PDF file

PDF file PDF file

30.07.2013 Views

Colorado, USA (in planning) Gregory Snow / University of Nebraska The Pierre Auger Observatory Capturing Messengers from the Extreme Universe A new cosmic ray observatory designed for a high statistics study of the The Highest Energy Cosmic Rays Using Two Large Air Shower Detectors Mendoza, Argentina (construction nearing completion) 1

Colorado, USA<br />

(in planning)<br />

Gregory Snow / University of Nebraska<br />

The Pierre Auger Observatory<br />

Capturing Messengers from the<br />

Extreme Universe<br />

A new cosmic ray observatory designed for a high<br />

statistics study of the<br />

The Highest Energy Cosmic Rays<br />

Using<br />

Two Large Air Shower Detectors<br />

Mendoza, Argentina<br />

(construction nearing completion)<br />

1


The Auger Collaboration<br />

67 Institutions, 369 Collaborators<br />

Argentina Netherlands<br />

Australia Poland<br />

Bolivia * Portugal<br />

Brazil Slovenia<br />

Czech Republic Spain<br />

France United Kingdom<br />

Germany USA<br />

Italy Vietnam *<br />

Mexico<br />

* associate<br />

True International Partnership<br />

- by non-binding agreement -<br />

No country, region or<br />

institution dominates – No<br />

country contributes more than<br />

25% to the construction.<br />

2


Many<br />

experiments<br />

have<br />

contributed<br />

Flux (m 2 sr s eV) -1<br />

Power law with<br />

structure<br />

The Cosmic Ray Spectrum<br />

Energy (eV)<br />

Supernova<br />

shock can<br />

generate up<br />

to ~10 15 eV<br />

Transition from<br />

galactic to<br />

extra-galactic?<br />

Most interesting,<br />

but:<br />

•Rare<br />

• Don’t know<br />

acceleration<br />

mechanism<br />

• Point back<br />

possible<br />

3


Conventional – Bottoms-Up<br />

Possible Sources<br />

• Hot spots in radio galaxy lobes?<br />

• Accretion shocks in active<br />

galactic nuclei? - Colliding<br />

galaxies?<br />

• Associated with gamma ray<br />

bursts?<br />

Exotic – Top-Down<br />

• Annihilation of topological<br />

defects?<br />

ν’s<br />

γ’s • Cold dark matter?<br />

signatures<br />

• Evaporation of mini black holes?<br />

4


Propagation<br />

in the Cosmic Microwave Background<br />

Space becomes opaque to protons of energy > 5 * 10 19 eV because of<br />

the cosmic microwave background - Greisen-Zatsepin-Kuzmin<br />

(GZK) suppression. Cosmic ray protons with 10 20 eV must come<br />

from less than about 50 Mps.<br />

proton +photon CMB -> pion + nucleon<br />

Recent data at the<br />

end of the spectrum<br />

GZK cut off?<br />

5


10 18 eV<br />

protons<br />

Propagation<br />

magnetic fields<br />

At energies near 10 20 eV protons magnetic deflection is small – Cosmic<br />

ray protons should point back to the source. Charged particle<br />

astronomy becomes possible.<br />

10 20 eV protons<br />

5 ×10 19 eV ~ bottom end of pointing capability (about 10 o )<br />

6<br />

J. Cronin


N<br />

Interaction with the atmosphere<br />

A look at air showers<br />

Shower Max<br />

Depth in the Atmosphere<br />

Shower front<br />

10 11 Particles<br />

at surface<br />

Sea level<br />

EM shower<br />

Shower core -<br />

hard muons<br />

γ ~ 89% ⎫<br />

⎬ 10 MeV<br />

e ± ~ 10% ⎭<br />

µ ~ 1% 1GeV<br />

7


Detecting Cosmic Ray Air Showers<br />

Fly’s Eye<br />

Surface Array<br />

Air shower<br />

measurements are<br />

made by two<br />

techniques<br />

1) Surface Arrays<br />

2) Fluorescence<br />

Telescopes (Fly’s<br />

Eyes)<br />

8


Can’t see small<br />

