30.07.2013 Views

pdf file - EPFL

pdf file - EPFL

pdf file - EPFL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Measurement of mixing parameters<br />

of the B meson s meson at LHCb<br />

A.Hicheur, A.Hicheur,<br />

<strong>EPFL</strong><br />

Swiss Physical Society meeting<br />

February 20-21, 20 21, 2007<br />

1


Outline<br />

Physics motivation<br />

LHCb experiment<br />

Main steps of the study<br />

Results of sensitivity studies<br />

Conclusion<br />

2


Motivation<br />

LHCb Physics program: dedicated to b physics<br />

• All B s mixing parameters: Δms s , φs , ΔΓ<br />

ΔΓs s<br />

Bs→Dsπ, , b→c cbar s modes: J/ΨΦ J/ ΨΦ, , J/Ψη J/ Ψη, , η<br />

Sensitivity to new cΦ<br />

physics:<br />

• CKM angles α β and γ<br />

• Rare B decays<br />

Radiative, Radiative,<br />

electroweak, gluonic penguins<br />

Bs→μμ →μμ (rare box diagram)<br />

New particles in loop diagrams<br />

• Bc , b-baryon b baryon physics, charm physics, etc… etc<br />

B mixing and decays:<br />

Combined decays to CP eigen states and<br />

non CP eigen states to extract the mixing<br />

parameters:<br />

1. Precision measurement for Δms for CP eigenstates<br />

2. φs measurement<br />

(e.g e.g: : J/ΨΦ J/ ΨΦ, , J/Ψη J/ Ψη, , ηcΦ)<br />

For Bs→D -<br />

s π + , f ≠ f<br />

Small (φ ( s ) SM (-0.04): 0.04): possible<br />

early detection of New Physics<br />

3


Mixing and decay asymmetry for b → cc<br />

s modes<br />

Mixing: mass eigenstates ≠ CP eigenstates<br />

B = p B ± q B , ΔM<br />

= M − M , ΔΓ = Γ − Γ<br />

L / H<br />

q<br />

q<br />

Mixing phase φs= = 2Arg[V *<br />

Mixing ts Vtb<br />

Mixing phase φ tb] ] for B s +φNP s<br />

NP with new physics<br />

q<br />

H<br />

L<br />

q<br />

L<br />

H<br />

Decay<br />

Final phase for asymmetry ratio ≈ φs s (+φ (+ NP )<br />

Time dependent asymmetry: extraction of<br />

φs and ΔΓ s (ΔMs obtained from control<br />

sample B 4<br />

s→D -<br />

s π + )


pp collisions @ 14 TeV<br />

Correlated forward<br />

production σb ≈ 500 μb<br />

Forward spectrometer<br />

Primary<br />

vertex<br />

LHCb experiment<br />

bb<br />

Need prim. & b vertex reco for<br />

time measurements +<br />

subsequent decays separation<br />

B signal<br />

Vertexing<br />

D<br />

≈ 1 cm btag Flavour tagging<br />

K<br />

π<br />

RICH system for PID<br />

Tracking Muon detector<br />

PID to identify K/ π<br />

5


Channels for mixing parameters determination<br />

Admixture of CP eigenstates (ηη f = -1,+1) 1,+1)<br />

• Bs→J/ J/Ψ(μ + μ- )Φ(K (K + K- )<br />

Large yield but angular analysis to disentangle final states<br />

CP Even eigenstates (ηη f = +1)<br />

• Bs→J/ J/Ψ(μ + μ- )η(γγ γγ,π + π-π0 ), J/Ψ(μ J/ + μ- )η’(π + π- η,ρ0γ), ),<br />

ηc(h (h + h-h + h- )Φ(K (K + K- )<br />

Low yield, high background<br />

• Bs→ D +<br />

s (K + K-π + )Ds )D - (K + K-π- )<br />

Low yield, degradation of proper time resolution<br />

Extraction of ΔMs using flavor-specific flavor specific control<br />

channel<br />

• Bs→D -<br />

s (K + K-π- )π +<br />

6


Basic ingredients for the analyses<br />

Candidate selection<br />

• Bs mass resolution<br />

Proper time<br />

• Vertex/time resolution and time-dependent time dependent efficiency ε(t) (t)<br />

