02.08.2013 Views

Tutorial in Image processing - NDIP 11

Tutorial in Image processing - NDIP 11

Tutorial in Image processing - NDIP 11

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Signal and <strong>Image</strong> Process<strong>in</strong>g <strong>in</strong> Astrophysics<br />

Sandr<strong>in</strong>e Pires<br />

sandr<strong>in</strong>e.pires@cea.fr<br />

AIM-CEA Saclay,<br />

France<br />

NDPI 20<strong>11</strong>


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

<strong>Image</strong> Process<strong>in</strong>g : Goals<br />

<strong>Image</strong> process<strong>in</strong>g is used once the image acquisition is done by the telescope<br />

✓ Correct from the problems encountered dur<strong>in</strong>g acquisition:<br />

✓ Reduce the <strong>in</strong>strumental and atmospheric effects<br />

✓ Reduce the observation noise<br />

✓ Deal with miss<strong>in</strong>g data (partial sky coverage, defective pixel…)<br />

✓ Extract the useful <strong>in</strong>formation to enable physical <strong>in</strong>terpretation<br />

Compressed sens<strong>in</strong>g<br />

Source separation<br />

=> Impact the <strong>in</strong>strument design<br />

1


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

How to reduce atmospheric and<br />

Great Refractor (76 cm) at Nice<br />

observatory<br />

<strong>in</strong>strumental effects ?<br />

Hale Telescope (5 m) at Mont Palomar<br />

observatory (alt. 1706 m), California<br />

Hubble Space Telescope (2.4m)<br />

2


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

PSF<br />

PSF correction<br />

Observed image Convolved image<br />

3


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

How to reduce the observational noise ?<br />

4


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Standard methods based on a l<strong>in</strong>ear filter<br />

(i.e. Gaussian filter<strong>in</strong>g)<br />

<strong>Image</strong> bruitée Gaussienne <strong>Image</strong> filtrée<br />

<br />

Signal<br />

Signal + noise Gaussian function (σ) Filtered signal<br />

=<br />

5


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Standard methods based on a l<strong>in</strong>ear filter<br />

(i.e. Gaussian filter<strong>in</strong>g)<br />

Signal<br />

Gaussian filtered (σ =2 pixels)<br />

Signal + noise<br />

Gaussian filtered (σ =5 pixels)<br />

6


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Methods based on sparsity<br />

Consider<strong>in</strong>g a transform :<br />

A signal X is sparse <strong>in</strong> a basis Φ<br />

if most of the coefficients α are equal to zero or close to zero<br />

7


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Basic Example<br />

Orig<strong>in</strong>al Noisy signal signal<br />

Fourier Transform<br />

Filtered Signal<br />

8


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Signal and image representations<br />

Local DCT :<br />

Stationary textures<br />

Locally oscillatory<br />

Wavelet Transform<br />

Piecewise smooth<br />

Isotropic structures<br />

Curvelet Transform<br />

Piecewise smooth<br />

Edge structures<br />

9


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Adapted Representations<br />

Test image 1 <strong>Image</strong> test 1 + noise<br />

Wavelet filter<strong>in</strong>g Ridgelet filter<strong>in</strong>g Curvelet filter<strong>in</strong>g<br />

10


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Adapted Representations<br />

<strong>Image</strong> test 2 <strong>Image</strong> test 2 + noise<br />

Wavelet filter<strong>in</strong>g Ridgelet filter<strong>in</strong>g Curvelet filter<strong>in</strong>g<br />

<strong>11</strong>


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Gravitational Lens<strong>in</strong>g effect<br />

observed by the Hubble Space Telescope<br />

Cluster Abell 2218<br />

12


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Weak Gravitational Lens<strong>in</strong>g<br />

Observer Gravitational lens Background galaxies<br />

13


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Dark matter Map<br />

- HST observations -<br />

14


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Miss<strong>in</strong>g data<br />

Causes of miss<strong>in</strong>g data:<br />

Occurrence of defective or dead pixels<br />

Partial sky coverage due to problems <strong>in</strong> the scan strategy<br />

Saturated pixels<br />

Absorption or mask<strong>in</strong>g of the signal by a foreground<br />

Problems caused by miss<strong>in</strong>g data:<br />

Bias and decrease on statistical power<br />

Distortions <strong>in</strong> the frequency doma<strong>in</strong> due to abrupt truncation<br />

Other edge effects <strong>in</strong> multi-scale transforms<br />

How to deal with miss<strong>in</strong>g data?<br />

Correction of the measure by the proportion of miss<strong>in</strong>g data<br />

Other corrections specific to a given measure (i.e. MASTER for<br />

power spectrum estimation)<br />

Inpa<strong>in</strong>t<strong>in</strong>g methods<br />

15


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Inpa<strong>in</strong>t<strong>in</strong>g based on sparsity<br />

S<strong>in</strong>e curve Truncated s<strong>in</strong>e curve<br />

Fourier transform of the s<strong>in</strong>e curve Fourier transform of the truncated s<strong>in</strong>e curve<br />

