31.07.2013 Views

9 Critical Factors in Plankton Abundance

9 Critical Factors in Plankton Abundance

9 Critical Factors in Plankton Abundance

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9 <strong>Critical</strong> <strong>Factors</strong> <strong>in</strong> <strong>Plankton</strong><br />

<strong>Abundance</strong><br />

Notes for Mar<strong>in</strong>e Biology:<br />

Function, Biodiversity, Ecology<br />

By Jeffrey S. Lev<strong>in</strong>ton


Mechanisms caus<strong>in</strong>g the spr<strong>in</strong>g<br />

phytoplankton bloom and its<br />

decl<strong>in</strong>e


Light and Phytoplankton - concepts<br />

Consider a phytoplankton cell held <strong>in</strong> clear<br />

glass jar at a certa<strong>in</strong> depth ( = a certa<strong>in</strong> light<br />

<strong>in</strong>tensity:<br />

Compensation depth -<br />

O 2 produced = O 2 consumed<br />

O 2 changes:<br />

+ photosynthesis<br />

- respiration<br />

Compensation light <strong>in</strong>tensity -<br />

- the light <strong>in</strong>tensity correspond<strong>in</strong>g<br />

to the compensation<br />

depth


Before the spr<strong>in</strong>g phytoplankton<br />

<strong>in</strong>crease:<br />

Water density similar at all depths<br />

W<strong>in</strong>d mix<strong>in</strong>g homogenizes water column


Cause of the spr<strong>in</strong>g<br />

phytoplankton <strong>in</strong>crease:<br />

Important concepts:<br />

Mix<strong>in</strong>g depth - depth above which all water<br />

is thoroughly mixed, due to w<strong>in</strong>d.<br />

<strong>Critical</strong> depth - depth above which total oxygen<br />

produced <strong>in</strong> the water column equals total<br />

consumed<br />

If: Mix<strong>in</strong>g depth < <strong>Critical</strong> depth: bloom<br />

If: Mix<strong>in</strong>g depth > <strong>Critical</strong> depth: no bloom


With the com<strong>in</strong>g of spr<strong>in</strong>g


Cause of the spr<strong>in</strong>g<br />

phytoplankton <strong>in</strong>crease:<br />

Important concepts:<br />

Key processes:<br />

1. Water column becomes<br />

more stable <strong>in</strong> spr<strong>in</strong>g as sun heats<br />

water from above.<br />

2. Surface nutrients are rich and trapped <strong>in</strong><br />

surface waters.<br />

3. Phytoplankton cells are no longer stirred<br />

to darker deep waters ----> BLOOM!!


Decl<strong>in</strong>e of the Spr<strong>in</strong>g<br />

Phytoplankton Increase<br />

Why do phytoplankton (diatoms) decl<strong>in</strong>e?<br />

1. Water column is STABLE<br />

2. Diatoms are denser than sea water<br />

In shallow water shelf waters: diatoms start<br />

s<strong>in</strong>k<strong>in</strong>g from surface water to bottom,<br />

which removes nutrients.<br />

3. Zooplankton graz<strong>in</strong>g? Has some effect but<br />

often secondary to s<strong>in</strong>k<strong>in</strong>g.


Rejuvenation of conditions for<br />

the Spr<strong>in</strong>g Phytoplankton<br />

Increase<br />

Why do phytoplankton sometimes <strong>in</strong>crease<br />

aga<strong>in</strong> <strong>in</strong> Fall?<br />

In fall and w<strong>in</strong>ter: water cools, water column<br />

becomes isothermal with depth, w<strong>in</strong>d mix<strong>in</strong>g<br />

restores nutrients to surface waters until<br />

conditions are right next spr<strong>in</strong>g


Gulf of Ma<strong>in</strong>e – spatial component of SDI


What matters <strong>in</strong> the spr<strong>in</strong>g<br />

diatom bloom and other<br />

associated phenomena:<br />

-Nutrient supply<br />

-Light<br />

-Turbulence (driven by w<strong>in</strong>d,<br />

mostly)<br />

-Bottom-water column<br />

<strong>in</strong>teractions


Applications to other systems


Water column exchange <strong>in</strong><br />

shallow waters and estuaries<br />

In very shallow estuaries, nutrient exchange<br />

or benthic-pelagic coupl<strong>in</strong>g, occurs cont<strong>in</strong>uously<br />

between the bottom and the water column,<br />

Fuel<strong>in</strong>g more phytoplankton growth


Water column exchange <strong>in</strong> shallow<br />

waters and estuaries<br />

In very shallow estuaries, nutrient exchange<br />

or benthic-pelagic coupl<strong>in</strong>g, occurs cont<strong>in</strong>uously<br />

between the bottom and the water column,<br />

Fuel<strong>in</strong>g more phytoplankton growth<br />

Beach phytoplankton blooms (Oregon, South<br />

Africa)