Tagging<br />

• Mistag rate and tagging efficiency<br />

Full Monte Carlo simulation results (based on 2 fb -1 )<br />

J/Ψ J/ η’(π + π- η(γγ γγ)) ))<br />

2.2<br />

1.0<br />

19<br />

33.0<br />

19<br />

31<br />

64<br />

7


Ideal rate<br />

B -<br />

s→Ds π + decay rates and ΔMs e<br />

2<br />

ΔΓst<br />

(cosh ± cos ΔM<br />

t)<br />

2<br />

( ( ) )<br />

) ( −<br />

−ΔΓst<br />

R B s t → Dsπ<br />

∝<br />

s<br />

+ dilution from flavour tagging<br />

e<br />

2<br />

ΔΓst<br />

(cosh ± D cos ΔM<br />

t)<br />

2<br />

( ( ) )<br />

) ( −<br />

−ΔΓst<br />

R B s t → Dsπ<br />

∝<br />

s<br />

+ Proper time resolution ~40 fs<br />

R<br />

( ) ( −<br />

true<br />

true rec<br />

B s ( t ) → Dsπ<br />

) ⊗G(<br />

t − t , Στσ<br />

τ )<br />

+ Background S/B ~ 3<br />

+ Acceptance<br />

( −)<br />

rec<br />

true<br />

true rec<br />

ε ( t ). R(<br />

B s ( t ) → Dsπ<br />

) ⊗G(<br />

t − t , Στσ<br />

τ )<br />

1000<br />

1000<br />

Events 800<br />

800<br />

600<br />

600<br />

400<br />

400<br />

200<br />

200<br />

Perfect Perfect Perfect reconstruction<br />

reconstruction<br />

reconstruction<br />

+ + flavour flavour tagging<br />

tagging<br />

+ proper time resolution<br />

resolution<br />

+ background<br />

+ acceptance<br />

0<br />

0<br />

0 0 1 1 2 2 2 3 3 4 4 5<br />

5<br />

Proper Proper Proper time time time (ps)<br />

(ps) (ps)<br />

8


B →J/ J/Ψ(μ s + μ- )Φ(K (K + K- ) case<br />

Transversity amplitudes:<br />

A0, , A // (CP even) A ⊥ (odd)<br />

One angle distribution:<br />

μ -<br />

z<br />

θ<br />

J/ψ J/<br />

Γ(<br />

Bs ( t)<br />

→ f ) ∝ ( 1−<br />

RT<br />

) Γ(<br />

Bs<br />

( t)<br />

→ feven)<br />

+ RT<br />

Γ(<br />

Bs<br />

( t)<br />

→ fodd<br />

)<br />

B s<br />

φ s<br />

μ +<br />

K +<br />

K -<br />

9


Toy Monte Carlo sensitivity studies<br />

From full MC, extract PDFs to model signal and<br />

background<br />

• Mass distributions<br />

• Proper time distributions (including acceptance, tagging,<br />

resolution model)<br />

• Transversity angle θ for Bs→J/ J/ΨΦ ΨΦ<br />

Generate ~ 200 toy experiments, each of them corresponds<br />

to 2 fb -1 of data<br />

• Likelihood maximized for b→ b c⎯c s modes simultaneously with<br />

control sample Bs→Dsπ Standard Model (or measured) values used for the input<br />

parameters:<br />

• M(B s) ) = 5369.6 MeV/c 2 , ΔMs = 17.5 ps -1<br />

• φs s = -0.04 0.04 rad, rad,<br />

ΔΓ s /Γs s = 0.15, τs = 1/Γ 1/ s = 1.45 ps<br />

• RT = 0.2 for Bs→J/ J/ΨΦ ΨΦ<br />

Fitted parameters: φs, , ΔMs, s , ΔΓs<br />

(+ R tag)<br />

, Γ s<br />

ΔΓs (+ RT, ωtag 10


PDF modeling, examples<br />

Bs (→Dsπ) ) mass<br />

Transversity angle for Bs→J/ J/ΨΦ ΨΦ<br />

total<br />

CP even<br />

CP odd<br />

bkg<br />

Proper time model for Bs→J/ J/ΨΦ ΨΦ<br />

total<br />

bkg<br />

Proper time PDF: convolution<br />

(ε(t rec ).R(t true ,ωtag CP-even CP even<br />

component<br />

tag ) (acceptance<br />

function×decay<br />

function decay rate)<br />

⊗ G(t rec – t true , Στστ) ) (resolution function)<br />

- στ (per event) proper time error<br />

- Στ scaling factor to account for bad error<br />

11<br />

estimation


Results for the sensitivities (2 fb -1 )<br />

φs sensitivity<br />

Other mixing parameters<br />

Parameters Sensitivity Decay<br />

ΔΓ s /Γs R T<br />

ΔM s<br />

ωtag tag<br />

σ(φs) ) vs φs B s →η c Φ<br />

Bs→J/ J/ΨΦ ΨΦ<br />

0.0092 Bs→J/ J/ΨΦ ΨΦ<br />

0.0004 Bs→J/ J/ΨΦ ΨΦ<br />

0.007 ps -1 Bs→Dsπ 0.0036 Bs→Dsπ 12


Conclusions<br />

Precision measurement for ΔMs φs s is unmeasured (yet)<br />

LHCb combined statistical sensitivity to φs s is 0.02<br />

for 2 fb -1 1 (a 2σ 2 measurement for a SM value)<br />

• Dominated by Bs→J/ J/ΨΦ ΨΦ<br />

• With the same statistics, ability to detect deviation due to<br />

new physics<br />

• First results expected for 2008. More precision afterwards<br />

More improvement to come<br />

• Adding J/Ψ→e J/ + e- mode increases yield by ~ 20%<br />

• Full angular analysis for Bs→J/ J/ΨΦ ΨΦ<br />

• Optimize use of Bs→Dsπ to determine the tagging<br />

performance of the b→ c⎯c s modes<br />

• Systematics studies<br />

13


Back up<br />

14


∝<br />

∝<br />

∝<br />

∝<br />

Decay rates<br />

b→ c⎯c s modes<br />

B s →D s - π +<br />

15


Decay diagrams<br />

Dominant tree Penguin contribution<br />

∝ λ 2 ∝ λ 4<br />

u<br />

d −<br />

π<br />

16


Tagging performance<br />

e, , μ from semi-leptonic<br />

semi leptonic decays<br />

K ± from the b→c c →s<br />

jet/vertex charge<br />

tagging B<br />

same side π/K /K signal B<br />

Tagging power εD2 = ε(1 (1−2ωω tag)<br />

tag<br />

2 (in %)<br />

Tag εD2 Muon 1.0<br />

Electron 0.4<br />

Kaon 2.4<br />

Jet/vertex<br />

charge<br />

1.0<br />

Same side 2.1<br />

Combined tagging power<br />

for B S in LHCb is ~ 6%<br />

Note ~2% at the Tevatron<br />

~30% at B-Factories Factories<br />

Tagging power for B 0 ~ 4%<br />

(reduced reduced same side tagging) tagging<br />

Recent Neural Network based study achieved 9% for B S tagging!<br />

tagging<br />

17


More sensitivity plots<br />

σ(φs) ) vs ΔΓ s /Γs σ(φs) ) vs RT 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!