati<strong>on</strong> in industry. Immobilizati<strong>on</strong> <strong>of</strong> biocatalysts helps in <strong>the</strong>ir ec<strong>on</strong>omic reuse and in<br />

<strong>the</strong> development <strong>of</strong> c<strong>on</strong>tinuous bioprocesses. Immobilizati<strong>on</strong> <strong>of</strong>ten stabilizes structure <strong>of</strong><br />

<strong>the</strong> enzymes, <strong>the</strong>reby allowing <strong>the</strong>ir applicati<strong>on</strong>s even under harsh envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

This work was focused to <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> enzymes <strong>on</strong> polymers. A<br />

large range <strong>of</strong> polymer matrices have been employed as supports for enzyme<br />

immobilizati<strong>on</strong>. Here polyaniline (PAN!) and poly(0~toluidine) (POT) were used as<br />

supports. PANI and POT provides an excellent support for enzyme immobilizati<strong>on</strong> by<br />

virtue <strong>of</strong> its facile syn<strong>the</strong>sis, superior chemical and physical stabilities, and large retenti<strong>on</strong><br />

capacity. We selected industrially important starch hydrolyzing enzymes a-amylase and<br />

glucoamylase for <strong>the</strong> <str<strong>on</strong>g>study</str<strong>on</strong>g>. In this work <strong>the</strong> selected enzymes were immobilized via<br />

adsorpti<strong>on</strong> and covalent b<strong>on</strong>ding methods.<br />

To optimize <strong>the</strong> catalytic efficiency and stability <strong>of</strong> <strong>the</strong> resulting biocatalysts, <strong>the</strong><br />

attempt was made to understand <strong>the</strong> immobilizati<strong>on</strong> effects <strong>on</strong> enzymatic properties. The<br />

effect <strong>of</strong> pH <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong> medium, time <strong>of</strong> immobilizati<strong>on</strong> <strong>on</strong> <strong>the</strong> immobilizati<strong>on</strong><br />

efficiency was observed. The starch hydrolyzing activity <strong>of</strong> free 0:-amylase and<br />

glucoamylase were compared with immobilized forms. Immobilizati<strong>on</strong> <strong>on</strong> solid supports


changes <strong>the</strong> microenvir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> enzyme <strong>the</strong>re by influences <strong>the</strong> pH and temperature<br />

relati<strong>on</strong>ship <strong>on</strong> <strong>the</strong> enzymatic activity. Hence <strong>the</strong>se parameters also optimized. The<br />

reusability and storage stability <strong>of</strong> immobilized enzymes an important aspect from an<br />

applicati<strong>on</strong> standpoint, especially in industrial applicati<strong>on</strong>s. Taking in to c<strong>on</strong>siderati<strong>on</strong> <strong>of</strong><br />

this, <strong>the</strong> reusability and <strong>the</strong> l<strong>on</strong>g tenn storage stability <strong>of</strong> <strong>the</strong> immobilized enzyme<br />

investigated.<br />

Ashly P. C.


CONTENTS<br />

CHAPTER PAGE NO<br />

1. INTRODUCTION ......................................................................... ..1<br />

2. EXPERIMENTAL TECHNIQUES .................................................... ..31<br />

3. SYNTHESIS AND PHYSICO-CHEMICAL CHARACTERIZATlON..........43<br />

4. IMMOBILIZATION OF DIASTASE a-AMYLASE ............................. ..67<br />

5. IMMOBILIZATION OF GLUCOAMYLASE .................................... ..125<br />

6. SUMMARY AND CONCLUSION .................................................... ..l81


CHAPTER 1<br />

INTRODUCTION<br />

1.1 ENZYME CATALYSIS ............................................................................................ ..2<br />

1.2 ENZYMES ................................................................................................................. ..3<br />

1.2.1 EFFECT OF P1-1 AND IONIC STRENGTH ON ENZYME CATALYSIS ................................ ..4<br />

1.2.2 EFFECT OF TEMPERATURE. ..................................................................................... ..4<br />

1.2.3 EFFECT OF AcTIvAT0Rs AND INHIBITORS. ............................................................. ..5<br />

1.2.4 ENZYME KINETICS ................................................................................................. ..5<br />

1.3 ENZYME IMMOBILIZATION .............................................................................. ..8<br />

1.3.1 METHODS OF 1MMOB1L1ZAT1ON .............................................................................. ..9<br />

1.3.1.1 Adxorpli<strong>on</strong> ..................................................................................................... ..9<br />

1.3.1.2 Covalent binding ......................................................................................... .. 10<br />

1.3.1.3 Entrapmen! .................................................................................................. ..11<br />

1.3.1.4 Cross-linking ............................................................................................... .. 11<br />

1.3.2 CIIOICE OF SUPPORT FOR IMMOBILIZATION .......................................................... .. 12<br />

1.3.3 SUPPORT AcTIvATION AND ENZYME ATTACHMENT ............................................ ..13<br />

1.3.4 PROPERTIES OF IMMOBILIZED ENZYMES .............................................................. ..14<br />

1.3.4.1 Stability ........................................................................................................ .. 14<br />

1.3.4.2 Activit_1= ......................................................................................................... .. 15<br />

1.3.4.3 Kinetic properties ........................................................................................ ..15<br />

1.3.5 THE ADVANTAGES OF IMMOBILIZED ENZYMES ..................................................... .. 16<br />

1.4 POLYANILINE AND POLY(O-TOLUIDINE) AS SUPPORTS FOR ENZYME<br />

IMMOBILIZATION ..................................................................................................... .. 1 7<br />

1.4.1 ACTIVATION OF POLYMERS WITH GLUTARALDF1-IYDF. .......................................... .. 18<br />

1.4.2 ACTIVATION OF POLYMERS WITH ASCORBIC ACID ................................................ ..20<br />

1.5 OBJECTIVES OF THE THESIS .......................................................................... ..21<br />

REFERENCES .............................................................................................................. ..23


g A Stu_t1l<strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong>gggggggl E<br />

1.1 Enzyme Catalysis<br />

The catalyst is a substance which ei<strong>the</strong>r increases or decreases <strong>the</strong> rate <strong>of</strong> a reacti<strong>on</strong><br />

without any net change in its structure, and <strong>the</strong> process is called catalysis. The c<strong>on</strong>cept <strong>of</strong><br />

catalysis was developed during <strong>the</strong> early 19"‘ century with <strong>the</strong> discovery <strong>of</strong> powerful<br />

catalysts from biological source. They were called as enzymes and later found to be as<br />

proteins. Most <strong>of</strong> <strong>the</strong> syn<strong>the</strong>tic and degradative reacti<strong>on</strong>s in <strong>the</strong> living organisms were<br />

mediated by <strong>the</strong> enzymes and were called as enzyme catalysis! <strong>Enzymes</strong> are <strong>of</strong>ten superior<br />

to <strong>the</strong> c<strong>on</strong>venti<strong>on</strong>al catalysts and <strong>the</strong>n find <strong>the</strong>ir significant part in <strong>the</strong> high-technological<br />

society. Their utilizati<strong>on</strong> has created a billi<strong>on</strong> dollar business including a wide diversity <strong>of</strong><br />

industrial processes, c<strong>on</strong>sumer products, and biosensors. Fur<strong>the</strong>r applicati<strong>on</strong>s are being<br />

discovered c<strong>on</strong>stantly.<br />

Compared to <strong>the</strong> c<strong>on</strong>venti<strong>on</strong>al chemical catalysts, enzymes have a lot <strong>of</strong> distinct<br />

advantages. First and most important am<strong>on</strong>g <strong>the</strong>se is <strong>the</strong>ir specificity and selectivity for a<br />

selected reacti<strong>on</strong>. <strong>Enzymes</strong> catalyze reacti<strong>on</strong>s with remarkable degrees <strong>of</strong> regiospecificity<br />

and stereospecifity. They catalyse selectively <strong>the</strong> reacti<strong>on</strong>s <strong>of</strong> very narrow ranges <strong>of</strong><br />

reactants (substrates), which may c<strong>on</strong>sist <strong>of</strong> a small number <strong>of</strong> closely related classes <strong>of</strong><br />

compounds, a single class <strong>of</strong> compounds, or a single compound. This clearly indicates that<br />

<strong>the</strong> selected reacti<strong>on</strong> can be catalysed to <strong>the</strong> exclusi<strong>on</strong> <strong>of</strong> side-reacti<strong>on</strong>s, eliminating<br />

undesirable by-products. This selectivity phenomen<strong>on</strong> creates <strong>the</strong> higher productivity and<br />

lower material cost. Generally, <strong>the</strong> product obtained via enzyme catalysis is in an<br />

unc<strong>on</strong>taminated state which reduces <strong>the</strong> fur<strong>the</strong>r purificati<strong>on</strong> costs and envir<strong>on</strong>mentally<br />

sound good. Compared to <strong>the</strong> c<strong>on</strong>venti<strong>on</strong>al catalysis, enzymes assist to produce <strong>the</strong> desired<br />

products within smaller number <strong>of</strong> steps. Ano<strong>the</strong>r important advantage is that enzymes<br />

work under generally mild processing c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> temperature, pressure and pH. Certain<br />

stereospecific reacti<strong>on</strong>s (e.g. <strong>the</strong> c<strong>on</strong>versi<strong>on</strong> <strong>of</strong> glucose into fructose) cannot be achieved by<br />

classical chemical methods without a large expenditure <strong>of</strong> time and effort. This decreases<br />

<strong>the</strong> energy requirements for enzymes again reduce <strong>the</strong> capital costs due to corrosi<strong>on</strong>­<br />

resistant process equipment. The high reacti<strong>on</strong> velocities and straightforward catalytic<br />

2


ChaptSr_]:,__ __ Introducti<strong>on</strong><br />

regulati<strong>on</strong> achieved in enzyme-catalysed reacti<strong>on</strong>s allow an increase in productivity with<br />

reduced manufacturing costs.<br />

There are some notable disadvantages in <strong>the</strong> use <strong>of</strong> enzymes which cannot be<br />

ignored, but which are currently being addressed and overcome. In particular, <strong>the</strong> high cost<br />

<strong>of</strong> enzyme isolati<strong>on</strong> and purificati<strong>on</strong> still discourages <strong>the</strong>ir use, especially in areas which<br />

currently have an established alternative procedure. The generally unstable nature <strong>of</strong><br />

enzymes, when removed from <strong>the</strong>ir natural envir<strong>on</strong>ment, is also a major drawback to <strong>the</strong>ir<br />

more extensive use.<br />

1.2 <strong>Enzymes</strong><br />

<strong>Enzymes</strong> are delicate life-like substance found in all living cells, whe<strong>the</strong>r animal or<br />

vegetable. <strong>Enzymes</strong> are energized protein molecules necessary for life. They catalyze and<br />

regulate nearly all biochemical reacti<strong>on</strong>s that occur within <strong>the</strong> human body. In o<strong>the</strong>r words,<br />

enzymes turn <strong>the</strong> food we eat into energy and unlock this energy for use in <strong>the</strong> body. They<br />

are difficult to see even with <strong>the</strong> most powerful microscope, but <strong>the</strong>ir presence and strength<br />

have l<strong>on</strong>g been known to scientists based <strong>on</strong> improved blood and immune system<br />

functi<strong>on</strong>ing.<br />

<strong>Enzymes</strong> act by attaching to <strong>the</strong> reacti<strong>on</strong> molecules, which are called <strong>the</strong><br />

substrates. <strong>Enzymes</strong> are highly specific, meaning that each catalyzes <strong>on</strong>ly a single reacti<strong>on</strong><br />

or a very limited class <strong>of</strong> reacti<strong>on</strong>s. The specific three-dimensi<strong>on</strong>al shape <strong>of</strong> an enzyme is<br />

such that <strong>on</strong>ly <strong>the</strong> substrates it acts up<strong>on</strong> can “fit” into its active site - <strong>the</strong> particular porti<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> enzyme that binds <strong>the</strong> substrates. An enzyme functi<strong>on</strong>s by lowering <strong>the</strong> activati<strong>on</strong><br />

energy necessary to initiate a chemical reacti<strong>on</strong>. After catalyzing <strong>the</strong> reacti<strong>on</strong>, <strong>the</strong> enzyme<br />

releases <strong>the</strong> products <strong>of</strong> <strong>the</strong> reacti<strong>on</strong>. The enzyme remains intact in <strong>the</strong> process and can<br />

immediately bind fresh substrate. Thus, an enzyme molecule can be used over and over<br />

again. <strong>Enzymes</strong> regulate nearly all metabolic activities and are resp<strong>on</strong>sible for <strong>the</strong> building<br />

<strong>of</strong> complex molecules (anabolism) as well as <strong>the</strong> breakdown <strong>of</strong> large molecules into smaller<br />

<strong>on</strong>es (catabolism).<br />

3


_ A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> V<br />

1.2.1 Effect <strong>of</strong> pH and i<strong>on</strong>ic strength <strong>on</strong> enzyme catalysis<br />

<strong>Enzymes</strong> are proteins with amino acid side chains c<strong>on</strong>taining groups such as ­<br />

COOR and -NH; that readily gain or lose Hi i<strong>on</strong>s. The charges <strong>on</strong> <strong>the</strong>se groups will vary<br />

according to <strong>the</strong>ir acid dissociati<strong>on</strong> c<strong>on</strong>stants with <strong>the</strong> pH <strong>of</strong> <strong>the</strong>ir envir<strong>on</strong>ment. As <strong>the</strong> pH<br />

is lowered an enzyme will tend to gain H+ i<strong>on</strong>s, and eventually enough side chains will be<br />

affected so that <strong>the</strong> enzyme‘s shape is disrupted. Likewise, as <strong>the</strong> pl—l is raised, <strong>the</strong> enzyme<br />

will lose H' i<strong>on</strong>s and eventually lose its active shape. Many enzymes perform optimally in<br />

<strong>the</strong> neutral pH range and are denatured at ei<strong>the</strong>r an extremely high or low pH. Similarly if<br />

<strong>the</strong> i<strong>on</strong>ic c<strong>on</strong>centrati<strong>on</strong> is close to zero, <strong>the</strong> charged amino acid side chains <strong>of</strong> <strong>the</strong> enzyme<br />

molecules will attract each o<strong>the</strong>r. The enzyme will denature and form an inactive<br />

precipitate. On <strong>the</strong> o<strong>the</strong>r hand, if <strong>the</strong> salt c<strong>on</strong>centrati<strong>on</strong> is very high, normal interacti<strong>on</strong> <strong>of</strong><br />

charged groups will be blocked, new interacti<strong>on</strong>s will occur, and again <strong>the</strong> enzyme will<br />

precipitate. These effects are especially important i11 <strong>the</strong> neighborhood <strong>of</strong> <strong>the</strong> active site. An<br />

intermediate salt c<strong>on</strong>centrati<strong>on</strong> such as that <strong>of</strong> human blood (0.9 %) or cytoplasm is <strong>the</strong><br />

optimum for many enzymes. Taken toge<strong>the</strong>r <strong>the</strong> change in charges with pH affects <strong>the</strong><br />

activity, structural stability and solubility <strong>of</strong> <strong>the</strong> enzyme.<br />

1.2.2 Effect <strong>of</strong> temperature<br />

Generally, chemical reacti<strong>on</strong>s speed up as <strong>the</strong> temperature is raised. As <strong>the</strong><br />

temperature increases, more <strong>of</strong> <strong>the</strong> reacting molecules have enough kinetic energy to<br />

undergo <strong>the</strong> reacti<strong>on</strong>. Since enzymes are catalysts for chemical reacti<strong>on</strong>s, enzyme reacti<strong>on</strong>s<br />

also tend to go faster with increasing temperature. However, if <strong>the</strong> temperature <strong>of</strong> an<br />

enzyme-catalyzed reacti<strong>on</strong> is raised still fur<strong>the</strong>r, a temperature optimum is reached; above<br />

this value <strong>the</strong> kinetic energy <strong>of</strong> <strong>the</strong> enzyme and water molecules is so great that <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> enzyme molecules is disrupted. The positive effect <strong>of</strong> speeding up <strong>the</strong><br />

reacti<strong>on</strong> is now more than <strong>of</strong>fset by <strong>the</strong> negative effect <strong>of</strong> changing <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> <strong>of</strong><br />

more and more enzyme molecules. Many proteins are denatured by temperatures around<br />

40-50 °C, but some are still active at 70-80 °C, and a few even withstand boiling.<br />

4


Chapterlm _g_n__‘_ _ Introductitlt<br />

1.2.3 Effect <strong>of</strong> activators and inhibitors<br />

Many molecules o<strong>the</strong>r than <strong>the</strong> substrate may interact with an enzyme. lf such a<br />

molecule increases <strong>the</strong> rate <strong>of</strong> <strong>the</strong> reacti<strong>on</strong> it is an activator, and if it decreases <strong>the</strong> reacti<strong>on</strong><br />

rate it is an inhibitor. These molecules can regulate how fast <strong>the</strong> enzyme acts. Any<br />

substance that tends to unfold <strong>the</strong> enzyme, such as an organic solvent or detergent, will act<br />

as an inhibitor. Some inhibitors act by reducing <strong>the</strong> -S-S- bridges that stabilize <strong>the</strong> enzyme's<br />

structure. Many inhibitors act by reacting with side chains in or near <strong>the</strong> active site to<br />

change its shape or block it. Many well-known pois<strong>on</strong>s such as potassium cyanide and<br />

curare are enzyme inhibitors that interfere with <strong>the</strong> active site <strong>of</strong> critical enzymes.<br />

1.2.4 Enzyme kinetics<br />

Enzyme kinetics and <strong>the</strong>ories <strong>of</strong> enzyme acti<strong>on</strong> were pi<strong>on</strong>eered by Michaelis and<br />

Menten, as well as o<strong>the</strong>r investigators. According to <strong>the</strong> Michaelis-Mentcn hypo<strong>the</strong>sis,<br />

enzyme E and substrate S combine reversibly to form an enzyme-substrate complex ES,<br />

which <strong>the</strong>n reversibly dissociates to form product P and <strong>the</strong> regenerated enzyme E as<br />

depicted below.<br />

k E+S ES —2~'- E+P 1.1<br />

I<br />

Where /Q, k_; and kg are rate c<strong>on</strong>stants for <strong>the</strong> individual steps.<br />

Enzyme acti<strong>on</strong> can be modulated by a number <strong>of</strong> factors. One <strong>of</strong> <strong>the</strong> most<br />

fundamental factors affecting enzyme activity is substrate c<strong>on</strong>centrati<strong>on</strong>. The effect <strong>of</strong><br />

substrate c<strong>on</strong>centrati<strong>on</strong> [S] <strong>on</strong> velocity [V] <strong>of</strong> reacti<strong>on</strong> is usually expressed using a<br />

Michaelis-Mentcn plot such as <strong>the</strong> <strong>on</strong>e shown below in fig.].], and enzymes which<br />

generate such a plot are said to obey Michaelis-Mentcn kinetics. Michaelis-Mentcn plots<br />

show three distinct regi<strong>on</strong>s which corresp<strong>on</strong>d to reacti<strong>on</strong> order. At low [S], <strong>the</strong> reacti<strong>on</strong><br />

accelerates as more substrate is added, reflecting first-order kinetics. At high [S], <strong>the</strong><br />

c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> enzyme becomes limiting, and additi<strong>on</strong>al substrate cannot accelerate <strong>the</strong><br />

5


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> Polymerie_<strong>Supports</strong> _<br />

reacti<strong>on</strong>. This situati<strong>on</strong> is known as zero-order kinetics. Finally, <strong>the</strong>re is a transiti<strong>on</strong> period<br />

between first order and zero order where kinetics is mixed.<br />

\<br />

I Vmax<br />

............ -_<br />

V \1mxed zero order \first order<br />

[5]<br />

Fig. LI Saturati<strong>on</strong> curvefor an enzynze showing <strong>the</strong> relati<strong>on</strong><br />

between <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong>szzbstrale and rare.<br />

The point in Y-axis, I/ma,., is <strong>the</strong> maximum rate <strong>of</strong> reacti<strong>on</strong> for a given c<strong>on</strong>centrati<strong>on</strong><br />

<strong>of</strong> enzyme. A sec<strong>on</strong>d kinetic c<strong>on</strong>stant derived by drawing a line from <strong>the</strong> Y-axis at l/2 I/W,<br />

to <strong>the</strong> curve, and <strong>the</strong>n down to <strong>the</strong> X-axis is known as <strong>the</strong> Km, is <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong><br />

substrate needed to drive <strong>the</strong> reacti<strong>on</strong> at half I/,m,.. Each substrate will generate a unique K m<br />

and VITIZX for a given enzymatic process.<br />

A standard equati<strong>on</strong> used to express <strong>the</strong> kinetic c<strong>on</strong>stants under <strong>the</strong> Miehaelis­<br />

Menten hypo<strong>the</strong>sis is aptly called <strong>the</strong> Mic-haelis-Menten equati<strong>on</strong>, and is shown below.<br />

Later, two o<strong>the</strong>r investigators rearranged this equati<strong>on</strong> to generate a sec<strong>on</strong>d useful equati<strong>on</strong>,<br />

<strong>the</strong> Lineweaver-Burk equati<strong>on</strong>, is also given below.<br />

The Michaelis-Menten equati<strong>on</strong><br />

V: maxi] 1-2<br />

V, S<br />

Km+ |s|<br />

6


Chapter] 7 Introduetig<br />

The Lineweaver-Bu rk equati<strong>on</strong><br />

l<br />

_V"'V§+';7" 1 _ K... 1 l1<br />

max mix 1.3<br />

The Lineweavcr-Burk equati<strong>on</strong> is in <strong>the</strong> form y = mx + b, and as such, a plot <strong>of</strong> this<br />

equati<strong>on</strong> will generate a straight line for enzymes obeying simple Michaelis-Menten<br />

kinetics. In additi<strong>on</strong>, <strong>the</strong> x and y values for <strong>the</strong> plot are both inverted, and as such, <strong>the</strong> plot<br />

is <strong>of</strong>ten referred to as <strong>the</strong> double reciprocal plot. The Lineweaver-Burk plot has two<br />

advantages over <strong>the</strong> Mic-haelis-Menten plot, in that it gives a more accurate estimate <strong>of</strong><br />

plot is shown in fig. 1.2. Vma, is derived from <strong>the</strong> y-intercept, and Km can be derived ei<strong>the</strong>r<br />

1 L "7 V“...<br />

Vmnx, and it gives more accurate informati<strong>on</strong> about inhibiti<strong>on</strong>. A typical Lineweaver-Burke<br />

from <strong>the</strong> slope, or from extrapolating <strong>the</strong> line to <strong>the</strong> negative X ~axis.<br />

;1'_ Vmax<br />

Km m = i<br />

Km<br />

L|s| _<br />

Fig. 1.2 Lineweaver-Burk or doub/e-reciprocal plot <strong>of</strong> kinetic data,<br />

showing <strong>the</strong> significance Qfrhe axis inrerc'epts and gradient.<br />

Hanes-Woolf plot is also a graphical representati<strong>on</strong> <strong>of</strong> enzyme kinetics in which <strong>the</strong><br />

ratio <strong>of</strong> <strong>the</strong> initial substrate c<strong>on</strong>centrati<strong>on</strong> [S] to <strong>the</strong> reacti<strong>on</strong> velocity V is plotted against<br />

[S]. lt is based <strong>on</strong> <strong>the</strong> rearrangement <strong>of</strong> <strong>the</strong> Miehaelis-Menten equati<strong>on</strong> shown below.<br />

7


__=__A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

i = i + 1 .4<br />

I5] ls] 1 Km<br />

V VHIBX Vmax 1<br />

It is clear from <strong>the</strong> equati<strong>on</strong>, that perfect data will yield a straight line <strong>of</strong> slope<br />

I/ I/,m,,, a y-intercept <strong>of</strong> Km/ Vm,-,,, and an x-intercept <strong>of</strong> -Km.<br />

Several o<strong>the</strong>r types <strong>of</strong> plots each with advantages and disadvantages can also be<br />

used to determine Km and Vma, from kinetic data. Never<strong>the</strong>less, Lincweaver-Burk plots are<br />

valuable for visual presentati<strong>on</strong> <strong>of</strong> kinetic data.<br />

1.3 Enzyme Immobilizati<strong>on</strong><br />

Since <strong>the</strong> sec<strong>on</strong>d half <strong>of</strong> <strong>the</strong> last century, numerous efforts have been devoted to <strong>the</strong><br />

development <strong>of</strong> insoluble immobilized enzymes for a variety <strong>of</strong> applicati<strong>on</strong>s [l]; <strong>the</strong>se<br />

applicati<strong>on</strong>s can clearly benefit from <strong>the</strong> use <strong>of</strong> immobilized enzymes ra<strong>the</strong>r than <strong>the</strong><br />

soluble counterparts, for instance as reusable heterogeneous biocatalysts, with <strong>the</strong> aim <strong>of</strong><br />

reducing producti<strong>on</strong> costs by efficient recycli11g and c<strong>on</strong>trol <strong>of</strong> <strong>the</strong> process [2, 3], as stable<br />

and reusable devices for analytical and medical applicati<strong>on</strong>s [4—l0], as selective adsorbents<br />

for purificati<strong>on</strong> <strong>of</strong> proteins and enzymes [1 1], as fundamental tools for solid-phase protein<br />

chemistry [12, 13] and as effective microdevices for c<strong>on</strong>trolled release <strong>of</strong> protein drugs<br />

[14].<br />

Immobilized enzymes have been defined as enzymes that are physically c<strong>on</strong>fined or<br />

localized, with retenti<strong>on</strong> <strong>of</strong> <strong>the</strong>ir catalytic activity, and which can be used repeatedly and<br />

c<strong>on</strong>tinuously [l5-l7]. This limitati<strong>on</strong> <strong>of</strong> mobility may be achieved by widely different<br />

methods, ranging from covalent chemical b<strong>on</strong>ding to physical entrapment. However an<br />

immobilized enzyme must comprises two essential functi<strong>on</strong>s, namely <strong>the</strong> n<strong>on</strong>-catalytic<br />

functi<strong>on</strong>s that are designed to aid easy separati<strong>on</strong> (e.g. isolati<strong>on</strong> <strong>of</strong> catalysts from <strong>the</strong><br />

applicati<strong>on</strong> envir<strong>on</strong>ment, reuse <strong>of</strong> <strong>the</strong> catalysts and c<strong>on</strong>trol <strong>of</strong> <strong>the</strong> process) and <strong>the</strong> catalytic<br />

functi<strong>on</strong>s that are designed to c<strong>on</strong>vert <strong>the</strong> substrates within <strong>the</strong> time and space desired. N<strong>on</strong>­<br />

catalytic functi<strong>on</strong>s depend up<strong>on</strong> <strong>the</strong> physical and chemical nature <strong>of</strong> <strong>the</strong> n<strong>on</strong>-catalytic part<br />

8


glgpterl K jg Introducti<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> immobilized enzymes, especially <strong>the</strong> geometric properties, e.g. <strong>the</strong> shape, size,<br />

thickness, and length <strong>of</strong> <strong>the</strong> selected carrier, whereas <strong>the</strong> catalytic functi<strong>on</strong>s are linked to<br />

<strong>the</strong> catalytic properties, for example activity, selectivity, and stability, pH and temperature<br />

pr<strong>of</strong>ile.<br />

1.3.1 Methods <strong>of</strong> immobilizati<strong>on</strong><br />

It is more important to choose <strong>the</strong> method <strong>of</strong> immobilizati<strong>on</strong> which will prevent <strong>the</strong><br />

loss <strong>of</strong> enzyme activity by not changing <strong>the</strong> chemical nature or reactive groups in <strong>the</strong><br />

binding site <strong>of</strong> enzyme. C<strong>on</strong>siderable knowledge in <strong>the</strong> nature <strong>of</strong> <strong>the</strong> active site <strong>of</strong> <strong>the</strong><br />

enzyme will be helpful to achieve this task. Altematively, an active site can be protected<br />

during attachment as l<strong>on</strong>g as <strong>the</strong> protective groups can be removed later <strong>on</strong> without loss <strong>of</strong><br />

enzyme activity. In some cases, this protective functi<strong>on</strong> can be fulfilled by a substrate or a<br />

competitive inhibitor <strong>of</strong> <strong>the</strong> enzyme. There are four principal methods available for<br />

immobilizing enzymes as explained below.<br />

I . 3. I. I Adsorpti<strong>on</strong><br />

Adsorpti<strong>on</strong> <strong>of</strong> enzymes <strong>on</strong>to insoluble supports is a very old and simple method <strong>of</strong><br />

wide applicability and capable <strong>of</strong> high enzyme loading relative to o<strong>the</strong>r immobilizati<strong>on</strong><br />

methods. <strong>Enzymes</strong> can be immobilized by simply mixing <strong>the</strong> enzymes with a suitable<br />

adsorbent, under appropriate c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> pH and i<strong>on</strong>ic strength. After washing <strong>of</strong>f loosely<br />

bound and unbound enzyme, <strong>the</strong> immobilized enzyme is obtained in a directly usable form.<br />

Adsorpti<strong>on</strong> process is based <strong>on</strong> van dcr Waals forces, i<strong>on</strong>ic and hydrogen b<strong>on</strong>ding as well<br />

as hydrophobic interacti<strong>on</strong>s. These forces are very weak, but in large number, impart<br />

sufficient binding strength. The particular choice <strong>of</strong> adsorbent depends principally up<strong>on</strong><br />

minimizing leakage <strong>of</strong> <strong>the</strong> enzyme during use. Existing surface properties <strong>of</strong> enzymes and<br />

support are utilized so that no chemical modificati<strong>on</strong> is required and little damage is d<strong>on</strong>e<br />

to enzyme. Although <strong>the</strong> physical links between <strong>the</strong> enzyme molecules and <strong>the</strong> support are<br />

<strong>of</strong>ten very str<strong>on</strong>g, <strong>the</strong>y may be reduced by many factors including <strong>the</strong> introducti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

substrate. Care must be taken that <strong>the</strong> binding forces are not weakened during use by<br />

inappropriate changes in pH or i<strong>on</strong>ic strength. Physical adsorpti<strong>on</strong> generally leads to<br />

9


_ A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong>;P0lymeri:c <strong>Supports</strong> g _<br />

dramatic changes in <strong>the</strong> protein microenvirorunent, and typically involves multipoint<br />

protein adsorpti<strong>on</strong> between a single protein molecule and a number <strong>of</strong> binding sites <strong>on</strong> <strong>the</strong><br />

immobilizati<strong>on</strong> surface [18]. The main disadvantage <strong>of</strong> this method is that <strong>the</strong> biocatalyst is<br />

easily desorbed by factors like temperature fluctuati<strong>on</strong>s, changes in substrate and i<strong>on</strong>ic<br />

c<strong>on</strong>centrati<strong>on</strong>s [I9] eta, so that reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s should be maintained c<strong>on</strong>stant<br />

throughout <strong>the</strong> reacti<strong>on</strong>. Adsorbents can be selected from a wide variety <strong>of</strong> inorganic and<br />

organic substances as well as natural and syn<strong>the</strong>tic polymers.<br />

1.3.1.2 Covalent binding<br />

The most intensely studied immobilizati<strong>on</strong> technique is <strong>the</strong> formati<strong>on</strong> <strong>of</strong> covalent<br />

b<strong>on</strong>ds between <strong>the</strong> enzyme and <strong>the</strong> support matrix. <strong>Enzymes</strong> are linked to <strong>the</strong> support<br />

through <strong>the</strong> functi<strong>on</strong>al groups in <strong>the</strong> enzymes which are not essential for <strong>the</strong> catalytic<br />

activity. The binding reacti<strong>on</strong> must be performed under c<strong>on</strong>diti<strong>on</strong>s that do not cause loss <strong>of</strong><br />

cnzymic activity, and <strong>the</strong> active site <strong>of</strong> <strong>the</strong> enzyme must be unaffected by <strong>the</strong> reagents used.<br />

The functi<strong>on</strong>al groups <strong>of</strong> proteins suitable for covalent binding under mild c<strong>on</strong>diti<strong>on</strong>s<br />

include <strong>the</strong> alpha amino groups <strong>of</strong> <strong>the</strong> chain and <strong>the</strong> epsil<strong>on</strong> amino groups <strong>of</strong> lysine and<br />

arginine, <strong>the</strong> alpha carboxyl group <strong>of</strong> <strong>the</strong> chain end and <strong>the</strong> beta and gamma carboxyl<br />

groups <strong>of</strong> aspartic and glutamic acids, <strong>the</strong> phenol ring <strong>of</strong> tyrosine, <strong>the</strong> thiol group <strong>of</strong><br />

cysteine, <strong>the</strong> hydroxyl groups <strong>of</strong> seiine and thre<strong>on</strong>ine, <strong>the</strong> imidazile group <strong>of</strong> histidine, and<br />

<strong>the</strong> indole group <strong>of</strong> tryptophan. A small number <strong>of</strong> reacti<strong>on</strong>s have been designed to couple<br />

with functi<strong>on</strong>al groups <strong>on</strong> <strong>the</strong> protein o<strong>the</strong>r than <strong>the</strong> amino and phenolic residues. It is<br />

possible in some cases to increase <strong>the</strong> number <strong>of</strong> reactive residues <strong>of</strong> an enzyme in order to<br />

increase <strong>the</strong> yield <strong>of</strong> immobilized enzyme and to provide altemative reacti<strong>on</strong> sites to those<br />

essential for enzymatic activity. Sometimes functi<strong>on</strong>al groups <strong>on</strong> <strong>the</strong> support material are<br />

activated by certain reagents and enzyme is <strong>the</strong>n coupled to <strong>the</strong> support material via<br />

covalent linkage. Coupling agents used include cyanogen bromide, carbodiimide, reagents<br />

used for diazotizati<strong>on</strong> etc. The c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong> carrier and enzyme can be achieved<br />

ei<strong>the</strong>r by direct linkage between <strong>the</strong> comp<strong>on</strong>ents or via an intercalated link <strong>of</strong> differing<br />

length, which is called spacer. The spacer molecule gives a greater degree <strong>of</strong> mobility to <strong>the</strong><br />

coupled biocatalyst so that its activity can be enhanced when compared to that <strong>of</strong> direct<br />

l0


Chapter l g Introducti<strong>on</strong><br />

coupled biocatalyst. The wide variety <strong>of</strong> binding reacti<strong>on</strong>s, and insoluble carriers with<br />

functi<strong>on</strong>al groups capable <strong>of</strong> covalent coupling, or being activated to give such groups,<br />

makes this a generally applicable method <strong>of</strong> immobilizati<strong>on</strong>, even if very little is known<br />

about <strong>the</strong> protein structure or active site <strong>of</strong> <strong>the</strong> enzyme to be coupled.<br />

1.3. I.3 Entrapment<br />

Entrapment restricts <strong>the</strong> movement <strong>of</strong> enzymes in a porous gel, yet keeping <strong>the</strong>m as<br />

free molecules in soluti<strong>on</strong>. Entrapment <strong>of</strong> enzymes within gels or fibers is a c<strong>on</strong>venient<br />

method for use in processes involving low molecular weight substrates and products.<br />

However, <strong>the</strong> difficulty which large molecules have in approaching <strong>the</strong> catalytic sites <strong>of</strong><br />

entrapped enzymes precludes <strong>the</strong> use <strong>of</strong> entrapped enzymes with high molecular weight<br />

substrates. The entrapment process may be a purely physical caging or involve covalent<br />

binding. Biocatalysts have been entrapped in natural polymers like agar, agarose and<br />

gelatine through <strong>the</strong>rmo reverse polymerizati<strong>on</strong>, but in alginate and carrageenan by<br />

i<strong>on</strong>otropic gelati<strong>on</strong>. A number <strong>of</strong> syn<strong>the</strong>tic polymers like polyvinylalcohol hydrogel [20],<br />

polyacrylamide [21, 22] have also been investigated. Entrapment is <strong>the</strong> method <strong>of</strong> choice<br />

for <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> microbial, animal and plant cells, where calcium alginate is<br />

widely used.<br />

Membrane c<strong>on</strong>finement or encapsulati<strong>on</strong> is similar to entrapment in restricting<br />

movement <strong>of</strong> enzyme molecules, but this time in a semipermeable membrane. This<br />

membrane retains <strong>the</strong> high molecular weight enzymes, while allowing low molecular<br />

weight compounds to diffuse in and out. The comm<strong>on</strong>ly used membranes are nyl<strong>on</strong>,<br />

cellulose, polysulf<strong>on</strong>e and polyacrylate.<br />

1.3.1.4 Cross-linking<br />

This method involves attachment <strong>of</strong> biocatalysts to each o<strong>the</strong>r by bi- or multi­<br />

functi<strong>on</strong>al reagents or ligands. In this way, very high molecular weight typically insoluble<br />

aggregates are formed. Cross-linking is a relatively simple process. It is not a preferred<br />

method <strong>of</strong> immobilizati<strong>on</strong> as it does not use any support matrix. So <strong>the</strong>y are usually<br />

ll


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> _<br />

gelatinous and not particularly firm. Since it involves a b<strong>on</strong>d <strong>of</strong> <strong>the</strong> covalent kind,<br />

biocatalyst immobilized in this way frequently undergoes changes in c<strong>on</strong>formati<strong>on</strong> with a<br />

resultant loss <strong>of</strong> activity. Still it finds good use in combinati<strong>on</strong> with o<strong>the</strong>r support<br />

dependent immobilizati<strong>on</strong> technologies, namely to minimize leakage <strong>of</strong> enzymes already<br />

immobilized by adsorpti<strong>on</strong>. The most comm<strong>on</strong>ly used bifuneti<strong>on</strong>al agent for cross-linking<br />

is glutaraldehyde. The reactive aldehyde groups at <strong>the</strong> two ends <strong>of</strong> glutaraldchyde react<br />

with free amino groups <strong>of</strong> enzymes through a base reacti<strong>on</strong> and have been extensively used<br />

in view <strong>of</strong> its low cost, high efficiency, and stability. The enzymes or <strong>the</strong> cells have been<br />

nomially cross-linked in <strong>the</strong> presence <strong>of</strong> an inert protein like gelatine, albumin, and<br />

collagen and can be applied to ei<strong>the</strong>r enzymes or cells. The main disadvantages are <strong>the</strong><br />

undesirable activity losses that can arise from <strong>the</strong> participati<strong>on</strong> <strong>of</strong> catalytic groups in <strong>the</strong><br />

interacti<strong>on</strong>s resp<strong>on</strong>sible for <strong>the</strong> immobilizati<strong>on</strong>. The cross-linking reacti<strong>on</strong> is not easily<br />

c<strong>on</strong>trolled and so it is very difficult to obtain large enzyme aggregates with high activity<br />

retenti<strong>on</strong>. The gelatinous physical nature <strong>of</strong> <strong>the</strong> immobilized enzyme preparati<strong>on</strong>s is a great<br />

limitati<strong>on</strong> in many applicati<strong>on</strong>s.<br />

Although <strong>the</strong> basic methods <strong>of</strong> enzyme immobilizati<strong>on</strong> can be categorized into a<br />

few different methods as menti<strong>on</strong>ed above, hundreds <strong>of</strong> variati<strong>on</strong>s, based <strong>on</strong> combinati<strong>on</strong>s<br />

<strong>of</strong> <strong>the</strong>se original methods, have been developed [23]. Corresp<strong>on</strong>dingly, many carriers <strong>of</strong><br />

different physical and chemical nature or different occurrences have been designed for a<br />

variety <strong>of</strong> bio-immobilizati<strong>on</strong>s and bio-separati<strong>on</strong>s [24-26].<br />

1.3.2 Choice <strong>of</strong> support for immobilizati<strong>on</strong><br />

The support material can have a critical effect <strong>on</strong> <strong>the</strong> stability <strong>of</strong> <strong>the</strong> enzyme and <strong>the</strong><br />

efficiency <strong>of</strong> enzyme immobilizati<strong>on</strong>, although it is difficult to predict in advance which<br />

support will be most suitable for a particular enzyme. Important requirements for a support<br />

material are that it must be insoluble in water, have high capacity to bind enzyme, be<br />

chemically inert and be mechanically stable. The activity <strong>of</strong> <strong>the</strong> immobilized enzyme will<br />

also depend up<strong>on</strong> <strong>the</strong> bulk mass transfer and local diffusi<strong>on</strong> properties <strong>of</strong> <strong>the</strong> system. The<br />

morphology <strong>of</strong> <strong>the</strong> support also plays an important role in <strong>the</strong> immobilizati<strong>on</strong> process<br />

12


Chapter 1 I ntrodueti<strong>on</strong><br />

which affects enzyme's expressed activity and apparent kinetics c<strong>on</strong>siderably. Their form,<br />

shape, density, porosity, pore size distributi<strong>on</strong>, operati<strong>on</strong>al stability and particle size<br />

distributi<strong>on</strong> influence <strong>the</strong> reactor c<strong>on</strong>figurati<strong>on</strong> in which <strong>the</strong> immobilized bioeatalyst may<br />

be used. The surface density <strong>of</strong> binding sites toge<strong>the</strong>r with <strong>the</strong> volumetric surface area<br />

sterically available to <strong>the</strong> enzyme, determine <strong>the</strong> maximum binding capacity. The binding<br />

capacity also depends <strong>on</strong> electrostatic charge distributi<strong>on</strong> and surface polarity (tie. <strong>the</strong><br />

hydrophobic-hydrophilic balance) <strong>on</strong> both enzyme and support. A good support also<br />

increases <strong>the</strong> enzyme specificity whilst reducing product inhibiti<strong>on</strong>s, shift <strong>the</strong> pH optimum<br />

to <strong>the</strong> desired value for <strong>the</strong> process, and discourage microbial growth and n<strong>on</strong>-specific<br />

adsorpti<strong>on</strong>. Sometimes matrices with special properties are selected, which are useful for<br />

particular purposes such as magnetism which enables transfer, stabilizati<strong>on</strong> and separati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> biocatalyst by means <strong>of</strong> magnetic fields [27-35], c<strong>on</strong>ducting polymers for <strong>the</strong><br />

fabricati<strong>on</strong> <strong>of</strong> biosensor [36-45], nano particles and fibers due to <strong>the</strong>ir large surface area for<br />

high enzyme loading [46~49], membrane surfaces for <strong>the</strong> operati<strong>on</strong> in c<strong>on</strong>tinuous systems<br />

due to low pressure drop, short residence time and low external and intemal diffusi<strong>on</strong>al<br />

resistances [50, 51] or n<strong>on</strong>porous support to eliminate diffltsi<strong>on</strong> c<strong>on</strong>strains [52-54]. And<br />

finally <strong>the</strong> overall process cost <strong>of</strong> <strong>the</strong> support is relevant to <strong>the</strong>ir use in <strong>the</strong> industrial<br />

process, ei<strong>the</strong>r <strong>the</strong>y should be cheap enough to discard or can be regenerated after <strong>the</strong><br />

useful lifetime <strong>of</strong> <strong>the</strong> immobilized enzyme. Due to <strong>the</strong> <strong>of</strong>ten c<strong>on</strong>flicting requirements <strong>of</strong> a<br />

good support, various materials have been used. At present <strong>the</strong>re is not a universally<br />

recommended support, <strong>the</strong> final choice being a compromise for each particular enzyme and<br />

experimental system.<br />

1.3.3 Support activati<strong>on</strong> and enzyme attachment<br />

An activated support is defined as a material having an enzyme reactive functi<strong>on</strong>al<br />

group covalently attached to an o<strong>the</strong>rwise inert surface. The stability <strong>of</strong> <strong>the</strong> resulting b<strong>on</strong>d<br />

between <strong>the</strong> enzyme and <strong>the</strong> support, <strong>the</strong> local envir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> enzyme and <strong>the</strong> potential<br />

loss <strong>of</strong> activity <strong>on</strong> immobilizati<strong>on</strong> must all be c<strong>on</strong>sidered.<br />

13


jg A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> _Supp0rts g<br />

Activati<strong>on</strong> with glutaraldehyde is <strong>the</strong> comm<strong>on</strong>ly used procedure since it introduces<br />

a spacer arm between support and enzyme. The spacer molecule gives a greater degree <strong>of</strong><br />

mobility to <strong>the</strong> coupled biocatalyst so that its activity can under certain circumstances, be<br />

higher than if it is bound directly to <strong>the</strong> carrier. O<strong>the</strong>r general schemes for support<br />

activati<strong>on</strong> are diazotizati<strong>on</strong> or reacti<strong>on</strong> with carbodiimidcs, thiophosgene, thi<strong>on</strong>yl chloride,<br />

N-hydroxysuccinimide or transiti<strong>on</strong> metal salts such as titanium chloride. The activated<br />

support is <strong>the</strong>n covalently linked to <strong>the</strong> enzyme, most comm<strong>on</strong>ly via direct reacti<strong>on</strong> with<br />

available amino functi<strong>on</strong>s, e.g. <strong>on</strong> lysine residues, but also via thiol and phenol functi<strong>on</strong>s.<br />

1.3.4 Properties <strong>of</strong> immobilized enzymes<br />

It is important to understand <strong>the</strong> changes in physical and chemical properties which<br />

an enzyme would be expected to undergo up<strong>on</strong> immobilizati<strong>on</strong>. Changes have been<br />

observed in <strong>the</strong> stability, pH and temperature dependence and kinetic properties <strong>of</strong> enzymes<br />

because <strong>of</strong> <strong>the</strong> microenvir<strong>on</strong>ment imposed up<strong>on</strong> <strong>the</strong>m by <strong>the</strong> supporting matrix and by <strong>the</strong><br />

products <strong>of</strong> <strong>the</strong>ir own acti<strong>on</strong>. The extent <strong>of</strong> such changes depends up<strong>on</strong> <strong>the</strong> enzyme, carrier<br />

used, and method <strong>of</strong> immobilizati<strong>on</strong>.<br />

1.3.4.1 Stability<br />

The stability <strong>of</strong> a native enzyme (tie. a n<strong>on</strong>-immobilized or modified enzyme) is<br />

principally determined by its intrinsic structure whereas <strong>the</strong> stability <strong>of</strong> an immobilized<br />

enzyme is highly dependent <strong>on</strong> many factors, including <strong>the</strong> nature <strong>of</strong> its interacti<strong>on</strong> with <strong>the</strong><br />

carrier, binding positi<strong>on</strong> and number <strong>of</strong> b<strong>on</strong>ds, <strong>the</strong> freedom <strong>of</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> change in<br />

<strong>the</strong> matrix, <strong>the</strong> microenvir<strong>on</strong>ment in which <strong>the</strong> enzyme molecule is located, <strong>the</strong> chemical<br />

and physical structure <strong>of</strong> <strong>the</strong> carrier, <strong>the</strong> properties <strong>of</strong> <strong>the</strong> spacer (for example, charged or<br />

neutral, hydrophilic or hydrophobic, size, length) linking <strong>the</strong> enzyme molecules to <strong>the</strong><br />

carrier, and <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s under which <strong>the</strong> enzyme molecules were immobilized. Hence <strong>the</strong><br />

stability <strong>of</strong> <strong>the</strong> immobilized enzymes with respect to time, temperature and o<strong>the</strong>r storage<br />

c<strong>on</strong>diti<strong>on</strong>s and experimental variables might be expected to ei<strong>the</strong>r increase or decrease <strong>on</strong><br />

immobilizati<strong>on</strong>. The rate <strong>of</strong> immobilized enzyme inactivati<strong>on</strong> is <strong>of</strong>ten found diminished in<br />

comparis<strong>on</strong> with free enzyme. The steric hindrance <strong>of</strong> <strong>the</strong> immobilized enzymes towards<br />

I4


Qhapter l __ ]IIlI’0dI.ICt]i(il<br />

high molecular substrates can be useful for shielding <strong>the</strong>m from <strong>the</strong> attack <strong>of</strong><br />

microorganisms and exogenous proteases [55].<br />

1. 3. 4.2 Activity<br />

It has been found that many enzymes immobilized by different immobilizati<strong>on</strong><br />

techniques have higher activity than <strong>the</strong> native enzymes. For instance, epoxy hydrolase<br />

adsorbed <strong>on</strong> DEAE-cellulose by i<strong>on</strong>ic b<strong>on</strong>ding was more than twice as active as <strong>the</strong> native<br />

enzyme [56], lipase—lipid complex entrapped in n-vinyl-2-pyrrolid<strong>on</strong>e gel matrix was 50­<br />

fold more active than <strong>the</strong> native enzyme [57]. Activati<strong>on</strong> by immobilizati<strong>on</strong> is, however,<br />

<strong>of</strong>ten regarded as an additi<strong>on</strong>al benefit ra<strong>the</strong>r than a rati<strong>on</strong>al goal <strong>of</strong> enzyme<br />

immobilizati<strong>on</strong>. Activity retenti<strong>on</strong> by carrier-bound immobilized enzymes is usually<br />

approximately 50 %. At high enzyme loading, especially, diffusi<strong>on</strong> limitati<strong>on</strong> might occur<br />

as a result <strong>of</strong> <strong>the</strong> unequal distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> enzyme within a porous carrier, leading to a<br />

reducti<strong>on</strong> <strong>of</strong> apparent activity [58]. The c<strong>on</strong>diti<strong>on</strong>s for high activity retenti<strong>on</strong> are <strong>of</strong>ten<br />

marginal, thus <strong>of</strong>ten requiring laborious screening <strong>of</strong> immobilizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s such as<br />

enzyme loading, pH, carrier and binding chemistry [59]. The immobilized enzymes can be<br />

more active than <strong>the</strong> native enzymes, when <strong>the</strong> inhibiting effect <strong>of</strong> <strong>the</strong> substrate was<br />

reduced. For example, immobilizati<strong>on</strong> <strong>of</strong> invertase from Candida utilis <strong>on</strong> porous cellulose<br />

beads led to reduced substrate inhibiti<strong>on</strong> and increased activity [60]. A positive partiti<strong>on</strong><br />

effect (enrichment <strong>of</strong> substrates in <strong>the</strong> proximity <strong>of</strong> <strong>the</strong> enzymes) might also enhance<br />

enzyme activity as was observed for kinetically c<strong>on</strong>trolled syn<strong>the</strong>sis <strong>of</strong> ampicillin with<br />

penicillin G acylase immobilized <strong>on</strong> a positively charged carrier [61] or horse liver alcohol<br />

dchydrogenase immobilized <strong>on</strong> poly(1nethylaciylate-co-acrylamide) matrix [62, 63].<br />

I. 3.4.3 Kinetic properties<br />

Changes in activity <strong>of</strong> enzymes due to <strong>the</strong> actual process <strong>of</strong> immobilizati<strong>on</strong> have not<br />

been studied very much. There is usually a decrease in specific activity <strong>of</strong> an enzyme up<strong>on</strong><br />

immobilizati<strong>on</strong>, and this can be attributed to denaturati<strong>on</strong> <strong>of</strong> <strong>the</strong> enzymic protein caused by<br />

<strong>the</strong> coupling process. Once an enzyme has been insolubilized, however, it finds itself in a<br />

microcnvir<strong>on</strong>ment that may be drastically different from that existing in free soluti<strong>on</strong>. The<br />

I5


A; g g _A_Study <strong>on</strong> <strong>the</strong> lnlmobilizgatiogn <strong>of</strong> <strong>Enzymes</strong>; <strong>on</strong> __<strong>Polymeric</strong>_§upports i<br />

new microenvir<strong>on</strong>ment may be a result <strong>of</strong> <strong>the</strong> physical and chemical character <strong>of</strong> <strong>the</strong><br />

support matrix al<strong>on</strong>e, or it may result from interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> matrix with substrates or<br />

products involved in <strong>the</strong> enzymatic reacti<strong>on</strong>.<br />

The Michaelis c<strong>on</strong>stant has been found to decrease by more than <strong>on</strong>e order <strong>of</strong><br />

magnitude when substrate <strong>of</strong> opposite charge to <strong>the</strong> carrier matrix was used. Again, this<br />

<strong>on</strong>ly happened at low i<strong>on</strong>ic strengths, and when neutral substrates were used. The diffiisi<strong>on</strong><br />

<strong>of</strong> substrate from <strong>the</strong> bulk soluti<strong>on</strong> to <strong>the</strong> micro-envir<strong>on</strong>ment <strong>of</strong> an immobilized enzyme<br />

can limit <strong>the</strong> rate <strong>of</strong> <strong>the</strong> enzyme reacti<strong>on</strong>. The rate at which substrate passes over <strong>the</strong><br />

insoluble particle affects <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> diffusi<strong>on</strong> film, which in tum determines <strong>the</strong><br />

c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> substrate in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> enzyme and hence <strong>the</strong> rate <strong>of</strong> reacti<strong>on</strong>. The<br />

effect <strong>of</strong> <strong>the</strong> molecular weight <strong>of</strong> <strong>the</strong> substrate can also be large. Diffusi<strong>on</strong> <strong>of</strong> large<br />

molecules will obviously be limited by steric interacti<strong>on</strong>s with <strong>the</strong> matrix, and this is<br />

reflected in <strong>the</strong> fact that <strong>the</strong> relative activity <strong>of</strong> bound enzymes towards high molecular<br />

weight substrates has been generally found to be lower than towards low molecular weight<br />

substrates. This, however, may be an advantage in some eases, since <strong>the</strong> immobilized<br />

enzymes may be protected from attack by large inhibitor molecules.<br />

1.3.5 The advantages <strong>of</strong> immobilized enzymes<br />

The main objective <strong>of</strong> enzyme immobilizati<strong>on</strong> was to maximize <strong>the</strong> advantages <strong>of</strong><br />

enzyme catalysis, which is possible by using a support with low syn<strong>the</strong>sis cost and high<br />

binding capacity. The o<strong>the</strong>r important aspect to be c<strong>on</strong>sidered was <strong>the</strong> possibilities <strong>of</strong><br />

reacti<strong>on</strong> interrupti<strong>on</strong> by removing <strong>the</strong> immobilized enzyme, c<strong>on</strong>ferring to <strong>the</strong>se systems<br />

refine c<strong>on</strong>trol over product formati<strong>on</strong>, which was not possible when enzyme was free in<br />

soluti<strong>on</strong>. Some <strong>of</strong> <strong>the</strong> advantages <strong>of</strong> <strong>the</strong> immobilized enzymes over free enzymes are as<br />

follows.<br />

'2' Easy separati<strong>on</strong> from reacti<strong>on</strong> mixture, providing <strong>the</strong> ability to c<strong>on</strong>trol reacti<strong>on</strong><br />

times and minimize <strong>the</strong> enzymes lost in <strong>the</strong> product.<br />

'2. Re-use <strong>of</strong> enzymes for many reacti<strong>on</strong> cycles, lowering <strong>the</strong> total producti<strong>on</strong> cost <strong>of</strong><br />

enzyme mediated reacti<strong>on</strong>s.<br />

16


-- Chapter ~~~— I Introducti<strong>on</strong> 7 __ __<br />

‘Ia Ability <strong>of</strong> enzymes to replace multiple standard chemical steps and provide<br />

cnatomerically pure products.<br />

'2' The ability to stop <strong>the</strong> reacti<strong>on</strong> rapidly by removing <strong>the</strong> enzyme from <strong>the</strong> reacti<strong>on</strong><br />

soluti<strong>on</strong> (or vice verso).<br />

~Z~ Product is not c<strong>on</strong>taminated with <strong>the</strong> enzyme (especially useful in <strong>the</strong> food and<br />

pharmaceutical industries).<br />

'2' <strong>Enzymes</strong> are usually stabilized by immobilizati<strong>on</strong>.<br />

'2‘ Analytical purposes - l<strong>on</strong>g 1/2-life, predictable decay rates, eliminati<strong>on</strong> <strong>of</strong> reagent<br />

preparati<strong>on</strong>, etc.<br />

1.4 Polyaniline and P0ly(0-toluidine) as <strong>Supports</strong> for Enzyme<br />

Immobilizati<strong>on</strong><br />

<strong>Enzymes</strong> have been covalently b<strong>on</strong>ded to a wide variety <strong>of</strong> water-insoluble<br />

polymeric supports. Syn<strong>the</strong>tic polymers were already being employed for coupling<br />

biologically active materials in <strong>the</strong> l950’s. The use <strong>of</strong> syn<strong>the</strong>tic polymers as supports for<br />

enzyme immobilizati<strong>on</strong> provides several advantages, e.g. inertness to micro-organism<br />

attack, higher chemical resistance, and <strong>the</strong> opti<strong>on</strong> to use complex buffer comp<strong>on</strong>ents.<br />

