31.07.2013 Views

9 Critical Factors in Plankton Abundance

9 Critical Factors in Plankton Abundance

9 Critical Factors in Plankton Abundance

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

9 <strong>Critical</strong> <strong>Factors</strong> <strong>in</strong> <strong>Plankton</strong><br />

<strong>Abundance</strong><br />

Notes for Mar<strong>in</strong>e Biology:<br />

Function, Biodiversity, Ecology<br />

By Jeffrey S. Lev<strong>in</strong>ton


Mechanisms caus<strong>in</strong>g the spr<strong>in</strong>g<br />

phytoplankton bloom and its<br />

decl<strong>in</strong>e


Light and Phytoplankton - concepts<br />

Consider a phytoplankton cell held <strong>in</strong> clear<br />

glass jar at a certa<strong>in</strong> depth ( = a certa<strong>in</strong> light<br />

<strong>in</strong>tensity:<br />

Compensation depth -<br />

O 2 produced = O 2 consumed<br />

O 2 changes:<br />

+ photosynthesis<br />

- respiration<br />

Compensation light <strong>in</strong>tensity -<br />

- the light <strong>in</strong>tensity correspond<strong>in</strong>g<br />

to the compensation<br />

depth


Before the spr<strong>in</strong>g phytoplankton<br />

<strong>in</strong>crease:<br />

Water density similar at all depths<br />

W<strong>in</strong>d mix<strong>in</strong>g homogenizes water column


Cause of the spr<strong>in</strong>g<br />

phytoplankton <strong>in</strong>crease:<br />

Important concepts:<br />

Mix<strong>in</strong>g depth - depth above which all water<br />

is thoroughly mixed, due to w<strong>in</strong>d.<br />

<strong>Critical</strong> depth - depth above which total oxygen<br />

produced <strong>in</strong> the water column equals total<br />

consumed<br />

If: Mix<strong>in</strong>g depth < <strong>Critical</strong> depth: bloom<br />

If: Mix<strong>in</strong>g depth > <strong>Critical</strong> depth: no bloom


With the com<strong>in</strong>g of spr<strong>in</strong>g


Cause of the spr<strong>in</strong>g<br />

phytoplankton <strong>in</strong>crease:<br />

Important concepts:<br />

Key processes:<br />

1. Water column becomes<br />

more stable <strong>in</strong> spr<strong>in</strong>g as sun heats<br />

water from above.<br />

2. Surface nutrients are rich and trapped <strong>in</strong><br />

surface waters.<br />

3. Phytoplankton cells are no longer stirred<br />

to darker deep waters ----> BLOOM!!


Decl<strong>in</strong>e of the Spr<strong>in</strong>g<br />

Phytoplankton Increase<br />

Why do phytoplankton (diatoms) decl<strong>in</strong>e?<br />

1. Water column is STABLE<br />

2. Diatoms are denser than sea water<br />

In shallow water shelf waters: diatoms start<br />

s<strong>in</strong>k<strong>in</strong>g from surface water to bottom,<br />

which removes nutrients.<br />

3. Zooplankton graz<strong>in</strong>g? Has some effect but<br />

often secondary to s<strong>in</strong>k<strong>in</strong>g.


Rejuvenation of conditions for<br />

the Spr<strong>in</strong>g Phytoplankton<br />

Increase<br />

Why do phytoplankton sometimes <strong>in</strong>crease<br />

aga<strong>in</strong> <strong>in</strong> Fall?<br />

In fall and w<strong>in</strong>ter: water cools, water column<br />

becomes isothermal with depth, w<strong>in</strong>d mix<strong>in</strong>g<br />

restores nutrients to surface waters until<br />

conditions are right next spr<strong>in</strong>g


Gulf of Ma<strong>in</strong>e – spatial component of SDI


What matters <strong>in</strong> the spr<strong>in</strong>g<br />

diatom bloom and other<br />

associated phenomena:<br />

-Nutrient supply<br />

-Light<br />

-Turbulence (driven by w<strong>in</strong>d,<br />

mostly)<br />

-Bottom-water column<br />

<strong>in</strong>teractions


Applications to other systems


Water column exchange <strong>in</strong><br />

shallow waters and estuaries<br />

In very shallow estuaries, nutrient exchange<br />

or benthic-pelagic coupl<strong>in</strong>g, occurs cont<strong>in</strong>uously<br />

between the bottom and the water column,<br />

Fuel<strong>in</strong>g more phytoplankton growth


Water column exchange <strong>in</strong> shallow<br />

waters and estuaries<br />

In very shallow estuaries, nutrient exchange<br />

or benthic-pelagic coupl<strong>in</strong>g, occurs cont<strong>in</strong>uously<br />

between the bottom and the water column,<br />

Fuel<strong>in</strong>g more phytoplankton growth<br />

Beach phytoplankton blooms (Oregon, South<br />

Africa)