showers far<br />

away, need<br />

good model of<br />

atmosphere<br />

Features of the<br />

Air Shower Detector Techniques<br />

Surface Array<br />

µ‘s come first,<br />

100% duty cycle<br />

γ’s,e’s shower<br />

Well-defined acceptance<br />

causing delay<br />

Uniform sky coverage<br />

Simple robust detectors<br />

Mass determination using rise time, muon/em (*)<br />

Energy determination requires simulation<br />

Fluorescence Detector<br />

Calorimetric energy measurement<br />

Direct view of shower development<br />

Good angular resolution (< 1 o )<br />

Correction for atmospheric attenuation<br />

Aperture requires simulation (*)<br />

10% duty cycle (moonless nights only)<br />

Fe vs. proton<br />

more µ-rich<br />

9


Pierre Auger Observatory<br />

Science Objectives<br />

Cosmic ray spectrum above 10 19 eV<br />

• Shape of the spectrum in the region of the GZK feature<br />

Arrival direction distribution<br />

• Search for departure from isotropy – point sources<br />

Composition<br />

• Light or heavy nuclei, photons, neutrinos, exotics(?)<br />

Design Features<br />

High statistics (aperture >7000 km 2 sr above 10 19 eV in each<br />

hemisphere)<br />

Full sky coverage with uniform exposure<br />

Hybrid configuration – surface array with fluorescence detector<br />

coverage<br />

10


The Hybrid Design<br />

Surface detector array + Air fluorescence detectors<br />

A unique and powerful design<br />

• Nearly calorimetric energy<br />

calibration of the fluorescence<br />

detector transferred to the<br />

event gathering power of the<br />

surface array.<br />

• A complementary set of mass<br />

sensitive shower parameters.<br />

• Different measurement<br />

techniques force understanding<br />

of systematic uncertainties<br />

• Determination of the angular<br />

and core position resolutions<br />

11


The Observatory Plan<br />

Surface Array<br />

1600 detector stations<br />

1.5 km spacing<br />

3000 km 2<br />

Fluorescence Detectors<br />

4 Telescope enclosures<br />

6 Telescopes per<br />

enclosure<br />

24 Telescopes total<br />

12


Battery box<br />

The Surface Array<br />

Detector Station<br />

Communications<br />

antenna<br />

Electronics<br />

enclosure<br />

3 – nine inch<br />

photomultiplier<br />

tubes<br />

GPS antenna<br />

Solar panels<br />

Plastic tank with<br />

12 tons of water<br />

13


Deploying the Surface Detectors<br />

14


FD telescopes in closed<br />

environment<br />

The Fluorescence Detector<br />

11 square meter<br />

segmented mirror<br />

440 pixel camera<br />

Aperture stop<br />

and optical filter<br />

Corrector lens<br />

minimizes spherical<br />

aberrations, filter<br />

brackets 350 nm<br />

fluorescence light 15


The Fluorescence Detector<br />

Los Leones<br />

16


Atmospheric Monitoring and Calibration<br />

Atmospheric Monitoring<br />

Used to “shoot<br />

the shower”<br />

Simulates hybrid<br />

event – some light to tank<br />

Central Laser<br />

Facility<br />

Lidar at each<br />

fluorescence eye<br />

Precisely calibrated light<br />

source<br />

Absolute Calibration<br />

Drum for uniform<br />

camera illumination –<br />

end to end calibration .<br />

Lidar (Light Detection and Ranging)<br />

measures back-scattered light→atmos. density pro<strong>file</strong> 17


Status of the Observatory<br />

1190 out of 1600 surface<br />

detector stations<br />

deployed<br />

Three of four<br />

fluorescence buildings<br />

operational each with 6<br />

telescopes<br />