Recently, <strong>the</strong> class <strong>of</strong> organic polymers called ‘c<strong>on</strong>ducting polymers’ has attracted<br />

c<strong>on</strong>siderable attenti<strong>on</strong> and has been used as supports for enzyme immobilizati<strong>on</strong> due to<br />

direct electr<strong>on</strong> transfer between enzyme and polymer and thus potential usability as sensing<br />

materials [64, 65]. Polyaniline (PANI) and substituted PANI occupy an important place<br />

am<strong>on</strong>g <strong>the</strong>se, c<strong>on</strong>ducting polymers because <strong>of</strong> <strong>the</strong>ir unique properties, which include good<br />

envir<strong>on</strong>mental stability, <strong>the</strong> simplicity <strong>of</strong> <strong>the</strong>ir doping process and <strong>the</strong> excellent redox<br />

recyclability enabling polymers with significant differences to be c<strong>on</strong>structed by means <strong>of</strong><br />

simple acidic or basic treatments. Thus PANI a11d related polymers are potentially attractive<br />

materials for <strong>the</strong> applicati<strong>on</strong>s in <strong>the</strong> field <strong>of</strong> biochemical engineering [66, 67]. Besides all<br />

<strong>the</strong>se interesting properties, chemically syn<strong>the</strong>sized PANl‘s and substituted PANl‘s are<br />

easy to prepare with high syn<strong>the</strong>sis yield, <strong>the</strong>y are highly stable to extremes <strong>of</strong> temperature<br />

and pH, resistant to attacks from micro-organisms, are stable in oxygen atmosphere and<br />

I7


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

c<strong>on</strong>tains amino groups, and are suitable polymeric supports for <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong><br />

biomolecules [68] with and without <strong>the</strong> use <strong>of</strong> spacer molecules.<br />

Chemically syn<strong>the</strong>sized polyaniline and poly(0-toluidine) hydrochloride salts are<br />

green in color. They are known to exist in a variety <strong>of</strong> forms differing in color, some <strong>of</strong><br />

which are not electrically c<strong>on</strong>ducting [69]. The most important form, prot<strong>on</strong>ated salt<br />

(doped) are green and electrically c<strong>on</strong>ducting; <strong>the</strong>y are produced directly by <strong>the</strong> oxidative<br />

polymerizati<strong>on</strong> <strong>of</strong> <strong>the</strong> m<strong>on</strong>omers, usually as <strong>the</strong> hydrochloride forms. On direct treatment<br />

with alkali, <strong>the</strong>y are c<strong>on</strong>verted to <strong>the</strong> blue, n<strong>on</strong>-c<strong>on</strong>ducting base (undoped). The<br />

interc<strong>on</strong>versi<strong>on</strong> between <strong>the</strong> salt and base forms is illustrated by <strong>the</strong> following scheme<br />

(scheme 1.1).<br />

+ O NH NH<br />

Cl '<br />

Emeraldine salt (ES)<br />

~11<br />

i~o~r-o~—~


Chapter 1 Introducti<strong>on</strong><br />

Even it allows improving enzyme stability by multipoint or multisubunit immobilizati<strong>on</strong><br />

[73-75]. This invariably gives high yields <strong>of</strong> immobilized protein <strong>on</strong> <strong>the</strong> support.<br />

Glutaraldehyde has also been used to introduce intermolecular cross-linking in proteins<br />

[76-78].<br />

__i L-»<br />

°"*° Kw CH0 H30‘ HO /fl o NH’ <strong>on</strong> HO 0 u—— polymer<br />

Z polymer<br />

Scheme 1.2 Proposed mecham's'm_f0r <strong>the</strong> imm0b:'1:'zali<strong>on</strong> <strong>of</strong> enzynte <strong>on</strong> NH; polymer via<br />

glutaraldchyde as cross-1 in/ting agent.<br />

B<strong>on</strong>ding <strong>of</strong> enzyme with support by glutaraldchyde chemistry should provide<br />

stable, insolubilized enzyme derivatives that do not leach enzyme into <strong>the</strong> surrounding<br />

soluti<strong>on</strong>. Only mild c<strong>on</strong>diti<strong>on</strong>s are required to activate aminated supports with<br />

glutaraldchyde, having between <strong>on</strong>e or two molecules <strong>of</strong> glutaraldchyde per primary amino<br />

groups, and <strong>the</strong> use <strong>of</strong> more drastic c<strong>on</strong>diti<strong>on</strong>s (pl-I over 8 and higher glutaraldchyde<br />

c<strong>on</strong>centrati<strong>on</strong> above 15 %) promoted unc<strong>on</strong>trolled glutaraldchyde polymerizati<strong>on</strong> [79]. lt<br />

was believed that <strong>the</strong> enzyme was immobilized via <strong>the</strong> covalent b<strong>on</strong>d formati<strong>on</strong> through<br />

glutaraldchyde <strong>on</strong> <strong>the</strong> support. Reacti<strong>on</strong> <strong>of</strong> aldehyde with amino group <strong>of</strong> protein is<br />

expected to be <strong>the</strong> formati<strong>on</strong> <strong>of</strong> Schiff's base structure, but according to Walt er al. [80]<br />

<strong>the</strong>se bases are highly labile in acidic c<strong>on</strong>diti<strong>on</strong> and <strong>the</strong>y break down to regenerate aldehyde<br />

and amine. But as <strong>the</strong>re were no signs <strong>of</strong> free amino and aldehyde group after<br />

immobilizati<strong>on</strong>, <strong>the</strong>y suggested a different reacti<strong>on</strong> mechanism. Under acidic and neutral<br />

soluti<strong>on</strong>s, glutaraldchyde exists as a m<strong>on</strong>omer in its free aldehyde from, hydrate or<br />

19


_g_ A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

hemiacetal. According to <strong>the</strong>m, cyclic hemiacetal form <strong>of</strong> glutaraldehyde in diluted acidic<br />

and neutral soluti<strong>on</strong> was resp<strong>on</strong>sible for <strong>the</strong> immobilizati<strong>on</strong> reacti<strong>on</strong>. Hence for m<strong>on</strong>omeric<br />

glutaraldehyde, <strong>the</strong>y recommended <strong>the</strong> reacti<strong>on</strong> depicted in scheme 1.2, but <strong>the</strong> exact<br />

mechanism <strong>of</strong> immobilizati<strong>on</strong> <strong>of</strong> protein via glutaraldehyde is still under discussi<strong>on</strong> [81,<br />

82].<br />

1.4.2 Activati<strong>on</strong> <strong>of</strong> polymers with ascorbic acid<br />

The pathway <strong>of</strong> enzyme immobilizati<strong>on</strong> via ascorbic acid (ASA) was proposed by<br />

Tiller er al. [83]. It was based <strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that ASA in methanol reacts with amino<br />

group <strong>of</strong> NH; polymer and also enzyme protein forming dehydroascorbic acid derivatives<br />

with neighboring Schiff's base structures. Thcsc undergo subscqucnt fragmentati<strong>on</strong><br />

0 0<br />

reacti<strong>on</strong> and form stable oxalic acid diatnide derivatives as coupling structures between<br />

enzyme and polymer. The proposed reacti<strong>on</strong> scheme is shown below (scheme 1.3).<br />

Mi“ ii“ in *1” M Bifiiiii it M ii i it OH i i<br />

QH 0 activati<strong>on</strong> surface OH0<br />

H2 + 02/ i. MeOH ap­<br />

NH2 -polymer I<br />

ASA<br />

H @~ lll N<br />

OH<br />

fragmentati<strong>on</strong> Q<br />

\NII<br />

Scheme 1.3 Proposedpar/m'a}{for <strong>the</strong> immobiliza/i<strong>on</strong> 0fen:_1fn-to <strong>on</strong> an NU; polymer<br />

by bifirncli<strong>on</strong>al ASA reacti<strong>on</strong>.<br />

20


Chapterl __ Introducti<strong>on</strong><br />

ln <strong>the</strong> activati<strong>on</strong> step <strong>the</strong> NH; groups <strong>of</strong> <strong>the</strong> polymer react with methanolic ASA, to<br />

form dehydroascorbic acid derivative (I). lt was <strong>the</strong>n treated with enzyme in buffer for<br />

immobilizati<strong>on</strong>. The /3-keto group <strong>of</strong> <strong>the</strong> ASA reacts with NH; group in <strong>the</strong> protein<br />

resulting neighboring Sehiff' s base structure (ll). These are not stable and undergo (O2­<br />

dependent) autoxidative fragmentati<strong>on</strong> reacti<strong>on</strong> fomiing oxalic acid diamide bridge<br />

structure (lll).<br />

1.5 Objectives <strong>of</strong> <strong>the</strong> Thesis<br />

The primary goal <strong>of</strong> <strong>the</strong> present work was to incorporate enzymes into polymers and<br />

<str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>the</strong> enzyme behavior <strong>on</strong>ce inserted in <strong>the</strong> polymer matrices. Two different starch<br />

c<strong>on</strong>verting enzymes were used: a/-amylase and glueoamylase, because <strong>the</strong>y are easy to<br />

handle in <strong>the</strong> laboratory atmosphere as well as are most ec<strong>on</strong>omical industrial enzymes,<br />

especially for food and phamiaeeutical purposes. Adsorpti<strong>on</strong> and covalent b<strong>on</strong>ding<br />

methods are used as <strong>the</strong>y are gentle and simple methods, which provide good<br />

immobilizati<strong>on</strong> efficiency. In order to design an effective immobilized enzyme matrix, <strong>the</strong><br />

influence <strong>of</strong> several immobilizati<strong>on</strong> parameters in <strong>the</strong> immobilizati<strong>on</strong> were investigated<br />

such as enzyme to polymer weight ratio, processing time <strong>of</strong> immobilizati<strong>on</strong> and pH <strong>of</strong> <strong>the</strong><br />

reacti<strong>on</strong> medium during immobilizati<strong>on</strong>. The kinetic parameters, properties and stabilities<br />

<strong>of</strong> <strong>the</strong> immobilized enzyme under optimum c<strong>on</strong>diti<strong>on</strong>s were determined. The main<br />

objectives <strong>of</strong> <strong>the</strong> <strong>the</strong>sis are summarized as follows;<br />

Q Preparati<strong>on</strong> <strong>of</strong> polyaniline and poly(o-toluidine) in prot<strong>on</strong>ated salt and base form,<br />

and <strong>the</strong>ir activati<strong>on</strong> by ascorbic acid and glutaraldchyde.<br />

Q Immobilizati<strong>on</strong> <strong>of</strong> enzymes, a-amylase and glucoamylase <strong>on</strong> polyaniline and<br />

poly(o-toluidine) via adsorpti<strong>on</strong> and covalent b<strong>on</strong>ding.<br />

Q Optimizati<strong>on</strong> <strong>of</strong> immobilizatirm c<strong>on</strong>diti<strong>on</strong>s, pH <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong> medium and<br />

time for immobilizati<strong>on</strong>.<br />

2l


O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

be g§_§21iY:1'15h: !1"_':1g£>i'i1_=;*i2!1;>F E 95! 912591 l19',\;m§:i9c$_!R29L§_ ibis be<br />

Characterizati<strong>on</strong> <strong>of</strong> polymers before and after immobilizati<strong>on</strong> via various physica­<br />

chemical techniques like FT-IR spectroscopy, T G-D T G analysis, surface area<br />

measurement and S EM.<br />

Study <strong>on</strong> <strong>the</strong> efficiency <strong>of</strong> immobilizati<strong>on</strong> <strong>on</strong> various polymers.<br />

Estimate <strong>the</strong> activity and efficiency <strong>of</strong> <strong>the</strong> immobilized enzyme <strong>on</strong> <strong>the</strong> hydrolysis<br />

<strong>of</strong> starch.<br />

Study <strong>on</strong> <strong>the</strong> Influence <strong>of</strong> <strong>the</strong> parameters, pH and temperature <strong>on</strong> <strong>the</strong> activity and<br />

stability <strong>of</strong> free and immobilized enzymes, comparis<strong>on</strong> <strong>of</strong> enzymatic properties<br />

with native enzyme.<br />

Evaluati<strong>on</strong> <strong>of</strong> kinetic c<strong>on</strong>stants Km and I/,,,,,x.<br />

Study <strong>on</strong> <strong>the</strong> reusabilizjy and l<strong>on</strong>g term storage stability.<br />

22


Chapter] ????? A lntrod uécti<strong>on</strong><br />

References<br />

[1] l.H. Silman, E. Katchalski, Water insoluble derivatives <strong>of</strong> enzymes, antigens and<br />

antibodies, Ann. Rev. Biochem. 35 (1966) 837-908.<br />

[2] E.J. Vandamme, Peptide antibiotic producti<strong>on</strong> through immobilized bioeatalyst<br />

technology, Enzyme Microb. Technol. 5 (1983) 403-416.<br />

[3] B. Schulze, M.G. Wubbolts, Biocatalysis for industrial producti<strong>on</strong> <strong>of</strong> fine chemicals,<br />

Curr. Opin. Biotechnol. 10 (1999) 609-615.<br />

[4] H. Stetter, Enzymatische Analyse, Verlag Chemie, Weinheim, 1951.<br />

[5] L.C.Jr. Clark, C. Ly<strong>on</strong>s, Electrode systems for c<strong>on</strong>tinuous m<strong>on</strong>itoring in<br />

cardiovascular surgery, Ann. NY Aead. Sci. 102 (1962) 29-45.<br />

[6] D.H. Campbell, F.L. Luescher, L.S. Lerman, Immunologic adsorbents. l. lsolati<strong>on</strong> <strong>of</strong><br />

antibody by means <strong>of</strong> a cellulose-protein antigen, Proc. Natl. Acad. Sci. USA 37<br />

(1951) 575-578.<br />

[7] S. Watanabe, Y. Shimizu, T. Teramatsu, T. Murachi, T. Hino, Applicati<strong>on</strong> <strong>of</strong><br />

immobilized enzymes for biomaterials used in surgery, Methods Enzymol. 137 (1988)<br />

545-551.<br />

[8] T.M.S. Chang, Medical applicati<strong>on</strong> <strong>of</strong> immobilized enzymes and proteins, Vols l and<br />

ll, Plenum Press, New York, I977.<br />

[9] M.D. Klein, R. Langer, Immobilized enzymes in clinical medicines: an emerging<br />

approaches to new drug <strong>the</strong>rapies, Trends Biotechnol. 4 (1986) 179-I86.<br />

[10] 1...]. Kircka, G.H.G. Thorpe, Immobilized enzymes in analysis, Trends Biotechnol. 4<br />

(1986) 253-258.<br />

[ll] B.R. Dunlap, Immobilized chemicals and affinity chromatography, Plenum Press,<br />

New York, 1974.<br />

[12] G.F. Bickerstaff, Applicati<strong>on</strong> <strong>of</strong> immobilized enzymes to fundamental studies <strong>on</strong><br />

enzyme structure and functi<strong>on</strong>, Topics in enzyme and fermentati<strong>on</strong> biotechnology,<br />

Ellis Hoiwood, Chichcstcr, UK, 1984, pp.l62-201.<br />

[13] K. Maitinek, V.V. Mozhaev, lmmobilizati<strong>on</strong> <strong>of</strong> enzymes: an approach to fundamental<br />

studies in biochemistry, Adv. E-nzymol. 57 (1985) 179-249.<br />

23


[14]<br />

[15]<br />

[16]<br />

[I7]<br />

[13]<br />

[19]<br />

[20]<br />

[211<br />

[23]<br />

[23]<br />

[24]<br />

[25]<br />

[26]<br />

[Z7]<br />

A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

C.L.L. Cristallini, M.G. Case<strong>on</strong>e, G. Polaceo, D. Lupinacci, N. Barbani, Enzyme­<br />

based bioartificial polymeric materials: <strong>the</strong> or-amylase—poly(vinyl alcohol) system,<br />

Polym. Int. 44 (1997) 510-516.<br />

O.R. Zaborsky, Immobilized enzymes, C RC Press, Cleveland, Ohio, 1973.<br />

I. Chibata, Immobilized enzymes: research and development, l-lalsted, New York,<br />

I978.<br />

R.A. Messing, Immobilized enzymes for industrial reactors, Academic Press, New<br />

York, 1975.<br />

R.D. Johns<strong>on</strong>, A.G. Wang, F.H. Amold, Surface site heterogeneity and lateral<br />

interacti<strong>on</strong>s in multipoint protein adsorpti<strong>on</strong>, J. Phys. Chem. 100 (1996) 5134-5139.<br />

S.V. Rao, K.W. Anders<strong>on</strong>, L.G. Bachas, Oriented immobilizati<strong>on</strong> <strong>of</strong> proteins,<br />

Mikrochim. Acta I28 (I998) 127-143.<br />

Z. Grosova, M. Rosenberg, M. Rebros, M. §ipocz, B. Sedlaekova, Entrapmet <strong>of</strong> ,6­<br />

galactosidase in polyvinylaleohol hydrogel, Biotechnol. Len. 30 (2008) 763-767.<br />

S.F. D‘Souza, G.B. Nadkami, C<strong>on</strong>tinuous inversi<strong>on</strong> <strong>of</strong> sucrose by gel-entrapped yeast<br />

cells, Enzyme Microb. Technol. 2 (1980) 217-222.<br />

A. Deshpande, S.F. D‘Souza, G.B. Nandakarni, Co-immobilizati<strong>on</strong> <strong>of</strong> D-amino acid<br />

oxidase and catalase by entrapment <strong>of</strong> T I'ig(m0p.si.s‘ variabilis in radiati<strong>on</strong> polymerised<br />

polyacrylamide beads, J. Biosci. 11 (1987) 137-144.<br />

B. Katzbauer, M. Narodoslawsky, A. Moser, Classificati<strong>on</strong> system for immobilizati<strong>on</strong><br />

techniques, Bioprocess Eng. 12 (1995) 173-179.<br />

R.F. Taylor, Protein immobilizati<strong>on</strong>: fundamentals and applicati<strong>on</strong>s, Marcel Dekker,<br />

New York, 1991.<br />

P. Gcmeiner, Materials for enzyme engineering. 1n: Gcmeiner P (Ed) Enzyme<br />

engineering, Ellis Horwood, New York, 1992, pp. 13-119.<br />

C.A. White, J.F. Kennedy, Popular matrices for enzyme and o<strong>the</strong>r immobiizati<strong>on</strong>s,<br />

Enzyme Microb. Technol. 2 (1980) 82-90.<br />

S. Akgol, Y. Kacar, A. Denizli, M.Y. Arica, Hydrolysis <strong>of</strong> sucrose by invertase<br />

immobilized <strong>on</strong>to novel magnetic polyvinylalcohol microspheres, Food Chem. 74<br />

(2001) 281-288.<br />

24


Chapter 1 _ j i N _ lntr0_c_l_iicti0n<br />

[23]<br />

[39]<br />

[30]<br />

[31]<br />

[32]<br />

[33]<br />

[34]<br />

[35]<br />

[36]<br />

[37]<br />

[33]<br />

J. H<strong>on</strong>g, D. Xu, P. G<strong>on</strong>g, J. Yu, H. Ma, S. Yao, Covalent b<strong>on</strong>ded immobilizati<strong>on</strong> <strong>of</strong><br />

enzyme <strong>on</strong> hydrophilie polymer covering magnetic nanogels, Microporous<br />

Mesoporous Mater. 109 (2008) 470-477.<br />

R.V. Mehta, R.V. Upadhyay, S.W. Charles, C.N. Rainchand, Direct binding <strong>of</strong><br />

protein to magnetic particles, Biotech. Tech. 1 1 (1997) 493-496.<br />

A.R. Varlan, W, Sansen, A. Vanloey, M. Hendrickx, Covalent enzyme<br />

immobilizati<strong>on</strong> <strong>on</strong> paramagnetic polyacrolein beads, Bioscns. Bioeleetr<strong>on</strong>. ll (1996)<br />

443-447.<br />

G. Bayramoglu, S. Kiralp, M. Yilinaz, L. Toppare, M.Y. Arica, Covalent<br />

immobilizati<strong>on</strong> <strong>of</strong> chloroperoxidase <strong>on</strong>to magnetic beads: catalytic properties and<br />

stability, Biochem. Eng. J. 38 (2008) 180-188.<br />

T. Bahar, S.S. Celebi, Characterizati<strong>on</strong> <strong>of</strong> glucoamylase immobilized <strong>on</strong> magnetic<br />

poly(styrene) particles, Enzyme Mierob. Technol. 23 (1998) 301-304.<br />

T. Bahar, S.S. Celebi, Performance <strong>of</strong> immobilized glucoamylase in a magnetically<br />

stabilized fluidized bed reactor, Enzyme Mircob. Technol. 26 (2000) 28-33.<br />

B.R. Pieters, G. Bardeletti, Enzyme immobilizati<strong>on</strong> <strong>on</strong> a low-cost magnetic support:<br />

kinetic studies <strong>on</strong> immobilized and coimmobilized glucose oxidase and glueoamylase,<br />

Enzyme Mirob. Techno]. 14 (1992) 361-370.<br />

M.Y. Arica, H. Yavuz, S. Patir, A. Denizli, Immobilizati<strong>on</strong> <strong>of</strong> glucoamylase <strong>on</strong>to<br />

spacer-arm attached magnetic po1y(methylmethac1ylate) microspheres:<br />

characterizati<strong>on</strong> and applicati<strong>on</strong> to a c<strong>on</strong>tinuous flow reactor, J. M01. Catal. B:<br />

Enzymatic 1 l(2000) 127-138.<br />

M. Gerard, B.D. Malhotra, Applicati<strong>on</strong> <strong>of</strong> polyaniline as enzyme based biosensor,<br />

Curr. Appl. Phy. 5 (2005) 174-177.<br />

K.F. Femandes, C.S. Lima, H. Pinho, C.H. Collins, Immobilizati<strong>on</strong> <strong>of</strong> horseradish<br />

peroxidase <strong>on</strong>to polyaniline polymers, Process Biochem. 38 (2003) 1379-1384.<br />

T. Tatsuma, K. Ariyama, N. Oyama, Peroxidase-incorporated hydrophilic<br />

polythiophene electrode for <strong>the</strong> detenninati<strong>on</strong> <strong>of</strong> hydrogen peroxidase in acet<strong>on</strong>itrile,<br />

Anal. Chem. Acta 318 (1996) 297-301.<br />

25


A1 Study <strong>on</strong> <strong>the</strong>lmmobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> Suppt>_|'ts W __:<br />

M. Gerard, A. Chaubey, B.D. Malhotra, Applicati<strong>on</strong> <strong>of</strong> c<strong>on</strong>ducting polymers to<br />

bioscnsors, Biosens. Bioelect<strong>on</strong>. I7 (2002) 345-359.<br />

A. Chaubey, K.K. Pande, V.S. Singh, B.D. Malhotra, Co-immobilizati<strong>on</strong> <strong>of</strong> lactate<br />

oxidase and lactate dehydrogenase <strong>on</strong> c<strong>on</strong>ducti<strong>on</strong> polyaniline films, Anal. Chim. Acta<br />

407 (2000) 97-103.<br />

C.G.J. Koopal, M.C. Fciters, R.J.M. Nolte, B.de Ruiter, R.B.M. Schasfoort, Glucose<br />

sensor utilizing polypyrrole incorporated in tract-etch membranes as <strong>the</strong> mediator,<br />

Biosens. Bioelectr<strong>on</strong>. 7 (1992) 461-471.<br />

W.D. Dominick, B.T. Berhane, .I.S. Mecomber, P.A. Limbach, Covalent<br />

im_mobilizati<strong>on</strong> <strong>of</strong> proteases and nucleases to poly(methylmethacrylate), Anal.<br />

Bioanal. Chem. 376 (2003) 349-354.<br />

P.N. Bartlett, R.G. Whitaker, Electrochemical immobilizati<strong>on</strong> <strong>of</strong> enzymes: Part II.<br />

Glucose oxidase immobilized in poly-N-methylpyirole, J. Electoanal. Chem. 224<br />

(I987) 37-48.<br />

G. Bidan, Elcctroc<strong>on</strong>ducting c<strong>on</strong>jugated polymers: new sensitive matrices to build up<br />

chemical or electrochemical sensors, Sens. Actuators B 6 (1992) 45-56.<br />

S. Tuncagil, S. Kiralp, S. Varis, L. Toppare, Immobilizati<strong>on</strong> <strong>of</strong> invertase <strong>on</strong> a<br />

c<strong>on</strong>ducting polymer <strong>of</strong> I-(4-nitrophcnyl)-2, 5-di (2-thienyl)-IH-pyrrole, React. Funct.<br />

Polym. 68 (2008) 710-717.<br />

J.M. Gomez, M.D. Romero, T.M. Fernandez, Immobilizati<strong>on</strong> <strong>of</strong> B-Glucosidase <strong>on</strong><br />

carb<strong>on</strong> nanombes, Catal. Lett. 101 (2005) 275-278.<br />

Y. Wang, Y.—L. Hsieh, Immobilizati<strong>on</strong> <strong>of</strong> lipase enzyme in polyvinyl alcohol (PVA)<br />

nan<strong>of</strong>ibrous membranes, J. Membr. Sci. 309 (2008) 73-81.<br />

L. Wu, X. Yuan, J. Sheng, Immobilizati<strong>on</strong> <strong>of</strong> cellulose in nan<strong>of</strong>ibrous PVA<br />

membranes by electrospinning, J. Membr. Sci. 250 (2005) I67-173.<br />

G. Lee, J. Kim, J.-H. Lee, Development <strong>of</strong> magnetically separable polyaniline<br />

nan<strong>of</strong>ibers for enzyme immobilizati<strong>on</strong> and recovery, Enzyme Microb. Tech. 42<br />

(2008) 466-472.<br />

C..l. Tien, B.H. Cliiang, Immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> a zirc<strong>on</strong>ium dynamic<br />

membrane, Process Biochem. 35 (I999) 377-383.<br />

26


C h apter_l _!_ ____ y Introducti<strong>on</strong><br />

G. Bayramoglu, M. Yilmaz, M.Y. Arica, Immobilizati<strong>on</strong> <strong>of</strong> <strong>the</strong>rmostable a- amylase<br />

<strong>on</strong>to reactive membranes: kinetics characterizati<strong>on</strong> and applicati<strong>on</strong> to c<strong>on</strong>tinuous<br />

starch hydrolysis, Food Chem. 84 (2004) 591-599.<br />

J.T. Oh, J.H. Kim, Preparati<strong>on</strong> and properties <strong>of</strong> immobilized amylglucosidase <strong>on</strong><br />

n<strong>on</strong>porous PS/PNaSS microspheres, Enzyme Microb. Tcchnol. 27 (2000) 356-361.<br />

C.W. Wu, J.-G. Lee, W.C. Lee, Protein and enzyme immobilizati<strong>on</strong> <strong>on</strong> n<strong>on</strong>porous<br />

mierospheres <strong>of</strong> polystyrene, Bioteehnol. Appl. Biochem. 27 (1998) 225-230.<br />

C.O. lkediobi, M. Stevens, L. Latinwo, Immobilizati<strong>on</strong> <strong>of</strong> linamarase <strong>on</strong> n<strong>on</strong>-porous<br />

glass beads, Process Biochem. 33 (I998) 491-494.<br />

A.M. Klibanov, Enzyme stabilizati<strong>on</strong> by immobilizati<strong>on</strong>, Anal. Biochem. 93 (1979)<br />

1-25.<br />

A. Ursini, P. Maragni, C. Bismara, B. Tamburini, Enzymatic method <strong>of</strong> preparati<strong>on</strong> <strong>of</strong><br />

optically active trans-2-amino cyclohexanol derivatives, Synth. Commun. 29 (1999)<br />

I369-1377.<br />

M. Goto, C. Hatanakaa, M. Goto, Immobilizati<strong>on</strong> <strong>of</strong> surfactant-lipase complexes and<br />

<strong>the</strong>ir high heat resistance in organic media, Biochem. Eng. J. 24 (2005) 91-94.<br />

M.H.A. Jansscn, L.M. van Langen, S.R.M. Pereira, F. van Rantwijk, R.A. Sheld<strong>on</strong>,<br />

Evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> performance <strong>of</strong> immobilized penicillin G aeylase using active-site<br />

titrati<strong>on</strong>, Bioteehnol. Bioeng. 78 (2002) 425-432.<br />

R.F. Taylor, A comparis<strong>on</strong> <strong>of</strong> various commercially available liquid chromatographic<br />

supports for immobilizati<strong>on</strong> <strong>of</strong> enzymes and immunoglobulins, Anal. Chim. Acta 172<br />

(1985) 241-248.<br />

P.A. Dickensheet, L.F. Chen, G.T. Tsao, Characterizati<strong>on</strong> <strong>of</strong> yeast glucoamylase<br />

immobilized <strong>on</strong> porous cellulose beads, Bioteehnol. Bioeng. 19 (1977) 365-375.<br />

V. Kasche, U. Hautler, L. Rieehmann, Kinetically c<strong>on</strong>trolled semi syn<strong>the</strong>sis <strong>of</strong> [3­<br />

laetam antibiotics and peptides, Ann. NY Acad. Sci. 434 (1984) 99-105.<br />

A.C. Johanss<strong>on</strong>, K. Mosbach, Acrylic copolymers as matrixes for <strong>the</strong> immobilizati<strong>on</strong><br />

<strong>of</strong> enzymes. l. Covalent binding or entrapping <strong>of</strong> various enzymes to bead-formed<br />

acrylic copolymers, Biochim. Biophys. Acta 370 (1974) 339-347.<br />

27


I-_-I<br />

[63]<br />

[64]<br />

[65]<br />

[66]<br />

[67]<br />

[63]<br />

[69]<br />

[70]<br />

[71]<br />

[72]<br />

__A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> Suppogrtfis g<br />

A.C. Johanss<strong>on</strong>, K. Mosbach, Acrylic copolymers as matrixes for <strong>the</strong> immobilizati<strong>on</strong><br />

<strong>of</strong> 150 enzymes. II. Effect <strong>of</strong> a hydrophobic microenvir<strong>on</strong>ment <strong>on</strong> enzyme reacti<strong>on</strong>s<br />

studied with alcohol dehydrogenase immobilized to different acrylic copolymcrs,<br />

Biochim. Biophys. Acta 370 (1974) 348-353.<br />

P. Gros, A. Bergel, Improved model <strong>of</strong> a polypyrrole glucose oxidase modified<br />

electrode, J . Electroanal. Chem. 386 (1995) 65-73.<br />

L. Boguslavsky, H. Kalash, Z. Xu, D. Beckles, L. Geng, T. Sko<strong>the</strong>im, V.<br />

Laurinavicius, H.S. Lee, Thin film bienzyme amperometric biosensors based <strong>on</strong><br />

polymeric redox mediators with electrostatic bipolar protecting layer, Anal. Chim.<br />

Acta 311 (1995) 15-2'1.<br />

M. Thangarathinavelu, A.K. Tripathi, T.C. Goel, I.K. Vanna, Preparati<strong>on</strong> and<br />

characterizati<strong>on</strong> <strong>of</strong> polyaniline-PVC polymer composite film, J. Appl. Polym. Sci. 51<br />

(1994) 1347-1349.<br />

V. Leitc, V.L. de Silva, W.M. Azevedo, E.H.M. Melo, J.L.L. Filho, Increasing<br />

glucose oxidase detemiinati<strong>on</strong> range by flow injecti<strong>on</strong> analysis (FIA) using glucose<br />

oxidasc immobilized <strong>on</strong> polyaniline, Biotechnol. Tech. 8 (1994) 133-I36.<br />

A.H. Parente, E.T.A.Jr. Marques, W.M. Azevedo, F.B. Diniz, E.H. Melo, J.L. Lima<br />

Filho, Glucose biosensor using glucose oxidase immobilized in polyaniline, Appl.<br />

Biochem. Biotechnol. 37 (I969) 267-273.<br />

J . Stejskal, P. Kratochvil, A.D. Jenkins, The fomiati<strong>on</strong> <strong>of</strong> polyaniline and nature <strong>of</strong> its<br />

structures, Polym. 37 (1996) 367-369.<br />

S.H. -Hagvall, K.S. -Layland, A.P. Dhanasop<strong>on</strong>, F. R<strong>of</strong>ail, H. Smith, B.M. Wu, R.<br />

Shemin, R.E. Beygui, W.R. MacLellan, Three-dimensi<strong>on</strong>al electrospun ECM-based<br />

hybrid scaffolds for cardiovascular tissue engineering, Biomat. 29 (2008) 2907-2914.<br />

D. Sabatini, K. Be11sch, R. Bamett, Cytochemistry and electr<strong>on</strong> microscopy: <strong>the</strong><br />

preservati<strong>on</strong> <strong>of</strong> cellular ultrastructure and enzymatic activity by aldehyde fixati<strong>on</strong>, J.<br />

Cell. Biol. 17 (1963) l9-58.<br />

K. Mcra, M. Nagai, J.W.C. Brock, Y. Fujiwara, T. Murata, T. Maruyama, J.W.<br />

Baynes, M. Otagiri, R. Nagai, Glutaraldehydc is an effective cross-linker for<br />

28


Chapter _1 _fl_ g__ Introducti<strong>on</strong><br />

producti<strong>on</strong> <strong>of</strong> antibodies against advanced glycati<strong>on</strong> end-products, J. lmmunol.<br />

Methods 334 (2008) 82-90.<br />

D.S. Rodrigues, A.A. Mendes, W.S. Adriano, L.R.B. G<strong>on</strong>calves, R.L.C. Giordano,<br />

Multipoint covalent immobilizati<strong>on</strong> <strong>of</strong> microbial lipase <strong>on</strong> chitosan and agarose<br />

activated by different methods, J. Mol. Catal. B: Enzymatic 51 (2008) 100-109.<br />

J.M. Guisan, Aldehyde-agarose gels as activated supports for immobilizati<strong>on</strong>­<br />

stabilizati<strong>on</strong> <strong>of</strong> enzymes, Enzyme Microb. Technol. 10 (1988) 375-382.<br />

J. Pedroche, M.M. Yust, C. Mateo, R.F. -Lafuente, J. Gir<strong>on</strong>-Calle, M. Alaiz, J.<br />

Vioque, J .M. Guisan, F. Millém, Effect <strong>of</strong> <strong>the</strong> support and experimental c<strong>on</strong>diti<strong>on</strong>s in<br />

<strong>the</strong> intensity <strong>of</strong> <strong>the</strong> multipoint covalent attachment <strong>of</strong> proteins <strong>on</strong> glyoxyl-agarose<br />

supports: correlati<strong>on</strong> between enzyme—support linkages and <strong>the</strong>rmal stability, Enzyme<br />

Microb. Technol. 40 (2007) 1 160-1166.<br />

R.F. -Lafuente, C.M. Rosell, V. Rodriguez, J.M. Guisan, Strategies for enzyme<br />

stabilizati<strong>on</strong> by intermolecular crosslinking with bifuneti<strong>on</strong>al reagents, Enzyme<br />

Microb. Tcchnol. 17 (1995) 517-523.<br />

R. Sehoevaart, M.W. Wolbers, M. Golubovic, M. Ottens, A.P.G. Kieboom, F.V.<br />

Rantwijk, Preparati<strong>on</strong>, optimizati<strong>on</strong> and structures <strong>of</strong> crosslinkcd enzyme aggregates<br />

(CLEAs), Bioteclmol. Bioeng. 87 (2004) 754-762.<br />

A.K. Dutta, A. Nayak, G. Belfort, Viseoelastic properties <strong>of</strong> adsorbed and cross­<br />

linked polypeptide and protein layers at a so1id—liquid interface, J. Colloid Interface<br />

Sci. 324 (2008) 55-60.<br />

P. M<strong>on</strong>san, Optimizati<strong>on</strong> <strong>of</strong> glutaraldchyde activati<strong>on</strong> <strong>of</strong> a support for enzyme<br />

immobilizati<strong>on</strong>, .1. Mol. Catal. 3 (1978) 371-384.<br />

D.R. Walt, V.1. Agayn, The chemistry <strong>of</strong> enzyme and protein immobilizati<strong>on</strong> with<br />

glutaraldchyde, Trends. Anal. Chem. l3 (1994) 425-430.<br />

L. Betancor, F.L. -Gallego, A. Hidalgo, N.A. -Morales, G.D. -Ortiz, C. Mateo, R.F. ­<br />

Lafuente, .l.M. Guisan, Different mechanisms <strong>of</strong> protein immobilizati<strong>on</strong> <strong>on</strong><br />

glutaraldchyde activated supports: effect <strong>of</strong> support activati<strong>on</strong> and immobilizati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s, Enzyme Microb. Technol. 39 (2006) 877-882.<br />

29


[32]<br />

[33]<br />

airTA§,£\1'!x92,*h:!m:12QE>*!E@!Q'12££!11LI!1s§c!;Pg1ym:ris,§"_I1I-2'18at J<br />

l. Migneault, C. Dartiguenavc, M.J. Bertrand, K.C. Waldr<strong>on</strong>, Glutaraldehyde:<br />

behavior in aqueous soluti<strong>on</strong>, reacti<strong>on</strong> with proteins, and applicati<strong>on</strong> in enzyme<br />

crosslinking, Bioteclmiques 37 (2004) 790-802.<br />

J. Tiller, P. Berlin, D. Klemm, A novel efficient enzyme-immobilizati<strong>on</strong> reacti<strong>on</strong> <strong>on</strong><br />

NH; polymers by means <strong>of</strong> L-ascorbic acid, Biotechnol. Appl. Biochem. 30 (1999)<br />

155-I62.<br />

10


CHAPTER 2<br />

EXPERIMENTAL TECHNIQUES<br />

2.1 MATERIALS USED ............................................................................................... ..32<br />

2.2 PREPARATIONS OF POLYMERS ..................................................................... ..32<br />

2.2.1 PREPARATION OF EMERALDINE SALT (ES) ........................................................... .. 32<br />

2.2.2 PREPARATION OF EMERALOINE BASE (EB) .......................................................... ..33<br />

2.2.3 PREPARATION OF POLY(0-TOLUIDINE) SALT (TS) ................................................ ..33<br />

2.2.4 PREPARATION OF POLY(O-TOLUIDINE) BASE (TB) ............................................... .. 34<br />

2.3 ACTIVATION OF POLYMERS ........................................................................... ..34<br />

2.3.1 ACTIVATION wITII GLUTARALDEHYDF. ................................................................ .. 34<br />

2.3.2 ACTIVATION OF POLYMERS WITH ASCORBIC ACID ................................................ .. 34<br />

2.4 PREPARATION OF IMMOBILIZED ENZYMES ............................................. ..35<br />

2.4.1 OPTIMIZATION OF IM MOBILIZATION PROCEDURE ................................................. ..35<br />

2.4.2 EsTIMATION OF PROTEIN ..................................................................................... .. 35<br />

2.4.3 IMMOBILIZATION EFFICIENCY .............................................................................. .. 35<br />

2.5 DETERMINATION OF ACTIVITY OF ENZYMES ......................................... ..36<br />

2.5.1 ACTIVITY OF a-AMYLASE .................................................................................... ..36<br />

2.5.2 ACTIVITY OF GLUCOAMYLASE ............................................................................. ..37<br />

2.6 BIOCHEMICAL CHARACTERIZATION ......................................................... ..38<br />

2.6.] EFFECT OF PH ON ACTIVITY ................................................................................. .. 38<br />

2.6.2 EFFECT OF TEMPERATURE ON ACTIVITY AND STABILITY ...................................... .. 38<br />

2.6.3 DETERMINATION OF KINETIC PARAMETERS .......................................................... ..38<br />

2.6.4 STORAGE STABILITY OF FREE ANO IMMOBILIZED ENZYMES ................................. .. 38<br />

2.6.5 REUSABILITY STUDY OF IMMOBILIZED ENzYMEs ................................................. ..39<br />

2.7 PHYSICO-CHEMICAL CHARACTERIZATION ............................................. ..39<br />

2.7.1 FT-IR SPECTROSCOPY ......................................................................................... ..39<br />

2.7.2 SURFACE AREA ANALYSIS .................................................................................... ..39<br />

2.7.3 TEERMOORAYIMETRIC ANALYSIS ........................................................................ ..40<br />

2.7.4 SCANNING ELECTRON MICROSCOPY ..................................................................... ..40<br />

REFERENCES .............................................................................................................. ..4I


_ V; A Study <strong>on</strong> <strong>the</strong> lniitriobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> _____i<br />

2.1 Materials Used<br />

Amylglucosidase ex. Rhizopus<br />

Amm<strong>on</strong>ium persulphate<br />

Albumin Bovine<br />

L-ascorbic acid<br />

Diastase a-amylase<br />

Dextrose anhydrous<br />

3,5-Dinitrosalicylic acid<br />

Folin & Ciocalteu‘s Phenol Reagent<br />

Glutaraldehydc<br />

Aniline<br />

O-toluidine<br />

Starch soluble (potato)<br />

2.2 Preparati<strong>on</strong> <strong>of</strong> Polymers<br />

2.2.1 Preparati<strong>on</strong> <strong>of</strong> emeraldine salt (ES)<br />

Sisco Research Laboratories Pvt. Ltd. Mumbai<br />

s. d. fiNE cHEM LTd. Mumbai<br />

Sisco Research Laboratories Pvt. Ltd. Mumbai<br />

s. d. fiNE cHEM LTd. Mumbai<br />

HiMedia Laborotories Pvt.LTd Mumbai<br />

s. d. fiNF. cHEM LTd. Mumbai<br />

s. d. fiNE cHl~lM LTd. Mumbai<br />

Sisco Research Laboratories Pvt. Ltd. Mumbai<br />

LOBA CHEMIE PVT. LTD. Mumbai<br />

s. d. fiN1~.' cHEM LTd. Mumbai<br />

SPECTROCH EM PVT. LTD. Mumbai<br />

s. d. fiNE CHEM LTd. Mumbai<br />

ES was prepared by chemical oxidati<strong>on</strong> <strong>of</strong> 0.2 M <strong>of</strong> aniline hydrochloride with 0.25<br />

M amm<strong>on</strong>ium peroxydisulphate according to literature procedure [I, 2]. The efficient<br />

polymerizati<strong>on</strong> <strong>of</strong> aniline is achieved <strong>on</strong>ly in acidic medium; where aniline exist as<br />

anilinium cati<strong>on</strong>. Here, hydrochloric acid was used in equimolecular proporti<strong>on</strong> <strong>of</strong> aniline<br />

so that aniline hydrochloride f<strong>on</strong>ned in siru was used as <strong>the</strong> m<strong>on</strong>omer. Peroxydisulphate is<br />

<strong>the</strong> most comm<strong>on</strong>ly used oxidant, and its amm<strong>on</strong>ium salt was preferred to potassium<br />

counterpart because <strong>of</strong> its better solubility in water. The recommended stoichiometric ratio<br />

<strong>of</strong> peroxidisulphate to aniline was 1.25:1 [I]. The polymerizati<strong>on</strong> was completed within l<br />

hour at 0-2 °C, since <strong>the</strong> reacti<strong>on</strong> was exo<strong>the</strong>rmic, low temperature was preferred.<br />

Aniline (3.7 mL_, 0.2 M) was dissolved in 0.2 M hydrochloric acid in a volumetric<br />

flask to 200 mL <strong>of</strong> soluti<strong>on</strong>. Amm<strong>on</strong>ium pcroxydisulfate (11.4 g, 0.25 M) was dissolved in<br />

distilled water to 200 mL as well. Both soluti<strong>on</strong>s were kept for l hour in an ice bath, mixed<br />

32


Qhapter 2 jg _ Experimental<br />

in a beaker, stirred and left at rest to polymerize at room temperature for l hour. The green<br />

precipitate was collected <strong>on</strong> a filter, washed with 100 mL 1 M hydrochloric acid to remove<br />

<strong>the</strong> residual m<strong>on</strong>omer, <strong>the</strong> oxidant and its decompositi<strong>on</strong> products. The treatment with HC1<br />

provides more uniform prot<strong>on</strong>ati<strong>on</strong> <strong>of</strong> ES. It was washed with distilled water and <strong>the</strong>n 300<br />

mL acet<strong>on</strong>e to remove <strong>the</strong> low molecular weight organic intermediates and oligomers. lt<br />

also prevents <strong>the</strong> aggregati<strong>on</strong> <strong>of</strong> ES during drying, so that product was obtained as fine<br />

powder. The resulting prot<strong>on</strong>atcd emeraldine was dried at room temperature for 3 hour and<br />

fur<strong>the</strong>r in an oven at 70 °C for 3 hour.<br />

2.2.2 Preparati<strong>on</strong> <strong>of</strong> emeraldine base (EB)<br />

The emeraldine base was prepared by deprot<strong>on</strong>ati<strong>on</strong> <strong>of</strong> emeraldine salt [3, 4]. For<br />

that ES was stirred with 0.1 M NaOH for 24 hour. It was <strong>the</strong>n filtered, washed several times<br />

with distilled water and dried.<br />

2.2.3 Preparati<strong>on</strong> <strong>of</strong> p0ly(0-toluidine) salt (TS)<br />

Poly(0-toluidine) was prepared in a manner analogous to polyaniline by oxidati<strong>on</strong><br />

<strong>of</strong> 0-toluidine hydrochloride with amm<strong>on</strong>ium persulphate in aqueous acidic media [5]. O­<br />

toluidine (4.4 mL, 0.2 M) was dissolved in 200 mL <strong>of</strong> 1 M HC1, and <strong>the</strong> soluti<strong>on</strong> was<br />

cooled to 0-5 °C in an ice bath. A few drops <strong>of</strong> FeSO4 soluti<strong>on</strong> were added as catalyst. A<br />

pre-cooled soluti<strong>on</strong> <strong>of</strong> 4.6 g <strong>of</strong> (NH4)QSgOg in I00 mL <strong>of</strong> distilled water was added drop<br />

wise with vigorous stirring during a period <strong>of</strong> 10 minutes. Ten to fifteen minutes after <strong>the</strong><br />

reactants were mixed; <strong>the</strong> soluti<strong>on</strong> started to show a green tint and became intense green as<br />

a precipitate was formed. After ~2 hour, <strong>the</strong> precipitate was collected <strong>on</strong> a Buchner funnel.<br />

The blue-green powder was transferred into a beaker c<strong>on</strong>taining 200 mL <strong>of</strong> 1 M HC1 to<br />

ensure complete prot<strong>on</strong>ati<strong>on</strong>. After Stirring at room temperature for l0 hour, <strong>the</strong> mixture<br />

was filtered, and <strong>the</strong> precipitate was washed with 500 1nL <strong>of</strong> l M HC1 until <strong>the</strong> filtrate<br />

became colorless. lt was dried in air and stored.<br />

33


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

2.2.4 Preparati<strong>on</strong> <strong>of</strong> poly(o-toluidine) base (TB)<br />

For <strong>the</strong> c<strong>on</strong>versi<strong>on</strong> <strong>of</strong> poly(0-toluidine) hydrochloride into poly(0-toluidine) base,<br />

<strong>the</strong> hydrochloride was suspended in aqueous NaOH (100 mL <strong>of</strong> 0.5 M) with stirring for l6<br />

hour at room temperature [5]. The pH <strong>of</strong> <strong>the</strong> soluti<strong>on</strong> was periodically adjusted to ~10 (pH<br />

paper test) by <strong>the</strong> additi<strong>on</strong> <strong>of</strong> drops <strong>of</strong> 1 M NaOH. The suspensi<strong>on</strong> was filtered, and <strong>the</strong><br />

precipitate was washed with ~ 400 mL <strong>of</strong> 0.1 M NaOH followed by five 50 mL porti<strong>on</strong>s <strong>of</strong><br />

a 1:] mixture <strong>of</strong> methanol and 0.2 M NaOH and finally with distilled water and dried.<br />

2.3 Activati<strong>on</strong> <strong>of</strong> Polymers<br />

2.3.1 Activati<strong>on</strong> with glutaraldehyde<br />

Activati<strong>on</strong> <strong>of</strong> <strong>the</strong> support with glutaraldehyde followed by <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

enzyme is <strong>on</strong>e <strong>of</strong> <strong>the</strong> most popular techniques to immobilize enzymes. The method is quite<br />

simple and even allows improving stability <strong>of</strong> immobilized enzyme [6]. All <strong>the</strong> polymers,<br />

emeraldinc salt (ES), emeraldinc base (EB), poly(0-toluidine) salt (TS) and poly(o­<br />

toluidine) base (TB) prepared were activated with glutaraldehyde for covalent<br />

immobilizati<strong>on</strong> <strong>of</strong> enzymes to obtain ESl, E-B1, TS1 and TBl respectively according to <strong>the</strong><br />

methodology described by Olss<strong>on</strong> and Organ [7]. 1 g each <strong>of</strong> <strong>the</strong> dried polymers was mixed<br />

with 2.5 % (v/v) glutaraldehyde soluti<strong>on</strong> prepared in 0.1 mol L'l potassium phosphate<br />

buffer <strong>on</strong> pH 6. The mixture was allowed to react under reflux for 2 hour. All supports were<br />

washed with <strong>the</strong> same buffer to free <strong>of</strong> excess glutaraldehyde and dried.<br />

2.3.2 Activati<strong>on</strong> <strong>of</strong> polymers with ascorbic acid<br />

The bifuncti<strong>on</strong>al reacti<strong>on</strong> <strong>of</strong> ascorbic acid (ASA) with amino compounds can be<br />

adapted in to enzyme immobilizati<strong>on</strong> <strong>on</strong> support materials which c<strong>on</strong>tain NH; groups [8]. 1<br />

g each <strong>of</strong> ES, EB, TS and TB was stirred with l g (5.7 mmol) <strong>of</strong> ASA dissolved in 50 mL<br />

methanol. The reacti<strong>on</strong> mixture was warmed slightly for 30 minutes. lt was <strong>the</strong>n filtered,<br />

washed with distilled water and dried to obtain ES2, EB2, TS2, and TB2 respectively.<br />

34


ghapter 2 W M: Experimental<br />

2.4 Preparati<strong>on</strong> <strong>of</strong> Immobilized <strong>Enzymes</strong><br />

ln order to immobilize <strong>the</strong> enzyme, <strong>the</strong> polymer powder was mixed with equal<br />

volume <strong>of</strong> enzyme soluti<strong>on</strong> and buffer <strong>of</strong> <strong>the</strong> desired pH. It was shaken in a water bath<br />

shaker at room temperature for <strong>on</strong>e hour and centrifuged [9, 10]. It was washed several<br />

times with <strong>the</strong> same buffer to remove <strong>the</strong> unbound enzyme. The biocatalyst was filtered<br />

using a sintered glass filter and dried in airflow. It was stored in refrigerator at 4 °C and<br />

used for fur<strong>the</strong>r studies. The supematant and washings were tested for any unbound<br />

enzyme.<br />

2.4.] Optimizati<strong>on</strong> <strong>of</strong>immobilizati<strong>on</strong> procedure<br />

The influence <strong>of</strong> pH, time <strong>of</strong> incubati<strong>on</strong>, and enzyme c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong><br />

immobilizati<strong>on</strong> were determined by carrying out immobilizati<strong>on</strong> at various pH (3-8),<br />

c<strong>on</strong>tact time (15-90 minutes) and enzyme c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 0.5-2.5 mg glucoamylase and 1­<br />

6 mg a-amylase. The immobilized polymers were analyzed for enzyme activity under<br />

c<strong>on</strong>stant c<strong>on</strong>diti<strong>on</strong>. Sodium acetate-acetic acid (0.2 M, pH 3-5.5) and sodium phosphate<br />

(0.2 M, pH 5.6-8) were used as buffers for optimizati<strong>on</strong> studies.<br />

2.4.2 Estimati<strong>on</strong> <strong>of</strong> protein<br />

The amount <strong>of</strong> protein present in <strong>the</strong> soluti<strong>on</strong> before immobilizati<strong>on</strong>, both in <strong>the</strong><br />

filtrate and washings were detennincd by <strong>the</strong> method proposed by Lowrjv er al. [1 1] using<br />

Folin & Ciocaltcus Phenol reagent and measuring absorpti<strong>on</strong> at 730 nm in Spcctro UV-Vis<br />

Double Beam UVD-3500 spectrophotometer. The amount <strong>of</strong> protein <strong>on</strong> <strong>the</strong> support was<br />

calculated from <strong>the</strong> difference between <strong>the</strong> amount <strong>of</strong> protein initially present in <strong>the</strong><br />

reacti<strong>on</strong> mixture and <strong>the</strong> amount <strong>of</strong> protein present in <strong>the</strong> filtrate and washing soluti<strong>on</strong>s<br />

after immobilizati<strong>on</strong>.<br />

2.4.3 Immobilizati<strong>on</strong> effieieney<br />

Immobilizati<strong>on</strong> yield (IY) was calculated by measuring c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> protein in<br />

<strong>the</strong> supematants before and after immobilizati<strong>on</strong>, according to equati<strong>on</strong> 2.1 below.<br />

35


_ _ Study <strong>on</strong>pp<strong>the</strong>ilmmobilizati<strong>on</strong> 0f_Enzyrngs <strong>on</strong> Po_lyt_nerpi:c <strong>Supports</strong> _ p H:<br />

_~— C1 C2<br />

IY (%) = __- X100 2-I<br />

Cl<br />

Where, Cl was <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> protein taken for immobilizati<strong>on</strong> and C2 was<br />

<strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> protein present in supernatant after immobilizati<strong>on</strong>.<br />

And <strong>the</strong> activity yield was determined by <strong>the</strong> equati<strong>on</strong> 2.2.<br />

The immobilizati<strong>on</strong> efficiency,<br />

Activity <strong>of</strong> immobilized enzyme<br />

AY (%) = - _ _e J see X 100 2-2<br />

Activity <strong>of</strong> free enzyme<br />

2.5 Determinati<strong>on</strong> <strong>of</strong> Activity <strong>of</strong> <strong>Enzymes</strong><br />

2.5.1 Activity <strong>of</strong> a-amylase<br />

IE = ____ 2.3<br />

AY<br />

IY<br />

Activities <strong>of</strong> free and immobilized 0:-amylase were estimated by <strong>the</strong> hydrolysis <strong>of</strong><br />

starch with <strong>the</strong> enzyme and subsequent determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> residual starch with iodine­<br />

potassium iodide reagent [12]. l g soluble potato starch was dissolved in 100 ml. boiling<br />

buffer <strong>of</strong> suitable pH. The soluti<strong>on</strong> was <strong>the</strong>n cooled to 40 "C. A known amount <strong>of</strong> <strong>the</strong> free<br />

or immobilized enzyme in buffer was mixed with 2 mL <strong>of</strong> starch soluti<strong>on</strong> and incubated at<br />

optimum temperature in a water bath with c<strong>on</strong>stant shaking. After <strong>the</strong> particular time<br />

interval, <strong>the</strong> reacti<strong>on</strong> was arrested by <strong>the</strong> additi<strong>on</strong> <strong>of</strong> 0.1 1nL 1 N HCl. 1 mL <strong>of</strong> above<br />

soluti<strong>on</strong> was withdrawn, added with 0.1 mL <strong>of</strong> iodine-potassium iodide reagent and was<br />

diluted with distilled water. The blue color developed was measured at 650 nm in a UV-Vis<br />

spectrophotometer. The results were compared with <strong>the</strong> absorbance <strong>of</strong> standard soluti<strong>on</strong><br />

and <strong>the</strong> amount <strong>of</strong> starch c<strong>on</strong>verted was calculated. All tests were performed in triplicate<br />

and results are presented in average and standard deviati<strong>on</strong>.<br />

36


Chapter 2 _ Experimental<br />

One enzyme unit (EU) <strong>of</strong> a-amylase activity was defined as <strong>the</strong> amount <strong>of</strong> enzyme,<br />

which c<strong>on</strong>verts 1 mg mL‘1 <strong>of</strong> starch in 1 minute at optimum temperature and pH. Specific<br />

activity was calculated by <strong>the</strong> equati<strong>on</strong> 2.4.<br />

. 2.4<br />

Specific activity : Enzymatic activity (mg mL" min-1)<br />

Amount <strong>of</strong> protein (lug)<br />

2.5.2 Activity <strong>of</strong> glucoamylase<br />

The activity <strong>of</strong> glucoamylase (GMA) was determined by estimating <strong>the</strong><br />

c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> reducing sugar fomied using DNS reagent [13]. 1 wt. % soluti<strong>on</strong> <strong>of</strong><br />

soluble starch was prepared by dissolving starch in 0.2 M buffer <strong>of</strong> desired pH. ln a test<br />

vial, a known amount <strong>of</strong> free enzyme or immobilized enzyme in buffer was placed.<br />

