30.07.2013 Views

iida - section 5 - Research Services

iida - section 5 - Research Services

iida - section 5 - Research Services

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IID-A<br />

Herschel/Planck<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Instrument Interface Document<br />

IID PART A<br />

Name Signature<br />

Prepared/<br />

compiled by<br />

Herschel/Planck Project Team<br />

Alcatel / Astrium / Alenia<br />

Agreed by Instrument Pi's:<br />

Planck HFI: J.L.Puget<br />

Planck LFI: N.Mandolesi<br />

Herschel PACS: A.Poglitch<br />

Herschel SPIRE: M.Griffin<br />

Herschel HIFI: Th. De Graauw<br />

Approved by Industry Project Managers<br />

Alcatel J.-J. Juillet<br />

Alenia: P.Musi<br />

Astrium. W.Ruehe<br />

Approved by ESA Project Manager T.Passvogel<br />

ESA/ESTEC/SCI/PT<br />

ISSUE : 3.1 PAGE : i


IID-A<br />

DISTRIBUTION LIST<br />

(Distribution in electronic format (Adobe PDF)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : ii<br />

Qty Organisation Institute e.mail<br />

1 ESA ESA herschel.planck@esa.int<br />

1 Prime Contractor<br />

Planck PLM<br />

Alcatel herschel.planck@space.alcatel.fr<br />

1 Herschel EPLM Astrium GmbH Herschel.project.ED@astrium-space.com<br />

1 SVM Alenia marco.cesa@sofiter.it<br />

1 Herschel SPIRE Univ.Cardiff/RAL J.A.Long@rl.ac.uk<br />

1 Herschel PACS MPE pacs@mpe.mpg.de<br />

1 Herschel HIFI SRON HIFI-Prof@sron.nl<br />

1 Planck LFI TESRE/CNR taddei@tesre.bo.cnr.it<br />

1 Planck HFI IAS valerie.demuyt@ias.u-psud.fr<br />

1 Planck Reflectors DSRI


Issue-<br />

Rev<br />

IID-A<br />

DOCUMENT CHANGE RECORD<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : iii<br />

Date Version Pages affected<br />

1-0 01/09/2000 Initial Issue for ITT New Document<br />

2-0 31/07/2001 Issue for SRR Complete Revision:<br />

Renaming of FIRST by Herschel.<br />

Changes marked by change bars<br />

(including editorial changes).<br />

3-0 30/06/02 PDR version<br />

3.1 12/02/2004 CDR version<br />

PDR version<br />

Taking into account<br />

Alcatel Change requests<br />

HP-ASPI-CR 21, 22, 23, 24, 25<br />

HIFI Change requests<br />

HP-HIFI-CR- 9 issue 2, 16 issue 2, 18, 19, 20,<br />

21<br />

+ red line copy including update of the<br />

spacecrafts design by industry<br />

Based on Instruments and industry comments,<br />

and evolution of the design., tracked by change<br />

record database IID-A_modification<br />

list_3.0_to_3.1.xls, on ftp server)<br />

Main changes are: Mechanical loads update<br />

(<strong>section</strong> 9), data handling refined (<strong>section</strong> 5.11),<br />

and most figures to comply with current design<br />

Update of all interface control drawings<br />

(annexes)<br />

New annexes:<br />

System ICD (annex 9) (replace ICD templates)<br />

WIH ICD (annex 10<br />

Herschel telescope ICD (annex 11)<br />

Planck scanning strategy (added in annex 2)


1 INTRODUCTION<br />

IID-A<br />

TABLE OF CONTENTS<br />

2 APPLICABLE/REFERENCE DOCUMENTS<br />

2.1 APPLICABLE DOCUMENTS<br />

2.2 REFERENCE DOCUMENTS<br />

2.3 LIST OF ACRONYMS<br />

3 KEY PERSONNEL AND RESPONSIBILITIES<br />

3.1 ESA PERSONNEL<br />

3.2 CONTRACTOR PERSONNEL<br />

4 SATELLITE DESCRIPTION<br />

4.1 INTRODUCTION<br />

4.2 SYSTEM DESCRIPTION<br />

4.3 Herschel PAYLOAD MODULE (FPLM)<br />

4.3.1 Herschel Telescope<br />

4.3.2 Helium Cryostat<br />

4.3.3 Herschel PLM Cryo Cover<br />

4.4 Planck PAYLOAD MODULE (PPLM)<br />

4.4.1 Planck Telescope and FPU<br />

4.4.2 PSVM Units<br />

4.5 SERVICE MODULES (SVM)<br />

4.5.1 Herschel Service Module<br />

4.5.2 Planck Service Module<br />

4.5.3 SVMs Subsystems<br />

4.6 OPERATING MODES<br />

4.6.1 Launch<br />

4.6.2 Herschel<br />

4.6.3 Planck<br />

5 INTERFACE WITH INSTRUMENTS<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : iv


IID-A<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : v<br />

5.1 IDENTIFICATION AND LABELLING<br />

5.1.1 Project code<br />

5.1.2 Unit identification code<br />

5.1.3 Connector identification<br />

5.2 COORDINATE SYSTEM<br />

5.2.1 Spacecraft's Coordinate system<br />

5.2.2 Instrument unit co-ordinate system<br />

5.3 LOCATION AND ALIGNMENT<br />

5.3.1 Instrument location<br />

5.3.2 Instrument alignment<br />

5.4 EXTERNAL CONFIGURATION DRAWINGS<br />

5.5 SIZES AND MASS PROPERTIES<br />

5.5.1 Mass tolerances<br />

5.5.2 Centre of Gravity Location and Tolerances<br />

5.5.3 Moments of Inertia and Tolerances<br />

5.5.4 Overall Instrument Mass Allocation<br />

5.6 MECHANICAL INTERFACES<br />

5.6.1 Herschel Payload Module<br />

5.6.2 Planck Payload Module<br />

5.6.3 Service Modules<br />

5.7 THERMAL INTERFACES<br />

5.7.1 Herschel Payload Module<br />

5.7.2 Planck Payload Module<br />

5.7.3 Service Modules<br />

5.7.4 Temperature monitoring<br />

5.8 OPTICAL INTERFACES<br />

5.8.1 Herschel Instruments<br />

5.8.2 Planck Instruments<br />

5.9 POWER<br />

5.9.1 Thermal dissipation on Herschel Payload Module<br />

5.9.2 Thermal dissipation on Planck Payload Module<br />

5.9.3 Thermal dissipation on Herschel Service Module<br />

5.9.4 Thermal dissipation on Planck Service Module<br />

5.9.5 Power Supply - Load on main-bus


IID-A<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

5.10 CONNECTORS, HARNESS, GROUNDING, BONDING<br />

5.10.1Connectors<br />

5.10.2Harness<br />

5.10.3Grounding and Isolation<br />

5.10.4Bonding<br />

5.11 DATA HANDLING<br />

5.11.1Telemetry<br />

5.11.2SSR Mass Memory<br />

5.11.3Timing<br />

5.11.4Telecommands<br />

5.11.5.Polling Strategy<br />

5.11.6Special signals<br />

5.11.7Interface circuits<br />

5.11.8Application Process Identifiers<br />

5.11.9. Observation Identifiers<br />

5.11.10. Addresses on 1553 bus<br />

5.12 ATTITUDE AND ORBIT CONTROL/POINTING<br />

5.12.1Terminology<br />

5.12.2Herschel Pointing Requirements<br />

5.12.3Planck Pointing Requirements<br />

5.12.4Herschel Scientific Pointing modes<br />

5.12.5Calibration<br />

5.12.6On-Target Flag<br />

5.12.7Planck Reference Star Pulse<br />

5.12.8Herschel Slews<br />

5.12.9Planck Slews<br />

5.12.10. Attitude constraints<br />

5.13 ON-BOARD HARDWARE/SOFTWARE AND AUTONOMY<br />

FUNCTIONS<br />

5.13.1On-board hardware<br />

5.13.2On-board software<br />

5.14 EMC<br />

5.14.1Electrical Interfaces<br />

5.14.2Harness, Connectors and Shielding<br />

ISSUE : 3.1 PAGE : vi


IID-A<br />

5.14.3EMC Performance Requirements<br />

5.14.4Conducted Emission/Susceptibility<br />

5.14.5Radiated Emission/Susceptibility<br />

5.14.6Frequency Plan<br />

5.14.7. Plug-in and Inrush current<br />

5.15 INSTRUMENT HANDLING<br />

5.15.1Transport container<br />

5.15.2Cleanliness<br />

5.15.3Physical handling<br />

5.15.4Purging<br />

5.15.5Mechanism positions<br />

5.16. Environment requirements<br />

5.16.1. Pressure environment<br />

5.16.2. Radiation environment<br />

5.16.3. Micrometeorite environment<br />

5.16.4 Displacements in Planck PPLM<br />

6 GROUND SUPPORT EQUIPMENT<br />

6.1 Mechanical Ground Support Equipment<br />

6.2 Electrical Ground Support Equipment<br />

6.3 Commonality<br />

6.3.1 EGSE<br />

6.3.2 Instrument Control and Data Handling<br />

6.3.3 Other Areas<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

7 INTEGRATION, TESTING AND OPERATIONS<br />

7.1 AIV Sequence Overview<br />

7.1.1. Herschel/Planck Satellites Model Philosophy<br />

7.1.2. Herschel AIV Sequence Overview<br />

7.1.3. Planck AIV Sequence Overview<br />

7.1.4. Satellite Test Plans - Summary<br />

7.2 Integration<br />

7.2.1 FPLM Integration<br />

7.2.2 PPLM Integration<br />

ISSUE : 3.1 PAGE : vii


IID-A<br />

7.2.3 FSVM Integration<br />

7.2.4 PSVM Integration<br />

7.2.5 Herschel S/C PFM Integration<br />

7.2.6 Planck S/C Integration<br />

7.3 Herschel Testing<br />

7.3.1 Herschel PLM CQM Testing<br />

7.3.2 Herschel S/C CQM Testing<br />

7.3.3 Herschel PLM PFM Testing<br />

7.3.4 Herschel S/C PFM Testing<br />

7.4 Planck testing<br />

7.4.1 Planck PLM CQM Testing<br />

7.4.2 Planck S/C CQM Testing<br />

7.4.3 Planck PLM PFM Testing<br />

7.4.4 Planck S/C PFM Testing<br />

7.5 Operations<br />

7.6 Commonality<br />

8 PRODUCT ASSURANCE<br />

9 DEVELOPMENT and VERIFICATION<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : viii<br />

9.1 General<br />

9.1.1 Definitions<br />

9.1.2 Documentation<br />

9.2 Model Philosophy<br />

9.2.1 Spacecraft Models<br />

9.2.2 Deliverable Instrument Models<br />

9.3 Deliverable Instrument Test Plan<br />

9.3.1 Instrument Verification<br />

9.3.2 Instrument Scientific Performance Validation<br />

9.4 Design and Analysis Requirements<br />

9.4.1 Mechanical Design and Analysis<br />

9.4.2 Thermal Verification Requirements<br />

9.4.3 Mechanism Verification Requirements<br />

9.4.4 Electrical and Software Verification Requirements


IID-A<br />

9.4.5 Radiation Environment Verification<br />

9.5 Verification and Testing<br />

9.5.1 General Test Requirements<br />

9.5.2 Test Level Tolerances<br />

9.5.3 Mechanical Verification and Testing<br />

9.5.4 Thermal Verification and Testing<br />

9.5.5 Mechanism Verification and Testing<br />

9.5.6 EMC Verification and Testing<br />

9.5.7 Qualification to the Radiation Environment<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : ix<br />

10 MANAGEMENT, PROGRAMME, SCHEDULE<br />

10.1 General<br />

10.2 Management<br />

10.2.1ESA Responsibilities<br />

10.2.2ESA Organisation<br />

10.2.3. Prime contractor Responsibilities<br />

10.2.4. Prime contractor Organisation related to instrument<br />

interfaces<br />

10.2.5Principal Investigator Responsibilities<br />

10.2.6Instrument Team Organisation<br />

10.2.7Formal Communication<br />

10.2.8Financing<br />

10.3 Project Control<br />

10.3.1Project Control Objectives<br />

10.3.2Project Breakdown Structures<br />

10.4 Schedule Control<br />

10.4.1Baseline Master Schedule<br />

10.4.2Schedule Monitoring<br />

10.4.3Schedule Reporting<br />

10.5 Configuration Management<br />

10.5.1Objectives<br />

10.5.2Responsibilities<br />

10.5.3Configuration Identification<br />

10.6 Configuration Control


IID-A<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : x<br />

10.6.1Instrument Internal Configuration Control<br />

10.6.2IID Configuration Control<br />

10.7 Configuration Status Accounting<br />

10.8 Reviews and reporting<br />

10.8.1General<br />

10.8.2Instrument Reviews<br />

10.9 Instrument Progress Meetings<br />

10.10 Reporting<br />

10.11 Deliverable Items<br />

10.11.1 Mathematical Models<br />

10.11.2 Instrument Models<br />

10.12 Review Data Packages<br />

10.13 Baseline schedule<br />

10.13.1 Overall Herschel/Planck Baseline Schedule<br />

10.13.2 Baseline Schedule of Deliverables<br />

Annex 1 Herschel Alignment Plan<br />

Annex 2 Planck Scanning Strategy (from SRS)<br />

Annex 3 Planck Alignment Plan<br />

Annex 4 Herschel Pointing Modes (from SRS)<br />

Annex 5: Interface control drawings SVM<br />

Annex 6: Interface control drawings Herschel PLM<br />

Annex 7: Interface control drawings Planck PLM<br />

Annex 8 Herschel Cryoharness Interfaces.<br />

Annex 9: System ICD<br />

Annex 10: WIH ICD<br />

Annex 11: Herschel telescope mechanical & optical ICD’s


1 INTRODUCTION<br />

IID-A SECTION 1<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :1-1/1<br />

The purpose of the Instrument Interface Documents (IID’s) is to define and control the overall interface<br />

between each of the Herschel/Planck scientific instruments and the Herschel/Planck spacecraft.<br />

The IID’s consist of two parts, IID-A and IID-B. There is one part A, covering the interfaces to all<br />

Herschel and Planck instruments, and one IID-B per instrument:<br />

The IID-A describes the implementation of the instrument requirements in the design of the spacecraft<br />

and will be a result of the spacecraft design activities performed by the Contractor.<br />

Each IID-B defines in its ‘interface’ <strong>section</strong> (chapter 5) the requirements of the instrument and the<br />

resources to be provided by the spacecraft. In its ‘performance’ <strong>section</strong> (last <strong>section</strong> of chapter 4) it<br />

defines the scientific performance requirements of the instrument as part of the scientific mission<br />

requirements and as agreed between the Principal Investigators and ESA.<br />

After issue 2/0 by ESA the Contractor will be responsible for maintenance and configuration control of<br />

the IID’s in agreement with, and after approval by, the Instruments Principal Investigators and ESA.<br />

In case of conflict between the contents of the IID-A and the IID-Bs, the agreement or definition in the<br />

IID-B shall take precedence.<br />

The IID’s will not cover any of the interfaces of the Instrument Control Centres (ICC’s for Herschel), the<br />

Data Processing Centres (DPC’s for Planck) or the Herschel Science Centre (HSC).


IID-A Section 2<br />

2 APPLICABLE/REFERENCE DOCUMENTS<br />

2.1 APPLICABLE DOCUMENTS<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-1/9<br />

These documents contain requirements, specifications and rules imposed on the project in addition to<br />

the contents of the present document.<br />

type Ref. title ref Issue Date<br />

IID<br />

AD 1-1 IID-B SPIRE SCI-PT-IIDB-02124 3.11 07/01/2004<br />

AD 1-2 IID-B HIFI SCI-PT-IIDB-02125 3.1 13/01/2004<br />

AD 1-3 IID-B PACS SCI-PT-IIDB-02126 3.1 20/01/2004<br />

AD 1-4 IID-B HFI SCI-PT-IIDB-04141 3.0 03/10/2003<br />

AD 1-5 IID-B LFI SCI-PT-IIDB-04142 3.0 TBI<br />

AD 1-6 Sorption Cooler ICD (Annex to LFI IID-B) 3.0 TBI<br />

ESA ITT Documents<br />

Additional<br />

AD2 Product Assurance Requirements for<br />

Herschel/Planck Scientific Instruments<br />

AD3 OIRD - Herschel-Planck Operations<br />

Interface Requirements Document -<br />

AD4-1 SIRD-Herschel Science-operations<br />

Implementation Requirements<br />

Document<br />

AD4-2 SIRD - Planck Science-operations<br />

Implementation Requirements<br />

Document<br />

AD5 Herschel/Planck Packet Structure<br />

Interface Control Document - PSICD<br />

SCI-PT-RQ-04410 2.0 01/08/00<br />

SCI-PT-RS-07360 2.2 31/09/03<br />

SCI-PT-03646 1.2 17/03/03<br />

SCI-PT-08584 1.2 17/02/03<br />

SCI-PT-ICD-07527 4.0 02/04/03<br />

AD6-1 Herschel telescope Specification SCI-PT-RS 04671 6.0 22/10/02<br />

AD6-2 Planck telescope Specification H-P-3-ASPI-SP-0004 2.0 04/02/03<br />

AD7-1 Herschel Alignment Concept HP-2-ASED-TN-0002 2.0 17/06/02<br />

AD7-2 Planck Alignment Plan H-P-3-ASPI-PL-0078_2_0 2.0 26/06/02<br />

AD8 Software standard (*) ECSS E 40 B draft 28/07/00<br />

AD9 Naming convention specification H-P-1-ASPI-SP-0141 2.0 8/09/02<br />

AD10_1 CSG Safety regulation Vol 1-General<br />

Rules.<br />

AD10_2 CSG Safety regulation Vol 2 Part 1 -<br />

Specific rules Ground installations<br />

CSG-RS-10A-CN 5_3 03/06/02<br />

CSG-RS-21A-CN 5_3 02/12/02


IID-A Section 2<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-2/9<br />

type Ref. title ref Issue Date<br />

AD10_3 - CSG Safety regulation Vol 2 Part 2 -<br />

Specific rules Spacecraft<br />

CSG-RS-22A-CN 5_4 2/12/02<br />

AD11 SCOS-2000 Import ICD s2k-mcs-icd-0001-tos-gci 5.1 26/10/01<br />

Rem: for software standard AD8, PSS05 can also be used.<br />

2.2 REFERENCE DOCUMENTS<br />

These documents contain additional or background information<br />

type Ref. title ref Issue Date<br />

Requirements / Specifications<br />

RD1 General Design & Interface Requirements H-P-1-ASPI-SP-0027 4.2 25/11/03<br />

RD2 Environment & Tests Requirements H-P-1-ASPI-SP-0030 4.2 08/12/03<br />

RD3 EGSE Interfaces Requirements<br />

Specification<br />

H-P-1-ASPI-IS-0121 4.0 08/04/03<br />

RD4 Safety requirements for subcontractors H-P-1-ASPI-SP-0029 2.1 26/04/02<br />

RD5 EMC Specification H-P-1-ASPI-SP-0037 3.1 22/11/02<br />

RD6 System Operational and FDIR<br />

Requirements<br />

H-P-1-ASPI-SP-0209 4.3 27/11/03<br />

RD7 Cleanliness Requirements Specification H-P-1-ASPI-SP-0035 2.2 26/09/03<br />

RD8 EGSE General Requirements<br />

Specification<br />

RD9 Telescope optical & RF system<br />

specification<br />

H-P-1-ASPI-SP-0045 3.0 10/06/02<br />

H-P-3-ASPI-SP-0274 1.0 01/07/02<br />

RD10 H-PLM Electrical ICD PFM HP-2-ASED-IC-0001 1.0 15/05/02<br />

RD11 H-PLM Electrical ICD EQM HP-2-ASED-IC-0004 1.0 15/05/02<br />

Plans (incl. Tree)<br />

RD21 Contamination control plan H-P-1-ASPI-PL-0253 1.0 15/06/02<br />

RD22 EMC/ESD control plan H-P-1-ASPI-PL-0038 3.0 27/05/02<br />

RD23 PLM EMC Control & Verification Plan HP-2-ASED-PL-0013 2.0 04/11/02<br />

RD24 Herschel System alignment plan H-P-2-ASPI-PL-0276 1.0 26/06/02<br />

RD25 HP design & development Plan H-P-1-ASPI-PL-0009 2.1 01/10/02<br />

RD26 Planck AIT Plan H-P-3-ASPI-PL-0208 1.1 29/11/02<br />

RD27 Planck RF Verification Control for Planck<br />

Telescope<br />

H-P-3-ASPI-PL-0137 2.0 25/06/02<br />

RD28 Herschel PLM/EQM AIT Plan HP-2-ASED-PL-0022 1.0 12/03/02<br />

RD29 Herschel AIT Plan - Part 2 EPLM & S/C-<br />

PFM Acceptance Phase<br />

HP-2-ASED-PL-0026 1.0 30/05/02


IID-A Section 2<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-3/9<br />

type Ref. title ref Issue Date<br />

RD30 Herschel Instrument testing on PLM EQM<br />

level<br />

RD31 Herschel Instrument Testing on PLM PFM<br />

and Satellite level<br />

HP-2-ASED-PL-0021 2.0 06/06/03<br />

HP-2-ASED-PL-0031 1.0 30/06/02<br />

RD32 Satellite AIT Software Management Plan H-P-1-ASP-PL-0420 2.0 15/04/03<br />

Design descriptions / reports / drawings<br />

RD41 System Design Report (PDR) H-P-1-ASPI-RP-0312 1.0 01/07/02<br />

RD42 Herschel grounding diagram H-P-2-ASPI-TN-0199 1.0 25/06/02<br />

RD43 Herschel PLM Grounding Scheme HP-2-ASED-DW-0001 1.0 22/04/02<br />

RD44 Planck grounding diagram H-P-3-ASPI-TN-0200 1.0 14/06/02<br />

RD45 H/P frequency plan H-P-1-ASPI-PL-0201 1.0 03/05/02<br />

RD46 SVM Design Report H-P-RP-AI-0005 2.0 28/06/02<br />

RD47 PPLM Design Report H-P-3-ASPI-RP-0313 1.0 01/07/02<br />

RD48 H-EPLM Design Description HP-2-ASED-RP-0003 2.0 14/06/02<br />

RD49 EQM Design Description HP-2-ASED-RP-0028 1.1 17/06/02<br />

RD50 Cleanliness Team Report H-P-1-ASPI-RP-0314 1.1 08/11/02<br />

Operations<br />

RD61 Operation Concept H-P-1-ASPI-TD-0263 1.0 15/06/02<br />

Analyses & technical notes<br />

RD71 (System) Thermal analysis report H-P-1-ASPI-RP-0266 1.0 27/06/02<br />

RD72 Herschel/Planck EMC analyses H-P-1-ASPI-AN-0202 1.0 03/05/02<br />

RD73 ESD analyses H-P-1-ASPI-AN-0268 1.0 21/06/02<br />

RD74 Time adjustment H-P-1-ASPI-TN-0153 1.0 28/11/01<br />

RD75 Instruments Data Rates Allocation H-P-1-ASPI-TN-0204 2.0 25/06/02<br />

RD76 SVM Thermal analyses report H-P-TN-AI-0005 2.0 14/06/02<br />

RD77 SVM TCS Thermal analysis report H-P-TN-AI-0040 1.0 13/11/02<br />

RD78 PPLM Thermal analyses H-P-3-ASPI-AN-0330 1.0 01/07/02<br />

RD79 RFDM modelling & analyses H-P-3-ASPI-AN-0324 1.0 19/06/02<br />

RD80 EMC Analysis (HPLM Internal RS test<br />

option)<br />

HP-2-ASED-AN-0001 1.0 22/04/02<br />

RD81 H-PLM Thermal model & Analysis PFM HP-2-ASED-RP-0011 3.0 9/09/03<br />

RD82 H-PLM Thermal model & Analysis EQM HP-2-ASED-TN-0041 2.0 10/06/02<br />

RD83 HPLM Straylight Calculation Results HP-2-ASED-TN-0023 2.0 21/10/02<br />

RD84 PPLM RF Analysis H-P-3-ASPI-AN-0323 1.0 01/07/02


IID-A Section 2<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-4/9<br />

type Ref. title ref Issue Date<br />

RD85 PPLM Optical Analysis H-P-3-ASPI-AN-0331 1.0 28/06/02<br />

RD86 CAD Data Exchange rules H-P-1-ASPI-TN-0211 1.0 30/01/02<br />

RD87 Mechanical Mathematical Model<br />

Specification<br />

RD88 Reduced Thermal Models requirements<br />

for Coupled Load Analysis<br />

H-P-1-ASPI-SP-0014 1.0 07/06/01<br />

H-P-1-ASP-SP-0515 1.0 30/04/03<br />

RD89 End of Life Cleanliness Analysis H-P-1-ASP-AN-0269 3.0 26/11/03<br />

Management<br />

RD91 Organisation of the Herschel-Planck<br />

Instrument interface management<br />

H-P-1-ASPI-RP-0122 1.4 30/11/03<br />

Note: Most of the industry reference documents are available on the instrument ftp site<br />

ftp://ftp.hp-instruments.as-b2b.com/industry_to_instruments/IID’s/IID-A/Applicable and Reference<br />

documents/


2.3 LIST OF ACRONYMS<br />

IID-A Section 2<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-5/9<br />

ABCL As-Built Configuration List<br />

ACC Attitude Control computer<br />

ACMS Attitude Control and Measurement Subsystem<br />

AD Applicable Document<br />

AIV Assembly, Integration and Verification<br />

ALS Alenia Spazio<br />

APE Absolute Pointing Error<br />

ARE Absolute Rate Error<br />

ASED Astrium Space Earth Division<br />

ASP Alcatel SPace<br />

AVM Avionics Verification Model<br />

BEM Front End Modumes (LFI)<br />

BEU Back End Unit (LFI)<br />

BOLC Bolometer Control (PACS Photometer)<br />

CCB Configuration Control Board<br />

CCE Central Check-out Equipment<br />

CCS Central Check-out System<br />

CCU Cryostat Control Unit (Herschel PLM control electronics)<br />

CDMS Command and Data Management Subsystem<br />

CDMU Central Data Management Unit<br />

CE Conducted Emission<br />

CIDL Configuration Item Data List<br />

CoG Centre of Gravity<br />

Co-I Co-Investigator<br />

CQM Cryogenic Qualification Model<br />

CS Conducted Susceptibility<br />

CVV Cryostat Vacuum Vessel<br />

DC Direct Current<br />

DAE Data Acquisition Electronics (LFI)<br />

DCE Dilution Cooler Electronics (HFI)<br />

DCPU Dilution Cooler Pneumatic Unit<br />

DCCU Dilution Cooler Control Unit<br />

DCU Detector Control Unit (SPIRE)<br />

DDVP Design, Development and Verification Plan<br />

DECMEC DEtector (photometer) control / MEchanisms Control (PACS)<br />

DPC Data Processing Centre<br />

DPOP Daily Prime Operational Period<br />

DPU (Data (or Digital) processing Unit<br />

DTCP Daily Tele-Communication Period<br />

DSPG Distributed Single Point Grounding<br />

ECR Engineering Change Request<br />

EGSE Electrical Ground Support Equipment<br />

EM Engineering Model<br />

EMC Electro-Magnetic Compatibility<br />

EMI Electro-Magnetic Interference<br />

EQM Engineering-Qualification Model<br />

ESA European Space Agency<br />

ESD Electro Static Discharge<br />

ESOC European Space Operations Centre<br />

ESTEC European Space <strong>Research</strong> and Technology Centre


IID-A Section 2<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-6/9<br />

FCS Flight Control System<br />

FDIR Failure Detection Isolation and Recovery<br />

FCU Focal Plane Control Unit (SPIRE)<br />

FEU Front End Unit (LFI)<br />

FEM Front End Modules (LFI)<br />

FHFCU Herschel HIFI Focal Plane Control Unit<br />

FHFPU Herschel HIFI Focal Plane Unit<br />

FHIFH Herschel HIFI IF up-converter Horizontal<br />

FHIFV Herschel HIFI IF up-converter Vertical<br />

FHHRH Herschel HIFI HRS ACS Horizontal polarisation<br />

FHHRV Herschel HIFI HRS ACS Vertical polarisation<br />

FHICU Herschel HIFI Instrument Control Unit<br />

FHLCU Herschel HIFI Local Oscillator Control<br />

FHLOR Herschel HIFI Local Oscillator Radiator<br />

FHLOU Herschel HIFI Local Oscillator Unit<br />

FHLSU Herschel HIFI Local Oscillator Source Unit<br />

FHWEH Herschel HIFI WBS Electronics for Horizontal Polarisation<br />

FHWEV Herschel HIFI WBS Electronic for Vertical Polarisation<br />

FHWOH Herschel HIFI WBS Optic for Horizontal Polarisation<br />

FHWOV Herschel HIFI WBS Optic for Vertical Polarisation<br />

FMECA Failure-Modes, Effects and Criticality Analysis<br />

FOV Field Of View<br />

FPBOLA Herschel PACS Bolometer Buffer Amplifier<br />

FPBOLC Herschel PACS Bolometer Cooler Control unit<br />

FPDECMEC Herschel PACS Detector & Mechanism Control (DEC/MEC)<br />

FPDPU Herschel PACS Data Processing Unit<br />

FPFPU Herschel PACS Focal Plane Unit<br />

FPSPU1 Herschel PACS Signal processing unit Nominal<br />

FPSPU2 Herschel PACS Signal processing unit Redundant<br />

FPU Focal Plane Unit<br />

FS Flight Spare<br />

GSE Ground Support Equipment<br />

He I Normal Fluid Helium<br />

He II Helium II (Superfluid Helium)<br />

He3 Helium 3 (Isotope used in HFI dilution cooler)<br />

He4 Helium 4 (natural isotope of Helium)<br />

HFI High Frequency Instrument (Planck)<br />

HIFI Heterodyne Instrument for the Far Infrared<br />

HK House Keeping<br />

HOB Herschel Optical Bench<br />

HPLM Herschel Payload Module<br />

HRS Herschel HIFI High Resolution Spectrometer<br />

HSC Herschel Science Centre<br />

HSDCU Herschel SPIRE Detector Control unit<br />

HSDPU Herschel SPIRE Digital Processing Unit<br />

HSEC Herschel Science Evaluation Committee<br />

HSFCU Herschel SPIRE Focal Plane Control unit<br />

HSFPU Herschel SPIRE Focal Plane Unit<br />

HSJFP Herschel SPIRE JFET (Spectrometer)<br />

HSJFS Herschel SPIRE JFET (Photometer)<br />

HSVM Herschel Service Module<br />

IAR Instrument Acceptance Review<br />

IBDR Instrument Baseline Design Review<br />

IHDR Instrument Hardware Design Review<br />

ICC Instrument Control Centre


IID-A Section 2<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-7/9<br />

ICD Interface Control Document<br />

ICDR Instrument Critical Design Review<br />

IFAR Instrument Flight Acceptance Review<br />

IID Instrument Interface Document<br />

IIDR Instrument Intermediate Design Review<br />

ILT Instrument Level Test<br />

IST Integrated Satellite Test<br />

ISVR Instrument Science Verification Review<br />

ITT Invitation To Tender<br />

JFET Junction Field Effect Transistor, Preampli (SPIRE, HFI)<br />

LCL Latch Current Limiter<br />

JFET Junction Field Effect Transistor<br />

LEOP Launch and Early Orbit Phase<br />

LISN Line Impedance Stabilisation Network<br />

LO Local Oscillator (HIFI)<br />

LOU Local Oscillator (HIFI)<br />

LoS Line Of Sight<br />

LOU Local Oscillator Unit (HIFI)<br />

LVDE Low Vibration Drive Electronics<br />

MGSE Mechanical Ground Support Equipment<br />

MLI Multilayer Insulation<br />

MOC Mission Operations Centre<br />

MoI Moment of Inertia<br />

MOS Margin Of Safety<br />

MPS Mission Planning Subsystem<br />

NCR Non Conformance Report<br />

OIRD Operations Interface Requirements Document<br />

OP Observation Period<br />

PACE Sorption cooler Pipes Assembly & Cold End<br />

PACS Photodetector Array Camera and Spectrometer<br />

PCS Power Control Subsystem<br />

PCDU Power Control & Distribution Unit<br />

PDE Pointing Drift Error<br />

PFM Proto Flight Model<br />

PHA Planck HFI Focal Plane Unit (FPU)<br />

PHBA-N Planck HFI Data Processing Unit (DPU) Nominal<br />

PHBA-N Planck HFI Data Processing Unit (DPU) Redundant<br />

PHCA Planck HFI JFET Box<br />

PHCBA Planck HFI Pre-Amplifier Unit (PAU)<br />

PHCBC Planck HFI Readout Electronics Unit (REU)<br />

PHDA Planck HFI 4K Cooler Compressor Unit (CCU)<br />

PHDB Planck HFI 4K Cooler Ancillary Unit (CAU)<br />

PHDC Planck HFI 4K Cooler Electronics Unit (4K-CDE)<br />

PHDD Planck HFI 4K Cooler Cold End (CCE)<br />

PHDJ Planck HFI 4K Cooler Current Regulator (CCR)<br />

PHEAAA Planck HFI 0.1K Dilution Cooler 3He Tank (D3T)<br />

PHEAAB Planck HFI 0.1K Dilution Cooler 4He Tank (D4T) #1<br />

PHEAAC Planck HFI 0.1K Dilution Cooler 4He Tank (D4T) #2<br />

PHEAAD Planck HFI 0.1K Dilution Cooler 4He Tank (D4T) #3<br />

PHEB Planck HFI 0.1K Dilution Cooler Control Unit (0.1K-DCCU)<br />

PI Principal Investigator<br />

PL4K Planck LFI 4K Reference load (Mounted on HFI)<br />

PLA10 Planck LFI Heat switch<br />

PLBEU Planck LFI DAE Back End Unit (BEU)<br />

PLCB Planck LFI DAE Power Box


IID-A Section 2<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

PLFEU Planck LFI Front End Unit (FEU)<br />

PLM Payload Module<br />

PLREN Planck LFI REBA Nominal<br />

PLRER Planck LFI REBA Redundant<br />

PLWG Planck LFI Wave Guides (WG)<br />

PM Project Manager<br />

PPLM Planck Payload Module<br />

PSEC Plank Science Evaluation Committee<br />

PSF Point Spread Function<br />

PSVM Planck Service Module<br />

PT Product Tree<br />

QLA Quick Look Analysis (software)<br />

RAA Radiometer Array Assembly (LFI)<br />

RAM Random Access Memory<br />

RCS Reaction Control Subsystem<br />

RD Reference Document<br />

RE Radiated Emission<br />

REBA Radiometer Electric Box Assembly (LFI)<br />

REU REad-out Electronics (HFI)<br />

RF Radio Frequency<br />

RFW Request for Waiver<br />

RH Reference Hole<br />

RPE Relative Pointing Error<br />

RTA Real Time Assessment (software)<br />

RS Radiated Susceptibility<br />

S/C Spacecraft<br />

SCC Sorption cooler compressor<br />

SCCE Sorption Cooler Cold End<br />

SCE Sorption Cooler Electronics<br />

SCS Sorption Cooler Subsystem<br />

SCOS Spacecraft Control and Operations System<br />

SCP Sorption Cooler Pipes<br />

SFT Short Functional Test<br />

SIN Straylight Induced Noise<br />

SIRD Science Implementation Requirements Document<br />

SIST Short Integrated Satellite Test<br />

SLE Standard Laboratory Equipment<br />

SPIRE Spectral and Photometric Imaging Receiver<br />

SPU Signal processing Unit (PACS)<br />

SRPE Spatial Relative Pointing Error<br />

SSR Solid State Recorder<br />

SST Stainless Steel<br />

STM Structural/Thermal Model<br />

STMM Simplified Thermal Model<br />

SVM Service Module<br />

TBC To be confirmed<br />

TBD To be determined<br />

TCS Thermal Control System<br />

TM Telemetry<br />

TMM Thermal Mathematical Model<br />

TMU Thermo Mechanical Unit (Sorption cooler)<br />

TT&C Telemetry, Tracking and Command<br />

TTC Telemetry, Tracking and Command<br />

VSWR Voltage Standing Wave Ratio<br />

WBS Work Breakdown Structure<br />

Issue : 3.1 PAGE : 2-8/9


IID-A Section 2<br />

WBS Herschel HIFI Wide Band Spectrometer<br />

WFE Wave Front Error<br />

WU Warm Units<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 2-9/9


Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

IID-A Section 3 Issue : 3.1 PAGE :3-1/4<br />

3 KEY PERSONNEL AND RESPONSIBILITIES<br />

3.1 ESA PERSONNEL<br />

Address<br />

ESTEC PO Box 299<br />

2200 AG Noordwijk<br />

The Netherlands<br />

Switchboard +31 71 565 6555<br />

project fax +31 71 565 5244<br />

Secretary phone number +31 71 565 3473<br />

project mail herschel.planck@esa.int<br />

generic e.mail FirstName.FamilyName@esa.int<br />

NAME RESPONSIBILITY TELEPHONE<br />

FAX<br />

Thomas. Paßvogel Herschel-Planck Project<br />

Manager<br />

Gerald Crone Herschel-Planck Payload<br />

Manager<br />

Astrid. Heske Herschel PACS and Planck<br />

Sorption cooler payload engineer<br />

Carsten Scharmberg Herschel HIFI & SPIRE payload<br />

engineer<br />

Javier Marti-Canales Planck HFI & LFI Payload<br />

engineer<br />

EMAIL<br />

Tel:<br />

+31-(0)71-565 5962<br />

Fax:<br />

+31-(0)71-565 5244<br />

Email: Thomas.passvogel@esa.int<br />

Tel:<br />

+31-(0)71-565 3934<br />

Mobile:<br />

Fax:<br />

+31-(0)71-5655244<br />

Email: Gerald.Crone@esa.int<br />

Tel:<br />

+31-(0)71-565 5467<br />

Fax::<br />

+31-(0)71-565 5244<br />

Email: Astrid.Heske@esa.int<br />

Tel:<br />

+31-(0)71-565 5786<br />

Fax::<br />

+31-(0)71-565 5244<br />

Email: Carsten.Scharmberg@esa.int<br />

Tel:<br />

+31-(0)71-565 4532<br />

Fax::<br />

+31-(0)71-565 5244<br />

Email: Javier.marti.canales@esa.int


3.2 CONTRACTOR PERSONNEL<br />

3.2.1 Alcatel<br />

Prime contractor.<br />

Address:<br />

Alcatel Space Industries<br />

100, Bd du Midi, BP 99,<br />

06156 Cannes La Bocca Cedex<br />

France<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

IID-A Section 3 Issue : 3.1 PAGE :3-2/4<br />

Switchboard +33 04 92 92 70 00<br />

Project fax +33 04 92 92 30 10<br />

Secretary phone number +33 04 92 92 30 85<br />

Project e-mail address Herschel.Planck@space.alcatel.fr<br />

generic e.mail FirstName.FamilyName@space.alcatel.fr<br />

NAME RESPONSIBILITY TELEPHONE<br />

FAX<br />

EMAIL<br />

Jean-Jacques Juillet Project Manager Tel:+33 49292 3423<br />

Fax:+33492923010<br />

Email:jeanjacques.juillet@space.alcatel.fr<br />

Bernard Collaudin Instrument Interface Manager Tel:+33 4 9292 3021<br />

Fax:+33 4 9292 3010<br />

Email:bernard.Collaudin@space.alcate<br />

l.fr<br />

Jean-Philippe<br />

Chambelland<br />

Planck Instrument engineer Tel:+33 4 9292 7448<br />

Fax:+33 4 9292 3010<br />

Email:jeanphilippe.chambelland@space.alcatel.fr<br />

Guy Doubrovick Herschel Instrument engineer Tel:+33 4 9292 6927<br />

Fax:+33 4 9292 3010<br />

Email:guy.doubrovik@space.alcatel.fr


3.2.2 Astrium<br />

Herschel PLM and Herschel AIT contractor<br />

Address:<br />

• ASTRIUM GmbH<br />

• 88039 Friedrichshafen<br />

• GERMANY<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

IID-A Section 3 Issue : 3.1 PAGE :3-3/4<br />

Switchboard +49 7545 80<br />

project fax +49 7545 8 42 43<br />

Secretary phone number +49 7545 8 42 40<br />

project mail Herschel.Project.ED@astrium.eads.net<br />

generic e.mail FirstName.FamilyName@astrium.eads.net<br />

NAME RESPONSIBILITY TELEPHONE<br />

FAX<br />

EMAIL<br />

Wolfgang Ruehe Herschel PLM Project Manager Tel: +49 7545 8 3058<br />

Fax: +49 7545 8 42 43<br />

Email:<br />

Wolfgang.Ruehe@astrium.eads.net<br />

Juerhen Kroeker Payload Engineering Manager &<br />

Telescope I/F Engineer<br />

Siegmund Idler HIFI FPU engineer<br />

+ ASED Instruments Interface<br />

coordination<br />

Tel: +49 7545 8 3 9984<br />

Fax: +49 7545 8 42 43<br />

Email:<br />

Juergen.kreoker@astrium.eads.net<br />

Tel: +49 7545 8 4671<br />

Fax: +49 7545 8 42 43<br />

Email:<br />

Siegmund.Idler@astrium.eads.net<br />

Horst Faas SPIRE FPU engineer Tel: +49 7545 8 3990<br />

Fax: +49 7545 8 42 43<br />

Email: Horst.Faas@astrium.eads.net<br />

Dietmar Schink PACS FPU engineer Tel: +49 7545 8 9414<br />

Fax: +49 7545 8 42 43<br />

Email:<br />

Dietmar.Schink@astrium.eads.net


3.2.3 : Alenia<br />

SVM contractor<br />

Address:<br />

ALENIA SPAZIO<br />

Strada Antica di Collegno, 253<br />

10146 Torino<br />

ITALY<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

IID-A Section 3 Issue : 3.1 PAGE :3-4/4<br />

Switchboard +39 01171801<br />

project fax +39 0117180637<br />

Secretary phone number +39 0117180581<br />

project mail<br />

generic e.mail [1st Letter of FirstName][up to 7 first Letters of FamilyName]@to.alespazio.it<br />

NAME RESPONSIBILITY TELEPHONE<br />

FAX<br />

EMAIL<br />

Paolo Musi SVM Project Manager Tel: +39 011 7180 916<br />

Fax: +39 0117180 637<br />

Email:pmusi@to.alespazio.it<br />

Marco Sias SVM System Engineer Tel: +39 011 7180 697<br />

Fax: +39 0117180 637<br />

Email:msias@to.alespazio.it<br />

Marco Cesa Instrument engineer Tel: +39 011 7180 934 (alenia)<br />

Tel: +39 011 440 5708 (sofiter)<br />

Fax: +39 0117180 637 (alenia)<br />

Email: marco.cesa@sofiter.it


4 SATELLITE DESCRIPTION<br />

IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-1/29<br />

This chapter contains descriptive information and background data necessary to fully and mutually<br />

understand the interface constraints imposed by spacecraft. It is not to be considered as containing any<br />

requirement, nor to imply any particular interpretation or meaning other than the one explicitly stated in<br />

the other chapters of this document and is therefore not applicable in contractual sense.<br />

4.1 INTRODUCTION<br />

The Herschel/Planck programme combines two missions of the ESA Horizon 2000 Science Programme<br />

within one project.<br />

Both missions perform astronomical investigations in the infrared, sub-millimetre and millimetre<br />

wavelength range:<br />

- Herschel Space Observatory (Herschel), formerly known as the Far InfraRed and Submillimetre<br />

Telescope (FIRST), is a multi user observatory type mission;<br />

- Planck (previously named COBRAS/SAMBA), is a Principal Investigator survey mission.<br />

Both missions will be carried out with their specific spacecraft, and will be operated in a similar orbit<br />

around the second Lagrangian point L2. The present concept is to have the two spacecraft launched on<br />

a single ARIANE 5 ESV-type launcher.<br />

For the Herschel payload, composed of three instruments and mounted in the Herschel Payload module<br />

(HPLM), the Herschel spacecraft provides the environment for astronomical observations in the infrared<br />

wavelength range from 60 to 670 micron (480 GHz – 5 THz).<br />

For the Planck payload, composed of two instruments and mounted in the Planck Payload Module<br />

(PPLM), the Planck spacecraft provides the environment for full sky surveys in the frequency range from<br />

25 to 1000 GHz.<br />

4.2 SYSTEM DESCRIPTION<br />

The Herschel satellite configuration is completely modular and is made up of:<br />

- the Herschel Payload Module (HPLM) which comprises the 3.5 meter Herschel telescope, the<br />

cryostat, the Herschel focal plane units inside the cryostat and the instrument units mounted<br />

externally on the cryostat<br />

- the Herschel Service Module (HSVM) which comprises the conventional spacecraft subsystems,<br />

the “warm” instrument units and the sunshield.<br />

The Planck satellite configuration shows a lower level of modularity due to the various connections<br />

between the cryogenic payload module and the units mounted on the payload module. However one<br />

can clearly distinguish<br />

- the Planck Payload Module (PPLM) which comprises the Planck optical bench with the offset<br />

Aplanatic telescope and the two instruments focal plane unit, the SVM upper platform with the<br />

LFI Backend Unit and the HFI Readout Unit. The compressors of the sorption coolers, 4 K<br />

coolers and further cooler equipment is mounted on the PSVM radiator.<br />

- the Planck Service Module (PSVM) which comprises, aside the conventional spacecraft<br />

subsystems and the “warm” instrument units and the solar array.<br />

Figure 4.3.1-1 through figure 4.3.1-4 show the general configurations of the Herschel and Planck<br />

satellites in the dual launch configuration.


IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-2/29<br />

The selected satellite operational orbits are different Lissajous orbits around the second Lagrangian<br />

Libration Point (L2) in the Earth/Moon - Sun system. This point lies approximately on the Earth-Sun line<br />

at 1.5 × 106 km from the Earth in anti-Sun direction. Planck, due to stringent requirements on<br />

straylight, will be injected into a Lissajous orbit with a maximum sun-s/c-earth angle of 10°. Herschel<br />

will be sent into a larger Lissajous orbit.<br />

Herschel will have a nominal lifetime of 3.5yrs from launch until end of mission, where the duration<br />

includes a maximum of 6 months for transfer to the operational orbit around L2. Planck will have a<br />

lifetime which allows to carry out two full sky surveys (at least 95% of the whole sky) in the operational<br />

orbit around L2., plus a maximum of 6 months for the transfer to the operational orbit.<br />

The prime ground station is the 35 m station at Perth. The Kourou station may be used as emergency<br />

station. During normal operations the prime ground station will receive the spacecraft telemetry and uplink<br />

the telecommands during a period of 3 hours per day for each spacecraft (the Daily<br />

Telecommunications Period, DTCP).<br />

Two different operation scenarios are foreseen:<br />

- During the Herschel observation period of 21 hours per day the spacecraft will collect scientific<br />

data which will be stored in an on-board mass memory for transmission towards the ground<br />

station during the subsequent telecommunications phase. “Limited” scientific observations could<br />

also be conducted during the telecommunications period.<br />

- For the Planck operation, the spacecraft will collect the scientific data 24 hours per day, which<br />

means that the observation phase will continue during the telecommunications period.<br />

The telecommunications period will be used for up-linking the commands for later execution and<br />

dumping of the stored data.<br />

The data acquired at the ground station(s) from both spacecraft will be routed through ESA’s<br />

operational communications network to the Mission Operations Centre (MOC) at ESOC for subsequent<br />

storing and distribution to the Herschel Science Centre (HSC) and the Instrument Control Centres<br />

(ICC’s) or to the Planck Data Processing Centres (DPC).<br />

Conversely, the HSC, ICC’s and DPC’s will provide the MOC with observation schedules and instrument<br />

information, which inputs will be used by the Mission Planning System (MPS) at the MOC to prepare the<br />

command sequence to be up-linked to both spacecraft.


IID-A Section 4<br />

Figure 4.2-1: Herschel satellite<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-3/29


IID-A Section 4<br />

Figure 4.2-2: Planck Satellite.<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-4/29


IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-5/29<br />

Figure 4.2-3: Herschel/Planck Satellites in stacked Launch Configuration


IID-A Section 4<br />

4.3 Herschel PAYLOAD MODULE (HPLM)<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-6/29<br />

The HPLM will accommodate all cold Herschel instrument units supplied by the Principal Investigators.<br />

The HPLM comprises the following two major elements, described in more detail below:<br />

- the 3.5 m Herschel Telescope<br />

- the Helium Cryostat.<br />

The Herschel payload module configuration is shown in Figure 4.3-1<br />

Figure 4.3-1: Herschel Payload Module.


4.3.1 Herschel Telescope<br />

IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-7/29<br />

The telescope is an axi-symmetric, 3.5 m diameter Cassegrain telescope consisting of (RD 01):<br />

- a primary reflector<br />

- a secondary reflector<br />

- a reflector support structure (tripod, bipods etc.)<br />

- an interface triangle (tbc) and mechanical fixation devices to the primary reflector<br />

- baffles as necessary<br />

A telescope heating system will be included for in-orbit contamination release from optical surfaces and<br />

for bake-out of the telescope.<br />

The Sunshield, which is functionally part of the SVM, protects the telescope from direct solar radiation<br />

and provides a stable thermal environment, which minimise temperature variations across the<br />

telescope.<br />

The opto-mechanical dimensions of the Herschel optical system are given in Table 4.3.1-1 and the<br />

configuration shown in Figure 4.3-2. The position of the telescope with respect to the satellite is shown<br />

in Figure 4.3-3.<br />

Herschel Telescope Optical Axi-symmetric 3.5 m Specified tolerance or<br />

Parameters<br />

diameter Cassegrain<br />

telescope<br />

comment<br />

Operating wavelength 80-670 µm<br />

Focal length 28500 mm Tolerance 150 mm<br />

Entrance pupil diameter Deff<br />

3283 mm<br />

f-number f/8.68 Tolerance 0.02<br />

Primary vertex to best focus 1050 mm Tolerance 10 mm<br />

Primary vertex to fixation plane 250 mm Tolerance 1 mm<br />

Aperture stop on M2<br />

Field of View ±0.25 deg<br />

Area obscuration ratio (tripod + M2) 7.7%<br />

Overall WFE < 6 µm (rms)<br />

Relative spectral transmission > 0.97 BOL<br />

> 0.98 BOL (goal)<br />

> 0.95 EOL<br />

Non uniformity of relative<br />

spectral transmission<br />

< 0.01<br />

Primary reflector<br />

Vertex to telescope interface plane (tv) 250 mm 1mm<br />

Vertex to paraxial focal plane (tf) 1050.16 mm 10 mm<br />

Distance M1 to M2 1588 mm<br />

Radius of curvature 3500 mm 2 mm<br />

Conic constant -1<br />

f-number f/0.5<br />

(Free) diameter 3500 mm Tolerance 0, +2 mm<br />

Useful diameter 3470 mm<br />

Central hole diameter 560 mm<br />

Distance of best focus from mechanical<br />

interface<br />

800 mm


Herschel Telescope Optical<br />

Parameters<br />

IID-A Section 4<br />

Axi-symmetric 3.5 m<br />

diameter Cassegrain<br />

telescope<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-8/29<br />

Specified tolerance or<br />

comment<br />

Secondary reflector<br />

Radius of curvature 345.2 mm 0.4 mm<br />

Conic constant -1.279<br />

Diameter 308.1 mm Tolerance ±0.2 mm<br />

Scattering cone diameter 33mm Small scatter<br />

Image surface<br />

Radius of curvature - 165 mm<br />

Conic constant -1<br />

Diameter 246 mm Corresponds to 0.25 deg<br />

Distance from M1 -1050 mm<br />

Height above optical bench 202 mm Tolerance (2 sigma) for<br />

Telescope/PLM/Instruments<br />

± 7.1mm (PACS)<br />

± 7.7mm (SPIRE)<br />

± 8.5mm (HIFI)<br />

Table 4.3.1-1: Herschel Telescope Opto-mechanical Dimensions (at operating<br />

temperature)<br />

The central hole diameter and the position of the hexapod interface points and the M2 support structure<br />

dimensions will be given after the preliminary design activities.


Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

IID-A Section 4<br />

Issue : 3.1 PAGE : 4-9/29<br />

Figure 4.3-2: Telescope configuration (see complete telescope ICD in annex 11)


IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-10/29<br />

Figure 4.3-3: Herschel Telescope positions with respect of the satellite


4.3.2 Helium Cryostat<br />

IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-11/29<br />

The Helium Cryostat of the HPLM accommodates the Herschel focal plane units (FPU) of the three<br />

scientific instruments:<br />

- the Heterodyne Instrument for the Far Infrared (HIFI)<br />

- the Photodetector Array Camera and Spectrometer Instrument (PACS)<br />

- the Spectral and Photometric Imaging Receiver (SPIRE).<br />

The cryostat provides an adequate thermal environment to these focal plane units and provides the<br />

optical interface between the focal plane units and the telescope.<br />

The Helium cryostat also provides interfaces with the HSVM, the Herschel Telescope, the sunshield.<br />

The cryostat consists of:<br />

- Structural and insulation components featuring an outer vessel, a suspension system to<br />

minimise heat conduction from outer vessel to the cryogenically cooled elements and the<br />

adequate shielding and thermal insulation to minimise the heat radiation from the outer vessel<br />

to the cooled elements<br />

- A helium subsystem to provide the adequate cryogenic environment. This passive, single<br />

cryogen, cooling system features a main He tank, containing superfluid helium, a passive<br />

phase separator and the cryogenic components to operate it. It also features an additional<br />

helium tank designed to provide the required autonomy of the cryogenic system on the<br />

launcher.<br />

- The Herschel Optical Bench (HOB), which accommodates the instrument Focal Plane Units in<br />

the Focal Plane Assembly (FPA) and provides the necessary thermal and structural interfaces.<br />

- A cryo cover which closes the cryostat on ground and preserves the sensitive optical<br />

components inside the cryostat from contamination during the first days on orbit.<br />

The Cryostat also accommodates the following payload equipment:<br />

- the Local Oscillator Unit (LOU) of the HIFI, its beam injection optics and the LOU waveguides<br />

to the SVM<br />

The PLM electrical subsystem harness provides all electrical connections between all electrical equipment<br />

in the Payload Module and between the Focal Plane Units and the warm electronics of the payload<br />

instruments.<br />

The Helium Cryostat configuration is shown in Figure 4.3-4


IID-A Section 4<br />

Figure 4.3-4: Herschel Payload Module (to be updated 3.1)<br />

A schematic view of the He control subsystem is shown in Figure 4.3-5<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-12/29


S101<br />

SV121<br />

SV922<br />

Filling port<br />

V102<br />

T103<br />

L101<br />

A101 - A1XX<br />

L701<br />

T701, 704<br />

P102<br />

RD124<br />

V702<br />

P101<br />

SV123<br />

V104<br />

HTT<br />

T101 T102<br />

T105 T104<br />

IID-A Section 4<br />

T111<br />

H101 H102<br />

PPS111<br />

H103 H104<br />

HOT<br />

H701 H702<br />

SV921<br />

T112<br />

T702, 703<br />

RD724<br />

L102<br />

L702<br />

V103<br />

V106<br />

T106,107<br />

SV723<br />

E101<br />

V701<br />

E601<br />

OBA<br />

E201<br />

P701<br />

V105<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-13/29<br />

CVV<br />

E421 E441 E461<br />

HS1 HS2 HS3<br />

Non-CCU components<br />

VG901<br />

VG902<br />

Figure 4.3-5: Schematic view of Helium Control System<br />

4.3.3 Herschel PLM Cryo Cover<br />

T503<br />

T501<br />

H502/<br />

H503<br />

S501<br />

H501<br />

V502<br />

V506<br />

T502<br />

P501<br />

P502<br />

V501<br />

SV521<br />

V505<br />

T504<br />

T505<br />

V504<br />

N513 N514<br />

V503<br />

T506<br />

N511 N512<br />

Legend:<br />

A adsorber<br />

E heat exchanger<br />

H heater<br />

HS heat shield<br />

L liquid level probe<br />

N exhaust nozzle<br />

P pressure sensor<br />

PPS passive phase separator<br />

RD rupture disc<br />

S filter<br />

SV safety valve<br />

T temperature sensor<br />

V valve<br />

VG vacuum gauge<br />

The Herschel cryostat cover (shown in Figure 4.3-6) together with its shielding serves for following<br />

main cryogenic purposes.<br />

• Close and tighten the CVV during ground and launch operations to maintain the insulation vacuum<br />

• Safe single opening in orbit to provide sufficient free entrance for the telescope beam into cryostat<br />

• Provide an internal temperature as low as possible on ground, by a passive shielding<br />

• Provide a low thermal background for instrument testing on ground by active cooling<br />

The cryostat cover assembly consists of:<br />

A dome shaped aluminium part closing the CVV vacuum tight with an o-ring containing electrical and<br />

fluid feed throughs and supports for the inner shielding<br />

A cover opening mechanism supported of the CVV outside<br />

A thermal shield assembly consisting of piping, an active cooled plate with a heat exchanger facing the<br />

focal plane and a passive shielding behind it


4.3.3.1 Passive shielding<br />

IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-14/29<br />

In order to minimize the heat load on ground the surface of the cover shields towards the inside (focal<br />

plane) should be as cold as possible and should have a low emissivity, while for instrument testing and<br />

calibration some kind of a black or absorbing surface finish would be preferred. A careful design of the<br />

fringes from the cryostat thermal shields together with the cover shield will minimize direct and reflected<br />

radiation from warm surfaces (CVV) to the field of view of the FPUs. The equilibrium temperature of the<br />

cover shield, when not cooled (this is the normal ground case) is expected to be around 240K. In this<br />

case most of the FPU temperature requirements for check-out/testing cannot be fulfilled. In Table 2 the<br />

main FPU and cryostat temperatures for different helium flow rates and scenarios on ground are<br />

summarized.<br />

Node Level Label G<br />

21 mg/s<br />

P<br />

60mg/s<br />

P<br />

100mg/s<br />

P<br />

1000mg/s<br />

P<br />

100mg/s<br />

cover<br />

cooled<br />

PI<br />

100mg/s<br />

cover<br />

cooled<br />

811 0 SPIRE SM Detector en 2,06 1,86 1,84 1,80 1,73 1,88<br />

819 0 SPIRE Cooler pump HS 1,82 1,75 1,75 1,74 1,72 1,91<br />

820 0 SPIRE Cooler evap HS 1,83 1,76 1,75 1,74 1,72 1,87<br />

760 0 PACS-Red Detector 1,76 1,74 1,74 1,73 1,71 1,86<br />

765 0 PACS-Blue Detector 1,91 1,86 1,84 1,82 1,74 1,90<br />

781 0 PACS-Photometer CooPu 1,78 1,76 1,75 1,75 1,72 1,94<br />

912 0 HIFI L0 boundary node 2,05 1,79 1,77 1,75 1,73 1,90<br />

803 1 SPIRE Optical Bench 14,73 10,25 9,54 8,14 4,38 4,66<br />

720 1 PACS-Spectrometer 7,69 6,76 6,48 6,07 4,27 4,36<br />

725 1 PACS-Collimator 7,69 6,76 6,48 6,08 4,27 4,36<br />

730 1 PACS-Photometer Optic 7,69 6,76 6,48 6,08 4,27 4,36<br />

913 1 HIFI L1 boundary node 7,81 5,07 4,71 4,27 4,22 4,27<br />

801 2 SPIRE PM JFET ENCL 22,04 7,35 6,63 5,71 5,00 5,27<br />

802 2 SPIRE SM JFET ENCL 21,83 7,21 6,52 5,60 4,95 5,18<br />

910 2 HIFI FPU Structure 21,69 7,53 6,84 5,96 5,14 5,41<br />

10 HTT 1,70 1,70 1,70 1,70 1,70 1,85<br />

376 Opt. Bench centre 21,61 7,40 6,72 5,84 5,06 5,30<br />

311 Instr. Shield Top 23,94 9,48 8,82 8,12 5,61 5,81<br />

4061 Cryostat Cover Shield 233,94 232,43 232,25 232,19 80,00 80,00<br />

Cases Legend:<br />

G GHe mass flow from HTT, Instruments off<br />

P GHe mass flow from HOT, Instruments off<br />

PI GHe mass flow from HOT, Instruments in average dissipation mode<br />

Temperature [K]<br />

Table 2: Overview of main FPU and cryostat temperatures<br />

Listed in Table 2 are the main instrument thermal nodes and their temperatures for several cases on<br />

ground:<br />

G: the nominal thermal equilibrium on ground achieved by pumping at the HTT and instruments<br />

off<br />

P: HTT closed with 1.7K and cooling with several mass flow rates out of the HOT, in order to<br />

subcool the optical bench and the thermal shields, and instruments off<br />

PI: helium flow from the HOT together with the cover shield cooled with LN 2 and instruments on.<br />

The values given in the last two columns are based on a cover shield temperature of 80K.


4.3.3.2 Active cooling<br />

IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-15/29<br />

For instrument testing the cover shield (Figure 4.3-6) can be cooled with different cryogenic media as<br />

LNe, LHe, LN 2 . A heat exchanger at the backside of the shield is connected via thin tubes to small<br />

Johnston coupling devices with integrated back-flow valves flanged to the cover.<br />

Cryogenic (vacuum isolated) cool and vent lines have to be inserted and fixed through dedicated<br />

openings in the cover cavity. They will be tightened to the inside cooling loop by the squeezed<br />

connectors of the Johnston couplings and will open the inner backflow valves when further fed in. Prior<br />

to flushing with the cryogenic coolant a quick leak check (overpressure hold test) of the assembled<br />

piping will be performed to prevent icing. Fluid flow and hence cover shield temperature will be<br />

controlled by pressure and needle valves located at the supply dewar. After each cooling cycle the cover<br />

shield nominal temperature will be achieved by flushing with warm gas to the cooling lines are<br />

removed. Four temperature sensors (2 PT 1000 and 2 C100) are located at the backside of the shield<br />

connected to a vacuum feed through in the cover itself.<br />

Cryo cover outside view with cooling I/F Cryo cover heat exchanger shown without shield<br />

Figure 4.3-6: Design of the cryo cover (Note: mirrors missing)


IID-A Section 4<br />

4.4 Planck PAYLOAD MODULE (PPLM)<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-16/29<br />

The Planck Payload Module (PPLM) will accommodate the Planck instrument units supplied by the<br />

Principal Investigators. The Planck instruments are split into a common Focal Plane Unit (FPU) and HFI<br />

JFET box that shall be located close to the FPU, mounted to the Planck Telescope Support at 50-60K<br />

and ambient temperature units, mounted to the SVM panels.<br />

The instruments elements mounted into the PPLM are directly and permanently connected to their<br />

counterparts in the PSVM and a clean separation is not possible. However, considering the mounting<br />

panels of the PSVM that carry these units as part of an extended Payload module, one can minimise the<br />

set of interfaces and achieve a nearly independent module. This can be integrated and tested separately<br />

from the rest of the spacecraft. It comprises the following major elements, described in more detail<br />

below:<br />

- The Planck Telescope and the V-groove insulation system<br />

- The PSVM upper Platform<br />

- The PSVM Radiators panels, carrying the Sorption Cooler Compressors.<br />

The “extended” PPLM exhibits the following external interfaces<br />

• Mounting interfaces to the SVM<br />

• Electrical interfaces between the electronic units mounted on the equipment platform and the<br />

corresponding units on the SVM panel.<br />

The extended PPLM configuration is shown in Figure 4.4-1 below.


IID-A Section 4<br />

4.4.1 Planck Telescope and FPU<br />

Figure 4.4-1: Planck Payload Module<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-17/29<br />

The Planck Telescope Support Structure is the mounting base for the common Planck instrument FPU,<br />

HFI JFET box and the reflectors of the telescope.<br />

The main parameters of the Planck telescope are given in Figure 4.4-2 below and in Table 4.4.1-1 (RD<br />

02).


IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-18/29<br />

Figure 4.4-2: Definition of design parameters of the Planck telescope<br />

Figure 4.4-3: Planck Telescope: Structure (upper) and conceptual view of PPLM including<br />

V-Grooves (lower)


IID-A Section 4<br />

Telescope Angle of centre of FOV (line of sight)<br />

with ZM1<br />

Field of view<br />

Primary mirror Surface shape<br />

Radius of curvature<br />

Circular projected aperture 1,3<br />

Real aperture dimensions in the rim<br />

plane 3<br />

Conic constant<br />

Offset distance at centre<br />

Secondary mirror Surface shape<br />

Radius of curvature<br />

Conic constant<br />

Major axis of projected contour 3<br />

in the YM2 direction)<br />

Minor axis of projected contour 3<br />

(in the XM2 direction)<br />

Aperture dimensions in the rim<br />

plane 3<br />

Relative position of<br />

primary and<br />

secondary mirrors<br />

Position of reference<br />

detector plane with<br />

respect to the<br />

secondary axis system<br />

M2 (see Figure 4.4.1-<br />

3)<br />

offset distance at centre<br />

Angle between major axes (Θ1)<br />

Ztop<br />

Zbot<br />

Position of centre of detector plane<br />

Angle between ZRDP and Zm2 (Θ2)<br />

1 in a plane perpendicular to the major axis of the primary ellipsoid<br />

2 See figure for a sketch on how to derive the secondary mirror surface<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-19/29<br />

-3.751°<br />

± 5°<br />

Ellipsoid<br />

1,440 mm<br />

1,500 mm<br />

1555.98 mm x 1886.79 mm<br />

-0.869417<br />

1,038.85 mm<br />

Ellipsoid<br />

643.972 mm<br />

-0.215424<br />

1,018.6 mm<br />

780.6 mm<br />

1,018.6mmx1,043.23 mm<br />

XcM2 = -328.15 mm<br />

10.1°<br />

481.737 mm<br />

706.027 mm<br />

X = -108.42 mm Y = 0 mm<br />

Z = -1,026.83 mm<br />

-21.27°<br />

3<br />

Dimensions of apertures and contours are the optical definition. Physical dimensions of mirror shall<br />

take into account possible misalignments<br />

Table 4.4.1-1: Opto-mechanical Definition of the Planck Telescope<br />

In order to provide the required temperatures at the Focal Plane Unit active cooling is implemented as<br />

part of the instruments. The active cooling units are mounted on dedicated PSVM radiator panels, and<br />

need a number of interfaces to the intermediate V-groove insulation system. These interfaces are<br />

thermal interfaces used for pre-cooling / thermalisation of the cooler pipes, harness and wave-guides<br />

and serve also as mechanical interfaces. The detailed interfaces are described in the respective chapter<br />

below.<br />

4.4.2 PSVM Units<br />

The PSVM Upper Platform carries those ambient temperature units of the Planck instruments that are<br />

either required to be nearby the focal plane unit or that should not be disconnected after initial


IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-20/29<br />

integration. Those units are the back-end unit of the LFI instrument and the Read-Out Unit of the HFI<br />

instrument.<br />

Active cooling is required for both instruments and comprises the following sets of coolers:<br />

- Sorption cooler (1 nominal and 1 cold redundant) for LFI cooling and HFI pre-cooling<br />

- 4 K mechanical cooler for HFI and pre-cooling of dilution cooler<br />

- HFI dilution cooler.<br />

The sorption cooler compressors require a maximum temperature of 270 K and need dedicated<br />

radiator area. SVM panels are foreseen as Radiator.<br />

The further units of the Planck instruments are placed mainly on other SVM panels (see Figure 4.4-1).<br />

4.5 SERVICE MODULES (SVM)<br />

Both Herschel and Planck SVM are under the responsibility of Alenia.<br />

A common modular architecture has been followed for the Herschel and Planck SVM. The core of the<br />

avionics is similar, with dedicated plug-in for specific functions (Instruments, ACMS sensors).<br />

4.5.1 Herschel Service Module<br />

The Herschel Service Module (HSVM) consists of the following elements:<br />

• a primary load carrying structure (Cone carrying the interface structure to Launcher on one side,<br />

and PLM on the other side)<br />

• a secondary structure carrying warm units and parts of the subsystems necessary for the Herschel<br />

mission (Instrument warm units, and avionics)<br />

(See Figure 4.5-3)<br />

4.5.2 Planck Service Module<br />

The Planck Service Module (PSVM) consists of the following elements:<br />

• a load carrying primary structure<br />

• a secondary structure carrying the units and parts of the subsystems necessary for the Planck<br />

mission.<br />

The PSVM provides the interface to the ARIANE V launcher.<br />

Figure 4.5-4)<br />

4.5.3 SVM’s Subsystems<br />

(see<br />

There are 4 major SVM subsystems (covered by a specification and a specific subcontractor):


• Structure<br />

• Thermal control<br />

• ACMS<br />

• Propulsion<br />

IID-A Section 4<br />

In addition, 4 subsystems are directly managed by the SVM contractor Alenia:<br />

• Power distribution (PCDU, Batteries and solar array)<br />

• TTC Telemetry/Tracking and Command<br />

• On-board Data management (ACC, CDMU computers)<br />

• Harness<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 4-21/29<br />

The overall avionics architecture is described in the 2 following figures (Figure 4.5-1 and Figure 4.5-2).<br />

The part common to both spacecraft is inside the blue delimited surface.


Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

IID-A Section 4<br />

Issue : 3.1 PAGE : 4-22/29<br />

Figure 4.5-1 Herschel Avionics organisation chart


Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

IID-A Section 4<br />

Issue : 3.1 PAGE : 4-23/29<br />

Figure 4.5-2: Planck Avionics organisation chard


4.5.3.1 Structure Subsystem<br />

IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 24/29<br />

The structure subsystems of the SVM supports the SVM units, carries the PLM’s, and provide interface to<br />

the launcher.<br />

A modular approach is also used for the accommodation of units on the lateral panels: the avionics is<br />

concentrated on 2 of the 8 panels almost identical for both spacecraft. The instrument warm units have<br />

dedicated panel(s) per instrument (sharing the 6 remaining panels).<br />

4.5.3.2 Thermal Control Subsystem<br />

The thermal control subsystem (TCS) maintains the required SVM and PPLM thermal environment for<br />

proper operations of equipment, taking into account the different environmental conditions.<br />

4.5.3.3 Attitude Control and Measurement Subsystem<br />

The Attitude Control and Measurement Subsystem (ACMS) provides the hardware and associated onboard<br />

software to acquire, control and measure the attitude of the satellite during all mission phases<br />

and modes according to the system requirements. The attitude and orbit control thrusters, used as<br />

actuators, are part of the Reaction Control Subsystem (RCS), but their operation is controlled by the<br />

ACMS.<br />

The ACMS comprises the following elements:<br />

- attitude sensors for attitude measurement during all mission phases<br />

- actuators to generate control torques for attitude manoeuvres and for compensation of perturbing<br />

torques<br />

- electronics and software to manage the attitude measurement and control functions, to detect and<br />

isolate failures and reconfigure if necessary, and to provide the interfaces with the CDMS and<br />

TT&C subsystems.<br />

4.5.3.4 Propulsion Subsystem<br />

The propulsion subsystem comprises the propellant storage tanks, pipes, necessary valves and pressure<br />

transducers and the thrusters. The thrusters are commanded by the ACMS.<br />

4.5.3.5 Telemetry, Tracking and Command Subsystem<br />

The Telemetry, Tracking and Command (TT&C) subsystems manage the reception and transmission of<br />

radio frequency signals for science and housekeeping data telemetry, telecommand and tracking. It is<br />

able to operate in both ways (up-link and down-link) during all mission phases when there is ground<br />

station contact. The frequencies are in the X-band frequency range.<br />

4.5.3.6 Command and Data Management Subsystem<br />

The Command and Data management Subsystem (CDMS) collects all telemetry data from the satellite.<br />

These data include the scientific data, the science instrument housekeeping (HK) and the spacecraft<br />

housekeeping data. The data will be conditioned, digitised and encoded for transmission to ground via<br />

the TT&C subsystem. The CDMS will also process the up-link command signals received by the TT&C


IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 25/29<br />

subsystem and decode, validate and distribute the commands to the users for execution. During the<br />

observation period (OP) the collected telemetry data will be stored in a Solid State Recorder (SSR).<br />

During the Daily Telecommunications Phase (DTCP) the stored data, together with real time data, will<br />

be transmitted to ground.<br />

The CDMS will be the source for:<br />

• Telemetry and telecommand services to and from the ground station<br />

• On-board timing and synchronisation<br />

• Autonomous satellite monitoring and recovery<br />

• Ground satellite checkout.<br />

The CDMS supports an average bit rate of the instruments during scientific observations as defined in<br />

5.11.<br />

4.5.3.7 Power Control Subsystem<br />

The Power Control Subsystem (PCS) conditions, controls and distributes the electrical power generated<br />

by the solar array to all payload instruments and spacecraft subsystems/units.<br />

4.5.3.8 Solar Array and Sunshield<br />

The combined sunshield/solar array provides the necessary electrical power via a solar cell network and<br />

protects the payload module from direct solar radiation. For Herschel it is mounted on one side of the<br />

spacecraft. For Planck it is attached to the lower end of the PSVM.<br />

4.5.3.9 Harness<br />

The SVM harness provides all electrical connections between all electrical equipment in the service<br />

module. It includes harnesses for power supplies, signals and pyrotechnic pulses. It includes also<br />

harnesses for connections with the PPLM, the HPLM, the umbilical and test connectors.<br />

Figure 4.5-4.<br />

The layout of the Herschel and the Planck SVM are given in Figure 4.5-3 and


PACS<br />

SPIRE<br />

Power,<br />

ACC, Skin<br />

IID-A Section 4<br />

HIFI Vertical<br />

Polarization<br />

RF panel<br />

Figure 4.5-3: Herschel Service Module<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 26/29<br />

HIFI Horizontal<br />

Polarization<br />

+Z<br />

Panel<br />

Reaction<br />

Weels<br />

panel


4K CRU<br />

on shear<br />

web<br />

SCC R<br />

SCC panels<br />

SCE<br />

HFI (4K panel<br />

+ REU)<br />

IID-A Section 4<br />

SCC N<br />

Figure 4.5-4: Planck Instrument deployment on SVM<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 27/29<br />

Upper Plateform (LFI BEU, DAE Pwr Box,<br />

HFI PAU<br />

HFI DDCU & & LFI REBA<br />

RF panel<br />

Power,<br />

ACC, CDMU<br />

HFI DPU’s<br />

Skin


4.6 OPERATING MODES<br />

IID-A Section 4<br />

The following modes are defined for the Herschel & Planck Spacecraft:<br />

the launch mode identifies the S/C state until separation from the launcher<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 28/29<br />

the Sun Acq Mode is first reached after separation, then reached in case of ACC or ACMS level<br />

failure<br />

the Nominal Mode is the normal mode of operation during science observations and<br />

commissioning<br />

the Earth acquisition mode is reached in case of CDMU anomaly<br />

the Survival Mode is reached in case of major power problem<br />

the following diagram give the mode transition<br />

CDMS<br />

Level 4<br />

Ground TC<br />

ACC (Level 3)<br />

or ACMS alarm (Level 4)<br />

Earth Acq<br />

Mode<br />

TC<br />

CDMU alarm (level 3)<br />

To survival<br />

Mode<br />

Ground TC<br />

launch<br />

Mode<br />

Ground TC<br />

ACC (Level 3) or<br />

ACMS alarm (Level 4)<br />

TC<br />

Sun Acq<br />

Mode<br />

TC<br />

Ground TC<br />

Separation from the Launcher<br />

From Earth Acq<br />

Mode<br />

TC<br />

Ground TC<br />

Nominal<br />

Mode<br />

TC<br />

CDMS<br />

Level 4<br />

Ground TC<br />

Ground TC<br />

Survival<br />

Mode<br />

CDMS<br />

Level 4<br />

ground TC<br />

Figure 4.6-1: Satellite Modes transition logic<br />

TC<br />

TC


4.6.1 Launch<br />

IID-A Section 4<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 29/29<br />

During Launch of the two satellites the scientific instruments will be switched off.<br />

If required, power will be provided to the active coolers of the Planck instruments for the launch lock<br />

mode.<br />

Currently, only the Planck 4K Cooler is in Launch lock Mode, and the Herschel Cryostat Control Unit is<br />

ON.<br />

4.6.2 Herschel<br />

The Herschel spacecraft will be three axes stabilised. The instantaneous sky coverage is defined by the<br />

allowed sun aspect angles of ±30° in the x-z plane and ±1° in the y-z plane.<br />

The orbit operation is characterised by the observation time and the down-link time. The duration of<br />

the Observation Periods will be 21 hours during which the scientific data will be stored on-board.<br />

Limited scientific observations will also be conducted during the telecommunications periods, subject to<br />

restrictions imposed by the telecommunications and other spacecraft maintenance activities.<br />

During the DPOP the spacecraft will support a number of scientific pointing modes, such as fine<br />

pointing, raster scanning and line scanning modes (see annex 4).<br />

The spacecraft supports the Herschel instrument operation with any instrument in prime mode. Both<br />

PACS and SPIRE will operate in a coordinated way such that they share the available science data rate.<br />

At the end of the Observation Period the stored data will be sent to ground and the<br />

observation/schedule parameters for the next 48 hrs will be up-linked. Within this period also spacecraft<br />

operations like reaction wheel unloading and star-tracker calibration checks will be performed. The<br />

spacecraft can support, during this time period, limited instrument operations. In addition, a serendipity<br />

mode could be defined, where SPIRE will be operated in a fixed configuration during a slew from one<br />

target to the next.<br />

4.6.3 Planck<br />

The Planck observation programme basically consists of two scans of the full sky each carried out over<br />

the period of half an orbit around the sun and as such covering the full sky. The satellite is spinning<br />

with one revolution per minute around the –x-axis that is pointing continually to the sun. In order to<br />

properly cover the full sky, the spin axis is repointed to up to 10° from the sun direction<br />

The instruments will take data for the full 24-hour period and the data will be stored on-board. As for<br />

the Herschel spacecraft the data will be sent to ground within a period of nominally 3 hours, the downlink<br />

time. The spacecraft will support, during this time period, full instrument operations.<br />

The spacecraft supports the Planck instruments being operated simultaneously. However, it is also<br />

possible to operate only one instrument. In this case, the operating instrument may be allocated the<br />

sum of the data rates of LFI and HFI nominal allocation.


IIDA - SECTION 5<br />

5. INTERFACE WITH INSTRUMENTS<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-1/136<br />

Spacecraft resource allocations, as specified for the scientific instruments in this chapter, are based<br />

on present knowledge.<br />

5.1 IDENTIFICATION AND LABELLING<br />

Each instrument unit is required to bear a unit identification label containing the following information:<br />

− Project code<br />

− Unit identification code<br />

− Model (e.g. AVM, CQM, PFM, FS)<br />

The identification label shall be attached to each instrument unit at a location that guarantees maximum<br />

visibility.<br />

The location and content of the instrument unit’s identification label shall be shown on the external<br />

configuration drawing(s) of the respective unit.<br />

The identification label shall be clearly legible.<br />

5.1.1 Project code<br />

For each instrument the Project code, which is the normal reference used for routine identification in<br />

correspondence and technical descriptive material, is defined in chapter 5.1 of the IID’s part B (AD 1-1, 1-2,<br />

1-3, 1-4, 1-5 for respectively SPIRE, HIFI, PACS, HFI, LFI).<br />

5.1.2 Unit identification code<br />

The unit Identification code is allocated in accordance with a computerised configuration control system and<br />

also for connector and harness identification purposes. The first 5 characters of this code are the allocated<br />

Project code.<br />

The unit identification code is composed of 3 parts:<br />

− 2 characters for instrument identification, i.e. FH, FP and HS for the Herschel instruments HIFI,<br />

PACS and SPIRE respectively, PH and PL for the Planck instruments HFI and LFI respectively<br />

− 3 characters for unit identification, e.g. FPU, FCU, DPU, SPU<br />

− 2 characters for model identification, i.e. AV for Avionics Model, CQ for Cryo-Qualification Model, PF<br />

for Proto-Flight Model, FS for Flight Spare Model.<br />

For connector and harness this code is limited to the characters up to unit identification, followed by the<br />

connector identification (see below)<br />

For information, for H-PLM items, the code consists of six digits. The first three digits identify the subsystem<br />

(e.g. PLM, Instruments, etc.), the last three digits identify the item within the subsystem. This includes all<br />

mechanical and electrical items in a subsystem (Self-standing parts like Electronic Boxes, brackets, harness,<br />

etc). For instance, the harness identification code will be attached to the unit and corresponding harness.<br />

5.1.3 Connector identification<br />

Each equipment box is required to bear visible connector identification labels closely adjacent to the<br />

appropriate connector. Spacecraft philosophy is to locate a «J» character to all units fixed (hard mounted)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-2/136<br />

connectors and a «P» character to all harness mounted connectors, followed by a 2 or 3 digits number. Each<br />

unit is treated individually in this respect, starting at «J01"for unit fixed connectors.<br />

For full connector identification these three alphanumeric characters are preceded by the S/C identification<br />

code of the instrument unit, e.g. connector «J03"on box the SPIRE FPU will have the full reference<br />

«HSFPUJ03", the mating harness connector will have the reference «HSFPUP03".<br />

Since the S/C identification code already appears on the unit identification label however, unit fixed<br />

connectors are not required to bear the full connector identification code; in the example above «J03" would<br />

suffice. The same rules apply for supplied instrument interconnect harnesses, and harness from an<br />

instrument EGSE if it requires connection to test connectors on an instrument unit.<br />

The location and content of the above described identification labels shall be included in the external<br />

configuration drawing.<br />

Herschel Cryoharness connector identification relies on Product tree Identifier, followed by Connector<br />

identification label as decribed here. Refers to H-PLM Electrical ICD RD 10 (QM) and RD11 (FM)<br />

5.2 COORDINATE SYSTEM<br />

5.2.1 Spacecraft Coordinate system<br />

The basic co-ordinate system shall be a right-handed Cartesian system with its origin located at the point of<br />

inter<strong>section</strong> of the longitudinal launcher axis and the satellite/launcher (for Planck), and the satellite to<br />

satellite (for Herschel) separation plane.<br />

For Herschel the positive X-axis shall be along the nominal optical axis of the Herschel telescope, towards<br />

the target source. The Z-axis is in the plane normal to the X-axis such that nominally the Sun will lie in the<br />

XZ-plane (zero roll angle with respect to the Sun), positive towards the Sun. The Y-axis completes the righthanded<br />

orthogonal reference frame.<br />

Figure 5.2.1-1: Definition of Herschel spacecraft axes<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-3/136<br />

The basic coordinate system is a right handed orthogonal system with its origin loacated at the inter<strong>section</strong><br />

point of the longitudinal launcher axis and the separation plane of the Herschel satellite.<br />

− the positive XHSC-axis is perpendicular to the separation plane and nominally coincides with the<br />

longitudinal launcher axis.<br />

− the ZHSC-axis is in a plane through the XHSC-axis and perpendicular to the separation plane such, that<br />

nominally the Sun will lie in the XZ-plane (zero roll angle with respect to the Sun), positive towards<br />

the Sun.<br />

− the YHSC-axis completes the right handed orthogonal reference frame.<br />

The Herschel PLM Coordinate System (HPLM) is defined as follows:<br />

The positive XHPLM-axis coincides with the nominal optical axis (line of sight) of the Herschel Telescope, and<br />

points towards the target source.<br />

The direction of the HPLM Coordinate System axis YHPLM and ZHPLM coincides with the HSC Coordinate<br />

Systems axis YHSC and ZHSC.<br />

The origin of the HPLM coordinate system is derived by the shift of the HSC to XHSC=946,5mm,<br />

YHSC=0,0mm, ZHSC=-60mm.<br />

The Service Module coordinate system (HSVM) is identical to the Herschel spacecraft Coordinate System<br />

(HSC).<br />

For Planck the Spacecraft X-axis is the nominal anti-sun direction, i.e. the spin axis.<br />

The Planck telescope line of sight, which is defined as the direction in which the projection of the main mirror<br />

rim is circular, is tilted 85° from the X-axis in the Z direction.<br />

The Z-axis is in the plane normal to the X-axis such that nominally the telescope line of sight will lie in the<br />

XZ-plane, positive towards the target source. The Y-axis completes the right-handed orthogonal reference<br />

frame.<br />

There are 3 additional frames associated to the PPLM, to the Telescope, and to the FPU, which are defined<br />

in annex 7, chapter 2, having their origins respectively in Opplm, Otel, and Ordp.<br />

Figure 5.2.1-2: Definition of Planck spacecraft axes<br />

The X-axes of both satellites nominally coincide with the longitudinal launcher axis.<br />

5.2.2 Instrument unit co-ordinate system<br />

In order to provide a reference for the Instrument Focus (Focal Plane Units), Centre of Gravity (CoG) and<br />

(possibly) Moment of Inertia (MoI) measurements, each instrument unit is required to have a right-handed<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-4/136<br />

Cartesian system as described in 5.2.1. Its origin shall be in a reference hole (RH) in the unit mounting<br />

plane, which is the attachment to the S/C. The RH is defined as one of the unit fixation holes.<br />

The principal axis of the instrument units shall be parallel to those of the S/C co-ordinate system, as far as<br />

practical<br />

The instrument unit co-ordinate system and the RH location shall be defined in the unit’s external<br />

configuration drawing.<br />

5.3 LOCATION AND ALIGNMENT<br />

5.3.1 Instrument location<br />

5.3.1.1 Herschel Instruments<br />

The Herschel instruments are located in the cryostat on the optical bench (Focal Plane Units, SPIRE JFET<br />

boxes), mounted to the cryostat (PACS Bolometer Amplifier Unit (BOLA) and the HIFI Local Oscillator Unit<br />

and Wave-guides) and on the SVM (Electronic units).<br />

The instrument units shall be compatible with maximum instrument envelopes as defined in Figure 5.3.1-1 to<br />

5.3.1-2 and in Table 5.3.1-1<br />

Interface Max. envelope Remarks<br />

Optical Bench Non symmetric<br />

See Figure 5.3.1-1, 2<br />

Cryostat LOU, including LOU radiator<br />

(see Figure 5.3.1-3)<br />

SVM As defined in ICD's attached<br />

to IID-B's<br />

All FPU’s (including SPIRE JFET boxes)<br />

LOU has 2 baseplates: "HIFI LOU baseplate" (=LOU<br />

optical bench) provided by HIFI, and "CVV LOU<br />

baseplate" attached to the CVV via struts, and supporting<br />

the HIFI LOU baseplate, and the radiator<br />

To be agreed upon on a case by case basis<br />

Table 5.3.1-1: Maximum allocated envelope for Herschel instruments<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

HIFI<br />

+Z<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-5/136<br />

PACS<br />

SPIRE<br />

Figure 5.3.1-1: Herschel Optical Bench with Instrument FPU's (+Z view (top) and +X view)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

+X<br />

+Y<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-6/136<br />

Figure 5.3.1-2: :Herschel Optical Bench equipped with instruments and Cryoharness (PACS front left,<br />

HIFI front right and SPIRE in the back).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-7/136<br />

Figure 5.3.1-3:LOU CVV support frame (see interface drawing in annex 6)<br />

The LOU interfaces with the spacecraft via a specific mounting structure (plate & support provided by<br />

industry), which shall also carry the LOU radiator. The LOU mounting structure forms part of the thermal path<br />

between LOU and LOU radiator (incl. its supports/thermal links).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

The LOU delivered by HIFI includes a baseplate (optical bench)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

The LOU radiator and its supports/thermal links will be provided byHIFI (see IID-B)<br />

The LOU wave-guides are provided by the spacecraft.<br />

5.3.1.2 Planck Instruments<br />

ISSUE : 3.1 PAGE :5-8/136<br />

The Planck instruments are treated in a slightly different way to the Herschel instrument units. The combined<br />

HFI and LFI Focal Plane Unit is mechanically mounted to the Planck telescope structure. Connected to the<br />

FPU via wave-guides and cooling lines are the ambient temperature elements of the instrument coolers and<br />

the LFI Backend Unit. There is a predefined maximum distance between the FPU and the HFI JFET box and<br />

Readout Electronics.<br />

All the above units, as they are strongly linked to the FPU, are treated in a dedicated way, different to<br />

«normal» warm boxes. Although they are physically mounted to the SVM they are logically considered part<br />

of the PPLM, i.e. they are discussed as «PPLM warm units».<br />

The «normal» electronic boxes are treated in a more general way as SVM units.<br />

The instruments shall be compatible with maximum instrument envelopes as defined in Table 5.3.1-2.<br />

Interface Max. envelope Remarks<br />

FPU See Radiometer allocated volume<br />

drawing in annex 7<br />

HFI/LFI merged FPU*<br />

Wave guides See Radiometer allocated volume<br />

drawing in annex 7<br />

Wave guide and harness support<br />

structure<br />

See Wave guide and cables<br />

supports allowed volume in annex<br />

7<br />

Wave guide thermal hardware See Radiometer allocated volume<br />

drawing in annex 7<br />

BEU See Radiometer allocated volume<br />

drawing in annex 7<br />

Jfet – Bellow - PAU See Jfet and bellow IF drawing in<br />

annex 7<br />

PPLM 0.1 K cooler piping See 0.1 K cooler drawing in annex<br />

7<br />

PPLM 4 K cooler piping See 4 K cooler drawing in annex 7<br />

PPLM 18-20 K cooler piping See 18-20 K sorption cooler<br />

drawing in annex 7<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

It includes the upper and lower<br />

parts of the wave guide support<br />

structure<br />

The wave guide thermal<br />

hardware** includes the thermal<br />

link and thermal screens<br />

implemented between the wave<br />

guide and the grooves 1, 2 and 3.<br />

SVM Units See annex 5 To be agreed upon on a case by<br />

case basis<br />

Table 5.3.1-2: Maximum allocated envelope for Planck instruments<br />

Note: * the mounting struts from the telescope structure to the FPU are included in the RAA allocated<br />

volume. They are part of the FPU and are delivered by the instrument.


