01.08.2013 Views

Torsion (cont.) - Faculty of Aerospace Engineering

Torsion (cont.) - Faculty of Aerospace Engineering

Torsion (cont.) - Faculty of Aerospace Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Non-Homogeneous Composite Beams<br />

under Tip Loading<br />

M. Grebshtein, M. Kazar, V. Rovenski and O.Rand<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> <strong>Engineering</strong><br />

Technion – Israel Institute <strong>of</strong> Technology<br />

Haifa 32000, Israel.<br />

Presented at the<br />

The 7th Annual Israeli Symposium On Composite Materials and Structures,<br />

Technion - IIT, June 30, 2003.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

1


Outline<br />

• Motivation and Background<br />

> Notation<br />

> Material properties<br />

> Non-homogeneous cross-section definition<br />

> Interlaminar conditions<br />

• The proposed analytical methodology<br />

> St. Venant’s Semi-Inverse methodology<br />

> The three auxiliary problems <strong>of</strong> plane deformation<br />

> The bending and torsion functions<br />

• Illustrative examples<br />

> <strong>Torsion</strong><br />

> Bending<br />

• Concluding remarks<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

2


Motivation<br />

• Fiber-reinforced composite materials are extensively used in many engineering<br />

applications (civil and military aircraft, space, automotive, commercial,<br />

etc.), from replacement pieces to all-composite design.<br />

• Composite structures exhibit some pr<strong>of</strong>ound advantages:<br />

> Specific strength and stiffness<br />

> Improved fatigue characteristics<br />

> Elastic coupling (for beams: “bending-twist”, “bending-extension”<br />

and “extension-twist”).<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

3


Existing Methods<br />

• Analytic formulations (linear theory) [Lechnitskii (50), Sokolnik<strong>of</strong>f (56),<br />

Muskhelishvili (53), Rukhadze].<br />

• Semi-analytic methods [Kosmatka (91), Kim and Dugundje (93),<br />

Rand (93,94,97), Yamane and Friedmann (93),<br />

Pai and Nyfeh (94), Robbins and Reddy (93-95),<br />

Laulusa (94), Zapfe and Lesieutre (95),<br />

Francescatti and Kaiser (96), Betti and Gjelsvik (96),<br />

Song and Librescu (97), Soldatos and Watson (97)].<br />

• High order theories [Robbins and Reddy (93-95), Suresh and Nagaraj (96),<br />

McCarthy and Chattopadhyay (96)].<br />

• Numerical (approximate) methods [Sankar (93), Floros and Smith (97),<br />

Chopra et al (95-97), Makeev and Armanios (99)].<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

4


Notation<br />

Tip loads<br />

Surface loads<br />

Body loads<br />

“root”<br />

“outer<br />

surface”<br />

v(x,y,z)<br />

“tip”<br />

u(x,y,z)<br />

w (x,y,z)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

5


Material Properties<br />

Orthotropic<br />

‘x’,y’,z<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

6


Non-Homogeneous Cross-Section<br />

Definition<br />

Generic Laminated<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

7


The Interlaminar Conditions<br />

Stress resultants (equilibrium):<br />

Displacements (compatibility):<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

8


The proposed analytical methodology<br />

St. Venant’s Semi-Inverse methodology (“solution hypothesis”).<br />

The three auxiliary problems <strong>of</strong> plane deformation (biharmonic BVP).<br />

The bending and torsion functions (harmonic BVP).<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

9


Tip Axial Force Effect<br />

Homogeneous<br />

Non-Homogeneous<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

10


Transverse Bending Force Effect<br />

bending function <strong>of</strong> the first kind<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

11


The three auxiliary problems <strong>of</strong> plane deformation<br />

No external surface loads:<br />

Internal loads equilibrium:<br />

{<br />

{<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

12


The three auxiliary problems <strong>of</strong> plane deformation (<strong>cont</strong>.)<br />