Subsequently, 1.0 mL starch soluti<strong>on</strong> in buffer was added and <strong>the</strong> system <strong>the</strong>n incubated in<br />

a water bath with c<strong>on</strong>stant shaking at optimum temperature exactly for <strong>the</strong> particular time.<br />

The reacti<strong>on</strong> was arrested by adding 0.5 n1L <strong>of</strong> 3, 5-dinitrosalieylie acid reagent and with<br />

rapid cooling. It was placed in a boiling water bath for 10 minutes. The soluti<strong>on</strong> was cooled<br />

under running water and diluted with distilled water. The amount <strong>of</strong> reducing sugar<br />

produced was determined spectropliotometiiealy at 500 nm. A standard calibrati<strong>on</strong> curve<br />

was c<strong>on</strong>structed with dextrose soluti<strong>on</strong> and <strong>the</strong> reducing sugar c<strong>on</strong>tent was estimated. One<br />

unit (EU) <strong>of</strong> glucoamylase activity was defined as <strong>the</strong> amount <strong>of</strong> enzyme required to<br />

liberate lpmol <strong>of</strong> reducing sugar per minute at optimum pH and temperature. Each result<br />

was an average <strong>of</strong> three separate set <strong>of</strong> experiments. Specific activity <strong>of</strong> GMA was<br />

calculated from <strong>the</strong> following equati<strong>on</strong>,<br />

Released reducing sugar (,u mol mL" min")<br />

Specific activity = at e " ~ 2-5<br />

Amount <strong>of</strong> protein (,ug)<br />

37


gm A ___ Study <strong>on</strong> <strong>the</strong> _____ Immobilizati<strong>on</strong> <strong>of</strong> -9-1 <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> __ _____<br />

<strong>Supports</strong><br />

2.6 Biochemical Characterizati<strong>on</strong><br />

2.6.1 Effect <strong>of</strong> pH <strong>on</strong> activity<br />

The influence <strong>of</strong> pH <strong>on</strong> activity <strong>of</strong> free and immobilized a-amylase and<br />

glucoamylase was tested at different pH using 0.2 M acetate buffer (pH 4-5.5) and 0.2 M<br />

phosphate buffer (pH 5.6-8).<br />

2.6.2 Effect <strong>of</strong> temperature <strong>on</strong> activity and stability<br />

The effect <strong>of</strong> temperature <strong>on</strong> <strong>the</strong> activity <strong>of</strong> free and immobilized a-amylase and<br />

glucoamylase was tested by subjecting <strong>the</strong>m to various temperatures ranging from 30-70 °C<br />

at optimum pH with 1 % starch soluti<strong>on</strong>. For investigating temperature stability, free and<br />

immobilized enzymes were placed in a water bath at various temperatures from 30-60 °C<br />

for l hour. Afier being cooled to optimum temperature, <strong>the</strong> enzymatic reacti<strong>on</strong> was carried<br />

out. Thermal inactivati<strong>on</strong> curves at optimum temperature with respect to time was obtained<br />

by incubating enzyme at optimum temperature and after definite time intervals, known<br />

amount <strong>of</strong> enzyme was withdrawn and tested for activity by standard assay procedure. All<br />

results are presented with <strong>the</strong> highest value <strong>of</strong> each assigned <strong>the</strong> value <strong>of</strong> 100 % activity.<br />

2.6.3 Determinati<strong>on</strong> <strong>of</strong> kinetic parameters<br />

The kinetic c<strong>on</strong>stants Km and Vmax values <strong>of</strong> free and immobilized enzymes were<br />

determined by measuring <strong>the</strong> rates <strong>of</strong> <strong>the</strong> reacti<strong>on</strong> at various substrate c<strong>on</strong>centrati<strong>on</strong>s at<br />

optimum temperature and pH. Km and I/max were calculated from <strong>the</strong> Lineweaver-Burk<br />

plots, and Hanes-Woolf plots.<br />

2.6.4 Storage stability <strong>of</strong> free and immobilized enzymes<br />

The storage stability <strong>of</strong> soluble and immobilized enzymes was measured by<br />

calculating <strong>the</strong>ir activities after being stored at 4 °C for a required period. The measurement<br />

was c<strong>on</strong>ducted at regular intervals <strong>of</strong> time. The activity was compared with initial activity<br />

and was represented as percentage initial activity retained.<br />

38


Chapter 2 Experimental<br />

2.6.5 Reusability <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>of</strong> immobilized enzymes<br />

The reusability <strong>of</strong> <strong>the</strong> immobilized enzyme was tested by repeated batch<br />

experiments by measuring <strong>the</strong> residual activity <strong>of</strong> <strong>the</strong> immobilized enzyme preparati<strong>on</strong> at<br />

optimum c<strong>on</strong>diti<strong>on</strong>s at intervals <strong>of</strong> 30 minutes. After each run, <strong>the</strong> immobilized enzyme<br />

was removed, washed with <strong>the</strong> buffer soluti<strong>on</strong> and mixed with fresh substrate soluti<strong>on</strong>.<br />

2.7 Physico—Chemical Characterizati<strong>on</strong><br />

2.7.1 FT-IR spectroscopy<br />

Fourier Transform Infrared Spectroscopy (FT-IR) is a popular tool for identifying<br />

and characterizing polymer materials and <strong>the</strong>ir additives. It can be applied to <strong>the</strong> analysis <strong>of</strong><br />

solids, liquids, and gasses. The tenn Fourier Transform Infrared Spectroscopy (FT-IR)<br />

refers to a fairly recent development in <strong>the</strong> manner in which <strong>the</strong> data is collected and<br />

c<strong>on</strong>verted from an interference pattern to a spectrum. By interpreting <strong>the</strong> infrared<br />

absorpti<strong>on</strong> spectrum, <strong>the</strong> chemical b<strong>on</strong>ds in a molecule can be determined. FT-IR spectra <strong>of</strong><br />

pure compounds are generally so unique that <strong>the</strong>y are like a molecular "fingerprint".<br />

The F T-IR spectra <strong>of</strong> syn<strong>the</strong>sized, activated and 0:-amylase immobilized polymers<br />

were obtained using a FT-IR spectrometer using KBr pellet method. Changes in <strong>the</strong><br />

absorpti<strong>on</strong> bands were investigated in <strong>the</strong> 500-4000 cm'l regi<strong>on</strong> and <strong>the</strong> resoluti<strong>on</strong> applied<br />

was 4 cm". The spectra were corrected for <strong>the</strong> H30 and CO2 c<strong>on</strong>tent in <strong>the</strong> optical path.<br />

2.7.2 Surface area analysis<br />

A Micromeritics Gemini 2360 Surface Area Analyzer was used to measure <strong>the</strong><br />

nitrogen adsorpti<strong>on</strong> iso<strong>the</strong>rms <strong>of</strong> <strong>the</strong> samples at liquid nitrogen temperature. From this<br />

specific surface area was determined. Prior to <strong>the</strong> measurement all samples were degassed<br />

at room temperature for 8-10 hours in nitrogen flow.<br />

39


_ A Studygin <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

2.7.3 Thermogravimetrie analysis<br />

Thermogravimetric analysis (TGA) is an analytical technique used to determine a<br />

material‘s <strong>the</strong>rmal stability and its fracti<strong>on</strong> <strong>of</strong> volatile comp<strong>on</strong>ents by m<strong>on</strong>itoring <strong>the</strong> weight<br />

change that occurs as a specimen is heated. The measurement is normally carried out in air<br />

or in an inert atmosphere, such as Helium or Arg<strong>on</strong>, and <strong>the</strong> weight is recorded as a<br />

functi<strong>on</strong> <strong>of</strong> temperature. Sometimes, <strong>the</strong> measurement is performed in a lean oxygen<br />

atmosphere ( I to 5 % O; in N2 or He) to slow down oxidati<strong>on</strong>. TGA is used to detemiine<br />

polymer degradati<strong>on</strong> temperatures, residual solvent levels, absorbed moisture c<strong>on</strong>tent, and<br />

<strong>the</strong> amount <strong>of</strong> inorganic (n<strong>on</strong>-combustible) filler in polymer or composite material. lt can<br />

also assist in de-formulati<strong>on</strong> <strong>of</strong> complex polymer products.<br />

Thermal studies were performed <strong>on</strong> Perkin Elmer Pyris Diam<strong>on</strong>d 6<br />

Thcrmogravimctiic Analyzer in nitrogen atmosphere in <strong>the</strong> temperature range <strong>of</strong> 40-600 °C<br />

and heating rate <strong>of</strong> l0 °C per minute. Powdered samples <strong>of</strong> about 3 mg were sealed in<br />

standard platinum pans. The instrument was calibrated using indium and tin as standards.<br />

Sample residual weight (TG curves) and its derivative (DTG curves) versus temperature<br />

were automatically generated by Pyris s<strong>of</strong>tware.<br />

2.7.4 Scanning electr<strong>on</strong> microscopy<br />

To detenninc <strong>the</strong> surface topography and morphology <strong>of</strong> samples SEM images were<br />

recorded using <strong>the</strong> LEICA 420 I scanning electr<strong>on</strong> microscope in collaborati<strong>on</strong> with Dr. C.<br />

P. Sebastian at Institute for Inorganic and Analytical Chemistry, Munster, Germany. SEM<br />

allows for studies <strong>of</strong> surface features at low nanometer scale. The <str<strong>on</strong>g>study</str<strong>on</strong>g> was performed <strong>on</strong><br />

<strong>the</strong> syn<strong>the</strong>sized polyaniline (ES and EB) and <strong>on</strong> poly(0-toluidine) (TS and TB). A sample<br />

for investigati<strong>on</strong> was placed <strong>on</strong> a c<strong>on</strong>ducting polymer foil <strong>on</strong> an aluminum holder. The high<br />

magnificati<strong>on</strong> <strong>of</strong> <strong>the</strong> microscope allowed visualizing details <strong>of</strong> <strong>the</strong> crystal shape and taking<br />

photographs.<br />

40


Chapter__2 _ Experimental<br />

References<br />

[1] S.P. Armes, J.F. Miller, Optimum reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for <strong>the</strong> polymerizati<strong>on</strong> <strong>of</strong><br />

aniline in aqueous soluti<strong>on</strong> by amm<strong>on</strong>ium persulphate, Synth. Met. 22 (1988) 385­<br />

393.<br />

[2] J. Stejskal, R.G. Gilbert, Polyaniline. Preparati<strong>on</strong> <strong>of</strong> a c<strong>on</strong>ducting polymer, Pure Appl.<br />

Chem. 74 (2002) 857-867.<br />

[3] W. Luzny, M. 8niechowski_, J. Laska, Structural properties <strong>of</strong> emeraldinc base and <strong>the</strong><br />

role <strong>of</strong> water c<strong>on</strong>tents: X-ray diffracti<strong>on</strong> and computer modeling <str<strong>on</strong>g>study</str<strong>on</strong>g>, Synth. Met.<br />

126 (2002) 27-35.<br />

[4] Y. Chen, E.T. Kang, K.G. Neoh, P. Wang, K.L. Tan, Surface modificati<strong>on</strong> <strong>of</strong><br />

polyaniline film by grafting <strong>of</strong> poly(ethy1ene glycol) for reducti<strong>on</strong> in protein<br />

adsorpti<strong>on</strong> and platelet adhesi<strong>on</strong>, Synth. Met. 110 (2000) 47-55.<br />

[5] Y. Wei, W.W. Focke, G.E. Wnek, Syn<strong>the</strong>sis and clectrochemistry <strong>of</strong> alkyl ring­<br />

substituted polyanilines, J. Phys. Chem. 93 (1989) 495-499.<br />

[6] L. Betaneor, F.L-. -Gallego, A. Hidalgo, N.A. -Morales, G.D.O.C. Mateo, R.F. ­<br />

Lafuente, J.M. Guisan, Different mechanisms <strong>of</strong> protein immobilizati<strong>on</strong> <strong>on</strong><br />

glutaraldehyde activated supports: effect <strong>of</strong> support activati<strong>on</strong> and immobilizati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s, Enzyme Microb. Teehnol. 39 (2006) 877-882.<br />

[7] B. Olss<strong>on</strong>, L. Orgen, Optimizati<strong>on</strong> <strong>of</strong> peroxidase immobilizati<strong>on</strong> and design <strong>of</strong><br />

packed-bed enzyme reactors for flow injecti<strong>on</strong> analysis, Anal. Chim. Acta 145 (1983)<br />

87-99.<br />

[8] .l. Tiller, P. Berlin, D. Klemm, A novel effieient enzyme-immobilizati<strong>on</strong> reacti<strong>on</strong> <strong>on</strong><br />

NH; polymers by means <strong>of</strong> L-ascorbic acid, Biotechnol. Appl. Biochem. 30 (I999)<br />

155-162.<br />

[9] K.F. Fernandes, C.S. Lima, H. Pinho, C.H. Collins, Immobilizati<strong>on</strong> <strong>of</strong> horseradish<br />

peroxidase <strong>on</strong>to polyaniline polymers, Process Biochem. 38 (2003) 1379-1384.<br />

[10] J.M. Andrade, R.C.D. Peres, E.G. Oestreicher, O.A.C. Antunes, C. Dariva,<br />

Immobilizati<strong>on</strong> <strong>of</strong> D-hydantoinase in polyaniline, J. Mol. Catal. B: Enzymatic 55<br />

(2008) l 85-188.<br />

41


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> n__4__<br />

O.H. Lowry, NJ. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with <strong>the</strong><br />

F olin phenol reagent, J. Biol. Chem. 193 (1951) 265-275.<br />

[ ] F.D. Snell, C.T. Snell, Colorimetric Methods <strong>of</strong> Analysis, vol. IVAAA, Van Nostrand<br />

Reinhold Co., New York, 1971.<br />

[ ] P. Bernfeld, Amylase 0: and ,6’, Methods in Enzymology, Vol. l, Academic press,<br />

New York, 1955, pp.l49-l50.<br />

42


CHAPTER 3<br />

SYNTHESIS AND PHYSICO-CHEMICAL<br />

CHARACTERIZATION OF POLYMERS<br />

3.1 INTRODUCTION ................................................................................................... ..44<br />

3.2 SYNTHESIS OF POLYMERS .............................................................................. ..44<br />

3.2 F T-IR SPECTROSCOPY ....................................................................................... ..44<br />

3.2.! SPECTRA OF POLYANILINE (PAN!) ...................................................................... ..44<br />

3.2.2 SPECTRA OF POLY(O—TOL-UIDINE) (POT) .............................................................. ..49<br />

3.3 SURFACE AREA ANALYSIS ............................................................................... ..54<br />

3.4 THERMOGRAVIMETRIC ANALYSIS .............................................................. ..55<br />

3.4.1 THERMOGRAM OF OL-AMYLASF, ............................................................................ ..55<br />

3.4.2 THERMOGRAM OF POLYANILINE .......................................................................... ..56<br />

3.4.3 THERMOGRAM OF POLY(O-TOLUIDINE) ................................................................ ..60<br />

3.5 SCANNING ELECTRON MICROSCOPY (SEM) ............................................. ..63<br />

3.6 CONCLUSION ........................................................................................................ ..64<br />

REFERENCES .............................................................................................................. ..65


AWStudy <strong>on</strong> <strong>the</strong>lnimobilizati<strong>on</strong> Jot; <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

3.1 Introducti<strong>on</strong><br />

A comprehensive literature survey reveals an enormous number <strong>of</strong> publicati<strong>on</strong>s and<br />

a variety <strong>of</strong> different physico-chemical characterizati<strong>on</strong> techniques ranging from<br />

spectroscopic to surface techniques were used to characterize <strong>the</strong> enzymes, substrates and<br />

<strong>the</strong> immobilizati<strong>on</strong> process. Of course, <strong>the</strong> chosen technique str<strong>on</strong>gly depends <strong>on</strong> <strong>the</strong><br />

particular problem to be solved. Within <strong>the</strong> scope <strong>of</strong> this c<strong>on</strong>tributi<strong>on</strong>, focus has been given<br />

to FT-IR, surface area analysis, <strong>the</strong>rmogravimetric analysis (TGA) and scanning electr<strong>on</strong><br />

microscopy (SEM). These techniques help to understand <strong>the</strong> systems explained in this<br />

<strong>the</strong>sis.<br />

3.2 Syn<strong>the</strong>sis <strong>of</strong> Polymers<br />

PAN] was syn<strong>the</strong>sized by polymerizati<strong>on</strong> <strong>of</strong> aniline in presence <strong>of</strong> amm<strong>on</strong>ium<br />

peroxydisulfate and HCL The emeraldine hydrochloride salts (ES) obtained was green in<br />

color with more than 80 % yield. On treatment with NaOH it c<strong>on</strong>verted to blue emeraldine<br />

base (EB). Similarly poIy(o-toluidine) hydrochlorides (TS) powders were obtained in good<br />

yield and its blue base (TB) form was obtained <strong>on</strong> treatment with NaOH. The activati<strong>on</strong><br />

with glutaraldehydc provides ESI, EB l, TSl and TBl and with ascorbic acid provides ES2,<br />

EB2, TS2 and TB2.<br />

3.2 FT-IR Spectroscopy<br />

3.2.1 Spectra <strong>of</strong> polyaniline (PAN!)<br />

The aniline polymers have <strong>the</strong> general formula [(-B-NH-B“NH')y(B_N:Q:N-)]-y]x_<br />

in which B and Q denote <strong>the</strong> phenyl rings in <strong>the</strong> benzoid and quinoid form, respectively.<br />

Thus <strong>the</strong> intrinsic oxidati<strong>on</strong> state <strong>of</strong> <strong>the</strong> polymers can range from that <strong>of</strong> fully oxidized<br />

pemigraniline (y = 0) through that <strong>of</strong> 75 % intrinsically oxidized nigraniline (y = 0.25), 50<br />

% intrinsically oxidized emeraldine (y = 0.5) to fully reduced leucoemeraldine(y = l) [1, 2}.<br />

lR spectroscopy is <strong>on</strong>e <strong>of</strong> <strong>the</strong> useful methods for determining functi<strong>on</strong>al groups present in a<br />

compound, and for polyaniline, it is most useful for obtaining qualitative informati<strong>on</strong><br />

44


Chapter 3 Syn<strong>the</strong>sis and Physieo-;Chemiea1 Characterizati<strong>on</strong> <strong>of</strong>gifolymers<br />

regarding <strong>the</strong> average oxidati<strong>on</strong> state. IR spectroscopy can distinguish between benzoid<br />

rings and quinoid rings in <strong>the</strong> 1300 to 1600 cm" regi<strong>on</strong> <strong>of</strong> <strong>the</strong> spectrum; this regi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

spectrum is most useful for distinguishing between oxidati<strong>on</strong> states in <strong>the</strong> undoped<br />

polymer, as <strong>the</strong> quinoid stretches disappear up<strong>on</strong> doping [3]. Hence <strong>the</strong> spectrum gives a<br />

clear structural indicati<strong>on</strong> <strong>of</strong> <strong>the</strong> polymer chain. It was suggested by Genies and Laprowaski<br />

[4], and Harada at al. [5] that <strong>the</strong> relative c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> various N-moities: NH, N+H;,<br />

N=, +NH=_, C—N+— in polyaniline depends <strong>on</strong> <strong>the</strong> nature and percentage <strong>of</strong> doping.<br />

The FT-IR spectrum <strong>of</strong> PANI samples [figs. 3.2.1 & 3.2.2] plotted with <strong>the</strong><br />

percentage <strong>of</strong> transmittance as a functi<strong>on</strong> <strong>of</strong> wave number (cm"). The spectra <strong>of</strong> PAN]<br />

samples show similar characteristics with literature reports [3, 6-10]. The main absorpti<strong>on</strong><br />

peaks present in <strong>the</strong> spectra <strong>of</strong> samples are almost at <strong>the</strong> same positi<strong>on</strong>s, but <strong>the</strong>ir relative<br />

intensities are changed.<br />

F ig. 3.2.] shows <strong>the</strong> IR spectra recorded for emeraldine salt samples ES, BS1, ES2,<br />

ES1-Enzyme (enzyme attached ES1) and ES2-Enzyme (enzyme attached ES2). Various IR<br />

bands and <strong>the</strong>ir assignments are given in <strong>the</strong> {able 3.1.<br />

The N-H stretching regi<strong>on</strong> in PANI is located in 3500-3100 cm”. The absorbance <strong>of</strong><br />

PANI in this regi<strong>on</strong> is ra<strong>the</strong>r weak. The broad band centered at 3440 cm” is <strong>the</strong> result <strong>of</strong><br />

stretching vibrati<strong>on</strong> <strong>of</strong> free N-H group. The small band at 3224 em” corresp<strong>on</strong>ds to <strong>the</strong><br />

vibrati<strong>on</strong> <strong>of</strong> hydrogen b<strong>on</strong>ded N-H group [3].<br />

The C-H stretching regi<strong>on</strong> is 3100-2800 cm'l, <strong>the</strong> absorpti<strong>on</strong> in this regi<strong>on</strong> is very<br />

weak, and showed by ES, ES1 and ES2 at 2979 cm'].<br />

The 1600-1450 cm" is <strong>the</strong> aromatic ring breathing, <strong>the</strong> main peaks in this regi<strong>on</strong> are<br />

at 1570 cm'l and at 1480 cm'1 due to <strong>the</strong> stretching deformati<strong>on</strong> <strong>of</strong> C=C in quinoid (Q) ring<br />

and benzoid (B) ring respectively [6]. The analysis <strong>of</strong> infra-red spectra shows that quinoid<br />

to benzoid (intensity) ratio was varied for all <strong>the</strong> samples, showing indicati<strong>on</strong> <strong>of</strong> some<br />

structural modificati<strong>on</strong> by <strong>the</strong> activati<strong>on</strong> and immobilizati<strong>on</strong> procedure.<br />

45


Am&dy <strong>on</strong> <strong>the</strong> lmrnjolefilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong>j<strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> _<br />

w\&E§2\-Bilge<br />

/ii/\/W 0<br />

»~Ws§;5r1wJ A 5<br />

V M \,Aff,=1/AA/ W U/ /WW<br />

I ES1 ii/\/\/\\<br />

\»~F>~/W\U1'\/ W .<br />

agoo ' ms ' 2s'o0 ' 2o'00 Y 1s'0o ' 1o'oo ' 5050 \<br />

W avenum ber (cm'1)<br />

JFig. 3.2. I F T-IR Specrra <strong>of</strong> emeraldine salts.<br />

The C-N stretching regi<strong>on</strong> for aromatic amines is in <strong>the</strong> range <strong>of</strong> 1400-1240 cm'].<br />

The spectrum <strong>of</strong> PAN! gives three peaks in this regi<strong>on</strong> around I380 cnfl, 1296 cm" and at<br />

46


ghipter 3 Syn<strong>the</strong>sis and l§hlsgi_c_t);-_(Zhemieag1_(3Eharacterizatgi<strong>on</strong> <strong>of</strong> Polymers<br />

1240 cm“ [6]. The weak peak at 1380 cm” can be attributed to <strong>the</strong> C-N stretching vibrati<strong>on</strong><br />

in <strong>the</strong> quinoid imine units in QB[fan§Q. A str<strong>on</strong>g peak at 1296 em" is because <strong>of</strong> <strong>the</strong> C-N<br />

stretching vibrati<strong>on</strong> in <strong>the</strong> altemative unit <strong>of</strong> QBCBQ, QBB or BBQ. The weak peak at 1240<br />

cm'1 can be ascribed to <strong>the</strong> C-N stretching in <strong>the</strong> B-B-B triad sequence.<br />

Table 3. I Assignment qf<strong>the</strong> main peaks in {he F T-[R spectra Qfemeraldine salts.<br />

Peak assignment (cm") ES ESI ES2 ES1- E52i<br />

Enzyme Enzyme<br />

Stretching <strong>of</strong> N=Q=N 1568 1587 1580 1571 1590<br />

. 1395<br />

Stretching <strong>of</strong> N-B-N 1487<br />

C-N stretching in Quinoid imine unit<br />

(Q=N-B1)<br />

1492<br />

1378<br />

1484<br />

1374<br />

1489<br />

I378<br />

1490<br />

1380<br />

Stretching <strong>of</strong> C-N in QBQ, QBB, BBQ 1299 1296 1293 1296 1289<br />

Stretching <strong>of</strong> C-N in BBB 1241 1239 1239 1238 1228<br />

Bending 0fC-H (in plane), vibrati<strong>on</strong>al<br />

; mode <strong>of</strong> Q=N*H-B or B-N+H-B<br />

Out <strong>of</strong> plane deformati<strong>on</strong> <strong>of</strong> C-H in 1,4 813<br />

disubstituted benzene ring<br />

1140 1131 1125 1125 1135<br />

816 816 807 816<br />

Aromatic C-H bending occurs in <strong>the</strong> regi<strong>on</strong> <strong>of</strong> 1220-500 em'l. Intrinsic PAN] gives<br />

two main peaks in this regi<strong>on</strong> at 1 145 and 830 cm", corresp<strong>on</strong>ds to C-H in plane bending<br />

and C-H out <strong>of</strong> plane bending vibrati<strong>on</strong> <strong>of</strong> <strong>the</strong> 1,4-disubstitucd benzene ring [7-9]. The<br />

band at 1145 cm'1 is weak, merged in to <strong>on</strong>e band at I140 cm‘] and grows as <strong>the</strong> main<br />

absorpti<strong>on</strong> band <strong>of</strong> doped PAN1. This band is a vibrati<strong>on</strong>al mode <strong>of</strong> B-N*H=Q or B-N"H-B<br />

which is formed in doping reacti<strong>on</strong>s [6]. This band is very intense and broad, may be<br />

47


8: _: 2 _:é§,L"9Y89"§'1s I19'211*§!i;a¥i9!L9£P52%>;"12S_


ghapter 3 Syn<strong>the</strong>gis and Pihysic0¢?ChemicalCharaeterizatt<strong>on</strong> <strong>of</strong> Polymers<br />

;wW\fl'§3Z;E_"jL‘"ff____/t<br />

aura.‘<br />

-- / \ E B 2 ,.//T /\<br />

J “’”0”/M/0 "V1 L,/"\/W<br />

l / \ J<br />

I /_/N/’ ‘mi/-»\JJ'.<br />

f//<br />

EB ' /\"~\<br />

/fif/\\/q


_ A Study<strong>on</strong> <strong>the</strong> lmrriobilizatiogn <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> ye<br />

relative intensity <strong>of</strong> band at 1493 cm'] to band at 1587 cm" in <strong>the</strong> spectrum <strong>of</strong> EB is almost<br />

equal showing <strong>the</strong> presence <strong>of</strong> almost equal number <strong>of</strong> benzoid and quinoid ring in <strong>the</strong><br />

polymer chain. But in o<strong>the</strong>r three samples EB1, EB2, and in EB2-Enzyme <strong>the</strong> intensity <strong>of</strong><br />

quinoid band reduces and benzoid band increases, which shows presence <strong>of</strong> more reduced<br />

units in <strong>the</strong> polymer chain.<br />

3.2.2 Spectra <strong>of</strong> poly(0-toluidine) (POT)<br />

Fig. 3.2.3 and fig. 3.2.4 show FT-1R spectra <strong>of</strong> po1y(o-toluidine) as syn<strong>the</strong>sized in<br />

<strong>the</strong> prot<strong>on</strong>ated salts and base forms, with <strong>the</strong>ir modified form prepared for immobilizati<strong>on</strong>.<br />

The spectra showed good agreement with reported works [13-17]. In <strong>the</strong> regi<strong>on</strong> <strong>of</strong> 3500­<br />

2000 cm_1 <strong>on</strong>ly weak bands are observed due to <strong>the</strong> high background absorpti<strong>on</strong> hiding<br />

partially or totally <strong>the</strong> polymer vibrati<strong>on</strong>al bands. The band at around 3220 cm_'<br />

corresp<strong>on</strong>ds to N—H stretching mode <strong>of</strong> sec<strong>on</strong>dary amine. The weak characteristic bands at<br />

about 2918 cm” can be assigned to <strong>the</strong> stretching vibrati<strong>on</strong> <strong>of</strong> <strong>the</strong> methyl (—Cl-I3) group.<br />

The aromatic C-H stretching is present, at 3030-3050 cm'], whereas <strong>the</strong> methyl group<br />

shows, in <strong>the</strong> base forms, three bands at 2865, 2920 and 2962 cm". ln general it presents<br />

<strong>on</strong>ly two bands, but in this case <strong>the</strong> asymmetric stretching shows split into two bands due to<br />

sterie hindrance and show a total <strong>of</strong> 3 bands. In <strong>the</strong> wavcnumber regi<strong>on</strong> <strong>of</strong> 1610-1480 cm",<br />

two bands <strong>of</strong> varying intensity are observed. Colombcm er al. [13] have assigned <strong>the</strong>se two<br />

sharp bands at 1585 and 1490 cm“ to stretching <strong>of</strong> <strong>the</strong> C=C b<strong>on</strong>ds <strong>of</strong> <strong>the</strong> quinoid and<br />

benzoid ring. The 1490 cm" band undergoes an important intensity decrease as <strong>the</strong> polymer<br />

is oxidized. This is c<strong>on</strong>sistent with <strong>the</strong> fact that quin<strong>on</strong>es show no absorpti<strong>on</strong> at <strong>the</strong>se<br />

wavenumbers. So <strong>the</strong> intensity diminishes with <strong>the</strong> number <strong>of</strong> benzoid units. Taking <strong>the</strong><br />

base and salt forms, it is seen that both <strong>of</strong> <strong>the</strong>m show an intensity decrease up<strong>on</strong> activati<strong>on</strong>,<br />

c<strong>on</strong>firmed <strong>the</strong> reducti<strong>on</strong> in <strong>the</strong> polymer chain. The behavior is similar as observed in PANI.<br />

The bands at 1375 cm“ are due to <strong>the</strong> symmetric deformati<strong>on</strong> <strong>of</strong> methyl group [14].<br />

A number <strong>of</strong> bands appear in <strong>the</strong> range 1350 to 1200 cm", which are assigned to <strong>the</strong><br />

splitting <strong>of</strong> C-N stretching modes [13]. The bands at 1316 and 1210 cm 1 can be assigned<br />

to <strong>the</strong> C—N vibrati<strong>on</strong>. The three bands appearing at 1 155, 1002, 960 are assigned to C-H in<br />

50


Chapter 3 _ g Syn<strong>the</strong>srisand Physico-gglemical Characterizati<strong>on</strong> <strong>of</strong> Polymers<br />

plane bending vibrati<strong>on</strong> [15, 16] and at 875, 810 are assigned to C-H out <strong>of</strong> plane bending<br />

vibrati<strong>on</strong> [17] in 1,2,4-trisubstitucd benzene ring.<br />

Table 3.3 Assignment Qfmain peaks in <strong>the</strong> IR spectra <strong>of</strong> po/y(0-Iolzzidine) salts.<br />

Peak assignment (¢m“) yrs TS] "rs2 TS]­<br />

Enzyme<br />

|1 , 2937<br />

Stretching <strong>of</strong> N=Q=N ring<br />

Stretching <strong>of</strong> CH3 2934 2924 2917<br />

1 1 1<br />

TS2­<br />

Enzyme<br />

2917<br />

1592 91604 1588<br />

‘1<br />

____1 ..<br />

1588 1592<br />

Stretching <strong>of</strong>N-B-N ring 1492 1498 1495 1495 1491<br />

T<br />

Bending <strong>of</strong> CH; 1381 1381 1371 1378 1370<br />

Stretching <strong>of</strong> C-N<br />

1305- 1305, 1302, 1311<br />

1216 1228 1217 I217<br />

I155. 11160, 1160, 1152<br />

Bending <strong>of</strong> C-H (in plane) A I108, ll 14, 1107, 1107<br />

il0l0 1007 I008 1007<br />

881, 852, 880, 875,<br />

Out <strong>of</strong> plane deformati<strong>on</strong> <strong>of</strong> 0<br />

C-H in 1,4-disubstinitcd 1 808 802 808 g 802<br />

1 benzene ring k<br />

I 1318,<br />

1208<br />

1157,<br />

1107,<br />

1 1004<br />

‘ 880,<br />

In PAN] <strong>the</strong> peak at 832 cm'] is assigned to an out-<strong>of</strong>-plane C-H vibrati<strong>on</strong>. ln<br />

poly(0-toluidine), this band is observed at 810 cm‘l. Besides, as <strong>the</strong> polymer has a 1, 2, 4­<br />

trisubstituti<strong>on</strong> in <strong>the</strong> bcnzoid rings, it shows a C-H vibrati<strong>on</strong> at approximately 860 to 880<br />

cm‘, which is not present in PAN]. It corresp<strong>on</strong>ds to <strong>on</strong>e isolated ring hydrogen atom<br />

51<br />

802


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> 0fH<strong>Enzymes</strong> <strong>on</strong> Pplymeric <strong>Supports</strong><br />

situated between two substituents. This band shifts from 860 to 880 cm'1 in <strong>the</strong> presence <strong>of</strong><br />

quinoid groups [14]. No str<strong>on</strong>g feature peaks <strong>of</strong> hydroxyl and carb<strong>on</strong>yl groups appear in <strong>the</strong><br />

F T-IR spectrum, showing very low c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> ascorbic acid and glutaraldchyde <strong>on</strong><br />

<strong>the</strong> polymer surface.<br />

F<br />

*~\ TS2-Enzygflf-' AW , ,<br />

\/M \/W'“"“"’ W<br />

Y t T S<br />

.2 \/ 1 -E<br />

I<br />

L'_"}r///\/\/\~W;|L,~.U/“M/\\”“fl<br />

M/"t / '\ | \<br />

O<br />

Q :- _ 2 |‘L/‘|\|L|/y\L-’\Wr\[V \ W (\‘<br />

b:// ff<br />

/ tw/U<br />

TS 1 f/”\f‘W<br />

.1 _ I _ _<br />

t_<br />

W avenum<br />

_t<br />

ber (cm<br />

g_<br />

'1)<br />

_ J<br />

3500 3000 2500 2000 ‘I500 1000 500<br />

Fig. 3.2.3 F T-TR specrra Q/'p0l_1=(0-10/u{dine} so/rs.<br />

52


Chapter 3 Syn<strong>the</strong>sis and Physico-Chemical Characterizati<strong>on</strong> oi Polvmers<br />

TB2-Enzyme r<br />

01 “J IR W M<br />

T 3;;§:1:2_{{"° Wyifl’<br />

i iH%__/\ F<br />

W0”<br />

0/ *5;/»~/"i"”wW““<br />

W Ar“ \/W/v\’\/H\\—w<br />

T B /\\/A\f\y<br />

fi ~ r’ - 1 -* r— - *1 5- 1-" v<br />

3500 3000 2500 2000 1500 1000<br />

-1<br />

Wavenumber (cm )<br />

F ig. 3.2.4 F T-IR Spectra Qfpo/y(0-toluidine) baxe.<br />

53<br />

A


M A Study otLt_he Immobilizati<strong>on</strong> <strong>Enzymes</strong> <strong>on</strong> P01ymeric <strong>Supports</strong><br />

Table 3.4 Assignment <strong>of</strong> main peaks in <strong>the</strong> IR spectra <strong>of</strong> p01y(0-to/uz'dine)base.<br />

}Peak assignment (cm'i) TB TB] MTB2 0“ TB1- fraz­<br />

Enzyme nzyme<br />

Stretching 0fCH3 2912 I1 2915 f2919 _ 2917 __ 2910<br />

Stretching <strong>of</strong> N=Q=N ring ‘ 1592 1593 11594 1607 1609<br />

Stretching <strong>of</strong> N-B-N ring 1490 1490 1496 1498 1495<br />

I<br />

Bending <strong>of</strong> CH3 1376 1370 1379 11378 1387<br />

1305 1306,<br />

1305,<br />

.<br />

1311,<br />

.<br />

1305,<br />

|<br />

Stretching <strong>of</strong> C-N<br />

1216 1224 1232 1228 1208<br />

1155 1157 1160, 1152, 1154,<br />

Bending <strong>of</strong> C-H (in-pl.) 1106 1114,<br />

1112, 1099, 1106, E<br />

1005 1008 1004 1007<br />

Q 1002<br />

Out <strong>of</strong> plane deformati<strong>on</strong> <strong>of</strong> 7<br />

C-H in 1,4-disubstitutcd<br />

benzene ring A<br />

,885, 1 888,<br />

I 808<br />

3.3 Surface Area Analysis<br />

821<br />

1860,<br />

11815 ‘ 805 808<br />

885, 1 894,<br />

w' 1.<br />

BET surface area <strong>of</strong> <strong>the</strong> polymers are given in table 3. 5.The highest surface area is<br />

shown by po1y(0-toluidine) base, in its ascorbic acid activated form. In comparis<strong>on</strong>, am<strong>on</strong>g<br />

<strong>the</strong> n<strong>on</strong> activated forms also, po1y(o-toluidine) gives highest surface area. 1t is evident that<br />

glutaraldehyde activati<strong>on</strong> reduces <strong>the</strong> surface area, whereas ascorbic acid activati<strong>on</strong><br />

increases <strong>the</strong> surface area <strong>of</strong> <strong>the</strong> polymers. However, <strong>the</strong> surface area did not play an<br />

54


§hapter Syn<strong>the</strong>sis and Physieo-Chemical Charactergizati<strong>on</strong> <strong>of</strong> Polymers<br />

important role <strong>on</strong> <strong>the</strong> activity yields <strong>of</strong> covalently bound enzymes, hence <strong>on</strong> <strong>the</strong><br />

immobilizati<strong>on</strong> efficiency. In most cases enzymes immobilized via glutaraldehyde linkage<br />

showed maximum activity yield. Even though protein loading is increased with surface<br />

area, most <strong>of</strong> <strong>the</strong><br />

j__<br />

immobilized proteins were unable to retain <strong>the</strong>ir original<br />

.<br />

activity.<br />

Table 3.5 BET sm_'fac‘e area Qfrhe polymers.<br />

Polymer Surface area (mz g“)<br />

;ES 5 36.55 5 ‘l<br />

ESI 32.25<br />

ES2<br />

37.14<br />

M41<br />

1 EB3 52.60<br />

1<br />

BB1 42.31<br />

EB2 53.88<br />

‘rs 9.96<br />

1Ts1 9.42<br />

TS2<br />

1<br />

TB55 56.87<br />

1<br />

I<br />

11.45<br />

1 TB] 45.58<br />

* TB52 58.07<br />

3.4 Thermogravimetric Analysis<br />

3.4.1 Thermogram <strong>of</strong> 0:-amylase<br />

F ig. 3.4.1 shows <strong>the</strong> TG (Thermogravimetric) and DTG (Differential<br />

<strong>the</strong>miogravimetric) curves for free amylase which was characterized by several weight loss<br />

peaks. The first weight loss in TG was at temperature range from 90 to 150 °C',<br />

characterized by a low weight loss (4.3 %) due to <strong>the</strong> dehydrati<strong>on</strong> <strong>of</strong> <strong>the</strong> interstitial water<br />

c<strong>on</strong>taining in <strong>the</strong> free a-amylase sample. From 200 to 350 "C, c<strong>on</strong>tinuous weight loss was<br />

55


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

observed indicating a complete decompositi<strong>on</strong> <strong>of</strong> <strong>the</strong> organic structure <strong>of</strong> <strong>the</strong> enzyme. The<br />

DTG curve shows <strong>the</strong> corresp<strong>on</strong>ding two major peaks at 144 °C, and at 304 °C and two<br />

minor peaks at 200 °C and at 225 °C. The peak at 144 °C may be corresp<strong>on</strong>ding to <strong>the</strong> water<br />

loss and latter peaks may be due to <strong>the</strong> decompositi<strong>on</strong> <strong>of</strong> enzyme.<br />

eo­4o-<br />

100 - -------------------- _­<br />

V<br />

20- I I I I __ I<br />

n-0<br />

I-F<br />

ao - _ -iI-F<br />

n—­<br />

0 100 200 300 400<br />

3.4.2 Thermogram <strong>of</strong> polyaniline<br />

Temperature (°C)<br />

Fig. 3.4.] T G (----) and DT G (—-) curves <strong>of</strong> a-amylase.<br />

The TG and DTG curves <strong>of</strong> ES under nitrogen atmosphere are shown in <strong>the</strong> fig.<br />

3.4.2. The <strong>the</strong>rmogram shows a typical three step weight loss behavior. The first weight<br />

loss <strong>of</strong> 23 % starts from room temperature to 180 °C. The sec<strong>on</strong>d weight loss occurs<br />

between 200 and 320 °C and is followed by a final step starting at 420 °C. The first weight<br />

loss corresp<strong>on</strong>ds mainly to water and a small proporti<strong>on</strong> <strong>of</strong> gaseous l-[Cl originating from a<br />

slight deprot<strong>on</strong>ati<strong>on</strong> process [18]. The most <strong>of</strong> <strong>the</strong> HCI loss <strong>the</strong>n occurred during <strong>the</strong> sec<strong>on</strong>d<br />

weight loss toge<strong>the</strong>r with water molecules which are more str<strong>on</strong>gly b<strong>on</strong>ded to <strong>the</strong> polymer<br />

in ES [19]. The <strong>the</strong>rmal decompositi<strong>on</strong> <strong>of</strong> polyaniline backb<strong>on</strong>e gives <strong>the</strong> third weigh loss<br />

56


i0<br />

Chapter 3 Syn<strong>the</strong>sis and Physico-Chemical Characterizati<strong>on</strong> <strong>of</strong> Polymers<br />

starting at 420 °C. The DTG curves show corresp<strong>on</strong>ding peaks at 183, 219, and 555 C<br />

100<br />

,-_ §__ ‘.'/-K ~ __<br />

\<br />

1<br />

J . ,-\ w /'/-‘­ \ 090 d 0 00<br />

a _<br />

100 " "v\\<br />

' .X<br />

1.<br />

-0.05<br />


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

The <strong>the</strong>rmogram <strong>of</strong> activated EB also shows typical two step weight loss behavior<br />

as can be deduced from <strong>the</strong> maxima <strong>of</strong> <strong>the</strong> DTG curve. The first <strong>on</strong>e extends from room<br />

temperature to 250 °C. It can be attributed to <strong>the</strong> desorpti<strong>on</strong> <strong>of</strong> water molecules physically<br />

adsorbed in <strong>the</strong> polymer matrix and also desorpti<strong>on</strong> <strong>of</strong> solvent molecules. The sec<strong>on</strong>d<br />

weight loss starts typically around 425 °C. This has been attributed to <strong>the</strong>rmal<br />

decompositi<strong>on</strong> <strong>of</strong> <strong>the</strong> polyaniline backb<strong>on</strong>e structure. Attachment <strong>of</strong> enzyme <strong>on</strong> EB, EBI<br />

and EB2 display some small additi<strong>on</strong>al peaks in <strong>the</strong> DTG curves arising mainly from <strong>the</strong><br />

degradati<strong>on</strong> <strong>of</strong> enzyme molecules.<br />

3.4.3 Thermogram <strong>of</strong> poly(o-toluidine)<br />

For doped poly(o-toluidine), <strong>the</strong>nnal degradati<strong>on</strong> occurs in three major steps similar<br />

to that <strong>of</strong> ES. The first 13 % weight loss step, occurring between 110 and 270 °C, is<br />

assigned to <strong>the</strong> loss <strong>of</strong> moisture and residual HCI, whereas <strong>the</strong> next weight-loss step,<br />

between 280 and 390 °C, is due to <strong>the</strong> loss <strong>of</strong> dopants and side groups [23]. The degradati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> polymers occurs above 430 °C. The DTG curves <strong>of</strong> <strong>the</strong> polymers also show three­<br />

step degradati<strong>on</strong> c<strong>on</strong>sistent with <strong>the</strong> TG ctu'ves. The corresp<strong>on</strong>ding peaks in DTG occur at<br />

174, 348 and 575 °C.<br />

For poly(0-toluidne) base, <strong>the</strong> first weight loss is slow, up to 400 °C, <strong>the</strong>n it leads to<br />

<strong>the</strong> <strong>on</strong>e step final weight loss at 450-600 °C. This can be explained to similar to emeraldine<br />

base as given above in <strong>the</strong> secti<strong>on</strong> 3.4.2.<br />

60


, i . ‘ A 1:: d<br />

1 Ofl i a -000<br />

-000<br />

r /._<br />

.> r \K’ \‘ '“ -0.05<br />

[ ‘. - __ I.-V _<br />

V “ " \ I’ _.I~‘_ K. 1 fit -"_ J; \ __r"— ._‘\\\-,\.‘ I _ ‘Qr-//I ‘ i » ~ ,»"\. “ v \ /’ \ \ ­ ./~-a­<br />

I I " I-~-('10 ‘ I U - l /I ‘=1 . ‘A 1’ Ix R / ‘<br />

_ \ . /<br />

Q<br />

, ' i _ J r<br />

.<br />

v-w<br />

I'D<br />

Q<br />

-<br />

;. -020<br />

WW O XII<br />

/\\<br />

410 " 600 "<br />

b<br />

r 810 !<br />

1<br />

,u.oo<br />

I ~..\1 \Ii‘ ‘ \ 1i<br />

_<br />

PEI; 5.7‘ 6).‘ 63}<br />

93 : . \ R, " /<br />

100-1 i I _ ‘ e 41<br />

_\<br />

\<br />

1 i if \‘ I K , /"I , _ '__/ I/l 1<br />

L _‘ r f.<br />

»\<br />

_a /I<br />

3_<br />

-_­<br />

.­<br />

,1<br />

Z K] . ‘I 4 '< ‘. so<br />

\‘ Kl ‘ ‘ /,~~" ' _”\ f/1<br />

1<br />

4»<br />

u<br />

m.­<br />

'_<br />

14<br />

2’<br />

i<br />

\<br />

cu<br />

3<br />

.‘ _ f<br />

\ F<br />

j ..\ .'<br />

'<br />

I C 1 | Jr, ,<br />

T . . .<br />

­<br />

or<br />

vi =<br />

I<br />

0.0 f QQ<br />

i<br />

><br />

- . ,1‘ \ If E01 ‘ ,- , ._. ‘ 4_<br />

\. _ -- l.-N .__/\ ., _,<br />

'0 16 iI<br />

"f.<br />

7 _ “Y _ , ()1!) '“""_“”"""""“‘ “ - ”""""““"""“""“*—“_““‘”“”"" " ' """"'“"""""“'1<br />

M, ‘JJ ax‘ n "J~.~<br />

i<br />

4&1?<br />

%<br />

C-LQ 3-]<br />

, ~_ _. _ i_.-<br />

~ _, , /— . '<br />

4 ‘<br />

Fm |<br />

,\<br />


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

. a \ W4 \ d<br />

100<br />

804 \<br />

1<br />

1 ‘ ____><br />

_<br />

. u \ 7 OI) / i I ' -- —»._‘%_ - -'”_'_-~_-v‘~‘<br />

‘<br />

v_~_\<br />

, I<br />

____\ /,,- \ -. J~<br />

­ ,-\,, -. ~\._.,.. / \ - “ \ '_<br />

. ,‘ . , y _, 1 I 3 __,_______ ' -. _ ' ' ‘ I ; \ . 4-<br />

" i 1<br />

J<br />

1 iJ<br />

> ‘-___ .<br />

. 3; ’,<br />

""‘~\_ V. __.....* \_ \ /<br />

~00<br />

. _/' /<br />

i [ I I -02 I‘<br />

,~<br />

xi<br />

soy ‘~ Y I’ DJ ; , i y ‘H V I Z 1l<br />

\ ‘I ‘_<br />

:­<br />

' > -O4<br />

.1‘<br />

­<br />

.1".Iv 7 \<br />

--4'1? n<br />

E NJ<br />

- ~* *"1**~1‘ 1 e__ **—~“1 _ _ , ,____ . _<br />

.<br />

\<br />

0<br />

‘I<br />

200 400 600 mo " K“ ‘°* "L-'<br />

, mu \_ vi -< j b »-000 \ I.<br />

1<br />

I400<br />

. , I<br />

_ Q<br />

\ ,_ s00 < ’ \\<br />

_r ! _> _ .<br />

. ~—\_ __ . ~—»-—~' “».<br />

y<br />

\ A,’-._ 'g_ n- "- I\<br />

, , \ (‘(1<br />

[ ‘ '_~__' .1» r,L J<br />

90.1<br />

I \ ,_ \_<br />

‘1 /-"<br />

_,.<br />

I<br />

y, ‘_/' V , .1. 1 — i, ~»<br />

0.00<br />

. ‘.1 in ‘I\<br />

J [ “ ‘O! L‘<br />

I .' J C16 so 1 ,7 ‘<br />

-Q.<br />

I-O<br />

.-.<br />

~ c Elf?<br />

‘A ».»<br />

1: ~<br />

cm<br />

\‘ i \<br />

2%<br />

3<br />

_24 70<br />

­<br />

~/<br />

1<br />

i<br />

I<br />

1\<br />

Q<br />

M ‘O0 flu: Kc (. 903 400 GOD.<br />

“(J20<br />

1 Z Tenpaalue (“(1) T8mD8f3IUfB (QC)<br />

Fig. 3.4.5 TG (---) and DTG (——) curves 0fTB (a) TB1 (b) TB2 (c) TB-Enzyme (d)<br />

TB1-Enzyme (e) T B2-Enzyme (I).<br />

62


Chapter 3 Syn<strong>the</strong>sis and Physico-Chemical Characterizati<strong>on</strong> <strong>of</strong> Polymers<br />

3.5 Scanning Electr<strong>on</strong> Microscopy (SEM)<br />

Typical SEM micrographs <strong>of</strong> PANI and POT are depicted in <strong>the</strong> fig. 3.5.1, which<br />

clearly present different morphologies with respect to <strong>the</strong> size and shape <strong>of</strong> <strong>the</strong> particles <strong>of</strong><br />

<strong>the</strong> prepared samples. The distributi<strong>on</strong> <strong>of</strong> acidic PANI as agglomerates over <strong>the</strong> surface is<br />

represented in <strong>the</strong> top left figure. When PANI is treated with sodium hydroxide, <strong>the</strong><br />

aggregates seem to exhibit a granular morphology (top right) in which grains seem to be<br />

aggregated into a st<strong>on</strong>e like body and distributed n<strong>on</strong>-uniformly.<br />

ES EB<br />

TS TB<br />

Fig 3.5.1 SEM images <strong>of</strong> ES, EB, TS and TB.<br />

63


A Studyg<strong>on</strong> <strong>the</strong>_l_mgm0biIizgati0n <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> _£olymerigcg*Supp0rtsH<br />

Similar kind <strong>of</strong> images are observed for <strong>the</strong> pol)/(0-toluidine) salt and base form.<br />

The treatment <strong>of</strong> PANI and POT with acid appears to lead to a granular morphology but <strong>the</strong><br />

grains are eollectcd into a coral-like body.<br />

3.6 C<strong>on</strong>clusi<strong>on</strong><br />

FT-IR spectra, TG-DTG, surface area and SEM analysis <strong>of</strong> PANI and POT used in<br />

this work revealed features characteristic <strong>of</strong> <strong>the</strong>se polymers.<br />

O<br />

Q<br />

O<br />

Polymers showed differences in <strong>the</strong> F T-IR spectra, more specifically in <strong>the</strong><br />

relative intensities <strong>of</strong> <strong>the</strong> benzoid and quinoid related bands, characterizing<br />

differences in <strong>the</strong> oxidati<strong>on</strong> states. This analysis allowed <strong>the</strong> classificati<strong>on</strong> <strong>of</strong><br />

polymers, from a reduced state (EB and TB) to prot<strong>on</strong>ated state {ES and TS),<br />

passing through intermediary prot<strong>on</strong>ated and deprot<strong>on</strong>ated forms by activati<strong>on</strong><br />

methods.<br />

ES, EB, TS, and TB polymers are <strong>the</strong>rmally-stable polymer with <strong>the</strong>rmal stability<br />

to temperatures in excess <strong>of</strong> 420 °C. The activati<strong>on</strong> with GA and ASA and<br />

immobilizati<strong>on</strong> <strong>of</strong> enzyme did not affect <strong>the</strong> <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong>se polymers.<br />

Surface area analysis showed that treatment with GA reduces <strong>the</strong> surface area <strong>of</strong><br />

<strong>the</strong> polymers where as treatment with ASA increases <strong>the</strong> surface area <strong>of</strong> PANI<br />

and POT.<br />

64


Chapter 3 H: Syn<strong>the</strong>sis andI’hysic0-Chyernical Characterizati<strong>on</strong>f<strong>of</strong>ylfolymers<br />

References<br />

C.-C. Han, R.-C. Jeng, C<strong>on</strong>current reducti<strong>on</strong> and modificati<strong>on</strong> <strong>of</strong> polyanilinc<br />

emeraldine base with pyirolidine and o<strong>the</strong>r nucleophiles, Chem. Commun. (1997)<br />

553-554.<br />

A. Ray, G.E. Asturies, D.L. Kc-rshner, A.F. Ritcher, A.G. MacDiam1id, A.J. Epstein,<br />

Polyanilinez doping, structure and derivatives, Synth. Met. 29 (1989) 141-150.<br />

J. Tang, X. Jing, B. Wang, F. Wang, Infrared spectra <strong>of</strong> soluble polyanilinc, Synth.<br />

Met. 24 (1988) 231-238.<br />

E.M. Genics, M. Laprowaski, Spectroclectrochemical studies <strong>of</strong> redox mechanisms in<br />

polyanilinc films. Evidence <strong>of</strong> two polar<strong>on</strong>-bipolar<strong>on</strong> systems, Synth. Met. 21 (1987)<br />

117-121.<br />

I. Harada, Y. Furukawa, F. Ueda, Vibrati<strong>on</strong>al spectra and structure <strong>of</strong> polyanilinc and<br />

related compounds, Synth. Met. 29 (I989) 303-312.<br />

P.C. Rodrigues, M.P. Cantao, P. Janissek, P.C.N. Scarpa, A.L. Mathias, L.P. Ramos,<br />

M.A.B. Gomcs, Polyaniline/lignin blends: FTIR, MEV and electrochemical<br />

characterizati<strong>on</strong>, Eur. Polym. J. 38 (2002) 2213-2217.<br />

M. Trchova, J. Stejskal, J. Prokes, Infrared spectroscopic <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>of</strong> solid-state<br />

prot<strong>on</strong>ati<strong>on</strong> and oxidati<strong>on</strong> <strong>of</strong>polyaniline, Synth. Met. 101 (I999) 840-841.<br />

L. Zhang, M. Wan, Syn<strong>the</strong>sis and characterizati<strong>on</strong> <strong>of</strong> self-assembled polyanilinc<br />

nanotubes doped with D-10-camphorsulf<strong>on</strong>ic acid, Nanotechnol. 13 (2002) 750-755.<br />

M.-R. Huang, X.-G. Li, Y.-L. Yang, X.-S. Wang, D. Yan, Oxidative copolymers <strong>of</strong><br />

aniline with 0-toluidinez <strong>the</strong>ir structural a11d [h€I'I118.1 properties, J. Appl. Polym. Sci.<br />

81 (2001) I838-1847.<br />

M. Ibrahim, E. Koglin, Spectroscopic <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>of</strong> polyaniline cmeraldine base: modeling<br />

approach, Acta Chim. Slov. 52 (2005) I59-163.<br />

A. Bossi, S.A. Piletsky, E.V. Piletska, P.G. Righetti, A.P.F. Tumer, An assay for<br />

ascorbic acid based <strong>on</strong> polyanilinc-coated microplates, Anal. Chem. 72 (2000) 4296­<br />

4300.<br />

65


.__.­<br />

112]<br />

[13]<br />

[14]<br />

[15]<br />

[16]<br />

[17]<br />

[13]<br />

119]<br />

[30]<br />

[21]<br />

[22]<br />

[Z 3]<br />

A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong>: <strong>Supports</strong> g :<br />

J.V. de Melo, M.E. Bello, W.M. de Azevédo, J.M. de Souza, F .B. Diniz, The effect <strong>of</strong><br />

glutaraldehyde <strong>on</strong> <strong>the</strong> electrochemical behavior <strong>of</strong> polyaniline, Electrochim. Acta 44<br />

(1999) 2405-2412.<br />

R.B. -1-Iadjean, F. Fillaux, P. Colomban, A. Gruger, A. Regis,. S. Parker, T. Yu,<br />

Inelastic neutr<strong>on</strong> scattering <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>of</strong> prot<strong>on</strong> dynamics in polyanilines, Synth. Met. 81<br />

(1996) 21 1-214.<br />

E.M. Andrade, F .V. Molina, M.l. Florit, D. Posadas, IR resp<strong>on</strong>se <strong>of</strong> poly(o-toluidine)<br />