18


Aerial Photos of Fluorescence Buildings<br />

November 2006<br />

19


Thanks to Cristina Raschia<br />

Building the Observatory<br />

20


Deployment Sequence<br />

Thanks to Cyril Lachaud<br />

21


Deployment Sequence<br />

Thanks to Cyril Lachaud<br />

22


Surface Detector<br />

Event<br />

Θ~ 48º, ~ 70 EeV<br />

70 × 10 18 eV<br />

Typical flash ADC<br />

trace<br />

Detector signal<br />

(VEM) vs time (ns)<br />

PMT 1<br />

PMT 2<br />

PMT 3<br />

Flash ADC traces<br />

Flash ADC traces<br />

Lateral density<br />

distribution<br />

18<br />

tanks<br />

S(1000) best estimate of<br />

shower energy, min.<br />

fluctuations<br />

23


Surface Detector Event<br />

Θ~ 60º, ~ 86 EeV<br />

Flash ADC Trace<br />

for detector late in<br />

the shower<br />

Flash ADC<br />

traces<br />

PMT 1<br />

PMT 2<br />

PMT 3<br />

Lateral<br />

density<br />

distribution<br />

34<br />

tanks<br />

24


y [km]<br />

Hybrid Event<br />

Θ~ 30º, ~ 8 EeV<br />

Shower plane from FD<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

SD core position<br />

8<br />

10 15 20 25 30<br />

x [km]<br />

)]<br />

2<br />

dE/dX [GeV/(g/cm<br />

FD pulse heights<br />

corrected for<br />

atmospheric effects,<br />

Cerenkov light<br />

elevation [deg]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

6<br />

× 10<br />

60 65 70 75 80 85 90<br />

azimuth [deg]<br />

400 500 600 700 800 900<br />

2<br />

slant depth [g/cm ]<br />

Depth in atmosphere<br />

Integral under Gaisser-Hillas fit gives FD energy, which is corrected by<br />

~10% (simulation) due to shower particles penetrating earth<br />

25


Hybrid Event<br />

Θ~ 30º, ~ 8 EeV<br />

Flash ADC<br />

traces<br />

Example Event 3<br />

A hybrid event – 1021302<br />

Zenith angle ~ 30º, Energy ~ 8 EeV<br />

Lateral density<br />

distribution<br />

26


Same Hybrid Event<br />

Θ~ 30º, ~ 8 EeV<br />

These 2 plots give energy,<br />

angle, and core position<br />

Time µ sec<br />

Tanks<br />

Fitted Electromagnetic<br />

Shower<br />

Pixels<br />

from Fly's Eye 1985<br />

Angle χ in the shower-detector plane<br />

27


A Tri-ocular Event!<br />

~20EeV<br />

28


A Big Event - One that got away!<br />

Shower/detector plane<br />

outside of array<br />

Fluorescence Mirror<br />

Energy<br />

Estimate<br />

>140 EeV<br />

No correction for aerosols, could be as high as 2 × 10 20 eV<br />

29


Laser<br />

Beam<br />

Performance: Angular Resolution<br />

Angle in laser beam /FD detector plane<br />

Hybrid Angular resolution<br />

(68% CL)<br />

0.6 degrees (mean)<br />

Entries 269<br />

σ(ψ) = 1.24º<br />

Hybrid Data<br />

Hybrid-SD only space angle difference<br />

Surface array Angular resolution (68% CL)<br />

< 2.2º for 3 station events (E< 3EeV, θ < 60º )<br />

< 1.7º for 4 station events (3


Laser Data<br />

Performance: Resolution of Core Position<br />

Laser position – Hybrid and FD only (m)<br />

Core position resolution<br />

+500<br />

-500<br />

Hybrid Data<br />

Entries 501<br />

Mean<br />

5.8 ± 6.5 m<br />

RMS 147 m<br />

Hybrid – SD only core position<br />

– Hybrid: < 60 m Surface array: ~150 m<br />

Entries 501<br />

Mean 68 ± 8 m<br />

RMS 173 m<br />

31


Cosmic Ray Air Shower Measurements<br />

Energy – if surface array only<br />

11 tank event<br />

Surface Array:<br />

Measure radial particle density<br />

distribution and match to simulated<br />

distribution.<br />

simulation<br />

Clem Pryke<br />

32


Cosmic Ray Air Shower Measurements<br />

Energy – fluorescence detectors<br />