Prescribed deformation dis<strong>cont</strong>inuity:<br />

The first auxiliary problem:<br />

{<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

13


The three auxiliary problems <strong>of</strong> plane deformation (<strong>cont</strong>.)<br />

Biharmonic BVP:<br />

{<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

14


Source <strong>of</strong> the Three Auxiliary Plane-Strain Problems<br />

a) The First Auxiliary Problem:<br />

Extension by a tip force.<br />

b) The Second Auxiliary Problem:<br />

Bending about the x direction by a tip<br />

force or a tip moment.<br />

c) The Third Auxiliary Problem:<br />

Bending about the y direction by a tip<br />

force or a tip moment.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

15


The Bending Function <strong>of</strong> the First Kind<br />

Harmonic BVP:<br />

Field Equation:<br />

B.C.:<br />

:Continuity<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

16


Displacement:<br />

Strain:<br />

Stress:<br />

Field Equation:<br />

Stress:<br />

<strong>Torsion</strong>al Moment Effect<br />

Displacement:<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

17


Combining all Tip Loads Effects<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

18


Example: <strong>Torsion</strong> <strong>of</strong> Non-Homogenous Beam<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

19


<strong>Torsion</strong> (<strong>cont</strong>.)<br />

<strong>Torsion</strong> function ϕ<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

20


<strong>Torsion</strong> (<strong>cont</strong>.)<br />

Stress component τ yz<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

21


<strong>Torsion</strong> (<strong>cont</strong>.)<br />

τ<br />

Stress component xz<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

22


Bending <strong>of</strong> Non-Homogenous Beam<br />

y<br />

x<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

23


Bending <strong>of</strong> Non-Homogenous Beam<br />

(<strong>cont</strong>.)<br />

Solution <strong>of</strong> the third auxiliary problem<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

x<br />

24


Bending <strong>of</strong> Non-Homogenous Beam<br />

(<strong>cont</strong>.)<br />

Solution <strong>of</strong> the third auxiliary problem (<strong>cont</strong>.)<br />

x<br />

x<br />

y<br />

y<br />

σ xx<br />

σ yy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

x<br />

25


Bending <strong>of</strong> Non-Homogenous Beam<br />

(<strong>cont</strong>.)<br />

Solution <strong>of</strong> the third auxiliary problem (<strong>cont</strong>.)<br />

x y<br />

σ zz<br />

x<br />

τ xy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

y<br />

x<br />

26


Bending <strong>of</strong> Non-Homogenous Beam (<strong>cont</strong>.)<br />

y<br />

The bending function χ 1<br />

x<br />

x<br />

The bending function χ 2<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

27


The <strong>Torsion</strong> Function<br />

x<br />

The torsion function ϕ<br />

y<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

28


Solution for Py<br />

x<br />

σ xx<br />

y<br />

x<br />

Py<br />

σ yy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

y<br />

x<br />

29


Solution for Py (<strong>cont</strong>.)<br />

x<br />

σ zz<br />

y<br />

Py<br />

τ xy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

x<br />

y<br />

y<br />

x<br />

30


Solution for Py (<strong>cont</strong>.)<br />

x<br />

τ yz<br />

y<br />

x<br />

τ xz<br />

Py<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

y<br />

x<br />

31


Concluding Remarks<br />

• The paper presents a derivation and closed-form exact analytic<br />

solutions for the Saint-Venant's problem <strong>of</strong> beams <strong>of</strong> nonhomogenous<br />

cross-sections.<br />

• The proposed methodology is composed <strong>of</strong> six sub-solutions<br />

for the tip loads effect.<br />

• The derivation is founded on three auxiliary biharmonic BVPs<br />

and exploits Saint-Venant's semi-inverse methodology and known<br />

solutions for homogeneous beams. In addition, the derivation<br />

employs Neumann-type BVPs for the bending and the torsion<br />

functions.<br />

• Illustrative examples <strong>of</strong> solutions were carried out via polynomial<br />

expansion <strong>of</strong> the involved stress functions.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!