: spectral modificati<strong>on</strong>s up<strong>on</strong> redox state change, J. Electroanal. Chem. 419 (1996)<br />

15-21.<br />

N. Colthup, L.H. Daly, S.E. Wiberley, Introducti<strong>on</strong> to Raman and IR Spectroscopy,<br />

Academic press, New York, 1964.<br />

L.J. Bellamy, The lnfrared Spectra <strong>of</strong> Complex Molecules, Wiley, L<strong>on</strong>d<strong>on</strong>, 1968.<br />

S. Ding, X. Lu, J. Zheng, W. Zhang, Syn<strong>the</strong>sis, characterizati<strong>on</strong> and electrical<br />

properties <strong>of</strong> po1y(0-toluidine)/multi-walled carb<strong>on</strong> nanotube composites, Mater. Sci.<br />

Eng. B 135 (2006) 10-14.<br />

Y. Wei, l


CHAPTER 4<br />

IMMOBILIZATION OF DIASTASE<br />

a-AMYLASE<br />

4.1 INTRODUCTION ................................................................................................... ..69<br />

4.2 IMMOBILIZATION OF a-AMYLASE ON EMERALDINE SALT ................ ..70<br />

4.2.1 COUPLING OF a-AMYLAsE A.\1D IMMOBILIZATION EFFICIENCY ............................. ..70<br />

4.2.2 EFFECT OF PH ON ENZYME ACTIVITY ................................................................... ..75<br />

4.2.3 EFFECT OF TEMPERATURE O.\J TIIE ACTIYITY ........................................................ .. 77<br />

4.2.4 THERMAL STABILITY OF THE FREE AND IMMOBILIZED ENZYMES .......................... ..78<br />

4.2.5 DETERMINATION OF MICHAELIS CoNsTANT ........................................................ ..80<br />

4.2.6 STORAGE STABILITY OF THE IMMOBILIZED 0t—AMYLASE ...................................... .. 82<br />

4.2.7 REUSAEILITY ....................................................................................................... ..83<br />

4.3 KMMOBILIZATION OF a»AMYLASE ON EMERALDINE BASE ................ ..84<br />

4.3.1 OPTIMIZATION OF IMMOBILIZATION CONDITIONS ................................................ ..84<br />

4.3 .2 EFFECT OF PH ON THE ENZYME ACTIVITY ........................................................... .. 89<br />

4.3.3 EFFECT OF TEMPERATURE O.\J ACTIVITY ............................................................... ..90<br />

4.3.4 EFFECT OF TEMPERATURE ON STABILITY ............................................................. ..90<br />

4.3.5 KINETIC C0NsTANTs ............................................................................................ ..92<br />

4.3.6 STORAGE STABILITY ........................................................................................... ..94<br />

4.3.7 ACTIVITY AFTER VARIOUS CYCLES ...................................................................... ..95<br />

4.4 IMMOBILIZATION OF (Z-AMYLASE ON POLY(O-TOLUIDINE) SALT.....96<br />

4.4.1 ENZYME IMMOBIL-IZATlO.\I PARAMETERS ............................................................. .. 96<br />

4.4.2 EFFECT OF PH ON TIIE ACTIVITY OF FREE AND IMMOBILIZED OL—A]\/IYLASE ......... .. 100<br />

4.4.3 EFFECT OF TEMPERATURE ON ACTIYITY ............................................................. .. 101<br />

4.4.4 THERMAL STABILITY ......................................................................................... .. 102<br />

4.4.5 KINETIC PARAMETF.Rs OF TIIE AMYLASE IMMOBILIZED ON TS ........................... ..103<br />

4.4.6 STORACE STABILITY .......................................................................................... .. 105<br />

4.4.7 REUsE OF IMMOBILIZEI) F.\‘ZYMF.S ..................................................................... .. 106


4.5 IMMOBILIZATION OF a-AMYLASE ON POLY(O-TOLUIDINE) BASE...107<br />

4.5.1 OPTIMAL PARAMETERS FOR (1-AMYL-ASE IMMOBILIZATION ............................... .. 107<br />

4.5.2 EFFECT OF PH ow ACTIVITY ............................................................................... ..1 I 1<br />

4.5.3 EFFECT OF TEMPERATURE ON THE ACTIVITY ...................................................... .. 1 1 1<br />

4.5.4 TI-IERMAL STABILITY ......................................................................................... .. 1 12<br />

4.5.5 KINETIC PARAMETERS ....................................................................................... .. 1 14<br />

4.5.6 STORAGE STABILITY .......................................................................................... .. 116<br />

4.5.7 REUSABILITY ..................................................................................................... .. l 16<br />

4.6 CONCLUSION ...................................................................................................... ..1l7<br />

REFERENCE-S ............................................................................................................ ..ll9


§hapter 4 g Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylasel<br />

4.1 Introducti<strong>on</strong><br />

Diastase (from Greek time-totazg, "separati<strong>on</strong>") is any member <strong>of</strong> a class <strong>of</strong> enzymes<br />

occuring in <strong>the</strong> seed <strong>of</strong> grains and malt which catalyses <strong>the</strong> breakdown <strong>of</strong> starch into<br />

smaller carbohydrate molecules such as maltose. lt was <strong>the</strong> first type <strong>of</strong> enzymes<br />

discovered, in 1833, by Anselme Payen [1], who found it in malt soluti<strong>on</strong>. Today, diastase<br />

means any 0:-, /3-, or )1-amylase (all <strong>of</strong> <strong>the</strong>m hydrolases which differ in <strong>the</strong> way <strong>the</strong>y attack<br />

<strong>the</strong> b<strong>on</strong>ds <strong>of</strong> <strong>the</strong> starch molecules) that can break down carbohydrates.<br />

a-amylase (EC 3.2.1.1; l, 4 a-d-glucan glucanohydrolase) is a widespread enzyme<br />

occurring in mammals as salivary and pancreatic 0:-amylase; in <strong>the</strong> seeds <strong>of</strong> plants, it is<br />

produced by large numbers <strong>of</strong> microorganisms. The a-amylases are calcium<br />

metalloenzymes, completely unable to fimcti<strong>on</strong> in <strong>the</strong> absence <strong>of</strong> calcium. This enzyme<br />

catalyses <strong>the</strong> hydrolysis <strong>of</strong> a-l, 4-glucosidic linkages in amylose, amylopectin and<br />

glycogen in an endo-fashi<strong>on</strong> [2, 3]. lt does not hydrolyse <strong>the</strong> a-1, 6 linkages or any o<strong>the</strong>r<br />

branch points and so produces maltose and limit dcxtrins; <strong>the</strong> precise acti<strong>on</strong> pattem<br />

depends <strong>on</strong> <strong>the</strong> source <strong>of</strong> <strong>the</strong> 0:-amylase [4]. Amylases, which are starch hydrolyzing<br />

enzymes, are <strong>the</strong> most important industrial enzymes and are used in different processes in<br />

food, textile, pharmaceutical industries, beverage industries etc. [2]. Bacillus subri1i.s',<br />

Bacilizts amylo/iquefacines, Bacillus iicheniformis and Aspergillus oriyzae are very<br />

important 0:-amylase sources [5-8] because <strong>the</strong>ir enzymes are highly thcrmostable. 0:­<br />

Amylase is known to attack both insoluble starch and starch granules held in aqueous<br />

suspensi<strong>on</strong> [9].<br />

To improve <strong>the</strong>ir ec<strong>on</strong>omic feasibility in food, pharmaceutical, medical, industrial<br />

and technological processes, soluble enzymes are usually immobilized <strong>on</strong>to a solid support.<br />

ln order to achieve <strong>the</strong> desired catalytic activity, support material can have a critical role in<br />

<strong>the</strong> process <strong>of</strong> immobilizati<strong>on</strong>. Several attempts have been carried out in <strong>the</strong> past to<br />

immobilize <strong>the</strong> enzyme a-amylase <strong>on</strong> different supports [7, 8, 10-33]. Some examples<br />

involve zirc<strong>on</strong>ium dynamic membrane [7], glass beads and glutaraldehyde fixati<strong>on</strong> [10].<br />

69


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

covalent cross-linking <strong>on</strong>to silica gel [1 l], coc<strong>on</strong>ut fiber [12], and adsorpti<strong>on</strong> <strong>on</strong> zirc<strong>on</strong>ia<br />

[13]. Many <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong> processes were d<strong>on</strong>e by using polymer based supports<br />

[14-19]. T iimtiirk et al. [14] covalently immobilized a-amylase <strong>on</strong> po1y(2-hydroxyethyl<br />

methacrylate) and poly(styrene-2-hydroxyethyl methacrylate) micro spheres, which were<br />

activated using epichlorohydrin. Varlan et al. had reported [15] paramagnetic polyacrolein<br />

beads as a support for immobilizati<strong>on</strong>. Bajpai et al. used [17] semi-interpenetrating<br />

polymer network <strong>of</strong> poly(ethylene glycol), poly(vinyl alcohol) and polyacrylamide as<br />

support for immobilizati<strong>on</strong> <strong>of</strong> a-amylase.<br />

This chapter describes <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> diastase a-amylase under very mild<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> polyaniline and poly(0-toluidine), both were prepared as acidic and basic<br />

forms. Immobilizati<strong>on</strong> efficiency and enzyme activity <strong>of</strong> a-amylase were examined at<br />

various pH and temperature and discussed in detail.<br />

4.2 Immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> Emeraldine Salt<br />

4.2.1 Coupling <strong>of</strong> a-amylase and immobilizati<strong>on</strong> efficiency<br />

The uptake <strong>of</strong> enzyme varied significantly according to <strong>the</strong> support, method chosen,<br />

immobilizati<strong>on</strong> medium, enzyme c<strong>on</strong>centrati<strong>on</strong> and c<strong>on</strong>tact time <strong>of</strong> enzyme to support.<br />

Therefore <strong>the</strong>se parameters were tested to optimize enzyme immobilizati<strong>on</strong> <strong>on</strong> emeraldine<br />

salt (ES), glutaraldehyde activated emeraldine salt (ESI), and ascorbic acid activated<br />

emeraldine salt (ES2). The effect <strong>of</strong> soluti<strong>on</strong> pH dLu'ing <strong>the</strong> immobilizati<strong>on</strong> step <strong>on</strong> enzyme<br />

activity is shown in <strong>the</strong> fig. 4.2.1. The best results were obtained in <strong>the</strong> pH range from 4.5<br />

to 5.5, with maximum activity retenti<strong>on</strong> at pH 5.0. The optimum pH is that which favors <strong>the</strong><br />

b<strong>on</strong>ding between support and enzyme, and <strong>the</strong> pH which favors <strong>the</strong> enzyme to retain its<br />

activity. The pH stability <strong>of</strong> <strong>the</strong> enzyme also has to be c<strong>on</strong>sidered. Selecting an optimum<br />

soluti<strong>on</strong> pH for enzyme immobilizati<strong>on</strong> is <strong>the</strong>refore important. Even if <strong>the</strong> enzyme loading<br />

is achieved maximum at any o<strong>the</strong>r pH, it is not worth if <strong>the</strong> enzyme shows less activity.<br />

Hence taking into c<strong>on</strong>siderati<strong>on</strong> <strong>of</strong> all <strong>the</strong> above facts, we have measured <strong>the</strong> remaining<br />

70


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase G-amllase<br />

On <strong>the</strong> additi<strong>on</strong> <strong>of</strong> protein to <strong>the</strong> support, immobilizati<strong>on</strong> amount increases and<br />

reaches a saturati<strong>on</strong> point. Fur<strong>the</strong>r additi<strong>on</strong> did not make any remarkable increase in protein<br />

loading. The saturati<strong>on</strong> point depends up<strong>on</strong> <strong>the</strong> properties <strong>of</strong> <strong>the</strong> support and <strong>the</strong> methods <strong>of</strong><br />

immobilizati<strong>on</strong>. Immobilizati<strong>on</strong> via adsorpti<strong>on</strong> depends mainly <strong>on</strong> <strong>the</strong> surface area<br />

available for immobilizati<strong>on</strong>. It incorporated almost 2 mg protein per 1 g ES at <strong>the</strong> plateau.<br />

For ESI it was above 2.3 mg and for ES2 it was nearly 1.5 mg when initial enzyme taken<br />

was 3. lmg.<br />

However, <strong>the</strong> protein c<strong>on</strong>tent is not <strong>the</strong> <strong>on</strong>ly parameter that characterizes an<br />

immobilized enzyme. The coupling procedure may have an adverse effect <strong>on</strong> enzymatic<br />

activity and so activity yield should also have to be determined.<br />

i<br />

... — ‘ml<br />

-' _ -0- —I— ES1 ES<br />

-4- ES2<br />

1 ' 5 ' 5 ' 1 I-, '<br />

Initial am<strong>on</strong>ut <strong>of</strong> protein (mg)<br />

Fig. 4.2.4 Eflect <strong>of</strong> initial protein c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong><br />

immobilized a-amylase activity.<br />

It can be noted from <strong>the</strong> fig. 4.2.4 that <strong>the</strong> maximum activity showed by ESI and<br />

ES2 are when <strong>the</strong> ratio <strong>of</strong> protein added to <strong>the</strong>m is up to 3 mg protein g" polymer support,<br />

and for ES it is 2 mg protein g" ES. During <strong>the</strong> additi<strong>on</strong> <strong>of</strong> protein to PANI, <strong>the</strong> amount <strong>of</strong><br />

protein immobilized is increased gradually and finally get saturated.<br />

73


_Chapter 4 _ g Imm0bil*iz_atiogn <strong>of</strong> Diastase a-amylase _<br />

Bey<strong>on</strong>d this saturati<strong>on</strong> level <strong>the</strong>re was a slow increase in protein loading but <strong>the</strong><br />

activity was found to be decreasing. Covalcntly coupled enzyme showed maximum activity<br />

at this saturati<strong>on</strong> level, but adsorbed enzymes followed a different trend. Here in <strong>the</strong> ease <strong>of</strong><br />

ES <strong>the</strong> enzyme adsorbed at <strong>the</strong> saturati<strong>on</strong> level is 2.1 mg g“l ES, but <strong>the</strong> activity was very<br />

low, and showed maximum activity when <strong>the</strong> protein loaded was 1.5 mg g'1 ES. The<br />

decrease in activity <strong>of</strong> enzyme (fig. 4.2.4) before (for adsorbed) or bey<strong>on</strong>d (for covalently<br />

bound) this saturati<strong>on</strong> level may be attributed to multilayer adsorpti<strong>on</strong> <strong>on</strong> <strong>the</strong> single layered<br />

adsorbed or covalently b<strong>on</strong>ded enzyme, so that a c<strong>on</strong>siderable amount <strong>of</strong> enzymes are less<br />

accessible for starch. Similar c<strong>on</strong>clusi<strong>on</strong>s were put forward for <strong>the</strong> decrease in enzyme<br />

activity when glueoamylase was covalently immobilized <strong>on</strong>to surface grafted polyaniline<br />

[35].<br />

Immobilizati<strong>on</strong> yields, activity yields, and <strong>the</strong> efficieney <strong>of</strong> immobilizati<strong>on</strong> are<br />

shown in table 4.1. Maximum activity yield obtained was 37.4 % which represents <strong>the</strong><br />

amount <strong>of</strong> actively bound enzyme. Immobilizati<strong>on</strong> effieiency is defined as <strong>the</strong> ratio <strong>of</strong><br />

activity yield to immobilizati<strong>on</strong> yield. In all cases immobilizati<strong>on</strong> yield is higher than<br />

activity yield, and hence efficiency <strong>of</strong> immobilizati<strong>on</strong> is low. Tanyolac et ul. [36]<br />

immobilized 0:-amylase <strong>on</strong>to nitrocellulose membrane and <strong>the</strong> maximum enzyme yield was<br />

around 21 % and Sun er al. reported [37] about 33 % recovery <strong>of</strong> activity when <strong>the</strong>rmal<br />

composite hydrogcl membranes were used as support. This fact is usually explained with<br />

difficult accessibility <strong>of</strong> <strong>the</strong> substrate to <strong>the</strong> immobilized enzyme due to steric restricti<strong>on</strong>s<br />

or unfavorable orientati<strong>on</strong> <strong>of</strong> <strong>the</strong> immobilized enzyme molecules [12]. As a result <strong>of</strong> <strong>the</strong>se<br />

effects interacti<strong>on</strong> between <strong>the</strong> substrate and <strong>the</strong> active site <strong>of</strong> <strong>the</strong> immobilized enzyme is<br />

blocked.<br />

4.2.2 Effect <strong>of</strong> pH <strong>on</strong> enzyme activity<br />

<strong>Enzymes</strong> are very fragile molecules when removed from <strong>the</strong>ir natural medium.<br />

They are amphoterie molecules c<strong>on</strong>taining a large number <strong>of</strong> acidic a11d basic groups,<br />

situated mainly <strong>on</strong> <strong>the</strong> surface. The charges <strong>on</strong> <strong>the</strong>se groups will vary with <strong>the</strong> pH <strong>of</strong> <strong>the</strong>ir<br />

envir<strong>on</strong>ment. This will affect <strong>the</strong> total net charge <strong>of</strong> <strong>the</strong> enzyme and <strong>the</strong> distributi<strong>on</strong> <strong>of</strong><br />

charge <strong>on</strong> its exterior surface, in additi<strong>on</strong> to <strong>the</strong> reactivity <strong>of</strong> <strong>the</strong> eatalytieally active groups.<br />

75


__ A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

Hence a change in pH or i<strong>on</strong>ic media may cause denaturati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein structure and<br />

complete loss <strong>of</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> enzyme. So <strong>the</strong> pH value has c<strong>on</strong>siderable influence <strong>on</strong><br />

<strong>the</strong> cfficiency and stability <strong>of</strong> all enzymes.<br />

The pH effect <strong>on</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> free and immobilized forms <strong>of</strong> or-amylase has<br />

been studied in buffer soluti<strong>on</strong> at different pH values (pH 4-8) and <strong>the</strong> results are presented<br />

in fig. 4.2.5. Activity under optimum c<strong>on</strong>diti<strong>on</strong>s was assigned a value <strong>of</strong> 100 %. The pH<br />

values for optimum activity <strong>of</strong> <strong>the</strong> free amylase are 5 and 5.5. The present result is<br />

comparable to earlier reports in <strong>the</strong> literature [8, 12].<br />

501 \<br />

¥ 3% Q :<br />

ES \" O —v— ES2 1\:<br />

—O— Free °\<br />

——4— E81 A<br />

r F I<br />

pH<br />

4 5 6 7<br />

Fig. 4.2.5 Eflecl <strong>of</strong> pH <strong>on</strong> actiw'I_v <strong>of</strong> free and immobilized<br />

(1-amylase.<br />

Up<strong>on</strong> immobilizati<strong>on</strong> <strong>the</strong>re was a slight change in <strong>the</strong> nature <strong>of</strong> pH pr<strong>of</strong>ile<br />

depending up<strong>on</strong> <strong>the</strong> method <strong>of</strong> immobilizati<strong>on</strong>, and spacer used. The adsorbed enzyme<br />

showed its maximum activity at pH 5 and for covalently bound enzymes, <strong>the</strong> value was at<br />

5.5. The shift <strong>of</strong> optimum pH towards acidic regi<strong>on</strong> was reported when a-amylase<br />

covalently immobilized to functi<strong>on</strong>alized glass beads [26] and zirc<strong>on</strong>ium dynamic<br />

membrane [7]. The slight positive charge <strong>on</strong> <strong>the</strong> surface <strong>of</strong> ES has <strong>the</strong> effect that more i<strong>on</strong>s<br />

<strong>of</strong> opposite charges are drawn in to <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> bound enzyme, so enzyme will<br />

76


Chapter 4 g Immobiligzatj<strong>on</strong> (if Diastase a-amylase__§<br />

encounter this pH value at its micro envir<strong>on</strong>ment but <strong>the</strong> bulk <strong>of</strong> this soluti<strong>on</strong> has higher H<br />

i<strong>on</strong>s. Hence <strong>the</strong> optimum for <strong>the</strong> ES shifted towards <strong>the</strong> lower value. In activated ES1,<br />

glutaraldchyde spacer enabled <strong>the</strong> attached molecule to act like free enzyme but in ES2 <strong>the</strong><br />

spacer not l<strong>on</strong>g so <strong>the</strong> property <strong>of</strong> <strong>the</strong> surface somewhat affected <strong>the</strong> acti<strong>on</strong> <strong>of</strong> attached<br />

enzyme. Hence <strong>the</strong> pH-dependent activity pr<strong>of</strong>ile for <strong>the</strong> immobilized a-amylase <strong>on</strong> ES and<br />

ES2 is c<strong>on</strong>siderably narrowed to acidic regi<strong>on</strong>. But for ESl it is broadened and showing<br />

less susceptibility to pH change. Similar observati<strong>on</strong>s, with resistance to pH change were<br />

reported by o<strong>the</strong>r researchers [29, 30]. Thus, <strong>the</strong> immobilized amylase <strong>on</strong> ES] displays<br />

significantly improved stability to pH changes over <strong>the</strong> free form and o<strong>the</strong>r immobilized<br />

forms.<br />

4.2.3 Effect <strong>of</strong> temperature <strong>on</strong> <strong>the</strong> activity<br />

The effect <strong>of</strong> temperature <strong>on</strong> <strong>the</strong> activity <strong>of</strong> free and immobilized a-amylase was<br />

studied by subjecting <strong>the</strong>m to various temperatures ranging from 30-60 °C and is given in<br />

fig. 4.2.6.<br />

, OV .<br />

— -ES,<br />

0 T-7:;<br />

1-\<br />

2<br />

p— —Free<br />

— —ES1<br />

— — ES2<br />

Temperature (°C)<br />

Fig. 4.2.6 Eflécr <strong>of</strong>remperarure <strong>on</strong> relative activity <strong>of</strong><br />

free and in-mzobi/izcd a-am_vlase.<br />

77<br />

+


A Study <strong>on</strong> <strong>the</strong> ii Immobilizati<strong>on</strong> __ — <strong>of</strong> _ <strong>Enzymes</strong> _ _ <strong>on</strong> __ <strong>Polymeric</strong> 7 __ <strong>Supports</strong> _ * _<br />

The optimum temperature <strong>of</strong> native enzyme was 50 °C which decreased to 35-40 °C<br />

when it immobilized. Handa el al. reported [8] a 5 “C decrease in optimum temperature<br />

when or-amylase was immobilized <strong>on</strong> to polyacryl<strong>on</strong>itrile. The decrease in <strong>the</strong> optimum<br />

temperature might arise from changing <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al integrity <strong>of</strong> <strong>the</strong> enzyme structure<br />

by immobilizati<strong>on</strong> [5, 38] which favored amylase activity below 50 “C. O<strong>the</strong>rwise <strong>the</strong><br />

attachment <strong>on</strong> <strong>the</strong> support might have affected <strong>the</strong> three dimensi<strong>on</strong>al protein structure<br />

which ei<strong>the</strong>r caused <strong>the</strong> denaturati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein structure or affected <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> <strong>of</strong><br />

protein which resulted in an alterati<strong>on</strong> <strong>of</strong> enzyme substrate affinity [l2] and hence showed a<br />

decrease in <strong>the</strong> immobilized enzyme catalytic activity at higher temperature.<br />

4.2.4 Thermal stability <strong>of</strong> <strong>the</strong> free and immobilized enzymes<br />

Thermal stability experiments were carried out with free and immobilized enzymes,<br />

which were incubated for l hour in <strong>the</strong> absence <strong>of</strong> substrate at various temperatures. F ig.<br />

4.2.7 shows <strong>the</strong> <strong>the</strong>rmal inactivati<strong>on</strong> curves between 30 and 60 °C for <strong>the</strong> free and<br />

immobilized enzymes.<br />

1,<br />

100-J<br />

-i:<br />

... ‘ O‘v .<br />

._ 507‘<br />

.. _ -53 . A<br />

— ~—Free<br />

— -— —-ES1 —ES2 Vy<br />

30 40 50 60<br />

Temperature (°C)<br />

— t— T ‘ - e T -F r A<br />

Fig. 4.2. 7 Effect Qflemperature <strong>on</strong> stability Qfflee and<br />

inimoliilized a-aniylase.<br />

78


ghapter 4?? g U f _lmmobi_l,izati<strong>on</strong><strong>of</strong> Diastase a-amylase<br />

There was no change in <strong>the</strong> activity <strong>of</strong> free and immobilized enzyme for 1 hour at<br />

30 °C. As <strong>the</strong> temperature rises, <strong>the</strong> stability dropped significantly for both free and<br />

immobilized amylase. At 40 °C, <strong>the</strong> immobilized and free enzymes retained <strong>the</strong>ir activity<br />

about to a level <strong>of</strong> 80-90 °/0. At higher temperature <strong>the</strong> immobilized amylase was<br />

inactivated at a much slower rate than that <strong>of</strong> <strong>the</strong> free form. The free and immobilized<br />

enzyme lost 60-80 % <strong>the</strong>ir activity at 60 “C after I hour heat treatment. Fig. 4.2.8 shows <strong>the</strong><br />

effect <strong>of</strong> incubati<strong>on</strong> time at optimum temperature <strong>on</strong> <strong>the</strong> activity <strong>of</strong> each immobilized<br />

enzyme. Almost 90 % <strong>of</strong> <strong>the</strong> immobilized enzymes were active even after 120 minutes <strong>of</strong><br />

incubati<strong>on</strong> at <strong>the</strong>ir respective optimum temperatures. These results suggest that <strong>the</strong> <strong>the</strong>rmal<br />

stability <strong>of</strong> a-amylase increased c<strong>on</strong>siderably as a result <strong>of</strong> immobilizati<strong>on</strong> <strong>on</strong>to emeraldine<br />

salts, and is suitable for l<strong>on</strong>g term process. Improved <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong> immobilized<br />

amylase was reported by Bqjak [39] when using acrylic carriers as <strong>the</strong> support.<br />

4"-M 100 _i § -i __‘3[ 0 Q 4‘<br />

i<br />

v \. Evmv-Zhfig 31 3at<br />

so-A<br />

._ ­<br />

\_\_<br />

40­<br />

*0: kg.<br />

—0—- Free \<br />

—lr-- E51<br />

1*‘ i_' I" T ' I T ' I<br />

__G_ \.at O C<br />

O 20 40 60 80 100 120<br />

Time (minutes)<br />

Fig. 4.2.8 E_f/ec! Qfpre-incubati<strong>on</strong> time <strong>on</strong> smbih'ry<br />

Q/free and immobilized a'—amy!asc.<br />

The immobilized enzyme, especially in <strong>the</strong> activated ES bound system, was more<br />

resistant than that <strong>of</strong> <strong>the</strong> soluble form against heat. The str<strong>on</strong>g interacti<strong>on</strong> with <strong>the</strong> support<br />

material is supposed to preserve <strong>the</strong> tertiary structure <strong>of</strong> <strong>the</strong> enzyme which enables <strong>the</strong><br />

enzyme being protected from c<strong>on</strong>formati<strong>on</strong>al changes imposed by heat [26]. lt has been<br />

79


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong>“<strong>Enzymes</strong> <strong>on</strong> Polymerie<strong>Supports</strong><br />

reported [40] that <strong>the</strong> multipoint attachment to a complementary surface <strong>of</strong> a relatively rigid<br />

support drastically increased <strong>the</strong> <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong> enzyme.<br />

4.2.5 Determinati<strong>on</strong> <strong>of</strong> Michaelis c<strong>on</strong>stant<br />

lt seems interesting to analyze <strong>the</strong> enzymatic hydrolysis with immobilized a­<br />

amylase in <strong>the</strong> framework <strong>of</strong> <strong>the</strong> Michaelis-Menten mechanism. The kinetic parameters, <strong>the</strong><br />

Michaelis c<strong>on</strong>stant Km and maximum velocity Vmax for free and immobilized a-amylase,<br />

were determined by varying <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> starch in <strong>the</strong> reacti<strong>on</strong> medium.<br />

Lineweaver-Burk plots and Hancs-Woolf plots for free and immobilized a-amylase are<br />

shown in fig. 4.2.9. The kinetic parameters <strong>of</strong> free and immobilized enzymes are<br />

summarized in table 4.2. The apparent Km values for <strong>the</strong> immobilized a-amylase were<br />

higher than those <strong>of</strong> free 0:-amylase. ln general Km <strong>of</strong> an immobilized enzyme is different<br />

from that <strong>of</strong> free enzyme due to <strong>the</strong> alterati<strong>on</strong> in enzyme c<strong>on</strong>formati<strong>on</strong>, micro<br />

envir<strong>on</strong>mental effects <strong>of</strong> <strong>the</strong> carrier, and bulk and diffusi<strong>on</strong>al effects [44]_ The decrease in<br />

affinity towards substrate is also caused by <strong>the</strong> structural changes introduced in <strong>the</strong> enzyme<br />

by immobilizati<strong>on</strong> procedure and hence resulted in <strong>the</strong> lower <strong>the</strong> accessibility <strong>of</strong> <strong>the</strong><br />

substrate to <strong>the</strong> active sites <strong>of</strong> <strong>the</strong> immobilized enzyme [42]. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> Vnm<br />

values followed <strong>the</strong> opposite trend, suggesting <strong>the</strong> residual activity <strong>of</strong> <strong>the</strong> immobilized cz­<br />

amylasc decreased. Such observati<strong>on</strong>s have been generally reported [43-45] during<br />

immobilizati<strong>on</strong> <strong>of</strong> enzymes.<br />

Table 4.2 Kinetic parameters Q/'r/ze_/Tee and imniobilized a-an7_vluse.<br />

Free enzyme ES i ESI T ES2<br />

Jim. 9 .9 ._‘_ . - .<br />

. . fly . _ __l it ;<br />

Km(mg mu‘) 0.40 d: 0.09 y 2.15 i: 0.11 i 0.83 3% 0.08 A 2.89 i 0.03<br />

(EU pg" protein) 7.95 i 0.05 2.71 1*. 0.07 4.73 r 0.04 3.09 i 0.13<br />

80


Chapter 4 _<br />

4<br />

j : lmm0lfil[§§_ti<strong>on</strong><br />

‘<br />

<strong>of</strong> 'Diastase a-zjlqylase<br />

i<br />

‘ I 0 I 2' § 24 1 . 5- |_J 2<br />

/'; '15 M 5 4 7 5 1: -c-’s c.'-<strong>on</strong> 0'5 ‘ IL 1<br />

1us_] [so]<br />

..,J ‘O; I b<br />

E 5- gs­<br />

“<br />

145.1 ' -'<br />

2' " I ‘ 5:10­ ann-0<br />

1:|s‘| |s 1<br />

d.<br />

08/ l1ll<br />

15-I<br />

\<br />

o.a 1 s -2 -1 o 1 2 3 ,<br />

S<br />

,_,_ /<br />

1s<br />

10$<br />

5..<br />

|<br />

‘!<br />

20-<br />

I ll<br />

, I<br />

4%..<br />

2: ­<br />

R ao QLi<br />

P \\<br />

I5...<br />

1:‘. I _/ I-1.0<br />

o=- 0.0 05 10 I -(ls. GT0 ufs 10 1» zr<br />

la<br />

~l§.1 15.1<br />

F ig. 4.2.9 Linewe:aver'-Burl: plots (I) and Hanes- W00/fplols (H) Qf_'fi'ee a—um_v1a.s'e (a) and<br />

imnmbi/ized <strong>on</strong> ES (b) <strong>on</strong> ES] (C) and <strong>on</strong> ES2 (H).<br />

81<br />

20<br />

0<br />

C


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

4.2.6 Storage stability <strong>of</strong> <strong>the</strong> immobilized a-amylase<br />

One <strong>of</strong> <strong>the</strong> most important parameters to be c<strong>on</strong>sidered in enzyme immobilizati<strong>on</strong> is<br />

storage stability. The stability for l<strong>on</strong>g term storage <strong>of</strong> <strong>the</strong> immobilized a-amylase <strong>on</strong><br />

emeraldine salt powders was examined by storing <strong>the</strong>m at 4 °C in semidry c<strong>on</strong>diti<strong>on</strong> for a<br />

period <strong>of</strong> time. Free a-amylase in buffer soluti<strong>on</strong> was also prepared and stored under <strong>the</strong><br />

same c<strong>on</strong>diti<strong>on</strong>s. The free enzyme in buffer soluti<strong>on</strong> lost all <strong>of</strong> its activity within 2 days.<br />

Under <strong>the</strong> storage c<strong>on</strong>diti<strong>on</strong>s, less reducti<strong>on</strong> in activity for <strong>the</strong> immobilized enzymes was<br />

observed.<br />

I,<br />

-'0'0 0 0 1 - ­<br />

@3034 0 0 4 5.0.1 I O O , Q 0 >‘0‘0'<br />

'0 . > .0_ Q - Q O 4<br />

Q<br />

3 . 9% 'o°0‘4 0 0 - - 0 1.9:,<br />

30.0‘ 0 0 - 30.0‘ 0 40<br />

‘— . . . 0 0 4 3.0.1 90.0‘>'0°0'<br />

30.0‘<br />

30.0‘ ' 0'0;<br />

- Q 30.0‘<br />

-'0'0‘ 01 99°.‘ O Q O 0 O ~ I<br />

50.0. 0 0 1 .°,°,' » 0 0 4 - 0 0 .°0‘0' Q 5'0‘. Q 90%‘ t 0 O 0 O4<br />

v Q O<br />

-'0°0'<br />

I ES<br />

V//l. ES1<br />

w E82<br />

-0.0‘ 5'3. 0 0 4 :Q.Q‘l 004 0.0.4 Q ~00 ; 0 , $.00. 0 '00 4<br />

:‘.':‘ -'0°0' . . . Q '0'0'- 0 4 O 74.1 Q I 90.0‘ 00­ . . Q<br />

01 v.0.0‘ ,':..* 0 0 3%‘, |‘Q.Q' I ° ' t ' '0.0.v 5'09 0 Q 'O.O‘I > '0'0'4 0 0 .‘Q.Q‘ '0'... ' ' ‘ >‘0‘0' 0 ~'O'O'<br />

- 0 0 55°. 90%‘ -'0'0' '.°.°. ’0‘0'4 0 4<br />

-0 '.°.'. -:0:0: 5°... Q 30:0‘ 4 -:0:0' 4 , Q 3'0‘. . I '0:0:4 . . - ­<br />

-00 ,.. -00 ... Q.‘ ‘0'0°4 004 0.. O01 "' '9' 004 “' -00 3"<br />

-00 "U. '00‘ >00 0.0.4 5. ~00 ... ’.' 004 O01 "'<br />

00- '004 ,5; 004 0.0.‘ ,.. 00' I.. 00* tgg 00' ‘., ...<br />

,<br />

t -.03, -00 0 9<br />

0 0 '<br />

4<br />

$0.0‘ 0 '9‘ 0.0.‘ 4 - 9'0‘ 0 0°0'-<br />

0'0 0 50.0, 4 -00 0<br />

0<br />

4 0 4 ‘°° 9.’; 0 '9',‘ 4 - 0 '0'“ .0<br />

0 0.4 0<br />

><br />

- 3,9,‘ 00­ 0<br />

9<br />

0<br />

:°:':‘ OOO90.0‘ O O 4 3.0.4 :'0.0' f.O.4 5'0‘: 50.0‘ 5:0” " .0‘ :'0°0‘ Q 0 u I 99'.‘ \ 0 O 0 ¢ 50.0. O - 0 Q - 0 Q 9.0.‘ 0 9.0; O 0<br />

‘O0 00' 004 >00 30.0‘ 004 '00 4'0‘0§<br />

59.9, -00 0" '0'0‘ 004 00 90%‘ »00 00'<br />

O O 4<br />

' . 0 0 O O | ' 0 0<br />

-'0'.‘ 0 0 4 1%‘: , . Q . , 0 v '0'.‘­ 0 0 04<br />

'. .‘.‘ 1.0.0‘-00 - 0 O0: 0 ‘ ‘ > 0 0 0 0 4<br />

0 0.0.1 90%‘ '0'0'4 0.0.4 n'.0.0.<br />

M<strong>on</strong>th<br />

Fig. 4.2.10 Eflect <strong>of</strong> storage time <strong>on</strong> <strong>the</strong> relative activity<br />

<strong>of</strong> immobilized a-amylase stored for 6 m<strong>on</strong>ths.<br />

As shown in fig. 4.2.10, <strong>the</strong> adsorbed a-amylase retained more than 50 % <strong>of</strong> <strong>the</strong>ir<br />

original activity over a period <strong>of</strong> four m<strong>on</strong>ths, and <strong>the</strong> activity <strong>of</strong> <strong>the</strong> covalently b<strong>on</strong>ded<br />

enzyme <strong>on</strong> ESI was more than 80 % <strong>of</strong> its original activity afier 6 m<strong>on</strong>ths while that <strong>on</strong><br />

BS2 retained <strong>on</strong>ly 40 % <strong>of</strong> its original activity over <strong>the</strong> same period <strong>of</strong> time. This result<br />

readily suggests that <strong>the</strong> immobilized amylase exhibits improved storage stability over <strong>the</strong><br />

free enzyme. Kahraman et al. reported [26] 80 % activity retenti<strong>on</strong> after 25 days <strong>of</strong> storage<br />

for a-amylase immobilized <strong>on</strong> glass beads and Lim et al. reported [18] a 10 % loss <strong>of</strong><br />

82


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

activity in every 12 days <strong>of</strong> storage for amylase <strong>on</strong> silanized silica particles. The stability <strong>of</strong><br />

<strong>the</strong> immobilized a-amylase can be attributed to its improved resistance to heat and<br />

denaturing agents [46], as a result <strong>of</strong> adsorpti<strong>on</strong> and covalent fixati<strong>on</strong> <strong>on</strong> <strong>the</strong> surface <strong>of</strong> <strong>the</strong><br />

emeraldine salt powders.<br />

4.2.7 Reusability<br />

In order to improve enzymatic process ec<strong>on</strong>omically, <strong>the</strong> enzyme could be used in<br />

c<strong>on</strong>tinuous process over a l<strong>on</strong>g period <strong>of</strong> time to exploit it completely. Inactivati<strong>on</strong> is <strong>the</strong><br />

most prominent problem when exposed to inadequate ambient c<strong>on</strong>diti<strong>on</strong>s, such as extreme<br />

pH or temperature [47], organic solvent and surfactant [48]. On this accotmt, improvement<br />

in <strong>the</strong> reusability <strong>of</strong> immobilized enzymes is <strong>of</strong> great importance. The excellent reusability<br />

will prol<strong>on</strong>g <strong>the</strong> half-life <strong>of</strong> enzymes. The easy separati<strong>on</strong> <strong>of</strong> catalyst from <strong>the</strong> product<br />

mixture followed by reuse is <strong>on</strong>e <strong>of</strong> <strong>the</strong> most important advantages <strong>of</strong> heterogeneous<br />

catalysis.<br />

I ES<br />

100- V////4 ES1 % ES2<br />

150-<br />

.<br />

..<br />

:4.O<br />

'- vs­ O<br />

Q<br />

:1<br />

~ O O<br />

:-:~ O I ­ to '. P0‘<br />

.1<br />

91'<br />

3 5 e a 9 10<br />

Number <strong>of</strong> cycles<br />

Fig 4.2.11 Reusability <strong>of</strong> immobilized a-amylase.<br />

In our <str<strong>on</strong>g>study</str<strong>on</strong>g> activity for 10 cycles <strong>of</strong> use for <strong>the</strong> immobilized enzymes was<br />

m<strong>on</strong>itored and <strong>the</strong> results are shown in <strong>the</strong> fig. 4.2.11. It was examined in a batch wise<br />

manner by using <strong>the</strong> same c<strong>on</strong>diti<strong>on</strong> repeatedly 10 times within 8 hours. lt was observed<br />

83


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

that <strong>the</strong> immobilized enzyme activity decreased when recycling number was increased.<br />

Both <strong>of</strong> <strong>the</strong> covalently b<strong>on</strong>ded enzymes retained 80 % activity after 4 runs and about 50-70<br />

% activity even after 10 cycles <strong>of</strong> use and fur<strong>the</strong>r washing. But <strong>the</strong> adsorbed enzyme was<br />

leached out during repeated use and could retain <strong>on</strong>ly 30 % activity after l0 rtms. This<br />

excellent reusability could be explained by improved resistance to denaturati<strong>on</strong> and<br />

c<strong>on</strong>formati<strong>on</strong>al changes caused by <strong>the</strong> surrounding c<strong>on</strong>diti<strong>on</strong>s such as buffer soluti<strong>on</strong>, as a<br />

result <strong>of</strong> covalent immobilizati<strong>on</strong> <strong>on</strong> <strong>the</strong> support [26]. This agreed well with <strong>the</strong> reported<br />

results, <strong>the</strong> reuse capabilities <strong>of</strong> a-amylase was in <strong>the</strong> range <strong>of</strong> 74-88 % when immobilized<br />

<strong>on</strong> UV curable support [16] and in ano<strong>the</strong>r <str<strong>on</strong>g>study</str<strong>on</strong>g>, reuse capabilities <strong>of</strong> a-amylase <strong>on</strong><br />

poly(dimer acid-co-alkyl polyamine) particles [49] dem<strong>on</strong>strated more than 99 % activity<br />

after 20 runs and 91.3 % activity after 40 runs.<br />

4.3 Immobilizati<strong>on</strong> <strong>of</strong> 0:-Amylase <strong>on</strong> Emeraldine Base<br />

4.3.1 Optimizati<strong>on</strong> <strong>of</strong> immobilizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

The effects <strong>of</strong> enzyme coupling time and pH <strong>on</strong> <strong>the</strong> enzyme activity were studied<br />

with glutaraldehyde activated EBI, ascorbic acid activated EB2 and n<strong>on</strong>-activated EB at<br />

room temperature and at different reacti<strong>on</strong> coupling pH and time. The effect <strong>of</strong><br />

immobilizati<strong>on</strong> pH <strong>on</strong> <strong>the</strong> activity <strong>of</strong> immobilized amylase is shown in fig. 4. 3.1. The best<br />

activity showed after immobilizati<strong>on</strong> was found in <strong>the</strong> pH regi<strong>on</strong> <strong>of</strong> 5-5.5. The possible<br />

reas<strong>on</strong>s are lower loading and enzyme c<strong>on</strong>formati<strong>on</strong>al change due to unfavorable charge<br />

distributi<strong>on</strong> <strong>of</strong> amino acid residues by <strong>the</strong> medium which may reduce <strong>the</strong> activity <strong>of</strong> <strong>the</strong><br />

enzyme [13]. Since <strong>the</strong> free a-amylase used in this experiment was stable at narrow pH<br />

range (4.5-5.5) <strong>the</strong> possible denaturati<strong>on</strong> <strong>of</strong> enzyme in alkaline soluti<strong>on</strong> was also expected.<br />

The activity yield <strong>of</strong> <strong>the</strong> immobilized a-amylase coupled at different coupling<br />

reacti<strong>on</strong> time is presented in fig. 4.3.2. An increase in <strong>the</strong> coupling durati<strong>on</strong> time up to 30­<br />

45 minutes led to an increase in <strong>the</strong> activity <strong>of</strong> <strong>the</strong> immobilized enzyme <strong>on</strong> EBI and EB2.<br />

The maximum enzyme activity <strong>of</strong> adsorbed enzyme <strong>on</strong> EB powders was observed after 75<br />

84


2.<br />

A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> lflgnzymesg<strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> _<br />

On <strong>the</strong> o<strong>the</strong>r hand, as time prol<strong>on</strong>ged a large amount <strong>of</strong> amylase was immobilized to<br />

EB, <strong>on</strong> <strong>the</strong> basis <strong>of</strong> protein determinati<strong>on</strong>s, but <strong>the</strong> specific activity <strong>of</strong> <strong>the</strong>se preparati<strong>on</strong>s<br />

was low. The decrease in <strong>the</strong> immobilized enzyme activity can be due to <strong>the</strong> multipoint<br />

attachment <strong>of</strong> <strong>the</strong> enzyme molecules to <strong>the</strong> activated EB1 and EB2 or overcrowding <strong>of</strong> <strong>the</strong><br />

immobilized amylase <strong>on</strong> n<strong>on</strong>-activated EB, as a result <strong>of</strong> which substrate diffusi<strong>on</strong><br />

limitati<strong>on</strong>s occur [50]. In view <strong>of</strong> <strong>the</strong>se observati<strong>on</strong>s, coupling time <strong>of</strong> 30, 45 and 75<br />

minutes were used in <strong>the</strong> rest <strong>of</strong> <strong>the</strong> experiment for EB1, EB2, and EB respectively.<br />

1 ; /7;/I<br />

1?<br />

1<br />

—--EB i<br />

y -—0—— -4- EB2 EB1;<br />

/ I . ./‘<br />

2 4<br />

Initial protein (mg)<br />

. [— -- -— | ~ I<br />

Fig 4.3.3 Influence Qfinirial protein c<strong>on</strong>centrati<strong>on</strong><br />

<strong>on</strong> <strong>the</strong> protein loading.<br />

Fig. 4.3.3 shows <strong>the</strong> effect <strong>of</strong> protein loading <strong>on</strong> <strong>the</strong> immobilizati<strong>on</strong> yields <strong>of</strong> <strong>the</strong><br />

supports. EB incorporated higher amount <strong>of</strong> 3.5 mg protein g" EB, which was 66.9 % <strong>of</strong><br />

<strong>the</strong> enzyme <strong>of</strong>fered for immobilizati<strong>on</strong>. EB2 coupled almost 50 % <strong>of</strong> <strong>the</strong> <strong>of</strong>fered enzyme.<br />

On EB1 a saturati<strong>on</strong> level reached when <strong>the</strong> loading was 2 mg protein g'1 EB1. Fur<strong>the</strong>r<br />

additi<strong>on</strong> <strong>on</strong>ly made a negligible change in <strong>the</strong> protein loading. This n<strong>on</strong>linear relati<strong>on</strong>ship<br />

after a particular interval <strong>of</strong> protein loading was reported by F erncmdes er al. [34] and Chen<br />

er al. [35].<br />

86


. : K: ;<br />

7 1 i 2 I 3 l 4 l 5i<br />

Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

Fig. 4.3.4 shows <strong>the</strong> recovery <strong>of</strong> <strong>the</strong> enzyme activity up<strong>on</strong> <strong>the</strong> additi<strong>on</strong> <strong>of</strong> enzyme to<br />

support. The maximum activity is shown by enzyme immobilized <strong>on</strong> EBlwith activity <strong>of</strong><br />

more than 6 EU.<br />

6 _ '\<br />

2_<br />

Initial protein (mg)<br />

-0- EB1<br />

—A— EB2<br />

Fig. 4.3.4 Effect <strong>of</strong> initial protein amount <strong>on</strong> <strong>the</strong> activity<br />

<strong>of</strong> immobilized enzynie.<br />

Table 4.3 also shows this immobilizati<strong>on</strong> yield, activity yield and immobilizati<strong>on</strong><br />

efficiency for <strong>the</strong> enzymes and it can be observed that high immobilizati<strong>on</strong> effieieney was<br />

obtained for EB1 (42.4%). These values show that <strong>the</strong> covalent coupling <strong>of</strong> amylase to<br />

glutaraldehyde linked EB1 through <strong>the</strong>ir free amino groups, provided immobilized<br />

derivatives with good enzymatic activities. But in all eases activity yield less than <strong>on</strong>e,<br />

which was expected as usual after enzyme immobilizati<strong>on</strong> as a result <strong>of</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

changes, shear and n<strong>on</strong> productive binding [1 1].<br />

87


Chapter 4 gg 7 Immobilizati<strong>on</strong>g<strong>of</strong> Diastase a-argnylgase<br />

4.3.2 Effect <strong>of</strong> pH <strong>on</strong> enzyme activity<br />

As a result <strong>of</strong> immobilizati<strong>on</strong> <strong>the</strong> pH optimum and <strong>the</strong> activity curve for enzyme<br />

may change depend up<strong>on</strong> <strong>the</strong> i<strong>on</strong>ic c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> its immediate envir<strong>on</strong>ment. Hence, <strong>the</strong> pH<br />

<strong>of</strong> <strong>the</strong> assay medium was altered from 4 to 8 and <strong>the</strong> resulting effect <strong>on</strong> <strong>the</strong> enzyme<br />

activities were measured (fig.4.3.5).<br />

v 7?/li§§\ v<br />

1: i 2/ \\;<br />

‘ —0—- Free<br />

—O—~ EB<br />

—A-— E81<br />

"-*V— EB2<br />

-r —|—' | "1 -1 - is I<br />

4 5 6 7 B<br />

pH<br />

Fig. 4.3.5 Effect <strong>of</strong> pH <strong>on</strong> {he activity Qffree and<br />

1'mm0bz'/ized a-amylase.<br />

Immobilized enzymes showed its optimum activities at pH 5.5. Within <strong>the</strong> range <strong>of</strong><br />

pH 4.0-7.5, <strong>the</strong> pH pr<strong>of</strong>ile for both free and immobilized <strong>on</strong> EB2 a-amylase were very<br />

similar. Compared to <strong>the</strong>m amylase immobilized <strong>on</strong> EB and EB] exhibited higher activity<br />

above pH 6.0 and lower activity below pH 5.0. This indicated that <strong>the</strong> immobilizati<strong>on</strong><br />

procedure improved <strong>the</strong> stability <strong>of</strong> a-amylase appreciably particularly in <strong>the</strong> alkaline<br />

regi<strong>on</strong>. A possible explanati<strong>on</strong> <strong>of</strong> <strong>the</strong> results obtained is that immobilizati<strong>on</strong> <strong>on</strong> <strong>the</strong>se<br />

supports may be created some sec<strong>on</strong>dary interacti<strong>on</strong>s like hydrogen b<strong>on</strong>ding, i<strong>on</strong>ic and<br />

polar interacti<strong>on</strong>s between enzyme and polymeric matrix which cause c<strong>on</strong>formati<strong>on</strong>al<br />

changes in <strong>the</strong> enzyme molecules resulting in changes <strong>of</strong> protein’s charge [17, 41].<br />

89


__ A Qtudy <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> Enzy_mes <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> V _<br />

4.3.3 Effect <strong>of</strong> temperature <strong>on</strong> activity<br />

<strong>Enzymes</strong> are sensitive to temperature changes. The effect <strong>of</strong> temperature <strong>on</strong> relative<br />

enzyme activity is illustrated in fig. 4.3.6. Up<strong>on</strong> immobilizati<strong>on</strong> <strong>on</strong> EB <strong>the</strong> optimum<br />

temperature for <strong>the</strong> activity <strong>of</strong> amylase is decreased from 50 "C to 40 °C. This indicates that<br />

less energy <strong>of</strong> activati<strong>on</strong> required for immobilized enzyme, or higher temperatures favor <strong>the</strong><br />

formati<strong>on</strong> <strong>of</strong> some multiple linkages between support and enzyme leading to a decrease in<br />

<strong>the</strong> activity <strong>of</strong> <strong>the</strong> enzyme [51].<br />

100- I<br />

O<br />

9 if t<br />

-f-'-— —Free \’<br />

— —EB2<br />

30 40 50 BO<br />

Temperature (°C)<br />

4.3.4 Effect <strong>of</strong> temperature <strong>on</strong> stability<br />

i — —EB1 —EB <strong>of</strong><br />

* ‘—i——~ | ' - -e | '<br />

Fig. 4. 3.6 Effect Qflemperature <strong>on</strong> <strong>the</strong> activity <strong>of</strong> free<br />

and immobilized a-amylase.<br />

The effect <strong>of</strong> temperature <strong>on</strong> <strong>the</strong> stability <strong>of</strong> <strong>the</strong> free and immobilized 01-amylase is<br />

shown in fig. 4.3. 7. The stability <strong>of</strong> <strong>the</strong> a-amylase is str<strong>on</strong>gly dependent <strong>on</strong> temperature and<br />

<strong>the</strong> activity <strong>of</strong> <strong>the</strong> or-amylase shows a more critical temperature dependence at temperatures<br />

above <strong>the</strong> optimum temperature. The free and immobilized amylases retain <strong>on</strong>ly less than<br />

30 % <strong>of</strong> <strong>the</strong>ir optimum activities at temperature above 60 °C. The temperature stability <strong>of</strong><br />

90


Qhapter 4 _ Immobfilizati<strong>on</strong>pf Dlastase a amylase___<br />

both free and immobilized enzyme with respect to <strong>the</strong> preineubati<strong>on</strong> t1me at <strong>the</strong>1r opnmum<br />

temperature is shown in <strong>the</strong>/ig.4. 3.8.<br />

100<br />

7<br />

J<br />

Q<br />

O<br />

—Free ‘<br />

O<br />

— EB 0<br />

30<br />

- EB1<br />

- EB2 1 * 40 F_' 50 7 60I<br />

Temperature (°C)<br />

Fig. 4.3. 7 Efléc-I Qflenrperanwe <strong>on</strong> (he stab?/i/J’ Qffree<br />

and inmzobilizcd a—am_1-*la.ve.<br />

1DOJ A<br />

% i—_:Q=.-_.;—-2<br />

o%0__._.-o%O_;ai;1>0 °C<br />

\_.EB1<br />

O\.<br />

-IEB — Free .““-~. \ , at5O°C<br />

- -EB2 \<br />

- 1 - r - 1 - r<br />

so so 90 120<br />

Time (minutes)<br />

F ig. 4.3.8 Ejfccl Qfpreincubati<strong>on</strong> linze <strong>on</strong> {he acn'wT!_1-' Q<br />

flee and immobilized a-umy/a.s"e at oprimum zenzpemnu'e*<br />

9|


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> om <strong>Polymeric</strong> gSupp0rtslg__<br />

The results suggested that <strong>the</strong> immobilized amylase holds much more excellent heat<br />

resistance than that <strong>of</strong> <strong>the</strong> free enzyme. Almost 90 % <strong>of</strong> immobilized enzymes retained<br />

<strong>the</strong>ir activity after 120 minutes <strong>of</strong> heat treatment, while free enzyme could retains <strong>on</strong>ly 30<br />

% <strong>of</strong> its initial activity.<br />

An explanati<strong>on</strong> for <strong>the</strong> difference in temperature activity pr<strong>of</strong>iles between <strong>the</strong> free<br />

and immobilized amylase is that <strong>the</strong> latter is less susceptible to temperature-induced<br />

c<strong>on</strong>formati<strong>on</strong>al changes after immobilizati<strong>on</strong> <strong>on</strong> EB powders. The decrease <strong>of</strong> relative<br />

activity <strong>of</strong> <strong>the</strong> free enzyme was probably due to its <strong>the</strong>rmal denaturati<strong>on</strong>, while <strong>the</strong> relative<br />

activity <strong>of</strong> <strong>the</strong> immobilized a/-amylase decreased slowly because <strong>of</strong> some protecti<strong>on</strong>s <strong>of</strong> <strong>the</strong><br />

carrier for <strong>the</strong> immobilized enzyme [26]. lt was also suggested that [11] immobilizati<strong>on</strong> can<br />

help to distribute <strong>the</strong> <strong>the</strong>rmal energy imposed to <strong>the</strong> protein at higher temperatures.<br />

4.3.5 Kinetic c<strong>on</strong>stants<br />

Kinetic parameters, <strong>the</strong> Miehaelis c<strong>on</strong>stant Km and <strong>the</strong> I/max for free and<br />

immobilized a-amylases were determined using soluble starch as substrate and are<br />

summarized in table 4.4. In <strong>the</strong> free and immobilized enzyme preparati<strong>on</strong>s, Michaelis­<br />

Menten kinetic behavior was observed. The Lineweaver-Burk plots and Hanes-Woolf plots<br />

for <strong>the</strong> immobilized 0:-amylases are presented in fig. 4.3.9. For <strong>the</strong> free enzyme, Km was<br />

found to be 0.46 mg ml.” whereas V,,,,,, was calculated as 7.95 EU ,ug'l proteins. Kinetic<br />

c<strong>on</strong>stants <strong>of</strong> <strong>the</strong> immobilized amylase were also detemiined in <strong>the</strong> batch system. The Km<br />

values were found to be as 4.58, 1.99, 1.03 mg ml." for adsorbed, glutaraldehyde coupled<br />

and ascorbic acid coupled enzymes respectively. The V,m,, values <strong>of</strong> immobilized enzyme<br />

for adsorbed, glutaraldehydc and ascorbic acid activated preparati<strong>on</strong>s were estimated from<br />