Water column exchange <strong>in</strong><br />

shallow waters and estuaries<br />

Productivity <strong>in</strong> shallow lagoons like Great<br />

South Bay:<br />

Release of dissolved<br />

nutrients from bottom<br />

seasonal


Water column exchange <strong>in</strong><br />

shallow waters and estuaries<br />

In estuaries, the spr<strong>in</strong>g freshet comb<strong>in</strong>es<br />

with net water flow to the sea and mix<strong>in</strong>g to<br />

determ<strong>in</strong>e nutrient regime:<br />

1. Freshwater rivers create a net downstream flow<br />

2. Tides cause mix<strong>in</strong>g up and down estuary as<br />

well as vertical mix<strong>in</strong>g<br />

3. Nutients may be released to coastal zone


Water column exchange <strong>in</strong><br />

shallow waters and estuaries 4<br />

Important factors <strong>in</strong> nutrient exchange:<br />

1. Residence time - time water rema<strong>in</strong>s <strong>in</strong> estuary<br />

before enter<strong>in</strong>g ocean<br />

2. Rate of nutrient <strong>in</strong>put from watershed<br />

3. Nutients may be released to coastal zone


Other applications – red tide<br />

Harmful algal blooms<br />

caused by many species.<br />

D<strong>in</strong>oflagellates cause<br />

paralytic shellfish<br />

poison<strong>in</strong>g: Stable water<br />

column, nutrient <strong>in</strong>put,<br />

cysts deposited <strong>in</strong> bottom;<br />

sometimes mobilized by<br />

storm.


Other applications: phytoplankton<br />

blooms <strong>in</strong> the open sea:<br />

Mobilized by w<strong>in</strong>dstorms that promote<br />

upwell<strong>in</strong>g of nutrients from deeper water<br />

ALSO IN OPEN OCEAN: WIND CAUSES OVERTURN


Light (read Go<strong>in</strong>g Deeper 9.1)<br />

Two components of loss <strong>in</strong> the water<br />

Column:<br />

Absorption: Molecular absorption<br />

of light energy<br />

Scatter<strong>in</strong>g: Light <strong>in</strong>teraction with<br />

particles


Photosynthetic rate<br />

+<br />

_ 0<br />

P max<br />

Gross<br />

photosynthesis<br />

Respiration<br />

Light <strong>in</strong>tensity (I)<br />

Net<br />

Photosynthesis<br />

Compensation po<strong>in</strong>t


Light 2<br />

Penetration <strong>in</strong>to water column varies:<br />

with wavelength<br />

Clear Open Ocean Water: Maximum<br />

penetration at 480 nm<br />

Turbid <strong>in</strong>shore water: Maximum<br />

penetration at 500-550 nm


Photosynthesis <strong>in</strong> Water Column<br />

Phytoplankton species may use<br />

Chlorophyll a, c and “accessory<br />

Pigments*”, which absorb<br />

energy over the light spectrum<br />

*. e.g., lute<strong>in</strong>, chlorophyll b


Photosynthesis <strong>in</strong> Water Column<br />

Action spectrum - utilization of<br />

different wavelengths of light by<br />

a given species for photosynthesis<br />

Chlorophyll absorbs wavelengths of<br />

ma<strong>in</strong>ly > 600 nm<br />

Accessory pigments absorb wavelengths<br />

< 600 nm


Nutrients<br />

Nutrients are substances required by plants.<br />

They are resources that can be limited <strong>in</strong><br />

supply<br />

Nutrient dependence and use:<br />

Autotrophs, auxotrophs, heterotrophs


Nutrients<br />

Nitrogen - what for?<br />

Nitrates NO 3 - MOST ABUNDANT SOURCE<br />

USUALLY<br />

Nitrites NO 2 -<br />

Ammonium ion, NH 4 - excretion product<br />

recycl<strong>in</strong>g from animal excretion <strong>in</strong> the<br />

water column - TAKEN UP THE FASTEST


Nutrients<br />

Nitrogen - New vs. Regenerated Production<br />

New Production:<br />

Nutrients for primary production may<br />

Derive from circulation of nutrients from<br />

Below the surface waters (upwell<strong>in</strong>g, storms<br />

That br<strong>in</strong>g deeper waters to the surface)<br />

Regenerated Production:<br />

Nutrients derive from recycl<strong>in</strong>g <strong>in</strong> surface<br />