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-9/136<br />

** The wave guide thermal hardware allocated volume is included in the RAA one. It is part of the instrument<br />

and is delivered by the instrument.<br />

5.3.2 Instrument alignment<br />

5.3.2.1 Herschel Focal Plane Units<br />

The alignment of the Herschel telescope to the Herschel Optical Bench reference is defined in the Herschel<br />

Alignment Plan (AD 7.1 , see Annex 1).<br />

The requirements for the FPU’s are included in the Herschel alignment plan, where references are required<br />

on the outer surface of the box. The positions of the focal plane units will be measured w.r.t. a reference<br />

point on the Herschel CVV during integration of the unit. Due to the use of dowel pins only a correction in xdirection<br />

will be possible using shimming plates (see annex 1)<br />

After telescope integration the telescope reference will be measured to the same reference point on the<br />

CVV.<br />

5.3.2.2 Local Oscillator Alignment<br />

To align the HIFI Focal Plane Unit with the local oscillator with the required precision will need two visiblelight<br />

windows in the Herschel cryostat. The positions for these two windows are adjacent to the first and last<br />

of the seven sub-millimetre windows, in positions 0 and 8. Alignment devices, mounted on the +Z and –Z<br />

faces of the LOU and of the FPU, shall be used.. If the devices on the LOU are partially transparent then the<br />

alignment can also be checked after integration by measurements along the Y-axis through the devices on<br />

the LOU and through the two alignment ports. However, in cryogenic instrument-level tests, with the FPU at<br />

15K and with the LOU at a temperature, as defined in the HIFI IID-B, it will be very difficult to check the<br />

alignment of the two units.<br />

For that measurement a special camera system to monitor the alignment of the two units will be used. It is<br />

planned to monitor the alignment of the LOU with the FPU at various stages of ground testing. The camera<br />

system will consist of two pieces of special ground support equipment mounted temporarily on the LOU.<br />

The FPU-LOU alignment requirements specified in the HIFI IID-B are assumed to be applicable for the inorbit<br />

operation only. I. e. during on-ground tests (outside the TV chamber) the alignment may deviate from<br />

the in-orbit alignment by about 5 mm due to thermal shrinkage of the CVV.<br />

5.3.2.3 Planck Focal Plane Unit<br />

The alignment between the FPU and the telescope along Xrdp and Yrdp, at ambient will be obtained by<br />

design (without adjustment) with 2 calibrated pins on telescope side and 1 calibrated hole plus 1 calibrated<br />

extended hole one FPU side.<br />

The alignment between the FPU and the telescope along Zrdp at operational temperature will be done<br />

through a shimming operation at ambient on the basis of the knowledge of the telescope and FPU actual<br />

focal surface position at operational temperature.<br />

The position of the Ordp at operational is defined in annex 7.<br />

The actual average FPU focal surface is defined in §5.8 and in AD 7-2.<br />

The position of actual average FPU focal surface wrt the FPU/telescope mechanical interface at operational<br />

temperature will be provided by the instrument with accuracy as defined in the Planck alignment plan AD 7-2.<br />

The stability of the horn position and orientation (or of the actual FPU focal surface) wrt the FPU/telescope<br />

mechanical interface shall be as defined in AD 7-2 when the environment and interfaces instabilities defined<br />

in the chapter 9 are applied.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.4 EXTERNAL CONFIGURATION DRAWINGS<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-10/136<br />

For each instrument unit, a configuration drawing is required to establish the mechanical interfaces with the<br />

spacecraft structure, harnesses and thermal hardware.<br />

These drawings shall contain the following information:<br />

− Dimensions and associated tolerances (at ambient temperatures), including feet, internal connectors<br />

and their dedicated clearance<br />

− Focus position w.r.t. instrument coordinate system (dimensions and tolerances at operational<br />

temperatures)<br />

− Identification of a reference hole<br />

− Mounting hole pattern dimensions and hole patterns<br />

− Dimensions of mounting feet and contact area (base-plate and mounting feet)<br />

− Spot-faced area for seating of the mounting screw washers (if and where applicable)<br />

− Dimensions and location of dowel pins (where applicable)<br />

− Mass and associated tolerances (precise if estimated, calculated or weighted)<br />

− Location, naming, type and function of all connectors<br />

− Connector key shape orientation, the identification of connector contact «1», showing connector in<br />

front view and the connector center line<br />

− Information about connector fixation<br />

− Identification of bonding studs<br />

− Identification of non-flight items<br />

− Location of unit and connector identification labels<br />

− Details of instrument provided mounting hardware, thermal/electrical isolation provisions<br />

− Location and routing of any harness interconnecting modules of a «stacked» box configuration<br />

− Harness interface filler<br />

− Identification of areas of harness fixation<br />

− Location of cold strap interfaces to Helium tank, level 1 and level 2 (Table 5.7.1-1)<br />

− Calculated Centre of Gravity location in instrument unit co-ordinate system and Moments of Inertia<br />

and its co-ordinate system if different from instrument unit co-ordinate system<br />

− Location of transport/storage purging connections (if applicable)<br />

− Material of housing and surface finish<br />

− Flatnes and roughness of contact area<br />

− Eigen-frequency if below 140 Hz (warm units only)<br />

− Base plate material and surface treatment<br />

− Surface coating (IR Emissivity and Solar absorptance if external location)<br />

− Specific heat (J/Kg/K) (calculated or measured)<br />

− Design and location of handling points<br />

− Location dimensions of bonding stub (see §5.10.4 for specifications)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-11/136<br />

Drawings shall clearly specify the unit they represent and the responsible design authority; they shall be<br />

subject to a properly controlled numbering and revision updating system. Each revision of a drawing shall be<br />

accompanied by a list detailing all changes that have been incorporated since the previous revision on the<br />

drawing itself.<br />

2D Drawings shall be submitted to the Project as computer readable and editable files, preferably in a<br />

vectorial file format ( .hgl, .drw or .cgm (compatible MS word) , or pdf avoid definition loss) together with one<br />

hard copy of each file.<br />

CAD drawings shall be submitted to the project according to RD86 (CAD Data Exchange rules)<br />

The Metric Standard (SI-SYSTEM INTERNATIONAL) shall be used for design and manufacturing of all<br />

instruments. For components and equipment, the dimensions shall be given in millimetres and the angles in<br />

degrees.<br />

5.5 SIZES AND MASS PROPERTIES<br />

5.5.1 Mass tolerances<br />

− Cryogenic Qualification Model (CQM): The mass of each of the CQM units shall be within 1% or 100<br />

grams (whichever is less) for unit weighing less than 20 kg and within 0.5% for unit weighing more<br />

than 20 kg of the estimated mass for that unit. On no account shall the instrument unit mass exceed<br />

the Project agreed maximum for that unit, current at the time of delivery to the Project.<br />

− Proto-Flight Model (PFM): The mass of each of the PFM units shall be within 1% or 100 grams<br />

(whichever is less) for unit weighing less than 20 kg and within 0.5% for unit weighing more than 20<br />

kg of the estimated mass for that unit. On no account shall the instrument unit mass exceed the<br />

Project agreed maximum for that unit, current at the time of delivery to the Project.<br />

− Flight Spare (FS): In order to ensure free interchangeability of PFM and FS units the mass of each of<br />

the FS units shall be within 1% or 100 grams (whichever is less) for unit weighing less than 20 kg<br />

and within 0.5% for unit weighing more than 20 kg of the mass measured for the equivalent PFM<br />

units.<br />

5.5.2 Centre of Gravity Location and Tolerances<br />

In interpreting the figures below, the Centre of Gravity (CoG) should be taken not to include any external<br />

harness or connectors other than those hard-mounted on the unit.<br />

− Cryogenic Qualification Model (CQM): The CoG of each unit shall be within a sphere of 1.0 mm<br />

radius around the best estimated location given in the unit’s external configuration drawing and<br />

Interface Data Sheet, current at the time of delivery to the Project. Following delivery of the CQM<br />

units to the Project, the external configuration drawings of the unit shall be updated to show the<br />

actual CoG location based on QM experience.<br />

− Proto-Flight Model (PFM): The CoG of each unit shall be within a sphere of 1.0 mm radius around<br />

the best estimated location given in the unit’s external configuration drawing and Interface Data<br />

Sheet, current at the time of delivery to the Project. These shall be the drawings updated from CQM<br />

experience.<br />

− Flight Spare (FS): In order to allow free interchangeability of PFM, or CQM, and FS units, the CoG of<br />

the FS shall be within a sphere of 1.0 mm radius around the CoG measured for the other models.<br />

The centre of mass location shall be measured with an accuracy of 0.5 mm.<br />

5.5.3 Moments of Inertia and Tolerances<br />

Nominal Moments of Inertia (MoI) of each unit are recorded in the IID’s part B (AD 1-1 to 1-6)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-12/136<br />

The MoI of all instrument models must not deviate from the nominal value by more than 10 %. Calculated<br />

values may be supplied for units for which the MoI is lower than 0.1 kg m 2 .<br />

The MoI must be measured to an accuracy of ±5 %.<br />

5.5.4 Overall Instrument Mass Allocation<br />

Depending on the development status of the instrument the following mass margin philosophy shall apply:<br />

− Completely new developments 20 %<br />

− New developments derived from existing hardware 15 %<br />

− Existing units requiring minor/medium modification 10 %<br />

− Existing units 5 %<br />

5.5.4.1 Herschel Instruments<br />

The maximum allocated mass for the Herschel Instruments is 415 kg.<br />

This total mass is distributed to the three Herschel instruments with the following allocations:<br />

− HIFI: 189 kg (allocation of 3 kg for waveguides are subtracted, since wave-guides are no more<br />

under HIFI responsibility)<br />

− PACS: 133 kg<br />

− SPIRE: 90 kg.<br />

The present distribution of the instrument mass to the different interfaces in the system is as given in Table<br />

5.5.4-1<br />

Interface Max. allocated<br />

Mass<br />

[kg]<br />

Remarks<br />

Optical Bench 175.5 All FPU’s (including SPIRE JFETs)<br />

Cryostat 39.6 Includes the HIFI Local Oscillator Unit (with radiator)<br />

SVM 196.9 Warm units of all three instruments<br />

Total 412<br />

Table 5.5.4-1: Distribution of Herschel Instrument Mass<br />

The margin philosophy to be applied by the instruments is outlined in paragraph 5.5.4. The instruments shall<br />

provide in the IID-B the instrument current estimated mass per unit and the related margin.<br />

5.5.4.2 Planck Instruments<br />

The maximum allocated mass for the Planck Instruments is 445 kg.<br />

This total mass is distributed to the two Planck instruments and the sorption cooler with the following<br />

allocations:<br />

− LFI: 89 kg<br />

− HFI: 244 kg<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-13/136<br />

− Sorption cooler: 112 kg.<br />

The present distribution of the instrument and cooler mass to the different interfaces in the system is as<br />

given in Table 5.5.4-2<br />

Interface Max. allocated Mass<br />

[kg]<br />

Remarks<br />

Planck Telescope<br />

Structure<br />

PPLM and SVM<br />

Warm Units<br />

62 HFI/LFI merged FPU, incl. HFI JFET<br />

383<br />

Total 445<br />

Table 5.5.4-2: Distribution of Planck Instrument Mass<br />

The margin philosophy to be applied by the instruments is outlined in paragraph 5.5.4. The instruments shall<br />

provide in the IID-B the instrument current estimated mass (nominal mass) per unit and the related margin.<br />

5.6 MECHANICAL INTERFACES<br />

Mechanical interfaces are described in formal ICD's (Interface control drawings), included in annexes of this<br />

document.<br />

The following ICD's shall be applicable for instrument:<br />

− Annex 5: SVM to Warm Unit Interface Control Drawings<br />

− Annex 6: H-PLM to Herschel instruments FPU & LOU Interface Control Drawings<br />

− Annex 7: P-PLM to Planck instruments FPU, JFET, & wave-guides Interface Control Drawings<br />

− Annex 9: System Interface Control Drawings (missing warm units ICD's, Plank cooler pipes on<br />

SVM).<br />

− Annex 10: Warm Interconnecting Harness interface<br />

− Annex 11: Herschel Telescope ICD's<br />

5.6.1 Herschel Payload Module<br />

The following mechanical interfaces of the Herschel Payload Module (HPLM) to the instruments are<br />

discussed:<br />

− SPIRE, PACS & HIFI Focal plane units to Herschel optical bench<br />

− SPIRE JFET boxes to optical bench<br />

− HIFI LOU to cryostat vacuum vessel<br />

− HIFI LOU wave-guides fixed to cryostat vacuum vessel, interface with HIFI LSU in SVM on one side,<br />

and LOU on the cryostat, both on the -Y side.<br />

5.6.1.1 Herschel Focal Plane Units<br />

The focal plane units of the Herschel instruments shall exhibit a standard mechanical interface to the<br />

Herschel optical bench.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-14/136<br />

The Instrument shall provide a hole in the instrument mounting foot and for a dowel pin. The diameters of<br />

these are to be specified in the dedicated Instrument Interface Drawings.<br />

The number of fixation points is different for each experiment: PACS 3, HIFI 4 and SPIRE 3. They shall be<br />

identified in the dedicated Instrument Interface Drawings.<br />

The reference plane for fixation interface is at the upper surface of the Optical Bench.<br />

For each instrument one reference hole has to be defined from y =0 and z =0, where it is recommended to<br />

have the reference hole as close as possible to the centre of the OB (y=0, z=0) and on the y or z-axis. All<br />

other fixation points shall be located w.r.t the instrument reference point.<br />

The fixation principle shall be similar for all three instruments.<br />

All holes on OB are fixed –there will be no provisions for compensation of thermal displacements.<br />

Provisions for alignment adjustment and thermal displacements shall be done on instrument side.<br />

The thermal contact conductivity to the Optical Bench is defined in chapter 5.7.<br />

Standard mounting hardware (i.e. only bolts and washers) will be provided by the spacecraft for the<br />

integration of the focal plane units on the Herschel optical bench. For instance, no thermal and electrical<br />

isolation parts and material will be provided.<br />

The fixation of the instruments shall be accessible from the +x side. It shall be possible to mount and<br />

dismount each focal plane unit independently from the other ones.<br />

The position of the holes of the FPU shall be within a tolerance of Ø 0.1mm between different models (CQM,<br />

PFM and FS).<br />

The co-planarity of the interfaces to the FPU’s on the optical bench will be within less than 0.1 mm between<br />

any two mounting interfaces of all three FPU’s and betweenØ 0.1 mm between two mounting interfaces of<br />

each individual FPU under all conditions.<br />

The Herschel Optical Bench Plate will provide a position tolerance of Ø 0.1mm for HIFI and PACS and Ø<br />

0.08mm for SPIRE- The Herschel Optical Bench flatness of the mounting interface is 0.05mm or better. The<br />

instrument mounting interface flexibility shall cope with the defined Herschel Optical Bench Plate and<br />

instrument mounting point tolerance and flatness.<br />

Therefore no additional forces due to thermal expansion shall be applied to the optical bench. To avoid such<br />

additional forces, e.g. struts or sliding bolts can be used.<br />

The co-planarity of the interfaces of one FPU shall be lower than 0.05 mm(applicable to the HIFI FPU only).<br />

The co-planarity requirements hold for room as well as for cryogenic temperatures.<br />

5.6.1.2 SPIRE JFET boxes<br />

The SPIRE Photometer and Spectrometer JFET box need a dedicated interface to the Herschel Optical<br />

Bench Plate. The design of the unit has been selected such as to minimise the impact on the cryostat<br />

design. The units are mechanically attached to the Herschel Optical Bench Plate at the outer rim of the units<br />

(vial electrically insulated SPIRE provided legs). They are thermally insulated from the optical benche, and<br />

connected to the vent line (level 3). An electrical insulation by means of kapton foil is foreseen at the level 3<br />

thermal interface.<br />

The concept is shown in Figure 5.6.1-1. and in annex6.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-15/136<br />

Figure 5.6.1-1: Mechanical Interface of SPIRE JFET boxes to Optical Bench<br />

The mounting interface shall provide for mechanical and thermal interface.<br />

The differential thermal expansion of the unit compared to the mounting interface, the optical bench, shall be<br />

considered in the design of the unit.<br />

The SPIRE JFET boxes shall provide 4 mounting holes.<br />

Standard mounting hardware (i.e. only bolts and washers) will be provided by the spacecraft for the<br />

integration of the focal plane units on the Herschel optical bench. For instance, no thermal and electrical<br />

isolation parts and material will be provided.<br />

The position of the holes of the SPIRE JFET boxes shall be within a 0.1 mm tolerance between different<br />

models (CQM, PFM and FS).<br />

The interfaces to the electrical connectors shall be accessible when all FPU units are integrated. No special<br />

mechanical fixations of the connectors, except mounting screws, are required.<br />

5.6.1.3 HIFI Local Oscillator Unit<br />

The LOU and the LOU radiator shall interface with the spacecraft via the LOU mounting structure as per<br />

Figure 5.6.1-3, and annex 6.<br />

The LOU mounting surface and the radiator mounting surface, which interfaces to the LOU support plate,<br />

shall have a flatness of better than 25 µm (LOU mounting surface), respectively 50 µm (radiator mounting<br />

surface).The LOU support plate surface, which interfaces to the LOU and LOU radiator, shall have a flatness<br />

of better than 50 µm.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-16/136<br />

The LOU radiator shall be provided by the instrument.<br />

The allowed volume of the radiator incl. its supports is as per Figure 5.3.1-6, above<br />

The allowed mass of the radiator incl. its supports shall not exceed 6 kg (TBC)<br />

The LOU mounting structure shall be provided by the spacecraft.<br />

The LOU shall include a base plate (Optical bench) allowing to align the LOA's with respect to each other,<br />

and to keep this relative alignment.<br />

The LOU mounting structure shall form part of the thermal path between LOU and LOU radiator. Details<br />

need to be agreed between instrument and spacecraft.<br />

The wave-guide assembly shall be directly mounted on the wave-guide flanges on the LOU base-plate. I. e.<br />

all related loads in x-direction are imposed on the LOU base-plate (lateral wave-guide supports on CVV are<br />

flexible in x-direction in order to allow compensation of thermal shrinkage).<br />

The LOU shall allow the arrangement of alignment cameras. The alignment cameras are needed during onground<br />

tests and will be removed during vibration tests and prior to launch. Details need to be agreed<br />

between instrument and spacecraft.<br />

Figure 5.6.1-2: Layout of Local Oscillator Unit<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Figure 5.6.1-3:LOU Radiator allocated Volume<br />

ISSUE : 3.1 PAGE :5-17/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.6.1.4 Bolometer Amplifier Unit<br />

(removed)<br />

5.6.1.5 HIFI LOU Wave-guides<br />

The wave-guide design is as shown in Figure 5.6.1-4.<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-18/136<br />

The position of the LSU in the SVM and the LSU wave-guide interface arrangement shall be such, that the<br />

wave-guides can be routed in parallel to the xy-plane, i. e. without the need of bends in +/-z-direction or<br />

twists.<br />

On the SVM side, the LOU wave-guides will be interfaced on the LSU, according to the position agreed with<br />

HIFI (see annex 9, Alcatel version of the LSU ICD). Bridging waveguides between this interface and the LSU<br />

are of the responsibility of HIFI.<br />

5.6.2 Planck Payload Module<br />

Figure 5.6.1-4: LOU Wave-guide implementation<br />

The following mechanical interfaces are discussed in this paragraph to the Planck instruments:<br />

− Focal Plane Unit to Planck Telescope Structure<br />

− PPLM warm units<br />

− Pipes/wave-guides.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.6.2.1 Planck Focal Plane Unit<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-19/136<br />

The Planck focal plane unit is mounted to the Planck Telescope structure via a set of 6 CFRP struts, being<br />

part of the FPU. This mounting concept is designed to:<br />

− Mechanically hold the FPU, achieving the proper eigen-frequency<br />

− Thermally isolate the FPU from the Telescope support structure<br />

− Allow for differential expansion between the focal plane unit and the Planck Telescope Structure, e.g.<br />

during cool-down.<br />

− Guarantee the position and stability of the actual FPU focal surface wrt the FPU/telescope<br />

mechanical interface<br />

The FPU/telescope interface is composed of 6 contact areas. The fixation is made of 4 M8 screws for each<br />

strut and calibrated pins. This interface concept is designed to guarantee:<br />

− The alignment of the global FPU position wrt the telescope<br />

− The stability of the global FPU position wrt the telescope<br />

The position of the FPU interface struts on the Planck Telescope structure is sown on Figure 5.6.2-1, and IF<br />

drawings are available in annex 7 (PLAFPUIS8000A (5 sheets)).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-20/136<br />

Figure 5.6.2-1: Interface position of the Planck FPU Interface Supports, and RAA allocated Volume<br />

(see complete IF drawing in annex 7, ref. PLAFPUIS8000 A, 5 sheets)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-21/136<br />

Two calibrated pins on telescope side and 1 calibrated hole plus 1 calibrated extended hole one FPU side<br />

will be used to align the FPU wrt the telescope in the instrument reference frame Xrdp and Yrdp (see annex<br />

7 for axe definition)) directions at ambient.<br />

Shims between the telescope interface plane and the 6 FPU struts will be introduced to align the FPU and<br />

the telescope along Zrdp at operational temperature (± 3mm telescope + instruments).<br />

The mounting hardware to the Planck Telescope Structure, i.e. screws/bolts/washers will be furnished by the<br />

spacecraft for the integration of the focal plane unit.<br />

The complete definition of the FPU/Telescope interface (geometry, local flatness, global flatness…) at<br />

ambient and operational is described in annex 7<br />

The different models of the FPU (CQM and FM) shall be compatible with the interface definition.<br />

To guarantee the telescope assembly performance, the FPU shall be design to minimise the load introduced<br />

on to the telescope structure. The maximum loads at each of FPU struts/telescope interface when the FPU is<br />

cooled down from 293 K to 40 K and taking into account the following boundary conditions shall be lower<br />

than the following values:<br />

− F radial < 1050 N<br />

− Tangential torque < 102 N.m<<br />

Boundary conditions :<br />

− the FPU shall be hardly mounted on an infinite rigid support<br />

− the CTE of the support will be < 0.1 10 -6 K -1<br />

To be compatible with the spacecraft integration sequence, the FPU design shall be such that the lower<br />

bipod assembly is removable.<br />

5.6.2.2 LFI backend unit and PAU<br />

The LFI backend unit is connected via the wave-guides with the LFI part of the FPU. The spacecraft has<br />

defined the position of the backend unit on the PPLM sub-platform of the SVM. The location w.r.t. the FPU is<br />

given in Annex 7. The wave-guide routing is treated in a dedicated way and defined in paragraph 5.6.2.4<br />

below.<br />

The mechanical fixation will follow the rules as for SVM units and no special thermal interface requirements<br />

are considered on the PPLM sub-platform. The fixation hardware will be provided by the spacecraft.<br />

The BEU shall be equipped of elongated holes as defined in Annex 7 (see fig 5.6.2-2 below) to allow the<br />

FPU alignment on to the telescope<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-22/136<br />

Figure 5.6.2-2:BEU interfaces ( from annex 7, ref. PLAFPU.IS.8000 A_D, sheet 3)<br />

The different models of the BEU (CQM and FM) shall be compatible with the interfaces as defined in Annex<br />

7.<br />

The accommodation of BEU and PAU on upper platform are described also at the end of annex 9 (system<br />

ICD's), drawings PLA.PLM.0.S.1000A.<br />

5.6.2.3 JFET box PAU & bellows<br />

The JFET box is required to be at a maximum distance of 0.5 m from the FPU. The spacecraft has defined<br />

the position of the JFET box on the PLM. The location w.r.t. the FPU is given on Figure 5.6.2-3.<br />

For the mechanical fixation will follow the rules as for SVM units and no special thermal interface<br />

requirements are considered on the SVM platform. The fixation hardware will be provided by the spacecraft.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-23/136<br />

Figure 5.6.2-3: Location of HFI JFET box, PAU, and routing of the HFI Harness (bellow Diam. 25mm)<br />

See annex 7, drawing PLAJFETS1000C (2 sheets)<br />

The different models of the JFET – Bellow - PAU (CQM and FM) shall be compatible with the interfaces as<br />

defined in Annex 7.<br />

The estimated bellow length are given here after:<br />

− Length between the inter<strong>section</strong> point PAU external volume/neutral fibre of the bellow and the<br />

inter<strong>section</strong> point Jfet external volume/neutral fibre of the bellow : 2206 mm<br />

− Length between the inter<strong>section</strong> point JFET external volume/neutral fibre of the bellow and the<br />

inter<strong>section</strong> point FPU connector external volume/neutral fibre of the bellow : 486 mm<br />

To guarantee the telescope assembly performance, the Jfet shall be design to minimise the load introduced<br />

on to the telescope structure. The maximum loads at each of Jfet legs/telescope interface when the Jfet is<br />

cooled down from 293 K to 40 K and taking into account the following boundary conditions shall be lower<br />

than the following values:<br />

− F radial < 180 N<br />

Boundary conditions :<br />

− the Jfet shall be hardly mounted on an infinite rigid support<br />

− the CTE of the support will be < 0.1 10-6 K-1<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.6.2.4 Pipes / Wave-guides<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-24/136<br />

This paragraph defines the mechanical interfaces of the instrument hardware other than harness that has to<br />

be routed from the PPLM warm units to the Planck FPU.<br />

− Sorption cooler pipes (nominal & redundant)<br />

− 4K cooler pipes<br />

− 0.1K cooler pipes<br />

Detailed ICD's are in annex 7 for the part in the PPLM, and annex 9 for the part in the SVM.<br />

5.6.2.4.1 Sorption cooler pipes<br />

The pipes of the sorption cooler starts at the compressor assembly on the SVM radiator and is routed from<br />

this platform via the SVM upper platform to the V-groove shields and finally to the Planck FPU.<br />

The routing and the position of the routing is defined by the spacecraft and shown in Figure 5.6.2-4. The<br />

length of this pipes as defined in the IID B (AD 1-6) is followed.<br />

The mounting interfaces for the routing are standard interfaces not defined separately. The thermal<br />

interfaces at the V-groove shields that form also the mechanical interface are defined in paragraph 5.7<br />

below.<br />

The design of the mechanical support of the pipe on the PPLM and SVM is under instrument responsibility.<br />

The different models of the Sorption cooler pipes (CQM and FM) shall be compatible with the interfaces as<br />

defined in Annex 7.<br />

It is not planned to support the pipes mechanically between the thermal fixation at the shields.<br />

Figure 5.6.2-4: Routing of the Sorption Cooler Pipes from Compressor Assembly to the FPU ref<br />

Annex 7 drawing ref PLAPIP2S0000A (8 sheets)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.6.2.4.2 4K cooler<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-25/136<br />

The pipes of the 4 K cooler starts at the compressors, mounted to the SVM radiator, is routed to the cooler’s<br />

ancillary unit from where it is routed via the shear web to the SVM central cone where a disconnecting<br />

bracket is located. Then it is routed via the V-groove shields (with heat exchanger on the 3 rd V-groove only)<br />

to the FPU. The routing and the position of the routing are defined by the spacecraft (See Annex 7 / annex<br />

7). The maximum length of this part of the line is defined in the IID B (AD 1-4). The mounting interfaces for<br />

the routing are standard interfaces not defined separately. The thermal interfaces at the V-groove shields<br />

that form also the mechanical interface are defined in paragraph 5.7 below.<br />

It is not planned to support the pipes mechanically between the thermal fixation at the shields.<br />

The design of the mechanical support of the pipe on the PPLM and SVM if they are necessary, is under<br />

instrument responsibility.<br />

The different models of the 4K cooler pipes (CQM and FM) shall be compatible with the interfaces as defined<br />

in Annex 7.<br />

Figure 5.6.2-6: 4K cooler Pipes routing on the V-Groove Shields. Ref annex 7, IF drawing<br />

PLAPIP4S1000A. (2 sheets)<br />

5.6.2.4.3 Dilution cooler<br />

The pipes of the dilution starts at the supply bottles on the Planck equipment platform, is routed to the<br />

dilution cooler control unit from where it is routed via the V-groove shields to the FPU. The routing and the<br />

position of the routing are defined by the spacecraft. The design of the pipe includes an connector at the<br />

PPLM sub-platform level. The maximum length of this part of the line is defined in the IID B (AD 1-4). The<br />

mounting interfaces for the routing are standard interfaces not defined separately. The thermal interfaces at<br />

the V-groove shields that form also the mechanical interface are defined in paragraph 5.7 below.<br />

It is not planned to support the pipes mechanically between the thermal fixation at the shields.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-26/136<br />

The different models of the 0.1K cooler pipes (CQM and FM) shall be compatible with the interfaces as<br />

defined in Annex 7.<br />

Figure 5.6.2-7: Dilution cooler pipes routing on V-Groove Shields (see IF drawing, in annex 7<br />

PLAPIP1S1000C (3 sheets)<br />

5.6.2.4.4 LFI wave-guides<br />

The wave-guides are 2 bundles and start at the back end unit on the SVM upper platform and are directly<br />

routed to the FPU unit. The routing is illustrated in Figure 5.6.2-8 and interface drawing is shown on Figure<br />

5.6.2-9 below. Forbidden areas (stay-out zones) are shown on Figure 5.6.2-10. The routing and positioning<br />

are defined by the instrument. The maximum length of this part of the line is defined in the IID B (AD 1-5).<br />

The spacecraft will provide mounting interfaces for the wave-guides structure on the primary reflector panel,<br />

and on the telescope frame. The different models of the wave guide (CQM and FM) shall be compatible with<br />

the interfaces as defined in Annex 7.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

Figure 5.6.2-8: Routing of the wave-guides<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-27/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-28/136<br />

Figure 5.6.2-9: Wave guides and Cables Allocated Volume (See annex 7 drawing PLAFPUIS8400A (3<br />

sheets)).<br />

For all above described elements it has to be noted that the spacecraft provides a mechanical stability such<br />

that differential movement of below 3 mm in any direction between the FPU and the BEU will be guaranteed<br />

when the PPLM is cooled from 293 K down to 40 K.<br />

5.6.2.5 HFI pipes and bellow I/F limit loads with the PPLM<br />

The following design limit values shall not be exceeded while :<br />

− applying the dynamic mechanical environment at the pipe (or bellow) interfaces when hard mounted<br />

: Q.S, sine, random input combined to the ''Intergration Displacement'' load case.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-29/136<br />

− applying the ''Thermoelastic Displacement'' load case combined with the ''Intergration<br />

Displacement'' load case.<br />

Note : Those load cases are described in the current version of the IIDA.<br />

Design limit loads :<br />

Attachment points on Groove shields, Telescope Frame and PR Panel : for 1 single insert, Shurlok type<br />

I/F allowable load In Plane Out of Plane Comment<br />

(N) (N)<br />

Grooves 300 107 for 1 insert<br />

Tel. Frame 300 300 for 1 I/F plate<br />

(4 screws)<br />

Tel. Lower Beam (frame side) 300 27 for 1 I/F plate<br />

(3 screws)<br />

Tel. Lower Beam with tria stiffener (FPU side) 300 43 for 1 I/F plate<br />

(3 screws)<br />

These values already include the safety margin for the margin computation at system level.<br />

The Instruments shall cover their analyses inaccuracies (FEM, material, computation assumptions) by<br />

additional necessary margins.<br />

5.6.3 Service Modules<br />

5.6.3.1 Functional requirements:<br />

Attachment points shall provide a controlled contact between the unit and the structure for the purpose of<br />

mechanical fixation and thermal control as well as electrical bonding of the unit.<br />

5.6.3.2 Design requirements:<br />

The attachment points shall be designed according to Figure 5.6.3-1. Boxes with a mass less than 1.5 kg<br />

shall not have more than 4 attachment points. For boxes with a mass above 1.5 kg and a structural and<br />

dynamic requirement for more than 4 points, the number of attachment points has to be approved by the<br />

Project.<br />

The number and location of attachment points shall be based on following mechanical considerations:<br />

− boxes with a mass < 1.5 kg shall not have more than 4 attachment points<br />

− ratio (equipment / number of mounting feet) shall be < 1.5 Kg as preliminary check<br />

− equipment loads shall be compatible with fixation points capabilities on satellite as defined hereafter<br />

The definition of the boxes attachment points shall comply with the following mechanical requirements, under<br />

application of the worst case of mechanical and thermal environments:<br />

− no sliding at support structure interface, according to the following criteria:<br />

where,<br />

(( + ( Q / ρ))<br />

/ P ) × SF × 1.<br />

2 ≤1<br />

P t<br />

• P and Q are the actual values of axial and lateral loads applied to the attachment bolt (P shall<br />

also include axial loads generated by lateral acceleration)<br />

• Pt is available bolt tension per fixation point, with Pt min. = 4000N for M4, 6200N for M5 and<br />

8500N for M6 (Bolts tensions are to be provided/confirmed by ALS. Current values are based<br />

on ASPI RSAT screws).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

• SF is safety factors for bolts connection = 1.5,<br />

• coefficient of 1.2 to cover Instrument potential growth,<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-30/136<br />

• ρ is the friction coefficient between the box and its support structure, as defined in Table 5.6.3-<br />

1.<br />

support structure Aluminium box<br />

material at box contact with alodine 1200S coating plated A5<br />

aluminium with alodine 1200S<br />

coating<br />

ρ max = 0.23 ρ max = 0.23<br />

aluminium plated A5 ρ max = 0.23 ρ max = 0.23<br />

CFRP ρ max = 0.2 ρ max = 0.2<br />

Table 5.6.3-1: Friction coefficient values<br />

− The preferred way for fixation of boxes is using M4 screws. Deviations shall be negotiated with<br />

Alcatel on a case by case basis.<br />

− design loads at attachment points compatible with inserts loads capabilities as defined in §4.8.4,<br />

according to the following criteria:<br />

where,<br />

• P is tension load per fixation point<br />

• Q is shear load per fixation point<br />

• SF is safety factors for joints (SF=2),<br />

2<br />

2<br />

( ( P / Pm<br />

) + ( Q / Qm<br />

) ) × SF × 1.<br />

2 ≤1<br />

• coefficient of 1.2 to cover Instrument potential growth,<br />

• -P and Q are the actual values of axial and lateral loads applied to the attachment bolt (P shall<br />

also include axial loads generated by lateral acceleration)<br />

• Pm and Qm are the typical insert strength capability specified in Table 5.6.3-2.<br />

• Pm in tension or compression to be used, depending of the equipment feet design, to check<br />

compatibility with inserts loads capabilities.<br />

Herschel – Planck M4, M5 inserts capability (N) M6, M8 inserts capability (N)<br />

structure Tension Compression Shear Tension Compression Shear<br />

Lateral panels<br />

(reinforced core)<br />

3120 3120 3620 3505 3505 4344<br />

Shear webs 2742 2365 1596 NC NC NC<br />

Cone 1900 1800 945 NC NC NC<br />

Upper closure panels 858.4 858.4 2247 958 958 2696<br />

Planck subplatform 841.6 841.6 3620 939 939 4344<br />

Herschel subplatform 787.6 787.6 1874 886 886 2249<br />

Table 5.6.3-2: Insert Strength capability for Herschel an Planck SVM<br />

The equipment design shall prevent single inserts loading in bending and torsion (


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-31/136<br />

For highly dissipative units the number and location of attachment points shall be based on thermal<br />

considerations.<br />

Each attachment point shall have a fixation hole and one of these holes shall be identified as the Reference<br />

Hole, it shall be marked with a capital R in the configuration drawing. The box co-ordinates and the centre of<br />

mass co-ordinates shall be related to this reference hole. The positive X-axes of the unit and the S/C shall be<br />

parallel and in the same orientation as far as reasonable.<br />

The distance D between two adjacent attachment points shall be 300 > D > 30 mm.<br />

The distance of each attachment hole centre w.r.t. the Reference Hole, shall be within a 0.2 mm diameter<br />

circle centred on the theoretical position.<br />

The attachment points and the clearance for mounting shall be dimensioned as shown in Figure 5.6.3-1. No<br />

part of the box shall be in the volume above the attachment points indicated as «free access required». The<br />

contact area shall be specified in the configuration drawing for each attachment point. The attachment point<br />

edge shall be rounded-off to a minimum radius of 0.2 mm to avoid structural damage.<br />

The co-planarity of the attachment points shall be within 0.1 mm/100 mm.<br />

Each box on the SVM shall have an eigen-frequency of > 140 Hz.<br />

Figure 5.6.3-1: Definition of attachment points of SVM mounted units and dimensioning<br />

requirements<br />

5.1.1.3 Herschel SVM Warm Units configuration<br />

This paragraph describes the mechanical interfaces of the HPLM warm units set in the Herschel SVM.<br />

More detailed drawings and position of inserts can be found in annex 5.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


PACS<br />

SPIRE<br />

Power, ACC,<br />

CDMU panel Skin<br />

IIDA - SECTION 5<br />

The following units are to be considered.<br />

5.1.1.3.1 HIFI warm units<br />

HIFI Vertical<br />

Polarization<br />

RF panel<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-32/136<br />

HIFI<br />

Horizontal<br />

Polarization<br />

Figure 5.6.3-2: Herschel SVM and HPLM warm units<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

+Z<br />

Panel<br />

Reaction<br />

Weels<br />

panel<br />

HIFI warm units are accommodated on two lateral radiative panels (-Y and –Y-Z panels); the assumptions<br />

made are:<br />

− the 3db coupler has beenrecently updated to IF uploaders<br />

− All Horizontal polarisation units on the -Y panel<br />

− All Vertical polarisation units on the –Y/-Z panel<br />

− A Connector Bracket to support the semirigid cables which link the HRH to the HRV has been<br />

defined on both panels (bottom); the allocated area/volume on the Upper PLT for the cable jumpers<br />

has also been defined.<br />

− LSU: The LSU ICD proposed by Alcatel (covering envelope volume, footprint, and position of<br />

connectors (including wave-guides) is applicable both for HIFI and the satellite (see annex 9,<br />

drawing ME.HES.114F.S.002SA). A braket supports the wave-guides flanges at the interface (distant


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-33/136<br />

of about 10cm from the LSU). Flexible bridging wave-guides Interface to LSU unit are assumed to be<br />

delivered by HIFI.<br />

Figure 5.6.3-3: HIFI SVM Units layout:<br />

Upper: -Y-Z panel HIFI Vertical polarisation units<br />

Lower: -Y panel, HIFI Horizontal polarisation units<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.1.1.3.2 SPIRE Warm units<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-34/136<br />

SPIRE warm units are accommodated on .-Z. panel with the CCU unit.The two Star Trackers and one LGA<br />

are accommodated on the outside of the panel.<br />

The following assumptions have made for the configuration:<br />

− CCU (not part of SPIRE WUs) dimensions, connectors list and location are still to be confirmed by<br />

Alcatel/Astrium<br />

− FCU: unit's dimensions utilised for the accommodation exercise are i.a.w.mech. I/F dwg provided by<br />

SPIRE/ASPI. Confirmation of updated about DCU and FCU mechanical I/F drawings is awaited from<br />

SPIRE/ASPI side.<br />

5.1.1.3.3 PACS Warm units<br />

Figure 5.6.3-4: SPIRE SVM Units layout<br />

PACS warm units are accommodated on .+Y -Z. lateral radiative panel.<br />

The following assumptions have made for the configuration:<br />

− DECMEC max dim = 560mm. Details relevant to the DECMEC unit are not present, being the<br />

relevant Interface Control Drawing not still not available from PACS, therefore Alcatel issued an ICD<br />

of the DECMEC (see annex 9 drawing ref ME.HES.114P.S.001SA) to freeze the volume, footprint<br />

and connector location, applicable both to PACS and to the satellite.<br />

− SPUs are stacked, as a single box with nominal and redundant units inside and one single thermal<br />

I/F to the SVM panel..<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

Figure 5.6.3-5: PACS SVM Units layout<br />

5.1.1.4 Planck SVM Warm Units configuration<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-35/136<br />

This paragraph describes the mechanical interfaces of the PPLM warm units set in the Planck SVM.<br />

More detailed drawings can be found in annex 5.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


4K CRU<br />

on shear<br />

web<br />

SCC<br />

IIDA - SECTION 5<br />

SCC panels<br />

SCE<br />

HFI (4K<br />

panel + REU)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-36/136<br />

Upper Plateform (LFI BEU, DAE Pwr<br />

Box, HFI PAU<br />

SCC N<br />

Power, ACC,<br />

RF panel CDMU panel<br />

HFI DDCU & & LFI REBA<br />

Figure 5.6.3-6: SVM and PPLM warm units (to be updated Alcatel)<br />

The following units are to be considered:<br />

5.1.1.4.1 Sorption coolers Compressors<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Skin<br />

HFI DPU’s<br />

The sorption cooler compressor assemblies are two cold redundant, sets of units that exhibit mechanical<br />

interfaces to the main Planck spacecraft radiators located on +Y-Z and –Y-Z side of the SVM. The<br />

mechanical mounting requirements are defined here after, whereas specific thermal mounting requirements<br />

are defined in Figure 5.6.3-7 to guarantee good units power dissipation towards space.