<strong>the</strong> data as 2.23, 3.8 and 2.48 EU pg” protein <strong>of</strong> immobilized enzyme <strong>on</strong>to <strong>the</strong> emeraldine<br />

base, respectively. ln this <str<strong>on</strong>g>study</str<strong>on</strong>g>, as expected, <strong>the</strong> Km and I/',,m values were significantly<br />

affected after immobilizati<strong>on</strong> <strong>of</strong> amylase <strong>on</strong>to emeraldine base. These effects were more<br />

pr<strong>on</strong>ounced when enzyme physically adsorbed <strong>on</strong> <strong>the</strong> support. The change in <strong>the</strong> affinity <strong>of</strong><br />

<strong>the</strong> enzyme to its substrate is probably caused by structural changes in <strong>the</strong> enzyme<br />

introduced by <strong>the</strong> immobilizati<strong>on</strong> procedure and by lower accessibility <strong>of</strong> <strong>the</strong> large<br />

92


Chapter 4 L Immobilizati<strong>on</strong> <strong>of</strong> Djastase a-amylase<br />

1 1 - a<br />

<strong>of</strong> <strong>the</strong> active site, which might hinder <strong>the</strong> active site for binding <strong>the</strong> substrates [52].<br />

substrate to <strong>the</strong> active site <strong>of</strong> <strong>the</strong> immobilized enzyme. Since immobilizati<strong>on</strong> process does<br />

not c<strong>on</strong>trol proper orientati<strong>on</strong> <strong>of</strong> <strong>the</strong> enzyme <strong>on</strong> <strong>the</strong> support, this may change <strong>the</strong> property<br />

4- I2\1 . .<br />

§2_H - ­<br />

r_<br />

-0.5 /<br />

+1, /<br />

Aco us / 3 ' ‘ti '1 3 4:<br />

10<br />

5° 5'<br />

3-F '<br />

I I ‘<br />

1 2 2 1 D 1 2<br />

~- 5.<br />

11 Eu<br />

0.5-H<br />

2.)<br />

‘ 1 II - 1 ' it I<br />

U 4 8 10 U5 00 O5 10<br />

1 {[80] [501<br />

Fig. 4.3.9 Lineweavar-Bzzrk plots (I ) and Hcmes- W00{fpl0!s (II)_fbr a-amylase immobilized <strong>on</strong> EB<br />

(a), EB] (b) and EBZ (0).<br />

93


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

Table 4.4 Kinetic c<strong>on</strong>stantsfor <strong>the</strong> a-amylase immobilized <strong>on</strong> emeraldine base.<br />

FY99 EB EBI EB2<br />

enzyme<br />

K... (mg mu‘) 0.46 1 0.09 4.58 i 0.05 1.99 :1: 0.04 1.03 :t 0.06<br />

V,,,,, (EU pg‘ protein) 7.95 ¢ 0.05 2.23 :t 0.03 3.8 i 0.05 2.48 :t 0.09<br />

4.3.6 Storage stability<br />

Stability for l<strong>on</strong>g term storage is <strong>on</strong>e <strong>of</strong> <strong>the</strong> important parameters to be c<strong>on</strong>sidered in<br />

enzyme immobilizati<strong>on</strong>. The immobilizati<strong>on</strong> <strong>of</strong> enzyme to a support <strong>of</strong>ten limits its<br />

freedom to undergo drastic c<strong>on</strong>formati<strong>on</strong>al changes, and hence results in increased stability<br />

towards denaturati<strong>on</strong>. In general <strong>the</strong> enzymes soluti<strong>on</strong>s are not stable during storage.<br />

Storage stabilities <strong>of</strong> free and immobilized enzymes were studied at 4 °C is depicted in fig.<br />

4.3.10.<br />

S<br />

Z EB<br />

1°°— E W//% EB1<br />

- "- '—<br />

E EB2<br />

VI ' :::: '"' "' —I| 2 III| .--I I22: 222! 0 III!<br />

IIII -21 §§§ :::: :22: : ::::<br />

II<br />

I<br />

III| I." IIII III‘<br />

III! -n, ..-| u I .-M IIII out<br />

III II<br />

01 —_ IIIo..., I‘-; III! III III|<br />

M<strong>on</strong>th<br />

-IIIIII IIII II U‘ II<br />

1222! 12!<br />

Fig. 4.3.10 Storage stabilities <strong>of</strong> bound a-amylase<br />

stored at 4 “C.<br />

94


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

Free amylase soluti<strong>on</strong> stored at 4 °C lost its original activity within 2 days, while<br />

immobilized enzymes stored in semi-dry c<strong>on</strong>diti<strong>on</strong> at 4 °C retained above 60 % <strong>of</strong> its<br />

activity after a period <strong>of</strong> 3 m<strong>on</strong>ths. The covalently coupled enzymes stored at 4 °C lost<br />

nearly 50 % <strong>of</strong> <strong>the</strong>ir activity, but <strong>the</strong> adsorbed enzyme stored at 4 °C lost about 80 % <strong>of</strong> its<br />

activity afier 6 m<strong>on</strong>ths storage. Bayramoglu et al. reported [29] <strong>the</strong> enhanced stability <strong>of</strong> a­<br />

amylase when immobilized <strong>on</strong> reactive polymer membranes. Hence it is clear that<br />

immobilizati<strong>on</strong> definitely held <strong>the</strong> enzyme in a stable positi<strong>on</strong> in comparis<strong>on</strong> to <strong>the</strong> free<br />

counterpart.<br />

4.3.7 Activity after various cycles<br />

In order to check <strong>the</strong> reusability <strong>of</strong> <strong>the</strong> immobilized enzymes, <strong>the</strong> system was<br />

submitted to ten c<strong>on</strong>secutive<br />

B2<br />

reacti<strong>on</strong> cycles. The results (fig. 4.3.11) indicate that <strong>the</strong><br />

catalytic activity <strong>of</strong> <strong>the</strong> immobilized enzyme is durable under repeated use. Thus, <strong>the</strong><br />

immobilized enzyme is able to maintain good starch hydrolysis above 60 % even after five<br />

runs.<br />

1 -" I:|<br />

I EB W///A EB1<br />

..I In III<br />

ill ..| III : - -.. "' an 3:2 Ill 9" ggg<br />

III ‘I, III gm ‘M -.| III III<br />

-— Ill III Ill II‘ III III Ingm<br />

I an III III In an -I, ‘I, --| -. <strong>on</strong> II It -.| In ,<br />

|<br />

'1 not<br />

an In Hi III III -. -:: " III -, ::: III II I ' : I :1 lo II 1,<br />

'<br />

III . ..‘ 0 II III 0 III 'l| I ‘ III I III 1 I III I . III ..| , : , I.‘ '|<br />

I ll<br />

'3 7 ::' "' II ' Iv , ::: In 0:: 1 um l ::lI<br />

50 1 :: .. ::: : ::­<br />

. III - I -II ::: In III ::: -.| ..I --' am ..' - I : | |<br />

'<br />

01 IV ::: "' ..| In III ¢ '5' 1:<br />

'<br />

' I I‘ III :9: --I III -‘I in III ll II I4 III -U "' ' ' ‘ I am III um gm ' I | 1.<br />

|<br />

—- '5' nu ll nun III ' \ an III <strong>on</strong> --, gm In no Ill .,, "ll III um -I, .., an III II -‘I II :‘ -‘I ' III an ' II III I,<br />

, ,<br />

I" Ilt I" Ilv I"<br />

' In III II‘ not III "' " , nu ' III II ' ' |<br />

lI' In III l Ill nun III III III an in lo: gm In "' In "' --, an III "' I um ' In ' um u I I n0<br />

I,<br />

|<br />

‘<br />

III Ill "' an III "' III III in not III --| I, ‘I ' III 1 pm 1 III 1 I-I III um gm In "l Ill ‘N "' -., "' III I‘, an In |<br />

|<br />

III an In an III <strong>on</strong> an ., um 1 | In um an a._,<br />

'.|<br />

O ii? iii iii ii ::: ,::: : 10<br />

Number <strong>of</strong> cycles<br />

Fig. 4.3.11 Relative activity <strong>of</strong> <strong>the</strong> immobilized<br />

a-amylase after repeated use.<br />

95


Y Z3’ Y PP<br />

A Stud <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> En mes <strong>on</strong> Pol meric Su orts<br />

There was no drastic decrease in percent hydrolysis by covalently coupled enzymes,<br />

especially coupled with glutaraldehyde even after ten uses, due to reducti<strong>on</strong> <strong>of</strong> enzyme<br />

leakage from <strong>the</strong> support. This result suggests that <strong>the</strong> covalently immobilized amylase is<br />

more stable <strong>on</strong> <strong>the</strong> polyaniline surface. Similar to this, Sadhukhan et al. [53] reported that<br />

<strong>the</strong> activity loss <strong>of</strong> immobilized a-amylase was 40 % after <strong>the</strong> sixth cycle, whereas<br />

Bayramoglu er al. reported [54] that 0:-amylase film strip hardened with chromium sulphate<br />

was able to retain 41.2 % <strong>of</strong> activity after 20 I'l1I'lS. It should be noted that this high<br />

operati<strong>on</strong>al stability could significantly reduce <strong>the</strong> operati<strong>on</strong> cost in practical applicati<strong>on</strong>s.<br />

A big advantage gained with this immobilizati<strong>on</strong> is <strong>the</strong> washing, reusing possibility and<br />

l<strong>on</strong>g term storage in semi-dry c<strong>on</strong>diti<strong>on</strong> without much activity loss.<br />

4.4 Immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> Poly(o-toluidine) Salt<br />

4.4.1 Enzyme immobilizati<strong>on</strong> parameters<br />

The effect <strong>of</strong> pH <strong>of</strong> immobilizati<strong>on</strong> medium <strong>on</strong> <strong>the</strong> enzyme activity is shown in fig.<br />

4.4.1. The best pH for immobilizati<strong>on</strong> was observed in <strong>the</strong> range <strong>of</strong> 5-5.5, since most <strong>of</strong><br />

free amylase taken for immobilizati<strong>on</strong> is less stable above and below this pH range.<br />

_<br />

100 -—“'1': ' / | S1<br />

p§ -1.3.0 4<br />

r.;.;.;. .. ...... A..<br />

-:~:-:-. r:-:-:-:-:-:-:~:-:- I S2<br />

Q<br />

O<br />

Q<br />

Q<br />

.<br />

-,',~,*_ I'Z'Z~I ‘Q'Q'Q'< '<br />

- 'Q'Q‘Q‘- . ~ . ~ ~ . ‘Q'Q'Q'<<br />

,-,-,~. . .;.;.;. ‘"5" .<br />

, -:-:-:~<br />

'Q'Q'-‘- Q°Q'-‘- ¢,*,',* - - - .;.;.;. 0 ' ' 4<br />

rI~I'I~Z<br />

I-1'1-1 n I ' . V . . ‘ . . I , , Q I , O Q ,~,~,'<br />

. . Q Q - Q_ I Q , . -3,‘, ‘ . Q_<br />

i O:O:1:1 .:.:Q:Q_ .O'0‘I‘ , ­<br />

OIO1 I I ._ _. --QQ I . . ,3’), , , ,<br />

Q<br />

‘Q'Q'Q I‘D.I.\ Q Q ~ ‘I‘0.0' Q'Q‘Q'-<br />

Q Q_Q_ 3,‘), '<br />

,',',',<br />

' ' '<br />

I.I.I.| I.O~I.\ .I‘I.i. .Q.I‘I‘ ,¢,¢,¢,<br />

I1 Q'Q‘Q‘- ‘Q‘Q'Q I I I . Q Q -I , ,:,:,:,<br />

Q'Q'Q‘. ‘Q‘Q'-‘ 3,0,", 3,0,4 , , , _ . . . I ,I,',¢, Q Q - Q . Q . Q Q - . , Q , ,­<br />

Q'Q'Q‘. . ‘pp, . . ‘I.O'l' - Q_Q_Q_< :-:-:»: 'Q‘Q'Q' 0 Q °,' I ~ Q . I<br />

~ ~ ~ 2 - - ' 'Q'Q -:-:-:­ Q‘ *Q'Q‘Q'. ~<br />

QQ-- .0.0-O‘ ‘,_,_,_ ,,, ,,,, ,_,-,_, 0.0.0.1 .QQQ --Q. Q.-.5. _-.5... '34,‘, .QQQ -.5.-.l‘ 4.I.I.l‘<br />

III1 0 Q '1' ' Q ' '10- ' I QQQ ~ Q I Q QQQ ' Q Q ‘,,¢,', < ,~ u'Q'Q< I . » Q v 1"; '0" I ~<br />

an I:O:8:| O Q . Q Q O 4 . . -,-.-,- . . I Q -,-.5-_ I - Q ,:,:.:. Q . > :.:,:.: , _­<br />

‘I.t.6 l.Q-O.I Q , Q I Q_ 5 I 0.3-; 9,0,‘, ' I ' . - ‘A,-,1, °,°,~,' 9 O 5 ‘ »'Q'Q'Q‘ Q ‘I"‘l. I.O.4'I . I...I‘¢ 'Q‘I , >I.I'I , O. ­1<br />

— :-:-:-. - ‘.'.-.2 I QQQ l Q .;.;.;- . 4" I I Orv‘ Q ;-3-;- - - QQQ :-:-:-. Q 2-2~I-. I _I‘I:O:I<br />

,;.;.;. Q Q ¢ Q ~.*.-.- 4 ~_-.-.- Q ~ .-.-.-. 'l.Q.Q. - Q Q .;.;.;. I . I Q - I .;.;.;.; Q -.-.'.­ Q QI<br />

\:I:I:I‘ ..,.‘ :¢:I:~: III ‘r:~:v:< QQQ< \:I.I:O. ~,' ‘Q:Q:Q:­<br />

‘.;.;.;. Q Q Q ._._._. - Q’0.0.4 ._._._._ -.355 i.-.-.-. Q'Q'Q .~.-,-,­ 4 .°,',',' '<br />

'Q ‘Q'Q'Q'. ' ' Q ‘. Q ~ Q‘Q'. Q_Q ~,~,¢_- Q ‘Q'


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

The time necessary for irmnobilizati<strong>on</strong> <strong>of</strong> a-amylase is shown in fig. 4.4.2. The<br />

figure shows significant differences in <strong>the</strong> immobilized enzyme activity up to 30-60<br />

minutes. After this point, a decrease in activity retenti<strong>on</strong> was observed. Apparently, <strong>the</strong><br />

immobilizati<strong>on</strong> reacti<strong>on</strong> occurred in <strong>the</strong> first 30-60 minutes. C<strong>on</strong>tact with <strong>the</strong> free enzyme<br />

in <strong>the</strong> soluti<strong>on</strong> and those iimnobilized after a particular time may produce layers <strong>of</strong><br />

adsorbed enzyme that presents lower activity than those covalently immobilized in <strong>the</strong> first<br />

minutes. Ano<strong>the</strong>r possibility was pointed out that increasing <strong>the</strong> c<strong>on</strong>tact <strong>of</strong> enzyme and<br />

support might promote multiple b<strong>on</strong>ds and result in enzyme deformati<strong>on</strong>s, compromising<br />

<strong>the</strong> active site integrity [55].<br />

100- TS1 ITS<br />

TS2<br />

I . . . . .<br />

01 . Z -.1 '


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

&lI<br />

01<br />

‘<br />

J 1 If-i*I/I-—-—'-"""'_"'<br />

1 2 3 4 5<br />

Initial protein (mg)<br />

—I-— TS<br />

-—o— TS1<br />

—A— T82<br />

* *—| --1 I I ‘I<br />

Fig. 4.4.3 Variati<strong>on</strong> <strong>of</strong>prolein loading relative to<br />

<strong>the</strong> inilial amount <strong>of</strong> protein taken.<br />

In <strong>the</strong> case <strong>of</strong> ascorbic acid activated po1y(0-toluidinc) <strong>the</strong> relative activity <strong>of</strong><br />

immobilized a-amylase was increased by increasing <strong>the</strong> amount <strong>of</strong> protein in <strong>the</strong> soluti<strong>on</strong><br />

up to 4 mg, as shown infig. 4.4.4.<br />

—I—TS­<br />

-—-— TS1 ‘<br />

-A— TS2 4<br />

I -fi I lily I j I ':‘— I 7‘ it ll<br />

1 2 3 4 5<br />

Initial amount <strong>of</strong> protein(mg)<br />

Fig. 4.4.4 Influence <strong>of</strong>iniliai protein c<strong>on</strong>cemrali<strong>on</strong><br />

<strong>on</strong> <strong>the</strong> acrivilj-' <strong>of</strong> immobilized enzjvme.<br />

98


_ “Study <strong>on</strong> <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

When more enzymes were added, <strong>the</strong> amount <strong>of</strong> protein bound <strong>on</strong> <strong>the</strong> TS2 surface<br />

increased, but <strong>the</strong> activity per mg <strong>of</strong> protein did not increase any fur<strong>the</strong>r. This suggests that<br />

a higher coverage <strong>of</strong> protein could ei<strong>the</strong>r hide or damage some active sites <strong>of</strong> <strong>the</strong><br />

immobilized enzymies and thus lead to a decline in total activity. The adsorbed enzyme <strong>on</strong><br />

TS could incorporate <strong>on</strong>ly a small amount <strong>of</strong> enzyme around 0.3 mg in <strong>the</strong> saturati<strong>on</strong> level.<br />

The maximum activity yield was 15.9, which has highest value for immobilizati<strong>on</strong><br />

efficiency <strong>of</strong> 53 % indicated that most <strong>of</strong> <strong>the</strong> immobilized enzymes retained <strong>the</strong>ir original<br />

activity.<br />

In <strong>the</strong> literature <strong>the</strong>re are many different loading values available for different<br />

supports with various levels <strong>of</strong> activity retenti<strong>on</strong> for 0:-amylase immobilizati<strong>on</strong>. For<br />

example coupling capacities were reported as 3 and 29 mg" g respectively, <strong>on</strong> polystyrene<br />

and silica based supports [21], 25-90 mg g"l for celluloic supports [56] and 94 mg g'l for<br />

UV curable polymeric materials [57].<br />

4.4.2 Effect <strong>of</strong> pH <strong>on</strong> <strong>the</strong> activity <strong>of</strong> free and immobilized a-amylase<br />

The effect <strong>of</strong> pH <strong>on</strong> <strong>the</strong> activity <strong>of</strong> free and immobilized 0:-amylase in starch<br />

hydrolysis was determined in <strong>the</strong> pH range 4.0-7.0 and <strong>the</strong> results are presented in fig.<br />

4.4.5. The optimum activity for free enzyme was observed for both at pH 5 and 5.5. Similar<br />

to our previous results <strong>of</strong> immobilizati<strong>on</strong> <strong>on</strong> PAN], <strong>the</strong> optimum pH value <strong>of</strong> a-amylase<br />

narrowed to a single value <strong>of</strong> 5 and 5.5, after immobilizati<strong>on</strong> via adsorpti<strong>on</strong> and covalent<br />

coupling <strong>on</strong> <strong>the</strong> poly(o-toluidine), respectively. lt is said that polyi<strong>on</strong>ic matrices cause <strong>the</strong><br />

partiti<strong>on</strong>ing <strong>of</strong> prot<strong>on</strong>s between <strong>the</strong> bulk phase and <strong>the</strong> enzyme mieroenvir<strong>on</strong>ment causing a<br />

shift in <strong>the</strong> optimum pH value, and shift depends <strong>on</strong> <strong>the</strong> method <strong>of</strong> immobilizati<strong>on</strong> as well<br />

as <strong>on</strong> <strong>the</strong> structure and charge <strong>of</strong> <strong>the</strong> matrix [29, 41, 58, 59]. Usually <strong>the</strong> shift <strong>of</strong> pH<br />

optimum to <strong>the</strong> acidic side is explained with increase <strong>of</strong> positive charge. As a result <strong>of</strong> that<br />

<strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> H+ i<strong>on</strong>s in <strong>the</strong> mieroenvir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> immobilized enzyme decreases<br />

which means that <strong>the</strong> pH <strong>of</strong> <strong>the</strong> immobilized enzyme regi<strong>on</strong> is more alkaline than that <strong>of</strong><br />

<strong>the</strong> external soluti<strong>on</strong>. Since <strong>the</strong> effect <strong>of</strong> pH <strong>on</strong> <strong>the</strong> enzyme activity is expressed based <strong>on</strong><br />

100


Chapter} immobilizati<strong>on</strong> <strong>of</strong>Diastase q—amvlase<br />

<strong>the</strong> pH <strong>of</strong> <strong>the</strong> extemal soluti<strong>on</strong>, which in this case decreases, <strong>the</strong> pH optimum shifts to <strong>the</strong><br />

acidic side [7].<br />

100-’<br />

-—n ­<br />

.. I<br />

4.4.3 Effect <strong>of</strong> temperature <strong>on</strong> activity<br />

ll —0—Free °<br />

—o— TS *<br />

0—~ -A— TS1<br />

—v— TS2<br />

4 5 6 I<br />

4 I " " “—| ' I“ W ' “‘<br />

pH<br />

Fig. 4.4.5 E_[]ecrt Qfpl-I <strong>on</strong> <strong>the</strong> acliirily Qffice and<br />

inmiobi/ized a-am_1=1a,s'e.<br />

Optimum activity for free and both immobilized preparati<strong>on</strong>s were observed at 50<br />

“C and 40 "C, respectively (fig. 4.4.6). Such significant change <strong>of</strong> temperature optimum<br />

after immobilizati<strong>on</strong> <strong>of</strong> amylase has also been reported by o<strong>the</strong>r authors [26, 30, 41].<br />

Compared with <strong>the</strong> free a-amylase immobilized <strong>on</strong>e exhibited lower activity at temperature<br />

above 40 “C. Probably up<strong>on</strong> immobilizati<strong>on</strong> c<strong>on</strong>formati<strong>on</strong>al changes in <strong>the</strong> enzyme<br />

molecules occurred that favored amylase activity at temperature 40 “C. On <strong>the</strong> o<strong>the</strong>r hand,<br />

<strong>the</strong>se changes caused decreasing <strong>of</strong> <strong>the</strong> immobilized enzyme catalytic activity in <strong>the</strong><br />

interval 45-60 “C compared to <strong>the</strong> free enzyme. In general, <strong>the</strong> effect <strong>of</strong> changes in<br />

temperature <strong>on</strong> <strong>the</strong> rates <strong>of</strong> enzyme-catalyzed reacti<strong>on</strong>s does not provide much informati<strong>on</strong><br />

<strong>on</strong> <strong>the</strong> mechanism <strong>of</strong> biocatalysts. However, <strong>the</strong>se effects can be important in indicating<br />

structural changes in enzyme.<br />

l0l<br />

7


__ d i A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> Stlpports<br />

4.4.4 Thermal stability<br />

ta ;/ V<br />

‘ —0— Free<br />

—O—TS<br />

—A—TS1<br />

—v— TS2<br />

t *1 1 t<br />

30 40 50 60<br />

Temperature (°C)<br />

Fig. 4. 4. 6 Effect <strong>of</strong> temperature <strong>on</strong> Ihe activity <strong>of</strong>free<br />

and immobilized 0:-amylase.<br />

Fig. 4.4.7 represents <strong>the</strong> stability <strong>of</strong> free and immobilized enzymes at elevated<br />

temperatures, which is recorded by measuring enzyme activity after 111Cl.lb8Il0l'l <strong>of</strong> enzyme<br />

in buffer for l h at different temperatures.<br />

a4'\~<br />

\i<br />

n-Q<br />

_<br />

100<br />

50<br />

" —%A 0<br />

. O—TS<br />

‘ A—TS1 -0- Free v<br />

0. 1 V ~ ,e J<br />

--V'—TS2<br />

- ~ 1 - 1 - — e<br />

so 40 so 60<br />

Temperature (°C)<br />

F ig. 4.4. 7 Effect <strong>of</strong>tcmperarure <strong>on</strong> {he .s'tabi/:'!_1> Qfrhe<br />

_/Pee and immobilized a-amy/asc.<br />

102


Chapter 4 pg g _ Immobilizati<strong>on</strong> 0f_Diastase qgamylase<br />

l- - m<br />

Q5 %ix‘_%__‘—_'_‘mA--—'-'-"“1_<br />

':<br />

v 8i—v"-*‘°'Rv~»*v—" O LOLO4-9<br />

. I \ I .\.<br />

90 "' I \ O*% 0&0 3! 40 OC<br />

. —O---- Free \<br />

_V_ —A-— T52 TS1 at§0 X<br />

0 30 eo 90 120 “q<br />

Time (minutes)<br />

30 -P - ~ - 5;! - n *- ii<br />

Fig. 4.4.8 Variati<strong>on</strong> <strong>of</strong>activity Qfenzymes relative to<br />

preincubati<strong>on</strong> time at <strong>the</strong>ir optimum temperature.<br />

At 40 "C immobilized enzymes showed good stability hence good activity than free<br />

enzyme, after that <strong>the</strong>ir stability decreased. From <strong>the</strong> fig. 4.4.8 it is clear that immobilized<br />

enzymes are retaining more than 90 % activity at <strong>the</strong>ir optimum temperature even after 120<br />

minutes <strong>of</strong> incubati<strong>on</strong>. As it is evident from <strong>the</strong> fig. 4.4.7 and fig. 4.4.8 <strong>the</strong> immobilized<br />

enzyme possessed a better he-at-resistance than free enzyme. Probably this can also be<br />

explained by <strong>the</strong> fact that <strong>the</strong> immobilizati<strong>on</strong> procedure could protect <strong>the</strong> enzyme active<br />

c<strong>on</strong>formati<strong>on</strong> from distorti<strong>on</strong> or damage by heat exchange [60].<br />

4.4.5 Kinetic parameters <strong>of</strong> <strong>the</strong> amylase immobilized <strong>on</strong> TS<br />

The values <strong>of</strong> Km and I/max were calculated from Linewcaver-Burk and Planes­<br />

Woolf plots (fig. 4.4.9). As seen from <strong>the</strong> table 4.6, <strong>the</strong> calculated Km for <strong>the</strong> immobilized<br />

enzymes were 6.35, 1.57 and 2.95 mg mL" <strong>on</strong> TS, TSl and TS2 respectively, which are<br />

higher than that <strong>of</strong> free enzyme (0.46 mg mljl); whereas <strong>the</strong> I/ma,‘ <strong>of</strong> immobilized enzyme<br />

<strong>on</strong> <strong>the</strong> toluidine were 4.2, 3.08 and 2.68 EU pg" protein <strong>on</strong> TS, TSl and TS2 which are<br />

smaller than that <strong>of</strong> <strong>the</strong> free enzyme (7.95 EU ,ug'l protein). These data indicated that<br />

lO3


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

affinity between immobilized enzyme and substrate decreased in comparis<strong>on</strong> with free<br />

enzyme.<br />

‘ ll<br />

II<br />

I<br />

2° 2. 5­<br />

. 9 .<br />

an<br />

' v4<br />

10- I<br />

5.<br />

02 n / | O0 ' 1I[S'] I 02 O4 [SJ 4<br />

»<br />

O<br />

b 2' 51 '<br />

20­<br />

10' ‘-10<br />

/I o w 1 2 I ,/ o<br />

2<br />

148.1 18.1<br />

4 (3<br />

Q‘.<br />

5<br />

I 2­E 2<br />

I ll<br />

04 . . 00 04 . ms; oa 12 a [s,1 2 1 ' 6 ' 1 2<br />

Fig. 4.4.9 Lineweaver-Burk plots (I) and Hanes- Woolf plots (II) for a-amylase immobilized <strong>on</strong> TS<br />

(a) TSI (b) and TS2 (c).<br />

This might be related to diffusi<strong>on</strong> barriers and steric effects, c<strong>on</strong>formati<strong>on</strong>al<br />

changes, or <strong>the</strong> new microenvir<strong>on</strong>ment effects [42, 61]. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> change in<br />

104


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

affinity could be also owing to <strong>the</strong> structural changes caused by enzyme immobilizati<strong>on</strong><br />

<strong>on</strong>to <strong>the</strong> supports, and hence resulted in <strong>the</strong> lower accessibility <strong>of</strong> <strong>the</strong> substrate to <strong>the</strong> active<br />

sites <strong>of</strong> <strong>the</strong> immobilized enzyme [62].<br />

Table 4.6 Kinetic c<strong>on</strong>stants for free and immobilized a-amylase.<br />

Free TS TSl TS2<br />

enzyme<br />

Km (mg mL") 0.46 :1: 0.01 6.35 i 0.05 1.57 i 0.04 2.95 :t 0.09<br />

V,,,,, (EU pg‘ protein) 7.95 i 0.05 4.2 1 0.03 3.08 1 0.08 2.68 :1: 0.08<br />

4.4.6 Storage stability<br />

The stability <strong>of</strong> an immobilized enzyme is dictated by many factors such as <strong>the</strong><br />

number <strong>of</strong> b<strong>on</strong>ds formed between <strong>the</strong> enzyme and support, <strong>the</strong> nature <strong>of</strong> <strong>the</strong> b<strong>on</strong>ds, <strong>the</strong><br />

degree <strong>of</strong> c<strong>on</strong>finement <strong>of</strong> enzyme molecules in <strong>the</strong> matrix, and <strong>the</strong> immobilizati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

TS1<br />

..... 22!" .... .<br />

100 _ : T3<br />

7<br />

.-...t<br />

..... .....<br />

%/%<br />

..... "":: .. %/ .....<br />

%%::::::<br />

£3255. .-..-. ..... 232:: iiiiit :::::' 1"" ::::: 255550 ::::: 3: =====1<br />

::::: :::::, :::::‘ -.... 5,<br />

::::: ::::: :::::: ::::: 11115<br />

33;;<br />

;g;;;§<br />

----6 ~---- 6-6-6 "6... an-1 ...... .. ,,:,:t ...... . . ..... ---n ..... "6... »-~- "'0 11,1, _ ...... _v<br />

lm ::::: :::::: :::::;<br />

,_<br />

-- :::::<br />

:::::t<br />

::::: ..... :::::<br />

::::::<br />

::::: ____ :::::<br />

=====<br />

5555; :;;¢;; _, ,<br />

.....<br />

% -;-3 :.:.. -..-. ..... ::::: ..... -.... ..... ::::: ..... -..-- ::::: -~-~" 33:; I0lhI- ..... ::::: -N... ..... ----. 3111 ...... 6-..­ --“­<br />

— 22122<br />

% .:... 3121‘ Z2222 ..... Z1222 2222!‘ ...... ""' Z2212‘ ..... 221'!‘ ----- Z1322 5:335 ;::::" 222211 ""' 22222 -.... 35;;<br />

-' .::.: I .... :-.1. -.. ..... ..--- ...... -----V ..... ..... nu. _____, "I" - . -".6 .....<br />

% 22212 ..... --um ---.. :31; ...... ""­<br />

- e<br />

:::::‘ Z1211 :::::: $1222‘ :::z: 5:!!! Z1212 :::::: --.... ::::: :13;<br />

33:<br />

% ....- ..... ...... ...... ...... ..... 33:5; --- :::::: Z1222, - . ..... ...... .....<br />

%/<br />

::::: ..... 22222 ::::: 2111:‘ :::::- 22:72 ::::: ---n ;;;;; ;;;;;1 :::::: -.6-~~<br />

..... ....., -----6 --6" ....- 6.... ..... 1.221 --... . ,3... . ..... . ... -6-.» ..... ..... ggggg mu .....t<br />

-uw ..... ...... .....\ -6." "--., ----..<br />

..... .23.! u 6 12:2: “.1-t ...... "~ 6--u ""'. :53; ----­ .....<br />

3... IIIOI ...... ..... ..... _ __ ..-.. .....<br />

'--H ..... 00000 .... .... _.... ..... nu: ....., .....t ..... 6---.. ...... ..... .... ..... nun ...... ----- .. ..... "'“ ...... _____, ..... ...... :33. _ .6--. ..... ..... -nu .....<br />

é%<br />

22121 11212 22222‘ I222: -----V ---w Z121!<br />

0 ,::::: <strong>on</strong>us: .-..‘ E5553‘ II - Qt ' llnbm an<strong>on</strong>: :2 1313151 """ .... nnnn 22222<br />

:::::‘ .‘ It<br />

M<strong>on</strong>th<br />

Fig. 4.4.10 Storage stability <strong>of</strong> immobilized a-amylase.<br />

105


Y Z)’ Y PP<br />

A Stud <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> En mes <strong>on</strong> Pol meric Su orts<br />

Under <strong>the</strong> semi dry storage c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> starch hydrolyzing activity <strong>of</strong> <strong>the</strong> a­<br />

amylase immobilized via covalent coupling decreased at a slower rate than that <strong>of</strong> <strong>the</strong><br />

adsorbed enzyme (fig. 4.4.10). Up<strong>on</strong> 5 m<strong>on</strong>ths <strong>of</strong> storage, <strong>the</strong> adsorbed enzyme preserved<br />

<strong>on</strong>ly 32 % <strong>of</strong> its original activity, while <strong>the</strong> covalently bound enzyme had about 60 %<br />

retenti<strong>on</strong> in <strong>the</strong> activity.<br />

4.4.7 Reuse <strong>of</strong> immobilized enzymes<br />

The recovery and recycling <strong>of</strong> enzymes could lower <strong>the</strong> overall cost <strong>of</strong> <strong>the</strong> enzyme<br />

immobilizati<strong>on</strong> process. However, <strong>the</strong> applicati<strong>on</strong>s <strong>of</strong> immobilizati<strong>on</strong> are <strong>of</strong>ten challenged<br />

by difficulties that arise with regard to enzyme recovery and recycling. In this <str<strong>on</strong>g>study</str<strong>on</strong>g>, <strong>the</strong><br />

batch reacti<strong>on</strong> repetiti<strong>on</strong>s, <strong>the</strong> activity <strong>of</strong> <strong>the</strong> immobilized enzyme remained stable<br />

throughout <strong>the</strong> experiment, and above 70 % activity were retained for covalently bound<br />

enzyme after c<strong>on</strong>secutively repeating <strong>the</strong> reacti<strong>on</strong>s 10 times. This value is higher than that<br />

reported by Laska et al. [63] for urease immobilized <strong>on</strong> polyaniline, which exhibited an 80<br />

% loss in activity after seven batch reacti<strong>on</strong>s.<br />

3;<br />

::EI :::: - T5<br />

I\l| ,,,.@ T52<br />

.... 1551 5:: 555‘ 11:‘ -.-. E251 "'1 , :::;<br />

E555 .... :::, ..-. ii? .... 555 "-- iii? “"<br />

:::; .... ::: "__ :::: :::; :::; .-.. ..-. :::.<br />

.... ---l :::: 53:1 ,- ;;;- ' u I 2222 ' <strong>on</strong> -...<br />

"-- 222' .... ;;;- 3; --- :::, .... ,,,. Z221<br />

12:: :22. 4<br />

53:1 -.-- :::. ::: 2.. .. ;--i ,,_, . ::: :::: up :::: .... :::: "Z­ ::::<br />

I-I 1 3:3 ;;-- ..., iii? " .... --.- |0|- out :::: 1221 ‘ZZZ Z... '"' ;;; --- 3;; -*- I" :::; -.-. .... nu :::: ---t .... --.. nu. /:::: ,,,_ /.... ..¢. "-­<br />

;;;- :::: ;;; :::: 3;; . .... v--~ .... ;;;; :::: :.: .... ,,,_ :::: '"' ';'; :::: I-it ---~ ::: :::: ---i ---- /::::<br />

.-.. -... .... :::; :::; -... ... :::: %.,,,<br />

.-.. ".­<br />

. ::: :::: :1: 11: :::; :::' :::; Q... um mi .... Z!!! :::. ___, ;;;; :::: .... :::; ;;;, --- --- ---­ .--.<br />

:::' .... 3;; .... :::: :3. .... »--' -;-; __ ...- 3111 :.:. .... :::: :::: :::‘ :::: ---­ ~::: ".­<br />

1 :::: :::; ~--- -~-i :::; §::: :::; ---~ .... :::~ ::: .... =31 -.-- -... :::; .... :::: ::_; --;- -..- :::‘ ---- :::‘ ---i :::: --~ .... :::“ . .22. n-- 1 31¢ ;;;;<br />

;;;; :::; ---- ---- Z22; 2:21 ;g;, 313‘ iii‘ 12!; ....<br />

--;; 51-» ---» .... .... :::; ZZZ! ...- :::: .... Z221 :::: .... :::, :::: :::; ---- :::; ---- --.1 ::: 1212 .... :::: ..., :::: Iii: {III /"" ::::<br />

:::' .... w-1 :::; .... .-‘l --at :::: :::‘ ---» .Z.§ v... :::: :.:. -... .II\ Z: ..., :::: ..:i I .,,. .... “' -11- '"' I--~ -:3; :::: --~» ---- -... 1-. :::: t... .... "1' up :::: .... ,,,j /.... :::: ,,,, ....<br />

:::: ::: :::' ===- :::. '"'<br />

:::: 55:; :::: ::: :3; ::: :::: :::; :::; ;;;; 23- :::‘ -~. =11! :::: :22; :::. ;;; ;;;» :::: »-- :::: .... /SEES<br />

"=1 I1! ::: "-1 =11 /:::! :::: /__..<br />

0 2:2‘ "" "' :2! 001- ---- I" 5 nun Z111 6 UIUI 10 :::‘<br />

Number <strong>of</strong> reuse<br />

Fig. 4.4.11 Reusabilily <strong>of</strong> a-amylase immobilized <strong>on</strong> TS.<br />

l O6


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

4.5 Immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> Poly(o-toluidine) Base<br />

4.5.1 Optimal parameters for a-amylase immobilizati<strong>on</strong><br />

The effects <strong>of</strong> <strong>the</strong> following parameters <strong>on</strong> <strong>the</strong> immobilizati<strong>on</strong> process were<br />

investigated: pH <strong>of</strong> <strong>the</strong> soluti<strong>on</strong>, reacti<strong>on</strong> time and c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> enzyme. As expected<br />

from our previous studies, it was found that <strong>the</strong> immobilized enzymes presented a relatively<br />

high activity when <strong>the</strong> pH value <strong>of</strong> <strong>the</strong> enzyme soluti<strong>on</strong> was 5-5.5 (fig. 4.5.1).<br />

1 00 — .. . .53:" I I 9 - 0 v I I | B 1<br />

.Q;Q;Q 1.I.l:I 4<br />

-:-:-:-:-:-:-:-:-:- Q.fi.Q.\ :-:-:-. >,°,',', ;-:-;- _Q.Q I . I_I_O‘O ...... I Q . B Q.<br />

2<br />

P Q'Q'< Q I n Q ‘ Q 0 "5'; Q ' 0 9 Q 0 ' Q - < >‘Q.‘.I 0 Q ' Q ' ' Q‘.<br />

0<br />

'-‘-‘ ‘Q‘.' °Q°Q'.‘ ~,~,~,~<br />

Q Q 'I~I~I­ Q Q<br />

.<br />

0.5- -,-,\ Q 0.0.0.‘ Q Q l 'Q'Q'Q'. Q'Q'Q°. »<br />

‘Q'Q‘ Q Q . ':~:~:~ . . Q . -,¢,v,¢. -l.I.U‘* O‘! Q Q Q. Q<br />

Q QQQ. Q Q Q<br />

I Q .<br />

Q<br />

- Q . Q Q . Q... Q . Q . Q .'Q . Q , Q . , _ ,,,, ‘ Q _ , Q , Q . - ,<br />

Q QQQ Q . Q Q O_ Q<br />

I_ Q<br />

Q Q Q Q Q Q O’ . , Q , , Q fl'U’I'~ . . Q , _ .~ , Q . Q . Q QI<br />

Q<br />

' ' '. Q Q Q‘ .‘Q'Q'Q‘ ' ' .<br />

-:-:-:-. QQQ. QQQ ,,, QQ; .;.;-;- -.Q'Q__ :00.» -:-:~:-. QQQ­ QQQ'<br />

QQQ. QQQ<br />

I Q Q _,,, ,,, .QQ,<br />

. ‘GOO I.Q‘I‘I . ,<br />

‘Oil.<br />

Q QQQ. Q QQQ III‘<br />

Q<br />

Q°Q'.'. 00» QQQ Q Q OII— Q :~:~:~ ,,,_' . Q -,Q.Q._ O00-' I .‘Q'Q'Q' I Q Q -QQQ QQQ­ -I...I.\<br />

5Q _ _Q;.;.;. .' Q ' * I r 0 Q .;Q;Q;. 0 0 . — Q ‘Q‘Q'Q Q '.;.;.; . - Q .'Q‘Q‘Q ;.-.-. Q Q<br />

0 QQ. I I Q ,,, Q Q v0.0.0. Q Q Q . .QQ­ 9 ' * ~ .<br />

v,:,:,:_ -,-_-_- QQQ- Q Q ‘O-5'0‘ QQQ- .14.; . v.Q.O'I‘ '.'.-.' >’..‘.l Q -.-.-, Q QQQ Q:Q:Q:. _Q;.;Q Q QQQ‘ I . ,<br />

'Q':'Q' vI~~ Q Q QQQ» Q '11:‘: ‘ Q Q:Q:Q} . ‘QQQ. _ . Q -'Q'Q'Q Q °" Q QQQ I':~:~<br />

Q II.’ QQQ Q Q ~ ICC‘ QQQ Q'Q'Q'. .,. 1., _.I‘. ‘Q -‘gt O‘! »QQQ QQQ Q Q "" Q .'Q'Q'Q' O00» IQI , ,,,. , ,<br />

QQQ- I 9 I Q ‘ U Q ' O . u , O Q -‘.y I Q I i - Q, ' ‘ ,, Q ' ‘ QQQ I ‘ Q ' O I'<br />

I I ,,, I I.<br />

0'" QQQ. 9 v QQQ Q00’ 0 5 Q ' IOO- ' Q QQQ 0 QQQ Q O Q 'Q'QQ O _ Q‘ Q_Q- 'Q'~ _ I I Q '°' Q Q"' '°‘ Q QQ. QQQ Q QQQ Q I ,,,. Qn<br />

:-:-:-. P-¢~ -I-1-I QQQ. vev -'-:-;» QQQ J.‘ :44, -Z-I-2-. .Q..._ 9-" "'. .-:-:- ¢¢' 9" QQQ -2-Z-: ‘COO QQQ .;-;-; '-;-;-" Q Q Q ;-:-:-<br />

QQQ --0, Q Q QQQ ;.;Q;.<br />

.IIl . Q Q .Q_Q,_ . .;.g.;.- , .QQ. _ , ‘ Q QQQ Q 2-2-9 Q '°' QQQQ<br />

Q.;.;.­<br />

eQ<br />

Q<br />

I‘O.Q.v<br />

Q‘-‘-'» 0 Q v'0 Q I, Q I Q Q'.~.~ 9 0 Q I Q . 1 I Q I Q I'.*.-.~.<br />

Q . Q Q',','. 0 . 0 -'- O‘O.I.‘ Q I -' Q O ~.*.'.‘ Q'Q'Q‘. Q 0 Q.<br />

. .<br />

-1-;-;~ 00I~ IQO~ I-0 OOO— ‘CID Q:Q:O:— QQQ. .QQ i.Q_Q'-_ ,5, ~.~.~.-. ~-~- "*° QQQ- .-,-,-.» QQQ- QQQ QQQ‘ ;.;.;.- QQQ ;.;Q;.­ III! viii‘<br />

0" :-:-:~. -:-:-zl QQQ 000‘ QQQ ‘QQQ. »-:-:-; VII. ‘Q"'- ‘V’ QQQ‘ :-:-:-. <strong>on</strong>e III<br />

-:-:-:- e-:-:-:- :-:-:-* t-2-2-2‘ t-3-2' -.-:-t -:-:-:~ :-:-:- :-:-:- -:-:~:~ QQQ. //4 .e.s.:. ,,, .<br />

g I00‘ QQ‘Q- "Q'Q‘. -1­<br />

€ :.:.:.y :.:.:~\ ~Q:..].\ :.:,:,<br />

-- 1 :~:v:»' -:-:-:- ,0-O-O -;-;-1 -‘:':‘Q -:-:-: :':':'.<br />

1 0.0;.‘ Q Q Q . ._. . . 0,5‘, I Q Q<br />

1 3,5‘. :~:Q:Q .'Q:Q:Q Q°,'.' l:I:I:\<br />

pH<br />

Fig. 4. 5.] Influence <strong>of</strong> immobilizati<strong>on</strong> pH <strong>on</strong> <strong>the</strong><br />

retained activity <strong>of</strong> a-amylase.<br />

As shown in fig. 4.5.2 prol<strong>on</strong>ging <strong>the</strong> immobilizati<strong>on</strong> time more than 45, 30 and 60<br />

minutes did not improve <strong>the</strong> activity <strong>of</strong> a-amylase immobilized <strong>on</strong> TB, TBI, and TB2<br />

respectively. In this case, a possible interpretati<strong>on</strong> is that <strong>the</strong> reactive functi<strong>on</strong>al groups <strong>on</strong><br />

<strong>the</strong> support were saturated by <strong>the</strong> enzyme molecules after durati<strong>on</strong> <strong>of</strong> 45-60 minutes, hence<br />

extending <strong>the</strong> durati<strong>on</strong> time fur<strong>the</strong>r could not improve immobilized enzyme activity.<br />

Instead, <strong>the</strong> activity may be reduced owing to <strong>the</strong> spatial repulsi<strong>on</strong> <strong>of</strong> overcrowded enzyme<br />

molecules immobilized <strong>on</strong>to supports. It has been reported [29] that <strong>the</strong> coupling time is<br />

leveled after 18 hour <strong>of</strong> immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> reactive membranes with<br />

maximum loading 83 /Jg cm'2 <strong>of</strong> support.<br />

107


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

,00_ £52 1TB<br />

TB1<br />

.;.;.;.; ~‘.'.‘.' .'.'.'.' -‘-'-I-' . . . ~ . .-_-_-..<br />

_._._._. - . ¢ . '-'.'- ._.<br />

.... .'.-.~.' . . . .<br />

d§ ,-,-,-.- n'u';-' -‘-'-‘-‘ . ~.'.~.'.<br />

. . . . 0:00 -'-'-'.' . . . nuoo . '.'-'-'. . . .<br />

.;.;.'.- _._._._.<br />

g ',~,~,~, '.'.'-‘- .'-5'-‘ -'.'.'.‘<br />

~Z-1'31 '.'.‘-'- '¢'»‘-'~ I-I-1+ ¢‘~‘.'.‘ .'.-.'.'<br />

u'n'-' bail ‘o"' QIJI -‘J-'.‘<br />

’.‘.‘.‘- ‘ 0'1‘;-n -0.0-0': .-. ' ’ . '. . '.‘4‘.'. '.'.'.'. .-.'.-.~ 0010 I004 ~'¢‘»'.‘ .'.'.'-' Ivan vac: ~.-I-I-I -'.'-'.' I000 -‘-'-'-'<br />

I- 1‘-.0.-. Q-4'1-4‘ . -0'0-I-0 . . . . . . .u‘l-..­ . . 00¢:<br />

‘ 1 -'-'.'.' . .'~'-' -_~_~_'_ .3.-_~_ .-_¢_-_. . _. . _.;.;.;. ._._. _»_-_t_­ 3.... _.;.;._. . ­.<br />

~_ ' 5- _~,'_ - - ' |'n'c'|' ~ '.'.'.'. ' ' .'.'-'.‘ 0 » 0 O 0 , n '-‘J-‘. . 1'0 ¢ - I - 4 - '3-'-H n - . I - ¢'­ ,.,, ' ' * '.'-‘J. .... '.'.‘.‘. .... -5'-‘J .... .'-'.'.' ­<br />

__ -‘~'-‘J —‘-‘~‘-‘ ,~,',',- -‘-'-'-' .'.'.‘.' ""°"' -I-Z-I-I ¢_-_._._ '-‘-‘-‘. I-I-I-P .-.-_-_- -' ' ‘J 51-2-2­ _~_._¢_­<br />

_ 0 Q a I 9..-'1': ,',',',- '.*.','. . '0'0'e'u . . . .'.'-'.' '-‘J-'. . . Q-0.0.0. . - . I. . _. . - . » ._._. .'-'-‘J .3‘. D‘!-0'!‘ -‘-‘ . - . . - . .'. ‘


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a amylase<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> amylase were 4.1 mg g" <strong>of</strong> activated TB and 2.1 mg g for n<strong>on</strong> activated<br />

TB. When <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> enzyme was increased fur<strong>the</strong>r, <strong>the</strong> relative activity<br />

decreased. This may be caused by <strong>the</strong> jostling <strong>of</strong> too many enzymes <strong>on</strong> <strong>the</strong> supports as<br />

described earlier.<br />

i<br />

-1<br />

1<br />

IQ<br />

l<br />

3- /‘<br />

2__ __i-1-ii-O<br />

1...<br />

8­<br />

1 I 2 I 3 I 4 I 5I<br />

—I—TB<br />

—0—TB1<br />

Amout <strong>of</strong> protein (mg)<br />

- * —A- TB2<br />

Fig. 4.5.3 Variati<strong>on</strong> <strong>of</strong> protein loading with<br />

respect to <strong>the</strong> initial protein amount.<br />

.\.<br />

‘mt<br />

A0’/////, -l—TB<br />

| l | I I<br />

Initial protein (mg)<br />

2 " -0- TB1<br />

1 2 3 4 5—l— TB2<br />

Fig. 4.5.4 Variati<strong>on</strong> <strong>of</strong> activity <strong>of</strong> immobilized enzyme<br />

relative to <strong>the</strong> initial amount <strong>of</strong> protein.<br />

109


Qhyapter 4 _ iy ___ fly mpmobilizati<strong>on</strong>p<strong>of</strong> Diastase a-amylase_<br />

4.5.2 Effect <strong>of</strong> pH <strong>on</strong> activity<br />

The initial activities <strong>of</strong> free and immobilized 0:-amylase were determined for<br />

different pH values in <strong>the</strong> range <strong>of</strong> 4-7. lndividual relative activities for both states are<br />

presented in fig. 4.5.5. Maximum activities were obtained at pH 5.5 for all immobilized<br />

enzymes. As already evident, or-amylase is very stable at pH 5.5. The close similarity <strong>of</strong> pH<br />

pr<strong>of</strong>iles for both states may show that no important c<strong>on</strong>formati<strong>on</strong>al change occurs in <strong>the</strong><br />

immobilizati<strong>on</strong> <strong>of</strong> <strong>the</strong> amylase. The <strong>on</strong>ly difference was that for <strong>the</strong> glutaraldehyde coupled<br />

amylase pH pr<strong>of</strong>ile more broadened in <strong>the</strong> alkaline range whereas for <strong>the</strong> enzyme in<br />

soluti<strong>on</strong>, <strong>the</strong> alkaline pH not favored <strong>the</strong> activity <strong>of</strong> enzyme.<br />

100- 0 v/7 X‘<br />

so­<br />

. — —Free<br />

1. — —TB<br />

— —TB1<br />

— —TB2<br />

4.5.3 Effect <strong>of</strong> temperature <strong>on</strong> <strong>the</strong> activity<br />

pH<br />

Fig. 4. 5.5 Variati<strong>on</strong> Qfaczivity with pHf0z-free<br />

and immobilized 0:-amy/use.<br />

Immobilizati<strong>on</strong> produced remarkable change <strong>on</strong> <strong>the</strong> temperature dependence <strong>on</strong> <strong>the</strong><br />

activity <strong>of</strong> <strong>the</strong> enzyme. It is evident from <strong>the</strong> fig. 4.5.6 that <strong>the</strong> optimum temperature for<br />

starch hydrolysis decreased by 10 °C compared to free enzyme. After 40 "C, a sharp<br />

decrease in activity <strong>of</strong> immobilized enzymes was observed. The decline in activity <strong>of</strong> cz­<br />

lll


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> Po_ly_n_1£ric <strong>Supports</strong> _<br />

amylase at higher temperature as a result <strong>of</strong> desorpti<strong>on</strong> <strong>of</strong> enzyme from support was<br />

reported [12] by Dey er al.<br />

4.5.4 Thermal stability<br />

%§:”'\.<br />

-i<br />

—0— Free<br />

—o— TB<br />

V<br />

—A—— TB1 mg<br />

‘IL: - t ~ 1 -‘ z 1<br />

30 40 50 60<br />

0 — —TB<br />

Temperature (°C)<br />

Fig. 4.5.6 Influence Qfremperature <strong>on</strong> <strong>the</strong><br />

acrz'w't_1' <strong>of</strong>free and hound a-amylase.<br />

Utilizati<strong>on</strong> <strong>of</strong> enzymes in processes <strong>of</strong>ten encounters <strong>the</strong> problem <strong>of</strong> <strong>the</strong>rmal<br />

inactivati<strong>on</strong> <strong>of</strong> enzyme. At high temperature, enzyme mtdergoes partial unfolding by heat­<br />

indueed destructi<strong>on</strong> <strong>of</strong> n<strong>on</strong>-covalent interacti<strong>on</strong> [28, 29]. The <strong>the</strong>mial stability <strong>of</strong> free and<br />

immobilized enzyme was investigated with in <strong>the</strong> temperature range <strong>of</strong> 30-60 "C (fig/1.5. 7)<br />

and <strong>the</strong>rmal inactivati<strong>on</strong> checked at definite time intervals (fig. 4.5.8) within 2 hour, by<br />

measuring residual activity. It is clear from <strong>the</strong> graph that <strong>the</strong> enzyme <strong>on</strong> TB is less stabile<br />

than o<strong>the</strong>r forms. In TBI and TB2 immobilizati<strong>on</strong> improved <strong>the</strong> <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong><br />

protein structure through a protecti<strong>on</strong> against heat. In all forms immobilized 0z—amylase<br />

showed better <strong>the</strong>rmal stability than free form even after prol<strong>on</strong>ged incubati<strong>on</strong> in <strong>the</strong><br />

absence <strong>of</strong> substrate. The reas<strong>on</strong> may be that <strong>the</strong> polymer matrix is supposed to preserve <strong>the</strong><br />

enzyme structure. lt has been reported that polymeric carriers such as poly(2-hydroxyethyl<br />

methaciylate) [5] poly(methyl methacrylate—acrylic acid) [41] and poly(alIyl glycidyl e<strong>the</strong>r<br />

112


Chapter 4<br />

__ _i_~_—_——_‘_— Immobilizati<strong>on</strong> <strong>of</strong> __ Dlastase — ­ a amvlase<br />

co-ethylene glycol dimethacrylatc) [50] protect enzyme from <strong>the</strong>rmal 1nact1vat10n and y1eld<br />

highcr thcnnal stabilities.<br />

Free A<br />

u—<br />

1<br />

-- TB— TB‘! 0<br />

— TB2<br />

| —— e — ~ 1 ” f—' ' | 40 so 60<br />

- 0<br />

Temperature (°C)<br />

Fig. 4. 5. 7 Thermal stability Q/‘free and immobilized<br />

a-amylase.<br />

q<br />

\ \. X<br />

100-1<br />

I °§Q§Q="'=Y%¢._._--v-;$--—A%A<br />

. 400 .1<br />

at40<br />

Q<br />

1:<br />

o\\\<br />

1<br />

0&0<br />

-1<br />

\<br />

50 _ Free .\o\—<br />

IN\<br />

­<br />

- TB1<br />

—TB2 . | . e \ | at - so r "


A Study<strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> i<br />

4.5.5 Kinetic parameters<br />

The effect <strong>of</strong> immobilizati<strong>on</strong> <strong>on</strong> <strong>the</strong> kinetic parameters Km and V,m,_. was also<br />

studied. Results obtained using starch as substrate is shown in table 4.8. The relati<strong>on</strong>ship<br />

between <strong>the</strong> velocity <strong>of</strong> product formati<strong>on</strong> and substrate c<strong>on</strong>centrati<strong>on</strong> described a typical<br />

quadratic hyperbole that was c<strong>on</strong>verted in <strong>the</strong> double reciprocal plot <strong>of</strong> Lineweaver-Burk<br />

and Hanes-Woolf plots (fig. 4.5.9).<br />

— 7 ' 7 * ‘ 4- 7 — * ‘T 1<br />

Table 4.8 Kinetic paranzefersfor rhefiee and immobilized a—an7yla.s'e.<br />

. n - T‘ Fm -. TB 1- TBI TB2 .<br />

enzyme<br />

Km (mg mu‘) 1 0.46 4 0.01 7.74 4. 0.13 5.09 1 0.00 4.11 4 0.04<br />

l T t 1-l_<br />

.<br />

-_’ - . . . T ­<br />

1/,,,.,. (EU pg“ protein) A 7.95 i 0.05 4.33 1 0.07 A 4.s2 4 0.08 3.28 4: 0.09 A<br />