waters from excretion


Nutrients<br />

Nitrogen - Microbial control<br />

Nitrogen added to ocean from atmospheric<br />

nitrogen by nitrogen fix<strong>in</strong>g bacteria<br />

Nitrify<strong>in</strong>g bacteria convert NH 4 to<br />

NO 2 , others convert NO 2 to NO 3<br />

Denitrify<strong>in</strong>g bacteria convert N0 3 to NH 4<br />

Nitrate reduc<strong>in</strong>g bacteria return NO 3 to<br />

atmosphere as N 2


Atmospheric nitrogen<br />

Denitrification Nitrogen fixation<br />

Primary production<br />

Dissolved<br />

<strong>in</strong>organic<br />

nitrogen<br />

Respiration<br />

Advection,<br />

Mix<strong>in</strong>g<br />

Organic<br />

nitrogen<br />

External nitrogen<br />

sources and s<strong>in</strong>ks<br />

Nitrogen Cycle


Problem:<br />

On global and historical scale: is nitrogen<br />

limit<strong>in</strong>g oceanic productivity, given<br />

exchanges between atmosphere and ocean.<br />

1. Ocean has abundant cyanobacteria –<br />

nitrogen fixers<br />

2. Denitrification occurs <strong>in</strong> anoxic<br />

locations (sediments, anoxic waters)<br />

and this returns N 2 to the atmosphere.<br />

3. Balance is not so clear.


Nutrients<br />

Phosphorus - occurs dissolved <strong>in</strong> water<br />

ma<strong>in</strong>ly as phosphate PO 4<br />

Also can f<strong>in</strong>d particulate phosphorus,<br />

some dissolved P <strong>in</strong> organic molecules<br />

Phosphorus required for synthesis of ATP,<br />

source of energy of cellular reactions


Dissolved<br />

Inorganic<br />

phosphorus<br />

Primary production<br />

Respiration<br />

Advection and<br />

mix<strong>in</strong>g<br />

External phosphorus<br />

sources and s<strong>in</strong>ks<br />

Organic<br />

phosphorus<br />

Phosphorus Cycle


Nutrients<br />

The limit<strong>in</strong>g nutrient? In much of the ocean:<br />

nitrogen is believed to be the ma<strong>in</strong><br />

element limit<strong>in</strong>g phytoplankton growth,<br />

Rather than phosphorus<br />

Important question are these the only limit<strong>in</strong>g<br />

nutrients or nutrient elements?


Nutrients<br />

Silicon - important limit<strong>in</strong>g element<br />

for diatoms because of skeleton construction,<br />

Much silica taken up <strong>in</strong> Antarctic Ocean by<br />

abundant diatoms


Nutrients<br />

Iron - important cofactor (Fe-S prote<strong>in</strong>) <strong>in</strong> oxygen<br />

production step of photosynthesis<br />

FERREDOXIN – ELECTRON ACCEPTOR -DONOR<br />

Fe: Shown <strong>in</strong> lab experiment to enhance<br />

phytoplankton growth<br />

High Nitrogen-Low Chlorophyll regions:<br />

May be crucial <strong>in</strong> parts of the ocean (eastern<br />

equatorial Pacific, South Pacific gyre,<br />

parts of Antarctic, north<br />

Pacific where nitrogen appears not to be<br />

limit<strong>in</strong>g factor (<strong>in</strong> excess <strong>in</strong> surface seawater)


Sources of Iron<br />

• air-borne terrigenous iron as dust from the land,<br />

• air-borne magmatic iron from volcanic eruptions,<br />

• upwell<strong>in</strong>g terrigenous iron from river-deposits<br />

and/or distant subducted dust, transported along<br />

the ocean floor,<br />

• upwell<strong>in</strong>g magmatic iron from ocean ridges and<br />

submar<strong>in</strong>e volcanic arcs.<br />

Bottom l<strong>in</strong>e: iron is limit<strong>in</strong>g <strong>in</strong> waters far from<br />

sources on cont<strong>in</strong>ents


Nutrients<br />

Trace elements such as Mn, Zn, Mo,<br />

Co, Cu can be important, but poorly<br />

understood<br />

Organic trace substances such as vitam<strong>in</strong>s<br />

important, especially for auxotrophic<br />

phytoplankton (e.g., many d<strong>in</strong>oflagellates)