Fluorescence Detectors:<br />

Measure the light produced<br />

by the shower<br />

350 nm<br />

From fluorescence yield experiment<br />

Fully calibrated calorimetric measurement<br />

Note how shower max moves deeper in<br />

atmosphere for higher energy shower<br />

33


Cumulative number of events<br />

January 04<br />

July 04<br />

The First Data Set ICRC2005 in India<br />

January 05<br />

Collection period – 1 January<br />

2004 to 5 June 2005<br />

Zenith angles - 0 - 60º<br />

Total acceptance – 1750km 2 sr yr<br />

(~ AGASA)<br />

Surface array events (after<br />

quality cuts)<br />

Current rate - 18,000 / month<br />

Total -~180,000<br />

Hybrid events (after quality cuts)<br />

Current rate – 1800 / month<br />

Total ~ 18000<br />

ICRC2005 contributions available on Auger web site<br />

http://www.auger.org<br />

34


Enhancement toward south<br />

pole due to oversampling<br />

Sky Map of Data set<br />

Galactic Coordinates<br />

Where we don’t<br />

see from the<br />

south<br />

35


Energy Determination and the Spectrum<br />

The energy scale is based on fluorescence measurements<br />

without reliance on a specific interaction model or<br />

assumptions about the composition.<br />

The detector signal size at<br />

1000 meters from the<br />

shower core - called<br />

the ground parameter<br />

or S(1000) - is<br />

determined for each<br />

surface detector event<br />

using the lateral<br />

density function.<br />

S(1000) is proportional<br />

to the primary energy.<br />

Only model-dependent ingredient is the ~10% correction<br />

for shower particles penetrating earth<br />

Zenith angle ~ 48º<br />

Energy ~ 70EeV<br />

36


Energy Determination and the Spectrum<br />

The energy converter:<br />

Compare ground<br />

parameter S(1000)<br />

with the fluorescence<br />

detector energy.<br />

Transfer the energy<br />

converter to the<br />

surface array only<br />

events.<br />

Log (E/EeV)<br />

Hybrid Events<br />

Strict event selection:<br />

track length >350g/cm2<br />

Cherenkov contamination


Auger Energy Spectrum<br />

∆E/E~30%<br />

∆E/E~50%<br />

38


J. Bellido<br />

Systematic Errors in the FD (Hybrid)<br />

Energy Normalization<br />

~ 30%<br />

50% at higher energy<br />

is from extrapolation<br />

of energy converter<br />

39


Auger reserves<br />

making specific<br />

claim until<br />

more statistics<br />

Comparison with HiRes1, AGASA<br />

Auger spectrum<br />

similar to HiRes<br />

which is consistent<br />

with GZK suppression<br />

1) M. Takeda et al. Astroparticle Physics 19, 447 (2003)<br />

2) R.U. Abbasi et al. Phys Lett B (to be published)<br />

8<br />

6<br />

Stat. errors only<br />

3<br />

40


Galactic center<br />

No excess approaching<br />

significance of AGASA, SUGAR reports<br />

Galactic plane<br />

Auger data Jan 2004-<br />

Mar 2006<br />

Overdensity significance<br />

Circles represent regions of previously reported excesses from AGASA, SUGAR.<br />

Sugar = Sydney University Giant Air Shower Recorder<br />

x<br />

41


Photon Limit<br />

Integral (E>E0) photon fraction limit based on shower depth (X max )<br />

measured in 29 quality hybrid events above 10 19 eV<br />

Auger data Jan 2004-Feb 2006<br />

Models<br />

predict<br />

lines<br />

HP, A1, A2 == previous limits from Haverah Park, AGASA data.<br />

2007: Improved limits/detection(?) using surface detector observables.<br />

Start to probe model predictions (Z-burst, SuperHeavy Dark Matter, Topological<br />