There was 9-17 fold increase in Km values presented for <strong>the</strong> immobilized enzymes.<br />

Similar to this observati<strong>on</strong>s A/{soy er al. observed [41] a l2-fold increase in Km <strong>on</strong><br />

immobilizati<strong>on</strong> to poly(1nethyl methacrylate aciylie acid) microspheres and noted that<br />

immobilized form possessed between 68-80 % <strong>of</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> soluble enzyme<br />

depending <strong>on</strong> <strong>the</strong> coupling method used. The restricted mobility <strong>of</strong> <strong>the</strong> enzyme caused by<br />

<strong>the</strong> immobilizati<strong>on</strong> process, as well as <strong>the</strong> presence <strong>of</strong> factors such as <strong>the</strong> limited rate <strong>of</strong><br />

mass transfer <strong>of</strong> <strong>the</strong> substrate from <strong>the</strong> bulk <strong>of</strong> <strong>the</strong> soluti<strong>on</strong> to <strong>the</strong> surface <strong>of</strong> <strong>the</strong> support<br />

material, were expected to affect <strong>the</strong> reacti<strong>on</strong> rate as well <strong>the</strong> affinity <strong>of</strong> <strong>the</strong> enzyme [64].<br />

Hence <strong>the</strong> I/,,m is found to be always low.<br />

ll4


ChaI2¥¢r:L_:I ­<br />

Imm%Qbil?izzItig_II??Qf Di?2_Is?ta_s?e a-amylase<br />

a .<br />

4 ,<br />

T15­<br />

8<br />

I<br />

5­<br />

I<br />

10­ 0 I<br />

an<br />

'_L<br />

\<br />

2 7' 4-1<br />

Q<br />

5<br />

2­<br />

o'.s / o1'o<br />

‘ ‘ 1<br />

I 1r[sn] 05 10 15 [s 5 3 ,1O<br />

3 5<br />

/ 2° P 4-l E 5!. . \<br />

b .<br />

65*<br />

20<br />


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

4.5.6 Storage stability<br />

L<strong>on</strong>g term storage for 6 m<strong>on</strong>ths <strong>of</strong> itmnobilized amylase <strong>on</strong> poly(0-toluidine) is<br />

shown in fig. 4.5.10. As expected, immobilizati<strong>on</strong> improved <strong>the</strong> storage stability <strong>of</strong> <strong>the</strong><br />

enzyme. Highest stability was showed by covalently b<strong>on</strong>ded enzyme using glutaraldehyde<br />

spacer. Adsorbed enzyme showed least stability but better than free enzyme when free<br />

enzyme lost all its activity within 2 days. Immobilized enzyme retained more than 50 % <strong>of</strong><br />

its initial activity during <strong>the</strong><br />

...<br />

storage period <strong>of</strong> 4 m<strong>on</strong>ths. This decrease in activity was<br />

explained as <strong>the</strong> time-dependent natural loss in enzyme activity.<br />

I TB<br />

2,... % V//A T B2 TB1<br />

. . . . . . . . .<br />

_._._._ . ._._.<br />

. _._._._ . . . . ._._._. .13.’. . - - ;._._._ ._....<br />

AIQ .'.'.'- . 0.4.0.: . '.'.'.' . . .l't‘I. t . I'.'.*I . I'I.l.I . . .<br />

:n:.:._ l'D-l.I . . ._ ._. q_n:._. ‘I.I.‘. ._. . :.:u:.: I.I.I.| . . -_._-_­ 34,‘; ' 9 '<br />

€ 1.-.;.; \'. ~.~.'.- I . O -_- .' I .~.-.-. D I v. O /'.'. . I -.-.-.- 0 . '.'.'.' I . ;.;.;.; I I . I .'.'.'. . .,<br />

..'.'._ I /.'.<br />

0 Ill - Q . Q . I.II .'.‘.‘. . I Q . . O -ill. 3.’. . 0 . I - 0 ~,¢,~,~ I000 I - 4 - ' ' ~ I<br />

at '.‘.'.' -'.'.'. 'I'.'i* -1-1-5I<br />

._._._. :.'.'.- I.I C .'.~.;. _._._._ Q-0 ‘ -.-.~.- 0.9 ._._._. 0.! ‘.;.'.'. _ ~"'. _ , ,<br />

Ii ~:.'.:o :0-0:0. 4.3. QIII .... ".' ;.'.'.' Q9! a .‘. .'.;.'. 0.0 I-I-I-6 ‘. 0 1.1.1.; t... :55‘,<br />

.'.'.'. ~I'I‘.- .'.-" ‘.'-'.'<br />

ill<br />

.... . ... . . u... .... . ... . . .... ..'.' ... . . . ---- ... .... . . ____ v ~~~_ 5.‘... - __, '~'~'­<br />

_._._._ ._._._. _¢_._._ _. , ,_ ._._._. -_-_-,- ._ I :,:.:,: .._. .<br />

‘._._._ ... .... -... ._._._. _._._._ ...- ‘ ‘ ' I ._._-_- I ---­ _,,_<br />

'.'.'.‘ .‘.‘.‘~ ‘.‘.'.' . Q .'. v - - 0 _ 0 , 0­<br />

, .... ... ... .... .. . ... .<br />

— ~.-.-.‘ '. ‘.'.'.‘ .‘. .‘.'.'. .'.'.'. ‘.‘.‘. '.'.'.‘ .-.-.-. v_._._. . v . . .. . .3. ... .'-'-;­ ,~_~_ ._._._- . I,*,-,- .~.~.'. .‘.‘.‘. Q ._._._. ‘.'-‘.‘<br />

'.'.‘.' 33¢‘. .'.‘.'. '.‘.‘.' '.'.‘.‘ .'.'-'- 0 »‘.'- -,*,‘,~ ~,',',~ .‘.'.'. .'.‘.‘. ~'.‘.'. .'¢'»'. < ¢ .<br />

.3...‘ .‘¢'¢‘~ '.'.'.' . . . . -_-_v.@ . . ‘.'.'.' . '.‘.‘.' ,',',', . ~ . . '.',',' . . ._._._» ¢ ‘.‘.‘.‘ ~ - - . v,-,~ ,~,'_~, . .‘. ¢_~_-‘­ - . . . .‘<br />

'¢'.'.' ‘J.’-' .'.'.'. .'.'.‘. .'.'.'. ‘.'.'.‘ """' ° ' ' .'.‘.'. .'.‘.‘. ' .'.'.‘. . . -'-‘-'- .'.'.'< 4 . ,',


Chapter 4 Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

4.6 C<strong>on</strong>clusi<strong>on</strong><br />

100 - 1 TB<br />

'.'.‘ »_-‘L '.'r<br />

$53 '.'-‘ - ~ - ‘.‘.' ~:-2 -- 7///4 TB1<br />

. .'-‘V ¢‘.'. - . _-,-, ’-'-‘ v ~ ' . »'¢'- ¢'.'. . . 0'-' J-'<br />

- O -_._. - ~ - ~ . -‘._. - - - ~'~"<br />

¢_-If ,-,-, _ .3’. , , ._._. O-0‘~ .‘~_­ ~ ­._._.<br />

,<br />

. _ . . .<br />

»_-_ O ¢ >_¢_ - ¢ - > » ,','. - ,:_:, , r ¢ , -, - , 0 - .3‘. 5-‘. - - 0 . . ,<br />

._._ - .'._. . - . , ~ r 3-‘. 5.‘. r v.<br />

­-<br />

.<br />

,5 ,.. -5‘ . . 1 - -- - - 3,‘, - ,,. , , .". __ , -‘.5 , . ... . 1 - -.- ¢ - - » .5 -- ­.<br />

‘-'._ ,- - ._._- '-'5 ‘-'.' '._,_ .'.' ' ~ * :,:,: - ' I -‘-‘- _¢_._ .‘ '. -’-‘- -'-‘~ .'-_._ _._._ -H‘. .'.’. -_~_~ ‘-'.‘ '.'.' -­<br />

‘J. ¢< ,<br />

.‘. II » 0n- - 0- ._. 4 - QI .'.'. -,-,~ ' ' ~ oI' 3.‘ -,',- ' ' - lo II< 5'.‘ J. QI 3.. - -at _._¢ J AA - ... ~' . Io‘ .5. ._.<br />

,-,5 , _._._ , , , , _ , ._._. ._._. ._-_. -­<br />

Q.§- ,, ... 3‘. 1 v .32 H -‘fl ,'.'. ,',' __ ¢_._. 0 0 -. ~ .‘._. 0 .- 0 v -‘-_- -. v I ... - ._. 'o .5.’ I ,.. '3,‘ ';'.' , ,<br />

‘J. ~ ,'.' .. . .~_~_ . Ilr J-'. _..._ '.',' I. ,',', - . . ,-_- '-'- ' ,',' ' ‘ ¢_~_- ,_,_. '-‘-‘ II ¢_¢_¢ II -_¢_~ '-‘.' II ‘J.’ -_-_~ ~‘-_- 00- 0"’. '-.-V '-.u_ Q‘ ,','. '.'.­ . ­<br />

. 3.‘. , . , , . _._._ ~ .’ ~ _ .5‘. , , _ , ,'.'. , _ , . ~_._. ~ . ‘._._ » ¢ ._._. > .._._ t ._._- . . - _- _... _._. - ‘,'," , . . .<br />

',-_- ._._. . . . _..._ _~,», , ._._. , , , .'._. _ , ._._- .'._. ._._. -_._. ._._. ._._- _._._ _._.><br />

- -'.'.<br />

. . l ,3‘, ¢ » ‘ . . . U-I.l 5» . .3 - . .‘ , , - .;.;. -_. .5.‘<br />

-'.‘. 4» - . 'r> - . ,-,-_ » .. ,-,9 . .. . , . -. . . - -- -‘- . . ~ -. . -'- .- . ‘J. . ... .',', . - -‘- ~­ ­l<br />

._.‘. ,3‘, ._._. .._._ .5.’ _._“ ,_,__ ____, ,', _ ._._. ,: ._._. ._._ ._._. ._.‘. ._-_- 5.‘. ._.'. -‘._. _._._ _._._ . _._.v . . _,_.‘ . . ._._­ ._._. _._.<br />

~,',‘ ',~,' . , . . 3.’. -'.', . 3,‘, ~_-_- I ,',', ~ - - v ~.»_ . - ~ '.'. - ‘J-' Q '8.“ - '-‘- -_._- .Q'l- ¢ » _.'~‘ - .‘.‘. - . ‘.5’ - - '.‘. ~ . -,-.' . . . . , , , ', ~_-_­ . ‘-‘-' ._._.<br />

,_,‘. , .'. _._._ ,~,~, . . . < ,-,- v . -_._~ ~_._. q_._> o_-_- -_~_- ._-_. _ 3'.‘ _ ‘ ',',' . . ¢_-_.<br />

.'-'. ‘


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

The enzyme a-amylase immobilized <strong>on</strong> various supports in <strong>the</strong> pH range <strong>of</strong> 4. 5­<br />

5.5 within <strong>the</strong> durati<strong>on</strong> <strong>of</strong> 30-60 minutes irrespective <strong>of</strong> <strong>the</strong> supports and<br />

methods used.<br />

After immobilizati<strong>on</strong> <strong>the</strong> pH for optimum enzyme activity was changed to ei<strong>the</strong>r<br />

5 or 5.5, depends up<strong>on</strong> supports and method used. The glutaraldehyde activated<br />

supports showed better resistance to pH changes.<br />

The optimum temperature for starch hydrolysis was lowered by I0-15 "C after<br />

immobilizati<strong>on</strong>. The immobilized enzymes showed better <strong>the</strong>rmostability and<br />

retained 80-90 % activity afler 2 hour incubati<strong>on</strong> at <strong>the</strong>ir optimum temperature.<br />

The kinetic parameter Km showed a 2-l 7 fold increase after immobilizati<strong>on</strong> and<br />

Vmx was found to be low for immobilized enzyme.<br />

The immobilized enzyme could be reused efficiently in batch reactor. Covalently<br />

immobilized retained more than 50% activity even afier 10 cycles <strong>of</strong> use.<br />

The immobilizati<strong>on</strong> led to an improvement in storage stability. Enzyme could be<br />

stored for 6 m<strong>on</strong>ths with very little change in activity.<br />

118


Chapterfl lmmolglizati<strong>on</strong> <strong>of</strong> Digstase 0:-amylase<br />

References<br />

A. Payen, J.F. Persoz, Memoire sur la diastase, lcs prineipaux produits de ses<br />

reacti<strong>on</strong>s et leur applicati<strong>on</strong>s aux arts industriels, Annales de ehimie et de physique<br />

53 (1833) 73-92.<br />

F.W. Schcnck, R.E. Hebeda, Starch hydrolysis products: worldwide technology<br />

producti<strong>on</strong> and applicati<strong>on</strong>s, VCH, New York, 1992.<br />

L.M. Marchal, H.H. Beeftink, J. Tramper, Towards a rati<strong>on</strong>al design <strong>of</strong> commercial<br />

maltodextrins, Trends Food Sci. Tcehnol. 10 (1999) 345-355.<br />

W.M. Fogarty, Microbial enzymes and biotechnology, Appl. Sci. Publishers, New<br />

York, 1983.<br />

M.Y. Ariea, V. Hasirci, N.G. Alaeddinoglu, Covalent immobilizati<strong>on</strong> <strong>of</strong> a-amylase<br />

<strong>on</strong>to pHEMA microspheres: preparati<strong>on</strong> and applicati<strong>on</strong> to fixed bed reactor, Biomat.<br />

16 (1995) 761-768.<br />

L.M.O. Arruda, M. Vitole, Characterizati<strong>on</strong> <strong>of</strong> invertase entrapped into calcium<br />

alginate beads, App]. Bioehem. Biotechnol. 81 (1999) 23-33.<br />

C..I. Tien, B.H. Chiang, Immobilizati<strong>on</strong> <strong>of</strong> 0:-amylase <strong>on</strong> a zirc<strong>on</strong>ium dynamic<br />

membrane, Process Bioehem. 35 (1999) 377-383.<br />

T. Handa, A. Hirose, T. Akino, K. Watanabe, H. Tsuehiya, Preparati<strong>on</strong> <strong>of</strong><br />

immobilized alpha-amylase covalently attached to granular polyacryl<strong>on</strong>itrile,<br />

Bioteehnol. Bioeng. 25 (1983) 2957-2967.<br />

S.D. Textor, G.A. Hill, D.G. Macd<strong>on</strong>ald, E.St. -Denis, Cold enzyme hydrolysis <strong>of</strong><br />

wheat starch granules, Can. J. Chem. Eng. 76 (1998) 87-93.<br />

S.D. Cordt, M. Hendrickx, G. Maesmans, P. Tobbaek, The influence <strong>of</strong> polyalcohols<br />

and carbohydrates <strong>on</strong> <strong>the</strong> <strong>the</strong>rmostability <strong>of</strong> 0:-amylase, Bioteehnol. Bioeng. 43<br />

(1994) 107-114.<br />

B.A. Saville, M. Khavkine, G. Seetharam, B. Marandi, Y.L. Zuo, Characterizati<strong>on</strong><br />

and performance <strong>of</strong> immobilized amylase and cellulose, App]. Bioehem. Biotechnol.<br />

113 (2004) 251-259.<br />

119


A Study <strong>on</strong> th_eplinm0bilizapti<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> _0n <strong>Polymeric</strong> <strong>Supports</strong> _ 2<br />

G. Dey, V. Nagpal, R. Banerjee, Immobilizati<strong>on</strong> <strong>of</strong> a—amylase from Bacillus<br />

circulans GRS 313 <strong>on</strong> coc<strong>on</strong>ut fiber, Appl. Biochcm. Biotechnol. I02-I03 (2002)<br />

303-313.<br />

R. Reshmi, G. Sanjay, S. Sugunan, Immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> zirc<strong>on</strong>ia: a<br />

heterogeneous biocatalyst for starch hydrolysis, Catal. Commun. 8 (2007) 393-399.<br />

I-1. Ttimttirk, S. Aksoy, N. Hasirci, Covalent immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong>to<br />

poly(2-hydroxyethyl methacrylate) and poly(styrene-2- hydroxyethyl methacrylate)<br />

microspheres and <strong>the</strong> effect <strong>of</strong> Ca2+ i<strong>on</strong>s <strong>on</strong> <strong>the</strong> enzyme activity, Food Chem. 68<br />

(2000) 259-266.<br />

A.R. Varlan, W. Sansen, A. van Loey, M. Hendrickx, Covalent enzyme<br />

immobilizati<strong>on</strong> <strong>on</strong> paramagnetic polyacrolein beads, Biosens. Bioelectr<strong>on</strong>. ll (1996)<br />

443-447.<br />

M.\-’. Kahraman, N.K. -Apohan, A. Ogan, A. Gtingor, Soybean oil based resin: a new<br />

tool for improved immobilizati<strong>on</strong> <strong>of</strong> alpha-amylase, J. Appl. Polym. Sci. 100 (2006)<br />

4757-4761.<br />

A.K. Bajpai, S. Bhanu, Immobilizati<strong>on</strong> <strong>of</strong> a-amylase in vinyl-polymer-based<br />

interpenetrating polymer networks, Colloid Polym. Sci. 282 (2003) 76-83.<br />

L.H. Lim, D.G. MacD<strong>on</strong>ald, G.A. Hill, Hydrolysis <strong>of</strong> starch particles using<br />

immobilized barley a-amylase, Biochcm. Eng. J. l3 (2003) 53-62.<br />

C.A. Groom, A.J. Daugulis, B.N. White, C<strong>on</strong>tinuous alpha—amylase producti<strong>on</strong> using<br />

Bacillus amyloliquefaciens adsorbed <strong>on</strong> an i<strong>on</strong> exchange resin, Appl. Microbiol.<br />

Biotechnol. 28 (1998) 8-13.<br />

l. Karubc, S. Mitsuda, S. Suzuki, Glucose sensor using immobilized whole cells <strong>of</strong><br />

pseudom<strong>on</strong>as fluorescens, Eur. J. App]. Microbiol. Bioteclmol. 7 (1979) 343-350.<br />

G.l. Kvesitadze, M.Sh. Dvali, Immobilizati<strong>on</strong> <strong>of</strong> mold and bacterial amylases <strong>on</strong><br />

silica carriers, Biotechnol. Bioeng. 24 (1982) 1765-1775.<br />

M.G. Roig, A. Slade, J.F. Kennedy, a-Amylase immobilized <strong>on</strong> plastic supports:<br />

stabilities, pH and temperature pr<strong>of</strong>iles and kinetic parameters, Artif. Cells Blood<br />

Subst. lmmob. Biotechnol. 21 (1993) 487-525.<br />

I20


Chapter 4 _ lmmobilizati<strong>on</strong> <strong>of</strong> Diastgse 0:-amylase _<br />

123]<br />

[24]<br />

[25]<br />

[26]<br />

[27]<br />

[23]<br />

[29]<br />

130]<br />

13 ll<br />

132]<br />

L. Tarhan, The effect <strong>of</strong> substrate diffusi<strong>on</strong> factor <strong>on</strong> immobilized a-amylase, Starch<br />

41 (1989) 315-321.<br />

V. lvanova, E. Dobreva, Catalytic properties <strong>of</strong> immobilized purified [l]8I‘Il'l0S'[21blC<br />

alpha-amylase from Bacillus licheng'f0rmz's 44MB82-A, Process Biochem. 29 (1994)<br />

607-612.<br />

A.M. Lali, K.S. Manudhane, N. Motlekar, P.A. Karandikar, Depolymerizati<strong>on</strong> <strong>of</strong><br />

starch and pectin using supeiporous matrix supported enzymes, Indian J. Biochem.<br />

Biophys. 9 (2002) 253-258.<br />

M.V. Kahraman, G. Bayramoglu, N.K. -Apohan, A. Gtingor, a-Amylase<br />

immobilizati<strong>on</strong> <strong>on</strong> fimeti<strong>on</strong>alized glass beads by covalent attachment, Food Chem.<br />

104 (2007) 1385-1392.<br />

S.D. Shewale, A.B. Pandit, Hydrolysis <strong>of</strong> soluble starch using Bacillus licheniformis<br />

a-amylase immobilized <strong>on</strong> superporous CELEBEADS, Carbohydr. Res. 342 (2007)<br />

997-1008.<br />

P. Tripathi, A. Kumari, P. Rath, A.M. Kayastha, Immobilizati<strong>on</strong> <strong>of</strong> a-amylase from<br />

mung beans (Vigna radiara) <strong>on</strong> Amberlite MB 150 and chitosan beads: a comparative<br />

<str<strong>on</strong>g>study</str<strong>on</strong>g>, J. Mo]. Catal. B: Enzymatic 49 (2007) 69-74.<br />

G. Bayramoglu, M. Yilmaz, M.Y. Arica, immobilizati<strong>on</strong> <strong>of</strong> <strong>the</strong>rmostable a- amylase<br />

<strong>on</strong>to reactive membranes: kinetics characterizati<strong>on</strong> and applicati<strong>on</strong> to c<strong>on</strong>tinuous<br />

starch hydrolysis, Food Chem. 84 (2004) 591-599.<br />

J.-P Chen, D.-H Chu, Y.-M Sun, Immobilizati<strong>on</strong> <strong>of</strong> 0:-amylase to temperature­<br />

resp<strong>on</strong>sive polymers by single or multiple point attachments, J. C-hem. Teclinol.<br />

Bioteclmol. 69 (1997) 421-428.<br />

D. Gangadharan, K.M. Nampoothiri, S. Sivaramakrislinan, A. Pandey, Immobilized<br />

bacterial


[33]<br />

[34]<br />

[35]<br />

[36]<br />

[37]<br />

[38]<br />

[39]<br />

[40]<br />

[41]<br />

[42]<br />

U A Studyn<strong>of</strong>in <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> i _<br />

O. Ttin'ine, M.V. Kahraman, Z.S. Akdemir, N.K. -Apolian, A. Gtingor,<br />

Immobilizati<strong>on</strong> <strong>of</strong> 0:-amylase <strong>on</strong>to cyclic carb<strong>on</strong>ate bearing hybrid material, Food<br />

Chem. I I2 (2009) 992-997.<br />

K.F. Femandes, C.S. Lima, H. Pinho, C.H. Collins, Immobilizati<strong>on</strong> <strong>of</strong> horseradish<br />

peroxidase <strong>on</strong>to polyaniline polymers, Process Biochcm. 38 (2003) 1379-I384.<br />

Y. Chen, E.T. Kang, K.G. Neoh, K.L. Tan, Covalent immobilizati<strong>on</strong> <strong>of</strong> invertase <strong>on</strong>to<br />

surface modified polyaniline from graft polymerizati<strong>on</strong> with acrylic acid, Eur. Polym.<br />

J. 36 (2000) 2095-2103.<br />

D. Tanyolac, B.I. Yuruksoy, A.R. Ozdural, Immobilizati<strong>on</strong> <strong>of</strong> a <strong>the</strong>rmostable 0:­<br />

amylase, Thennamyl, <strong>on</strong>to nitrocellulose membrane by Cibacr<strong>on</strong> Blue F3GA dye<br />

binding, Bioehem. Eng. J. 2 (I998) 179-186.<br />

Y.M. Sun, J.-P Chen, D.-H Chu, Preparati<strong>on</strong> and characterizati<strong>on</strong> <strong>of</strong> 0:-amylase<br />

immobilized <strong>on</strong>to <strong>the</strong>nnal resp<strong>on</strong>sive composite liydrogel membranes, J. Biomed.<br />

Mater. Res. 45 (1999) 125-132.<br />

G. Delcheva, G. Dobrev, I. Pishtiyski, Performance <strong>of</strong> Aspergillus niger B O3 /3­<br />

xylosidase immobilized <strong>on</strong> polyamide membrane support, J. Mol. Catal. B:<br />

Enzymatic 54 (2008) 109-1 15.<br />

J. Bryjak, Glucoamylase, a'—amylase and ,8-amylase immobilizati<strong>on</strong> <strong>on</strong> acrylic<br />

carriers, Biochcm. Eng. J. I6 (2003) 347-355.<br />

K. Martinek, A.M. Kilbanov, V.S. Goldmaeher, l.V. Berezin, The principles <strong>of</strong><br />

enzyme stabilizati<strong>on</strong>. I. Increase in <strong>the</strong>rmostability <strong>of</strong> enzymes covalently bound to a<br />

complementary surface <strong>of</strong> a polymer suppoit in a multipoint fashi<strong>on</strong>, Biochim.<br />

Biophys. Acta 485 (1977) I-I2.<br />

S. Aksoy, H. Tumturk, N. Hasirei, Stability <strong>of</strong> a-amylase immobilized <strong>on</strong><br />

poly(methyI methaerylate-acrylic acid) mierospheres, J. Bioteehnol. 60 (I998) 37-46.<br />

M.Y. Arica, S. Senel, N.G. Alaeddinoglu, S. Patir, A. Denizli, Invertase immobilized<br />

<strong>on</strong> spacer-arm attached po1y(liydroxyethyl methacrylate) membrane: preparati<strong>on</strong> and<br />

properties, J. Appl. Polym. Sci. 75 (2000) 1685-I 692.<br />

122


Qhapter 4_ Immobilizati<strong>on</strong> <strong>of</strong> Diastase a-amylase<br />

S.A. Ahmed, S.A. Saleh, A.F.A. Fattah, Stabilizati<strong>on</strong> <strong>of</strong> Bacillus licheniformis ATCC<br />

21415 alkaline protease by immobilizati<strong>on</strong> and modificati<strong>on</strong>, Aust. .1. Basic Appl. Sci.<br />

1 (2007) 313-322.<br />

S. Akgol, Y. Kaear, A. Denizli, M.Y. Arica, Hydrolysis <strong>of</strong> sucrose by invertase<br />

immobilized <strong>on</strong>to novel magnetic polyvinylalcohol mierospheres, Food Chem. 74<br />

(2001) 281-288.<br />

A.l.S. Brigida, A.D.T. Pinheiro, A.L.O. Ferreira, L.R.B. G<strong>on</strong>ealves, Immobilizati<strong>on</strong><br />

<strong>of</strong> Candida anlarcrica lipase B by adsorpti<strong>on</strong> to green coc<strong>on</strong>ut fiber, Appl. Biochem.<br />

Bioteehnol. 146 (2008) 173-187.<br />

T. Hayashi, Y. lkada, Lipoprotein lipase immobilizati<strong>on</strong> <strong>on</strong>to polyacrolein<br />

mierospheres, Bioteehnol. Bioeng. 36 ( I990) 593-600.<br />

D.K. Apar, B. Ozbek, a-Amylase inactivati<strong>on</strong> during rice starch hydrolysis, Process<br />

Biochem. 40 (2005) 1367-1379.<br />

P. Col<strong>on</strong>na, A. Bule<strong>on</strong>, F. Lemarie, Acti<strong>on</strong> <strong>of</strong> Bacillus subt:'Iz'.s' alpha-amylase <strong>on</strong><br />

native wheat starch, Biotechnol. Bioeng. 31 (1988) 895-904.<br />

N. Hasirei, S. Aksoy, H. Tumturk, Activati<strong>on</strong> <strong>of</strong> poly (dimer acid-co-alkyl<br />

polyamine) particles for covalent immobilizati<strong>on</strong> <strong>of</strong> a—amylase, React. Funct. Polym.<br />

66 (2006) 1546-1551.<br />

B.K. Vaidya, G.C. lngavle, S. P<strong>on</strong>rathnam, B.D. Kulkarni, S.N. Nene,<br />

Immobilizati<strong>on</strong> <strong>of</strong> Candida rugosa lipase <strong>on</strong> poly(al1yl glycidyl e<strong>the</strong>r-co-ethylene<br />

glycol dimethaeiylate) macroporous polymer particles, Bioresour. Techno]. 99 (2008)<br />

3623-3629.<br />

A. Tanriseven, Z. Ulcer, A novel method for <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> glucoamylase<br />

<strong>on</strong>to polygluteraldehyde-activated gelatin, Biochem. Eng. J. 39 (2008) 430-434.<br />

G. Bayramoglu, S. Kiralp, M. Yilmaz, L. Toppare, M.Y. Arica, Covalent<br />

immobilizati<strong>on</strong> <strong>of</strong> chloroperoxidase <strong>on</strong>to magnetic beads: catalytic properties and<br />

stability, Biochem. Eng. J. 38 (2008) 180-188.<br />

R. Sadhukhan, S.K. Roy, S.Z. Cliakrabarty, Immobilizati<strong>on</strong> <strong>of</strong> a—amy1ase from<br />

Myceliophthoro <strong>the</strong>rmophile D-14 (ATCC 48204), Enzyme Microb. Teehnol. 15<br />

(1993) 801-804.<br />

123


[54]<br />

[55]<br />

[56]<br />

[57]<br />

[53]<br />

[59]<br />

[60]<br />

[61]<br />

[62]<br />

[63]<br />

[64]<br />

[65]<br />

_ A Study 031 <strong>the</strong> I_mm0biliZ;a*iQn gf l1!1ly_m@§ <strong>on</strong> P9Iym¢ri¢ Sglpporl-S 1 _<br />

Z. Bayramoglu, U. Akbulut, Immobilizati<strong>on</strong> <strong>of</strong> a-amylase into photographic gelatin<br />

by chemical cross-linking, Biomat. l3 (1992) 704-708.<br />

S.A. Costa, T. Tzanov, A. Paar, M. Gudelj, G.M. Gtibitz, A.C. -Paulo,<br />

Immobilizati<strong>on</strong> <strong>of</strong> catalases from Bacillus SF <strong>on</strong> alumina for <strong>the</strong> treatment <strong>of</strong> textile<br />

bleaching effluents, Enzyme Microb. Techno]. 28 (2001) 815-819.<br />

J.F. Kennedy, M. Paters<strong>on</strong>, Applicati<strong>on</strong> <strong>of</strong> cellulosic fast flow column filters to<br />

protein immobilizati<strong>on</strong> and recovery, Polym. Int. 32 (1993) 71-81.<br />

M.V. Kahraman, G. Bayramoglu, N.K. -Apohan, A. Giingor, UV-Curable<br />

methacrylated/fumaric acid modified epoxy as a potential support for enzyme<br />

immobilizati<strong>on</strong>, React. Funct. Polym. 67 (2007) 97-103.<br />

A. Morana, A. Mangi<strong>on</strong>e, L. Maurelli, l. Fiume, O. Paris, R. Cannio, M. Rossi,<br />

Immobilizati<strong>on</strong> and characterizati<strong>on</strong> <strong>of</strong> a <strong>the</strong>rmostable ,6-xylosidase to generate a<br />

reusable biocatalyst, Enzyme Microb. Techno]. 39 (2006) 1205-1213.<br />

S.M. Gaikwad, V.V. Deshpande, Immobilizati<strong>on</strong> <strong>of</strong> glucose isomerase <strong>on</strong> lndi<strong>on</strong> 48­<br />

R, Enzyme Microb. Techno]. 14 (1992) 855-858.<br />

G. Sanjay, S. Sugunan, Glucoamylase immobilized <strong>on</strong> m<strong>on</strong>tmorill<strong>on</strong>itez influence <strong>of</strong><br />

nature <strong>of</strong> binding <strong>on</strong> surface properties <strong>of</strong> clay-support and activity <strong>of</strong> enzyme, J.<br />

Porous Mater. I4 (2007) 127-136.<br />

P. Ye, Z.K. Xu, A.F. Che, J. Wu, P. Seta, Chitosan-te<strong>the</strong>red poly(aeryl<strong>on</strong>itrile-co­<br />

maleic acid) hollow fiber membrane for lipase immobilizati<strong>on</strong>, Biomat. 26 (2005)<br />

6394-6403.<br />

L. Mojovic, Z. Knezevic, R. Popadic, S. Jovanovic, Immobilizati<strong>on</strong> <strong>of</strong> lipase from<br />

Candida rugosa <strong>on</strong> a polymer support, App]. Microbiol. Biotcch. 50 (1998) 676-681.<br />

J. Laska, J. Wlodarczyk, W. Zaborska, Polyaniline as a support for urease<br />

immobilizati<strong>on</strong>, J. Mol. Catal. B: Enzymatic 6 (1999) 549-553.<br />

J. H<strong>on</strong>g, D. Xu, P. G<strong>on</strong>g, J. Yu, H. Ma, S. Yao, Covalent b<strong>on</strong>ded immobilizati<strong>on</strong> <strong>of</strong><br />

enzyme <strong>on</strong> hydrophilic polymer covering magnetic nanogels, Microporous<br />

Mesoporous Mater. I09 (2008) 470-477.<br />

P. M<strong>on</strong>san, Optimizati<strong>on</strong> <strong>of</strong> glutaraldehydc activati<strong>on</strong> <strong>of</strong> a support for enzyme<br />

immobilizati<strong>on</strong>, J. Mol. Catal. 3 (1978) 371-384.<br />

l24


CHAPTER 5<br />

IMMOBILIZATION OF GLUCOAMYLASE<br />

5.1 INTRODUCTION ................................................................................................. ..l27<br />

5.2 IMMOBILIZATION OF GMA ON EMERALDIN E SALTS (ES) .................. ..I28<br />

5.2.I OPTIMUM PARAMETERS FOR IMMOBILIZATION OF GMA ................................... .. 128<br />

5.2.2 INFLUENCE OF PH ON THE ACTIVITY OF FREE AND IMMOBILIZED ENZYME ......... .. I33<br />

5.2.3 INFLUENCE OF TEMPERATURE ON ACTIVITY ....................................................... .. 134<br />

5.2.4 THERMAL STABILITY ......................................................................................... ..135<br />

5.2.5 KINETIC PARAMETERS ....................................................................................... .. 136<br />

5.2.6 $TORA(]E STABILITY .......................................................................................... .. I38<br />

5.2.7 REUSABILITY ..................................................................................................... .. 139<br />

5.3 IMMOBILIZATION OF GMA ON EMERALDINE BASE (EB) ................... ..I40<br />

5.3.1 OPTIMUM PREPARATION CONDITIONS OF IMMOBILIZED GMA ........................... .. I40<br />

5.3.2 EFFECT OF PH ON ACTIVITY ............................................................................... .. 143<br />

5.3 .3 EFFECT OF TEMPERATURE ON ACTIVITY ............................................................. .. I45<br />

5.3.4 THERMAL STABILITY OF IMMOBILIZED GMA .................................................... .. 146<br />

5.3.5 KINETIC PARAMETERS OF IMMOBILIZFD ENZYMES ............................................. .. 147<br />

5.3.6 STORAGE STABILITY .......................................................................................... .. I49<br />

5.3.7 REUSABILITY ..................................................................................................... .. 150<br />

5.4 IMMOBILIZATION OF GMA ON POLY(O-TOLUIDINE) SALTS (TS) .... ..I51<br />

5.4.1 DETERMINATION OF IMMOBILIZATION PARAMETERS .......................................... .. I51<br />

5.4.2 EFFECT OF PH ON ACTIVITY .............................................................................. .. I56<br />

5.4.3 EFFECT OF TEMPERATURE ON ACTIVITY ............................................................. .. I57<br />

5.4.4 THERMAL STABILITY ......................................................................................... .. 157<br />

5.4.5 KINETIC CONSTANTS .......................................................................................... .. I59<br />

5.4.6 STORAGE STABILITY .......................................................................................... .. 161<br />

5.4.7 MULTIPLE USE OF TI IE IMMOBILIZED GMA ....................................................... .. I62<br />

5.5 IMMOBILIZATION OF GMA ON POLY(O-TOLUIDINE) BASE (TB) ...... ..I63


5.5.1 OPTIMIZED IMMOBILIZATION CONDITIONS ................. ..<br />

5.5.2 EFFECT OF PH ON ENZYME ACTIVITY ........................ ..<br />

5.5.3 EFFECT OF TEMPERATURE ON THE ACTIVITY OF GMA<br />

5.5.4 THERMAL STABILITY ................................................. ..<br />

5.5.5 KINETICS PARAMETERS .............................................. ..<br />

5.5.6 STORAGE STABILITY .................................................. ..<br />

5.5.7 REPEATED BATCH REACTION ..................................... ..<br />

5.6 CONCLUSION .............................................................. ..<br />

REFERENCES .................................................................... ..<br />

126


_(_;_li_apter 5 H__ _ Immobilizati<strong>on</strong> <strong>of</strong> Glucoamfylase<br />

5.1 Introducti<strong>on</strong><br />

Glucoamylase (GMA) (l,4-a-D-glucan-glucohydrolasc; (EC 3.2.1.3) (alternative<br />

names: Glucan 1,4-a-glucosidase; amyloglucosidase; Exo-1,4-a-glucosidase; y-Amylase;<br />

lysosomal a-glucosidase; 1,4-a-D-glucan glueohydrolase), an exosplitting enzyme splits <strong>of</strong>f<br />

[3-D-glucose units from <strong>the</strong> n<strong>on</strong>reducing end <strong>of</strong> <strong>the</strong> chains <strong>of</strong> amylose, amylopcctin, and<br />

o<strong>the</strong>r a-glueocans by hydrolyzing <strong>the</strong> a-1,4- and a-1,6-glucosidic linkages <strong>of</strong> raw or soluble<br />

starches and related oligosaccharides [1]. GMA has been used in industrial processes such<br />

as <strong>the</strong> producti<strong>on</strong> <strong>of</strong> glucose syrup and o<strong>the</strong>r food-processing applicati<strong>on</strong>s [2-6]. The<br />

immobilizati<strong>on</strong> <strong>of</strong> GMA is an important development in modern technology for <strong>the</strong><br />

producti<strong>on</strong> <strong>of</strong> sweeteners from renewable vegetable feedstock, because it can generate a<br />

heterogeneous biocatalyst which can design for <strong>on</strong>e <strong>of</strong> <strong>the</strong> key stages <strong>of</strong> starch c<strong>on</strong>versi<strong>on</strong><br />

[7-9].<br />

Although many fungal species are capable <strong>of</strong> producing GMA under different<br />

growth c<strong>on</strong>diti<strong>on</strong>s [7], <strong>the</strong> industrial development <strong>of</strong> GMA has focused <strong>on</strong>ly <strong>on</strong> GMA from<br />

A.rpergilZu.s' niger and Rhizopus otjvzae because <strong>of</strong> <strong>the</strong>ir stability and high activity [3, 10,<br />

ll]. In industrial c<strong>on</strong>venti<strong>on</strong>al enzymatic reacti<strong>on</strong>s, a mixture <strong>of</strong> <strong>the</strong> substrate and soluble<br />

enzyme is incubated. During sacharifieati<strong>on</strong>, glucoamylase gets inactivated partially.<br />

Sec<strong>on</strong>dly, saccharificati<strong>on</strong> is time c<strong>on</strong>suming process which necessitates operati<strong>on</strong> at<br />

higher temperature (60 “C). As menti<strong>on</strong>ed in <strong>the</strong> previous chapters <strong>the</strong> process would be<br />

more ec<strong>on</strong>omical if <strong>the</strong> enzyme could be reused, especially, by immobilizati<strong>on</strong> <strong>on</strong> a solid<br />

support. The combinati<strong>on</strong> <strong>of</strong> unique biocatalytic properties <strong>of</strong> enzymes <strong>on</strong> <strong>on</strong>e side, and<br />

heterogeneity <strong>of</strong> <strong>the</strong> support <strong>on</strong> <strong>the</strong> o<strong>the</strong>r, makes it possible to achieve <strong>the</strong> main aim <strong>of</strong><br />

immobilizati<strong>on</strong>, which is reusing <strong>the</strong> enzymes. It also possible to reduce <strong>the</strong> c<strong>on</strong>versi<strong>on</strong><br />

time and maintain lower inactivati<strong>on</strong> rates at higher temperatures employed. To achieve<br />

this GMA is immobilized <strong>on</strong> various insoluble carriers with <strong>the</strong> retenti<strong>on</strong> <strong>of</strong> its catalytic<br />

properties which can be used repeatedly and c<strong>on</strong>tinuously [12-27]. Although much research<br />

has been carried out to develop immobilized GMA systems, <strong>the</strong>re has been little success in<br />

satisfying industrial requirements. Am<strong>on</strong>g all <strong>of</strong> <strong>the</strong> methods used for immobilizing<br />

glucoamylasc, covalent b<strong>on</strong>ding is most widely investigated because <strong>of</strong> its obvious<br />

127


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

advantages (e.g., stable, wide range <strong>of</strong> supports and binding methods, etc.) compared with<br />

<strong>the</strong> o<strong>the</strong>r methods [24, 28]. To effectively immobilize glucoamylase <strong>on</strong>to supports, many<br />

quite different support materials, such as artificial polymer materials [12-17], magnetic<br />

microparticles [l8—22], alginate fiber [23] macroporous hydrophilic beads [24], gelatin [25]<br />

activated charcoal [26], carb<strong>on</strong> support sibunit [27] were employed. Compared with o<strong>the</strong>r<br />

supports, recently c<strong>on</strong>ducting polymer materials like polyaniline and o<strong>the</strong>r derived<br />

compounds showed relatively good properties owing to <strong>the</strong> possibility <strong>of</strong> designing <strong>the</strong><br />

supports structure through polymerizati<strong>on</strong> or chemical and physical modificati<strong>on</strong> and has<br />

been used for immobilizati<strong>on</strong> <strong>of</strong> many enzymes [29-37]. After <strong>the</strong> enzyme was<br />

immobilized <strong>on</strong>to <strong>the</strong>se supports, it’s operati<strong>on</strong>al, <strong>the</strong>rmal, and storage stabilities were<br />

found to be increased.<br />

In this chapter, we are discussing <strong>the</strong> immobilizati<strong>on</strong> studies <strong>of</strong> glucoamylase <strong>on</strong><br />

polymers; polyaniline and poly(o-toludine). Immobilizati<strong>on</strong> may leads to change in pH and<br />

temperature stabilities as well as activity <strong>of</strong> <strong>the</strong> enzyme. It also sometime shows better<br />

storage and operati<strong>on</strong>al stability al<strong>on</strong>g with excellent reusability. So <strong>the</strong> investigati<strong>on</strong> <strong>of</strong><br />

optimum pH, optimum temperature and kinetic c<strong>on</strong>stants are very important.<br />

5.2 Immobilizati<strong>on</strong> <strong>of</strong> GMA <strong>on</strong> Emeraldine Salts (ES)<br />

The GMA immobilizati<strong>on</strong> <strong>on</strong> n<strong>on</strong>-activated emeraldine salt (ES), glutaraldehyde<br />

activated emeraldine salt (BS1) and ascorbic acid activated emeraldine salt (ES2) is first<br />

discussing here in this secti<strong>on</strong>.<br />

5.2.1 Optimum parameters for immobilizati<strong>on</strong> <strong>of</strong> GMA<br />

To find <strong>the</strong> optimum binding c<strong>on</strong>diti<strong>on</strong> necessary for <strong>the</strong> enzyme, we measured <strong>the</strong><br />

immobilized glucoamylase activity under <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> different pH value.<br />

Immobilizati<strong>on</strong> <strong>of</strong> an enzyme is affected by pH. The changes in pH bring about apparent<br />

changes in <strong>the</strong> enzyme structure, which influence its activity. The effect <strong>of</strong> pH <strong>of</strong> <strong>the</strong><br />

medium <strong>on</strong> <strong>the</strong> relative activity <strong>of</strong> <strong>the</strong> immobilized enzyme is shown in fig. 5.2.1. From <strong>the</strong><br />

figure it is evident that <strong>the</strong> pH <strong>on</strong> immobilizati<strong>on</strong> is different for both types <strong>of</strong> supports<br />

128


C ap 5 y<br />

h ter Immobilizati<strong>on</strong> <strong>of</strong> Glucoam lase<br />

used. pH 4-6 is suitable for activated polyaniline, with maximum at 5 and pH 6 for n<strong>on</strong>­<br />

activated polyaniline. Below pH 4 and above 6, <strong>the</strong> relative activity <strong>of</strong> <strong>the</strong> immobilized<br />

enzyme decreased sharply. The decline in immobilizati<strong>on</strong> efficiency bey<strong>on</strong>d pH 6 and<br />

below 4 may owe to desorpti<strong>on</strong> <strong>of</strong> <strong>the</strong> enzyme from <strong>the</strong> carrier or <strong>the</strong> instability <strong>of</strong> <strong>the</strong> pure<br />

enzyme in that pH.<br />

100_ -ES I V//A ES1<br />

ES2<br />

3 4 5 6 1 s<br />

pH<br />

Fig. 5.2.] Eflect <strong>of</strong> pH <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong> medium<br />

<strong>on</strong> <strong>the</strong> activity <strong>of</strong> immobilized GMA.<br />

Fig. 5.2.2 shows <strong>the</strong> effect <strong>of</strong> c<strong>on</strong>tact time <strong>on</strong> immobilizati<strong>on</strong> <strong>of</strong> GMA. It was<br />

obtained by measuring activity <strong>of</strong> <strong>the</strong> immobilized enzyme, (after incubating enzyme with<br />

supports at different time intervals). The maximum activity was taken as 100 %, and was<br />

shown by GMA <strong>on</strong> ES1 after 30 minutes (c<strong>on</strong>tact time) <strong>of</strong> immobilizati<strong>on</strong>, whereas <strong>the</strong><br />

enzyme coupled <strong>on</strong> ES and ES2 required 45 and 60 minutes respectively in order to obtain<br />

<strong>the</strong> maximum enzyme loading and hence activity.<br />

129


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

100­<br />

I ES<br />

ES1<br />

@ ES2<br />

15 so 45 so 75<br />

Time (minutes)<br />

Fig. 5.2.2 Influence <strong>of</strong> c<strong>on</strong>tact time for immobilizati<strong>on</strong><br />

<strong>on</strong> <strong>the</strong> retained activity <strong>of</strong> GA/£4.<br />

With increasing amount <strong>of</strong> added protein per gram <strong>of</strong> polymer, <strong>the</strong> amount <strong>of</strong><br />

proteins loaded and <strong>the</strong> specific activity initially increased, and reached a plateau as shown<br />

in <strong>the</strong>fig. 5.2.3 andfig. 5.2.4.<br />

i01<br />

‘ ' I _.— ' I<br />

- _ -0- ES<br />

1 2<br />

Initial protein (mg)<br />

-I —A— ES2<br />

Fig. 5.2.3 Eflect <strong>of</strong> initial protein c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong><br />

<strong>the</strong> uptake <strong>of</strong> protein.<br />

130


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

The plateau in <strong>the</strong> fig. 5.2.4 was <strong>the</strong> result <strong>of</strong> diffusi<strong>on</strong>al limitati<strong>on</strong> caused by <strong>the</strong><br />

overloading <strong>of</strong> polymer which reduces <strong>the</strong> access <strong>of</strong> <strong>the</strong> substrate to <strong>the</strong> active sites <strong>of</strong> <strong>the</strong><br />

bound enzyme, as described in <strong>the</strong> previous chapter. Immobilizati<strong>on</strong> efficiency (table 5.1)<br />

indicated that <strong>the</strong> lowest value (70.2 %) was found for GMA physically adsorbed <strong>on</strong> ES.<br />

The low efficiency<br />

./<br />

indicates that much <strong>of</strong> <strong>the</strong> protein was apparently immobilized in a n<strong>on</strong>active<br />

form. Enzyme immobilized by covalent binding through <strong>the</strong> glutaraldehyde spacer<br />

group showed <strong>the</strong> highest efficiency in ESl (94.1 %) with highest activity yield <strong>of</strong> 54.3 EU<br />

. -5- S2<br />

4 .<br />

g carrier.<br />

6oJ- /<br />

S1 2??0 Initial activity <strong>of</strong> GMA (EU)<br />

Fig. 5. 2.4 Activity <strong>of</strong> immobilized enzyme as a fimcti<strong>on</strong><br />

<strong>of</strong> initial enzyme activity.<br />

1 EU (Enzyme Unit) is defined as <strong>the</strong> amount <strong>of</strong> enzyme that liberates l ,umol <strong>of</strong><br />

glucose per mL per minute. ES2 showed c<strong>on</strong>siderable bound (47.6 EU g") and<br />

immobilizati<strong>on</strong> yield (66.7 %). This good loading efficiency for <strong>the</strong> immobilizati<strong>on</strong> by<br />

covalent binding might have been due to <strong>the</strong> formati<strong>on</strong> <strong>of</strong> stable cross linking between <strong>the</strong><br />

carrier and <strong>the</strong> enzyme through a spacer group.<br />

131


Chapter 5 g _ Hlmmobiligzati<strong>on</strong> <strong>of</strong> Glueoamylaie<br />

5.2.2 Influence <strong>of</strong> pH <strong>on</strong> <strong>the</strong> activity <strong>of</strong> free and immobilized enzyme<br />

The effect <strong>of</strong> pH <strong>on</strong> <strong>the</strong> enzyme activity <strong>of</strong> free and bound forms were examined<br />

Within <strong>the</strong> pH range <strong>of</strong> 4-7. The enzyme activity is presented here as <strong>the</strong> relative activity<br />

with respect to <strong>the</strong> maximum value at pH optimum. As can be seen from fig. 5.2.5, <strong>the</strong> pH<br />

optimum <strong>of</strong> <strong>the</strong> ES-GMA, ES2-GMA was shifted to <strong>the</strong> acidic regi<strong>on</strong> relative to free<br />

glucoamylase.<br />

: \, if<br />

100? ‘ XX‘<br />

I?<br />

a 0/ cl<br />

_ ‘ X3<br />

—n-— Free<br />

ill<br />

01<br />

4.0<br />

50 —-- ES '<br />

4 5 6 7<br />

pH<br />

4--— E81 i<br />

-—vg— ES2 i<br />

I - —| ' F in I l"“'<br />

Fig. 5.2.5 pH prq/Hes Qf_/fee and inzn10bi/ized GMA.<br />

The activity <strong>of</strong> free enzyme was more dependent <strong>on</strong> pH than <strong>the</strong> activity <strong>of</strong><br />

immobilized enzyme. The maximum activity was observed at 5.5 for free enzyme and with<br />

a change <strong>of</strong> l pH unit, <strong>the</strong> free enzyme lost 40-50 % <strong>of</strong> its original activity at <strong>the</strong> optimal<br />

pH. A change in pH could cause an expansi<strong>on</strong> or shrinkage <strong>of</strong> <strong>the</strong> protein structure leading<br />

to c<strong>on</strong>formati<strong>on</strong>al changes that will affect <strong>the</strong> activity <strong>of</strong> <strong>the</strong> enzyme. On <strong>the</strong> o<strong>the</strong>r hand,<br />

immobilized enzyme showed good activity within <strong>the</strong> range <strong>of</strong> pH (4-7) and was less<br />

susceptible to pH change. The excellent adaptability in a wide range <strong>of</strong> pH for immobilized<br />

enzyme was well reported in <strong>the</strong> literature [24, 26]. Particularly for PAN], <strong>the</strong>se effects<br />

have been noticed during immobilizati<strong>on</strong> <strong>of</strong> peroxidase and trypsin [29, 38]. The<br />

immobilizati<strong>on</strong> <strong>of</strong> enzymes to charged supports <strong>of</strong>ten leads to displacements in <strong>the</strong> pH<br />

l33


A Study <strong>on</strong> <strong>the</strong> Irnmobilizapti<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> p<br />

activity pr<strong>of</strong>ile, ascribable to unequal partiti<strong>on</strong>ing <strong>of</strong> H+ and OH’ between <strong>the</strong><br />

microenvir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> immobilized enzyme and <strong>the</strong> bulk phase due <strong>the</strong> electrostatic<br />

interacti<strong>on</strong>s with <strong>the</strong> matrix [24].<br />

5.2.3 Influence <strong>of</strong> temperature <strong>on</strong> activity<br />

Temperature plays an important role in determining activity <strong>of</strong> enzymes. The results<br />

presented in fig. 5.2.6, shows that all <strong>of</strong> <strong>the</strong> immobilized enzymes were optimally active at<br />

a higher temperature (60-65 °C) than <strong>the</strong> free enzyme (55 °C).GMA <strong>on</strong> ES and ES2 showed<br />

maximum activity at 60 °C and <strong>on</strong> ES] at 65 °C.<br />

/J‘ . N<br />

; /4%» \ \_<br />

so 40 so so 70<br />

Temperature (°C)<br />

- cm - e | - 1 - 1‘ * I i<br />

Fig. 5.2.6 Temperature pr<strong>of</strong>iles fin‘ free and imnzobilized<br />

g/ucoamy/ase.<br />

Similar to <strong>the</strong>se results, Bai er al. reported [24] that <strong>the</strong> optimum temperature for<br />

Aspergillus niger glucoamylase was increased from 45 "C to 55 "C after immobilizati<strong>on</strong> <strong>on</strong><br />

hydrophilic carrier. Huo er al. reported [17] a 5 °C rise in optimum temperature when GMA<br />

was covalently immobilized <strong>on</strong>to polymer supports <strong>of</strong> vinylene carb<strong>on</strong>ate and 2­<br />

hydroxyethyl methacrylate [l7]. These facts suggested that <strong>the</strong> c-<strong>on</strong>f<strong>on</strong>nati<strong>on</strong>al rigidity <strong>of</strong><br />

<strong>the</strong> GMA was increased after <strong>the</strong> attachment to <strong>the</strong> ES matrices <strong>the</strong>n requiring more<br />

I34


Chapter 5 p _ H p Immobilizati<strong>on</strong> <strong>of</strong> Gfllueoamylase<br />

temperature to express its maximum catalytic activity. Since immobilizati<strong>on</strong> and cross­<br />

linking provided more rigid extemal backb<strong>on</strong>e for enzyme molecules, <strong>the</strong> effect <strong>of</strong> higher<br />

temperature in breaking <strong>the</strong> interacti<strong>on</strong>s that are resp<strong>on</strong>sible for <strong>the</strong> proper globular,<br />

catalytic active structures became less prominent, thus increasing <strong>the</strong> <strong>the</strong>rmal stability also.<br />

5.2.4 Thermal stability<br />

The <strong>the</strong>rmostability <strong>of</strong> free and immobilized GMA was studied with respect to<br />

temperature and time in <strong>the</strong> temperature range 30 to 70 °C. The data are presented figs.<br />

5.2.7 and 5.2.8.<br />

. ‘L<br />

100-; _<br />

—<br />

I<br />

: — \n I<br />

— —Free<br />

— —ES<br />

I it l I ’* I I<br />

30 40 50 60 70<br />

Temperature (°C)<br />

Fig. 5.2. 7 Influence <strong>of</strong> temperature <strong>on</strong> <strong>the</strong> stability <strong>of</strong><br />

flee and inmzobilized GM/1.<br />

The immobilized glueoamylase retained 80-90 % <strong>of</strong> its initial activity at 50 “C,<br />

while free enzyme lost 50 % its initial activity about during a 60 minutes incubati<strong>on</strong> period.<br />

At 60 “C <strong>the</strong> immobilized and free enzymes retained <strong>the</strong>ir activities around at levels <strong>of</strong> 80<br />

and 30 %, respectively. lt also indicated that, <strong>the</strong> immobilized enzymes retained more than<br />

75 % <strong>of</strong> <strong>the</strong>ir initial activity even after 60 minutes <strong>of</strong> incubati<strong>on</strong> at optimum temperature<br />

which indicates that <strong>the</strong> immobilized form was inactivated at a much slower rate than <strong>the</strong><br />

135


A Study <strong>on</strong>m<strong>the</strong> I mmobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

free f<strong>on</strong>n. These results suggest that <strong>the</strong> <strong>the</strong>rmostability <strong>of</strong> immobilized GMA increased<br />

c<strong>on</strong>siderably as a result <strong>of</strong> immobilizati<strong>on</strong> <strong>on</strong>to ES polymers. The activity <strong>of</strong> <strong>the</strong><br />

immobilized enzyme, especially in a covalently bound system, is more resistant against<br />

heat and denaturing agents than that <strong>of</strong> <strong>the</strong> soluble form. The improvement in denaturati<strong>on</strong><br />

resistance <strong>of</strong> <strong>the</strong> covalently immobilized Aspergillus niger glueoamylase due to multipoint<br />

attachments <strong>on</strong> PAN] was already reported [l4].<br />

5.2.5 Kinetic parameters<br />

Q» ~Y._


I 2 l I .. I<br />

1' a<br />

O O01<br />

I<br />

- am“ 0.00:­<br />

0.0111­<br />

(D<br />

-2 1115.1 0 .'. ' 2 4 04/ o 15,1 ' ' '<br />

/<br />

u u 4 u a<br />

=­.-2‘ /<br />

I<br />

bIO.<br />

'1»?<br />

1 <strong>on</strong> f no . 9; - <strong>on</strong> ,,__,,,_ ’ 4 -3,_ 0<br />

@<br />

4<br />

a<br />

/A<br />

2° 1%<br />

/L I -04 _ CC , 04- - , ‘~ -13 — ' I ' 6 .. ‘ 2 -1<br />

Qhggter 5 *_____:; _é___*_____% im[r1pQilizati0n_0f _G?l_u?c0amylase<br />

w. [SJ C .<br />

1-1s,,1 |s,|<br />

E7. 5*2.<br />

4-4<br />

1I|SDI<br />

/ J 1 l 2 [SJ II ' 0 2<br />

Fig. 5.2.9 (I) Lincweaver-Burl: plots (II) Hancs- Woolfplors 0_f(a)_/fee<br />

GM/1 and inznzobilized <strong>on</strong> (b) ES (c) ES] (d) <strong>on</strong> E52.<br />