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-37/136<br />

Figure 5.6.3-7: Mounting for Sorption Coolers compressors and Electronics (to be updated Alenia)<br />

5.1.1.4.1.1 Compressor description<br />

Compressors are understood to be a set of individual sorption beds, Low and high pressure stabilization<br />

beds, valves, pressure transducers,…, attached together by a network of pipes, and also connected to the<br />

low temperature pipes, heat exchangers, liquid reservoirs, and harnesses. A Handling frame is used to<br />

transport and integrate on the spacecraft. The Compressors elements are individually connected to the<br />

radiator.<br />

The compressor will be covered by MLI (need support frame) after being attached to the Radiator<br />

5.1.1.4.1.2 Location / Orientation<br />

On lateral radiator panels, located on faces +Y-Z and -Y-Z<br />

FM1 Cooler is on SVM panel -Y -Z<br />

FM2 Cooler is on SVM panel +Y-Z<br />

The Philosophy for location is the following:<br />

The FM2 compressor, pipes and heat exchangers are located on the same side as dilution & 4 K Cooler heat<br />

exchangers on 60K V-Groove shield. This is proposed because the proximity of these heat exchangers will<br />

slightly increase the temperature of the Sorption Cooler 60K interface, and this reducing the performances of<br />

this redundant unit. The FM1 should have slightly better performances.<br />

5.1.1.4.1.3 Mechanical fixation<br />

Compressor delivered with handling frame, aimed to manipulate the compressor as a unit (together with<br />

pipes) and compatible with positioning the compressor on the radiator. Each compressor fixed independently<br />

on the radiator. Probably similar for other components. Base-plate required for other components.<br />

5.1.1.4.1.4 Screws<br />

Currently 257 screws M4 per compressor (including 2x15 Screws per Sorption bed, distance 25mm).<br />

Screws are provided by Alenia.<br />

Torque/tension in bolt : TBD by Alenia<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.1.1.4.1.5 Interface drawings<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-38/136<br />

The Sorption Cooler Compressors and Electronics are mounted to the SVM panels over the Heat Pipes<br />

network.<br />

The attachment solution proposed by Alenia (aiming to reduce the number of I/F points and to de-couple the<br />

I/Fs to the SCC) is as follows:<br />

− the horizontal heat pipes will be directly fixed to the SVM panels, by making use of a limited number<br />

of inserts by and leaving a number of through inserts free<br />

− then the vertical heat pipes and the spacer panels will be mounted onto the SCC<br />

− finally the SCC plus heat pipes and spacers assembly, will be connected to the SVM panels by<br />

means of screws mounted from the external side through the through inserts.<br />

Figure 5.6.3-8: Sorption cooler Radiator +Y-Z with Heat pipes network (to be updated Alenia)<br />

5.1.1.4.1.5.1 Sorption cooler fixation on SVM pannel<br />

The fixation of the sorption cooler on SVM is still under evaluation. The following will be updated soon.<br />

The current baseline is based on stilts to connect structurally the sorption cooler to the panel through the<br />

heat pipe network, a 1mm baseplate between the compressor and the compressor to keep lateral stiffness,<br />

and thermal bolts to guarantee the contact between the compressor and the heat pipes.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

C D E G H<br />

150,4<br />

mm<br />

150,4<br />

mm<br />

150,4<br />

mm<br />

150,4<br />

mm<br />

150,4<br />

mm<br />

Red dots = structural bolts (type H).<br />

Green dots = thermal bolts (type G).<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-39/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

150,4<br />

mm<br />

TBD<br />

40m<br />

m<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

TBD<br />

40m<br />

m TBD<br />

Figure 5.6.3-9: Sorption cooler fixation scheme on +Y-Z (-Y-Z is symmetric) (TBC Alenia)<br />

Figure 5.6.3-10: Sorption cooler Attachment scheme on the heat pipe network (out of date, to be<br />

updated (Alenia))<br />

Typical "A" connections are proposed without spacers, if and where spacers will be needed they will be<br />

added.


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-40/136<br />

The solution presented allows reducing the total number of panel connections to 110 type A, 178 type B, 140<br />

type C, 18 type E and 64 type F.<br />

The SCC beds are connected to the vertical heat pipe network via a large number of type C connections.<br />

The SCC plus heat pipes and spacers assembly is attached to the panel (on top of the horizontal heat pipes<br />

network) by means of type A connections. The number of type A connection seems great enough and placed<br />

in such a way that no big loads are foreseen for the heat pipes network and the thermal coupling can be<br />

assured.<br />

It is assumed that both SCC and SCE provides threaded holes M4 with a minimum depth of 9 mm.<br />

During the integration phase, the mechanical compatibility between<br />

− the Sorption Cooler Compressors / Electronics<br />

− the Heat Pipes network<br />

− the SVM -Y-Z/-Z/+Y-Z panels<br />

will be granted by designing very carefully the tolerances chain.<br />

In order to prevent any integration risk, the through holes on the heat pipes will be drilled/milled with<br />

sufficiently loose tolerances (φTBD) and/or will be slotted. The same shall apply for the through inserts on<br />

the SVM panels (φTBD tolerance). On the other hand, the SCC/SCE mounting holes pattern will need to be<br />

drilled to comply with a 0.2 mm tolerance - as a minimum.<br />

5.1.1.1.1.6 Assumed dimensions for Compressor<br />

− Individual sorption bed element base-plate footprint: 374.6 mm * 50.8 mm<br />

− Individual sorption bed element base-plate flatness: < 0.05 mm over 100 mm<br />

− interface global flatness : < 0.1 mm / 100 mm<br />

− interface roughness: < 3.2 m (this is what we expect on both side of the network.<br />

− distance between fixation holes in the sorption bed length direction : 25 mm<br />

− distance between fixation holes perpendicular to the bed length direction : 41 mm<br />

Compatibility of dissipative element base-plate material with thermal filler DC 93500 (Dow Corning) and<br />

Grafoil<br />

5.1.1.1.1.7 Open point:<br />

− MGSE (responsibility JPL),<br />

− Fixation of SCC on SVM,<br />

5.1.1.1.2 Sorption cooler electronics<br />

The SCE units are two identical boxes, proposed by LFI to be located on the upper platform of the SVM,<br />

adjacent to the sorption cooler compressor assemblies to minimise the lengths of interconnecting cables.<br />

The SCE have no special thermal interface requirements. The SCE units are set on the SVM keeping a<br />

sufficient clearance with regard to the nearby Helium tank, drawing is given in Figure 5.6.3-7. The<br />

mechanical fixation will follow the same rules as SVM units. The fixation hardware will be provided by the<br />

spacecraft.<br />

Refer to §5.6.3.4.1 for details about SCE accommodation and interfaces on SCC radiators.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

Figure 5.6.3-11: SCE interface<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-41/136<br />

Refer to §5.6.3.4.1 for details about SCE attachments and interfaces on SCC radiators. (to be updated<br />

alenia)<br />

5.1.1.1.3 4K cooler<br />

The 4 K cooler is a set of units that exhibit standard mechanical interfaces to the spacecraft. The units are<br />

mounted on the spacecraft radiator. Mounting rules as for SVM units apply. No specific thermal interface<br />

requirements are necessary to evacuate the dissipated power from the unit.<br />

The pipes from/to the 4K cooler compressors is treated like harness, i.e. mechanical fixation will follow<br />

those rules, no special thermal interface requirements are considered on the spacecraft radiator. The<br />

spacecraft defines the routing of the lines. The lines and thermalisation devices are provided by the<br />

instrument. The fixation hardware is provided by the spacecraft. The spacecraft will not provide any further<br />

mechanical interface/fixation to the 4 K cooler. The spacecraft will define the exact position of the cooler on<br />

the spacecraft radiator.<br />

The 4K cooler is a set of panel mounted units (4CCU, 4CAU, 4KCDE and 4K Current Pre-Regulator).<br />

The following Figure 5.6.3-12 show the 4K panel with 4CCU, 4CAU, 4KCDE and the 4K Current Pre-<br />

Regulator.<br />

4CCU (compressor) to 4CAU (Ancillary unit) connection pipes are defined by the Instrument, while other<br />

pipes/harness routing is defined by ALS on the basis of the information provided by ASPI.<br />

Access to the connector used to lock the compressor during transportation has been taken into account<br />

A recent change in the SVM configuration, necessary to balance the Planck spacecraft (for inertia ratio and<br />

spin stability) required the displacement of the REU on the 4K panel.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

The 4K current regulator moves on the shear web.<br />

Thermal and EMC impacts are still under evaluation.<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-42/136<br />

The contact area on the panel of Thermal strap of the 4K compressor has been increased to reduce the<br />

compressor temperature.<br />

A mu metal shield (provided by ASP) has to be implemented around the 4K compressor near the REU.<br />

Figure 5.6.3-12: Interface drawing for the 4K Cooler units on the SVM panel.<br />

5.1.1.1.4 Dilution cooler<br />

The dilution cooler consists of the 3He and 4He tanks, the necessary valves and pipes. The tanks are<br />

mounted to the spacecraft via balls bearing. The spacecraft s defines the position of the tanks. The pipes<br />

and valves from the bottles are treated like harness, i.e. mechanical fixation follow those rules, and no<br />

special thermal interface requirements are considered on the equipment platform. The spacecraft defines<br />

the routing of the lines. The lines and thermalisation devices are provided by the instrument. The fixation<br />

hardware is provided by the spacecraft. The spacecraft will not provide any further mechanical<br />

interface/fixation to the dilution cooler.<br />

The DCCU is connected to the PLM by means of 5 pipes and to the He-Tanks by means of 4 pipes.<br />

Accessibility to a number of valves/connectors must be guaranteed at all times (also with the upper closure<br />

PLT closed)<br />

An exhaust pipe will be mounted to the DCCU base-plate, through a dedicated cut-out on the +Y/+Z panel<br />

(approximatively in the centre of the panel, see annex 9, drawing PLS.140.010SA,Planck 0.1K<br />

accomodation & access)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-43/136<br />

Figure 5.6.3-13: Interface drawing for Dilution units on SVM 0.1K Dilution panel (view from inside<br />

SVM) Also shown the LFI REBA.<br />

5.1.1.1.5 LFI REBA<br />

The LFI REBAs are set inside the SVM on the «+Y +Z» panel with DCCU. (see Figure 5.6.3-13 above)<br />

The mechanical fixation will follow the rules as for SVM units and no special thermal interface requirements<br />

are considered on the SVM platform. The fixation hardware will be provided by the spacecraft.<br />

5.1.1.1.6 HFI Readout Electronics<br />

On this panel there are the two Star Trackers and two DPU (nom + red); the DPU are located as in Figure<br />

5.6.3-14 where DPU (nom) is accommodated on the panel, while DPU (red) is accommodated on the shear<br />

panel.<br />

For the mechanical fixation will follow the rules as for SVM units and no special thermal interface<br />

requirements are considered on the SVM platform. The fixation hardware will be provided by the<br />

spacecraft.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-44/136<br />

Figure 5.6.3-14:HFI panel: Location of DPU (seen from inside SVM) (To be updated, as REU moved<br />

to the 4K panel)<br />

5.1.1.1.7 DAE Power Box<br />

The DAE Power Box is accommodated below the sub-platform on .+Z. side. The DAE Control Box is<br />

connected to the BEU which is located on top of the sub-platform,+Z. side. For the mechanical fixation will<br />

follow the rules as for SVM units and no special thermal interface requirements are considered on the<br />

SVM platform. The fixation hardware will be provided by the spacecraft.<br />

Figure 5.6.3-15: View P/M sub Platform with LFI DAE Control Box (see appendix 6 for more details)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.1.1.1.8 REU and PAU<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-45/136<br />

The PAU and REU are connected and the length of their harness shall not exceed 5000 mm.<br />

5.1.1.5 Planck cooler pipes on the SVM.<br />

The Planck cooler pipes are routed on the SVM between the cooler warm unit to a dedicated connector<br />

bracket located on the upper platform (except for the soption cooler).<br />

− Sorption cooler pipes (nominal & redundant) between SCC and FPU.<br />

− 4K cooler pipes between 4K ancillary panel and the connector bracket.<br />

− 0.1K cooler pipes between the DCCU and the connector bracket.<br />

Routing of the pipes on the SVM has been made by Alcatel.<br />

Detailed ICD's of the pipes routing on the SVM can be found in Annex 9<br />

The spacecraft will provide the inserts for the fixation of the pipes on the panels.<br />

The following table give the responsibility sharing for pipes routing and fixation hardware<br />

ITEM<br />

Planck<br />

Instrument<br />

coolers pipes on<br />

the SVM<br />

Routing on SVM (pipes<br />

routing, length, attachment<br />

pitch & support definition).<br />

Routing on PPLM (pipes<br />

routing, length, attachment<br />

pitch & support definition).<br />

Fixation of pipes: Attachment<br />

part on SVM (inserts, paint<br />

free areas)<br />

Fixation of pipes: Attachment<br />

part on PPLM (inserts, paint<br />

Preliminar<br />

y Definition<br />

ALS<br />

Approval<br />

of prelim.<br />

Def.<br />

ASPI /<br />

Instrum<br />

Detailed<br />

definition<br />

ASPI Instrum ASPI<br />

ALS<br />

ASPI /<br />

Instrum<br />

Approval<br />

before<br />

procureme<br />

nt<br />

Instrum ASPI<br />

Procureme<br />

nt<br />

Pipes<br />

:Instrum<br />

Pipes :<br />

Instrum<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

ALS<br />

ASPI /<br />

Instrum<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Integration Integration<br />

Herschel Planck<br />

ASPI<br />

ASPI<br />

ALS ALS<br />

ASPI Instrum ASPI Instrum ASPI<br />

free areas)<br />

Fixation of pipes: Attachment<br />

part on the pipe and support<br />

Instrum<br />

ASPI/Instru<br />

m<br />

Instrum N/A Instrum ASPI<br />

Pipes hardware Instrum. ASPI Instrum N/A Instrum. ASPI<br />

Table 5.6.2-1: Planck instruments pipes fixations responsibilities<br />

5.1.1.6 Fixation hardware for warm units on the SVM<br />

The following table gives the responsibility sharing for the definition and procurement of the fixation hardware<br />

of warm units on the SVM


ITEM<br />

Warm unit<br />

external<br />

Interfaces<br />

(fixation &<br />

grounding)<br />

IIDA - SECTION 5<br />

Preliminar<br />

y Definition<br />

Approval<br />

of prelim.<br />

Def.<br />

Detailed<br />

definition<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-46/136<br />

Approval<br />

before<br />

procureme<br />

nt<br />

Procureme<br />

nt<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Integration Integration<br />

Herschel Planck<br />

Bonding stud (M4*6)<br />

Washer, nut & max torke value<br />

Instrum. ALS / ASPI Instrum. ALS / ASPI Instrum. N/A N/A<br />

on bonding stud (warm unit<br />

side)<br />

Instrum ALS / ASPI Instrum. ALS/ASPI Instrum. ASED ASPI<br />

Bonding strap and fixation on<br />

SVM (insert + screw) for WU<br />

grounding.<br />

WU fixation screws and inserts<br />

on SVM, paint-free areas.<br />

Paint, surface treatment of WU,<br />

paint-free areas.<br />

Paint-free areas for MLI<br />

attachment points on WU<br />

Paint-free areas for MLI<br />

attachment points on SVM<br />

MLI (including attachment<br />

points)<br />

ALS N/A ALS N/A ALS<br />

ALS ASPI ALS ASPI ALS<br />

ALS for ALS for<br />

SVM SVM<br />

inserts, inserts,<br />

ASED for ASPI for WU<br />

WU bonding bonding<br />

strap. strap.<br />

ASED, for<br />

fixation<br />

screws.<br />

ASPI, for<br />

fixation<br />

screws.<br />

Instrum. ALS / ASPI Instrum. ALS / ASPI Instrum. N/A N/A<br />

ALS Instrum<br />

ALS /<br />

Instrum. for<br />

paint-free<br />

areas<br />

ASPI/Instru<br />

m<br />

Instrum<br />

ASED for<br />

MLI<br />

attachment<br />

points.<br />

ASPI for MLI<br />

attachment<br />

points.<br />

ALS ALS ALS N/A ALS ALS ALS<br />

ALS Instrum ALS<br />

ASPI/Instru<br />

m<br />

Table 5.6.2-2: Warm units fixations and grounding responsibilities<br />

5.7 THERMAL INTERFACES<br />

5.7.1 Herschel Payload Module<br />

ALS ASED ASPI<br />

The resources provided by the cryostat and the details of the interfaces are defined below for the different<br />

thermal interfaces to the instruments:<br />

− PACS, SPIRE & HIFI Focal Plane Unitsand SPIRE FFETs boxes on Optical Bench of Herschel<br />

cryostat<br />

− HIFI Local Oscillator Unit to cryostat vacuum vessel<br />

− All Herschel instruments thermal mathematical models are annexed to the instruments IID-B's,<br />

including typical transient dissipation timelines. These are the base of the coupled thermal analysis<br />

Instruments + Cryostat performed at H-PLM level. The assumption and results are presented in the<br />

H-PLM Thermal model and Analysis, ref RD81.<br />

5.7.1.1 Focal Plane Units<br />

The focal plane units of the Herschel instruments are mechanically mounted to the Herschel optical<br />

bench and shall exhibit standardised thermal interfaces.<br />

Three different thermal interface levels have been defined (see table 5.7.1-1), where for each instrument the<br />

maximum temperature at the respective interface unit is identified.<br />

Thermal Interface<br />

Maximum temperature<br />

at Thermal Interface<br />

[K]<br />

HIFI PACS SPIRE<br />

Description


Thermal Interface<br />

IIDA - SECTION 5<br />

Maximum temperature<br />

at Thermal Interface<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-47/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

[K]<br />

HIFI PACS SPIRE<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Description<br />

Level 0 2 2 / 1.75 (*) 2 Thermal interface to the He II tank :<br />

Sorption coolers pump &<br />

evaporator, PACS red & blue<br />

photodetectors, SPIRE detector<br />

enclosure, HIFI mixers<br />

Level 1<br />

Level 2<br />

6 5 6<br />

15 n.a. 15<br />

First thermal interface to the He II<br />

vent-lines: PACS and SPIRE FPU<br />

enclosure, FIFI mixers (4K box)<br />

Level 2 vent line is bolted to the<br />

Optical Bench: HIFI FPU<br />

enclosure. PACS & SPIRE<br />

insulated by carbon fivre<br />

coumpund feet.<br />

Level 3 na na 15 Level 3 added for SPIRE JFET<br />

boxes (P&S), now thermally<br />

insulated from OBA, to allow a<br />

reduction of the temperature of the<br />

Optical Bench<br />

Table 5.7.1-1: Definition of thermal interface levels (*) Note: 1.75K is applicable for the PACS red<br />

detector only<br />

The instrument thermal requirement at the thermal interface (temperature, and relevant heat flows to size the<br />

thermal straps have been clarified (now included in IID-B's <strong>section</strong> 5.7).<br />

In case electrical insulation of the thermal connection from the structure is required, this shall be<br />

implemented as part of the Instrument.<br />

One exception is the Level 3 connection to the SPIRE JPET, where electrical insulation (kapton sheet) will<br />

be inserted at the vent line interface


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-48/136<br />

Figure 5.7.1-1: Herschel Level 0 and Level 1 thermal interfaces:<br />

Top Level 0: Most interface are external pods, except PACS & SPIRE cooler evaporator where an<br />

open pod is implemented<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-49/136<br />

Bottom: Level 1 (upper loop), Level 2 (attached to OBA), level 3 (SPIRE JFET).<br />

ref annex 6 for details<br />

5.7.1.1.1 Mounting interface of the focal plane unit to the optical bench<br />

The optical bench will be thermally linked to level 2. The primary thermal links of the instruments are at Level<br />

0 and Level 1 and will be implemented by means of thermal straps .<br />

The instruments FPU are mounted on the optical bench by means of 3 fixations.<br />

HIFI FPU has conductive feet to get good thermal contact between FPU and OBA.<br />

PACS and SPIRE FPU's are thermal insulated from the optical bench by means of instrument provided<br />

carbon fibre feets, in order to get an FPUinsulated from OBA, at a temperature close to the one of level 1.<br />

5.7.1.1.2 Interface to He tank: Level 0<br />

The requirement of this temperature to be below the maximum temperature given in Table 5.7.1-1 is valid for<br />

instrument dissipation as given in paragraph 5.9.1.<br />

The interface of the instrument to the level 0 is a direct interface with a thermal link to the Helium II tank of<br />

the cryostat. The thermal contact at interface is included in the industry part of the strap<br />

The thermal contact at interface is included in the industry part of the strap<br />

Implementation of the industry part of the thermal straps to level 0 is as follows:<br />

− PACS red & Blue detector, SPIRE detector box, HIFI mixers : A thermal strap with a conductance of<br />

> 50mW/K between helium and interface will be provided<br />

− PACS & SPIRE Sorption cooler Pump: A thermal strap with a conductance of > 50mW/K between<br />

helium and interface will be provided<br />

− PACS & SPIRE evaporator strap: A conical cavity flanged on the tank (open tank option) (in parallele<br />

with a thermal strap with a conductance of > 50mW/) K will be provided<br />

The details of the level 1 interfaces are described in annex 6 (HPLM drawings), HP-2-ASED-ID-0042 (Optical<br />

Bench assembly IF drawings, sheet 7).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-50/136<br />

Figure 5.7.1-2 -Typical level 0 thermal 0 strap PACS red detector, cut on left, and detail of the<br />

interface on right (ref annex 6, HP-2-ASED-ID-0042 sheet 7 and 9)<br />

5.7.1.1.3 Interface to Vent Line: Levels 1, 2, & 3<br />

The levels 1, 2, 3 are provided via thermal straps between the instruments and the vent line (mass flow rate<br />

2.1mg/s)<br />

The sequence of connection of the instruments interfaces to the vent line are as follows:<br />

Level 1: PACS photometer --> PACS colimator --> PACS Spectrometer --> SPIRE Photometer --> SPIRE<br />

Spectrometer level -->HIFI level 1 --><br />

--> Level 2 : Optical Bench & instrument shield--><br />

--> Level 3: SPIRE SM JFET --> SPIRE PM JFET<br />

This is illustrated by the following figure 5.7.1-2.<br />

HTT<br />

5000<br />

510 511 512 513<br />

5010<br />

5011<br />

5012<br />

5092<br />

5013<br />

PACS<br />

Photometer<br />

[781]<br />

514 520 521<br />

5091<br />

5014<br />

5020<br />

5021<br />

5090<br />

PACS<br />

Collimator<br />

[782]<br />

526<br />

PACS<br />

Spectrometer<br />

[783]<br />

Optical Bench Plate(L2)<br />

SPIRE SPIRE HIFI<br />

522 523 524 525 527 528 529 530 532 533 534 535 536 538 539 540 542 543 544 546<br />

5022<br />

5086<br />

5023<br />

5085<br />

5084<br />

585<br />

SM JFET<br />

[832]<br />

5083<br />

5024<br />

5025<br />

5026<br />

5082<br />

5027<br />

5081<br />

5080<br />

592 591 590 586 584 583 582 580<br />

581<br />

PM JFET<br />

[831]<br />

5071<br />

5028<br />

571<br />

5029<br />

5070<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

531<br />

5030<br />

5031<br />

5032<br />

5063<br />

5033<br />

563<br />

5034<br />

5035<br />

[800]<br />

537<br />

[371-381]<br />

5062<br />

Ventline Wall Node<br />

Gaseous Helium Node<br />

5036<br />

5037<br />

562<br />

5038<br />

5061<br />

[Instrument / Optical Bench Node]<br />

Figure 5.7.1-3 -Sequence of connection of instruments levels 1, 2, and 3 on Vent line<br />

Typical thermal interface is shown on the following figure, details in annex 6<br />

570<br />

5039<br />

561<br />

[830]<br />

541<br />

5040<br />

5041<br />

5060<br />

5042<br />

5043<br />

560<br />

[939]<br />

545<br />

5044<br />

5045<br />

5054<br />

5046<br />

554<br />

550<br />

5053<br />

5050<br />

5051<br />

5052<br />

553<br />

551<br />

552


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-51/136<br />

Figure 5.7.1-4 -Typical level 1 thermal strap : SPIRE levels 1 (ref annex 6, HP-2-ASED-ID-0042 sheet<br />

9)<br />

5.7.1.1.4 Thermal contact at Herschel instruments FPU thermal interfaces<br />

For the Herschel FPU's, it has been agreed that the thermal interfaces conductance between the Herschel<br />

spacecraft, and the thermal interfaces (for levels 0, 1, 2, and 3) shall include the thermal contact (on the<br />

industry side).<br />

In order to guarantee that the conductance of the contact, on various models are similar to the tests, the<br />

contact area shall respects some constrains, given in the list below:<br />

− Surface roughness < 0.4 micron<br />

− Surface Flatness < 0.05 mm (over the strap contact area).<br />

− Gold coating > 10 microns on both sided of the coating<br />

− Mounting / dismounting at least 6 times (for System level integration and tests)<br />

5.7.1.1.5 Radiative Environment tof the FPU's<br />

The radiative environment temperature of the focal plane units is defined by the temperature of the<br />

surrounding instrument shield (maximum 2 K above the optical bench temperature and emissivity of 0.05),<br />

the optical channel from the telescope to the instruments and the optical channels from the LOU windows to<br />

the HIFI FPU. These optical channels will be designed to fulfil the straylight requirements, but no thermal<br />

load requirements are placed on their design except that the above temperature levels are fulfilled including<br />

the thermal load from these interfaces.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.7.1.2 SPIRE JFET boxes<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-52/136<br />

The SPIRE JFET boxes is now insulated from the Optical Bench (via SPIRE provided supports), and<br />

connected to the Vent Line Level 3 via Thermal straps (provided by Astrium).<br />

The design of the Thermal strap interface on the Vent line includes electrical isolation by means of a Kapton<br />

sheet.<br />

To achieve a good enough thermal isolation (and reduce the Optical Bench temperature), the thermal<br />

conductance between the JFET box and the Optical Bench shall be below 0.005W/K (goal 0.002W/K).<br />

5.7.1.3 Local Oscillator Unit<br />

The responsibility of the Thermal control of the LOU is shared between HIFI (providing the LOU with its HIFI<br />

LOU baseplate, and the LOU radiator), and Industry (providing the CVV LOU baseplate, LOU support struts,<br />

the LOU harness and LOU wave-guides, and defining the thermal radiative environment).<br />

The LOU radiator is fixed on the CVV LOU baseplate (which is then part of the Thermal path). The thermal<br />

conductance through the CVV LOU baseplate (between HIFI LOU baseplate interface and radiator interface)<br />

is TDB W/K at operating temperature.<br />

The Envelope Volume for the LOU radiator is defined in figure 5.6.1-3.<br />

The CVV LOU baseplate is thermally isolated from the colder CVV by means of the glass fibre struts.<br />

The LOU temperature control (incl. recovery after safe mode) shall be under the responsibility of the<br />

instrument. No spacecraft controlled heaters are foreseen.<br />

For the design of the LOU radiator the spacecraft thermal environment (average shield backside and CVV<br />

temperature) are provided by the spacecraft (see RD.81)<br />

5.7.1.4 PACS Bolometer Amplifier Unit<br />

Removed<br />

5.7.1.5 HIFI LOU Wave-guides<br />

NA<br />

5.7.1.6 Expected temperature environment in Herschel PLM<br />

The following figures give the temperature environment expected in the Herschel PLM (from RD 84):<br />

Cryostat external surfaces (applicable for the LOU) (fig 5.7.1-5) and cryostat internal thermal environment<br />

and heat flows for nominal life-time conditions (fig 5.7.1-6)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


LOU Radiator<br />

133K<br />

LOU Baseplate<br />

140K<br />

CVV Main<br />

Radiator 67K<br />

-Y Radiator 66K<br />

IIDA - SECTION 5<br />

182K<br />

189K<br />

245K<br />

200K<br />

257K<br />

258K<br />

192K<br />

194K<br />

86K<br />

SVM 293K<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-53/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

182K<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

CVV Upper Bulk MLI<br />

81K-132K<br />

+Y Radiator 66K<br />

-Z Radiator 65 K<br />

SVM Thermal<br />

Shield MLI<br />

92K-114K<br />

SVM Thermal Shield<br />

129K-134K<br />

SVM Top MLI<br />

230K<br />

Figure 5.7.1-5 Temperatures of the Herschel-PLM external surfaces during steady state hots case in<br />

L2


LO Wd. 67 K<br />

0.2<br />

33<br />

0.1<br />

8<br />

0<br />

0<br />

HTT MLI (up) 8 K<br />

0.1*<br />

1<br />

Beam Entr.<br />

17<br />

IIDA - SECTION 5<br />

6.8 2.1 4.3 19<br />

Optical Bench & Instr. Shield 10 K<br />

Fill. tubes<br />

2.5<br />

0.5<br />

0.2*<br />

L0 links<br />

12.2<br />

3<br />

4.5<br />

70<br />

39<br />

34<br />

28<br />

CVV 67 K<br />

Heat Shield 0.50 3 52 W K<br />

143<br />

Heat Shield 2 43K<br />

harn.<br />

47<br />

Heat Shield 1 34K<br />

2.2 up Susp. lo Susp.<br />

0.5<br />

10<br />

11<br />

1.7<br />

up SFW 10K<br />

lo SFW 16K<br />

5.5<br />

MLI<br />

He II Tank (HTT) 1.8 K<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-54/136<br />

Fill. tubes 192<br />

1<br />

Harness<br />

13 13 TSS 1.5<br />

11<br />

0.1*<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

215<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

75<br />

12.7<br />

TSS<br />

HOT 16K<br />

0.2<br />

1<br />

HOT MLI 20K<br />

2<br />

9<br />

5<br />

2<br />

178<br />

HTT MLI 11K<br />

14.1<br />

104<br />

94<br />

239<br />

106<br />

2.07 mg/s<br />

Figure 5.7.1-6 HPLM internal temperatures and Heat Flow Chart for Average Instrument Dissipation<br />

(as specified here) and Hot Case Environment at L2<br />

5.7.2 Planck Payload Module<br />

The resources provided by the Planck Payload Module and the details of the interfaces are defined below for<br />

the different thermal interfaces to the instruments:<br />

− Focal Plane Unit to Inner Baffle<br />

− Sorption Cooler to spacecraft radiator<br />

− 4 K Cooler interfaces to spacecraft radiator<br />

− Dilution Cooler He bottle interfaces to spacecraft<br />

− Sorption cooler pipes to V-groove shields<br />

− 4 K cooler pipes to V-groove shields<br />

− Dilution Cooler pipes to V-groove shields<br />

− Wave-guides to V-groove shields<br />

An overview of the thermal design and interfaces is given in Figure 5.7.2-1.<br />

GHe Ventline


Sorption Cooler<br />

2 redundant units<br />

➦ ➦<br />

485K<br />

80b<br />

➦<br />

280K<br />

0.4b<br />

LFI<br />

5.7.2.1 Focal Plane Unit<br />

➦<br />

1.<br />

➦<br />

➦<br />

➦<br />

IIDA - SECTION 5<br />

2<br />

4K Cooler<br />

➦<br />

➦<br />

➦<br />

➦<br />

HFI<br />

4He tank<br />

20K stage<br />

4K Stage<br />

1.6K Stage<br />

0.1K Stage<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-55/136<br />

Dilution cooler<br />

3He tank<br />

Radiator<br />

Figure 5.7.2-1: Planck PLM Thermal Interfaces Schematic<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

SVM<br />

(room<br />

Temperature)<br />

V-Groove<br />

Shields<br />

50K Radiator<br />

Cold Payload<br />

The combined focal plane unit of LFI and HFI is mechanically mounted to the Planck telescope support<br />

structure. The thermal interface parameters of this mechanical interface to the Planck telescope support<br />

structure is shown in Figure 5.7.2-1.<br />

The thermal interface of the FPU with the PPLM is the same that the mechanical interface (Figure 5.6.2-1).<br />

The LFI heat switch between the PPLM and the LFI FPU has been removed from the FM (will be<br />

implemented on LFI STM to reduce test duration).<br />

Another thermal interface of the FPU to the optical bench is thermal connection of the HFI JFET unit. This<br />

unit is mounted as well to the back of the Primary reflector panel. It needs to be thermally coupled to the<br />

radiator and mechanically isolated from the spacecraft. The JFET box is mounted by means of 4 flexible<br />

metallic blades (part of JFET box) to provide sufficient thermal contact and avoid deformation of the Primary<br />

Reflector (optical) panel. The maximum supported heat load is given in paragraph 5.9.<br />

The environment/radiative thermal interface to the focal plane is given by the surface properties and the<br />

temperature of the inner enclosure of the Planck Telescope Baffles bench. The details of these parameters<br />

are given in Figure 5.7.2-2


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-56/136<br />

Figure 5.7.2-2: Temperature distribution for Planck (ref RD78)<br />

The thermal interface of the FPU with the PPLM is the same that the mechanical interface (Figure 5.6.2-1).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-57/136<br />

PPLM COATING<br />

________: Low emissivity 0.02<br />

Polished Aluminium<br />

--------------: High Emissivity 0.9<br />

Black painted open honeycomb<br />

Figure 5.7.2-3: Thermal environment of PPLM Baffles to FPU (continuous red line is low emissivity<br />

(Polished Al coating), Dashed blue line is radiator Area (Black open honeycomb)<br />

5.7.2.2 Planck Instrument Units on Spacecraft Radiators<br />

In this paragraph the thermal interfaces of the units mounted on the s/c radiator are discussed.<br />

The following units are to be considered:<br />

5.7.2.2.1 Sorption cooler Compressor<br />

The sorption cooler compressor dissipates 520W average (1.2kW peak) and needs a specific thermal<br />

interface (heat pipes) to evacuate the dissipated power from the unit and spread it on the whole radiator<br />

area.. The mounting interface is defined in <strong>section</strong> 5.6. and the thermal dissipation is listed in <strong>section</strong> 5.9.<br />

5.7.2.2.2 4 K cooler warm units<br />

The 4 K cooler compressor, ancillary panel, and electronics are directly hard mounted on a dedicated<br />

radiator (see figure 5.6.3-12.), allowing to evacuate directly the heat to space.<br />

5.7.2.2.3 Dilution cooler<br />

The dilution cooler consists of the 3 He and 4 He tanks, the DCCU, and the pipes to the tanks, and to the cold<br />

end. Only the DCCU is mounted on tha radiator<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.7.2.3 Pipes / Wave-guides / Harness<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-58/136<br />

This paragraph defines the thermal interfaces of the instrument hardware other than harness, that has to be<br />

routed from the Planck SVM radiator equipment, respectively the SVM upper platform to the Planck FPUand<br />

have thermal interfaces (heat exchangers for coolers, thermal anchoring for wave-guides and harnesses) to<br />

the V-grooves and the PPLM.<br />

The routing of the pipes and interface of the heat exchangers is described in annex 7 in the PPLM and<br />

annex 9 in the SVM.<br />

5.7.2.3.1 Sorption cooler pipes<br />

At the level of the v-groove shields, the instrument will provide heat exchangers for the sorption cooler pipes.<br />

The thermal interface of the heat exchanger is defined by the spacecraft and described in details in annex 7.<br />

The spacecraft does not provide any further thermal interface to the pipes. Mechanical interfaces are<br />

proposed.<br />

5.7.2.3.2 4 K cooler pipes<br />

At the level of the v-groove shields, the instrument will provide heat exchangers for the 4 K cooler pipes. The<br />

pipes are currently thermally connected only on the 50 K Shield (Figure 5.6.2-6). There are mechanical<br />

interfaces on the other shield, which could be used to reduce the thermal load on the 50K shield<br />

5.7.2.3.3 Dilution cooler<br />

At the level of the v-groove shields, the instrument will provide heat exchangers for the dilution cooler pipes.<br />

The dilution cooler pipes are heat sunk on each V-Groove shields (see Figure 5.6.2-7).<br />

5.7.2.3.4 Wave-guides<br />

Each of the bundles of 4 wave-guides has a dedicated thermal strap to the v-groove shields, leading to 23<br />

thermal straps for the Wave guides. The thermal interface of the heat exchangers is defined by the<br />

spacecraft, as shown on the figure below, and detailed in the Annex 7 (drawing PLA-FPUIS8000A sheet 4).<br />

Typical interface is shown on figure 5.7.2.-4. refere to annex 7, drawing PLA-FPUI-S8000-A - Radiometer<br />

Allocated Volume sheet 4 for more details<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.7.2.3.5 Harness<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Figure 5.7.2-4 Thermal interface for wave guide<br />

ISSUE : 3.1 PAGE :5-59/136<br />

Thermal<br />

interfaces for WG<br />

The Planck instrument cryo-harness is of the responsibility of the instruments. It is desirable to have heat<br />

intercept of the cryo-harness at each V-groove.<br />

The HFI bellow between PAU and JFET is routed along a SVM-PLM strut through the 3 shields, attached to<br />

the frame, and to the JFET box.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

Figure 5.7.2-5 : routing of the HFI bellow<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-60/136<br />

The LFI harness is routed and fixed on the Waveguide support structure. Thermal interfaces to the<br />

intermediate V-Grooves is TBD.<br />

5.7.2.4 Planck Telescope<br />

The qualification temperature range for the Planck telescope is: 40K to 325K.<br />

In orbit theoperating range is 40K to 65K<br />

5.7.3 Service Modules<br />

The nominal temperature range for units mounted onto the Herschel or Planck SVM as required by<br />

instruments are defined in Table 5.7.3-1. Acceptance temperatures are 5°C below minimum and 5°C above<br />

maximum operating temperatures. Qualification temperatures are 10°C below minimum and 10°C above<br />

maximum operating temperatures. Instrument units that are not compliant with the nominal temperature<br />

ranges shall be clearly identified in the IID-B<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


