01.08.2013 Views

Corrosion (presentation)

Corrosion (presentation)

Corrosion (presentation)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Corrosion</strong>


Type of <strong>Corrosion</strong><br />

• Uniform<br />

• Galvanic<br />

• Pitting and Crevice <strong>Corrosion</strong><br />

• Stress <strong>Corrosion</strong> Cracking<br />

•Erosion<br />

• Microbiologically Induced <strong>Corrosion</strong>


Uniform <strong>Corrosion</strong><br />

• Can be a good or a bad thing<br />

• <strong>Corrosion</strong> occurs evenly over the surface<br />

• Oxide layers can be very tough<br />

– Magnetite<br />

•Fe 3 O 4


Effect of pH<br />

• Magnetite (for example)<br />

– Low pH no oxides form<br />

– High pH porous Fe(OH) 3 .xH 2 O forms<br />

– pH 10-12 ideal range for carbon steel<br />

• Different metals require different<br />

conditions for uniform corrosion<br />

• pH is controlled to control uniform<br />

corrosion


Galvanic <strong>Corrosion</strong><br />

• Chemical reactions<br />

• Electrons removed from one reactant travel<br />

through an external circuit<br />

• On material tends to disappear


Reactions<br />

At the Anode:<br />

Fe Fe ++ + 2e -<br />

At the Cathode:<br />

2e - + 2H + H2 (bubbles)<br />

In the Electrolyte:<br />

H2O OH - + H +<br />

Galvanic Cell<br />

H2 Bubbles<br />

CATHODE<br />

(Cu)<br />

ELECTROLYTE<br />

(H2O + NaCl)<br />

Fe ++ + 2 OH - Fe (OH)2 (corrosion product)<br />

-<br />

e<br />

-<br />

e<br />

Fe ++ ions<br />

-<br />

e<br />

ANODE<br />

(Fe)<br />

<strong>Corrosion</strong><br />

Product


Cathodic Protection<br />

• Each metal has a different potential to<br />

donate electrons<br />

• Anode always corrodes<br />

• To protect a metal<br />

– Select a metal that more easily donates<br />

electrons<br />

– Build a cell with metal to be protected as<br />

cathode


Factors Affecting Galvanic<br />

<strong>Corrosion</strong><br />

• Oxygen concentration of the electrolyte<br />

• Temperature<br />

• Conductivity of the electrolyte<br />

• Cathode/anode surface area


Pitting and Crevice <strong>Corrosion</strong><br />

Electrolyte (H 2 O plus dissolved oxygen)<br />

Scale<br />

Metal<br />

Region where pit will form


Stress <strong>Corrosion</strong> Cracking<br />

• Three conditions required for most common kind<br />

– Metal under tensile stress<br />

– Dissolved Oxygen<br />

– Chloride Ion<br />

• Brittle cracks form at the sites of stress<br />

• Failure can be fast<br />

• Failure can occur at stress loads far below yield<br />

strength


Erosion <strong>Corrosion</strong><br />

• Flow removes protective layer<br />

• New protective layer forms using up metal<br />

• Promoted by<br />

– High flow<br />

– Turbulent conditions<br />

– Particulates in fluid<br />

• Concern with feeders in HTS


Example of Erosion <strong>Corrosion</strong>


Microbiologically Induced<br />

• Bacteria in water<br />

<strong>Corrosion</strong><br />

– Can be in presence of oxygen or not<br />

– Bacteria form a nodule<br />

• Similar to pitting corrosion.


General <strong>Corrosion</strong> Control<br />

• Eliminate oxygen<br />

• Eliminate chloride ion<br />

• Maintain pH levels<br />

• Prevent stagnation<br />

• Chlorinate


SOLUBILITY OF Fe 3O 4 (µg Fe/kg H 2O)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

HTS pH Control<br />

pH 9.3<br />

0<br />

225 240 255 270 285 300<br />

TEMP. ( °C )<br />

inner<br />

zone<br />

PNGS BNGS-A<br />

pH 9.7<br />

outer<br />

zone<br />

Reactor Inlet Header<br />

pH 10.2<br />

PNGS BNGS-A<br />

Reactor Outlet Header


pH Control<br />

• Add LiOH for low pH<br />

• Ion exchange columns for high pH<br />

• Lithium tends to collect in the pressurizer<br />

– pH goes up if water goes to main system<br />

– Called lithium hide out<br />

– Possible pH excursions during cool down


Dissolved Oxygen HTS<br />

• Oxygen is corrosive<br />

– More so in hot water<br />

• Attacks zirconium, iron, their protective<br />

oxide coatings<br />

• Continuous source through radiolysis of<br />

D2O • Controlled by adding excess D2 or H2 • Explosion Hazard


Conductivity HTS<br />

• Used for troubleshooting<br />

• Not controlled


pH Secondary Side<br />

• pH controlled by adding chemicals<br />

– Ammonia (from decomposed hydrazine)<br />

– Morpholine<br />

• Chemicals must be volatile


Dissolved O 2 Secondary Side<br />

•O2is corrosive particularly if Cl- is present<br />

• Three levels of removal<br />

– Air extraction<br />

– Deaerator<br />

– Hydrazine addition<br />

• Environmental hazard<br />

– chemicals discharged in boiler blow off


Conductivity Secondary Side<br />

• Conductivity of boiler water shows the<br />

presence of bad boiler things<br />

• Specifically cation conductivity is<br />

measured<br />

– Measures the conductivity of anions Cl - , SO 4 - ,<br />

HCO 3 -<br />

– IX is used to replace cations with H +<br />

– Conductivity sensitive to the anions


Moderator Normal<br />

• Stainless steel system<br />

• Requires neutral pH and low conductivity<br />

• Deuterated IX columns remove all<br />

impurities<br />

• Conductivity monitored<br />

• pH is used for troubleshooting


Moderator Over Poisoned<br />

• pH 4-6 to prevent gadolinium nitrate<br />

precipitation<br />

• pH is monitored


Moderator Chemistry Control<br />

• Proper use of IX’s<br />

• Prevent air in-leakage


Flakes<br />

Sludge and Scale<br />

Scale<br />

Boiler Tubesheet or<br />

Tube Support Plate<br />

HT Fluid<br />

Boiler Tube<br />

Boiler Water<br />

Deposits/Sludge Pile<br />

<strong>Corrosion</strong><br />

occurs here


For You to Do<br />

• Read the section on corrosion pp. 19-37<br />

• Answer questions p. 38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!