137<br />

d


Y Z)’ Y PP<br />

A Stud <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> En mes <strong>on</strong> Pol meric Su orts<br />

These changes in kinetic parameters may be a c<strong>on</strong>sequence <strong>of</strong> ei<strong>the</strong>r structural<br />

change in <strong>the</strong> enzyme occurring up<strong>on</strong> immobilizati<strong>on</strong> or lower accessibility <strong>of</strong> substrate to<br />

<strong>the</strong> active sites <strong>of</strong> <strong>the</strong> immobilized enzyme, as well described in <strong>the</strong> literature [21].<br />

Table 5.2 Kinetic c<strong>on</strong>stants <strong>of</strong> free and immobilized GMA.<br />

Free GMA ES-GMA ESI-GMA ES2-GMA<br />

K... (mg mu‘ ) 0.32 1 0.04 4.84 1 0.12 1.85 1 0.03 1.24 1 0.05<br />

Vm, (EU pg" protein) 1.65 i: 0.03 1.15 zt 0.06 1.55 :l: 0.08 1.22 :l: 0.07<br />

5.2.6 Storage stability<br />

For successful commercializati<strong>on</strong> <strong>of</strong> <strong>the</strong> heterogeneous process <strong>of</strong> starch<br />

saccharificati<strong>on</strong>, a biocatalyst should have an appreciable life time, which corresp<strong>on</strong>ds to a<br />

l<strong>on</strong>g term operati<strong>on</strong> <strong>of</strong> <strong>the</strong> reactor without reloading. lf an enzyme is in buffer soluti<strong>on</strong>, it is<br />

not stable during storage, and <strong>the</strong> activity is gradually reduced.<br />

100 m E82 ! ES<br />

'.',','. , ,','.'.' ~ ,,,, , _ . ..... _._-3 . - ¢ . ¢ . ~ -'. -_ - ._-‘-_-_ . '-‘»'-'­<br />

. . . ‘._._.­<br />

. '1'-‘>5 . . . n$V4v . ._._._._. . - QOQI v-<br />

­<br />

._. 04'-'-' ,',¢_'_- . . _.~._._. 5‘-‘.'.‘ nnuv .‘._._._ -'.‘.‘~' llrv ._._._._. 0001‘ -‘-'-‘-'<br />

nun;<br />

aI§ .~.-.~.~ ."".'. , I ~ . - -.'.-.;.‘ _ Q ~ A . ‘.'.‘. 0 c . ._._._._. - 0 .1. .'. 4 1 -‘.' .' 1 .'.;.~.-. I‘: .‘ -‘ o'v‘<br />

‘I’ -I-I-‘-I .'.'.'.‘ _-_~_~_~ _-_- _._.;._. ._. .‘._._¢_ ._._._._ ¢_._.‘|'.<br />

,.,‘, .~.‘.'.~ IIII --no ~.-.-.-. 0 ._._.‘.‘.<br />

_,_,:.:. - - ‘ - -_._..-_ ~.'.-,-. _._-.._. .-Z-.~.­ _._._._. In<br />

I 1 .',~.',~ .5‘,-.' _~_-_~_¢ ‘-‘-‘-'.' ‘.‘.'.‘. .‘.‘-'-' 3.3.1.; - . . -‘._..._ . 4 .'.'-‘.' .'.'.~.~ .'.' .'. -'.'-‘-' .' - ¢_ '.'.'. ,-,',',~ ._. ~ ~'- 5.‘ ._~_~_


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoam lase Y<br />

Fig. 5.2.10 shows <strong>the</strong> stability <strong>of</strong> immobilized glucoamylase stored in semi-dry<br />

c<strong>on</strong>diti<strong>on</strong> 4 °C. As can be seen from <strong>the</strong> figure, <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> GMA increased its<br />

storage stability, while <strong>the</strong> free GMA in buffer soluti<strong>on</strong> lost all its activity within 10 hours.<br />

lt was observed here that <strong>the</strong> immobilized GMA retained almost 90 % <strong>of</strong> its initial activity<br />

during <strong>the</strong> storage period <strong>of</strong> 45 days. This gradual decrease in activity is explained as <strong>the</strong><br />

time dependent natural loss in enzyme activity. Huo et al. reported [17] an 84 % <strong>of</strong> activity<br />

recovery after 26 days <strong>of</strong> storage when glucoamylase immobilized <strong>on</strong> porous polymer.<br />

5.2.7 Reusability<br />

Reusability <strong>of</strong> immobilized GMA was tested in subsequent cycles <strong>of</strong> starch<br />

hydrolysis. lt can be observed that ES-GMA could retain <strong>on</strong>ly less than 75 % <strong>of</strong> its initial<br />

hydrolytic activity after <strong>the</strong> eighth cycle <strong>of</strong> reacti<strong>on</strong> whereas ESI-GMA retained almost 90<br />

% after <strong>the</strong> eighth cycle (fig. 5.2.11). O<strong>the</strong>r authors [24] observed that GMA irrnnobilized<br />

<strong>on</strong> hydrophilic beads retained more than 88 % <strong>of</strong> its initial activity after <strong>the</strong> 20“ cycle <strong>of</strong><br />

starch hydrolysis. The worse operati<strong>on</strong>al stability <strong>of</strong> ES-GMA, when compared to GMA<br />

immobilized <strong>on</strong> activated ESl and to ES2, may be due to enzyme desorpti<strong>on</strong> during<br />

reacti<strong>on</strong>, and by <strong>the</strong> low amotmt <strong>of</strong> enzyme adsorbed.<br />

‘I ES<br />

100 ;2;&;2 V////A E52 E51<br />

.<br />

‘.'.'. '-'-2<br />

. . . -'.'.' ’.‘.'. '.'.'.<br />

~ '~‘-'v '.'.'¢<br />

- - _-_-,~<br />

.‘.‘.' -‘-'-' . ' ,<br />

. ' ~<br />

. ‘ .<br />

- ‘J-'. 4<br />

V<br />

.<br />

.15.;<br />

._.;.;<br />

,'.'.‘ .'.'.‘ . . -'-‘.<br />

‘.'.‘. '.'.‘. _- V . ,-_v_~ ¢_~_-_ ._._-_ ‘.‘.‘. '.'.'<br />

‘.‘.'. * '-'.'. ' ' '.‘.'. .'.'. .2‘-‘ - - - . .'.‘.' - - . -'.'.' » - '.'.‘. '.‘.'. ‘-'-'­ '-'.'­ . . .<br />

8"‘. ;.;.;. 1.3;. .;.;.j '.'-2 -I-I-. ~.~I~. - - -§~,-. I .'.'.‘ I-I-3 '.' -1-I-_ '. 1-I-{- - . ._ . '.'.‘- . 21.‘. . .j.'.' '- -'­<br />

-.~.~. _


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

5.3 Immobilizati<strong>on</strong> <strong>of</strong> GMA <strong>on</strong> Emeraldine Base (EB)<br />

5.3.1 Optimum preparati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> immobilized GMA<br />

As it was explained earlier, <strong>the</strong> properties <strong>of</strong> irmnobilized enzyme preparati<strong>on</strong>s<br />

depend to a great extend <strong>on</strong> <strong>the</strong> pH <strong>of</strong> <strong>the</strong> medium from which <strong>the</strong> enzyme b<strong>on</strong>ding is<br />

affected. It is evident from fig. 5.3.1 that <strong>the</strong> immobilized enzyme presented relatively high<br />

activity when <strong>the</strong> pH values <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong> medium are in <strong>the</strong> range 5-6. EB and<br />

EB2 (n<strong>on</strong> activated and ascorbic acid activated emeraldine base) worked well with both <strong>of</strong><br />

pH 5 and 6 and EBI (glutaraldehyde activated emeraldine base) preferred pH 6 <strong>on</strong>ly. A<br />

pr<strong>on</strong>ounced decline in <strong>the</strong> enzymatic activity <strong>of</strong> glucoamylase immobilized outside <strong>the</strong><br />

stable pH range between 4 and 6 in <strong>the</strong> fig. 5.3.1 can be explained with <strong>the</strong>se observati<strong>on</strong>s.<br />

I EB<br />

M :


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

100 _ I EB'///A<br />

Time (minutes)<br />

EB1<br />

EB2<br />

Fig. 5.3.2 Effect <strong>of</strong> incubati<strong>on</strong> time <strong>on</strong> relative<br />

activity <strong>of</strong> immobilized GMA.<br />

ln order to evaluate <strong>the</strong> binding capacity, EB polymer (<strong>the</strong> supports) particles were<br />

incubated with different c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> GMA and analyzed for GMA activity and<br />

protein loading. The results are shown in <strong>the</strong> fig. 5.2.3, fig. 5.2.4 and table 5.3. The activity<br />

and amount <strong>of</strong> protein, immobilized have increased with increase in enzyme c<strong>on</strong>centrati<strong>on</strong><br />

from 0.4 to 2.4 mg g" <strong>of</strong> support. However, <strong>the</strong> activity <strong>of</strong> immobilized GMA was found to<br />

decrease bey<strong>on</strong>d 54.1, 60.4, and 52.3 EU g" for EB, EB1, and EB2 respectively. The<br />

decrease in enzyme loading bey<strong>on</strong>d this probably might have resulted in embedding <strong>of</strong><br />

active sites <strong>of</strong> enzyme molecules during <strong>the</strong> immobilizati<strong>on</strong> process by increased stacking<br />

and also by increased diffusi<strong>on</strong> limitati<strong>on</strong>s [39]. ln general, <strong>the</strong> specific activity <strong>of</strong> free<br />

enzyme is higher than <strong>the</strong> immobilized enzyme and this may be due to <strong>the</strong> rigidificati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> enzyme protein c<strong>on</strong>formati<strong>on</strong> and decrease in <strong>the</strong> flexibility <strong>of</strong> <strong>the</strong> enzyme molecule<br />

[40].<br />

141


_ Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> P0lymericéSupp0rts i<br />

2.!<br />

1i<br />

50-1<br />

T<br />

W<br />

-1-_ 22<br />

Protein taken (mg)<br />

/‘<br />

-0- EB<br />

-0- EB1<br />

-4- E82<br />

Fig. 5.3.3 1;;/luence Qfinilialpmrein amount<br />

<strong>on</strong> <strong>the</strong> uptake Q/protein.<br />

// ./‘<br />

A F<br />

*‘ 44 F 66 I‘ 88<br />

"1<br />

.________,__.._-0<br />

/>4<br />

Activity <strong>of</strong> free GMA (EU)<br />

— -EB<br />

—EB1<br />

"E82<br />

Fig. 5.3.4 Activity Qf immobilized enzyme as afzmcti<strong>on</strong><br />

uc.'tiw'1_1=Q/_'free enzyme<br />

1 42


__ A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

5.3.2 Effect <strong>of</strong> pH <strong>on</strong> activity<br />

Fig. 5.3.5 gives an account <strong>of</strong> <strong>the</strong> variati<strong>on</strong> <strong>of</strong> glucoamylase activity with respect to<br />

pH for free and immobilized fomis <strong>of</strong> <strong>the</strong> enzyme. The optimum pH for both free and<br />

immobilized enzyme is 5.5. The maintenance <strong>of</strong> optimum pH for <strong>the</strong> free and immobilized<br />

glucoamylase could be attributed to <strong>the</strong> fact that <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> charged species (c.g.,<br />

hydrogen i<strong>on</strong>s) in <strong>the</strong> domain <strong>of</strong> <strong>the</strong> immobilized enzyme was similar to that in <strong>the</strong> bulk<br />

soluti<strong>on</strong>.<br />

9 .7,%w\ ./' _ ;/<br />

—<br />

4<br />

—Free<br />

5 e 7<br />

pH<br />

2 - —— EB<br />

- — — EB1<br />

— —EB2<br />

| w """"i'fi*———* - r as |<br />

Fig. 5.3.5 Influence <strong>of</strong> pH <strong>on</strong> <strong>the</strong> activity <strong>of</strong>f/'ee<br />

and immobilized Gil/IA.<br />

From this figure we can also see that <strong>the</strong> EBI-GMA was stable in <strong>the</strong> entire pH<br />

range studied, whereas <strong>the</strong> residual activity <strong>of</strong> <strong>the</strong> free and o<strong>the</strong>r two <strong>of</strong> <strong>the</strong> immobilized<br />

forms, 1'. e., EB-GMA and EB2-GMA diminished to about 70-75 % as <strong>the</strong> pH varied from<br />

5.5 to 7. At pH


___~ z 7 i _ _, ____ U<br />

Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamvlase<br />

5.3.3 Effect <strong>of</strong> temperature <strong>on</strong> activity<br />

The determinati<strong>on</strong> <strong>of</strong> optimum temperature is very important since immobilizati<strong>on</strong><br />

can bring about a change in <strong>the</strong> optimum value. Fig. 5.3.6 shows <strong>the</strong> effect <strong>of</strong> temperature<br />

<strong>on</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> free, adsorbed and covalently linked GMA. The activities obtained in<br />

<strong>the</strong> temperature range <strong>of</strong> 30-70 °C were expressed as a percentage <strong>of</strong> <strong>the</strong> maximum activity.<br />

In <strong>the</strong> resultant bell-shaped curve, <strong>the</strong> maximum activity for <strong>the</strong> free enzyme was obtained<br />

at 55 °C. But for <strong>the</strong> immobilized GMA <strong>the</strong> maximum activity was at 60 "C and <strong>the</strong><br />

temperature pr<strong>of</strong>iles were slightly broader than that <strong>of</strong> <strong>the</strong> free enzyme.<br />

— Free<br />

100-:<br />

- —EB<br />

- —EB2<br />

/. / \ '17'<br />

I<br />

30 l ' Xi 40 ' 50 lit 60 ‘ l 70 ‘I<br />

Temperature (°C)<br />

F ig. 5.3.6 Irifluence Qfremperature <strong>on</strong> <strong>the</strong> activity Q/:fJ"'€(3<br />

and immobilized GMA.<br />

The increases in optimum temperature and hence activati<strong>on</strong> energy are caused by<br />

<strong>the</strong> changing physical and chemical properties <strong>of</strong> <strong>the</strong> enzyme. Similar increase in optimum<br />

temperature was reported by Arica et al._, when glucoamylase was immobilized <strong>on</strong>to<br />

magnetic poly(methyl methacrylate) mierospheres [I2] and <strong>the</strong>y speculated that<br />

hydrophobic interacti<strong>on</strong> and o<strong>the</strong>r sec<strong>on</strong>dary interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> immobilized enzyme might<br />

impair e<strong>on</strong>fomiati<strong>on</strong>al flexibility necessitating higher temperature for <strong>the</strong> enzyme<br />

145


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> pp _ i<br />

molecules to reorganize and attain a proper c<strong>on</strong>formati<strong>on</strong> for its functi<strong>on</strong>ing and binding <strong>of</strong><br />

<strong>the</strong> substrate.<br />

5.3.4 Thermal stability <strong>of</strong>immobilized GMA<br />

One <strong>of</strong> <strong>the</strong> main reas<strong>on</strong>s for enzyme immobilizati<strong>on</strong> is <strong>the</strong> anticipated, increase in<br />

its stability to various deactivating forces, due to restricted c<strong>on</strong>formati<strong>on</strong>al mobility <strong>of</strong> <strong>the</strong><br />

molecules following immobilizati<strong>on</strong> [41, 42]. However, in principle, <strong>the</strong> <strong>the</strong>rmal stability <strong>of</strong><br />

an immobilized enzyme can be enhanced, diminished, or unchanged relative to free<br />

counterparts, and several examples <strong>of</strong> each kind have been previously reported [41, 43, 44].<br />

N<strong>on</strong>nally, rate <strong>of</strong> reacti<strong>on</strong> increases with an increase in temperature; so it is always<br />

advantageous to perform reacti<strong>on</strong>s at higher temperature in order to increase productivity.<br />

Because <strong>the</strong> rapid inactivati<strong>on</strong> <strong>of</strong> enzyme protein at high temperature, high temperatures are<br />

not favored in enzyme catalysis. If <strong>the</strong> <strong>the</strong>rmal stability <strong>of</strong> an enzyme is enhanced by<br />

immobilizati<strong>on</strong>, <strong>the</strong> potential utilizati<strong>on</strong> <strong>of</strong> such enzymes would be extensive.<br />

We studied <strong>the</strong> effect <strong>of</strong> temperature <strong>on</strong> <strong>the</strong> stability <strong>of</strong> free and both immobilized<br />

forms enzymes (fig. 5.3.7 & fig. 5.3.8.). Compared to <strong>the</strong> free enzyme <strong>the</strong> immobilized<br />

enzyme exhibited higher <strong>the</strong>rmal stability. This <strong>the</strong>rmal stability behavior might be due to<br />

<strong>the</strong> protecti<strong>on</strong> <strong>of</strong> <strong>the</strong> immobilized enzyme from c<strong>on</strong>formati<strong>on</strong>al changes and lower<br />

flexibility <strong>of</strong> immobilized form, due to <strong>the</strong> multipoint attachments to <strong>the</strong> support. The free<br />

glucoamylase retained about 43 and 15 % <strong>of</strong> its initial activity at 55 and 60 °C after 60<br />

minutes incubati<strong>on</strong>. After 60 minutes treatment at 60 “C, immobilized glucoamylase via<br />

glutaraldehyde and ascorbic acid coupling retained about 88 and 73 % <strong>of</strong> <strong>the</strong>ir initial<br />

activities respectively, while adsorbed enzyme retained 69 % <strong>of</strong> its initial activity. At 70 "C,<br />

<strong>the</strong>se were 65, 68 and 53 % for EBl, EB2 and EB, respectively. Similarly, from <strong>the</strong> fig.<br />

5.3.8, it is clear that more than 90 % <strong>of</strong> immobilized enzymes are active up to 40 minutes <strong>of</strong><br />

incubati<strong>on</strong> at <strong>the</strong>ir optimum temperature. After that <strong>the</strong>ir activity reduced c<strong>on</strong>siderably. But<br />

free enzyme lost 20 % <strong>of</strong> its activity after 20-30 minutes <strong>of</strong> incubati<strong>on</strong> at its optimum<br />

temperature. These results suggested that <strong>the</strong> <strong>the</strong>rmostability <strong>of</strong> iimnobilized glueoamylase<br />

became significantly higher than that <strong>of</strong> <strong>the</strong> free enzyme at high temperature.<br />

146


Chapter 5 Immobilizati<strong>on</strong> i<strong>of</strong> Glucoamvlase<br />

an­<br />

.\.<br />

— Free<br />

— EB<br />

— EB1 - I —EB2 1 I 1 \Ui<br />

30 40 50 0 60 70<br />

Temperature ( C)<br />

Fig. 5.3. 7 Iriflzzence Qflemperalures <strong>on</strong> <strong>the</strong> stability<br />

0_/free and immobilized GM/I.<br />

1001 C—­<br />

'_____,_._<br />

‘ A<br />

13'!<br />

1<br />

50 — ——Free<br />

- —EB<br />

— —EB1<br />

—-E132!<br />

to _ I T _ 77<br />

20 i 4'0<br />

Time (minutes)<br />

LA at so "0<br />

OX. 5<br />

tss °c \aD<br />

Fig. 5. 3.8 Irgfluence QfiH(‘Ui)0li0I7 time at oplimum temperature<br />

<strong>on</strong> {he activity <strong>of</strong>f:-'ee and immobilized GMA<br />

5.3.5 Kinetic parameters <strong>of</strong> immobilized enzymes<br />

The maximum reacti<strong>on</strong> rate, Vmax and Michaclis-Mcnten c<strong>on</strong>stant, Km wcrc obtamcd<br />

from Lincwcavcr-Burk plots and Hancs-Woolf plots (fig. 5.3.9).<br />

147<br />

P t<br />

60


. I a<br />

A Study <strong>on</strong> <strong>the</strong> Imm0biliza_ti0n <strong>of</strong> EAn?;y_g1§$_ppxfqlymeric <strong>Supports</strong><br />

2’<br />

4i_ O10‘ 5» 'I<br />

2../‘ »7-4 95 I ' Q / no msu] I ' os I ' 10 '"'1i '1ISJ6<br />

1 _<br />

sq b<br />

E . 1?’ 4 _. 1­29<br />

msfl] [so]<br />

5 6<br />

C<br />

101<br />

8_<br />

/<br />

E u<br />

'<br />

_ 2°<br />

0<br />

5* | I<br />

2<br />

a ~<br />

I<br />

H|¢| ‘<br />

\ 1 0 1:[s°] 1 2 2 [SJ<br />

' A I 7 I‘ I I: ' ' It<br />

C‘ 4 3 ‘ D O 5 0.0 0.5 1.9<br />

Fig. 5.3.9 (I) Lineweaver-Burk plots and (II) Ham.>s- I1 '00lf p/01$ qf GMA<br />

immobilized <strong>on</strong> (a) EB (b) EBI and (C) EB2.<br />

148


Chapter 5 t Immobilizati<strong>on</strong> <strong>of</strong> Qlueoamylase<br />

The kinetic behavior for glucoamylase was significantly changed via<br />

immobilizati<strong>on</strong> <strong>on</strong> emeraldine base polymers. Kinetic c<strong>on</strong>stant, Km values for <strong>the</strong><br />

immobilized glucoamylase are found to be higher and Vmax is lower than that <strong>of</strong> <strong>the</strong> free<br />

GMA (table 5.4). Bahar and Celebi reported [19] <strong>the</strong> immobilizati<strong>on</strong> GMA <strong>on</strong> magnetic<br />

polystyrene particles and found <strong>the</strong> Km value <strong>of</strong> <strong>the</strong> bound enzyme was three times greater<br />

than that <strong>of</strong> <strong>the</strong> free enzyme and <strong>the</strong> Vmx <strong>of</strong> <strong>the</strong> immobilized enzyme was about 70 % less<br />

than that <strong>of</strong> <strong>the</strong> free enzyme. The increase in Km and decrease in I/mu,‘ may have resulted<br />

from <strong>the</strong> change in <strong>the</strong> affinity <strong>of</strong> <strong>the</strong> enzyme to its substrate which was probably caused by<br />

<strong>the</strong> structural change <strong>of</strong> <strong>the</strong> enzyme up<strong>on</strong> attachment to <strong>the</strong> support c<strong>on</strong>sisting polymer<br />

chains [45] and restricted diffusi<strong>on</strong> <strong>of</strong> substrate to <strong>the</strong> enzyme [46].<br />

Table 5.4 Kinetic parameters <strong>of</strong>free and immobilized GMA.<br />

FreeGMA EB-GMAT EBI-GMA EB2-GMA<br />

.<br />

Km<br />

W<br />

(mg mu‘) 0.32<br />

A<br />

1 0.04<br />

"<br />

4.58<br />

A<br />

:t 0.15<br />

T:<br />

1.03 i<br />

T<br />

0.08 1.94<br />

T<br />

i 0.11<br />

F<br />

: v,,,.,.(EU pg" protein) 1.65 1 0.03 A 1.21 1 0.16 1.5 i 0.06 M 1.59 at 0.07<br />

5.3.6 Storage stability<br />

The storage stabilities <strong>of</strong> glucoamylase at 4 “C were investigated by measuring <strong>the</strong><br />

enzyme activities at certain time intervals and <strong>the</strong> results are given in fig. 5.3.10. The free<br />

enzyme in buffer soluti<strong>on</strong> lost its activity completely within 10 hour. The retained activities<br />

were found to be 98, 90 and 91 % for EBI, EB2, and EB immobilized enzymes<br />

respectively, up<strong>on</strong> 30 days <strong>of</strong> storage at 4 “C. From <strong>the</strong>se results, it was seen that<br />

immobilizati<strong>on</strong> definitely put <strong>the</strong> enzyme into a more stable positi<strong>on</strong> in comparis<strong>on</strong> to free<br />

enzyme and, stability <strong>of</strong> enzymes are substantially increased by covalent coupling.<br />

149


5.3.7 Reusability<br />

A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

‘°°" -EB EB1m EB2<br />

Number <strong>of</strong> days<br />

Fig. 5.3. I0 Storage stability <strong>of</strong> immobilized GA/IA.<br />

Immobilizati<strong>on</strong> is carried out mainly to facilitate easy separati<strong>on</strong> <strong>of</strong> <strong>the</strong> biocatalyst<br />

from <strong>the</strong> reacti<strong>on</strong> mixture and to aid reuse <strong>of</strong> <strong>the</strong> enzyme. Operati<strong>on</strong>al stability <strong>of</strong> an<br />

immobilized enzyme preparati<strong>on</strong> is <strong>on</strong>e <strong>of</strong> <strong>the</strong> most important factors affecting its<br />

utilizati<strong>on</strong> in a bioc<strong>on</strong>versi<strong>on</strong> process whereby <strong>the</strong> reactor can be operated c<strong>on</strong>tinuously. So<br />

evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> reusability and operati<strong>on</strong>al stability is very much essential for<br />

immobilized enzyme preparati<strong>on</strong>s. Fig. 5.3.11 shows <strong>the</strong> reusability and operati<strong>on</strong>al<br />

stability <strong>of</strong> immobilized enzyme. It is found that even after eight cycles <strong>of</strong> use, all forms <strong>of</strong><br />

immobilized enzyme retained more than 85 % <strong>of</strong> its original activity. The GMA<br />

immobilized <strong>on</strong> activated emeraldine base retained more than 90 % <strong>of</strong> initial activity. The<br />

change <strong>of</strong> protein c<strong>on</strong>tent before and after repeated use was small, indicating that <strong>the</strong><br />

amount <strong>of</strong> enzyme leaching from <strong>the</strong> support was low since <strong>the</strong> enzyme molecule was<br />

tightly bound to <strong>the</strong> support by covalent attachment. The results proved that GMA<br />

covalently bound to polyaniline can be used as a potential immobilized bioreactor for<br />

c<strong>on</strong>tinuous process.<br />

150


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

l \ - . . , -EB ‘<br />

,',',' _,_ ¢ ~ ... ~ ''''''''''' ........ Q ‘ 1.5;. .<br />

, Q_- . ,5 . Q_ . "l.l.l Q . Q . Q.<br />

.-‘._.<br />

v ~ ~ Q Q Q<br />

100 p $5.; EB1<br />

I'I.I- . . , -‘I.l‘Q Q Q Q I<br />

Q'Q'Q Q I Q . - . .'.',' Q - . t - ~ . 0 4...; ' Q . Q - ._<br />

QQQ ,., -,3, Q_QQ Q Q .~.~.~ Q -Q- I Q .'Q‘.' QQQQ<br />

'<br />

Q'Q‘Q‘ ..._._ ,',',' -_~_I, . Q . Q'Q' . Q‘Q'Q' .._._. ‘ ' ' Q‘Q'Q‘<br />

Q‘-'Q' ... QQQ ‘ ‘.'.‘, ' ' ,., ' I ,-,',' ' ' Q'Q'Q' QQQ _,_ Q‘Q'Q' QQ- ‘Q'Q'Q QQQ .... Q‘-'Q‘ QQQ<br />

... Q Q Q . Q Q I<br />

$.I.Q­<br />

0.0.0. 0<br />

,,,<br />

v \_ Q Q Q ‘Q'-‘Q<br />

... .-. ... ... ...<br />

.0.0.n<br />

Q ‘I.I. ,.,.,. 5:,-_ 6.8.0‘ Q_Q_Q.<br />

.-.-.- Q‘Q'Q' ,°,',' -,-,-, Q Q Q Q'Q'Q' 4.3.; Q°Q’Q' ;._.;. 'Q'Q’Q .'.'.§ Q‘Q'Q'<br />

Q Q'Q' ‘I I ,',',' .°.',° 1.0;. ¢.~.I, I.O‘l‘ Q Q Q I Q'Q'Q Q Q‘ Q 'Q'Q'Q I Q Q‘-‘Q Q'Q'Q' 0.0.0. . Q.I-I ._<br />

Q'Q'Q ,',',' Q_-.0‘ Q'Q'Q Q'Q'Q ‘Q’-‘Q Q‘Q'Q Q Q Q<br />

1'1-1' - ... ... QQQ QQQ ~-,- QQQ .'.'.- ... v-Q QQQ '.'.'­ ...<br />

000 In "' 40: iii Q00 0-Q ecu 04¢<br />

QQQ<br />

;.;.-. -I-3-I<br />

,,, -.~,-,<br />

;-:-;-<br />

QQQ<br />

;.;.;.<br />

QQQ<br />

;.;I;.<br />

QQQ<br />

.;.;.;<br />

QQQ<br />

;.~Z'.<br />

QQQ<br />

'3'. . '. . IO! -1'1-I . . . Inn I-2-9 . , Q00 - °.;.;- . . . SCI .~.'Z~ . . . no '1'?! . . " . 1-1-1­ 01.9 ;.;.-.<br />

QQ- QQQ 0-, QQQ QQQ QQQ QQQ 000<br />

l.O.I‘ ,.,'.. I,-.5 Q.O.Q- I'I.I. 'l'O'O Q_¢_Q_ v.-_~.<br />

Q Q'Q' .1 .Q_»_ ' ' I ' ° 0 15'». I . . I 0.0.». Q’-‘Q’ 0 I.l.O_ U Q'Q‘Q' O I‘I.I. 'Q‘Q‘Q Q -0.0.! n Q'Q'Q' I_I.I. 0 0 Q'Q'Q' O.l.I.<br />

QQQ .;.;.; ,,_ .;.;._ ,-,-,- ,','.' ,~.-,- 1.0; . ... _.;.;._ , Q-Q ._.;.; , OO9 .;.;.§ ... , ;.;.;. _ Q-Q ;.;._. . -Q- ._.;.; ... . .;.;.; v" 0<br />

Z-Z-I- .'.~.' -.;.~. 1-1-1­ .<br />

‘Q‘Q<br />

.l.I'\ .',',°,<br />

I '3),<br />

_Q_a.-<br />

'31; \'Q<br />


dy <strong>on</strong> <strong>the</strong> lmm0b|l|zat|<strong>on</strong> <strong>of</strong> En<br />

<strong>on</strong>P 0| ymeric<br />

Su orts<br />

I TS<br />

TS1<br />

% T82<br />

3.1.1.;<br />

. . . .<br />

4.3.1.;<br />

._._._.,<br />

'|'n‘-‘v<br />

a_


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

for maximum inmiobilizati<strong>on</strong> is 30 minutes <strong>on</strong> TSI, TS2 and 60 minutes <strong>on</strong> TS. Above this<br />

incubati<strong>on</strong> time in all supports, <strong>the</strong> immobilizati<strong>on</strong> yield appeared to increases slightly, but<br />

<strong>the</strong> specific activity decreases indicating <strong>the</strong> enzyme active sites were deformed and/or<br />

partially blocked in a dense absorpti<strong>on</strong> layer.<br />

The amount <strong>of</strong> GMA immobilized <strong>on</strong> carrier was limited because <strong>the</strong> binding sites<br />

<strong>of</strong> <strong>the</strong> carrier were saturated. In order to find optimal amount, <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> various<br />

amounts <strong>of</strong> GMA per g TS supports was analyzed. The effect <strong>of</strong> enzyme to support ratio <strong>on</strong><br />

protein loading and efficiency <strong>of</strong> immobilizati<strong>on</strong> is Sl‘lOWTl in figs. 5.4.3, 5.4.4 and table 5.5<br />

below.<br />

1.0- K,<br />

0.0 4 1 . , 2.<br />

,<br />

-—=I—TS<br />

. —0—TS1<br />

—A—TS2<br />

Initial protein (mg)<br />

Fig. 5.4.3 Uptake <strong>of</strong> protein with respect to amount<br />

<strong>of</strong> initial protein.<br />

The results shows maximum activity yield and maximum immobilizati<strong>on</strong> efficiency<br />

was obtained with GMA covalently immobilized <strong>on</strong> TSl. The activity <strong>of</strong> <strong>the</strong> immobilized<br />

enzyme increased as <strong>the</strong> amount <strong>of</strong> enzyme loaded increased up to 73.2 EU <strong>of</strong> initial<br />

enzyme c<strong>on</strong>centrati<strong>on</strong> (fig. 5. 4.4). However, an increase in <strong>the</strong> enzyme loading bey<strong>on</strong>d this<br />

showed saturated reacti<strong>on</strong> rate due to <strong>the</strong> increase in substrate diffusi<strong>on</strong> inhibiti<strong>on</strong> by<br />

153


M A Study <strong>on</strong> <strong>the</strong> Immobiliaati<strong>on</strong> <strong>of</strong> Enzyt_ne_s__<strong>on</strong> <strong>Polymeric</strong>_S__upports A<br />

enzyme aggregati<strong>on</strong>. The highest recovery yield <strong>of</strong> GMA activity was about 51.7 % right<br />

after immobilizati<strong>on</strong> <strong>on</strong> TS l. The amount <strong>of</strong> covalently bound GMA <strong>on</strong> TS1 was l.l mg g“'<br />

<strong>of</strong> polymer. TS and TS2 incorporated 0.9 mg <strong>of</strong> GMA per g <strong>of</strong> polymer with <strong>the</strong><br />

immobilizati<strong>on</strong> yield <strong>of</strong> 70.9 and 69.9 %. The specific activity reducti<strong>on</strong> in immobilized<br />

enzymes with respect to <strong>the</strong>ir native forms has been widely reported [7, I4. 2|]. Structural<br />

changes by covalent attachment and diffusi<strong>on</strong>al limitati<strong>on</strong>s could be <strong>the</strong> reas<strong>on</strong>s for <strong>the</strong>se<br />

activity losses.<br />

I2 -_<br />

; -~\­ /To<br />

.- A —l1— TS<br />

—0— TS1<br />

-A— TS2 ,<br />

* | * r | - 1‘ * * Y T I<br />

25 so 75 100<br />

Activity <strong>of</strong> free GMA (EU)<br />

Fig. 5.4.4 Activity <strong>of</strong> immobilized enzyme as a functi<strong>on</strong><br />

Q/aclivily Qffree enzyme.<br />

154


-.' A Study i_‘_: <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> _ _' <strong>of</strong> <strong>Enzymes</strong> 1 _ <strong>on</strong> <strong>Polymeric</strong> _' W <strong>Supports</strong>_<br />

ii<br />

5.4.2 Effect <strong>of</strong> pH <strong>on</strong> activity<br />

Figure 5.4.5 shows <strong>the</strong> variati<strong>on</strong> <strong>of</strong> relative activity for free and immobilized<br />

glucoamylase with respect to pH <strong>of</strong> <strong>the</strong> substrate soluti<strong>on</strong>. The optimum pH for <strong>the</strong> free<br />

enzyme was observed at 5.5. Adsorbed glucoamylase showed pH optimum at 5 and <strong>the</strong><br />

activity decreases after pH 5.5. For <strong>the</strong> covalently bound enzyme <strong>the</strong>re was no shift in<br />

optimum pH value, and TS1-GMA was active over wider pH range, indicating that <strong>the</strong><br />

sensitivity to pH is reduced as a result <strong>of</strong> immobilizati<strong>on</strong>. in general, for <strong>the</strong> immobilized<br />

enzyme, <strong>the</strong> optimum pH value depends <strong>on</strong> <strong>the</strong> properties <strong>of</strong> <strong>the</strong> supports. Adsorbed<br />

enzyme showed higher activity at lower pH and a sharp drop <strong>of</strong> its activity in <strong>the</strong> basic<br />

soluti<strong>on</strong> compared with <strong>the</strong> free enzyme. This can be attributed to <strong>the</strong> charge effects <strong>of</strong> <strong>the</strong><br />

matrix [14, 24]. Covalently bound glucoamylase showed no change in <strong>the</strong> optimum value<br />

because <strong>of</strong> <strong>the</strong> presence <strong>of</strong> spacer molecules. It is also known that <strong>the</strong> sec<strong>on</strong>dary<br />

interacti<strong>on</strong>s such as i<strong>on</strong>ic and polar interacti<strong>on</strong>s between <strong>the</strong> enzymes and i<strong>on</strong>ic matrices<br />

are <strong>the</strong> major factors for <strong>the</strong> shifts in optimum pH [21].<br />

T : ~\7i .<br />

._ ' VJ”! \ ;<br />

\.<br />

50 — —Free<br />

5<br />

—TS<br />

"' 5 I 5" 6 I 1l<br />

—TS1<br />

— —TS2<br />

4<br />

pH<br />

Fig. 5.4.5 Effect <strong>of</strong> pH <strong>on</strong> <strong>the</strong> activity Q/flee and<br />

immobilized Gil/IA.<br />

156


Chapter 5 g_ H ____ _ Immobilizati<strong>on</strong> <strong>of</strong> Glueoamylase<br />

5.4.3 Effect <strong>of</strong> temperature <strong>on</strong> activity<br />

The temperature dependence <strong>on</strong> activity <strong>of</strong> free and immobilized glueoamylase was<br />

studied in <strong>the</strong> temperature range <strong>of</strong> 30-70 °C. The results obtained are depicted in fig. 5.4.6.<br />

Optimum catalytic activity was observed at 60-65 °C, for immobilized glucoamylase;<br />

however <strong>the</strong> free enzyme had a lower optimum temperature <strong>of</strong> 55 "C. The increase in<br />

optimum temperature by immobilizati<strong>on</strong> is caused by <strong>the</strong> physical and chemical properties<br />

<strong>of</strong> <strong>the</strong> enzyme is changing, and is explained by <strong>the</strong> creati<strong>on</strong> <strong>of</strong> c<strong>on</strong>fomiati<strong>on</strong>al limitati<strong>on</strong>s<br />

<strong>on</strong> <strong>the</strong> movement <strong>of</strong> <strong>the</strong> enzyme as a c<strong>on</strong>sequence <strong>of</strong> <strong>the</strong> formati<strong>on</strong> <strong>of</strong> multiple b<strong>on</strong>ds<br />

between <strong>the</strong> enzyme and <strong>the</strong> support.<br />

5.4.4 Thermal stability<br />

— —Free<br />

100-+ _ _TS<br />

.', \<br />

~—' A<br />

30 40 50 60 70<br />

Temperature (°C)<br />

l1‘-~ 1 t |7’ 1 "*fi - y~~ ” I | ­<br />

Fig. 5.4. 6 Effiwl Qfremperature <strong>on</strong> <strong>the</strong> acrivir_1> <strong>of</strong><br />

flee and immo/.7!/ized Gil/L4.<br />

The stability <strong>of</strong> free and immobilized glucoamylase was studied at various<br />

temperatures (30-70 °C) and <strong>the</strong> results are shown in <strong>the</strong> fig 5.4. 7. The activity <strong>of</strong> enzyme<br />

relative to preincubati<strong>on</strong> time in <strong>the</strong> absence <strong>of</strong> substrate is shown in fig. 5.4.8. lt is evident<br />

from <strong>the</strong> figure that all forms <strong>of</strong> immobilized glucoamylase required around 5-l0 minutes<br />

to regain its activity and was exhibited better <strong>the</strong>mial stability than <strong>the</strong> free enzyme at <strong>the</strong>ir<br />

157


_ Study <strong>on</strong> <strong>the</strong> Immobiligati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> ljoIymeric <strong>Supports</strong> p_<br />

optimum temperatures. The results in <strong>the</strong> fig. 5.4.6 showed that <strong>the</strong> maximum catalytic<br />

activity is obtained at 55 "C for free glucoamylase and 60-65 °C for immobilized<br />

glucoamylase; however, as <strong>the</strong> incubati<strong>on</strong> time and temperature increases, (figs. 5.4. 7 and<br />

5.4.8) <strong>the</strong> stability <strong>of</strong> free enzyme reduced rapidly compared to immobilized form.<br />

'“"'\;<br />

‘L<br />

‘._________.­<br />

4- ~Free<br />

i— —TS<br />

— TS1<br />

— —TS2 \@ I<br />

I ' I I " A I "LI l<br />

30 40 so so 70<br />

Temperature (°C)<br />

Fig. 5.4. 7 Eflcc.-t Qffemperuture <strong>on</strong> <strong>the</strong> slabi/iIf_v Qffree<br />

and immobilized GMA.<br />

100- 0% A25%<br />

‘ >< at a:es°_g 60°<br />

" Y . .1" at as “q<br />

l|_ I<br />

5° — —-Free<br />

0 I _ - _rs1l —T$.2| 20 i I 40 r $0 - at to so - ss°c fi~ . l<br />

Time (minutes)<br />

Fig. 5.4.8 influence Qfincubari<strong>on</strong> time an <strong>the</strong> relative<br />

acm-ny Qf_/I'(:'€ and immobilized GMA.<br />

158


Chapter 5 _ _ _ _ _ lm mobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

At 40 °C, <strong>the</strong> immobilized enzyme preserved 99 % its initial activity whereas <strong>the</strong><br />

free enzyme lost about 21 % <strong>of</strong> its initial activity and at 55 °C, 43 % free enzyme remained<br />

active where as 70-80 % immobilized enzyme remained active during 60 minutes<br />

incubati<strong>on</strong>. The increased <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong> immobilized enzyme may be ascribed to<br />

<strong>the</strong> stabilizing effects <strong>of</strong> immobilizati<strong>on</strong> [47]. Also many research workers have been<br />

reported [48-50] that immobilizati<strong>on</strong> lead to <strong>the</strong> <strong>the</strong>rmal stabilizati<strong>on</strong> in <strong>the</strong> case <strong>of</strong><br />

glucoamylase from different sources.<br />

5.4.5 Kinetic c<strong>on</strong>stants<br />

The Miehaelis c<strong>on</strong>stants Km and I/mu for free and immobilized GMA were<br />

determined by varying <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> starch in <strong>the</strong> reacti<strong>on</strong> medium. Lineweaver­<br />

Burk plot and Hanes-Woolf plot for free and immobilized are shown in fig. 5.4.9. The<br />

kinetic parameters <strong>of</strong> free and immobilized enzymes are summarized in table 5.6.<br />

Table 5. 6 K inezic parameters_/brfiee and immobilized GM/1.<br />

Free GMA TS-GMA TS1-GMA TS2-GMA<br />

Km (mg mu‘) 0.32 4 0.04 3.04 1 0.1 1.35 1 0.09 2.04 at 0.09<br />

(EU pg“ protein) 1.05 i 0.03 1.21 1 0.06 1.47 at 0.08 1.43 1 0.07<br />

The Km value <strong>of</strong> free glucoamylase was 0.32 mg mL'] <strong>of</strong> starch. The Km value<br />

estimated for TS, TSl and TS2 are 3.64, 1.35 and 2.04 mg mljl respectively (zable 5.6).<br />

The apparent K m value <strong>of</strong> for TS 1-GMA was approximately 4.5-fold higher than that <strong>of</strong> <strong>the</strong><br />

free enzyme. The comparis<strong>on</strong> with <strong>the</strong> results obtained by Sanjqv er al. [51] for GMA<br />

immobilized <strong>on</strong> <strong>the</strong> m<strong>on</strong>tmorill<strong>on</strong>ite clay showed that <strong>the</strong> Km values <strong>of</strong> covalently bound<br />

enzyme are about 5 times larger than that <strong>of</strong> <strong>the</strong> free enzyme. This may be caused by<br />

159


A Study <strong>on</strong> <strong>the</strong> Immob'l' | lza ti<strong>on</strong><br />

<strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

structural changes in <strong>the</strong> enzyme introduced by <strong>the</strong> immobilizati<strong>on</strong> procedure and by lower<br />

accessibility <strong>of</strong> <strong>the</strong> substrat e o t e thactive<br />

site <strong>of</strong> <strong>the</strong> immobilized enzyme [41].<br />

10<br />

0<br />

Z1­ 5­<br />

1 iv Y ' 2 6 ' 2 4<br />

ms; [so]<br />

I/,. '<br />

5. .<br />

3. 5; 5'<br />

'1 ' '


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoam Iase Y<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> Vmax values <strong>of</strong> immobilized GMA were estimated from <strong>the</strong><br />

data as 1.21, 1.47 and 1.43 EU lug" <strong>of</strong> protein <strong>on</strong> TS, TSI and TS2 respectively, suggesting<br />

<strong>the</strong> residual activity <strong>of</strong> immobilized enzyme decreased in course <strong>of</strong> immobilizati<strong>on</strong>.<br />

5.4.6 Storage stability<br />

Storage stability measurements were c<strong>on</strong>ducted in semi-dry form at 4 °C for a<br />

period <strong>of</strong> 90 days (fig. 5.4.10). lt is clear from <strong>the</strong> figure that all forms <strong>of</strong> immobilized<br />

enzymes shows appreciable amount <strong>of</strong> activity up to 60 days <strong>of</strong> storage. After 90 days, <strong>the</strong><br />

catalytic activity <strong>of</strong> <strong>the</strong> adsorbed enzyme retained was <strong>on</strong>ly 13.6 % <strong>of</strong> its original activity,<br />

where as covalently b<strong>on</strong>ded TSI-GMA and TS2-GMA retained 38 % and 29 % <strong>of</strong> <strong>the</strong>ir<br />

initial activity respectively. GMA immobilized <strong>on</strong> TSl exhibited higher stability than that<br />

<strong>of</strong> <strong>the</strong> free and o<strong>the</strong>r two forms immobilized enzyme.<br />

,00_ -TS'///z TS1<br />

TS2<br />

25­<br />

Number <strong>of</strong> days<br />

Fig. 5.4.10 Storage stability <strong>of</strong> GA/L4 immobilized<br />

<strong>on</strong> p0ly(0-toluidine) salts.<br />

On <strong>the</strong> basis <strong>of</strong> <strong>the</strong>se observati<strong>on</strong>s, it was c<strong>on</strong>cluded that <strong>the</strong>se supports provide<br />

better stabilizati<strong>on</strong> effect, minimizing possible distorti<strong>on</strong> effects, which might be imposed<br />

161


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

from aqueous medium <strong>on</strong> <strong>the</strong> active site <strong>of</strong> <strong>the</strong> immobilized enzyme. The generated multi­<br />

point i<strong>on</strong>ic interacti<strong>on</strong>s between enzyme and matrixes also c<strong>on</strong>veyed a higher<br />

c<strong>on</strong>formati<strong>on</strong>al stability to <strong>the</strong> immobilized enzyme [52].<br />

5.4.7 Multiple use <strong>of</strong> <strong>the</strong> immobilized GMA<br />

Reusability <strong>of</strong> <strong>the</strong> immobilized GMA samples was examined by using <strong>the</strong> same<br />

c<strong>on</strong>diti<strong>on</strong>s repeatedly 8 times within 6 hour and <strong>the</strong> measured activities are shown in fig.<br />

5. 4.1 1. It was observed that <strong>the</strong> covalently bound enzyme <strong>on</strong> TS1 dem<strong>on</strong>strated more than<br />

95 % activity afier 4 runs and 85 % activity after 8 runs. Adsorbed enzyme <strong>on</strong> TS could<br />

retain <strong>on</strong>ly 55 % and GMA coupled <strong>on</strong> TS2 were 80.7 % active after 8 runs. 85 % activity<br />

recovery after seven repeated use was reported [17] when GMA was immobilized <strong>on</strong><br />

porous vinyl polymer. The immobilizati<strong>on</strong> <strong>of</strong> GMA <strong>on</strong> TS1 proved to be advantageous for<br />

<strong>the</strong> c<strong>on</strong>tinuous use <strong>of</strong> <strong>the</strong> enzyme for starch c<strong>on</strong>versi<strong>on</strong> in biotechnological process.<br />

I TS<br />

V///A TS1<br />

100 I I I e ~ i e :1:1:I TS2<br />

- O 0 .3‘; ‘c’0.Q :e:¢:- 0 e e ‘e.-‘e<br />

e 0 e 00- eee 000 ee­ e eee 000 e e<br />

-’-‘-' in .‘-'-' . e"‘at<br />

‘ \ e1»,-, .-.e_ can ~'e _ ~'e_e_ .;.;.~ . e .;.;.1 ‘-­ I'o.c. 0'.-.~.<br />

'0 nil vl ,, e'e 000 lac 1" .'.',‘, .-e 000 .. '*' ',',°, es. ..ee 000 - 000 ‘-3; not ,',', 14': -ee e_e 000 ,~, e‘ 000 ,- e e_e_e_ - ,e'~_e -.­ eo­ I01<br />

.' '~¢~ eee -ee -ee ­<br />

1-e ~_~ Ill .000 ee 000 004 "' "' °" "' can<br />

:p.a:0 ~_ we :15‘. I e e :e:e:- -_~_~_ e~- _',',' O00 'e'e'< '3}, 00¢ :,°.'. .'.'-' -e 0 e e n<strong>on</strong> '<br />

-'-'1: "', °:':°, -- --I out r'e'v' e'e'¢‘ ‘re --e ~:':I: e-e o'e'e' ';'e'- ,,, 000 'e‘e'- ... e'e'e° ‘B’ eee '5'.‘ 03:‘: eee e'»'e' 0'/e' r'0.0.a 0,54,<br />

r-no we '." e'e‘.‘ .000 000 Qua "3. ,3, eee '.°,‘. 0'00 eee ‘H '*' 3:5‘: e"<br />

-~\ ' e~~ ~-- but ~'~ --- -1- ..- 000 n<strong>on</strong> ... 100 can -.. .'.'-' eee 0.'.'» °' | '­ 4"<br />

'e'~‘e -- -~~ '*' -e- -~~ 010 ',',', .,. can -~~ ',',', -.. ee. _e_-_- 001 O00 ,,, ,,, e...e_ _.‘ c<strong>on</strong> ,,. ... .,. '_~_~, ... ,,, 000 'a.0.0 lac no 0.0‘c' , "' eee 35'.‘ 3»...­ '¢'<br />

'1<br />

¢~~ -~~ --~ ~~~ 00! vvv --- 1». 000 99¢ coo 000 eee eeo e-e eee coo -.e eee <strong>on</strong>e ,.. ,., ,,, ,,. ,,_ ,,. ... ae‘e , ,.. ,,, ,,, , eee e.. ,,, lac 000 Ala eee can *°° "' °*' "' '0' 00' eee ill! °°° "° "'<br />

40¢ ~'v Q04 <strong>on</strong>e ~-- e.. ~v~ ,,, eee 001 eee ,,, eee e__ eee ,,, U00 ._ --- 000 can 00 ,,. . 000 ___ can 00: ,,. ... 000 10: coo eee v¢~ eeo 0' 0" "' eeo '3‘ .IQI 0*‘ ‘I’ I" "'<br />

eee Ive 001 <strong>on</strong>e 000 loo 000 eee 3»-e out ... e‘e'e' e °‘ our eee '*° “' '°' Q" "° "'<br />

¢~~ .0'o.0 00- ~'- ~-- n<strong>on</strong> see "Q'Q'| ~~~ eee tun 'e'e'e III ,,, -ee '00; ' ‘.‘.'. ' ' to ' ° --» ° eee coo ' '.‘e *,,', ," ' '3' ' ‘*0 ° 3,‘; '0'<br />

‘ ,',' 00- all ¢v- e ~ '» ..- 0 »eee .,, ,., e not 000 0 ,,, v 00¢ 1 g.‘ e'e‘e‘ ,,, e.- e-- .-~ ... Q00 ._. '~‘e'- eee <strong>on</strong>e 000 ,,, Oil e - se. e --e e eee Oil ’.'-'- Ilr eee <strong>on</strong>e e‘e'e' ~00 oo­ ' ' '<br />

eee ¢~¢ o I‘:-P .I.|.c 0 woe coo . 0 . 'e‘-'0 -ee ee» --- . eee ,,, -e- e'e‘e’ eee O0: ,,_ '-'e'. ,,, I­ 000 000<br />

~~v eee 00¢ ee. ee- 'e‘e'e can<br />

I01 °,',', '.'.‘- can<br />

000 oil nee O1: .e. <strong>on</strong>e °" "' Q" .'.‘s' ,',','<br />

-O00 .04.: '~- 000 --- .-- O00 3. Q00 -0» _~ .e- Q-e .:_:_. -ee -e- O00 OI: ooh ._._-_ 000 es. ,,, e-e .e_..e -ee ,,, eee v-- eee 000 00: 3. our ee .1 "0 0.,.,.,<br />

°" ‘nee "' >'~ '°° ,.,',. "'<br />

00¢ .-e n-- wen '~~ ~¢~ ulc .e. --e -et luv e-e Ono 000 -eee eee tn! ~-e ¢-- ~-v 000 sol ,,, uuo ,,, can you ..- ... 3,‘, ,,, eee - Q00 -‘ eee e eee 000 <strong>on</strong>e 010 1.. -~- III e" "'_ '¢* "I "* 'e" 0" " **' W" -"J ‘II °°' °" '0' “"<br />

t \<br />

'e'e‘- Iev 000 '.'.'. eee esv oov ',',', I-1 "v .e_o_e -.- eee ago 0.0.0‘ out 000 -e- 0,4,0, vvv eee o'\:c 0 "' -e :e:e_~<br />

-ee Q00 Qua ,,, ,,, ,,, n~e 000<br />

I-0 eve eee ¢~~ see :00 I00 -ee can -000 nee ‘Q00 eee Q00 eee eee .4. ,,, -'1’. ,,, . e _ ,,, ", ' ,,_ eee 000 nee eee ,°," 0" "' vee not °°' °", "' t<br />

"'5. .','.' .3... ‘-3; :-:e:e I'~'~' ,',°,° '5'" 000 .e.¢_e '_<br />

,',',' 0 0 ' ~'¢'e‘ 'u'e'- 'e°e°e can e'e'o' not l'¢'~' ee­ ­ e‘e':‘ ':':'e "'<br />

O i t e‘ee' -'a'-' h<strong>on</strong> e'e'e‘ -'e'~' 000 -,<br />

'1 e_e ~_ .°,',° ,'.',' e0».-_ .0‘0.u .~,-.- .o‘o.I 0'0...<br />

li I_*,:, 0‘o.0. 0.0.0. ....'. ,',',. o.n‘o. ,.,.,_ 3%,‘,<br />

I "' O0 I00 can<br />

1 ‘T: 5:.-‘ :.:.:. _-.-'1 0....‘ :_-_e_ ,_,',. ‘,',.,<br />

I '-’~’- '.'.'. i. .'. . .-. . . .<br />

4<br />

Number <strong>of</strong> reuse<br />

Fig. 5.4.11 Reusabilily <strong>of</strong> immobilized GA/[A<br />

162


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

5.5 Immobilizati<strong>on</strong> <strong>of</strong> GMA <strong>on</strong> Poly(o-toluidine) Base (TB)<br />

5.5.1 Optimized immobilizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

Fig. 5.5.1 shows <strong>the</strong> influence <strong>of</strong> pH <strong>on</strong> immobilizati<strong>on</strong> <strong>of</strong> GMA. As expected from<br />

<strong>the</strong> previous studies, <strong>the</strong> pH for immobilizati<strong>on</strong> was found best in <strong>the</strong> range <strong>of</strong> 4-6. The<br />

highest activities were obtained at pH 5 in sodium acetate-acetic acid buffer. Lower activity<br />

recoveries were obtained at both lower and higher pH values.<br />

I TB<br />

100- 7/////A TB1 TB2<br />

Fig. 5.5.1 Influence <strong>of</strong> pH <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong><br />

medium <strong>on</strong> <strong>the</strong> recovered activity.<br />

The recovered activity vs. time <strong>of</strong> immobilizati<strong>on</strong> is given in <strong>the</strong> fig. 5.5.2. TB­<br />