Satellite<br />

Herschel<br />

Planck<br />

Instrument<br />

HFI HIFI<br />

PACS SPIRE<br />

LFI<br />

SCS<br />

Project<br />

code<br />

IIDA - SECTION 5<br />

Instrument<br />

Unit<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-61/136<br />

Temperature required by Instrument<br />

Operating<br />

Stabili<br />

ty<br />

(slope)<br />

StartSwitchupoff Nonoperating<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

T Guaranteed by TCS<br />

Operatin<br />

g<br />

T Stability<br />

Min Max DT/dt Min Max Min Max DT/dt<br />

°C °C K/h °C °C °C °C °C °C K/h<br />

HSDPU Digital Processing Unit -15 45 N/A -30 50 -35 60 -15 45 N/A<br />

HSFCU FPU Control Unit -15 45 N/A -30 50 -35 60 -15 45 N/A<br />

HSDCU Detector Control Unit -15 45 N/A -30 50 -35 60 -15 45 N/A<br />

FPDECMEC Detector (spectro) & Mechanism Control -15 45 N/A -30 50 -30 60 -15 45 N/A<br />

FPBOLC Bolometer (photometer)&Cooler Control -15 45 N/A -30 50 -30 60 -15 45 N/A<br />

FPDPU Data processing Unit -15 45 N/A -30 50 -30 60 -15 45 N/A<br />

FPSPU1/2 Signal Processing Unit (stacked) -15 45 N/A -30 50 -30 60 -15 45 N/A<br />

FPWIH Warm Intercinnecting Harness<br />

FHFCU FPU Control Unit -10 40 5.0 -25 40 -25 55 -10 40 5.0 (slope,TBC)<br />

FHLCU Local Oscillator Control Unit -10 40 1.1 -25 40 -25 55 -10 40 1.1 (slope,TBC)<br />

FHIFH IF up-converter Horizontal -10 40 1.1 -25 40 -25 55 -10 40 1.1 (slope,TBC)<br />

FHIFV IF up-converter Vertical -10 40 1.1 -25 40 -25 55 -10 40 1.1 (slope,TBC)<br />

FHLSU Local Oscillator Source Unit 10 40 1.1 -25 40 -25 55 10 40 1.1 (slope,TBC)<br />

FHHRV High Resolution Spectometer - Vertical Polarisation -10 40 1.1 -25 40 -25 55 -10 40 1.1 (slope,TBC)<br />

FHHRH High Resolution Spectometer - Horizontal Polarisation -10 40 1.1 -25 40 -25 55 -10 40 1.1 (slope,TBC)<br />

FHWEV<br />

FHWEH<br />

FHWOV<br />

Wide Band Spectrometer Electronics - Vertical Polarisation<br />

Wide Band Spectrometer Electronics - Horizontal<br />

Polarisation<br />

Wide Band Spectrometer Optics - Vertical Polarisation<br />

0<br />

0<br />

5<br />

30<br />

30<br />

15<br />

1.1<br />

1.1<br />

1.1<br />

-25<br />

-25<br />

-25<br />

40<br />

40<br />

30<br />

-25<br />

-25<br />

-25<br />

55<br />

55<br />

55<br />

0<br />

0<br />

5<br />

30<br />

30<br />

15<br />

1.1 (slope,TBC)<br />

1.1 (slope,TBC)<br />

1.1 (slope,TBC)<br />

FHWOH Wide Band Spectrometer Optics - Horizontal Polarisation 5 15 1.1 -25 30 -25 55 5 15 1.1 (slope,TBC)<br />

FHICU Instrument Control Unit -25 40 5.0 -30 50 -30 60 -25 40 5.0 (slope,TBC)<br />

FHWIH Warm interconnecting Harness -10 40 5.0 na na -25 55<br />

FHLWU LOU wave-guides (LSU side) -10 40 1,1 na na na na N/A<br />

PHBA-N DPU N (Data processing Unit - Nominal) -10 40 -20 -20 50 -10 40<br />

PHBA-R DPU R (Data processing Uni - Redundantt) -10 40 N/A -20 -20 50 -10 40 N/A<br />

PHCBC REU (Read Out Electronics) -10 40 N/A -20 -20 50 -10 40 N/A<br />

PHCBA PAU (Power Amplifier Unit) -10 30 1,1 -20 -20 50 -10 40 1.1<br />

PHDA 4KCU (4K Compressor Unit) -10 40 N/A -20 -20 40 -10 40 N/A<br />

PHDB 4KAU (4K Ancillary Unit) -10 40 N/A -20 -20 50 -10 40 N/A<br />

PHDC 4KCDE (Cooler Drive Electronics) -10 40 N/A -20 -20 50 -10 40 N/A<br />

PHDJ 4K current regulator -10 40 N/A -20 -20 50 -10 40 N/A<br />

PHEAA He3 Tank (+Z) -10 40 N/A N/A -20 50 -10 40 N/A<br />

PHEAB1 He4 Tank +Y -10 40 N/A N/A -20 50 -10 40 N/A<br />

PHEAB2 He4 Tank -Z -10 40 N/A N/A -20 50 -10 40 N/A<br />

PHEAB3 He4 Tank -Y -10 40 N/A N/A -20 50 -10 40 N/A<br />

PHEC DCCU (Dilution Cooler Control Unit) -10 40 N/A -20 -20 50 -10 40 N/A<br />

Cables and Pipes -10 40 N/A N/A -20 50 N/A<br />

PLREN REBA Nominal -20 50 N/A -30 -30 50 -20 50 N/A<br />

PLRER REBA Redundant -20 50 N/A -30 -30 50 -20 50 N/A<br />

PLAEF DAE Power box (Data acquisition Electronics -20 50 N/A -30 -30 50 -20 50 N/A<br />

PLBEU BEU (Back end Unit) -20 40 0,2 -30 -30 50 -20 40 0.2<br />

PSM3 SCC (Sorption Cooler Compressor Nominal) -13 7 3, 1, 0.5K -20 -20 60 -13 7 +/-3K<br />

PSR3 SCC (Sorption Cooler Compressor Redundant) -13 7 3, 1, 0.5K -20 -20 60 -13 7 +/-3K<br />

PSM4 SCE (Sorption cooler Electronics Nominal) -10 40 N/A -10 -20 60 -10 40 N/A<br />

PSM4 SCE (Sorption cooler Electronics Redundant) -10 40 N/A -10 -20 60 -10 40 N/A<br />

Table 5.7.3-1: Summary of Instrument temperature requirements, versus industry proposed<br />

commitments<br />

The thermal control subsystem is design in such a way to guarantee these requirements, except for<br />

HERSCHEL HIFI boxe FHICU ( +45°C), and Planck units on the upper platform: Planck PAU (-20,+40°C).<br />

Where difference is identified, the instrument requirements are considered as a goal for the TCS.


Units<br />

Units<br />

FHLWU<br />

FHWIH<br />

FHICU<br />

FHWOH<br />

FHWOV<br />

FHWEH<br />

FHWEV<br />

FHHRH<br />

FHHRV<br />

FHLSU<br />

FHLCU<br />

FHFCU<br />

FPWIH<br />

FPSPU1/2<br />

FPDPU<br />

FPBOLC<br />

FPDECMEC<br />

HSDCU<br />

HSFCU<br />

HSDPU<br />

IIDA - SECTION 5<br />

Herschel<br />

Instrument warm units T requirement<br />

FHIFV<br />

FHIFH<br />

-40 -20 0 20 40 60<br />

Temperature (°C)<br />

Planck<br />

Instrument warm units T requirement<br />

SCE (Sorption cooler Electronics Redundant)<br />

SCE (Sorption cooler Electronics Nominal)<br />

SCC (Sorption Cooler Compressor Redundant)<br />

SCC (Sorption Cooler Compressor Nominal)<br />

BEU (Back end Unit)<br />

DAE Power box (Data acquisition Electronics<br />

REBA Redundant<br />

REBA Nominal<br />

Cables and Pipes<br />

DCCU (Dilution Cooler Control Unit)<br />

He4 Tank -Y<br />

He4 Tank -Z<br />

He4 Tank +Y<br />

He3 Tank (+Z)<br />

4K current regulator<br />

4KCDE (Cooler Drive Electronics)<br />

4KAU (4K Ancillary Unit)<br />

4KCU (4K Compressor Unit)<br />

PAU (Power Amplifier Unit)<br />

REU (Read Out Electronics)<br />

DPU R (Data processing Uni - Redundantt)<br />

DPU N (Data processing Unit - Nominal)<br />

-30 -20 -10 0 10 20 30 40 50 60<br />

Temperature (°C)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-62/136<br />

Figure 5.7.2-6 :Operating temperature requirement for instruments warm units on SVM<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-63/136<br />

The contact area between boxes and structure shall be at the area of the mounting feet. This area shall be<br />

flat with no protrusion below the mounting plate.<br />

All units operating in the 270-350K range shall have a flat base-plate contact: these are all the dissipating<br />

units i.e. those where the skin dissipated power of faces not in contact with support structure is more than<br />

50W/m 2 .<br />

In the case of a flat base-plate contact area, this area must meet the following requirements for warm units<br />

on SVM:<br />

− Flatness of 0.1mm/100mm (for mounted box and structure)<br />

− Overall flatness < 0.2mm<br />

− Roughness < 3.2micron<br />

− Use of an thermal -filler or equivalent<br />

For improving radiatve exchange with the SVM environment, all warm unit boxes (except the Planck<br />

sorption cooler) will have to be coated with high emissivity coating. Emissivity shall be > 0.8<br />

HIFI units will be will be covered with MLI (baseline). High emissivity is however also required on HIFI in<br />

case adjustments would have to be made later.<br />

5.7.3.1 Thermal stability<br />

Temperature stability requirements from instruments on SVM are summarised in Table 5.7.3-1.<br />

5.7.3.1.1 Herschel<br />

SVM<br />

The temperature stability requirement on Herschel SVM and PLM are expressed by HIFI only.<br />

A temperature drift lower than 30mK/100s (1K/h) is required on the spectrometers (HRS & WBS), and Local<br />

oscillator units (LCU, LSU), and 140mK/100s (5K/h) for the other units (ICU, FCU).<br />

The current worst case for temperature stability is the maximum tilt of the satellite when the Solar Aspect<br />

angle moves from +30° to –30° (End of life conditions) and the solar radiation illuminates the back of the<br />

SVM.<br />

An active thermal control system (based on adjustemnt of the duty cycle for cycles of 10s) has been<br />

implemented for the HIFI units to reach the temperature stability requirement.<br />

PLM<br />

The requirements expressed by HIFI are<br />

− 15mK/100s on level 2<br />

− 6mK/100s on levels 1 and 0.<br />

Level 0 is a direct connection to the He tank, which can be considered as a very stable buffer.<br />

However, level 1 & 2 are cooled by the gas, with very little heat capacitance. Therefore the temperature<br />

stability on these levels can be guarantees only if the power dissipation on these levels are stable.<br />

Results of thermal analysis on the Herschel cryostat, base on the simplified thermal model of the instruments<br />

(including the dissipation timeline), showing in details the temperature evolution, stability, and heat flows at<br />

each of the individual interfaces can be found on RD81, <strong>section</strong> 7.4 (7.4.1 for PACS, 7.4.2 for SPIRE, and<br />

7.4.3 for HIFI).<br />

Overall effects of the instrument (typical) dissipation timeline on the tank temperature and He mass flow rate<br />

is reported in <strong>section</strong> 7.4.4<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-64/136<br />

For HIFI, the temperature stability expressed can be considered as fullfiled, except during the sharp HIFI<br />

heat peaks (magnets heaters)<br />

5.7.3.1.2 Planck<br />

SVM:<br />

The temperature stability required by Planck instruments are both related to the equipment's mounted on the<br />

SVM sub-platform:<br />

− HFI PAU requires 1.1K/h<br />

− LFI BEU requires 0.2K/h.<br />

− SCS requires +/-3K/1K/0.5K (or 6K/2K/1K peak-peak) for the next beds adjacent to the cooling bed<br />

(ie this concerns the 3 first beds which are adsorbing H2, and which drive the pressure/temperature<br />

stability of the 20K levels).<br />

These stability requirements from instrumentshave been included in IID-B 2.1 and are not formally accepted<br />

as requirements but as goals, as no specific temperature stabilisation is feasible given the amplitude of the<br />

equipment dissipation. Originally 3K/h were proposed in the TCS subsystem (before the expression of<br />

theses new requirements).<br />

The main perturbation on Planck is the operation of the sorption cooler, with heat peaks of the order of<br />

1.2kW, on the nearby lateral panels.<br />

However, SVM thermal analysis shows that the goals can be respected for the units on the subplatform, but<br />

not for the sorption cooler compressor (6K peak peak for the 1st adjecent cooler after the cooling bed, 4.5K<br />

peak-peak for the other beds).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


temperature (°C)<br />

Temperature (°C)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

IIDA - SECTION 5<br />

Sorption cooler permanent regime<br />

Temperature evolution on the beds (EOL 8)<br />

-5<br />

0 1000 2000 3000 4000<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

Time (s)<br />

Sorption cooler permanent regime<br />

Temperature evolution on the beds (EOL 8)<br />

1st adjacent to cooling<br />

bed<br />

2nd adjacent to cooling<br />

bed<br />

3rd adjacent to cooling<br />

bed<br />

Crossing Heat pipes<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-65/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

cooling bed<br />

1st adjacent to<br />

cooling bed<br />

2nd adjacent to<br />

cooling bed<br />

3rd adjacent to<br />

cooling bed<br />

4th Adjacent to<br />

cooling bed<br />

5th Adjacent to<br />

cooling bed<br />

Crossing Heat<br />

pipes<br />

-2<br />

0 100 200 300 400 500 600 700<br />

Time (s)<br />

Figure 5.7.2-7 : Expected temperature fluctuations for Planck Sorption cooler, at interface beds/heat<br />

pipes: 1st adjacent 7K peak to peak, other: 4.7 K peak to peak (data from Planck SVM Thermal<br />

control analysis, taking into account 10% margin on mass x heat capacitance)


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-66/136<br />

PLM:<br />

There are no temperature stability requirements for the PPLM, but internal straylight requirements.<br />

The temperature fluctuation results are therefore processed to evaluate their impacts on the straylight.<br />

The sources of fluctuation which are analysed are:<br />

− the temperature fluctuation of the SVM (from Sorption cooler compressor cycle, 667s/4000s cycle),<br />

highly damped in the PPLM by the thermal insulation.<br />

− The fluctuation of the heat loads of the sorption cooler on the V-grooves, induced by the mass flow<br />

variations (period 667s/4000s).<br />

− The fluctuations of the illumination of the upper part of the primary reflector by the moon (at spin<br />

frequency)<br />

The current estimated temperature fluctuations on the PPLM are as follows:<br />

PPLM<br />

thermal stability<br />

study<br />

results<br />

1: SVM<br />

Shield 3 internal negligible -<br />

Shield 3 external negligible -<br />

Perturbation source<br />

2; Sorption Cooler<br />

JPL 2002 data<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

3: Moon illumination<br />

Amplitude Period Amplitude Period Amplitude Period<br />

Sec. Reflector negligible -<br />

Prim. Reflector negligible -<br />

Baffle internal negligible -<br />

5.7.4 Temperature monitoring<br />

7880 µK<br />

4088 µK<br />

1200 µK<br />

# 100 µK<br />

# 0.4 µK<br />

negligible<br />

# 0.2 µK<br />

negligible<br />

400 µK<br />

# 30 µK<br />

# 4000 s<br />

# 667 s<br />

# 4000 s<br />

# 667 s<br />

# 4000 s<br />

# 667 s<br />

# 4000 s<br />

# 667 s<br />

# 4000 s<br />

# 667 s<br />

- -<br />

- -<br />

- -<br />

0.1 µK 1<br />

30 µK 2<br />

The instrument require temperature monitoring from the spacecraft at some of the thermal interfaces.<br />

The following Table 5.7.4-1 summarises the need from instruments, expressed in IID-B's.<br />

For Herschel PLM, the CCU will monitor all thermal interfaces (FPU feet, thermal straps, MOLA & LOU<br />

interfaces, in a similar way for all 3 Herschel instruments. The request expressed only by SPITRE in IID-B is<br />

extended to other instruments. This information will be available in the TM.<br />

For SVM's, and Planck PLM, the temperatures will be monitored by the CDMU<br />

The temperature monitoring requests expressed by instrument will be satisfied. In addition, the thermal<br />

control subsystem will have a certain number of sensors for temperature control and temperature monitoring<br />

used to guarantee that the temperature is in the required range. These temperature information will be<br />

available in the TM.<br />

60 s<br />

60 s


Herschel<br />

Planck<br />

HIF<br />

I<br />

SPIRE<br />

PACS<br />

HFI<br />

LFI<br />

Sorption cooler<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-67/136<br />

S/C EGSE Instr Location Unit<br />

Powered by Temp. Range<br />

min max<br />

Resolutio<br />

n<br />

Accurac<br />

y<br />

To be<br />

meas<br />

ured<br />

Acro<br />

nym<br />

H-PLM not specified<br />

H-SVM not specified<br />

PFU thermal<br />

On Instrument Shield, close to SPIRE<br />

I/F<br />

L0; Cooling Strap 5; to<br />

PFU thermal<br />

"SPIRE SM Detector enclosure" I/F<br />

1<br />

1<br />

3.0K<br />

1.6K<br />

20.0K<br />

2.0K<br />

± 0.1K<br />

± <<br />

0.001K<br />

CCU<br />

CCU<br />

T213<br />

T225<br />

L0; Cooling Strap 6; to PFU thermal 1 2.0K 10.0K ± 0.01K CCU T226<br />

L0; Cooling Strap 7; to<br />

PFU thermal<br />

"SPIRE Cooler Evaporator HS" I/F<br />

1 1.5K 2.2K<br />

± <<br />

0.01K<br />

CCU T227<br />

L1; on Ventline upstream strap 4 to<br />

"SPIRE Optical Bench"<br />

PFU thermal<br />

I/F<br />

1 2.0K 10.0K ± 0.01K CCU T235<br />

L1; on Ventline downstream strap 4<br />

to "SPIRE Optical Bench"<br />

PFU thermal<br />

I/F<br />

1 2.0K 10.0K ± 0.01K CCU T236<br />

L3; on Ventline to JFET-Phot PFU thermal 1 3.0K 20.0K ± 0.1K CCU T246<br />

L3; on Ventline to JFET-Spec PFU thermal 1 3.0K 20.0K ± 0.1K CCU T247<br />

L1; on Strap 4 on SPIRE FPU side PFU thermal 1 2.0K 10.0K ± 0.01K CCU T248<br />

On Spire JFET-Spec<br />

PFU thermal<br />

(Pos on Structure or L3 strap) I/F<br />

1 13.0K 370.0K ± 1K egse T249<br />

On Spire JFET-Spec<br />

PFU thermal<br />

(Pos on Structure or L3 strap) I/F<br />

1 3.0K 20.0K ± 0.1K CCU T250<br />

On Spire JFET-Phot<br />

PFU thermal<br />

(Pos on Structure or L3 strap) I/F<br />

1 13.0K 370.0K ± 1K egse T251<br />

On Spire JFET-Phot<br />

PFU thermal<br />

(Pos on Structure or L3 strap) I/F<br />

1 3.0K 20.0K ± 0.1K CCU T252<br />

OB Plate near SPIRE foot (center) PFU thermal 1 13.0K 370.0K ± 1K egse T253<br />

OB Plate near SPIRE foot (center) PFU thermal 1 3.0K 20.0K ± 0.1K CCU T254<br />

OB Plate near SPIRE foot (-z+y) PFU thermal 1 13.0K 370.0K ± 1K egse T255<br />

OB Plate near SPIRE foot (-z+y) PFU thermal 1 3.0K 20.0K ± 0.1K CCU T256<br />

OB Plate near SPIRE foot (-y-z) PFU thermal 1 3.0K 20.0K ± 0.1K CCU T258<br />

H-SVM not specified CDMU<br />

H-PLM FPFPU 0 14 1.5K 30.0K TBD<br />

FPDECMEC 2 0 -40°C +70°C CDMU TBD<br />

FPBOLC 2 0 -40°C +70°C CDMU TBD<br />

FPDPU 2 0 -40°C +70°C CDMU TBD<br />

FPSPU1 2 0 -40°C' +70°C CDMU TBD<br />

FPSPU2 2 0 -40°C +70°C CDMU TBD<br />

FPU PHA 1 Adjust Adjust<br />

JFET PHCA 1 1 40.0K70.0K CDMU TBD<br />

Primary reflector 1 40.0K70.0K CDMU TBD<br />

Primary reflector 1 40.0K350.0K CDMU TBD<br />

secondary reflector 1 40.0K 70.0K CDMU TBD<br />

secondary reflector 1 40.0K 350.0K CDMU TBD<br />

SC baffle 1 40.0K 70.0K CDMU TBD<br />

SC baffle 1 40.0K 350.0K CDMU TBD<br />

DPUs PHBA 1 1 -30°C 70°C CDMU TBD<br />

PAU PHCBA 1 12 -30°C 70°C CDMU TBD<br />

REU PHCBC 1 14 -30°C 70°C CDMU TBD<br />

4K Compressor Unit PHDA 1 1 -30°C 70°C CDMU TBD<br />

4K Ancillary Unit PHDB 1 1 -30°C 70°C CDMU TBD<br />

4KCDE PHDC 1 1 -30°C 70°C CDMU TBD<br />

4K Cold End PHDD 1 -269°C 27°C TBD<br />

4K regulator PHDJ 1 1 -30°C 70°C CDMU TBD<br />

He3 Tank PHEAA 1 1 -30°C 70°C CDMU TBD<br />

He4 Tanks PHEAB 3 1 -30°C 70°C CDMU TBD<br />

0.1K Control Unit PHEC 1 1 -30°C 70°C CDMU TBD<br />

PPLM “Cold” – FEU Interface PLFEU 1 40.0K 353.0K CDMU TBD<br />

FEU PLFEU 1 18.0K 353.0K TBD<br />

Waveguide Interfaces PLFEU 1 20.0K 353.0K TBD<br />

PPLM “Warm” - WG (*) Interface PLWG 1 40.0K 353.0K CDMU TBD<br />

PPLM “Warm” – BEU Interface PLBEU 1 240.0K 353.0K CDMU TBD<br />

SVM – REBA Nom. PLREN 1 240.0K 353.0K TBD<br />

SVM – REBA Red. PLRER 1 240.0K 353.0K TBD<br />

PPLM “Warm” – BEU/DAE PLBEU 1 240.0K 353.0K TBD<br />

DAE Power box PLAEF 1 1 240.0K 353.0K CDMU TBD<br />

SCCE-HFI Interface PSM/R1 1 17K 24K TBD<br />

SCCE- LFI Interface PSM/R1 1 17K 24K TBD<br />

SCP - Coldest Shield PSM/R2 1 1 40K 70K CDMU TBD<br />

SCP – Intermediate Shield PSM/R2 1 1 80K 150K CDMU TBD<br />

SCP – Warmest Shield PSM/R2 1 1 140K 190K CDMU TBD<br />

SCC Radiator<br />

P-SVM<br />

SCE<br />

PSM/R3<br />

PSM/R4<br />

1<br />

1<br />

220K<br />

250K<br />

350K<br />

350K<br />

TBD<br />

TBD<br />

H-PLM<br />

HSVM<br />

P-PLM<br />

P-SVM<br />

P-PLM<br />

P-SVM<br />

P-PLM<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-68/136<br />

Table 5.7.4-1 : Temperature monitoring required by instruments (from IID-B's)<br />

In the following table, the temperature monitoring that will be implemented in the spacecraft, together with<br />

the reference TM:<br />

For the Warm units in the SVM, the measurement will be performed by the CDMU.<br />

For the Planck PLM, the measurement will be performed also by the CDMU.<br />

For the Herschel PLM, the measurement will be performed by the CCU<br />

Instr<br />

ume<br />

nt<br />

description code code TM<br />

id<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

TM<br />

id<br />

TM<br />

id<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Tmin Tmax monitore<br />

d by<br />

HIFI Focal Plane Control Unit FH FCU -40 80 CDMU<br />

HIFI Instrument Control Unit FH ICU -40 80 CDMU<br />

HIFI IF upconverter Horizontal FH IFH -40 80 CDMU<br />

HIFI IF up converter Vertical FH IFV -40 80 CDMU<br />

HIFI Local Oscillator Control Unit FH LCU -40 80 CDMU<br />

HIFI Local Oscillator Source Unit FH LSU 73 121 169 -40 80 CDMU<br />

HIFI HRS ACS Horizontal polarisation FH HRH 74 122 170 -40 80 CDMU<br />

HIFI HRS ACS Vertical polarisation FH HRV 71 119 167 -40 80 CDMU<br />

HIFI WBS Electronics for Horizontal Polarisation FH WEH 76 124 172 -40 80 CDMU<br />

HIFI WBS Electronic for Vertical Polarisation FH WEV 70 118 166 -40 80 CDMU<br />

HIFI WBS Optic for Horizontal Polarisation FH WOH 72 120 168 -40 80 CDMU<br />

HIFI WBS Optic for Vertical Polarisation FH WOV 69 117 165 -40 80 CDMU<br />

SPIRE Focal Plane Control unit HS FCU 67 115 163 -40 80 CDMU<br />

SPIRE Detector Control unit HS DCU 68 116 164 -40 80 CDMU<br />

SPIRE Digital Processing Unit HS DPU 66 114 162 -40 80 CDMU<br />

PACS Detector & Mechanism Control (DEC/MEC) FP DECM 63 111 159 -40 80 CDMU<br />

PACS Bolometer Cooler Control unit FP BOLC 62 110 158 -40 80 CDMU<br />

PACS Data Processing Unit FP DPU 60 108 156 -40 80 CDMU<br />

PACS Signal processing unit Nominal (stacked wit FP SPU1 96 144 -40 80 CDMU<br />

PACS Signal processing unit Redundant FP SPU2 CDMU<br />

LFI DAE Back End Unit (BEU) PL BEU 70 118 166 -40 80 CDMU<br />

LFI DAE Power Box PL CB 63 -40 80 CDMU<br />

LFI REBA Nominal PL REN 65 113 161 -40 80 CDMU<br />

LFI REBA Redundant PL RER -40 80 CDMU<br />

LFI SC Compressor (SCC) Nominal PS M3 -40 80 CDMU<br />

LFI SC Electronics (SCE) Nominal PS M4 53 101 149 -40 80 CDMU<br />

LFI SC Compressor (SCC) Redundant PS R3 -40 80 CDMU<br />

LFI SC Electronics (SCE) Redundant PS R4 55 103 151 -40 80 CDMU<br />

HFI Data Processing Unit (DPU) Nominal PH BA-N 49 97 145 -40 80 CDMU<br />

HFI Data Processing Unit (DPU) Redundant PH BA-R 92 140 -40 80 CDMU<br />

HFI Pre-Amplifier Unit (PAU) PH CBA 90 138 -40 80 CDMU<br />

HFI Readout Electronics Unit (REU) PH CBC 50 98 146 -40 80 CDMU<br />

HFI 4K Cooler Compressor Unit (CCU) PH DA 91 139 -40 80 CDMU<br />

HFI 4K Cooler Ancillary Unit (CAU) PH DB 51 99 147 -40 80 CDMU<br />

HFI 4K Cooler Electronics Unit (4K-CDE) PH DC 93 141 -40 80 CDMU<br />

HFI 4K Cooler Current Regulator (CCR) PH DJ 52 100 148 -40 80 CDMU<br />

HFI 0.1K Dilution Cooler Control Unit (0.1K-DC PH EB 89 137 -40 80 CDMU<br />

HFI 0.1K Dilution Cooler GSU 3He Tank (D3T) PH EAAA 64 112 -40 80 CDMU<br />

HFI 0.1K Dilution Cooler GSU 4He Tank (D4T) PH EAAB 94 142 -40 80 CDMU<br />

HFI 0.1K Dilution Cooler GSU 4He Tank (D4T) PH EAAC 95 143 -40 80 CDMU<br />

HFI 0.1K Dilution Cooler GSU 4He Tank (D4T) PH EAAD 96 144 -40 80 CDMU<br />

Table 5.7.4-2 :Instrument warm units Temperature monitoring provided by CDMU


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-69/136<br />

Location Description Quantity ID Type Nominal T Range Accuracy (1)<br />

Groove 1 SC heat exchanger 1 1 1 N 135K 40-350K ±2.5 K<br />

Groove 1 1 101 R 135K 40-350K ±2.5 K<br />

Groove 1 SC heat exchanger 2 1 2 N 135K 40-350K ±2.5 K<br />

Groove 1 1 102 R 135K 40-350K ±2.5 K<br />

Groove 1 +Z External edge 1 3 N 113K 40-350K ±2.5 K<br />

Groove 1 1 103 R 113K 40-350K ±2.5 K<br />

Groove 2 SC heat exchanger 1 1 4 N 80K 40-350K ±2.5 K<br />

Groove 2 1 104 R 80K 40-350K ±2.5 K<br />

Groove 2 SC heat exchanger 2 1 5 N 80K 40-350K ±2.5 K<br />

Groove 2 1 105 R 80K 40-350K ±2.5 K<br />

Groove 3 SC heat exchanger 1 1 6 N 50K 40-70K ± 1K<br />

Groove 3 1 106 R 50K 40-70K ± 1K<br />

Groove 3 SC heat exchanger 2 1 7 N 50K 40-70K ± 1K<br />

Groove 3 1 107 R 50K 40-350K ±2.5 K<br />

Groove 3 Wave Guides Interface1 1 8 N 50K 40-70K ± 1K<br />

Groove 3 1 108 R 50K 40-350K ±2.5 K<br />

Groove 3 Wave Guides Interface2 1 9 N 50K 40-70K ± 1K<br />

Groove 3 1 109 R 50K 40-350K ±2.5 K<br />

Groove 3 Optical cavity 1 10 N 50K 40-70K ± 1K<br />

Groove 3 1 110 R 50K 40-350K ±2.5 K<br />

PR panel JFET interfaces 1 11 N 40K 40-70K ± 1K<br />

PR panel 1 111 R 40K 40-70K ± 1K<br />

PR panel FPU interface 1(lower beam) 1 12 N 40K 40-70K ± 1K<br />

PR panel 1 112 R 40K 40-350K ±2.5 K<br />

PR panel FPU interface2 (+Y) 1 13 N 40K 40-70K ± 1K<br />

PR panel 1 113 R 40K 40-70K ± 1K<br />

PR panel FPU interface3 (-Y) 1 14 N 40K 40-70K ± 1K<br />

PR panel 1 114 R 40K 40-350K ±2.5 K<br />

Baffle Baffle 1 (Front face) 1 15 N 40K 40-70K ± 1K<br />

Baffle 1 115 R 40K 40-350K ±2.5K<br />

Baffle Baffle 2 (Lateral face medium) 1 16 N 40K 40-70K ± 1K<br />

Baffle 1 116 R 40K 40-350K ±2.5K<br />

Baffle Baffle 3 (Lateral face upper pos 1 17 N 40K 40-70K ± 1K<br />

Baffle 1 117 R 40K 40-350K ±2.5K<br />

Baffle Baffle 3 (Rear face) 1 18 N 40K 40-70K ± 1K<br />

Baffle 1 118 R 40K 40-350K ±2.5K<br />

Reflectors PR1 1 19 N 40K 40-70K ± 1K<br />

Reflectors 1 119 R 40K 40-70K ± 1K<br />

Reflectors PR2 1 20 N 40K 40-70K ± 1K<br />

Reflectors 1 120 R 40K 40-70K ± 1K<br />

Reflectors SR1 1 21 N 40K 40-70K ± 1K<br />

Reflectors 1 121 R 40K 40-70K ± 1K<br />

Reflectors SR2 1 22 N 40K 40-70K ± 1K<br />

Reflectors 1 122 R 40K 40-70K ± 1K<br />

Table 5.7.4-3 :PPLM Temperature monitoring provided bu CDMU<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-70/136<br />

ORBIT<br />

range Accuracy range Accuracy<br />

He tank All DLCM 1 tank lower side -X-Y, Integrated in DLCM housing C100 T101 1 1 1,5K - 2,2K ± 0,01K 1,5K - 2,2K ± 0,01K<br />

He tank All DLCM 2 tank lower side -X+Y, Integrated in DLCM housing C100 T102 1 1 1,5K - 2,2K ± 0,01K 1,5K - 2,2K ± 0,01K<br />

He tank All Tank upper side+x-z+y nearby outlet C100 T107 1 1 1,5K - 2,2K ± 0,01K 1,5K - 15.0K ± 0,01K<br />

He tank All Tank upper side +x-y-z integrated int PPS housing C100 T111 1 1 1,5K - 2,2K ± 0,01K 1,5K - 15.0K ± 0,01K<br />

He tank All Tank upper side +x-y-z integrated int PPS housing C100 T112 1 1 1,5K - 2,2K ± 0,01K 1,5K - 2,2K ± 0,01K<br />

OB PACS OB Plate near PACS mounting foot (+z) C100 T202 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

OB HIFI OB Plate near HIFI mounting foot (+z/-y) PT1000 T207 1 13K - 370K ± 1K<br />

OB HIFI OB Plate near HIFI mounting foot (+z/-y) C100 T208 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

OB HIFI On Instrument Shield, close to HIFI PT1000 T211 1 13K - 370K ± 1K<br />

OB PACS On Instrument Shield, close to PACS C100 T212 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

OB SPIRE On Instrument Shield, close to SPIRE C100 T213 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K<br />

0,004K <<br />

± 0,1K<br />

0,004K <<br />

L0 PACS L0; Cooling Strap 1; to "PACS RED Detector" C100 T221 1 1 1,6K - 2,0K < 0,008K 1,6K - 2,0K < 0,008K<br />

L0 PACS L0; Cooling Strap 2; to "PACS Sorption Cooler Evaporator" C100 T222 1 1 1,5K - 2,2K<br />

TBC<br />

± 0,01K 1,5K - 2,2K<br />

TBC<br />

± 0,01K TBC<br />

L0 PACS L0; Cooling Strap 3; to "PACS Sorption Cooler Pump" C100 T223 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K TBC<br />

0,004K <<br />

0,004K <<br />

L0 PACS L0; Cooling Strap 4; to "PACS BLUE Detector" C100 T224 1 1 1,6K - 2,0K < 0,008K 1,6K - 2,0K < 0,008K<br />

0,004K TBC <<br />

0,004K TBC <<br />

L0 SPIRE L0; Cooling Strap 5; to "SPIRE SM Detector enclosure" C100 T225 1 1 1,6K - 2,0K < 0,008K 1,6K - 2,0K < 0,008K<br />

L0 SPIRE L0; Cooling Strap 6; to "SPIRE Cooler Pump HS" C100 T226 1 1 2,0K - 10,0K<br />

TBC<br />

± 0,01K<br />

TBC<br />

2,0K - 10,0K ± 0,01K TBC<br />

L0 SPIRE L0; Cooling Strap 7; to "SPIRE Cooler Evaporator HS" C100 T227 1 1 1,5K - 2,2K ± 0,01K TBC 1,5K - 2,2K ± 0,01K TBC<br />

L0 HIFI L0; Cooling Strap 8; to "HIFI L0" C100 T228 1 1 1,5K - 2,2K ± 0,01K 1,5K - 2,2K ± 0,01K<br />

L1 PACS L1; on Ventline upstream strap 1 to “PACS Photometer Optics" L1 Inlet C100 T231 1 1 1,5K - 2,2K ± 0,01K 1,5K - 2,2K ± 0,01K<br />

L1 PACS L1; on Ventline downstream strap 1 to "PACS Photometer Optics" C100 T232 1 1 1,5K - 2,2K ± 0,01K 1,5K - 2,2K ± 0,01K<br />

L1 PACS L1; on Ventline downstream strap 2 to "PACS Collimator" C100 T233 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

L1 PACS L1; on Ventline downstream strap 3 to "PACS Spectrometer Housing" C100 T234 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

L1 SPIRE L1; on Ventline upstream strap 4 to "SPIRE Optical Bench" C100 T235 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

L1 SPIRE L1; on Ventline downstream strap 4 to "SPIRE Optical Bench" C100 T236 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

L1 HIFI L1; on Ventline downstream strap 5 to "HIFI L1-interface C100 T237 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

L1 PACS L1; on Strap 1 on PACS FPU Side C100 T242 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

L1 HIFI L1, on Strap 5 on HIFI FPU side C100 T244 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

L3 SPIRE L3; on Ventline to 6-JFET (JFET-Phot) C100 T246 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

L3 SPIRE L3; on Ventline to 2-JFET (JFET-Spec) C100 T247 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

L1 SPIRE L1; on Strap 4 on SPIRE FPU side C100 T248 1 1 2,0K - 10,0K ± 0,01K 2,0K - 10,0K ± 0,01K<br />

OB SPIRE On Spire 2-JFET (JFET-Spec) PT1000 T249 1 13K - 370K ± 1K<br />

OB SPIRE On Spire 2-JFET (JFET-Spec) C100 T250 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

OB SPIRE On Spire 6-JFET (JFET-Phot) PT1000 T251 1 13K - 370K ± 1K<br />

OB SPIRE On Spire 6-JFET (JFET-Phot) C100 T252 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

OB SPIRE OB Plate near SPIRE foot (center) PT1000 T253 1 13K - 370K ± 1K<br />

OB SPIRE OB Plate near SPIRE foot (center) C100 T254 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

OB SPIRE OB Plate near SPIRE foot (-z+y) PT1000 T255 1 13K - 370K ± 1K<br />

OB SPIRE OB Plate near SPIRE foot (-z+y) C100 T256 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

OB SPIRE OB Plate near SPIRE foot (-y-z) C100 T258 1 1 3,0K - 20,0K ± 0,1K 3,0K - 20,0K ± 0,1K<br />

Telescope All on telescope M1, exact position TBD PT1000 T331 to 1 1 50K - 370K ± 1K 50K - 370K ± 1K<br />

Telescope All on telescope M2, exact position TBD PT1000 T340 to 1 1 50K - 370K ± 1K 50K - 370K ± 1K<br />

Heat shields All Heat shield 1 Outside, on upper cone close to beam entrance under PT1000 T424 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

Heat shields All Heat shield 2 Outside, on upper cone close to beam entrance under PT1000 T444 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

Heat shields All Heat shield 3 Outside, on upper cone close to beam entrance under PT1000 T464 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

Cover All On Cover heat shield PT1000 T601 1 TBD TBD<br />

Cover All On Cover heat shield C100 T602 1 13K, 370K ± 1K<br />

Cover All On Cover heat shield PT1000 T603 1 TBD TBD<br />

Cover All On Cover heat shield C100 T604 1 13K, 370K ± 1K<br />

baffle All On CVV telescope Baffle, Outer cylindre -Z PT1000 T651 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

baffle All On CVV telescope Baffle, Outer cylindre +Z PT1000 T652 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

CVV All CVV Outside PT1000 T901 to 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

CVV HIFI LOU baseplate PT1000 T931 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

CVV HIFI LOU Radiator PT1000 T932 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

CVV HIFI LOU Radiator PT1000 T933 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

CVV HIFI LOU WG near LOU PT1000 T934 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

CVV HIFI LOU WG near LOU PT1000 T935 1 1 13K, 370K ± 1K 13K, 370K ± 1K<br />

GRO<br />

Functional Measurement Table<br />

Cryostat Instrum<br />

component ent<br />

Mounting Position<br />

Sensor<br />

Type<br />

Acronym<br />

UND<br />

CCU Measurement EGSE Measurement<br />

Table 5.7.4-4 :HPLM temperatures relevant to Instruments monitored by CCU<br />

5.8 OPTICAL INTERFACES<br />

5.8.1 Herschel Instruments<br />

5.8.1.1 Herschel Telescope Interfaces<br />

The Herschel telescope is described in chapter 4.3.1, and the telescope Mechanical and optical ICD is now<br />

included in Annex 11.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-71/136<br />

The optical interfaces are controlled via a set of mechanical interfaces defined w.r.t. spacecraft co-ordinates.<br />

The focal plane units will be mechanically mounted to the Herschel optical bench. This optical bench is<br />

aligned to the telescope in accordance with the alignment requirements as defined in Annex 1. Optical bench<br />

and telescope will be aligned to the same reference cube, mounted at the CVV.<br />

5.8.1.1.1 Optical Interface Requirements<br />

The following optical interface requirements will be fulfilled by the telescope:<br />

− pupil: limited by the secondary reflector<br />

− aperture stop: at the secondary mirror<br />

− unvignetted telescope field of view: +/- 0.25°<br />

− linear central obscuration: about 8.7% (Eliptical hexapod legs & small scatter cone)<br />

− system f/D (D = effective aperture): 8.68<br />

− diffraction limits of telescope: at 150 microns (goal: 80 microns)<br />

− relative spectral transmission: 97% at BOL<br />

− maximum operational temperature: 70K


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-72/136<br />

Over the entire FOV at angular distances 3' from the peak of the point-spread-function (PSF), the straylight<br />

will be: < 1.10 -4 of PSF peak irradiance (in addition to level given by diffraction).<br />

Self-emission<br />

The straylight level, received at the defined detector element location of the PLM/Focal Plane Unit Straylight<br />

model by self emission (with «cold» stops in front of PACS and SPIRE instrument detectors), not including<br />

the self emission of the telescope reflectors alone, should be < 10 % of the background induced by selfemission<br />

of the telescope reflectors.<br />

However the Herschel straylight requirement of 10% will not be fullfilled (see rd83) PACS: 25.3% SPIRE:<br />

13.1% (worst case temperatures & emissivities).<br />

5.8.1.3 CVV Windows<br />

The CVV will provide seven optical windows with 34 mm free aperture for the LOU beams to the HIFI FPU<br />

(see figure below, and annex 6 for ICD).<br />

In addition two optical windows with 34 mm free aperture will be provided in order to allow LOU-FPU<br />

alignment measurements.<br />

Figure 5.8.1-1: Design and layout of cryostat vacuum feedthroughs<br />

The LOU windows spacing is designed to be 50mm at operating temperature.<br />

This valid for LOU, LOU base plate (both with a spacing of 50.168mm at room temperature, giving 50mm @<br />

130K) , and CVV (spacing of 50.2mm at room temperature, giving 50mm @ 70K).<br />

The HIFI FPU has a spacing of 50mm at room temperature, however, it is<br />

fully compatible with the interface definition at operating temperature.<br />

This mismatch is identified by both parties and is taken into account with the following:<br />