Defects) yielding photon primaries, also extend limits to higher energies.<br />

42


Malargüe<br />

Outreach<br />

43


Northern Auger<br />

Objectives:<br />

– Complete sky coverage/ Increased aperture<br />

• Anisotropy – source searches (charged particle<br />

astronomy)<br />

• More detailed spectrum near the GZK feature<br />

• Increased aperture for earth skimming neutrinos.<br />

• Design<br />

– Increase the array size from 3000 to 10000 Km 2<br />

– Simpler surface detectors (1 PMT)<br />

– Greater average spacing<br />

– 12 FD telescopes<br />

– Simpler communications system<br />

– Possible new technologies<br />

(Radio, radar detection)<br />

for even greater aperture<br />

44


• Requirements<br />

– Large flat area w/clear, dark sky<br />

– Remote, but easy access<br />

– Latitude, Altitude<br />

– Infrastructure<br />

• Site identified in Colorado<br />

– Around Lamar (38 o N, 102 o 30’ W )<br />

– Over 4000 sq miles (84x48 miles)<br />

– 1200-1400 m.a.s.l<br />

– 3 hs drive from DIA<br />

Northern Auger Site<br />

45


Summary<br />

• The Observatory is approaching completion.<br />

• With 25% of a full Auger-year exposure, we have:<br />

– Defined our empirical spectrum analysis strategy and<br />

produced our first model-independent spectrum<br />

– Performed first studies of anisotropies in the sky<br />

– Set limits on photon primaries<br />

Future Plans<br />

• Complete Auger South by mid 2007<br />

• Fully understand our instruments.<br />

• Use rapidly expanding data set (x7 in two years) to enable<br />

– Improvement in the energy assignment<br />

– High statistics study of the spectrum in the GZK region<br />

– Anisotropy studies and point source searches.<br />

– Composition studies<br />

• Reduce systematic uncertainties.<br />

• Exploit events beyond a zenith angle of 60º<br />

– search for neutrinos and exotics<br />

• Begin work on Auger North<br />

46


Backup Slides<br />

47


Cosmic Ray Air Shower Measurements<br />

Some Sensitivity to Neutrinos<br />

Tau neutrinos can interact<br />

in the mountains or in the<br />

crust of the earth to<br />

produce taus that decay and<br />

shower over the detector.<br />

τ Lifetime ~40 km for 10 18 eV ν τ<br />

Large zenith angle<br />

(>60 degrees) hadron<br />

showers have lost most<br />

of their electromagnetic<br />

component.<br />

Low rate ~1/year<br />

48


The Cosmic Ray Observatory Project<br />

(CROP) in Nebraska<br />

Gregory Snow<br />

UNL Department of Physics and Astronomy<br />

September 22, 2006<br />

49


CROP article in Lincoln Journal Star, 7 August 2003<br />

50


A few facts<br />

• Funded by $1.34 Million NSF grant, 2000-2007<br />

• Co-PIs Greg Snow and Dan Claes<br />

• 26 Nebraska and 5 Colorado schools enlisted and trained<br />

in summer workshops of duration 2-4 weeks, about<br />

5 new schools per summer<br />

• Venture into Colorado was a joint effort by CROP,<br />

WALTA, ALTA<br />

• Hosted 2 one-day meetings each academic year for<br />

participants from all years to report results, exchange<br />

faulty equipment, receive equipment and software<br />

upgrades, refresh training or train new students<br />

• External evaluation of this period has shown that CROP<br />

has accomplished most of its educational and scientific<br />

goals listed in the original proposal<br />

• CROP has also served as a great training ground for<br />

staff (undergrad, grad students) at UNL<br />

51


Highlighted squares = participating schools<br />

52


The Chicago Air Shower Array<br />

• CROP uses retired detectors from the Chicago Air Shower Array<br />

• 1089 boxes each with:<br />

• 4 scintillators and photomultiplier tubes (PMT)<br />

• 1 high voltage and 1 low voltage power supply<br />

• Two removal trips (September 1999, May 2001) yielded over<br />

2000 scintillator panels, 2000 PMTs, 500 low and power supplies<br />

53


U.S. Army Photo<br />

The CROP team at Chicago Air<br />

Shower Array (CASA) site<br />

September 30,<br />

199954


To PC<br />

serial port<br />

GPS receiver<br />

input<br />

5 Volt<br />

DC power<br />

CROP data acquisition electronics card<br />

Developed by Univ. Nebraska, Univ. Washington, Fermilab (Quarknet)<br />

Programmable<br />

logic device<br />

• 43 Mhz (24 nsec) clock interpolates<br />

between 1 pps GPS ticks for trigger time<br />

• TDC’s give relative times of 4 inputs with<br />

75 picosecond resolution<br />

Time-to-digital<br />

converters<br />

Event<br />

counter<br />

Discriminator<br />

threshold<br />

adjust<br />

Four analog<br />

PMT inputs<br />

55


Summer 2004 Workshop Activities<br />

Detector assembly and testing<br />

56


Each school made new rooftop enclosures<br />

57


Excellent extensive air shower<br />

data taking run overnight<br />

58


New enclosures making it to rooftops<br />

Weights, important !!<br />

Westside High School<br />

Omaha, NE<br />

59


NALTA<br />

The North American Large-Scale Time-Coincidence Array<br />

http://csr.phys.ualberta.ca/nalta/<br />

• Includes links to individual project<br />

Web pages<br />

WALTA ALTA<br />

CHICOS<br />

SALTA<br />

CROP<br />

PARTICLE<br />

Pierre Auger northern<br />

hemisphere site in<br />

southeast Colorado<br />

SCROD<br />

TECOP<br />

60


Aiming toward a worldwide network<br />

of cosmic ray detectors<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!