GMA showed <strong>the</strong> maximum activity afier 15 minutes, while GMA <strong>on</strong> TBl and TB2<br />

showed highest activity after 30 and 45 minutes respectively. The highest activity favored<br />

short time, as <strong>the</strong> stirring time extent, <strong>the</strong> protein c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> GMA might be denatured<br />

to lead <strong>the</strong> limitati<strong>on</strong> <strong>of</strong> immobilizati<strong>on</strong> process. Thus optimum immobilizati<strong>on</strong> time<br />

c<strong>on</strong>sidered was up to 75 minutes.<br />

163


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

100­­<br />

Time (minutes)<br />

Fig. 5.5.2 Effect <strong>of</strong> immobilizati<strong>on</strong> time <strong>on</strong> <strong>the</strong><br />

recovered activity <strong>of</strong> <strong>the</strong> immobilized GAIA.<br />

I TB<br />

Y///4 TB1<br />

TB2<br />

The amount <strong>of</strong> enzyme which was bound <strong>on</strong>to TB and <strong>the</strong> resultant activities are<br />

presented in fig. 5.5.3, 5.5.4 and in <strong>the</strong> table 5.7 below. The maximum immobilizati<strong>on</strong><br />

efficiency <strong>of</strong> 96.7 % was obtained for TB-GMA system. TBI-GMA and TB2-GMA also<br />

showed comparatively good immobilizati<strong>on</strong> efficiency; 94.7 and 94.6 % respectively.<br />

164


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

2<br />

40<br />

_ U---—-0<br />

r<br />

—­<br />

~<br />

-|<br />

-0-<br />

I 1 |<br />

TB—0—<br />

TB1<br />

-4- TB2<br />

|<br />

0.5 1.0 1.5 2.0 2.5<br />

Initial protein (mg)<br />

_<br />

Fig. 5.5.3 Effect <strong>of</strong><br />

05.<br />

initial protein amount <strong>on</strong> <strong>the</strong><br />

immobilizati<strong>on</strong> <strong>of</strong> protein.<br />

m­<br />

r<br />

- A 0- 0- TB<br />

—­<br />

TB14- TB2<br />

2'0 4i0 ' 6i0 ‘ 80 '<br />

Activity <strong>of</strong> free GMA (EU)<br />

Fig. 5.5.4 Activity <strong>of</strong> immobilized GMA as a functi<strong>on</strong><br />

<strong>of</strong> initial activity.<br />

165


Chaptg__5_ _ ____p Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

5.5.2 Effect <strong>of</strong> pH <strong>on</strong> enzyme activity<br />

The behavior <strong>of</strong> an enzyme molecule may be modified by its immediate<br />

microenvir<strong>on</strong>ment. An enzyme in soluti<strong>on</strong> can have a different or same optimal pH from<br />

<strong>the</strong> same enzyme immobilized <strong>on</strong> a solid matrix depending <strong>on</strong> <strong>the</strong> surface and residual<br />

charges <strong>on</strong> <strong>the</strong> solid matrix and <strong>the</strong> nature <strong>of</strong> <strong>the</strong> enzyme-bound pH value in <strong>the</strong> immediate<br />

vicinity <strong>of</strong> <strong>the</strong> enzyme envir<strong>on</strong>ment. All previous results underline this behavior. As can be<br />

seen from <strong>the</strong>se curves below (fig. 5.5.5), <strong>the</strong> starch hydrolysis reacti<strong>on</strong> for both free and<br />

immobilized enzymes have <strong>the</strong> same pH optimum at 5.5. However, <strong>the</strong> pH pr<strong>of</strong>iles for <strong>the</strong><br />

immobilized GMA display slightly improved stability <strong>on</strong> both sides <strong>of</strong> <strong>the</strong> optimum pH<br />

value, in comparis<strong>on</strong> to that <strong>of</strong> <strong>the</strong> free form, which means that <strong>the</strong> immobilizati<strong>on</strong> method<br />

preserved <strong>the</strong> enzyme activity in different pH values. This result might probably be<br />

attributed to <strong>the</strong> stabilizati<strong>on</strong> <strong>of</strong> GMA molecules resulting from multipoint immobilizati<strong>on</strong><br />

especially <strong>on</strong> <strong>the</strong> glutaraldehyde activated support [52].<br />

100-<br />

/‘ ./<br />

mY _____,_.-—-— -5% . E:<br />

.<br />

i<br />

~ .<br />

~<br />

‘E’.<br />

E/I<br />

M‘ \_<br />

\\<br />

l<br />

\.<br />

5° — —- —TB -Free ll y<br />

- —TB1<br />

— —TB2 l 4 i" *-- 5 I - 6 1* 7I<br />

“­<br />

pH<br />

Fig. 5.5.5 Effect 0fpH <strong>on</strong> <strong>the</strong> activizjv <strong>of</strong>free and<br />

immobilized GMA.<br />

167


_ A_ Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong>_ <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> __ _<br />

5.5.3 Effect <strong>of</strong> Temperature <strong>on</strong> <strong>the</strong> activity <strong>of</strong> GMA<br />

The variati<strong>on</strong> <strong>of</strong> glucoamylase activity with temperature was investigated and<br />

presented in fig. 5.5.6. As menti<strong>on</strong>ed earlier <strong>the</strong> soluble enzyme had an optimum<br />

temperature <strong>of</strong> 55 °C, whereas <strong>the</strong> temperature optimum for covalently immobilized<br />

enzyme was shifted to 60 °C. This indicated that <strong>the</strong> covalently coupled GMA required<br />

higher activati<strong>on</strong> energy and also could resist denaturati<strong>on</strong> due to temperature rise.<br />

However, adsorbed GMA preparati<strong>on</strong>s showed <strong>the</strong> same temperature optimum that <strong>of</strong> free<br />

enzyme at 55 °C, and <strong>the</strong> immobilized enzyme retained greater fracti<strong>on</strong> <strong>of</strong> catalytic activity<br />

at higher temperatures as compared to free enzyme.<br />

5.5.4 Thermal stability<br />

-i:E1— Free if T<br />

-0- TB<br />

—A— TB1<br />

‘l I U ‘I<br />

er ' e+ - "I e - "1 - "I —i<br />

30 40 50 60 70<br />

Temperature (°C)<br />

Fig. 5.5.6 Ej}’c’cf <strong>of</strong>lemperamre <strong>on</strong> <strong>the</strong> a


Chapter 5 % V lummohyilizatien<br />

\<br />

<strong>of</strong> Qlucoaniylase<br />

‘O0’ “i<br />

Qf<br />

504<br />

- —TB2 Kn<br />

L‘­<br />

— —Free<br />

— —TB<br />

— —TB1<br />

-—r 30 40 n - so | e 60 c | 70 | J]<br />

5 i \<br />

Temperature (°C)<br />

Fig. 5. 4. 7 E/fire! Qf temperature <strong>on</strong> <strong>the</strong> .s'tabil:'fy Qf_ free<br />

and immobilized GMA.<br />

100 --| D<br />

'_ at 60 "C<br />

. ‘at 55 "C1<br />

— — Free ——TB K °~<br />

_ - —TB2 _TB1 °at55 y V yd<br />

‘ I ‘ 1 I F " '1 I<br />

20 40 60<br />

Time (minutes)<br />

Fig. 5.5.8 lrgfluence <strong>of</strong> incubati<strong>on</strong> time <strong>on</strong> {he actii-'z'!y<br />

Qf GMA al <strong>the</strong>ir optimum Iemperature.<br />

The immobilized enzymes retained 65-75 % <strong>of</strong> <strong>the</strong>ir initial activity after 60 minutes<br />

incubati<strong>on</strong> at <strong>the</strong>ir optimum temperature indicating that <strong>the</strong> immobilized enzymes were<br />

inactivated at a much slower rate than those <strong>of</strong> <strong>the</strong> free enzyme. Therefore, <strong>the</strong><br />

169


AH A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

immobilizati<strong>on</strong> led to a c<strong>on</strong>siderable increase <strong>of</strong> <strong>the</strong>rmal stability. lt is <strong>of</strong>ten found that<br />

immobilized enzyme has a higher <strong>the</strong>nnal stability than free enzyme because <strong>of</strong> restricti<strong>on</strong><br />

<strong>of</strong> c<strong>on</strong>formati<strong>on</strong>al flexibility in immobilized enzyme. Similar to <strong>the</strong>se Slorey er al. [53]<br />

immobilized GMA in polyurethane polymers and observed greater <strong>the</strong>rmostability and<br />

improved stability under various denaturating c<strong>on</strong>diti<strong>on</strong>s.<br />

5.5.5 Kinetics parameters<br />

Kinetic parameters, Km and Vma. for <strong>the</strong> free and immobilized GMA, were assayed<br />

at starch c<strong>on</strong>centrati<strong>on</strong> from 0.5 to 10 mg ml." (fig. 5.5.9 and table 5.8). This parameter<br />

reflects <strong>the</strong> effective characteristics <strong>of</strong> <strong>the</strong> enzyme and depends up<strong>on</strong> both partiti<strong>on</strong> and<br />

diffusi<strong>on</strong> effects. The Km value for free enzyme was 0.32 mg mL‘1, whereas Vfnax value was<br />

1.65 EU fig" proteins. Km values <strong>of</strong> immobilized enzymes were found as 7.7 mg mL'I, 5.01<br />

mg mL" and 4.1 mg mL‘] and Vma, value for immobilized enzymes were found as 1.60,<br />

1.56, 1.54 EU fig" proteins (fig. 5.5.9) for TB, TB1 and TB2 respectively. For <strong>the</strong><br />

immobilized GMA, as noted earlier <strong>the</strong>re was an increase in Km and decrease in I/max values<br />

compared to <strong>the</strong> free enzyme. This increase in <strong>the</strong> Km values is ei<strong>the</strong>r due to <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong>al changes <strong>of</strong> <strong>the</strong> enzyme resulting in a lower possibility <strong>of</strong> fomiing a<br />

substrate-enzyme complex, or to <strong>the</strong> lower accessibility <strong>of</strong> <strong>the</strong> substrate to <strong>the</strong> active sites<br />

<strong>of</strong> <strong>the</strong> immobilized enzyme caused by <strong>the</strong> increased diffusi<strong>on</strong> limitati<strong>on</strong> [23, 24].<br />

Table 5.8 Kinetic paramelersfor <strong>the</strong>flee and immobilized GMA.<br />

‘ " I<br />

Free GMA TB-GMA TB1-GMA TB2-G MA<br />

. _ _ __ _[ _<br />

Km(mgmL") 0.32.t0.07 _ 7.7iO.l2 - 5.0t¢0.1s 4.101005<br />

V,,,,,,(EU pg" proteins) 1.65i0.03 y 1.601006 ~ 1.5s¢0.05 1.54i0.09 <<br />

I<br />

170


Chapter 5 _Immobilizati<strong>on</strong><br />

E<br />

A . , .<br />

Vw<br />

1l[S°] [$0]<br />

'- 52° E -Q20<br />

1<br />

-ds ‘/'00 . .<br />

<strong>of</strong> GIuc0:}[1}ylase<br />

10-] ° I I<br />

i<br />

05 10 15 8 -4 O 4<br />

/A I Q ‘ I _' ' I ‘ - I I’ . 8<br />

-02 uo 02 04 / 4 0 4<br />

$0<br />

a<br />

ms;<br />

4- ,<br />

oo 0.4 1nsJ<br />

I<br />

[50]<br />

I<br />

5//<br />

O<br />

2<br />

E1<br />

r~ e 12 -4 2 I501 '<br />

I". ' ' "'1­0 2<br />

Fi 3.<br />

5.5.9 (I) Uncweaver-Burk plots and (II) Hume:-W00(f /0 p ( ; ts TB <strong>of</strong> a GMA ' ­ (b) TB]-GMA<br />

and (c) TB2-GMA.<br />

171<br />

II<br />

(1<br />

b<br />

C?


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

5.5.6 Storage stability<br />

In order to investigate <strong>the</strong> industrial applicability <strong>of</strong> an immobilized enzyme<br />

process, <strong>on</strong>e <strong>of</strong> <strong>the</strong> most important parameters to be c<strong>on</strong>sidered in enzyme immobilizati<strong>on</strong><br />

is storage stability. The stability <strong>of</strong> immobilized glucoamylase, stored at 4 °C in semidry<br />

c<strong>on</strong>diti<strong>on</strong> was determined by periodically removing samples over a 3 m<strong>on</strong>ths period and<br />

testing for enzymatic activity. As shown in fig. 5.5.10, <strong>the</strong> immobilized glucoamylase<br />

molecules still retain more than 90 % <strong>of</strong> <strong>the</strong>ir original activity in all f<strong>on</strong>ns even after 30<br />

days <strong>of</strong> storage. The immobilized enzyme TB, TB1 and TB2 retained 23, 36 and 30 % <strong>of</strong><br />

<strong>the</strong>ir initial activity after 90 days <strong>of</strong> storage. These results are similar to that obtained for<br />

GMA immobilized <strong>on</strong> polyaniline previously discussed in this chapter.<br />

5i<br />

5.5.7 Repeated batch reacti<strong>on</strong><br />

Number <strong>of</strong> days<br />

- TB<br />

V//4 TB1<br />

w TB2<br />

Fig. 5.5.10 A ctiviry <strong>of</strong> immobilized GMA stored for 90 days.<br />

The l<strong>on</strong>g-term operati<strong>on</strong>al stability <strong>of</strong> immobilized biocatalysts is <strong>on</strong>e <strong>of</strong> <strong>the</strong> most<br />

important aspects <strong>of</strong> <strong>the</strong> c<strong>on</strong>temporary biotechnological processes, which make <strong>the</strong><br />

enzyme-based processes cost-effective. The operati<strong>on</strong>al stability <strong>of</strong> <strong>the</strong> immobilized<br />

glucoamylase was evaluated in a repeated batch process. The results (fig. 5.5.11) indicated<br />

172


Chapter 5 Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

that <strong>the</strong> catalytic activity <strong>of</strong> <strong>the</strong> immobilized enzyme was retained under repeated use.<br />

Percent hydrolysis was determined to be 98 % for TBI-GMA after 4 cycles. On subsequent<br />

uses, i.e. after 5"‘, 6"‘ 7th and 8'1’ cycles <strong>the</strong> percent hydrolysis is found to be 95, 93, 89 and<br />

86 %, respectively. GMA <strong>on</strong> TS and TS2 also retained more that 80 % <strong>of</strong> starch hydrolysis<br />

even after 8 runs. There was no drastic decrease in percent hydrolysis even after eight<br />

cycles, which could be due to glutaraldehyde treatment, which prevented <strong>the</strong> leakage <strong>of</strong><br />

enzyme.<br />

5.6 C<strong>on</strong>clusi<strong>on</strong><br />

» .‘¢'.' ' _..._ '.’.'. -_~_-_<br />

.;.;.; ~ - ­<br />

- TB<br />

W//A TB1<br />

I'-'~' ' ' '.‘.’. .'.'.'<br />

. . .<br />

‘.‘.‘. . . . . . '¢'.‘. ._ ~_._._ ‘-3’. _-_-,- v -‘-' _._. .'.‘.‘<br />

.I'I‘I .'.'.‘ . . . ... 3.‘. '1 . 4'; ,~,-,- - I - I ¢ ‘. I 9 ~_-,- . . 9 0_~_~‘ ‘ 0 . 9 .'. I.<br />

,-,-,~ ~ .'.',' . .<br />

~<br />

. ._._.<br />

¢ ~ '.-.~. . ,'.'.' . _-_-_- ._-_- . '.‘.‘. . .' _-_-,' . -_-,-,<br />

.'.‘.' . . ,-,-,­ . ._._._ 4 . ._.‘._<br />

‘.'.‘. ‘¢‘.‘. » » . . '. '.'.'. . . . . ._._._ '-'-‘- . - - ~'- - _._._. as ~' 0 Iv‘-‘ . 3’. . '~‘~'. .<br />

.<br />

.<br />

< 5...‘<br />

'-'-’. "‘ .’. .“.‘ . . ._~ ¢-. -_-.-. ... 0 . ..'. . '-‘.‘. .<br />

1 ._._._ . . . ¢_¢_»_ ._._._ . . ._._.. ._-_-_ .... _ _ _._._. _ _._._. _ _._._. '.‘. . . ._._._ . . ¢ ._._. . "' . ¢ .._._. . .‘.‘ . .'. .<br />

. .<br />

I1 0 0 ._._._ . ... . . - ._._~_ ... ~_~_»_ _ -_-_ ‘H _ _~_~_» _ _ _ ... _._... . ... ._._._ . . . . ... .._._. . . ... ,,_ ._._._. . , , ,<br />

.3... .‘ -I-:~ ' ' .3... .‘.'.‘ ,'_',' . . ~'~'-' . .'.'.‘ _< . -"~'< . '.'.'. -_-‘~_ '.'.'. '.'.‘- _._._. .'.‘.' .'.'.‘ ._._ '.'.'. '.'.‘. _ - ..._.. - '.'.' ~' .<br />

Ii :..._. ¢ . ‘~33 . . . _._._. _-.-.- ‘-‘-.- -_~,-, ~_~_-, -'3-_ -_._.‘ _._._. _. . -_~_‘_ . ._»_¢_ .:.:.:<br />

,'.'.' ... . . 1 ._.‘._ ... . ~_~_~_ , " , ... ,-,~_- , , ... _-_~_- . . ... . . . 5.’. . ,.. . , . , .<br />

‘.‘-‘. ... ... . 1-1-} . . ‘...‘. 0 ¢ _-,-,- ¢ _-_-‘- ___ -,',-_ -:~:.: . ... . . .'.‘. ... ‘.'.:. . .-o .:.:.: . . 5-,‘, .'.'.‘ ... ,<br />

‘.‘.‘. '.‘.'. ‘ '.‘.'. . . . '-'-‘- . . . . -'- ._-_ - .‘.‘.‘ . . . ‘.5 '.'.'. . ¢‘.'-' . . . .‘.‘.‘<br />

.'._.: .5. ... ’.‘ ._._._ '.'.'. ... '-‘-‘- ... -_-_-_ ... ... -'-'-' _-_-_- ... J.‘-' ... _..._. ... ‘ ‘ -.» .:.;._ -1- '. .'¢'-' .._._. '.‘.‘. ... "*5 ,' '.'.'. ' '<br />

... ... ___ . . - . . .<br />

01 . .'. .5... :..~._. ~.', ...‘. .. .._-_. _.:._. ... 3.5- -_-‘-0 _._.‘. , , -_-,-, , ._._._ ... ._._._ '._._. _. ... '.:.:. . . ._._.‘ a‘-_-. ... ._._._ _ ... .:.:,: . . , .<br />

... ... . ... \ ._._._ . . _ . . _,_ . _._»_~ ._._»_ ... , ... , ... . . ... < ... . .'.'.' ...<br />

,<br />

Z .'. ... .._. .;._._ - . ... ...... ... .-._ ,-,-,- .- , ... , 0.. , ._._._ ... ".'. . ... . . ~_-_._ ~»- ... ...‘._ ,,,<br />

» .‘.'. . ._ 1 .;.;._ ._._._ . . ¢_~_- ._._-_ _-_._ _~_-.1 _-_-_- _._._. _._.'. . .;.‘._ ¢ - . .'. ._._ _._._. . - ,-.-_- - __,_,_, - ... ','.'. . . .<br />

4 III ’._._. .-. . ... . . .._._. 0-» '._._. ... ‘-_-,- ‘ ... . ..." ‘ _ --. -_-,-, _ _ ... ._._._ -_._._ --- ' Q44 0 _._._. ‘ "#9 III I -_-_~_ ' "' 0 nun 004 0 ._.‘._<br />

. 0.<br />

.<br />

.'.-.- ~:~:~" . ' ... .*.;.' --o ._.:.: -:-.-: _._._. -_-_' '.;.;. -:-.-: --- .21.‘ ... 1.1.1. --;-:­ ... -,-,-,<br />

‘...; ... .._._. ... _:_._. .. , ,_, .. ._._._ ... _._._. .. ._._._ .-- ,_,_,_ .­ ',<br />

. '.‘.‘. . "' . . ._._~_ ~_._._ ‘-'. . 4.. . T ._._._ ._-_._ . . . ... -'~_-' _._._. _ _ ... _ . J‘... _.’._. 0 0 '. ‘.5 . . ... . '-' . '._._. .: . .,. .‘-‘ "‘. - > -. .’.‘. > . .<br />

.'.'.‘ "' '.' ._. . <strong>on</strong>e ._._._ ¢»~ _~_~_» ... ‘...; .' .'.:.' .‘ _.~- ..'. . -.:.:, I ,<br />

... ... ... ... .... ... ... ... ... ...<br />

i ‘.:.:. ...... _-_-, - :,_,_, ._._._ _._._. ...‘._ ,_,:_:<br />

‘.‘.'. '.‘.'. . . - . '.'.'. '.'. . . ._._._ . ‘-'-'- . . . -.-_-‘ _._._. - I - I.‘-' . '._._. ¢ I '3-'. .‘. . . . o .'.‘.‘ '.'._. 0 - ,','.' .‘.'.<br />

, -:-:-: .'.'.' , , ~_._._ ' ‘ ' 0 .-:-:~ - _


A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong><br />

temperature and pH for <strong>the</strong> free enzyme for starch hydrolysis reacti<strong>on</strong> are 55 °C and 5.5,<br />

respectively. Immobilized GMA via covalent b<strong>on</strong>d formati<strong>on</strong> at <strong>the</strong> optimum c<strong>on</strong>diti<strong>on</strong>s<br />

was very stable against <strong>the</strong> repeated use and had more than 80 % <strong>of</strong> relative activity after<br />

<strong>the</strong> eighth procedure. In additi<strong>on</strong>, after five operati<strong>on</strong>al cycles, it was observed that <strong>the</strong><br />

entire immobilized enzyme retained more 80 % <strong>of</strong> its activity. The mild c<strong>on</strong>diti<strong>on</strong>s for<br />

immobilizati<strong>on</strong> could help <strong>the</strong> enzyme in retaining its activity. The immobilized enzyme<br />

remained stable for l<strong>on</strong>ger periods <strong>of</strong> time and also at higher temperatures compared to <strong>the</strong><br />

free enzyme in soluti<strong>on</strong>. pH studies indicated that <strong>the</strong> immobilized enzyme remained<br />

significantly active over a broader pH range compared to that in soluti<strong>on</strong>. Such a stable<br />

immobilized enzyme system is suitable for a number <strong>of</strong> applicati<strong>on</strong>s that would not be<br />

feasible with a soluti<strong>on</strong> enzyme system. The process described here is a mild method used<br />

for <strong>the</strong> development <strong>of</strong> new materials, which may provide <strong>the</strong> basis for <strong>the</strong> future<br />

development <strong>of</strong> efficient biosensors and enzymatic reactors.<br />

The main observati<strong>on</strong>s can be summarized as;<br />

Q The optimum pH for starch hydrolysis for Rhizopus glucoamylase was observed<br />

at pH 5.5. The temperature for maximum activity was 55 "C. Km and Vm, for<br />

starch hydrolysis were calculated as 0.32 mg mL" and 1.65 EU pg" proteins<br />

respectively.<br />

Q The enzyme immobilized within short c<strong>on</strong>tact time and yielded good<br />

immobilizati<strong>on</strong> efficiency.<br />

Q The immobilized enzyme showed improved pH and <strong>the</strong>rmal stability.<br />

Q After immobilizati<strong>on</strong> <strong>the</strong>re was a shift in optimum pH and temperature observed.<br />

Q The kinetic c<strong>on</strong>stants are varied after immobilizati<strong>on</strong>. K m values showed an<br />

increase and Vmax values showed a decrease after immobilizati<strong>on</strong>.<br />

Q Immobilized enzyme showed better storage stability and reusability.<br />

174


£_l_i_apter S :_ J____i___ _1;1__nim0bilizati<strong>on</strong> <strong>of</strong> Gplucoamylase<br />

References<br />

[1]<br />

[2]<br />

[3]<br />

[4]<br />

[5]<br />

[6]<br />

[7]<br />

[3]<br />

[9]<br />

['0]<br />

[11]<br />

W.D. Crabb, C. Mitchins<strong>on</strong>, <strong>Enzymes</strong> involved in <strong>the</strong> processing starches to sugars,<br />

Trends Bioteclmol. 15 (1997) 349-352.<br />

D. Norouzian, A. Akbarzadeh, .l.M. Scharer, M.M. Young, Fungal glucoamylascs,<br />

Biotcc-hnol. Adv. 24 (2006) 80-85.<br />

M. Vihinen, P. Mantsala, Microbial amylolytie enzymes, Crit. Rcv. Biochcm. Mo].<br />

Biol. 24 (1989) 329-418.<br />

A. Pandey, P. Nigam, C.R. Soccol, V.T. Soccol, D. Singh, R. Mohan, Advances in<br />

microbial amylases, Biotechnol. Appl. Biochem. 3l (2000) 135-152.<br />

M.J.E.C. van dcr Maarel, B. van der Veen, J.C.M. Uitedehaag, H. Leemhuis, L.<br />

Dijkhuizcn, Properties and applicati<strong>on</strong>s <strong>of</strong> starch-c<strong>on</strong>verting enzymes <strong>of</strong> <strong>the</strong> ot­<br />

amylase family, J. Biotechnol. 94 (2002) 137-I55.<br />

H.G. -Mald<strong>on</strong>ado, O.P. —Lopez, Amylolytic enzymes and products derived from<br />

starch, Crit. Rev. Food Sci. Nutr. 35 (1995) 373-403.<br />

A. Tanriseven, Y.B. Uludag, $. Dogan, A novel method for immobilizati<strong>on</strong> <strong>of</strong><br />

glucoamylase to produce glucose from maltodextrin, Enzyme Microb. Teehnol. 30<br />

(2002) 406-409.<br />

B. Szajani, G. Klamar, L. Ludvig, Preparati<strong>on</strong>, characterizati<strong>on</strong> and laboratory-scale<br />

applicati<strong>on</strong> <strong>of</strong> an immobilized glucoamylase, Enzyme Mierob. Technol. 7 (1985) 488­<br />

492.<br />

D.D. Lee, Y.Y. Lee, J.P. Reilly, E.V. Collins, T.G. Tsao, Pilot plant producti<strong>on</strong> <strong>of</strong><br />

glucose with glucoamylase immobilized to porous silica, Biotechnol. Bioeng. 18<br />

(1976) 253-267.<br />

P.M. Coutinho, P..I. Reilly, Glucoamylase structural, functi<strong>on</strong>al, and evoluti<strong>on</strong>ary<br />

relati<strong>on</strong>ships, Proteins: Struct. Funct. Gene. 29 (1997) 334-347.<br />

J.A. Mertens, C.D. Skory, Isolati<strong>on</strong> and Characterizati<strong>on</strong> <strong>of</strong> two genes that encode<br />

active glucoamylase without a starch binding domain from Rhizopus orjvzae, Curr.<br />

Microbiol. 54 (2007) 462-466.<br />

175


[13]<br />

[13]<br />

[l4]<br />

[15]<br />

[16]<br />

[17]<br />

[181<br />

[191<br />

[201<br />

[211<br />

[22]<br />

A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> g 7<br />

M.Y. Arica, N.G. Alaeddinoglu, V. Hasirci, Immobilizati<strong>on</strong> <strong>of</strong> glucoamylase <strong>on</strong>to<br />

activated Pl-{EMA/EGDMA microspheres: properties and applicati<strong>on</strong> to a packed-bed<br />

reactor, Enzyme Microb. Technol. 22 (1998) 152-157.<br />

.l.T. Oh, J.H. Kim, Preparati<strong>on</strong> and properties <strong>of</strong> immobilized amyloglucosidase <strong>on</strong><br />

n<strong>on</strong>porous PS/PNaSS microspheres, Enzyme Microb. Technol. 27 (2000) 356-361.<br />

R.N. Silva, E.R. Asquieri, K.F. Femandes, Immobilizati<strong>on</strong> <strong>of</strong> Aspergil/us niger<br />

glucoamylase <strong>on</strong>to a polyaniline polymer, Process Biochem. 40 (2005) 1 155-1 159.<br />

J. Bryjak, Glucoamylase, a-amylase and /J-amylase immobilizati<strong>on</strong> <strong>on</strong> acrylic<br />

carriers, Biochem. Engineer. J. 16 (2003) 347-355.<br />

N. Milosavic, R. Prodanovié, S. Jovanovic, 1. Novakovié, Z. Vujéié, Preparati<strong>on</strong> and<br />

characterizati<strong>on</strong> <strong>of</strong> two types <strong>of</strong> covalently immobilized amyloglucosidase, J. Serb.<br />

Chem. Soc. 70 (2005) 713-719.<br />

Y. Huo, Y. Li, Z. Yuan. J. Huang, lmmobilizati<strong>on</strong> <strong>of</strong> Glucoamylase <strong>on</strong>to novel porous<br />

polymer supports <strong>of</strong> vinylene carb<strong>on</strong>ate and 2-hydroxyethyl methacrylate, Appl.<br />

Biochem. Biotechnol. I19 (2004) 12]-131.<br />

B.R. Pieters, G. Bardeletti, Enzyme immobilizati<strong>on</strong> <strong>on</strong> a low-cost magnetic support:<br />

kinetic studies <strong>on</strong> immobilized and coimmobilized glucose oxidase and glucoamylase,<br />

Enzyme Microb. Techno]. 14 (1992) 361-370.<br />

T. Baliar, S.S. Qelebi, Performance <strong>of</strong> immobilized glucoamylase in a magnetically<br />

stabilized fluidized bed reactor (MSF BR), Enzyme Microb. Techno]. 26 (2000) 28­<br />

33.<br />

B.R. Pieters, G. Bardeletti, P.R. Coulet, Glucoamylase immobilizati<strong>on</strong> <strong>on</strong> magnetic<br />

microparticle for <strong>the</strong> c<strong>on</strong>tinuous hydrolysis <strong>of</strong> maltodextrin in a fluidized bed reactor,<br />

Appl. Biochem. Biotechnol. 32 (1992) 37-53.<br />

M.Y. Arica, H. Yavuz, S. Patir, A. Denizli, Immobilizati<strong>on</strong> <strong>of</strong> glucoamylase <strong>on</strong>to<br />

spacer-arm attached magnetic poly(methy1methacrylate) microspheres:<br />

characterizati<strong>on</strong> a11d applicati<strong>on</strong> to a c<strong>on</strong>tinuous flow reactor, J. Mol. Catal. B:<br />

Enzymatic 11 (2000) 127-138.<br />

T. Bahar, S.S. Celebi, Immobilizati<strong>on</strong> <strong>of</strong> glucoamylase <strong>on</strong> magnetic po1y(styrene)<br />

particles, J. Appl. Polym. Sci. 72 (1999) 69-73.<br />

176


’(3_Il_apter 5 Immobilizati<strong>on</strong> <strong>of</strong>/(pllucoamylasf<br />

[23]<br />

[24]<br />

[25]<br />

[26]<br />

[27]<br />

[23]<br />

[39]<br />

[30]<br />

[31]<br />

[33]<br />

[33]<br />

l. Roy, M.N. Gupta, Hydrolysis <strong>of</strong> starch by mixture <strong>of</strong> glucoamylase and pullulanase<br />

entrapped individually in calcium alginate beads, Enzyme Microb. Technol. 34 (2004)<br />

26-32.<br />

Y.-X. Bai, Y.-F. Li, M.-T. Wang, Study <strong>on</strong> syn<strong>the</strong>sis <strong>of</strong> a hydrophilic bead carrier<br />

c<strong>on</strong>taining, epoxy groups and its properties for glucoamylase immobilizati<strong>on</strong>, Enzyme<br />

Mic-rob. Technol. 39 (2006) 540-547.<br />

A. Tanriseven, Z. Clcer, A novel method for <strong>the</strong> immobilizati<strong>on</strong> <strong>of</strong> glucoamylase <strong>on</strong>to<br />

polyglutaraldehyde-activated gelatin, Biochcm. Eng. J. 39 (2008) 430-434.<br />

A.S. Rani, M.L.M. Das, S. Satyanarayana, Preparati<strong>on</strong> and characterizati<strong>on</strong> <strong>of</strong><br />

amyloglucosidase adsorbed <strong>on</strong> activated charcoal, J. M01. Catal. B: Enzymatic 10<br />

(2000) 471-476.<br />

G.A. Kovalenko, L.V. Perminova, T.G. Tercnteva, G.V. Plaksin, Catalytic properties<br />

<strong>of</strong> glucoamylasc immobilized <strong>on</strong> syn<strong>the</strong>tic carb<strong>on</strong> material sibunit, Appl. Biochem.<br />

Microbiol. 43 (2007) 374-378.<br />

S. Omi, K. Kancko, A. Nakayama, K. Katami, T. Taguchi, M. lso, M. Nagai, G.H.<br />

Ma, Applicati<strong>on</strong> <strong>of</strong> porous microspheres prepared by SPG (Shirasu Porous Glass)<br />

cmulsificati<strong>on</strong> as immobilizing carriers <strong>of</strong> glucoamylase (GluA), J. Appl. Polym. Sci.<br />

65 (1997) 2655-2664.<br />

K.F. Fernandes, C.S. Lima, H. Pinho, C.H. Collins, Immobilizati<strong>on</strong> <strong>of</strong> horseradish<br />

peroxidase <strong>on</strong>to polyaniline polymers, Process Biochcm. 38 (2003) 1379-1384.<br />

M. Gerard, B.D. Malhotra, Applicati<strong>on</strong> <strong>of</strong> polyaniline as enzyme based biosensor,<br />

Curr. Appl. Phys. 5 (2005) 174-177.<br />

J. Laska, J. Wlodarczyk, W. Zaborska, Polyaniline as a support for urcase<br />

immobilizati<strong>on</strong>, J. M01. Catal. B: Enzymatic 6 (1999) 549-553.<br />

A. Chaubey, K.K. Pandc, V.S. Singh, B.D. Malhotra, Co-immobilizati<strong>on</strong> <strong>of</strong> lactate<br />

oxidase and lactate dehydrogenase <strong>on</strong> c<strong>on</strong>ducting polyanilinc films, Anal. Chim. Acta<br />

407 (2000) 97-103.<br />

Y. Chen, E.T. Kang, K.G. Neoh, K.L. Tan, Covalent immobilizati<strong>on</strong> <strong>of</strong> invcrtase <strong>on</strong>to<br />

thc surface-modified polyaniline from graft copolymcrizati<strong>on</strong> with acrylic acid, Eur.<br />

Polym. J. 36 (2000) 2095-2l03.<br />

I77


[34]<br />

[35]<br />

[36]<br />

[37]<br />

[33]<br />

[3<br />

[40]<br />

[41]<br />

[42]<br />

[43]<br />

[44]<br />

A Study <strong>on</strong> <strong>the</strong> Immobilizati<strong>on</strong> o,f,Enz)Lmes <strong>on</strong> <strong>Polymeric</strong> <strong>Supports</strong> p p<br />

Y. Chen, E.T. Kang, K.G. Neoh, P. Wang, K.L. Tan, Surface modificati<strong>on</strong> <strong>of</strong><br />

polyaniline film by grafting <strong>of</strong> poly(ethyleneglycol) for reducti<strong>on</strong> in protein<br />

adsorpti<strong>on</strong> and platelet adhesi<strong>on</strong>, Synth. Met. ll0 (2000) 47-55.<br />

K.F. Femandes, C.S. Lima, F.M. Lopes, C.l—l. Collins, Properties <strong>of</strong> horseradish<br />

peroxidase immobilized <strong>on</strong>to polyaniline, Process Biochem. 39 (2004) 957-962.<br />

J.M. Andrade, R.C.D. Peres, E.G. Oestreicher, O.A.C. Antunes, C. Dariva,<br />

Immobilizati<strong>on</strong> <strong>of</strong> d-hydantoinase in polyaniline, J. Mol. Catal. B: Enzymatic 55<br />

(2008) 185-188.<br />

G. Lee, J. Kim, J.H. Lee, Development <strong>of</strong> magnetically separable polyaniline<br />

nan<strong>of</strong>ibcrs for enzyme immobilizati<strong>on</strong> and recovery, Enzyme Microb. Technol. 42<br />

(2008) 466-472.<br />

S.S. Caramori, K.F. Fernandes, Covalent immobilizati<strong>on</strong> <strong>of</strong> horseradish peroxidase<br />

<strong>on</strong>to poly(cthylene terepltthalate)-poly(aniline) composite, Process Biochem. 39<br />

(2004) 888-894.<br />

G.A. Kovalenko, L.V. Perminova, Immobilizati<strong>on</strong> <strong>of</strong> glucoamylase by adsorpti<strong>on</strong> <strong>on</strong><br />

carb<strong>on</strong> supports and its applicati<strong>on</strong> for heterogeneous hydrolysis <strong>of</strong> dextrin,<br />

Carbohydrate Res. 343 (2008) I202-1211.<br />

M.Y. Chang, H.C. Kao, R.S. Juang, Thcmial inactivati<strong>on</strong> and reactivity <strong>of</strong> ,6­<br />

glucosidase immobilized <strong>on</strong> chitosan-clay composite, lnt. J. Biol. Macromol. 43<br />

(2008) 48-53.<br />

C.J. Tien, B.H. Chiang, Immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> a zirc<strong>on</strong>ium dynamic<br />

membrane, Process Biochem. 35 (1999) 377-383.<br />

M.Y. Arica, N.V. Hasirci, G. Alaeddinoglu, Covalent immobilizati<strong>on</strong> <strong>of</strong> a-amylase<br />

<strong>on</strong>to pHEMA microspheres: preparati<strong>on</strong> and applicati<strong>on</strong> to fixed bed reactor, Biomat.<br />

l6 (1995) 761-768.<br />

G. Delcheva, G. Dobrev, I. Pislitiyski, Performance <strong>of</strong> Aspergilius niger B 03 ,8­<br />

xylosidase immobilized <strong>on</strong> polyamide membrane support, J. Mol. Catal. B:<br />

Enzymatic 54 (2008) 109-1 l5.<br />

A.M. Klibanov, Enzyme stabilizati<strong>on</strong> by immobilizati<strong>on</strong>, Anal. Biochem. 93 (1979)<br />

I-25.<br />

178


Chapter 5 2*, Immobilizati<strong>on</strong> <strong>of</strong> Glucoamylase<br />

[45<br />

[461<br />

[471<br />

[491<br />

[50]<br />

[51]<br />

[52]<br />

[531<br />

[541<br />

H. Tiinitiirk, F. $ahin, G. Dcmirel, A new method for immobilizati<strong>on</strong> <strong>of</strong><br />

acetyleholinesterase, Bioprocess Biosyst. Eng. 30 (2007) 141-145.<br />

Z. Grosova, M. Rosenberg, M. Rebros, M. 8ipoez, B. Sedlaékova, Entrapment <strong>of</strong> ,6­<br />

galactosidase in polyvinylalcohol hydrogel, Bioteehnol. Lett. 30 (2008) 763-767.<br />

L. Cao, lmmobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 9 (2005) 217­<br />

226.<br />

[4 31 A.A. Klyosov, V.B. Gerasimas, The <strong>the</strong>rmostability <strong>of</strong> glucoamylase immobilized in<br />

different ways has a certain limit, Biochim. Biophys. Aeta 571 (1979) 162-165.<br />

B.V. Rao, N.V. Sastri, P.\/.S. Rao, Thermal stabilizati<strong>on</strong> <strong>of</strong> glucose oxidase and<br />

glucoamylase by physical entrapment, Biochem. J. 193 (1981) 389-394.<br />

C.G. Gray, Stabilizati<strong>on</strong> <strong>of</strong> enzymes with soluble additives. 1n: Gupta M.N (ed),<br />

Thermostability <strong>of</strong> enzymes, Springer Verlag, Heidelberg, 1993, pp.124.<br />

G. Sanjay, S. Sugunan, Glucoamylase immobilized <strong>on</strong> m<strong>on</strong>tmorill<strong>on</strong>ite: influence <strong>of</strong><br />

nature <strong>of</strong> binding <strong>on</strong> surface properties <strong>of</strong> clay-support and activity <strong>of</strong> enzyme, J.<br />

Porous Mater. I4 (2007) 127-136.<br />

J. Ida, T. Matsuyama, H. Yamamoto, Immobilizati<strong>on</strong> <strong>of</strong> glucoamylase <strong>on</strong> ceramic<br />

membrane surfaces modified with a new method <strong>of</strong> treatment utilizing SPCP-CVD,<br />

Biochem. Eng. J. 5 (2000) 179-185.<br />

L. Betaneor, F.L. Gallego, A. Hidalgo, 1\‘.A. -Morales, G.D.O.C. Mateo, R.F.<br />

Lafuente, .I.M. Guisan, Different mechanisms <strong>of</strong> protein immobilizati<strong>on</strong> <strong>on</strong><br />

glutaraldehyde activated supports: effect <strong>of</strong> support activati<strong>on</strong> and immobilizati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s, Enzyme Microb. Technol. 39 (2006) 877-882.<br />

K.B. Storey, J.A. Duncan, A.C. Chakrabarti, Immobilizati<strong>on</strong> <strong>of</strong> amyloglucosidase<br />

using two forms <strong>of</strong> polyurethane polymer, Appl. Biochem. Biotechnol. 23 (1990)<br />

221-236.<br />

179


CHAPTER 6%<br />

SUMMARY AND CONCLUSION<br />

6.1 INTRODUCTION ............................................................. ..<br />

6.2 SUMMARY ..................................................................................... ..<br />

I I I O O I I I I C O O I I I I C I O I I I I I IOI<br />

I I . . O . . . . . . ..O<br />

6.3 CONCLUSIONS ........................................................................................... ..


Chapter 6”__g_ “M Sunpmjtry and C0n_c!usi9t1<br />

6.1 Introducti<strong>on</strong><br />

With <strong>the</strong> increased emphasis <strong>on</strong> process ec<strong>on</strong>omics and improved efficiency, <strong>the</strong> use<br />

<strong>of</strong> immobilized enzymes will c<strong>on</strong>tinue to grow in <strong>the</strong> food, pharmaceutical, and chemical<br />

industries. It allows for <strong>the</strong> reducti<strong>on</strong> <strong>of</strong> process steps, increases productivity, and decreases<br />

waste. The wide variety <strong>of</strong> immobilizati<strong>on</strong> supports provides suitable opti<strong>on</strong>s for different<br />

enzymes, process systems, and cost requirements and thus emphasizing <strong>the</strong> immobilizati<strong>on</strong><br />

as an excellent process choice. There are many technical challenges in this field that has to<br />

be addressed and solved. Many researchers put tremendous effort to solve those challenges<br />

via immobilizati<strong>on</strong> <strong>of</strong> enzymes. This method is becoming increasingly important in <strong>the</strong><br />

field <strong>of</strong> biotechnology. In this <strong>the</strong>sis we have addressed <strong>the</strong> main advantages and <strong>the</strong><br />

drawbacks <strong>of</strong> <strong>the</strong> enzymes and tried to solve those problems via immobilizati<strong>on</strong> method. a­<br />

Amylasc and glucoamylase are <strong>the</strong> enzymes used for our studies and were efficiently<br />

immobilized into polyaniline and poly(0-toluidine) both in <strong>the</strong>ir salt and base f<strong>on</strong>n by<br />

adsorpti<strong>on</strong> and covalent b<strong>on</strong>ding.<br />

6.2 Summary<br />

below.<br />

The <strong>the</strong>sis work is presented in six chapters. A chapter-wise summary is given<br />

Chapter 1. A general introducti<strong>on</strong> about <strong>the</strong> enzymes and enzyme catalysis is provided.<br />

The factors affecting enzyme catalysis and kinetics <strong>of</strong> enzyme reacti<strong>on</strong> are described in<br />

detail. The methods <strong>of</strong> immobilizati<strong>on</strong> <strong>of</strong> enzymes and <strong>the</strong>ir advantages and disadvantages<br />

over o<strong>the</strong>rs are explained as well. A descripti<strong>on</strong> <strong>of</strong> polymeric supports used for <strong>the</strong><br />

immobilizati<strong>on</strong> process, <strong>the</strong>ir activati<strong>on</strong> and finally <strong>the</strong> objectives <strong>of</strong> <strong>the</strong> present work are<br />

given in this chapter.<br />

Chapter 2. This chapter provides <strong>the</strong> experimental procedures adopted for this research<br />

work. It gives <strong>the</strong> method <strong>of</strong> preparati<strong>on</strong> <strong>of</strong> polymers PAN] and POT followed by <strong>the</strong><br />

techniques used for <strong>the</strong> activati<strong>on</strong> <strong>of</strong> polymers. The immobilizati<strong>on</strong> <strong>of</strong> enzymes by<br />

adsorpti<strong>on</strong> and covalent b<strong>on</strong>ding are described in <strong>the</strong> next secti<strong>on</strong>. Later it describes<br />

l82


AHStudy <strong>on</strong> <strong>the</strong>glmmobilizati<strong>on</strong> 0f_<strong>Enzymes</strong>_<strong>on</strong> PoIymeri_e_Supp0rts<br />

enzyme activity studies, biochemical characterizati<strong>on</strong> techniques used for free and<br />

immobilized enzymes and techniques used to characterize <strong>the</strong> polymers.<br />

Chapter 3. The results <strong>of</strong> various physico-chemical methods used to characterize <strong>the</strong><br />

polymeric supports before and after immobilizati<strong>on</strong> are illustrated in this chapter.<br />

Characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> polymers via FT-IR, Surface area measurement, TG-DTG, and<br />

SEM were explained in detail.<br />

Chapter 4. This chapter has outlined <strong>the</strong> results <strong>of</strong> immobilizati<strong>on</strong> <strong>of</strong> a-amylase <strong>on</strong> PANl<br />

and POT. The polymers were activated with bifuncti<strong>on</strong>al reagents GA and ASA for<br />

covalent b<strong>on</strong>ding. The activity <strong>of</strong> <strong>the</strong> free and immobilized enzymes was compared. The<br />

effects <strong>of</strong> pH <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong> medium, time <strong>of</strong> incubati<strong>on</strong>, and <strong>the</strong> dependence <strong>of</strong><br />

protein c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> immobilized enzymes were studied. The<br />

c<strong>on</strong>diti<strong>on</strong>s such as pH and temperature for <strong>the</strong> optimum activity followed by <strong>the</strong> <strong>the</strong>rmal<br />

stability <strong>of</strong> free and immobilized enzymes were investigated. A detailed kinetic <str<strong>on</strong>g>study</str<strong>on</strong>g> was<br />

performed and kinetic parameters were evaluated using Lineweaver-Burk plot and Hanes­<br />

Woolf plot. Stability studies with respect to l<strong>on</strong>g term storage and repeated use were<br />

performed.<br />

Chapter 5. The immobilizati<strong>on</strong> studies <strong>of</strong> glucoamylase <strong>on</strong> PANI and POT by adsorpti<strong>on</strong><br />

and covalent b<strong>on</strong>ding are presented in this chapter. The immobilizati<strong>on</strong> parameters such as<br />

pH <strong>of</strong> <strong>the</strong> medium, c<strong>on</strong>tact time, and protein c<strong>on</strong>centrati<strong>on</strong> are optimized. The<br />

immobilizati<strong>on</strong> efficiency was evaluated. The optimum c<strong>on</strong>diti<strong>on</strong>s such as pH and<br />

temperature for <strong>the</strong> starch hydrolysis for free and immobilized GMA are compared. The<br />

kinetic parameters are evaluated. The <strong>the</strong>rmal stability, storage stability and reusability <strong>of</strong><br />

immobilized GMA were studied.<br />

Chapter 6. Provides <strong>the</strong> summary <strong>of</strong> <strong>the</strong> work al<strong>on</strong>g with major outcomes.<br />

6.3 C<strong>on</strong>clusi<strong>on</strong>s<br />

The major outcome <strong>of</strong> this <strong>the</strong>sis is outlined below:<br />

I83


Chapter 6 _ _ Summary and%C0nclusi9E<br />

wk This <str<strong>on</strong>g>study</str<strong>on</strong>g> has shown that PANI polymers are suitable for immobilizati<strong>on</strong><br />

techniques. Its advantages include <strong>the</strong> ease <strong>of</strong> polymeric support syn<strong>the</strong>sis in a<br />

minimum time, high yield, and ease <strong>of</strong> handling and excellent stability.<br />

*4» F T-IR spectra showed all <strong>the</strong> characteristic peaks for PAN] and POT.<br />

Prot<strong>on</strong>ati<strong>on</strong> and deprot<strong>on</strong>ati<strong>on</strong> behavior reflected in <strong>the</strong> intensity <strong>of</strong> <strong>the</strong><br />

corresp<strong>on</strong>ding peaks.<br />

sh» T G-DT G analysis showed a three step weight loss behavior for ES and TS and<br />

two step weight losses for EB and TB. All <strong>the</strong> polymers showed good <strong>the</strong>rmal<br />

stability.<br />

For a-amylase<br />

Q» F or free a-amylase <strong>the</strong> optimum c<strong>on</strong>diti<strong>on</strong>s for starch hydrolysis were <strong>of</strong> pH 5-5.5<br />

and temperature 50 "C. The Michaelis-Menten c<strong>on</strong>stant for starch hydrolysis was<br />

evaluated as 0.46 mg mL '.<br />

-wk The enzyme a-amylase immobilized <strong>on</strong> ES, EB, TS and TB by adsorpti<strong>on</strong> and<br />

covalent b<strong>on</strong>ding <strong>on</strong> GA activated ES], EB1, TS I and T B1 and ASA activated<br />

ES2, EB2, TS2 and TB2 in <strong>the</strong> pH range 4.5-6 within <strong>the</strong> durati<strong>on</strong> <strong>of</strong> 30-75<br />

minutes. The immobilized enzymes showed good activity yield.<br />

win» After immobilizati<strong>on</strong>, <strong>the</strong> pH for maximum enzyme activity was slightly shified<br />

depending up<strong>on</strong> supports and methods used.<br />

vi The optimum temperature for starch hydrolysis was lowered by I0-15 "C after<br />

immobilizati<strong>on</strong>. The immobilized a-amylase showed enhanced <strong>the</strong>rmal stability.<br />

184


____g __g A Study <strong>on</strong> <strong>the</strong> lmmgobiligzgati<strong>on</strong> <strong>of</strong> <strong>Enzymes</strong> <strong>on</strong> i’g0l_ygme_i"ic§upp0r1s____W<br />

Q» All enzyme system obeyed Michaelis-Menten kinetics. The kinetic parameter Km<br />

showed a 2-17 fold increase after immobilizati<strong>on</strong> and V,,,,,x was found to be<br />

decreasing after immobilizati<strong>on</strong> <strong>of</strong> a-amylase.<br />

Q» The immobilized a-amylase showed excellent stability for storage and reuse; most<br />

<strong>of</strong> <strong>the</strong>m retained more than 50 % activity even after 6 m<strong>on</strong>ths <strong>of</strong> storage and<br />

recyclable for more than I 0 cycles.<br />

For Glucoamylase (GMA)<br />

-it The optimum c<strong>on</strong>diti<strong>on</strong>s for starch hydrolysis for free Rhizopus glucoamylase<br />

were observed at pH 5.5 and temperature 55 "C. The kinetic c<strong>on</strong>stants K m and<br />

Vm, for starch hydrolysis were evaluated as 0.32 mg ml." and 1.65 EU pg"<br />

proteins respectively.<br />

*$- GMA was immobilized by adsorpti<strong>on</strong> and covalent b<strong>on</strong>ding with GA and ASA<br />

spacer <strong>on</strong> PAN! and POT. This was used to prepare heterogeneous biocatalysts<br />

for <strong>the</strong> hydrolysis <strong>of</strong> starch.<br />

*4» Immobilizati<strong>on</strong> time, pH <strong>of</strong> immobilizati<strong>on</strong> medium, and protein c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong><br />

coupling mixture affected immobilizati<strong>on</strong> yield.<br />

% The optimum pH for starch hydrolysis was found at 5 or 5.5. The pH stability <strong>of</strong><br />

<strong>the</strong> immobilized GMA was higher than that <strong>of</strong> <strong>the</strong> free enzyme.<br />

is The immobilized GMA had a wider catalytic reacti<strong>on</strong> temperature pr<strong>of</strong>ile than<br />

free enzyme.<br />

4» The covalently linked enzyme has shown excellent stability <strong>on</strong> repeated reuse for<br />

8 cycles and storage for 60 days without any significant loss in <strong>the</strong> enzyme<br />

activity.<br />

185


Per§iOn‘a§l‘;EP-r<strong>of</strong>ilié<br />

Name<br />

Date <strong>of</strong> Birth<br />

Nati<strong>on</strong>ality<br />

Sex<br />

Place <strong>of</strong> Birth<br />

Languages known:<br />

I?erem2a1ii¢_n#§f§¢idf¢siS<br />

Panichithadathil House<br />

Alankode P. O<br />

Malappuram<br />

Kerala, India<br />

679585<br />

Tel. 0494 2653 155<br />

Email : leeasl1xl@gniai 1-09m<br />

Curriculum Vitae<br />

M. Sc. in Applied Chemistry (May 2003)<br />

Cochin University <strong>of</strong> Science and Technology, Koclii-22, Kerala, India.<br />

First Class (CGPA: 7.65)<br />

B. Sc. in Chemistry (April 2001)<br />

Calicut University, Calicut, Kerala, India.<br />

First Class with Distincti<strong>on</strong> (91.6%)<br />

Pre Degree (Physics, Chemistry and Biology)<br />

Calicut University, Calicut, Kerala, India.<br />

First Class with Distincti<strong>on</strong> (80%)<br />

187<br />

Ashly P. C.<br />

9”‘ January 198 l<br />

Indian<br />

Female<br />

Piravom, Kerala, India.<br />

English, Malayalam and Hindi<br />

Correifiiiiiding-address<br />

2225 Ridge Ave.<br />

Apt. 3S<br />

Evanst<strong>on</strong>, IL, USA<br />

60201<br />

Tel : 847 644 4184<br />

Mobile : 847 644 4185<br />

asl1lypc_(Q';.}s'ahoo.co.in


S.S.L.C. (Sec<strong>on</strong>dary School Leaving Certificate)<br />

Board <strong>of</strong> Public Examinati<strong>on</strong>s, Kerala State, India.<br />

First Class with Distincti<strong>on</strong> (91.6%).<br />

Afifiiiiiiiiiiiiliiqllalifiéiifitiiis<br />

Qualified Nati<strong>on</strong>al Eligibility Test (NET) for Lectureship held <strong>on</strong> 19.06.2005<br />

Qualified Graduate Aptitude Test in Engineering (GATE) held <strong>on</strong> 09.02.2003<br />

0th¢.t ._R¢§¢i=iri¢h.§ Exp.er;i;enc¢<br />

M.Sc project (Jan 2003- May 2003)<br />

‘Design & syn<strong>the</strong>sis <strong>of</strong> a melamine-based Adenine Mimetic as a novel nucleobase for<br />

Peptide nucleic acids’.<br />

Organic Chemistry Syn<strong>the</strong>sis Divisi<strong>on</strong>,<br />

Nati<strong>on</strong>al Chemical Laboratory (NCL),<br />

Pune, India.<br />

Ha_nds,<strong>on</strong>_ _expe'rience<br />

Surface area analyzer, UV-VISIBLE spectrophotometer, FT-IR Spectrometer, TG- DTA.<br />

Tel§c'htii%q‘u'es‘ familiari_:with_<br />

NMR and MASS Spectroscopy, Powder and Single crystal X-Ray Diffracti<strong>on</strong>, SEM.<br />

c¢nr¢r¢n¢¢.ate§:ia¢a<br />

Fr<strong>on</strong>tiers in Chemistry, Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Chemistry at Cochin Univer.s‘ity 0fScz'ence<br />

and Technology in March 2006.<br />

MatC0n 20071nternali<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Materialsfor <strong>the</strong> Millennium at Cochin<br />

Universit)»* <strong>of</strong> Science and Technology in January 2007.<br />

[CAM-2008 lntemati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Advanced Materials at M. G. University,<br />

Kottayam in F ebiuary 2008.<br />

188


LiStE 126-f.Pub'li'éatib'1iI§<br />

1<br />

2.<br />

Immobilizati<strong>on</strong> <strong>of</strong> a- Amylase <strong>on</strong> Polyaniline; P.C. Ashly, M. J. Joseph and P.V<br />

Mohanan; Presented at MatC0n 2007, <strong>the</strong> Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Materials<br />

for <strong>the</strong> Millennium at Cochin University <strong>of</strong> Science and Technology in Januatjv<br />

2007.<br />

Activity <strong>of</strong> Diastase a-amylase Immobilized <strong>on</strong> Emeraldine; P.C. Ashly, M. J.<br />

Joseph and P.V. Mohanan. Communicated with <strong>the</strong> journal 'Enz__vme and Microbial<br />

Technology ‘.<br />

189

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!