− The misalignment at FPU level will be compensated by adjustments of parts inside the FPU.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-73/136<br />

− the position of the LO optical alignment devices on the FPU are compliant with the 50mm spacing at<br />

operating temperature (location 200mm each from the centre, at operating temperature)."<br />

In addition, The diameter of the CVV windows is now 34mm, to cope with CVV manufacturing tolerances,<br />

and LOU unit alignment, and guarantee a 30mm LO beam<br />

5.8.2 Planck Instruments<br />

5.8.2.1 Planck Telescope Interfaces<br />

The Planck telescope is described in chapter 4.4.1. Further interface relevant characteristics are:<br />

The telescope operates at a temperature between 45K and 60K.<br />

The Planck telescope is an offset Aplanatic telescope. Its main characteristics are:<br />

− focal length: 1800 mm<br />

− maximum field of view: ±5°<br />

− optical quality: tbd variation w.r.t. the ideal<br />

− positioning of optical elements:<br />

• the position of the optical elements especially the secondary versus primary and the focus<br />

position are given in Figure 5.8.2-1 below<br />

The telescope LOS will remain within 0.5° of the nominal direction considering the mechanical, thermal and<br />

radiation environment.<br />

The optical interfaces are controlled via a set of mechanical interfaces defined w.r.t. spacecraft co-ordinates.<br />

The focal plane unit will be mechanically mounted to the Planck telescope support.<br />

The FPU actual average focal surface - with regards to which the FPU alignment at telescope focus will be<br />

made - is the surface which:<br />

has the same shape than the theoretical one<br />

is shifted along ZRDP of the distance D, D being defined hereafter:<br />

D =<br />

<br />

1<br />

horn hi<br />

i<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

<br />

di<br />

α<br />

horn i<br />

where the weighting factor α i is the optical system WFE degradation requirement:<br />

Horn frequency Weighting factor<br />

LFI-30 GHz 119<br />

LFI-44 GHz 92<br />

LFI-70 GHz 92<br />

LFI-100 GHz (deleted) 83<br />

HFI-100 GHz 72<br />

HFI-143 GHz 60<br />

HFI-217 GHz 57<br />

HFI-353 GHz 50<br />

HFI-545 GHz 48<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

1<br />

α


IIDA - SECTION 5<br />

Horn frequency Weighting factor<br />

HFI-857 GHz 42<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-74/136<br />

Figure 5.8.2-1: Planck Telescope Positioning of Optical Elements<br />

di is the difference between the actual (focal surface for a given environment) horn hi phase centre Zrdp coordinate<br />

and its theoretical Zrdp co-ordinate<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

FPU average<br />

focal surface<br />

horn h 1 phase center<br />

horn h 2 phase center<br />

horn h i phase center<br />

Zrdp<br />

d 2<br />

D<br />

d i<br />

d 1<br />

FPU theoretical<br />

focal surface<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-75/136<br />

The required position and knowledge of the horns with regards to this surface, and the maximum distance D<br />

allowed, are given in the Planck Alignment Plan (cf AD 7-2)<br />

Each horn shall be manufactured such that the WFE induced by the difference between actual far field<br />

pattern and the theoretical one, is lower than requested by the following table:<br />

Horn frequency Maximum degradation due to horn manufacturing<br />

WFE (microns) Gain (via Ruze formula) (1.E-2)<br />

LFI-30 GHz 16 (TBC) 0.04<br />

LFI-44 GHz 13 (TBC) 0.05<br />

LFI-70 GHz 13 (TBC) 0.08<br />

LFI-100 GHz (deleted) 10 (TBC) 0.09<br />

HFI-100 GHz 10 (TBC) 0.09<br />

HFI-143 GHz 8 (TBC) 0.1<br />

HFI-217 GHz 8 (TBC) 0.16<br />

HFI-353 GHz 5 (TBC) 0.16<br />

HFI-545 GHz 5 (TBC) 0.248<br />

HFI-857 GHz 5 (TBC) 0.39<br />

5.1.1.2 Planck Straylight<br />

The Straylight is defined for the Planck instruments as the radiative power that reaches a detector within its<br />

RF bandwidth, and that does not originate from sources close to the main beam.<br />

For Planck, the detectors consist of either bolometers or HEMT amplifiers. Straylight induces a signal in the<br />

detector that is indistinguishable from signals induced by sources close to the far field of the main beam.<br />

Variations in straylight are a source of noise in the detector (the Straylight Induced Noise, or SIN) that cannot<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-76/136<br />

be separated from intrinsic detector noise or from variations in the sources of interest (those in the main<br />

beam).<br />

Straylight coming into the focal plane can have two distinct origins:<br />

Sources external to the spacecraft in the far-field of the telescope<br />

Spacecraft self emission sources<br />

Sources external to the spacecraft in the far field of the telescope<br />

External straylight in the millimetre and sub-millimetre wave range is dominated by four extremely bright<br />

sources: the Sun, the Earth, the Moon and the Milky Way. Large angle off-axis rejection is determined mainly<br />

by the telescope shield’s shape and size.<br />

The system rejection at the detectors for Sun, Earth, Moon at worst case locations will be , at least :<br />

− 30 GHz : -91 dB , -78 dB and -71 dB respectively.<br />

− 100 GHz ( HFI ) : -91.5 dB ( -99 dB ), -78.5 dB ( -86 dB ) and -71.5 dB ( -73 db ) respectively<br />

− 353 GHz : -92 dB ( -108 dB ), -79 dB ( -95 dB ) and -72 dB ( -81 dB ) respectively.<br />

− 857 GHz : -98 dB ( -122 dB ), -85 dB ( -109 dB ) and -78 dB ( -95 dB ) respectively.<br />

Note: 1 ) The requirement for the Milky Way is of order –65 dB from peak but is driven by the telescope in<br />

free-standing configuration.<br />

2 ) The values between brackets shall be taken as goals<br />

The telescope free standing configuration shall be clearly defined.<br />

To cover the rejection specification, the following activities are planned at ASPI :<br />

- Computation of the radiation pattern over all directions with an adequate meshing for each frequencies for<br />

the telescope associated to the baffle, the 3 grooves, the SVM panels and the solar area<br />

- RF measurements of the radiation pattern over all directions with an adequate meshing, up to 353 GHz<br />

(and higher if feasible) for the telescope associated to the baffle and the groove 3.<br />

Spacecraft self emission sources<br />

Thermal emission from all components of the spacecraft (including telescope, FPU, shield, SVM, baffles etc.)<br />

produces a signal which is not easily distinguishable from signals due to sources in the main beam. The time<br />

variation of the straylight signal from these sources is due to fluctuations in the temperature of emissive<br />

components.<br />

The Amplitude Spectral Density ( ASD ) at the bolometer ( HFI ) or cold LNA ( LFI ) of any signal due to<br />

fluctuating thermal emission from a S/C element that couples radiatively into payload detectors , shall be as<br />

specified below for each of the five defined individual frequencies , taking into account the power transfer<br />

function between the radiating source and the detectors .<br />

The ASD ( in Watts / Hz ) of each frequency component between 0.01 Hz and 100 Hz shall be such that :<br />

Note :<br />

Frequency [ GHz ] ASD [ Watt / Hz ]<br />

30 < 3.4 E-18 X<br />

100 ( LFI ) (deleted) < 1.1 E-17 X<br />

100 ( HFI ) < 2.1 E-18 X<br />

353 < 1.8 E-18 X<br />

857 < 2.2 E-17 X<br />

X is equal to one for any frequency component fo of the fluctuation source synchronous with the Planck<br />

S/C spinning rate ( i.e. multiple of f.spin = 1 / 60 Hz ).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-77/136<br />

Otherwise , X = ( B * t.obs * Delta.f ) , where Delta.f = fo – k * f.spin and k is chosen to minimise Delta.f .<br />

t.obs = 3600 * FWHM / 2.5 arcmin , and FWHM is the angular resolution of the antenna radiation pattern in<br />

arc minutes .<br />

In order to enable calculation of the straylight, the position, orientation and beam characteristics of the five<br />

horns in the focal plane at 30 ,100 , 353 and 857 GHz, together with their frequency bandwidth are as<br />

follows<br />

Parameters defining the horns:<br />

The tables below give the characteristics of the realistic corrugated Horns that will be used for the verification<br />

of the Planck straylight analysis.<br />

horn-identifier x (mm) y (mm) z (mm) phi (deg) theta (deg) psi (deg)<br />

HFI 857 0 0 0 0 0 0<br />

HFI 353 -2.74E+01 -5.99E+01 1.50E+02 165.70 30.57093 -1.92<br />

LFI 100<br />

(deleted)<br />

-8.97E+01 8.07E+01 1.18E+02 -156.24 23.90021 1.84<br />

LFI 30 -1.25E+02 1.23E+02 9.08E+01 -141.78 22.32231 2.15<br />

Positions of the horns in the global coordinate system<br />

Horn-identifier taper<br />

(db @22 deg)<br />

aperture D (mm) Beamwidth (deg)<br />

HFI 857 -36 8.2 3.5<br />

HFI 353 -36 8.2 8.4<br />

LFI 100<br />

(deleted)<br />

-30 19.5 11.4<br />

LFI 30 -30 51 15.5<br />

Electromagnetic parameters defining the horns<br />

5.9 POWER<br />

5.9.1 Thermal Dissipation on Herschel Payload Module interfaces.<br />

The average thermal dissipation requirement) supported by the spacecraft at the different interface levels of<br />

the Herschel Payload module are defined in the tables below. A distinction is made between lifetime<br />

calculations and thermal link design.<br />

The averaging shall be made over instruments observing time sharing and instrument modes.<br />

It shall correspond to the heat leak from an instrument thermal interface to the corresponding spacecraft<br />

interface level (0, 1, 2, or 3), taking into account an average for all 3 instruments (~1/3 of the proposed<br />

budget can be allocated per instrument, exact duty cycle in table 5.9.1-2), and average over instrument<br />

modes and dissipation timelines)<br />

The following average dissipation values will be used for lifetime predictions only.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

Level Average dissipation [mW]<br />

Level 0 10<br />

Level 1 25<br />

Level 2 35<br />

Level 3 15<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-78/136<br />

Table 5.9.1-1 :Power dissipation alloawed on HerschelOBA thermal interfaces<br />

The instruments modes are averaged using the following assumptions:<br />

Instrument usage<br />

SPIRE PACS HIFI<br />

status ON Stdby Total ON Stdby Total ON<br />

Stdby Total<br />

duty cycle 1/3<br />

2/3 # 1/3<br />

2/3 1<br />

1/3<br />

Mode PHOT SPEC PARALLEL OFF Total PHOT SPEC PARALLEL OFF Total Chan 1 Chan 2 Chan 3 Chan 4 Chan 5 Chan 6 OFF Total<br />

duty cycle 7/48 7/48 1/24 2/3 # 7/48 7/48 1/24 2/3 1 1/21 1/21 1/21 1/21 1/21 2/21 2/3 1<br />

Astrium Modes<br />

Assumption:<br />

3 4 6 2 1 6 5 5 5 5 5 5<br />

Even distribution for the 3 instruments (1/3 each)<br />

Even distribution between instruments modes (Spetrometer / Photometer mode for PACS & SPIRE, Chanels 1..6 for HIFI)<br />

3 months allocated to parallel mode (PACS + SPIRE, ie 1/12 of the mission, as part of PACS & SPIRE time (ie 1/24 taken from each of their allocation)<br />

HIFI Channel 6 is composed of 2 sub-channels, so there are effectively 7 channels<br />

Table 5.9.1-2 :Estimation of instruments and modes duty cycles, based on equal distribution between<br />

instruments, then between instruments modes, and assuming a total of 3 months in PACS/SPIRE<br />

parallele mode.<br />

The dissipation of the Herschel instrument FPU on various levels is estimated via the instrument FPU<br />

thermal models (annexed in each IID-B), using the Herschel H-PLM thermal model (ref RD 81 (PFM) &<br />

RD82 (EQM).<br />

The average dissipation on interfaces levels &, 2, and 3 have been estimated based on the typical transient<br />

dissipation of each instrument, and a (typical) timeline and sequencing of the instruments (ref RD 81, <strong>section</strong><br />

7.4.4). This is the sum of all contributions (dissipation on each levels + conductance between levels).<br />

Level Average Instrument heat<br />

flow on level [mW]<br />

Level 0 12.2<br />

Level 1 34.3<br />

Level 2 -1.4<br />

Level 3 10.6<br />

Table 5.9.1-3 :Estimation of instrument average power dissipation on levels 0, 1, 2, 3, based on<br />

typical timeline.<br />

5.9.2 Thermal Dissipation on Planck Payload Module<br />

The maximum thermal dissipations supported by the spacecraft at the different interface level of the Planck<br />

Payload module are defined in the table below.<br />

Guaranteed temperatures range on shield (in operating mode)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

3rd V-Groove 2nd V-Groove 1st V-groove<br />

Min 45 100 150<br />

Max 60 120 170<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-79/136<br />

Table 5.9.2-1 :Temperature range requirements for V-Grooves 1, 2, and 3.<br />

Temperature to be used for instrument heat load estimation (boundary)<br />

Design<br />

temperatures:<br />

3rd V-Groove 2nd V-Groove 1st V-groove<br />

LFI 52 106 166<br />

HFI 50 110 165<br />

SCS 52 108 158<br />

Table 5.9.2-2 :Typical Temperature to be used for heat exchangers heat load estimation V-Grooves 1,<br />

2, and 3.<br />

Heat Load Allocation on 3rd V-Groove estimated for above temperatures<br />

Heat Loads 3rd V-Groove 2nd V-Groove 1st V-groove Desig margin<br />

margin (**)<br />

HFI 620 20 50 20%<br />

LFI 710 560 5370 20%<br />

SCS 1175 453 581 10%<br />

Total 2505 1033 6001<br />

(**) Margin used by Alcatel on instrument heat loads to estimate prediction error)<br />

Table 5.9.2-3: Maximum thermal dissipation on the Planck Payload Module<br />

These Heat losses allocations are Maximum Values acceptable by the Planck Payload.<br />

This mean that the instrument estimated dissipations or losses should include 20% of design margin before<br />

reaching these values.<br />

With these allocations, the calculated temperature at the sorption cooler interface is 52K ±7K<br />

5.9.3 Thermal Dissipation on Herschel Service Module<br />

The maximum and minimum thermal dissipations supported by the Herschel spacecraft at the interface level<br />

of the warm boxes to the HSVM are defined in the table below.<br />

Instrument<br />

Maximum<br />

Average load<br />

[W]<br />

Maximum<br />

Peak load<br />

[W]<br />

Maximum<br />

Peak Energy<br />

[Ws]<br />

HIFI 315 NA NA NA<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Stability of Load<br />

[W/s] Remarks


Instrument<br />

IIDA - SECTION 5<br />

Maximum<br />

Average load<br />

[W]<br />

Maximum<br />

Peak load<br />

[W]<br />

Maximum<br />

Peak Energy<br />

[Ws]<br />

PACS 125 NA NA NA<br />

SPIRE 110 NA NA NA<br />

Total 550<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-80/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Stability of Load<br />

[W/s] Remarks<br />

Table 5.9.3-1: Maximum and minimum thermal dissipation of warm boxes on HSVM.<br />

5.9.4 Thermal Dissipation on Planck Service Module<br />

The maximum and minimum thermal dissipations supported by the Planck spacecraft at the interface level of<br />

the warm boxes to the PSVM are defined in the table below.<br />

Instrument<br />

Maximum<br />

Average load<br />

[W]<br />

Maximum<br />

Peak load<br />

[W]<br />

Maximum<br />

Peak Energy<br />

[Ws]<br />

LFI 120 NA NA NA<br />

Stability of Load<br />

[W/s] Remarks<br />

Sorption Cooler 570 1200 NA NA Thermal design<br />

is based on<br />

620W<br />

dissipation<br />

HFI 310 NA NA NA<br />

1000<br />

Table 5.9.4-1: Maximum and minimum thermal dissipation of warm boxes on PSVM<br />

5.9.5 Power Supply - Load on main-bus<br />

The total electrical power provided by the spacecraft to the instruments will be limited as in the following<br />

Table 5.9.5-1:<br />

Spacecraft Instrument<br />

Maximum<br />

Power<br />

[W]<br />

Herschel SPIRE 110<br />

Herschel PACS 125<br />

Herschel HIFI 315<br />

Total 550<br />

Planck LFI 120<br />

Planck Sorption Cooler 570


IIDA - SECTION 5<br />

Spacecraft Instrument<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-81/136<br />

Maximum<br />

Power<br />

[W]<br />

Planck HFI 310<br />

Total 1000<br />

Table 5.9.5-1: Loads on Main Bus<br />

Peak power, as defined in 5.9.1.6 below, shall be given in the IID-Bs.The Power lines between the PCDU<br />

and the instrument warm units will be implemented according to the following scheme. The definition of the<br />

LCL classes are defined below in <strong>section</strong> 5.9.5.4. More information about LCL's can be found in the GDIR<br />

(RD 1)<br />

Planck Allocation To Type Protected Class<br />

LFI DAE Nom PLBEU LCL YES III<br />

LFI DAE Red PLBEU LCL YES III<br />

LFI REBA Nom PLREN LCL YES II<br />

LFI REBA Red PLRER LCL YES II<br />

HFI DCE DCE LCL NO II<br />

HFI DPU Nom (PHBA-N) PHBAN LCL YES II<br />

HFI DPU Red (PHBA-R) PHBAR LCL YES II<br />

HFI REU belts group 0&1 PHBAR LCL NO II<br />

HFI REU belts group 2&3 PHBAR LCL NO II<br />

HFI REU belts group 4&5 PHBAR LCL NO II<br />

HFI REU belts group 6&7 PHBAN LCL NO II<br />

HFI REU belts group 8&9 PHBAN LCL NO II<br />

HFI REU belts group 10&11 PHBAN LCL NO II<br />

HFI REU Proc Nom PHCBC LCL YES I<br />

HFI REU Proc Red PHCBC LCL YES I<br />

HFI 4KC Drive bus Nom PHDC 10A-LCL YES 10A<br />

HFI 4KC Drive bus Nom PHDC 10A-LCL YES 10A<br />

HFI 4KCDE Nom (PHDC) PHDC LCL NO II<br />

HFI 4KCDE Red (PHDC) PHDC LCL NO II<br />

Sorption Cooler Compressor Nom PSM4 20A-LCL YES 20A<br />

Sorption Cooler Compressor Red PSR4 20A-LCL YES 20A<br />

Sorption Cooler Electronics Nom PSM4 LCL YES III<br />

Sorption Cooler Electronics Red PSR4 LCL YES III<br />

Table 5.9.5-2: List of Planck Instruments LCL's.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-82/136<br />

Herschel Allocation To Type Protected Class<br />

HIFI HRH FHHRH LCL YES III<br />

HIFI HRV FHHRV LCL YES III<br />

HIFI ICU Nom FHICU LCL YES III<br />

HIFI ICU Red FHICU LCL YES III<br />

HIFI LCU Nom FHLCU LCL YES III<br />

HIFI LCU Red FHLCU LCL YES III<br />

HIFI WEH FHWEH LCL NO II<br />

HIFI WEV FHWEV LCL NO II<br />

PACS BOLC Nom FPBOLC LCL YES II<br />

PACS BOLC Red FPBOLC LCL YES II<br />

PACS DPU Nom FPDPU LCL NO II<br />

PACS DPU Red FPDPU LCL NO II<br />

PACS MEC1 FPMEC1 LCL YES II<br />

PACS MEC2 FPMEC2 LCL YES II<br />

PACS SPU Nom FPSPU1 LCL NO II<br />

PACS SPU Red FPSPU2 LCL NO II<br />

SPIRE HSDPU Nom FSDPU LCL YES I<br />

SPIRE HSDPU Red FSDPU LCL YES I<br />

SPIRE HSFCU Nom FSFCU LCL YES III<br />

SPIRE HSFCU Red FSFCU LCL YES III<br />

Table 5.9.5-3: List of Herschel Instruments LCL's.<br />

Note 1 : Protected LCL's are protected against failure ON (includes double switch to switch off in any case)<br />

Note 2: 10A (resp. 20A) LCL's are obtained by combining 2 (resp 4) LCL's inside the PCDU<br />

5.9.5.1 Bus voltage<br />

The spacecraft power supply subsystem will provide: The distribution, protection and switching of a 28V DC<br />

main power bus to the users.<br />

Each of the scientific instruments will have to incorporate its own converter(s) (compatible with the main bus<br />

characteristics) to generate the required secondary voltages.<br />

5.9.5.2 Main Bus characteristics<br />

The instruments shall be designed to operate with nominal performance within the following steady state<br />

voltage limits:<br />

Line Minimum Voltage Maximum Voltage<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-83/136<br />

Line Minimum Voltage Maximum Voltage<br />

Power Bus 26 V 29 V<br />

Table 5.9.5-4: Bus Voltage<br />

For the Planck sorption cooler 20A LCL, this range can be reduced to 26V to 27.5V.<br />

In addition, all the users of these power lines shall safely survive any standing or fluctuating voltage in the full<br />

range 0 V to 35V (failure case, less than 1mn TBC).<br />

5.9.5.3 Dynamic behaviour<br />

5.9.5.3.1 Transient<br />

The equipment shall operate with nominal performance when subject to a transient superimposed on the<br />

steady state bus as described in paragraph 5.14.3.8. This requirement accounts for potential transients<br />

caused by remote equipment's (susceptibility).<br />

5.9.5.3.2 Ripple and Spikes<br />

The ripple and spikes shall be less than (at Distribution Unit output connectors):<br />

300 mV peak to peak on 28 V lines.<br />

This peak to peak value is defined in a 50 MHz bandwidth<br />

This should be regarded as information of the PCDU power outputs CE, not as a CS requirement. The CS<br />

requirements on the power lines are defined in § 5.14.<br />

5.9.5.4 Power Distribution<br />

Power is switched and distributed to instruments on protected output lines by means of Latching Current<br />

Limiters [LCL’s].<br />

If the LCL limitation level is exceeded the LCL will limit the current and reduce the voltage at that user’s<br />

input. Therefore, except for the inrush, the user’s instantaneous current demand shall never exceed the<br />

limitation level of the related LCL. If the limitation extends beyond the LCL trip-off time, the LCL will trip off<br />

and power will be disconnected from that user.<br />

Use of fuses shall be avoided. If absolutely needed, use of fuses shall be justified and request submitted to<br />

ESA for approval.<br />

LCL Type Iclass Ilimit min = 1.2 Iclass Ilimit max = 1.5 Iclass Iover-shoot Ttrip min Ttrip max<br />

Class I 1 A 1.2 A 1.5 A 2.25 A 10 ms 12 ms<br />

Class II 2.5 A 3.0 A 3.75 A 5.63 A 10 ms 12 ms<br />

Class III 5 A 6.0 A 7.5 A 11.25 A 10 ms 12 ms<br />

Table 5.9.5-5: Definition of the LCL classes<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.9.5.5 Bus Impedance<br />

IIDA - SECTION 5<br />

The bus impedance mask at the user interface is:<br />

Ohms<br />

100E+0<br />

10E+0<br />

1E+0<br />

100E-3<br />

110 mΩ<br />

2 kHz<br />

130 mΩ<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-84/136<br />

1E+0 10E+0 100E+0 1E+3<br />

Frequency (Hz)<br />

10E+3 100E+3 1E+6<br />

Figure 5.9.5-1: Bus impedance vs. Frequency<br />

+20 dB/decade<br />

(10 µH)<br />

Each instrument shall not be susceptible to voltage transients induced by its own current transitions, when<br />

connected to a 28Vdc voltage source (+2%, -1%) with the output impedance reported above. This<br />

requirement shall be verified during the electrical functional testing.<br />

5.9.5.6 Power Demand<br />

5.9.5.6.1 Average<br />

The average power is defined for an equipment as the maximum average power drawn from its dedicated<br />

power lines in the worst case conditions.<br />

The maximum average is defined as the average during a period of 5 minutes shifted to any point in time<br />

where this average will yield a maximum and does not include peak power defined hereafter.<br />

5.9.5.6.2 Long Peak<br />

To be defined as a long peak, the power demand shall last less than 5 minutes per 24 h (cumulated duration<br />

of individual peaks if any) and more than 100 ms.<br />

The peak value is defined as the integral mean during a period of 100 ms shifted to any point in time where<br />

the integral will yield a maximum.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.9.5.6.3 Short Peak<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-85/136<br />

To be defined as a short peak, the power demand shall last less than 100 ms.<br />

The peak value is defined as the integral mean during a period of 1 ms shifted to any point in time where the<br />

integral will yield the maximum.<br />

5.9.5.6.4 Inrush Current<br />

The LCLs used in the power subsystem (equipments and instruments power supply lines) shall have the<br />

following characteristics:<br />

− Except during the first 50 ms of operation (ie switch on or entry into protection mode), the current<br />

limitation shall be set at a value Ilimit in the range Ilimit min < Ilimit < Ilimit max . Class of the LCL,<br />

corresponding Iclass , Ilimit min and Ilimit max are defined in Table 5.9.5-5<br />

− If the current exceeds Ilimit for a time greater than Ttrip , then the LCL will automatically switch-off .<br />

− During the first 50 ms of operation (ie switch on or entry into protection mode), the overshoot current<br />

Iovershoot shall not exceed Ilimit by more than 50% (see Figure 5.9.5-2).<br />

− The LCL shall have a power bus under-voltage detector.<br />

− The LCL under-voltage threshold shall be settable during manufacture between 21 and 26 V with an<br />

accuracy better than ± 0.25 V.<br />

− If the power bus voltage falls below the under-voltage threshold for more than 50 ms, then the LCL<br />

shall be latched off.<br />

− It shall be possible to determine the status of each LCL via the 1553 data bus, including ON/OFF<br />

condition, latch status and output current (accuracy ± 5%).<br />

Figure 5.9.5-2 gives the nominal current envelope.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


CURRENT<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Normal switch ON characteristic Failure handling characteristics<br />

50 µs<br />

T trip<br />

ISSUE : 3.1 PAGE :5-86/136<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

50 µs<br />

Figure 5.9.5-2: nominal current envelope for LCL switching<br />

T trip<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

I limit<br />

I nom<br />

I overshoot<br />

I limit max<br />

I limit min<br />

The inrush current requirements applicable to the Instruments in terms of test conditions and success criteria<br />

are specified in § 5.14.7.<br />

5.9.5.6.5 Load Current Transitions<br />

The instantaneous rate of change (dI/dt) shall not exceed 5.10 4 A/s. Pulse repetition frequency shall not<br />

exceed 1 Hz unless confined to the limits of admissible ripple current.<br />

5.9.5.6.6 Initial Electrical Status<br />

After being switched OFF for a minimum period of 10 sec and when switched on, equipments shall have an<br />

initial electrical status (except for latching relays if used), which is reproducible and identified<br />

This status shall be safe; i.e. no degradation of nominal performance shall be caused if this initial status is<br />

kept for an unlimited time.<br />

5.9.5.6.7 Interface Circuits<br />

NA<br />

I class<br />

TIME


IIDA - SECTION 5<br />

5.9.5.7 Instrument Converter Synchronisation<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-87/136<br />

The converters shall be free running at nominal frequency 131kHz +/-10%, except for HIFI (550kHz, ref HP-<br />

HIFI-CR-0055)..<br />

5.9.5.8 Pyrotechnic Devices<br />

NA<br />

5.10 CONNECTORS, HARNESS, GROUNDING, BONDING<br />

5.10.1 Connectors<br />

Connectors provide a low-impedance path for all wires and a low-impedance bond when an outer shell is<br />

used. The demating of any connector shall not cause the loss of the mission (exceptions, if any, have to be<br />

agreed with Alcatel).<br />

5.10.1.1 Connector types<br />

5.10.1.1.1 Warm connectors<br />

For non-coaxial signal connections at non-cryogenic temperatures SCC 3401 connectors of type DxMA are<br />

defined. (x = A, B, C, D or E). If the use of these connectors cause volume and mass constraints then Hidensity<br />

type connectors could be used after agreement with Alcatel<br />

Power connections can use either the CANNON-ITT connectors of type DxMA (x = A, B, C, D or E) or<br />

circular connectors e.g. type 38999 series II.<br />

5.10.1.1.2 Herschel cryo-harness connectors<br />

At cryogenic temperatures micro-connectors SCC 3401-02923 (cannon) will be used on instrument side and<br />

mated to MWDM connectors (Glenair) on spacecraft harness side.<br />

It is understood that only for micro-connectors the pin-type is the protected one instead of the socket.<br />

A qualification program in running to qualify the connection "MWDM Glenair" to "MDM Cannon" at cryogenic<br />

temperature.<br />

For coaxial connections on the FPU (HIFI IF coax cables), 50 ohms Male SMA coax connectors are used<br />

5.10.1.2 Connector characteristics<br />

The following connector characteristics shall apply:<br />

− Connectors shall be clearly identified to prevent incorrect mating.<br />

− The housing of connectors shall be electrically connected to the connector shell.<br />

− Flight-quality connectors shall be protected against frequent mating/demating operations by<br />

connector savers. These savers shall be supplied with the instrument.<br />

− Connectors shall be mechanically locked to prevent inadvertent disconnection as part of the final<br />

integration process.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-88/136<br />

− All units shall use dedicated connectors for the different signal categories as defined in chapter<br />

5.10.2.4<br />

− Separate connectors shall be used for each of the redundant system, subsystem or unit branches.<br />

− Cross-strapping shall be allowed<br />

5.10.1.3 Connector mounting<br />

Equipment and bracket mounted connectors shall be located in easily accessible positions.<br />

The physical position is to be indicated on the External Configuration Drawings and must be compliant with<br />

the minimum distances between connectors and mounting plane as given in Figure 5.10.1-1.<br />

Any additional specific requirements (e.g. minimum distance between two units facing each other) shall be<br />

identified in the IID-B by the instrument.<br />

Note : It is recommended that a 16mm clearance between baseplate and lower edge of the connector is<br />

maintained to ease accessibility during instrument integration activities.<br />

Connector pitches shall be designed to accommodate connector backshells.<br />

Figure 5.10.1-1: Minimum distances between connectors<br />

Note 1: 7mm spacing is generic for all connectors (to allow screw driver access. These dimensions are<br />

compatible with backshells.<br />

Note 2: Not applicable for microconnectors.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.10.2 Harness<br />

5.10.2.1 Harness types<br />

IIDA - SECTION 5<br />

Harness interfacing the instruments and the spacecraft can be of 3 types:<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-89/136<br />

− Spacecraft harness, connecting the instruments warm units to the spacecraft power and data buses<br />

− Instrument Warm Interconnecting Harness (WIH), connecting instrument warm units together<br />

− Cryoharness, connecting warm units to FPU, or cold units (Herschel HIFI LOU, PACS BOLA, Planck<br />

HFI JFET)<br />

5.10.2.2 Harnesses responsibilities<br />

The responsibility for procurement of the harness is as follows:<br />

Item Procurement Responsible Routing<br />

Spacecraft Harness Alenia Alenia (Nexans)<br />

Instrument Warm Interconnecting<br />

Harness (WIH)<br />

Instruments Alenia (Nexans)<br />

Cryoharness Herschel Astrium Astrium<br />

Planck Instruments Instruments<br />

Table 5.10.2-1: Harnesses responsibilities<br />

Concerning the design , routing and attachment, the routing of the harness routed in the SVM (S/C harness<br />

and WIH) is proposed by the SVM architect Alenia.<br />

The design and routing of the Herschel cryoharness is made by Astrium. The interface between cryoharness<br />

and warm units is at the warm unit connector.<br />

The following tables give the detailed responibilities for each parts related to Harnesses.<br />

ITEM<br />

purposes<br />

Preliminar<br />

y Definition<br />

Approval<br />

of prelim.<br />

Def.<br />

Detailed<br />

definition<br />

Approval<br />

before<br />

procureme<br />

nt<br />

Instrum.+AS<br />

PI<br />

Procureme<br />

nt<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Integration<br />

Herschel<br />

Integration<br />

Planck<br />

Routing (harness routing,<br />

length & support definition).<br />

ALS<br />

ASPI /<br />

Instrum<br />

ALS.<br />

Harness :<br />

Instrum<br />

ASED ASPI<br />

WIH connectors to WUs Instrum. N/A Instrum. N/A Instrum. ASED ASPI<br />

Attachment part on SVM<br />

(paint free areas, tie-bases,<br />

insert, support, screw).<br />

ALS<br />

ASPI /<br />

Instrum<br />

ALS N/A ALS ALS ALS<br />

Attachment part on WIH (tie-<br />

WIH -<br />

wraps).<br />

Instrument<br />

Warm Harness supports on WU.<br />

Interconne<br />

ct Paint free areas on WU<br />

Harnesses<br />

ALS<br />

ALS<br />

ALS<br />

ASPI/Instru<br />

m<br />

ASPI/Instru<br />

m<br />

ASPI/Instru<br />

m<br />

ALS<br />

ALS<br />

ALS<br />

ASPI/Instru<br />

m<br />

ALS<br />

ALS<br />

Instrum<br />

ASED<br />

ASED<br />

N/A<br />

ASPI<br />

ASPI<br />

NA<br />

(procured<br />

Brackets (including brackets<br />

by<br />

grounding) for instruments<br />

Instrument<br />

panels dismountability<br />

s)<br />

ALS<br />

ASPI/Instru<br />

m<br />

ALS N/A ALS ALS ALS<br />

WIH intermediate connectors<br />

on brackets (disconnection<br />

needed for handling of panels).<br />

Instrum Instrum Instrum N/A Instrum ASED ASPI<br />

Brackets fixation screws. N/A N/A ALS N/A ALS ALS ALS<br />

Brackets fixation inserts on<br />

SVM.<br />

N/A N/A ALS N/A ALS ALS ALS


ITEM<br />

IIDA - SECTION 5<br />

Table 5.10.2-2: WIH detailed responsibilities<br />

Preliminar<br />

y Definition<br />

Routing ALS<br />

Approval<br />

of prelim.<br />

Def.<br />

ASPI/Instru<br />

m<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-90/136<br />

Detailed<br />

definition<br />

Approval<br />

before<br />

procureme<br />

nt<br />

ALS N/A<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Procureme<br />

nt<br />

Harness :<br />

ALS<br />

Integration<br />

Herschel<br />

SVM<br />

Connecting brackets on SVM lower<br />

harness,<br />

platform (including brackets<br />

ALS ALS ALS N/A ALS ALS<br />

(procured<br />

grounding).<br />

by ALENIA)<br />

ASPI/Instru<br />

ASPI/Instru<br />

: Power WU Connectors. ALS<br />

ALS<br />

ALS ALS<br />

m<br />

m<br />

and 1553<br />

Fixation of harness on SVM<br />

Harnesses<br />

(inserts, paint-free areas support, ALS ASPI ALS N/A ALS ALS<br />

from<br />

screw, tie-wraps & tie-bases).<br />

PCDU/CDM<br />

SVM harness supports on WU and<br />

ASPI/Instru<br />

U up to<br />

ALS<br />

ALS N/A ALS ASED<br />

paint-free areas (if necessary)<br />

m<br />

Warm<br />

Brackets fixation screws. N/A N/A ALS N/A ALS ALS<br />

Units<br />

ITEM<br />

Brackets fixation inserts on SVM. N/A N/A ALS N/A ALS ALS<br />

Routing<br />

Table 5.10.2-3: SVM Harnesses detailed responsibilities<br />

SVM-PLM Connectors on Cryo<br />

brackets on SVM upper closure<br />

panels (including brackets<br />

grounding).<br />

Preliminar<br />

y Definition<br />

ASED<br />

(including I/F<br />

definition)<br />

ASED<br />

Approval<br />

of prelim.<br />

Def.<br />

Detailed<br />

definition<br />

Approval<br />

before<br />

procureme<br />

nt<br />

ALS/ASPI ASED N/A<br />

ASPI/Instru<br />

m<br />

Procureme<br />

nt<br />

Harness :<br />

ASED<br />

ALS<br />

Integration<br />

Herschel<br />

ASED<br />

N/A N/A ASED ASED<br />

Cryo-brackets on SVM upper<br />

Herschel Cryoclosure<br />

panels.<br />

Harnesses<br />

Cryo-brackets fixation screws<br />

(procured by<br />

Astrium) WU connectors.<br />

(including coax<br />

between HIFI WU connector backshells.<br />

3dB coupler<br />

and FPU) :<br />

Harness and Cryo Brackets<br />

Attachment part on SVM (inserts)<br />

ASED<br />

ASED<br />

ASED<br />

Instrum.<br />

ALS (after<br />

detailed<br />

routing of<br />

ASED)<br />

ALS / ASPI<br />

ALS / ASPI<br />

ASPI/Instru<br />

m<br />

ASED &<br />

ALS<br />

ALS<br />

ASED<br />

ASED<br />

N/A<br />

N/A<br />

ALS<br />

ALS / ASPI<br />

ALS / ASPI<br />

ASPI/Instru<br />

m<br />

ASED &<br />

ALS<br />

N/A<br />

ASED<br />

ALS<br />

ASED<br />

ASED<br />

ALS<br />

ASED<br />

ASED<br />

ASED<br />

ASED<br />

ALS<br />

Harness Attachment part on CVV ASED ASED ASED ASED ASED ASED<br />

Attachment part on harness<br />

(support, screw, tie-wraps & tiebases,<br />

paint free areas).<br />

ASED<br />

Instrum. &<br />

ALS<br />

ASED<br />

Instrum. &<br />

ALS<br />

ASED ASED<br />

Table 5.10.2-4: Herschel Cryo-Harnesses responsibilities


ITEM ITEM<br />

Planck<br />

Cryoharness<br />

IIDA - SECTION 5<br />

Preliminar<br />

y Definition<br />

Approval<br />

of prelim.<br />

Def.<br />

Detailed<br />

definition<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-91/136<br />

Approval<br />

before<br />

procureme<br />

nt<br />

Procureme<br />

nt<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Integration Integration<br />

Herschel Planck<br />

HFI Bellow routing ASPI HFI ASPI HFI ASP<br />

HFI bellow fixation on<br />

PPLM<br />

20K cooler harness from<br />

SCC (on pipes)<br />

20K cooler harness drom<br />

SCE<br />

4K cooler harness (on<br />

pipes)<br />

0.1K cooler harness (on<br />

pipes)<br />

5.10.2.3 S/C harness<br />

HFI ASPI HFI HFI ASP<br />

Instrum ASPI Instrum Instrum<br />

Instrum ASPI Instrum Instrum<br />

Instrum ASPI Instrum Instrum<br />

Instrum ASPI Instrum Instrum<br />

harness fixation on pipes Instrum Instrum Instrum<br />

harness connectors Instrum Instrum Instrum<br />

LFI cryoharness LFI ASPI LFI LFI<br />

LFI Wave-guides LFI ASPI LFI/ASPI LFI<br />

Table 5.10.2-6: Planck Cryo-Harnesses responsibilities<br />

Instrum.<br />

(integ on<br />

pipes)<br />

ASP (on<br />

brackets)<br />

Instrum.<br />

(integ on<br />

pipes)<br />

Instrum.<br />

(integ on<br />

pipes)<br />

Instrum.<br />

(integ on<br />

pipes)<br />

ASP (on<br />

brackets)<br />

LFI (on RAA<br />

& WG<br />

brackets)<br />

LFI (on RAA<br />

& WG<br />

brackets)<br />

The S/C harness provides the interconnection between the instruments and two other subsystems, i.e. the<br />

Power subsystem and the Data-handling subsystem.<br />

The harness will be part of the SVM, delivered through the S/C contractor, manufactured to agreed<br />

standards and specifications, compatible with the characteristics of the source and destination. A so-called<br />

harness list specifies source and destination to the level of unit, connector and pin.<br />

Instrument teams will have to provide their inputs to the harness list by pin function definitions for instrument<br />

connectors to the Power and the Data Handling subsystems.<br />

Pin functions will be defined in part B of the IID’s (AD 1-1 to 1-6).<br />

Some general design criteria are given in 5.10.2.4<br />

5.10.2.4 Instrument harness<br />

The Instruments «warm Interconnecting Harness» (WIH), i.e. the interconnect harness between the various<br />

«warm» instrument units will be delivered by the instrument teams, manufactured to agreed standards and<br />

specifications, compatible with the characteristics of the source and destination.<br />

Instrument teams will have to provide a harness list, which specifies source and destination to the level of<br />

unit, connector and pin. These harness lists including the relevant requirements are defined in part B of the<br />

IID’s (AD 1-1, 1-2, 1-3).<br />

WIH routing will be provided by industry.<br />

Instrument WIH routing is included in annex 10.