Water column exchange <strong>in</strong><br />

shallow waters and estuaries<br />

Productivity <strong>in</strong> shallow lagoons like Great<br />

South Bay:<br />

Release of dissolved<br />

nutrients from bottom<br />

seasonal


Water column exchange <strong>in</strong><br />

shallow waters and estuaries<br />

In estuaries, the spr<strong>in</strong>g freshet comb<strong>in</strong>es<br />

with net water flow to the sea and mix<strong>in</strong>g to<br />

determ<strong>in</strong>e nutrient regime:<br />

1. Freshwater rivers create a net downstream flow<br />

2. Tides cause mix<strong>in</strong>g up and down estuary as<br />

well as vertical mix<strong>in</strong>g<br />

3. Nutients may be released to coastal zone


Water column exchange <strong>in</strong><br />

shallow waters and estuaries 4<br />

Important factors <strong>in</strong> nutrient exchange:<br />

1. Residence time - time water rema<strong>in</strong>s <strong>in</strong> estuary<br />

before enter<strong>in</strong>g ocean<br />

2. Rate of nutrient <strong>in</strong>put from watershed<br />

3. Nutients may be released to coastal zone


Other applications – red tide<br />

Harmful algal blooms<br />

caused by many species.<br />

D<strong>in</strong>oflagellates cause<br />

paralytic shellfish<br />

poison<strong>in</strong>g: Stable water<br />

column, nutrient <strong>in</strong>put,<br />

cysts deposited <strong>in</strong> bottom;<br />

sometimes mobilized by<br />

storm.


Other applications: phytoplankton<br />

blooms <strong>in</strong> the open sea:<br />

Mobilized by w<strong>in</strong>dstorms that promote<br />

upwell<strong>in</strong>g of nutrients from deeper water<br />

ALSO IN OPEN OCEAN: WIND CAUSES OVERTURN


Light (read Go<strong>in</strong>g Deeper 9.1)<br />

Two components of loss <strong>in</strong> the water<br />

Column:<br />

Absorption: Molecular absorption<br />

of light energy<br />

Scatter<strong>in</strong>g: Light <strong>in</strong>teraction with<br />

particles


Photosynthetic rate<br />

+<br />

_ 0<br />

P max<br />

Gross<br />

photosynthesis<br />

Respiration<br />

Light <strong>in</strong>tensity (I)<br />

Net<br />

Photosynthesis<br />

Compensation po<strong>in</strong>t


Light 2<br />

Penetration <strong>in</strong>to water column varies:<br />

with wavelength<br />

Clear Open Ocean Water: Maximum<br />

penetration at 480 nm<br />

Turbid <strong>in</strong>shore water: Maximum<br />

penetration at 500-550 nm


Photosynthesis <strong>in</strong> Water Column<br />

Phytoplankton species may use<br />

Chlorophyll a, c and “accessory<br />

Pigments*”, which absorb<br />

energy over the light spectrum<br />

*. e.g., lute<strong>in</strong>, chlorophyll b


Photosynthesis <strong>in</strong> Water Column<br />

Action spectrum - utilization of<br />

different wavelengths of light by<br />

a given species for photosynthesis<br />

Chlorophyll absorbs wavelengths of<br />

ma<strong>in</strong>ly > 600 nm<br />

Accessory pigments absorb wavelengths<br />

< 600 nm


Nutrients<br />

Nutrients are substances required by plants.<br />

They are resources that can be limited <strong>in</strong><br />

supply<br />

Nutrient dependence and use:<br />

Autotrophs, auxotrophs, heterotrophs


Nutrients<br />

Nitrogen - what for?<br />

Nitrates NO 3 - MOST ABUNDANT SOURCE<br />

USUALLY<br />

Nitrites NO 2 -<br />

Ammonium ion, NH 4 - excretion product<br />

recycl<strong>in</strong>g from animal excretion <strong>in</strong> the<br />

water column - TAKEN UP THE FASTEST


Nutrients<br />

Nitrogen - New vs. Regenerated Production<br />

New Production:<br />

Nutrients for primary production may<br />

Derive from circulation of nutrients from<br />

Below the surface waters (upwell<strong>in</strong>g, storms<br />

That br<strong>in</strong>g deeper waters to the surface)<br />

Regenerated Production:<br />

Nutrients derive from recycl<strong>in</strong>g <strong>in</strong> surface<br />