16


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Light curve<br />

(time series)<br />

Zoom on the Light curve<br />

Power spectrum<br />

Inpa<strong>in</strong>t<strong>in</strong>g on asterosismic data<br />

Orig<strong>in</strong>al (red) and masked (black) data<br />

Inpa<strong>in</strong>ted data (black)<br />

17


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Miss<strong>in</strong>g data<br />

In Weak Lens<strong>in</strong>g<br />

18


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Inpa<strong>in</strong>t<strong>in</strong>g <strong>in</strong> Weak Lens<strong>in</strong>g data<br />

Which image is the orig<strong>in</strong>al one ?<br />

19


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Inpa<strong>in</strong>t<strong>in</strong>g <strong>in</strong> Weak Lens<strong>in</strong>g data<br />

20


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Compressed sens<strong>in</strong>g<br />

Shannon-Nyquist sampl<strong>in</strong>g theorem :<br />

No loss of <strong>in</strong>formation if the sampl<strong>in</strong>g frequency is two times the highest<br />

frequency of the signal<br />

The number of sensors is determ<strong>in</strong>ed by the resolution<br />

Can we get an exact recovery from a smaller number of measurements ? YES !<br />

Compressed sens<strong>in</strong>g theorem :<br />

No loss of <strong>in</strong>formation if :<br />

- the signal is local and coherent.<br />

- the measurements are global and decoherent.<br />

The number of measurements is about K. log(N) where K is the number of<br />

non-zero entries <strong>in</strong> the signal.<br />

21


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Compressed sens<strong>in</strong>g:<br />

A non l<strong>in</strong>ear sampl<strong>in</strong>g theorem<br />

M x 1<br />

measurements<br />

“Signals (x) with exactly K components different from zero<br />

can be recovered perfectly from ~ K log N <strong>in</strong>coherent measurements”<br />

Replace samples by few l<strong>in</strong>ear projections y = Θ x = MR x<br />

x’<br />

M<br />

0<br />

Reconstruction via a non l<strong>in</strong>ear process<strong>in</strong>g:<br />

=<br />

R<br />

N x 1<br />

signal<br />

K<br />

non-zero<br />

entries<br />

22


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

M x 1<br />

measurements<br />

Compressed Sens<strong>in</strong>g<br />

Signal Fourier M <strong>in</strong>coherent (x) transform with K non-zero measurements of the Signal coefficients<br />

M<br />

FOURIER<br />

R<br />

0<br />

N x 1<br />

signal<br />

K<br />

non-zero<br />

entries<br />

23


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

M x 1<br />

measurements<br />

Soft Compressed sens<strong>in</strong>g:<br />

“Sparse signals (x) with exactly K coefficients (α) different from zero<br />

can be recovered perfectly from ~ K log N <strong>in</strong>coherent measurements”<br />

M<br />

0<br />

R<br />

Reconstruction via a non l<strong>in</strong>ear process<strong>in</strong>g:<br />

24


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

8<br />

Compressed sens<strong>in</strong>g to transfer<br />

spatial data to the earth<br />

A field is obta<strong>in</strong>ed every 25 m<strong>in</strong> and is composed by<br />

60.000 shifted images (16x16 pixels)<br />

The official pipel<strong>in</strong>e consists of only transmitt<strong>in</strong>g an averaged<br />

image obta<strong>in</strong>ed from 8 consecutives shifted images.<br />

25


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Compressed sens<strong>in</strong>g to transfer<br />

spatial data to the earth<br />

Good solution for on board data compression (very fast)<br />

Map from uncompressed data Official pipel<strong>in</strong>e reconstruction:<br />

averag<strong>in</strong>g<br />

Very robust to bit loss dur<strong>in</strong>g transfer<br />

All measurements are equally (un) important<br />

Compressed sens<strong>in</strong>g reconstruction<br />

26


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Source Separation<br />

X = A S<br />

4 sources<br />

4 random mixtures<br />

27


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Source Separation<br />

28


30 GHz<br />

Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Source Separation:<br />

Cosmic Microwave Background<br />

44 GHz 70 GHz<br />

LFI<br />

100 GHz<br />

143 GHz<br />

217 GHz 353 GHz<br />

HFI<br />

545 GHz<br />

857 GHz 29


Introduction - Deconvolution - Denois<strong>in</strong>g - Miss<strong>in</strong>g data - Compressed Sens<strong>in</strong>g - Source separation<br />

Input CMB map<br />

CMB map estimated<br />

by GMCA<br />

Source Separation:<br />

Cosmic Microwave Background<br />

30


INSTRUMENTATION<br />

The development of<br />

new <strong>in</strong>struments more<br />

and more accurate<br />

improves the quality<br />

of the observations<br />

Conclusion<br />

IMAGE PROCESSING<br />

Is used to extract the<br />

useful <strong>in</strong>formation to<br />

help <strong>in</strong> the physical<br />

<strong>in</strong>terpretation<br />

IMAGE PROCESSING<br />

Improves the quality of<br />

the image after<br />

acquisition by the<br />

<strong>in</strong>strument<br />

31


END<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!