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-92/136<br />

Instrument will have to manufacture WIH according to this definition. CAD models are delivered together with<br />

this definition.<br />

For instrument whose units are on a single panel, the warm interconnecting harness is in one piece.<br />

For instruments having units on several panels, connected together with WIH (HIFI, HFI, and LFI), the WIH<br />

will have to be split into 3 parts to allow integration of the fully equipped panel:<br />

− 1 piece routed on each panel from warm units to a connector bracket located on the SVM lower<br />

platform.<br />

− 1 piece routed on the SVM lower platform.<br />

WIH fixation on warm units is described (Tie raps) as a result of an agreement with instruments.<br />

These devices will have to be glued on Warm units. Therefore non painted areas have to be foreseen on<br />

these locations.<br />

The wave-guides between the Herschel HIFI LOU unit at the Herschel CVV and Local Oscillator Source Unit<br />

on the SVM are part of the spacecraft (cryoharness) and are defined in the relevant <strong>section</strong> of this document.<br />

(see annex 6 HPLM ICD's).<br />

5.10.2.5 Cryo harness<br />

5.10.2.5.1 Herschel Cryoharness<br />

For Herschel, the interconnect cryoharness harness between the cold units (FPU’s, JFET modules, Herschel<br />

CVV mounted units) and the «warm» SVM units of the instruments, the cryo harness, will be manufactured<br />

and delivered through the Contractor, based on the requirements in chapter 5.10 of the IID-B’s (AD 1-1 to 1-<br />

3 ).<br />

The main reason is that it needs to be integrated much earlier than the instruments in the cryostat.<br />

This includes FPU cryoharness, LOU harness and LOU wave-guides.<br />

Provisions by instrument teams may be agreed on a case-by-case basis.<br />

Refere to annex 8 (cryoharness) for a summary of the cryoharness implementation, and to RD10 (PFM) and<br />

RD11 (EQM) for detail pin allocations.<br />

5.10.2.5.2 Planck Cryoharness<br />

ForPlanck, the cryoharness harness is delivered by the instrument. It consists in:<br />

− For HFI: the "bellow" between the PAU in the upper platform, and the JFET on the primary reflector<br />

panel (60K), and then the FPU (20K). Refere to fig 5.7.2-5 for routing of the bellow.<br />

− For LFI, a dedicated ribbon cable connecting the BEU to the FPU. This harness is routed together<br />

with the waveguides, on the waveguide structure, as an integrated package of the RAA.<br />

5.10.2.6 Design criteria<br />

Design criteria for the instrument and the cryo-harness are given in the following.<br />

Signals between subsystems can be divided into the following categories:<br />

− Supply lines from power source to the users.<br />

− Digital signals.<br />

− Signals sensitive with respect to EMC (analogue signals)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

− RF signals (HIFI coaxial)<br />

Signals of each of these categories shall be handled as follows:<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-93/136<br />

− Separation of categories shall be retained up to and inclusive of the interface connector<br />

− Separation of harness branches will be performed according to exp. signal classification<br />

− Separate bundles will be used for each of the redundant systems, subsystems and unit branches<br />

(not applicable for CVV internal harness) and on CVV external structures (Note: There is not enough<br />

space on the CVV stiffening rips to separate the C/H branches<br />

− All individual wires of one cable will be routed through adjacent connector contacts<br />

− For the cryoharness, each harness bundle is routed via a separate CVV Feedthrough connector<br />

− Twisted wires shall be routed through a connector on adjacent pins<br />

The number of different types of cables shall be minimised For Herschel, cable types used for the ISO<br />

mission shall be used as a baseline.<br />

Instruments shall provide free areas for fixation and routing of harness on instruments. The information shall<br />

be part of the unit configuration drawings. Forbidden areas shal be also identified.<br />

Instruments shall identify harness bundles to be separated , and critical connections shall clearly be<br />

identified:<br />

− signal<br />

− power<br />

− redundancy for harness routing<br />

− optical bench connectors and low number of CVV connectors<br />

The instruments shall identify harness bundle groups and EMC classes.<br />

The distance between the MDM connectors and space for mounting/dismounting, when it is still on the<br />

spacecraft, has to be taken into account.<br />

The harness requirements shall be provided in the format as shown in the table below gives the format for<br />

the harness specification (minimum information required).<br />

Id Name No. of<br />

wires<br />

No. of<br />

shields<br />

Max.<br />

Resistan<br />

ce<br />

Max<br />

capacita<br />

nce<br />

Max<br />

inductan<br />

ce<br />

Max<br />

Current<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Typical<br />

current<br />

Ohm F H A A<br />

Table 5.10.2-1: Cable requirement definition<br />

Duty<br />

Cycle<br />

Remark<br />

s<br />

Refer to annex 8, electrical & thermal performance tables to check this implementation of the cryoharness,<br />

as specified in IID-B's<br />

5.10.3 Grounding and Isolation<br />

5.10.3.1 Grounding Concept<br />

The local grounding concept of the Subsystem shall be «Distributed Single Point Grounding» (DSPG)<br />

system. As a consequence of this grounding philosophy one secondary power output shall not be distributed<br />

to more than one unit.


5.10.3.2 Return Path<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

The spacecraft structure shall not be used as return path for power and signals.<br />

5.10.3.3 Grounding to Structure<br />

ISSUE : 3.1 PAGE :5-94/136<br />

The grounding to structure shall not depend on the configuration of the electrical design.<br />

Commentary: The principle here is to realise a single point grounding of each independent power network<br />

and galvanic isolation between those networks.<br />

5.1.1.4 Isolation between Primary Power lines and the Structure of the Hosting<br />

Spacecraft<br />

Equipment using primary DC power shall maintain at least 1 MΩ DC isolation shunted by not more than 50<br />

nF between:<br />

− Primary power high line and structure.<br />

− Primary power return line and structure.<br />

before any grounding of the primary reference is made.<br />

5.1.1.5 Isolation between Primary Power lines and Secondary Power Lines<br />

Secondary power lines, inherently galvanic-isolated from the primary power by DC-to-DC converters or<br />

isolation transformers, shall maintain an isolation of at least 1 MΩ shunted with a capacity less than 50 nF<br />

between the primary power return lines and the secondary reference, before any grounding of the secondary<br />

reference is made.<br />

Commentary: In case DC-to-DC converters are manufactured «ad hoc» for specific applications, it is<br />

recommended to use static shields between primary and secondary windings of the transformer. It would<br />

reduce the capacitive coupling between primary and secondary side. This static shield should be connected<br />

to the chassis via a low inductance strap.<br />

5.1.1.6 Secondary Power Grounding<br />

Each user secondary power return shall be connected to a single ground (ground point/ground plane). This<br />

ground point/ground plane shall be connected to chassis.<br />

5.1.1.7 Grounding for Equipment Distributing Secondary Power<br />

When a single converter via multiple windings supplies one or more equipments, the secondary power<br />

network shall be grounded to a single location within the supplied unit(s). One secondary power output shall<br />

not be distributed to more than one unit.<br />

Deviation from the above requirement shall be assessed on a case by case basis and approved by the ESA.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

OK :<br />

NOT OK :<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Figure 5.10.3-1: Secondary power output grounding rules.<br />

5.1.1.8 Secondary Power Reference Separation<br />

Deleted<br />

5.1.1.9 Secondary Power Lines Isolations<br />

ISSUE : 3.1 PAGE :5-95/136<br />

When the secondary power return is disconnected from the chassis, the isolation between the secondary<br />

power return and the equipment chassis shall be at least 1 MΩ shunted by not more than 50 nF.<br />

5.1.4 Bonding<br />

The bonding rules given below are fully applicable to the instrument units mounted on the SVM. For<br />

cryogenic units the rules given below shall be used as a reference, however, specific solutions can be<br />

implemented on a case by case basis.<br />

5.1.1.1 Fault Current<br />

Bonding provisions and bonding interfaces shall be designed to carry fault currents of 1.5 times the<br />

subsystem equipment protection device rating for an infinite time without damage and thermal hazard.<br />

Magnesium shall not be used as path for fault currents.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.1.1.2 Lifetime<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-96/136<br />

Bonding provisions and bonding interfaces shall be designed to be corrosion resistant, i.e. to maintain their<br />

performance in the specified environment and operations for the specified lifetime. Bonding of dissimilar<br />

materials shall be avoided (same group in the electrochemical series) unless special precautions are taken<br />

to avoid stress corrosion.<br />

5.1.1.3 Direct and Indirect Bonding<br />

The use of conductive mounting surfaces (i.e. direct metal-to-metal contact) is the preferred method of<br />

bonding. Use of bonding straps (indirect bonding) shall be implemented in addition to the direct contact.<br />

5.1.1.4 Bonding of Equipment to Structure<br />

Instrument Warm Units cases shall be bonded to the structure of the hosting spacecraft via the equipment<br />

mounting feet. The contact area of the bottom side of each foot shall not be less than 1 cm2. The DC<br />

resistance between the equipment chassis and the hosting spacecraft structure shall not exceed 10mΩ.<br />

This level applies for both directions of polarity across the bond.<br />

5.1.1.5 Bonding of Equipment Thermally Insulated from the Structure.<br />

Equipment that must be thermally isolated from the spacecraft structure shall be equipped with a bonding<br />

strap as described in previous paragraph.<br />

The FHLOU is thermally isolated from the CVV. But electrically grounded to the SVM via the waveguides and<br />

cryo-harness shields. Bonding strap may not be used.<br />

5.1.1.6 Characteristics of the Bonding Surfaces<br />

Flat, clean and conductive surfaces shall be used for bonding. The permitted surface finishes are:<br />

− Clean metal (except magnesium)<br />

− Gold plate on the base metal<br />

− Alodine 1200 or similar according to MIL-C-5541<br />

Any other anti-corrosion finish (e.g. anodic film), grease, paint, lacquer and other high resistance properties<br />

shall be removed from the facing surfaces before bonding.<br />

Abrasives that may cause corrosion if embedded in the metal or that may damage the internal structure of<br />

the material and degrade its structural integrity shall not be used.<br />

5.1.1.7 Unstable bonding<br />

Anti-friction bearings, wire-mesh vibration cushion mounts, lubricated bushing etc. shall not be used to<br />

implement bonding. Bolts and screws shall not be used as intentional grounding path.<br />

5.1.1.8 Compression Fasteners<br />

Bonding connection shall not be compression fastened through non-metallic materials.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-97/136<br />

5.1.1.9 DC Resistance between Adjacent Faces of Equipment Chassis<br />

The DC resistance between any two adjacent faces of the equipment chassis shall not exceed 2.5 mΩ. This<br />

level applies for both directions of polarity across the bond.<br />

5.1.1.10 Bonding Stud<br />

To allow bonding each unit shall provide a bonding stud. This shall consist of a stud M4 x 6 located close to<br />

the mounting plane. The bonding lug shall be easily accessible when the unit is integrated on the spacecraft<br />

and shall be clearly marked on the mechanical interface drawings. The DC resistance between this stud and<br />

the underside of the mounting feet shall not exceed 2.5 mΩ for both directions of polarity.<br />

5.1.1.11 Serial Connection of Bonding Strap<br />

Serial connection of two or more bonding straps is not permitted (except MLI)..<br />

5.1.1.12 Secondary Power Reference<br />

The impedance between the unique secondary power reference inside the equipment and the bonding lug<br />

shall be less than 5 mΩ DC and shall have a low inductance.<br />

5.1.1.13 Bonding of Equipment not performing electrical functions.<br />

Devices not performing any electrical function shall be bonded to the spacecraft structure via a DC<br />

resistance not exceeding 10k Ω.<br />

5.1.1.14 Bonding Strap Characteristics.<br />

The bonding strap will be provided by the contractor doing integration of the unit on the structure.<br />

− Bonds shall be as direct and short as possible (different length can be used to cope with all situation,<br />

maintaining length to width ratio lower or equal to 5:1. The minimal width to be used is 8 mm width)<br />

− Each bond shall have a resistance < 2.5 mOhms<br />

− Bonds shall be adequate in cross-<strong>section</strong>al areas to carry fault currents where applicable, without<br />

fusing, burning or arcing (150 % of circuit protection device rating) with a temperature limit of 50°C<br />

max for an indefinite time<br />

− Each bond shall be sufficiently robust to withstand vibration, expansion, contraction or relative<br />

movement of parts incident to normal service without breaking or loosening the bond or causing a<br />

change in contact resistance<br />

− Weakening of vital structures shall not occur as a result of bond application<br />

− Self-tapping screws shall not be used for bonding purposes.<br />

− Bonding connections shall be installed in such a manner as not to interfere in any way with the<br />

operation of movable components<br />

− Bonding of tubular members or conduits, if not inherently bonded shall be achieved by means of a<br />

plain metallic clamp and jumper without crimping or damaging the member<br />

− Outer and inner metalled layers of thermal insulation shall both be bonded to the structure<br />

− Where dissimilar metals are to be bonded, the elements of the bonding connections shall be<br />

selected to minimise the possibility of corrosion, and to assure that if corrosion occurred, it would be<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-98/136<br />

in replaceable elements, such as washers, jumpers or separators, rather than in the system basic<br />

structure.<br />

5.11 DATA HANDLING<br />

The Command Data Management Subsystem (CDMS) is organised around the Central Data Management<br />

Unit (CDMU) and terminals.<br />

On one hand the CDMU interfaces with the telecommunication subsystem and is in charge of ground<br />

command decoding, validation reporting and distribution, and payload science data and housekeeping<br />

telemetry emission (including data acquisition, encoding and formatting). On the other hand the CDMU<br />

interfaces with the remaining of the satellite via terminals connected to a Mil Std 1553B dual redundant<br />

communication bus.<br />

The type of terminal is defined in paragraph 5.11.6.<br />

The overall satellite operations in flight are organized into satellite modes. Each mode is defined by a set of<br />

subsystems and instruments modes and configuration. Correspondence between the defined modes and the<br />

various phases of the mission is presented in the table 5.11-1 hereunder and show that all the mission<br />

phases are properly covered. The tables 5.11-2 and 5.11-3 describe the subsystems and instruments modes<br />

associated to each satellite mode.<br />

As it clearly appears :<br />

− the instruments science activities can happen only when the spacecraft is in Nominal Mode<br />

− When the satellite is in Launch Mode, only the 4K cooler electronics is ON, in Launch Lock<br />

− When the satellite is in SM all the instruments are turned OFF<br />

− When the satellite is in SAM or EAM, the instruments can be OFF, or are commanded in a mode<br />

consistent with a suspension of science activities and a reduced TM collection (see 5.11.1); this<br />

mode is called «Standby» in the tables.<br />

The Figure 5.6-1 shows the conditions for Satellite Modes transitions.<br />

The consequences from instruments operation point of view are :<br />

− The transition to Earth Acquisition Mode is accompanied by a loss of all CDMU functions during up<br />

to 1 minute (TBC); no TM acquisition, TC distribution, time distribution will be performed during this<br />

time. The Science Mission cannot be continued . At return from this «dead time», in EAM the<br />

instruments will be polled in «HK only» mode (see 5.11.1), and could therefore be commanded in<br />

«standby».<br />

− In case of transition from Nominal Mode to Sun Acquisition Mode, the Science Mission cannot be<br />

continued, and at entry into SAM, the instruments will be polled in «HK only» mode (see 5.11.1), and<br />

could therefore be commanded in «standby».<br />

− In case of transition to Survival Mode, all instruments are switched OFF by an Hardware mechanism.<br />

Table 5.11-1: Operational life phase vs. System modes.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


Spacecraft<br />

Mode<br />

IIDA - SECTION 5<br />

Antennae<br />

Configuration :<br />

Nominal branch<br />

(backup branch)<br />

TM/TC Configuration MTL<br />

Mode<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-99/136<br />

ACMS<br />

Mode<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

EPS Mode Instrument<br />

s Mode<br />

Launch Mode Rx : LGA +Z Low rate Disabled SBM Battery OFF<br />

(MGA)<br />

Discharge<br />

Tx : LGA +Z OFF<br />

Sun Acquisition Rx : LGA +Z Low rate (Nominal rate after Disabled SAM or<br />

Mode (SAM) (MGA) separation)<br />

SM Battery Charge OFF or<br />

or SA<br />

Standby<br />

Tx : LGA +Z Low rate (500bps) (5kbps<br />

after separation)<br />

Nominal Mode Rx : MGA<br />

Nominal rate Enabled NOM,OC Battery<br />

(NM)<br />

(LGA+Z)<br />

M Charge/dischar OFF, Standby<br />

ge or SA or Science<br />

Tx : MGA Medium rate (transition to<br />

high rate by ground TC)<br />

Earth<br />

- Rx MGA<br />

Nominal rate Disabled NOM Battery<br />

Acquisition (LGA+Z)<br />

Charge/dischar OFF or<br />

Mode (EAM)<br />

ge or SA Standby<br />

- Tx MGA Medium rate<br />

Survival Mode - Rx : LGA+Z Low rate Disabled SAM, SM Battery OFF<br />

(SM)<br />

(LGA-Z)<br />

Charge/dischar<br />

ge or SA<br />

- Tx : LGA+Z Low rate (500bps)<br />

Table 5.11-2 : Herschel Modes links and transitions


Spacecraft<br />

Mode<br />

IIDA - SECTION 5<br />

Antennae<br />

Configuration<br />

:<br />

Nominal<br />

branch<br />

(backup<br />

branch)<br />

Launch Mode Rx : LGA -X<br />

(MGA)<br />

Sun<br />

Acquisition<br />

Mode (SAM<br />

Nominal<br />

Mode (NM)<br />

Earth<br />

Acquisition<br />

Mode (EAM)<br />

Survival<br />

Mode (SM)<br />

Tx : LGA -X OFF<br />

Rx : LGA -X<br />

(MGA)<br />

TM/TC<br />

Configuration<br />

MTL<br />

Mode<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

100/136<br />

ACMS<br />

Mode<br />

Low rate Disabled SBM Battery<br />

Discharge<br />

Low rate<br />

(Nominal rate<br />

after separation)<br />

Tx : LGA -X Low rate<br />

(500bps) (5kbps<br />

after separation)<br />

Rx : MGA<br />

(LGA -X)<br />

Tx : MGA Medium rate<br />

(transition to high<br />

rate by ground<br />

TC)<br />

- Rx: MGA<br />

(LGA -X)<br />

- Tx: MGA Medium rate<br />

- Rx : LGA -X<br />

(LGA +Z/-Z)<br />

- Tx : LGA -X Low rate<br />

(500bps)<br />

Disabled SAM or SM Battery<br />

Charge or<br />

SA<br />

Nominal rate Enabled SCM, HCM,<br />

OCM<br />

Nominal rate Disabled OCM, HCM,<br />

SAM<br />

Low rate Disabled SAM, SM,<br />

OCM, HCM<br />

Table 5.11-3 : Planck Modes links and transitions<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

EPS Mode Instrument<br />

s Mode<br />

Battery<br />

Charge/disc<br />

harge or SA<br />

Battery<br />

Charge/disc<br />

harge or SA<br />

Battery<br />

Charge/disc<br />

harge or SA<br />

OFF except<br />

4K cooler in<br />

Launch Lock<br />

OFF or<br />

Standby<br />

OFF, Standby<br />

or Science<br />

OFF or<br />

Standby<br />

NOM : Normal Mode – SAM : Sun Acquisition Mode – SM : Survival Mode – SBM : Stand By Mode – OCM :<br />

Orbit Correction Mode, SCM : Science Mode – HCM : Angular Momentum Correction Mode<br />

NB : the tables specifiy the status at entry or re-entry into the mode. It remains possible, via relevant<br />

telecommand, to individually change the subsystems or instrument mode while in any of the S/C mode.<br />

5.11.1 Telemetry<br />

The data of the instruments will be categorized in science data and instrument housekeeping data. The<br />

science data will not be processed by the Mission Operation Centre (MOC) but will be stored and made<br />

available to the Instruments Control Centres (ICC’s) for Herschel and Data Processing Centres (DPC’s) for<br />

Planck. The instrument housekeeping data will be processed by the MOC to ensure the health and safety of<br />

the instruments. The science and instrument housekeeping data must be formatted following the Packet<br />

Telemetry Standard (ESA-PSS-04-106) and comply with the H/P Packet Structure ICD (AD05) which defines<br />

all the packet services applicable to H/P, and specifies their design rules.<br />

The CDMS shall hence has the capability to:<br />

− acquire experiment data from instruments<br />

− store experiment data during non visibility period and visibility period<br />

− transmit the stored data and real time ones to the ground.<br />

OFF


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

101/136<br />

The total instrument average data rate over 24hrs must not exceed 130kbits/s for Herschel and for the<br />

Planck missions.<br />

Burst Data rate up to 300kbps can be handled during a pre-defined time range, for a pre-defined time<br />

duration.<br />

These allocations are for all instruments and inclusive of all the telemetry packets types with TM formatting<br />

overheads.<br />

The PS ICD (AD05) defines the temporal organization of the transfer layer over the MIL 1553 Bus into<br />

frames, subframes and slots.<br />

Each intelligent MIL 1553 Bus user, and especially the instruments, will be allocated a number of subframes<br />

per second dedicated to TM packets acquisition. This allocation depends on the Satellite Mode and on the<br />

instrument operating mode (Prime, Non Prime, Parallel, …).<br />

The detailed allocation, on a frame basis, of each slot of a frame, defines a Bus Profile. It will be possible, in<br />

flight, to switch from one Bus profile to another, upon specific TC.<br />

A subframe shall be able to transport up to 1 max length TM packet.<br />

A dedicated Failures Detection Isolation and Recovery procedure guarantees the single failure tolerance of<br />

the 1553 Data Link Layer. The 1553 Bus DLL FDIR is described in RDxx, <strong>section</strong> 3.2.2. A recovery from Mil<br />

1553 Bus A to Bus B can last up to 250ms. In order to avoid the loss of any TM Packet, the Instrument<br />

should be able to buffer a minimum of 250ms of data. If the spacecraft finds that the Bus anomaly is with one<br />

Instrument only, and if the Bus switch over does not help, a dedicated Instrument FDIR procedure may be<br />

started if it is requested by the instrument. The Instrument detailed definition of this recovery procedure shall<br />

then be performed by the instrument.<br />

NB : the total number of allocated subframes in satellite Nominal Mode, and TM normal mode will allow an<br />

instantaneous TM acquisition rate higher than 130kbps if only long TM packets are transported. It shall<br />

however be the instruments responsibility to ensure that the max authorized average rate of 130kbps is not<br />

exceeded. The spacecraft does not guarantee the storage nor the real time transmission of the acquired<br />

data beyond this limit.<br />

For Planck Satellite instruments in normal mode of operation, a total of 32 subframes is allocated ; this<br />

allocation is inclusive of ALL telemetry packets generated by Planck instruments, ie :<br />

− HFI+LFI Science data<br />

− LFI, HFI & Sorption cooler Housekeeping data (all HK packets + event Packets + TC verification<br />

reports, time verification TM, ...)<br />

PLANCK SUBFRAME ALLOCATION<br />

Launch<br />

Mode<br />

S/C Sun<br />

Acquisition<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Nominal<br />

Normal<br />

S/C Earth<br />

Acquisition<br />

LFI TM 0 3 15 3 0<br />

HFI TM 0 3 15 3 0<br />

Sorption Cooler HK TM 0 2 2 2 0<br />

Total number of subframes allocated 0 8 32 8 0<br />

For Herschel Satellite instruments in normal mode of operation, a total of 33 subframes is allocated ; this<br />

allocation is inclusive of ALL telemetry packets generated by Herschel instruments, ie :<br />

− PACS, SPIRE & HIFI Science data<br />

− PACS, HIFI & SPIRE Housekeeping data (HK packets + event Packets + TC verification reports,<br />

time verification TM, ...)<br />

Survival


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

102/136<br />

For Herschel Satellite in TM Burst Mode of operation, a total of 46 subframes is allocated, among which 40<br />

subframes are allocated to the instrument in Burst Mode ; this allocation is inclusive of ALL telemetry packets<br />

generated by Herschel instruments.<br />

The detailed allocation per satellite Mode, is provided in Table hereafter.<br />

HERSCHEL SUBFRAME ALLOCATION<br />

Launch<br />

Mode<br />

S/C Sun<br />

Acquisition<br />

Nominal<br />

Normal Burst Mode<br />

Prime Instrument TM 0 3 27 40 3 0<br />

Non-Prime1 Instrument TM 0 3 3 3 3 0<br />

Non-Prime2 Instrument TM 0 3 3 3 3 0<br />

Total number of subframes allocated 0 9 33 46 9 0<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

S/C Earth<br />

Acquisition<br />

Survival<br />

The science and housekeeping data are acquired continuously and down-linked during the visibility periods<br />

(DTCP).<br />

During non-visibility periods, TM packets from instruments and platform are transmitted to a storage unit.<br />

During visibility periods, data from the instruments S/C are always stored in the storage unit and are<br />

transmitted in real time multiplexed with dumped data from storage unit.<br />

The downlink rates associated with the different link conditions, and identified in the TM/TC configuration for<br />

the satellite modes (tables 5.11-2 and 5.11-3) are :<br />

− Low Rate 1 : 500bps with Kourou Ground Station on LGA’s<br />

− Low Rate 2 : 5kbps with New Norcia Ground Station on LGA’s<br />

− Medium Rate 150kbps (TBC) with Kourou Ground Station on MGA<br />

− High Rate : 1.5Mbps with New Norcia Ground Station on MGA<br />

In order to be inserted into the real time TM flow in case of transition to satellite modes associated to Low TM<br />

Rate 1 and 2 TM/TC modes, each instrument shall define one Essential HK Packet, which permits to<br />

unambiguously monitor the instrument status.<br />

For each instrument, the average Critical HK rate shall represent 330bps max , at assembled packet level. 2<br />

solutions are acceptable :<br />

− a dedicated Essential HK TM packet is created by the instrument<br />

− a subsampling of an already existing packets is identified as a « Essential HK» packet.<br />

Whatever the solution, this Essential HK packet shall be generated with a specific Base APID, in line with<br />

AD5 appendix 3, in order to be recognized/routed correctly by the spacecraft data handling system.<br />

In case Low TM rate 1 TM/TC mode is used, only 1 over 11 Essential TM packets will be downlinked.<br />

5.11.2 SSR Mass Memory<br />

The Solid State Recorder (SSR) can store instrument science and housekeeping data of 48 hrs.<br />

The storage unit will have the capability to support simultaneous read and write operations during visibility<br />

periods.<br />

The storage unit is organized in packet stores (partitions). Different options are possible as far as the stores<br />

allocation per instruments is concerned. One option is to allocate 2 stores per instrument, one for HK and<br />

one for science. Another option is to allocate one single store to all instruments science and one single store<br />

for all instruments HK. Since it shall be possible to redefine the Packets stores size and/or their TM<br />

allocation, at each ground contact, any combination is actually possible.


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

103/136<br />

The stores are sized to record the expected TM packets production rate over 48 hours of operation.<br />

Event telemetry packets from all instruments and spacecraft are stored in a dedicated packet store (TBC).<br />

5.11.3 Timing<br />

A unique on-board time, the Central Time Reference ( CTR ) is maintained at spacecraft level and<br />

distributed to the instruments in order to time-tag their data, which will be embedded in their telemetry<br />

packets (see RD 74 for more detailed information about time adjustment).<br />

The distribution of the CTR to the instruments is performed in 2 ways :<br />

− via the time-message on the 1553 data bus, as described in AD5, Appendix 9<br />

− by means of the Packet service 9 time setting mechanism, as described in AD5<br />

The instruments time verification is performed using the Packet service 9 relevant mechanism, as described<br />

in AD5.<br />

In addition, in order to maintain the time synchronization with the CTR, the instruments may use the<br />

distributed 131072 Hz clock described in §5.11.6.1.<br />

As specified in AD5, it is recalled that TM non synchronized with CTR shall be specifically flagged by the<br />

instrument.<br />

5.11.4 Telecommands<br />

As far as telecommanding is concerned the instruments shall interface with the spacecraft via 2 means:<br />

− Packet telecommands formatted according to the ESA Packet Telecommand Standard (ESA-PSS-<br />

04-107) and compliant with the rules of the Packet Structure ICD (AD5). This is the main<br />

commanding path.<br />

− MiL Std 1553 Mode commands as specified in AD5 appendix 9.<br />

NB : The Commands can be received from different sources where the source is indicated in the TC header,<br />

as described in AD5 :<br />

− Ground<br />

− Mission Timeline<br />

− On Board Control Procedures<br />

− FDIR procedures<br />

The total telecommand rate will be shared between spacecraft and instruments commanding. The maximum<br />

telecommand rate will be 4 kbits/s. The maximum command rate to the instrument will be 2 TC packets per<br />

second.<br />

In addition to the sub-frames allocated for the TM, sub-frames are also allocated for packet telecommands. A<br />

total of 4 subframes are allocated for the whole spacecraft nominal packet telecommanding in all spacecraft<br />

modes, each subframe being able to transport up to 3 max length TC packets.<br />

As far as telecommanding is concerned, the instruments shall comply with the following rules:<br />

− A maximum of 4 TC packets per seconds can be transmitted to all the instruments together<br />

− A maximum of 2 TC packets per second can be transmitted to any givenPrime instrument. These<br />

TC packets will be transmitted in different subframes.<br />

− A maximum of 1 TC packets per second will be transmitted to any given Non-Prime instrument.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.11.5 Polling Strategy<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

104/136<br />

The Packet TM and TC transfer on the Mil Std 1553 Bus shall follow the Transfer Layer protocol specified in<br />

the PS ICD (AD5) appendix 9.<br />

The protocol is driven by<br />

− the allocation of the 1553 Subaddresses to well identified message types<br />

− The time breakdown of each subframe into 24 slots, each slot range being allocated a defined role in<br />

the data transfer : Synchronization, Command/Acquisition, Data Transfer, Packet Control,<br />

Regulation.<br />

− the exchange of handshake messages between the Bus Controller (CDMU) and the intelligent<br />

Remote Terminals, especially the instruments. The exchange will take place at defined<br />

subaddresses and during defined slots.<br />

Telecommand<br />

The telecommand distribution protocol is described in AD05 appendix 9. The CDMU first transfers the TC<br />

packet to the RT (Instrument) input buffer, at the subaddresses SA11 to SA26. SA27R is allocated to the<br />

exchange of the TC transfer description (TC PTD) which happens in the slots 21, 22 or 23 of the subframe<br />

where the TC packet transfer has occurred. The RT is requested to poll SA27R every subframe. The TC<br />

PTD shall then be evaluated by the RT at the subsequent subframe. After valid acquisition of the TC Packet,<br />

the RT shall move the TC PTD to SA27T to become the TC packet confirmation (TC PTC).<br />

The CDMU shall evaluates the success of the TC transfer by acquiring the TC PTC message at SA27T not<br />

earlier than 3 subframes after the TC transfer, during the slot 21, 22 or 23.<br />

FDIR:<br />

A specific Failures Detection Isolation and Recovery procedure is applied on the Telecommand distribution<br />

process. The FDIR for TC transmission protocol is described in RD6, <strong>section</strong> 3.3.2.<br />

It offers the possibility to re-send TC Packet which TC PTC evaluation has failed during the next subframe<br />

allocated to TC transfer. Should the retry fail again, for a single Instrument, the instrument operation is<br />

considered unsafe and a dedicated Instrument FDIR procedure may be started if the instrument request it.<br />

The detailed definition of this FDIR procedure shall then be performed by the instrument.<br />

Telemetry<br />

As far as the TM packets acquisition is concerned, it has been necessary to define 2 different protocols to<br />

support the 2 TM packets acquisition modes : the Normal Mode and the Burst Mode.<br />

Nominal Mode:<br />

With reference to AD5, SA10T is allocated to the exchange of the TM Transfer Request message (TM PTR),<br />

and as illustrated in Figure 5.11.5-1 the actual polling of this message happens in the Slot number 21 to 23<br />

(Slot 21 in the Fig.) . If the instrument has data to be retrieved then it shall write to SA10T. the CDMU will poll<br />

this SA during the slot 21 on a periodic basis, and if it finds that the instrument needs servicing it will access<br />

the data output register of the instrument Remote Terminal from SA11T, and take the data stored there in a<br />

subsequent sub-frame, during the Slots 6 to 20. Note that the baseline is to have the polling and data<br />

retrieval in subsequent sub-frames, however there are no requirement that forbids that one or more subframes<br />

are in between polling and retrieval. If the Transfer request is not set by the instrument the CDMU will<br />

not access the data output register of the instrument Remote Terminal, there will be no data transfer during<br />

the sub-frame associated to the polled terminal.<br />

The CDMU will then check the validity of the received data and if found to be correct will send a TM<br />

confirmation message at SA10R (TM PTC) in slot 22 or 23 (22 in the Fig.) of the subframe during when the<br />

TM transfer has occurred. Upon receipt of this confirmation the Remote Terminal shall prepare for the next<br />

transfer.<br />

If the CDMU finds that a data transfer was not successful then this confirmation message (TM PTC) will not<br />

be sent and the instrument shall leave the data ready for the next acquisition attempt (transfer request will<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

105/136<br />

have to be kept set). If the subsequent data transfer is still not successful, then the confirmation message is<br />

sent in order to avoid dead lock situation.<br />

It should be noted that it is required that the user has all the data ready for transfer within 2mS from the start<br />

of the sub-frame allocated for that transfer .<br />

In this mode it is not intended to have consecutive sub-frames allocated for the same user.<br />

Burst Mode:<br />

This mode aims to optimize the use of the data Bus bandwidth and thus permits a higher TM rate for one<br />

selected instrument. It is principally the same as the nominal mode except that the same user (the user<br />

having requested a Burst Mode Transfer) is polled in consecutive sub-frames. In this mode the CDMU will<br />

always send the confirmation message that TM data has been received correctly (there will be no checking).<br />

For a Burst TM acquisition to be performed from a dedicated instrument N, the here below steps are followed<br />

:<br />

− 1- the Bus Profile on RT side is set to a Burst Mode Profile (with polling in consecutive subframes of<br />

N)<br />

− 2- the relevant instrument N is commanded by TC to switch to Burst Mode<br />

− 3- the instrument N shall set the Burst Mode flag in the TM PTR message for the «Burst transfer» to<br />

occur.<br />

Burst transfer mechanism is shown in Figure 5.11.5-2.<br />

Notes:<br />

In non-burst mode the same user<br />

cannot have consecutive subframes<br />

If Poll is not set by user then the<br />

CDMU will not access User data<br />

register, the bus will be idle for that<br />

subframe user data time<br />

If Poll is set then the CDMU will<br />

access the user data register<br />

If the Confirm data is set by the<br />

CDMU then the dataregister can be<br />

cleared/updated by the User<br />

If the Confirm data is not set by the<br />

CDMU then the data transfer has<br />

failed and the data register should<br />

not be cleared /updated by the User<br />

2mS<br />

User A Subframe User B Subframe<br />

User A Data to<br />

be ready by this<br />

time<br />

USER A<br />

DATA<br />

Poll A Poll B<br />

Confirm A<br />

data is OK<br />

from<br />

CDMU<br />

Nominal Mode Polling<br />

(No interlacing)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

2mS<br />

User B Data to<br />

be ready by this<br />

time<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

USER B<br />

DATA<br />

Figure 5.11.5-1: Nominal Mode TM transfer Mechanism<br />

Poll C<br />

Confirm B<br />

data is OK<br />

from<br />

CDMU


Notes:<br />

In burst mode the same user can<br />

have consecutive subframes<br />

If Poll is not set by user then the<br />

CDMU will not access User data<br />

register, the bus will be idle for that<br />

subframe user data time<br />

If Poll is set then the CDMU will<br />

access the user data register<br />

When the Confirm data is set by the<br />

CDMU then the dataregister can be<br />

cleared/updated by the User<br />

The Confirm data is always set by<br />

the CDMU, no check performed in<br />

burst mode<br />

FDIR:<br />

IIDA - SECTION 5<br />

2mS<br />

User A Data to<br />

be ready by this<br />

time<br />

USER A<br />

DATA<br />

Poll A Poll A<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

106/136<br />

User A SubframeN User A Subframe N+1<br />

Confirm A<br />

data is<br />

always set<br />

by CDMU<br />

Burst Mode Polling<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

2mS<br />

Figure 5.11.5-2: Burst Mode TM transfer mechanism<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

User A Data to<br />

be ready by this<br />

time<br />

USER A<br />

DATA<br />

Poll A<br />

Confirm A<br />

data is<br />

always set<br />

by CDMU<br />

A specific Failures Detection Isolation and Recovery procedure is applied to the Telemetry acquisition<br />

process. The FDIR for TM acquisition protocol is described in RD6, <strong>section</strong> 3.3.3.<br />

It offers, as described above, a «one retry capability» for the Nominal TM Mode in case one packet<br />

acquisition has failed. This feature is not available in case of Burst TM Mode.<br />

In addition, the number of acquired TM packets over a given time will be monitored and used as a criterion to<br />

identify an Instrument RT anomaly. In case of an acquired TM packet number, counted over a certain time, is<br />

lower than an expected number, the Instrument operation is declared unsafe and a dedicated Instrument<br />

FDIR procedure may be started if it is requested by the instrument. The detailed definition of this FDIR<br />

procedure shall then be performed by the instrument.<br />

Especially, the instrument shall define, in each mode :


IIDA - SECTION 5<br />

− the period over which the TM packet must be counted<br />

− the minimum number of expected packets<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

107/136<br />

In order, if needed, to support the TM packet acquisition failure analysis, the Instrument shall report the last<br />

«Invalid» TM PTC and the corresponding subframe count, in the Status Data stored at SA1T. This report<br />

shall be cleared every one second at the subframe 2.<br />

5.11.6 Special signals<br />

5.11.6.1 Synchronisation Signal<br />

A redundant, electrically isolated synchronisation signal with a frequency of 131072Hz and an overall stability<br />

of better than 1*10 -6 shall be delivered to each instrument.<br />

This signal shall be synchronized with the Central Time Reference clock<br />

5.11.6.2 Herschel Mission<br />

On Target Flag:<br />

Attitude information including an «On Target Flag» will be provided in the spacecraft HK TM.<br />

Start of Scan<br />

A dedicated TC packet is e sent to SPIRE instrument to indicate the start of the scan mode. The time stamp<br />

accuracy is better than 5ms. This start of scan indication shall be sent through the Mission Timeline (1s<br />

resolution).<br />

Peak up<br />

refer to <strong>section</strong> 5.12.5.1: Herschel Pointing calibration<br />

5.11.6.3 Planck Mission<br />

The spacecraft ACMS providse the reference event (±1.5ms) at which the phase of the spin can be<br />

referenced in inertial space. This event will be available in the spacecraft HK TM.<br />

In addition, an indication of the Start of slew time, and of the estimated slew duration will be sent to the<br />

instruments (HFI) by the spacecraft CDMU as a dedicated TC packet, through the Mission Timeline.<br />

5.11.7 Interface circuits<br />

The instruments interface circuits with the spacecraft data bus shall be defined according to MIL 1553 B , as<br />

specified in AD5.<br />

The Bus users shall use the long stub configuration (transformer coupled to the Bus).<br />

5.11.8 Application Process Identifiers<br />

A range of typically 8 Application Process Identifiers (APID’s) will be allocated to each instrument to support<br />

its TM/TC communication needs. The exact range is specified for each instrument in the Packet Structure<br />

ICD (AD 5). Different APID’s are allocated for Housekeeping and Science TM packets. Details of the APID<br />

allocation shall be specified in the IID-Bs.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.11.9 Observation Identifiers<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

108/136<br />

Observation Identifiers are used for separating/identification of observation phases/executions and therefore<br />

are also supporting instrument TM/TC communication needs.<br />

5.11.10 Addresses on 1553 bus<br />

The 1553 busses addresses for instrument data processing units or instrument control units shall be the<br />

following:<br />

Instrument unit or connection 1553<br />

Address<br />

Planck<br />

Herschel<br />

HFI A HFI DPU nominal unit 16<br />

HFI B HFI DPU Redundant unit 17<br />

LFI A LFI REBA Nominal unit 18<br />

LFI B LFI REBA Redundant unit 19<br />

SCE A LFI SCE Nominal unit 20<br />

SCE B LFI SCE Redundant unit 21<br />

HIFI A HIFI ICU Nominal side 16<br />

HIFI B HIFI ICU Redundant side 19<br />

SPIRE A SPIRE DPU Nominal side 21<br />

SPIRE B SPIRE DPU Redundant side 22<br />

PACS A PACS DPU Nominal side 25<br />

PACS B PACS DPU Redundant side 26<br />

5.12 ATTITUDE AND ORBIT CONTROL/POINTING<br />

5.12.1 Terminology<br />

The following terminology is used:<br />

5.12.1.1 Herschel Pointing Terminology:<br />

− Attitude Measurement Error (AME): AME is the instantaneous angular separation between the actual<br />

LoS direction and the estimated LoS direction. This is referred to as ‘a posteriori knowledge’.<br />

− Absolute Pointing Error (APE): is the angular separation between the desired LoS direction, and the<br />

instantaneous actual LoS direction.<br />

− Relative Pointing Error (RPE): is the angular separation between the instantaneous LoS direction<br />

and the short time average LoS direction during some time interval. This is also known as the<br />

pointing stability<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

109/136<br />

− Pointing Drift Error (PDE): is the angular separation between the short time average LoS direction<br />

during some time interval and a similar average LoS direction at a later time.<br />

− Absolute Rate Error (ARE): is the difference between the actual and the desired angular rate about<br />

the eigen axis of the manoeuvre. This applies only for line scanning.<br />

− Spatial Relative Pointing Error (SRPE): is the angular separation between the average actual LoS<br />

direction and a desired LoS direction which is defined relative to an initial reference direction.<br />

5.12.1.2 Planck Pointing Terminology:<br />

Jitter strip: The jitter strip is defined as the band between the two planes which just encompasses the path<br />

swept out by the LoS, in any full number of rotations on the celestial sphere.<br />

Jitter strip average: The jitter strip average is the average (best least-square fitting) plane of the jitter strip.<br />

Reference circle: The reference circle is defined on the celestial sphere as the desired circle, which LoS<br />

nominally should sweep through. Note that the reference does not consider the phase of the LoS pointing.<br />

Scan direction : the instantaneous time derivative of LoS w.r.t. an inertial frame.<br />

(the scan direction can be understood as: at a given time, one considers that the inertial direction determines<br />

the LoS. A short time later, this inertial direction has changed. The direction of variation is the scan direction)<br />

Planck Pointing Error Definitions:<br />

Line of Sight Pointing<br />

− Attitude Measurement Error (AME): is the instantaneous angular separation between the actual<br />

pointing direction and the estimated pointing direction . This is referred to as ‘a posteriori knowledge’.<br />

− Absolute Pointing Error (APE): is the instantaneous minimum angular separation of the actual LoS<br />

direction and the desired reference circle.<br />

− Relative Pointing Error (RPE): is half the maximum angular width of the jitter strip over a specified<br />

time period (nominally 55 minutes). RPE is also known as the pointing stability.<br />

− Pointing Drift Error (PDE): is the angular separation between the jitter-strip average during some<br />

time interval (nominally over 55 minutes) and a similar average at a later time (nominally 24 hours),<br />

but excluding the deterministic part originating from spin axis reorientation manoeuvres.<br />

− Absolute Rate Error (ARE): is the difference between the actual and the desired angular rate about<br />

the spin axis.<br />

− Pointing Reproducibility Error (PRE): is the angular separation between the 2 jitter-strip averages<br />

(nominally over 55 minutes) obtained by commanding two identical reference circles at 2 different<br />

times (nominally separated by 20 days).<br />

Around Line of Sight Pointing<br />

The pointing error around LoS is the angle between the scan direction and the plane containing Yfocal_plane<br />

and the LoS, Yfocal_plane being a parallel vector to YSC.<br />

APE around LoS is the instantaneous pointing error around LoS.<br />

− RPE around LoS is the instantaneous difference between pointing error around LoS and its average<br />

over 55 minutes.<br />

− PDE around LoS is the angular separation between the short time average pointing error around LoS<br />

during some time interval (nominally 55 minutes) and a similar average pointing at a later time<br />

(nominally 24 hours), but excluding the deterministic part originating from spin axis reorientation<br />

manoeuvres.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.12.1.3 General<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

110/136<br />

A slew is a manoeuvre of the spacecraft from one pointing direction to another without specific requirement<br />

on the path.<br />

A scan is a manoeuvre of the spacecraft along a specified path with a specified rate along this path.<br />

Unless otherwise specified, the pointing error specifications are expressed as half-cone angles of the optical<br />

axis and half-angles around the optical axis. They are specified at a temporal probability level of 68%, which<br />

implies that error will be better than the requirements for 68 % of the time.<br />

5.12.2 Herschel Pointing Requirements<br />

During all scientific observation modes requiring periods of stable pointing, the pointing requirements with the<br />

goals as specified in the Table 5.12.2-1 below will be met with a single calibration once per month (TBC).<br />

The LoS of an instrument is defined as the direction on the observed sky of the geometric centre of an FPU<br />

entry beam’s far field pattern as projected by the telescope.<br />

Note that the definition applied to requirements and goals is:<br />

− Requirement performance to be satisfied under all applicable conditions and margins<br />

− Goals: performance to be satisfied under restricted, but realistic and specified, conditions<br />

and without margins<br />

ERROR Line of sight<br />

(arcsec)<br />

Around line of<br />

sight<br />

(arcmin)<br />

Goals for line of<br />

sight<br />

(arcsec)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Goals around line<br />

of sight<br />

(arcmin)<br />

APE < 3.7 3.0 < 1.5 3.0<br />

APE scanning < 3.7 + 0.05 w n.a. < 1.5 + 0.03 w n.a.<br />

PDE(24 hours) < 1.2 3.0 n.a. n.a.<br />

RPE (1 min)<br />

pointing<br />

RPE (1 min)<br />

scanning<br />

< 0.3 1.5 < 0.3 1.5<br />

< 1.2 1.5 < 0.8 1.5<br />

AME pointing < 3.1 3.0 < 1.2 3.0<br />

AME scanning < 3.1 + 0.03*w 3.0 < 1.2 + 0.02*w 3.0<br />

AME slew < 10 3.0 < 5 3.0<br />

Note: w is the scan rate in arcsecond/second. APE scanning mode requirements and goals around LOS are<br />

covered in the <strong>section</strong> describing Herschel slews performances.<br />

Table 5.12.2-1: Herschel Pointing requirements<br />

In consecutive pointings within 4 x 4 degrees spherical area, the SRPE of all pointings following the initial<br />

pointing, as referred to the average (barycentre) pointing direction of the first pointing will be less than<br />

1arcsec (68% probability level).<br />

The initial reference direction is the average direction of the first pointing. The actual direction of the first<br />

pointing will lie within a cone of half angle RPE around this reference direction. The pointing reference axes<br />

for all consecutive pointings are specified as angular co-ordinates with respect to the initial reference<br />

direction.