waters from excretion


Nutrients<br />

Nitrogen - Microbial control<br />

Nitrogen added to ocean from atmospheric<br />

nitrogen by nitrogen fix<strong>in</strong>g bacteria<br />

Nitrify<strong>in</strong>g bacteria convert NH 4 to<br />

NO 2 , others convert NO 2 to NO 3<br />

Denitrify<strong>in</strong>g bacteria convert N0 3 to NH 4<br />

Nitrate reduc<strong>in</strong>g bacteria return NO 3 to<br />

atmosphere as N 2


Atmospheric nitrogen<br />

Denitrification Nitrogen fixation<br />

Primary production<br />

Dissolved<br />

<strong>in</strong>organic<br />

nitrogen<br />

Respiration<br />

Advection,<br />

Mix<strong>in</strong>g<br />

Organic<br />

nitrogen<br />

External nitrogen<br />

sources and s<strong>in</strong>ks<br />

Nitrogen Cycle


Problem:<br />

On global and historical scale: is nitrogen<br />

limit<strong>in</strong>g oceanic productivity, given<br />

exchanges between atmosphere and ocean.<br />

1. Ocean has abundant cyanobacteria –<br />

nitrogen fixers<br />

2. Denitrification occurs <strong>in</strong> anoxic<br />

locations (sediments, anoxic waters)<br />

and this returns N 2 to the atmosphere.<br />

3. Balance is not so clear.


Nutrients<br />

Phosphorus - occurs dissolved <strong>in</strong> water<br />

ma<strong>in</strong>ly as phosphate PO 4<br />

Also can f<strong>in</strong>d particulate phosphorus,<br />

some dissolved P <strong>in</strong> organic molecules<br />

Phosphorus required for synthesis of ATP,<br />

source of energy of cellular reactions


Dissolved<br />

Inorganic<br />

phosphorus<br />

Primary production<br />

Respiration<br />

Advection and<br />

mix<strong>in</strong>g<br />

External phosphorus<br />

sources and s<strong>in</strong>ks<br />

Organic<br />

phosphorus<br />

Phosphorus Cycle


Nutrients<br />

The limit<strong>in</strong>g nutrient? In much of the ocean:<br />

nitrogen is believed to be the ma<strong>in</strong><br />

element limit<strong>in</strong>g phytoplankton growth,<br />

Rather than phosphorus<br />

Important question are these the only limit<strong>in</strong>g<br />

nutrients or nutrient elements?


Nutrients<br />

Silicon - important limit<strong>in</strong>g element<br />

for diatoms because of skeleton construction,<br />

Much silica taken up <strong>in</strong> Antarctic Ocean by<br />

abundant diatoms


Nutrients<br />

Iron - important cofactor (Fe-S prote<strong>in</strong>) <strong>in</strong> oxygen<br />

production step of photosynthesis<br />

FERREDOXIN – ELECTRON ACCEPTOR -DONOR<br />

Fe: Shown <strong>in</strong> lab experiment to enhance<br />

phytoplankton growth<br />

High Nitrogen-Low Chlorophyll regions:<br />

May be crucial <strong>in</strong> parts of the ocean (eastern<br />

equatorial Pacific, South Pacific gyre,<br />

parts of Antarctic, north<br />

Pacific where nitrogen appears not to be<br />

limit<strong>in</strong>g factor (<strong>in</strong> excess <strong>in</strong> surface seawater)


Sources of Iron<br />

• air-borne terrigenous iron as dust from the land,<br />

• air-borne magmatic iron from volcanic eruptions,<br />

• upwell<strong>in</strong>g terrigenous iron from river-deposits<br />

and/or distant subducted dust, transported along<br />

the ocean floor,<br />

• upwell<strong>in</strong>g magmatic iron from ocean ridges and<br />

submar<strong>in</strong>e volcanic arcs.<br />

Bottom l<strong>in</strong>e: iron is limit<strong>in</strong>g <strong>in</strong> waters far from<br />

sources on cont<strong>in</strong>ents


Nutrients<br />

Trace elements such as Mn, Zn, Mo,<br />

Co, Cu can be important, but poorly<br />

understood<br />

Organic trace substances such as vitam<strong>in</strong>s<br />

important, especially for auxotrophic<br />

phytoplankton (e.g., many d<strong>in</strong>oflagellates)