Extra Credit Opportunity<br />

April 19, 730 P.M.<br />

Wallace Broecker, Columbia<br />

University<br />

The CO 2 Emergency: What can<br />

we do about it?<br />

Wang Center Auditorium


Microbial Loop<br />

1. Bacteria are abundant and take up large<br />

Amounts of nutrients from the water column<br />

2. Bacteria are consumed by ciliates and other<br />

Heterotrophs<br />

3. These heterotrophs are consumed by other<br />

smaller zooplankton, which <strong>in</strong>corporates<br />

bacterially derived nutrients <strong>in</strong>to the planktonic<br />

food web<br />

4. Viruses very abundant <strong>in</strong> surface waters, some<br />

attack phytoplankton (coccolithophores) and<br />

break down other cells.


Microbial Loop<br />

Microbial loop<br />

DOC & POC<br />

Viruses<br />

Bacteria<br />

DOC=dissolved organic carbon<br />

POC=particulate organic carbon<br />

DIOC=dissolved <strong>in</strong>organic carbon<br />

Larger consumers<br />

Herbivores<br />

Phytoplankton<br />

DIOC and<br />

nutrients<br />

Microconsumers


Nutrient uptake<br />

Nutrient uptake by phytoplankton cells<br />

varies with nutrient concentration<br />

Modell<strong>in</strong>g uptake:<br />

Need to know (1) nutrient concentration C<br />

And (2) rate of uptake of nutrients, which<br />

we measure <strong>in</strong>directly as D, cell doubl<strong>in</strong>gs/day<br />

(3) K is concentration at which cell doubl<strong>in</strong>g<br />

rate is one half of maximum doubl<strong>in</strong>g


Cell doubl<strong>in</strong>gs/day<br />

D max<br />

D max /2<br />

K<br />

Nutrient uptake<br />

Nutrient concentration


Nutrient uptake<br />

K is nutrient concentration at which<br />

half of maximum cell doubl<strong>in</strong>g rate<br />

occurs - useful measure of phytoplankton<br />

Nutrient uptake<br />

Cell doubl<strong>in</strong>g rate<br />

K<br />

Nutrient concentration


Nutrient uptake<br />

Application of model: Inshore versus open ocean<br />

phytoplankton nutrient uptake<br />

Inshore species: live <strong>in</strong> higher nutrient<br />

concentrations, should be good at uptake at high<br />

concentrations, but may be tradeoff and lower<br />

efficiency at low nutrient concentrations<br />

Open ocean species: live <strong>in</strong> lower nutrient<br />

concentrations, should be better at uptake at lower<br />

concentrations but tradeoff is <strong>in</strong>ability to deal<br />

with higher concentrations.


Nutrient uptake<br />

Application of model: Inshore versus open ocean<br />

phytoplankton nutrient uptake<br />

D max-1<br />

D max-2<br />

K 2<br />

K 1<br />

1<br />

2<br />

Adapted to high<br />

nutrient concentration<br />

Adapted to low<br />

nutrient concentration


Nutrient uptake<br />

General results for nitrate:<br />

D max-1<br />

D max-2<br />

K 2<br />

Environment K<br />

Inshore 1 mM<br />

Offshore 0.1-0.2 mM<br />

K 1<br />

Adapted to high<br />

nutrient concentration<br />

Adapted to low<br />

nutrient concentration


Phytoplankton Succession<br />

Seasonal change <strong>in</strong> dom<strong>in</strong>ance by<br />

different phytoplankton species<br />

e.g.: diatoms <strong>in</strong> early spr<strong>in</strong>g followed<br />

by d<strong>in</strong>oflagellates <strong>in</strong> summer


Phytoplankton Succession<br />

Mechanisms poorly understood:<br />

1. Shift <strong>in</strong> advantage of nutrient uptake,<br />

Favor<strong>in</strong>g different cell types<br />

2. Species later <strong>in</strong> season may depend upon<br />

substances that are not <strong>in</strong> the water column<br />

<strong>in</strong> early spr<strong>in</strong>g (e.g., auxotrophic species might<br />

follow autotrophic species)


Zooplankton Graz<strong>in</strong>g<br />

Graz<strong>in</strong>g effect: Difference between graz<strong>in</strong>g<br />

rate and phytoplankton growth rate –<br />

contributes somewhat to end of SDI<br />

Graz<strong>in</strong>g quite variable, sometimes causes:<br />

1. Strong spatial variation <strong>in</strong> phytoplankton<br />

abundance,<br />

2. Cycles of phytoplankton abundance<br />

and decl<strong>in</strong>e


The End

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!