Extra Credit Opportunity<br />

April 19, 730 P.M.<br />

Wallace Broecker, Columbia<br />

University<br />

The CO 2 Emergency: What can<br />

we do about it?<br />

Wang Center Auditorium


Microbial Loop<br />

1. Bacteria are abundant and take up large<br />

Amounts of nutrients from the water column<br />

2. Bacteria are consumed by ciliates and other<br />

Heterotrophs<br />

3. These heterotrophs are consumed by other<br />

smaller zooplankton, which <strong>in</strong>corporates<br />

bacterially derived nutrients <strong>in</strong>to the planktonic<br />

food web<br />

4. Viruses very abundant <strong>in</strong> surface waters, some<br />

attack phytoplankton (coccolithophores) and<br />

break down other cells.


Microbial Loop<br />

Microbial loop<br />

DOC & POC<br />

Viruses<br />

Bacteria<br />

DOC=dissolved organic carbon<br />

POC=particulate organic carbon<br />

DIOC=dissolved <strong>in</strong>organic carbon<br />

Larger consumers<br />

Herbivores<br />

Phytoplankton<br />

DIOC and<br />

nutrients<br />

Microconsumers


Nutrient uptake<br />

Nutrient uptake by phytoplankton cells<br />

varies with nutrient concentration<br />

Modell<strong>in</strong>g uptake:<br />

Need to know (1) nutrient concentration C<br />

And (2) rate of uptake of nutrients, which<br />

we measure <strong>in</strong>directly as D, cell doubl<strong>in</strong>gs/day<br />

(3) K is concentration at which cell doubl<strong>in</strong>g<br />

rate is one half of maximum doubl<strong>in</strong>g


Cell doubl<strong>in</strong>gs/day<br />

D max<br />

D max /2<br />

K<br />

Nutrient uptake<br />

Nutrient concentration


Nutrient uptake<br />

K is nutrient concentration at which<br />

half of maximum cell doubl<strong>in</strong>g rate<br />

occurs - useful measure of phytoplankton<br />

Nutrient uptake<br />

Cell doubl<strong>in</strong>g rate<br />

K<br />

Nutrient concentration


Nutrient uptake<br />

Application of model: Inshore versus open ocean<br />

phytoplankton nutrient uptake<br />

Inshore species: live <strong>in</strong> higher nutrient<br />

concentrations, should be good at uptake at high<br />

concentrations, but may be tradeoff and lower<br />

efficiency at low nutrient concentrations<br />

Open ocean species: live <strong>in</strong> lower nutrient<br />

concentrations, should be better at uptake at lower<br />

concentrations but tradeoff is <strong>in</strong>ability to deal<br />

with higher concentrations.


Nutrient uptake<br />

Application of model: Inshore versus open ocean<br />

phytoplankton nutrient uptake<br />

D max-1<br />

D max-2<br />

K 2<br />

K 1<br />

1<br />

2<br />

Adapted to high<br />

nutrient concentration<br />

Adapted to low<br />

nutrient concentration


Nutrient uptake<br />

General results for nitrate:<br />

D max-1<br />

D max-2<br />

K 2<br />

Environment K<br />

Inshore 1 mM<br />

Offshore 0.1-0.2 mM<br />

K 1<br />

Adapted to high<br />

nutrient concentration<br />

Adapted to low<br />

nutrient concentration


Phytoplankton Succession<br />

Seasonal change <strong>in</strong> dom<strong>in</strong>ance by<br />

different phytoplankton species<br />

e.g.: diatoms <strong>in</strong> early spr<strong>in</strong>g followed<br />

by d<strong>in</strong>oflagellates <strong>in</strong> summer


Phytoplankton Succession<br />

Mechanisms poorly understood:<br />

1. Shift <strong>in</strong> advantage of nutrient uptake,<br />

Favor<strong>in</strong>g different cell types<br />

2. Species later <strong>in</strong> season may depend upon<br />

substances that are not <strong>in</strong> the water column<br />

<strong>in</strong> early spr<strong>in</strong>g (e.g., auxotrophic species might<br />

follow autotrophic species)


Zooplankton Graz<strong>in</strong>g<br />

Graz<strong>in</strong>g effect: Difference between graz<strong>in</strong>g<br />

rate and phytoplankton growth rate –<br />

contributes somewhat to end of SDI<br />

Graz<strong>in</strong>g quite variable, sometimes causes:<br />

1. Strong spatial variation <strong>in</strong> phytoplankton<br />

abundance,<br />

2. Cycles of phytoplankton abundance<br />

and decl<strong>in</strong>e


The End

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!