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

111/136<br />

(SPIRE and HIFI peak up procedure accuracy shall be better than 1 arcsec around the spacecraft Y and Z<br />

axes).<br />

To meet the line of Sight pointing requirements, the long term error between the LOS reference and the<br />

scientific mode attitude sensors will be-calibrated and if necessary, compensated by target attitude<br />

generation (bias compensation).<br />

All instrument LOS will be calibrated versus ACMS sensors LOS. For that purpose, all instrument shall<br />

provide to ground, the information for knowledge of its detector LOS attitude with an accuracy better than 1<br />

arcsec (goal : 0.6 arcsec) in Earth Centered Inertial J2000 frame.<br />

Long term and short term parts of that accuracy shall be negligible (


IIDA - SECTION 5<br />

5.12.4 Herschel Scientific Pointing modes<br />

For Herschel the following scientific pointing modes will be provided:<br />

− Fine Pointing<br />

− Raster Pointing<br />

− Line Scanning<br />

− Tracking of Solar System Objects<br />

− Position Switching<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

112/136<br />

− Nodding<br />

These modes are described in the document: Herschel Scientific Pointing Modes, in the annex to this<br />

document.<br />

5.12.5 Calibration<br />

5.12.5.1 Herschel Calibration - Star Tracker<br />

To establish the offset angle between the Herschel star tracker and the lines of sight of the instruments, the<br />

spacecraft will perform a calibration of not longer than 10 min every 24 hours.<br />

The spacecraft will perform a pointing calibration every month (duration 40mn). There will be daily calibration<br />

check (few mn). Initial full calibration will be performed during spacecraft commisioning phase (duration<br />

3h15).<br />

For peak up procedure, the spacecraft will communicate, on-board and to ground, a request for pointing<br />

correction from the prime instrument per single observation. After the reception of pointing correction from<br />

the instrument (correction performed using instrument internal movable mirrors), the spacecraft will<br />

autonomously readjust its position accordingly. The correction will only be allowed within predefined<br />

boundaries,(< 10 arcsec around satellite Y and Z axis).<br />

The peak up procedure shall be implemented as follows:<br />

Format of peak-up event packet to be generated by HIFI and SPIRE<br />

HIFI and SPIRE shall use event packet (service 5 type) to inform the spacecraft about a new pointing target<br />

based on:<br />

− the previous inertial target (inertial pointing only)<br />

− two µ-rotation angles (


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

113/136<br />

The commanded µ-rotation angles correspond to the desired translation of the image inside the instrument<br />

focal plane frame. Note that with this convention, θY (resp. θZ) does not represent the rotation around Y<br />

(resp. Z).<br />

The signs shall follow this convention:<br />

BEFORE<br />

Zfocal plane<br />

Absolute value convention:<br />

Y focal plane<br />

µ-rotations angles<br />

θY and θZ are both positive<br />

in this example:<br />

θY = 3 × (Y units)<br />

θZ = 2 × (Z units)<br />

The absolute value of both µ-rotation angles shall be given as 16-bit signed integers.<br />

In accordance with the PS-ICD:<br />

− bit 0 shall be the most significant bit<br />

− bit 15 shall be the least significant bit<br />

Bit 0 shall be used as the sign bit (0 for plus, 1 for minus)<br />

Format of HIFI packet parameters:<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

AFTER<br />

Zfocal plane<br />

HIFI identifier µ-rotation angle Y µ-rotation angle Z<br />

Y focal plane<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 M . . . . . . . . . . . . . . LM . . . . . . . . . . . . . . L<br />

Format of SPIRE packet parameters:<br />

SPIRE identifier µ-rotation angle Y µ-rotation angle Z<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 M . . . . . . . . . . . . . . LM . . . . . . . . . . . . . . L<br />

Additional information required from instruments:<br />

Some data are needed by the spacecraft to transform the peak-up parameters into attitude angles. They may<br />

be reprocessed by the ground after in-flight calibration.<br />

The following set shall be provided for each instrument.<br />

− YFP = 3 components of Yfocal plane in satellite frame<br />

− ZFP = 3 components of Zfocal plane in satellite frame<br />

− kY = value of low significant bit used for µ-rotation angle Y, to transform integer θY into radians.<br />

Angle [in rad] = k × integer.<br />

− kZ = value of low significant bit used for µ-rotation angle Z, to transform integer θZ into radians. Angle<br />

[in rad] = k × integer.


5.1.1.2 Planck calibration<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

114/136<br />

The Planck Instrument LOS will be aligned with the ACMS LOS with an accuracy of 1.5° maximum (including<br />

ground error sources, and in-orbit effects (gravity release, launcher effects, cooling).<br />

5.1.6 On-Target Flag<br />

Ref 5.11.6.2 (special signals)<br />

5.1.7 Planck Reference Star Pulse<br />

See <strong>section</strong> 5.11.6.3 (special signals for Planck)<br />

5.1.8 Herschel Slews<br />

The maximum slew rate will be 7 degrees/min (or larger) when the slew angle is large enough to permit full<br />

angular velocity. For slews smaller than 16 arcmin (φ in arcsec), the time to acquire the target will be:<br />

− maximum: 10+sqrt(2φ) sec<br />

− goal: 5+sqrt(φ) sec<br />

It will be possible to change via command the slew rate between 0.1 arcmin/s and 1 arcmin/s with a<br />

resolution of 0.1 arcmin/s.<br />

The Absolute Rate Error about the scan axis will be better than 1% of the demanded rate but not less than<br />

0.1 arcsec/s.<br />

It will be possible to complete a slew of at least 90 degrees in 15 min, including settling time. It will be<br />

possible to execute each 22 hours, 2 of such slews without the necessity of wheel-momentum off-loading.<br />

Attitude constraints defined in <strong>section</strong> 5.12.10 apply during slews.<br />

5.1.9 Planck Slews<br />

The spacecraft will be capable (nominal slew planning) of re-orienting the Spin-axis in accordance with the<br />

following requirements:<br />

− frequency: one manoeuvre every 45 min throughout nominal lifetime (on average), the maximum<br />

reorientation frequency is a rate of once per 30 minutes.<br />

− amplitude: 3 arcmin with a resolution of 0.1 arcmin in any direction<br />

− relative accuracy: The spacecraft will be capable of reorienting the jitter strip average for up to 3<br />

arcmin with an accuracy of 0.4 arcmin relative to the previous orientation (68% probability level).<br />

The duration of a 3 arcmin amplitude spin axis reorientation, including the settling time, will be 5 min or less<br />

(elapsed time during which pointing requirements cannot be met).<br />

For a spin axis reorientation not part of the Planck scanning law (up to 20°), the rate of such a reorientation<br />

will be at least 0.5 arcmin/s.<br />

To meet the Planck APE and PDE requirements (for instance to kill nutation, or compensate drifts) the<br />

spacecraft design will utilise a maximum of +/-10% tuning of the amplitude of the manoeuvre needed to<br />

execute the nominal sky scanning law; i.e. no dedicated slew manoeuvres will be required.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.1.10 Attitude constraints<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

115/136<br />

Herschel will be compatible with an operational (resp. allowed for attitude control clearance) sun direction at<br />

less than 30° (resp. 30.3° TBC) from YZ plane, and its projection onto YZ plane at less than 1° (resp. 5°<br />

TBC) from Z.<br />

In contingency cases, Herschel will not allow a transient outside the allowed attitude defined above for more<br />

than 1 minute (TBC), and the sun direction shall be kept at less than 35° from (TBC) YZ plane, and its<br />

projection onto YZ plane at less than 10° (TBC) from Z.<br />

Figure 5.12.10-1 Herschel Sun pointing zones<br />

Planck will be compatible with an operational (resp. allowed for attitude ACMS control clearance) sun<br />

direction at less than 10° (resp. 10.6°) from the –X axis of the satellite frame.<br />

In contingency cases, Planck will not allow a transient outside the operational attitude defined above for<br />

more than 1 minute (TBC), and this transient shall not exceed 2° (TBC).<br />

5.13 ON-BOARD HARDWARE/SOFTWARE AND AUTONOMY FUNCTIONS<br />

5.13.1 On-board hardware<br />

NA<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.13.2 On-board software<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

116/136<br />

Instrument on-board software shall comply with the ECSS software standard ECSS-E 40B and amended by<br />

the «Guide to applying the ESA software engineering standards to small software projects» BSSC(96)2.<br />

After launch on-board software maintenance is a possible tool to overcome unforeseen situations or failures<br />

of the instruments. Commonality and standardisation of on-board software and its development and<br />

verification tools, in particular also with other PI’s developing instruments for the same satellite, will<br />

significantly ease the in-flight maintenance. The PI is therefore requested to:<br />

− use a preferred language (C or ADA) for on-board software coding<br />

− standardise the software and development and verification tools<br />

− be in close contact with other PI’s<br />

− use common SW modules/routines (e.g. libraries) for common functionality, e.g. on-board memory<br />

loading/dumping<br />

In-flight maintenance furthermore requires that functionally distinct areas of memory shall be assigned to:<br />

− programme code<br />

− fixed constants<br />

− variable parameters<br />

It shall be possible to modify individual software parameters or constants by command from the ground.<br />

Information to indicate all actions of operational significance taken by on-board software in a complete,<br />

unambiguous and timely manner shall be available in the telemetry.<br />

5.13.2.1 Software interfaces<br />

The sole instrument on-board software interface with the spacecraft is through the software of the Central<br />

Data Management Unit (CDMU)<br />

5.13.2.2 Process control<br />

The control processes managed by an on-board application are defined in the OIRD (AD 3).<br />

5.13.2.3 On-board memory loading<br />

It shall be possible to load any memory area from the ground.<br />

Any telecommand packet needed to up-link any area of memory shall be self-consistent in that:<br />

− a successful load shall not depend on previous packets<br />

− if a packet is rejected, it may be up linked on its own at a later time (seeAD 3)<br />

5.13.2.4 On-board memory dumping<br />

Any memory area shall be accessible for dumping on ground request.<br />

The dump request shall specify the start address and length of the dump<br />

Only a single command packet shall be required, even if several telemetry packets are required to convey<br />

the dumped area to the ground (see AD 3).<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.13.2.5 Autonomy and FDIR functions<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

117/136<br />

During all mission phases, the spacecraft including instruments will be capable of operating nominally<br />

without ground contact for a period of 2 days without interrupting the planned operations. If no ground<br />

command has been received by the spacecraft since more than a ground programmable time, the spacecraft<br />

will go into a safe mode. It will be possible to exit from autonomy mode by ground command.<br />

The more general autonomy requirements is given in the OIRD (AD 3).<br />

Satellites modes definition, and FDIR and operation overall requirements are stated in RD 6.<br />

A survival mode is defined, which purpose is to maintain a safe spacecraft including instruments after a<br />

major on-board failure or a violation of the attitude constraints or loss of ground contact.<br />

Once activated, the survival mode will maintain a safe attitude within the constraints allowing a continuous<br />

supply of power, maintaining a stable thermal environment compatible with the spacecraft and instrument<br />

requirements and ensure a two way communication link with the ground station when coverage is available<br />

for at least housekeeping telemetry data and commanding and the spacecraft and instruments in safe<br />

conditions.<br />

It shall be possible to exit the survival mode only by ground command.<br />

It will be possible that the survival mode is initiated automatically on-board on System Level alarm detection,<br />

and is maintained without any ground contact for at least seven days. The survival mode will rely on a<br />

context stored in protected memory.<br />

The instruments shall define a safe configuration for the stand-by and survival mode.<br />

5.14 EMC<br />

The extremely low detector output voltages and the complexity of the spacecraft necessitate a careful design<br />

of the grounding, electrical interfaces and other EMC related parameters to assure mutual compatibility<br />

between instruments and the rest of the spacecraft.<br />

To achieve this compatibility, the following preliminary guidelines have been established:<br />

− separate power and data connectors<br />

− separate interconnecting harnesses where required<br />

− separate signal and primary power (28 Volt) ground<br />

− use filters to reduce conducted emission and susceptibility levels<br />

− isolate detector housing and electronics boxes from electrical signals<br />

− twist and shield wires in the interconnect harness<br />

− provide good and reliable bonds between the various parts of an electronics box and also to the<br />

mounting platform<br />

− select power converter frequency outside detector-signal bandwidth<br />

At the moment no detailed requirements have been established for DC magnetic requirements, however the<br />

following measures should be taken:<br />

− local strong (> 10 Oersted) DC hard-magnetic fields should be avoided or compensated by proper<br />

component arrangement to achieve self-cancellation.<br />

− the use of very soft magnetic materials with high permeability should be avoided as far as possible<br />

and practicable<br />

Exact values for the various parameters are currently being defined. To this effect it is planned to set-up a<br />

so-called frequency plan.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.14.1 Electrical Interfaces<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

118/136<br />

This <strong>section</strong> provides the EMC/EMI requirements for the Subsystem electrical interfaces to accomplish<br />

grounding requirements, to enhance Electromagnetic Compatibility and to maintain the necessary common<br />

methodology and implementation within the Project.<br />

The internal interface arrangement (i.e. the interfaces inside the same equipment) shall follow the rules<br />

established for external interfaces (i.e. interfaces between different equipment) to the maximum extent<br />

possible.<br />

5.14.1.1 Signal Interface Grounding<br />

For external interfaces, all the signal driver outputs shall be referenced to the signal ground and all the input<br />

terminals of the signal receivers shall be isolated from the ground. Only exceptions are the RF interfaces<br />

using coaxial cables and the low-level telemetry and telecommand lines that are permitted to have<br />

single/ended-single/ended interface (as dictated by the PSS).<br />

5.14.1.2 Signal Isolation (Common Mode Isolation)<br />

The receiver interface circuitry shall be designed to provide isolation between its input terminals and the<br />

receiver grounding reference that shall not be less than the mask given in Figure 5.14.1-1.<br />

IMPEDANCE - [OHM]<br />

10000<br />

1000<br />

100<br />

Common Mode Signal Isolation<br />

7000<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

200<br />

1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08<br />

5.14.1.3 Signal Reference<br />

Frequency - [Hz]<br />

Figure 5.14.1-1: Common mode Signal Isolation versus frequency<br />

Signals shall never use the primary power ground as reference. The secondary power reference shall<br />

constitute the user signal reference unless a further galvanic isolation stage is implemented.<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.14.1.4 Allowed Interface Topologies<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

The allowed interface topologies are listed in Table 5.14.1-1:<br />

TYPE OF INTERFACE TRANSMITTER RECEIVER<br />

ISSUE : 3.1 PAGE :5-<br />

119/136<br />

Analogue, Unit /Subsystem, ext. Balanced Differential<br />

Digital, Unit/Subsystem, ext. Single-ended Differential<br />

Single-ended Opto-coupler<br />

Single-ended Isolation Transformer<br />

Digital, unit/subsystem, Balanced Differential<br />

Sync & clock signals, unit, ext. Balanced Differential<br />

RF Transmission (coaxial cable) Single Ended Single ended<br />

Table 5.14.1-1: Allowed interface topologies.<br />

Exception to the above Table 5.14.1-1 is the low-level telemetry and telecommand lines (as specified in the<br />

PSS), that are permitted to have the single-ended /single-ended topology.<br />

5.14.1.5 Noise Immunity<br />

Discrete and digital interfaces shall be designed for noise immunity with both level and time discrimination.<br />

5.14.1.6 In Band Response<br />

Analogue and digital circuits shall be designed to not respond to signals out of their own intentional<br />

frequency bandwidths.<br />

5.14.1.7 In Band Transmission<br />

The transmission bandwidths shall be limited to the minimum extent possible.<br />

5.14.1.8 Filter Location<br />

Filters shall be placed at the source end of the interface if it is dictated so by the receiver time response or if<br />

additional noise suppression is required.<br />

5.14.2 Harness, Connectors and Shielding<br />

5.14.2.1 Definition of EMC Classes<br />

Power and signal lines shall be grouped into the following EMC classes:<br />

− Class 1: Primary/Secondary Power<br />

− Class 2: Digital Signals<br />

− High Level Analogue Signals<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

− Class 3: Low Level Sensitive Analogue Signals<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

− Class 4: RF Signals (via coaxial cables, tri-axial cables, etc).<br />

5.14.2.2 Wire/Bundle Coding<br />

ISSUE : 3.1 PAGE :5-<br />

120/136<br />

Wires/Cables belonging to the same EMC class can be assembled together in a bundle. In any case cable<br />

bundles or separate wires shall be coded reporting the EMC classes of the circuits which it contains. The<br />

wire type, twisting, shielding and shield grounding requirements shall be reflected on all the schematics,<br />

wiring diagrams and Interface Control Documents in which the circuit appears.<br />

5.14.2.3 Cable Separation of Different EMC Classes<br />

Bundles belonging to different EMC Classes shall be routed separately.<br />

Bundles belonging to class 2, 3 and 4 shall be shielded and separated by metallic barriers. The height of<br />

those barriers shall not be less than the largest cable bundle diameter requiring separation. If separation<br />

barriers are not practical, the bundles shall be separated by at least 10 cm. This requirement is not<br />

applicable to the subsystem equipment internal cabling or close to connector brackets.<br />

Note: Aluminium shielding is considered as metallic barrier.<br />

5.14.2.4 Harness Routing and Crossing<br />

All cable bundles shall be routed as close as possible to the hosting Spacecraft structure, which constitutes<br />

the ground plane. Where bundle must cross each other, the crossing angle between different categories<br />

shall be as close as possible to 90 o (not applicable for solid wire harness and in connector bracket areas.).<br />

5.14.2.5 Twisting<br />

Twisting of the active wire around its relevant return wire shall be used in order to reduce magnetic<br />

susceptibility and emission. In case several lines share the same return line they shall be twisted with the<br />

return line. The minimum twist rate shall be as specified in Table 5.14.2-1:<br />

AWG Size Number Minimum Twist/meter<br />

8 8<br />

10 9<br />

12 10<br />

14 12<br />

16 14<br />

18 16<br />

20 19<br />

22 23<br />

24 26<br />

26 30<br />

28 35<br />

Note: One twist is a full rotation around the cable axis.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

Table 5.14.2-1: Minimum Twist Rate<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

121/136<br />

If different AWG (> 28) are used that are not reported in the above Table 5.14.2-1, they shall be twisted in<br />

such a way to preserve the mechanical characteristics of the wires.<br />

5.14.2.6 Pin Allocation on Connectors<br />

Allocation of wires with different EMC Classes to the same connector shall be avoided to the maximum<br />

possible extent. When wires with different EMC Classes have to be allocated to the same connector, they<br />

shall be physically separated as much as possible within the connector.<br />

5.14.2.7 Twisted Wire Allocation<br />

Covered by Section 5.10.2.4<br />

5.14.2.8 Tri-axial Cable<br />

Tri-axial cables, if any, shall use the centre and the inner shield conductor for unbalanced transmission,<br />

referenced to the ground plane at a single point with the outer shield multiple-point grounded as a overshield.<br />

The PACS triax cable shield (outer) is routed isolated through SVM and CVV I/F connectors.<br />

5.14.2.9 Shield Coverage<br />

Uninterrupted shields, unless at connector location, with at least 85% optical coverage shall be used. The<br />

maximum unshielded length of wire at the connectors shall not exceed 8 cm. Shields shall not intentionally<br />

carry current (i.e. they shall not be the return path for power and signal) except for coaxial cables used with<br />

RF and PACS triax.<br />

5.14.2.10 Cable Shield Terminations<br />

Cable shield shall be grounded at both the ends to the equipment case at each end. The preferred method of<br />

grounding shields is through a conductive backshell that makes good electrical contact to the equipment<br />

case.<br />

5.14.2.11 DC Resistance between Cable Shield and Connector Back-shell<br />

The DC resistance between any shield and the connector backshell shall be less than 5 mΩ.<br />

5.1.1.12 DC Resistance between the Back-shell and the Structure<br />

The DC resistance between the plug connector backshell and the structure in the vicinity of the equipment<br />

shall be less than 10 mΩ.<br />

5.1.1.13 Cable Shield Insulation<br />

Individual cable shields shall be insulated to prevent uncontrolled grounding.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.1.1.14 Shield Termination of Overall Shield<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

122/136<br />

Overall shield shall always be circularly terminated or shield terminations shall be at the connector backshell.<br />

5.1.1.15 DC Resistance between Shield Ground Pin and Equipment Chassis<br />

If the shielding ground is implemented via dedicated pin, the DC resistance between any shield ground pin<br />

and the equipment chassis shall not exceed 2.5 mΩ. The connection of the shield ground pin to case shall<br />

be as short as possible. The maximum allowable length is 8 cm.<br />

5.1.1.16 Non-RF Shield Termination of individual Wire Shields<br />

Where dictated for practical reasons, up to 4 (four) shield may be grouped together on one ground wire for<br />

termination. The shielding termination shall be as low inductive as possible, however not exceeding 8 cm in<br />

length.<br />

RFI backshells with individual shield ground provisions shall be used for multiple RF shield terminations, with<br />

the maximum termination length not exceeding 8 cm.<br />

5.1.1.17 Shielding through Intermediate Connectors<br />

When intermediate connectors are used, shields shall be individually continued via the intermediate<br />

connector pins while shielding for RF wires or overall shields shall be circularly terminated to the RFI<br />

backshells.<br />

5.1.1.18 Conductive Caps<br />

All electrical connectors not engaged shall be covered with a conductive cap..<br />

5.1.1.19 Equipment Chassis Apertures<br />

The equipment case shall not contain any apertures other than those that are essential for connectors,<br />

sensor viewing or out-gassing vents. If out-gassing vents are required, they shall be as small as possible<br />

(less than 5 mm diameter) and shall be located close to the equipment mounting plane, i.e. the spacecraft<br />

structure ground.<br />

5.1.1.20 Grounding Diagram<br />

Grounding diagrams shall be established at both Equipment and Subsystem level. The minimum extent of<br />

each diagram shall be:<br />

− Primary/secondary power grounding.<br />

− Interface circuit grounding.<br />

− EMI filters.<br />

− Shielding Grounding<br />

− Equipment Grounding<br />

− Principal Interface Circuit Diagram<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.1.3 EMC Performance Requirements<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

123/136<br />

Commentary: Some EMC performance requirements depend strongly on both the power quality and on the<br />

power system architecture (e.g. protection provisions, power regulation, voltage etc.), especially as far as<br />

conducted requirements are concerned. Moreover, radiated EMC performance requirements need tailoring<br />

to particular frequency notches typical of the hosting spacecraft. This information may not be available at<br />

the time of the design.<br />

The EMC requirements specified in the following paragraphs have been derived and tailored to meet the<br />

demands of most spacecraft known to the writer that could accommodate the Subsystem. They also allow a<br />

strict control of the EMC quality of the Subsystem per se.<br />

Those requirements have been specified with the idea of avoiding unnecessary stringent demands that<br />

might impact costs and technical solutions. However, the requirements might be further refined as soon as<br />

information on the hosting spacecraft will be known. Presently, the ESA Power Standards are assumed as a<br />

reference.<br />

Specific requirements are made applicable to equipment or subsystem in order to enhance meeting the<br />

spacecraft overall compatibility requirement. These requirements are normally applicable at the equipment<br />

level, however they can be made applicable to a set of equipment which operates together (i.e. Subsystem<br />

level). When the following requirement state that they are applicable to subsystem equipment, it should be<br />

understood that the requirement could be applicable at either the equipment or subsystem level. The levels<br />

are applicable when the subsystem equipment is set to the operational condition yielding the maximum<br />

emission.<br />

5.1.3.1 Conducted Emission on Power Lines<br />

Conducted emissions on power lines generated by the subsystem equipment shall be controlled as follows:<br />

5.1.3.1.1 Conducted Emission on Primary Power Lines, Frequency Domain,<br />

Differential Mode, NB<br />

Narrow Band conducted emission Differential Mode in the frequency range 30 Hz to 50 MHz generated by<br />

the subsystem equipment on each primary power line shall not exceed the following adjustable limit:<br />

For nominal DC input current less than 1 A, use the curve of Figure 5.14.3-1as shown.<br />

For nominal DC input current greater than 1 A, the curve of Figure 5.14.3-1shall be relaxed by the factor<br />

10*log [I (A)]. I (A) is the nominal input current in Ampere.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


dBuA r.m.s<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

IIDA - SECTION 5<br />

NB CE Power Lines - Differential<br />

94<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

124/136<br />

20<br />

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08<br />

Frequency - [Hz]<br />

Figure 5.14.3-1:Narrow Band Conducted Emission Current – Differential Mode<br />

5.1.3.1.2 Conducted Emission on Primary Power Lines, Frequency Domain, Common<br />

Mode, NB<br />

Narrow Band conducted emission Common Mode in the frequency range 10 kHz to 50 MHz generated by<br />

the subsystem equipment on the primary power lines shall not exceed the following adjustable limit:<br />

For nominal DC input current less than 1 A, use the curve of fig. 5.14.3-2 as shown.<br />

For nominal DC input current greater than 1 A, the curve of fig. 5.14.3-2 shall be relaxed by the factor 10*log<br />

[I (A)]. I (A) is the nominal input current in Ampere.<br />

Figure 5.14.3-2 Narrow Band Conducted Emission Current – Common Mode<br />

5.1.3.1.3 Current Ripple, Time Domain, Differential Mode<br />

Differential mode, time domain current ripple and spikes on the primary power bus of the subsystem<br />

equipment shall be:<br />

For nominal DC input current less than 1 A:<br />

Ripple: less than 20 mApp.<br />

Spikes, including ripple: less than 60 mApp.<br />

For nominal DC input current greater than 1 A:<br />

Ripple: relax 20 mApp by a factor √I (A), I (A) being the nominal input current in Ampere.<br />

Spikes, including ripple: relax 60 mApp by a factor √I (A), I (A) being the nominal input current in Ampere.<br />

Ripple and spikes shall be measured on both the primary and return lines with at least 50 MHz bandwidth.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

34<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

125/136<br />

5.1.1.2 Conducted Emission Common Mode Current on Signal Bundles<br />

The Conducted Emission Common Mode on individual Signal Bundles of the subsystem shall be measured<br />

from 10 kHz to 50 MHz. Measurement shall be used to establish the limits for Conducted Susceptibility<br />

Common Mode current injection on the same bundles.<br />

5.1.1.3 Conducted Susceptibility Power Lines – Differential Mode – Steady State<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its specification when sinusoidal voltages with amplitude specified in Fig.5.14.3-3 is<br />

injected into the subsystem equipment power leads in the frequency range 30Hz-50MHz. The frequency<br />

sweep rate shall not be faster than 5 min/decade.<br />

Amplitude - Vrms<br />

Conducted Susceptibility Power - DM<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

1<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08<br />

Frequency - [Hz]<br />

Figure 5.14.3-3:– Conducted Susceptibility Power Lines – Differential Mode<br />

In the frequency range 50 kHz – 50 MHz, the applied sinusoidal voltage shall be 1 kHz amplitude modulated<br />

(30% AM).<br />

The requirement shall be considered to have been met when:<br />

1) Frequency range 30 Hz – 50 kHz<br />

The specified test voltage level cannot be generated but the injected current has reached 1 Arms and the<br />

subsystem equipment is still operating without malfunctions within its specified tolerances.<br />

2) Frequency range 50 kHz – 50 MHz<br />

A power source of 1 Watt, 50 Ω impedance cannot develop the required voltage at the equipment power<br />

input terminals and the subsystem equipment is still operating without malfunctions within its specified<br />

tolerances.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

126/136<br />

5.1.1.4 Conducted Susceptibility Power Lines – Common Mode – Steady State<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its individual specification when a sinusoidal common mode signal from 10kHz to<br />

50MHz (30% AM modulated by 1kHz square wave between 50kHz and 50MHz) is injected in both the<br />

subsystem equipment power leads via Bulk Current Injection (BCI) until:<br />

− 2 Vpp is achieved between return line and chassis.<br />

− The injected current shall be monitored and limited to 1A peak.<br />

5.1.1.5 Conducted Susceptibility Common Mode Current on Signal Bundles<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its individual specification when a sinusoidal common mode current of amplitude 6<br />

dB higher than the common mode measurement (specified in the paragraph 5.14.3.2) is injected into the<br />

signal bundles.<br />

5.1.1.6 Conducted Susceptibility Common Mode Voltage on Signal Reference –<br />

Steady State<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its individual specification when sinusoidal voltages with 2 Vpp amplitude are<br />

applied between the subsystem equipment signal reference and the ground plane in the frequency range 50<br />

kHz – 50 MHz. The sweep rate shall not be faster than 5 min/decade.<br />

5.1.1.7 Conducted Susceptibility Common Mode Voltage on Signal Reference -<br />

Transient<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its individual specification when transient voltages typically shaped as shown in fig<br />

5.14.3-5 are applied between the equipment signal reference and the ground plane.<br />

With reference to Fig. 5.14.3-5, the peak amplitude shall be calibrated to ± 3 V and Td shall be between 150<br />

ns and 250 ns when the source having output impedance of 50 Ω is connected to a 50 Ω resistor. Then the<br />

source is applied to the equipment after it is detached from the ground plane. The pulse repetition frequency<br />

of the waveform shall range from 5 Hz to 10 Hz and the test duration shall be at least 5 minutes<br />

5.1.1.8 Conducted Susceptibility on Power Lines – Transients<br />

5.1.1.8.1 Differential Mode<br />

The unit shall not exhibit any malfunction, degradation of performance or deviation beyond the tolerance<br />

indicated in its individual specification when transient voltages typically shaped as shown in Fig. 5.14.3-4 are<br />

superimposed on the steady state bus voltage at the unit input power leads. With reference to Fig. 5.14.3-4<br />

the peak amplitude shall be ±2.5V, the rise time between 10µs and 100µs, the flat portion of the pulse ~<br />

300µs and the time constant 2ms. The pulse repetition frequency of the waveform shall range from 5 Hz to<br />

10 Hz and the test duration shall be at least 5 minutes.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


Voltage Transient (Volts)<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

127/136<br />

-2 0 2 4 6 8 10<br />

Time (msec)<br />

5.1.1.1.2 Common Mode<br />

Figure 5.14.3-4– Typical transient waveform for DM Transient on PL<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

100%<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its individual specification when transient voltages shaped as shown in Fig. 5.14.3-<br />

5 are applied between the power return line and the unit case. With reference to Fig. 5.14.3-5 the peak<br />

amplitude shall be 28 V, the rise time less than 100ns and the length (Td) at least 5µs. Repetition rate shall<br />

range from 5 Hz to 10 Hz and the test duration shall be at least 5 minutes<br />

Amplitude - V<br />

0<br />

Td<br />

Time<br />

Figure 5.14.3-5: Typical transient waveform for CM Transient<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%


IIDA - SECTION 5<br />

5.1.1.9 NB E-Field Radiated Emission<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

128/136<br />

Commentary: The following requirements assume that the instruments OFF when the spacecraft is<br />

connected to the launcher and therefore do not account for specific frequency notches that may be<br />

requested by the hosting spacecraft and launcher.<br />

The requirement is defined here for the frequency range 14 kHz – 18 GHz.<br />

If the instruments are ON then the requirements given the ARIANE 5 User Manual plus any requirements<br />

from the spacecraft shall be applicable.<br />

Narrow-band electric fields generated by the subsystem equipment and measured at 1 m distance shall not<br />

exceed the limits shown in Fig. 5.14.3-6 in the frequency range 14kHz – 18GHz:<br />

dBµV/m<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Radiated Emission - E Field<br />

50<br />

10E+3 100E+3 1E+6 10E+6 100E+6 1E+9 10E+9 100E+9<br />

Frequency - [Hz]<br />

Figure 5.14.3-6:Narrow-Band Radiated Emission Limit – E Field.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

74<br />

7.19 to<br />

7.235 GHz<br />

Around the spacecraft telecommand receive band, the electric field emitted by the subsystem equipment<br />

under test, including intentional and unitentional radiation from the test harness, shall not exceed the limits<br />

shown in Fig. 5.14.3-6b :


RE-E (dBµV/m)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

IIDA - SECTION 5<br />

Radiated Emission, E-field<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

129/136<br />

7133 7271<br />

7186 7218<br />

7193 7211<br />

7.10E+9 7.12E+9 7.14E+9 7.16E+9 7.18E+9 7.20E+9 7.22E+9 7.24E+9 7.26E+9 7.28E+9 7.30E+9<br />

Frequency(Hz)<br />

Figure 5.14.3-6b : Radiated Emission E-field limit, TC notch<br />

5.1.1.10 NB E-Field Radiated Susceptibility<br />

Commentary: The following requirement does not account for specific frequency notches that may be<br />

requested by the hosting spacecraft. This information will be unequivocally available when the launch<br />

opportunity will be defined.<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its individual specification when it is irradiated with 2 V/m, 1 kHz amplitude<br />

modulated (30% AM), in the frequency range 14 kHz – 18 GHz.<br />

5.1.1.11 H Field Radiated Emission<br />

Narrow-band electric fields generated by the subsystem equipment and measured at 1 m distance shall not<br />

exceed the limits shown in Fig. 5.14.3-7 in the frequency range 30Hz – 50kHz.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


dBpT<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

IIDA - SECTION 5<br />

NB Radiated Emission - H Field<br />

60<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

130/136<br />

20<br />

1.E+01 1.E+02 1.E+03<br />

Frequency - [Hz]<br />

1.E+04 1.E+05<br />

Figure 5.14.3-7– Narrow-Band Radiated Emission Limit – H Field.<br />

Commentary: Requirements on Pulsed Magnetic field are currently (TBC). If dictated so, they can be<br />

introduced at a later version of this document<br />

5.1.1.12 H Field Radiated Susceptibility<br />

The subsystem equipment shall not exhibit any malfunction, degradation of performance or deviation beyond<br />

the tolerance indicated in its individual specification when it is irradiated with a magnetic field of 140dBpT in<br />

the frequency range 30Hz–50kHz<br />

5.1.1.13 Arc Discharge Susceptibility<br />

The following statement is not applicable for Herschel cryogenic units as they are not directly exposed to<br />

ESD.<br />

No malfunction, degradation of performance or deviation beyond the tolerance indicated in its individual<br />

specification shall occur when the subsystem equipment and its interface lines are exposed to a repetitive<br />

electrostatic arc discharge of at least 15 mJ energy/ 15 kV. The current rise time shall be less than 10 ns. If<br />

damage risks are envisaged for interface circuits, the voltage can be reduced down to 4 kV but the energy<br />

shall remain 15mJ.<br />

5.1.4 Conducted Emission/Susceptibility<br />

(deleted)<br />

5.1.5 Radiated Emission/Susceptibility<br />

(deleted)<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


5.1.6 Frequency Plan<br />

(deleted, see RD 45)<br />

IIDA - SECTION 5<br />

5.1.7 Plug-in and Inrush current measurement<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

131/136<br />

The inrush current shall be measured on the positive power line of the user connected to its 28V power<br />

supply through the LISN defined in § 9.5.6.9, when switching it ON with an external bounce-free relay (e.g.<br />

laboratory mercury relay) installed between the LISN and the user on the positive power line.<br />

The recorded inrush current (measured with an oscilloscope in single shot mode) shall show the following 2<br />

distinct aspects :<br />

− A current transient corresponding to the charge of the primary filter capacitors<br />

− A DC/DC converter start current transient<br />

The primary filter charge current transient shall be compliant with the following requirements :<br />

− S(I*dt) < 2 mC<br />

− dI/dt < 2 A/µs<br />

− I peak < 30 A<br />

The DC/DC converter start current transient :<br />

− shall not exceed the user line LCL current limitation value for a total time higher than 5ms (TBC)<br />

− shall comply with : S(I*dt) < (LCL current limitation value)*5ms (TBC)<br />

The test shall be repeated with the unit nominally switched on by the LCL, and shall comply with the<br />

following mask :<br />

LCL I LIMIT<br />

I NOM<br />

50 µs<br />

dI/dt<br />

< 1A/µs<br />

5ms (TBC)<br />

Figure 5.14.7-1 inrush current template<br />

In the case, illustrated here-below, where the Instrument design is such that some 28 V power line user<br />

(Instrument unit or subsystem) can be switched on not only by the LCL but also by an additional switching<br />

function implemented in the unit/subsystem of interest or in another Instrument unit, the inrush current<br />

corresponding to this switch ON scenario shall be measured and shall comply with the same mask.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


PCDU<br />

IIDA - SECTION 5<br />

LCL<br />

5.15 INSTRUMENT HANDLING<br />

5.15.1 Transport container<br />

5.15.1.1 Focal Plane Unit<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

132/136<br />

Instrument<br />

For all deliverable units, transport containers shall be provided.<br />

The containers shall be vacuum tight, be purged and slightly over-pressurised with dry nitrogen gas.<br />

The containers shall be equipped with a mounting platform supported by a shock absorber.<br />

Shock recorders shall be mounted at a relevent location proposed by instruments.<br />

The containers shall be made of material compatible with cleanliness requirements of Section 5.15.2 and<br />

shall be equipped with witness devices.<br />

The units shall provide adequate hoisting provisions for crane suspension. Electrical grounding<br />

provision/bonding provisions from the units to the outside of the container (ESD protection) shall be available<br />

(tbc).Protections for unit openings, optical apertures and electrical connectors shall be provided.<br />

Protection for unit openings, optical apertures and electical connectors shall be provided.<br />

The IID-B (AD 1-1 to 1-6) shall list size and mass of the containers as well as the overall mass including the<br />

instrument package.<br />

5.15.1.2 Warm electronic units and interconnecting harness<br />

For all deliverable units, transport containers shall be provided.<br />

The containers shall be slightly over-pressurised with dry nitrogen gas, if necessary.<br />

Hygrometry will be recorded with witness devices.<br />

The containers shall be equipped with a mounting platform supported by a shock absorber.<br />

Shock recorders shall be mounted at a TBD location.<br />

The containers shall be made of material,compatible with cleaniness requirements of Section 5.15.2 and<br />

shall be equipped with witness devices.<br />

The IID-B (AD 1-1 to 1-6) shall list size and mass of the containers as well as the overall mass including the<br />

instrument package.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

load


5.15.2 Cleanliness<br />

5.15.2.1 Focal Plane Unit<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

133/136<br />

Herschel FPU: The container opening will be performed in CR 100.000 with a relative humidity of 50% +/-<br />

10%. The Herschel FPU shall be double packed in suitable foil (e.g. Cleanliness, EMC antistatic, humidity,<br />

...). First foil removal will be performed in CR100.000 and the second foil in the CR100.<br />

For Planck FPU, the container opening will be performed in CR 100 000 with a relative humidity of 50% +/-<br />

10%.<br />

Any other requirements (including the expected level of contamination of the FPU at instrument delivery)shall<br />

be specified in the IID-B (AD 1-1 to 1-6).<br />

5.15.2.2 Warm electronic units and interconnecting harness<br />

The Warm Electronics container may only be opened in a clean room environment of class 100 000 with a<br />

relative humidity of 50 %.<br />

Any other requirements, including the expected level of contamination of the warm units at instrument<br />

delivery shall be specified in the IID-B (AD 1-1 to 1-6).<br />

5.15.2.3 Expected instrument cleanliness degradation during AIV and launch phases<br />

The expected Planck instrument cleanliness degradation during AIV and launch phases will be lower<br />

than:<br />

Particulate Molecular<br />

(ppm) (10-7 g/cm2)<br />

Phase FPU<br />

Reflectors<br />

(PR & SR)<br />

FPU<br />

Reflectors<br />

PR<br />

contributions at Delivery 300 900 30 5 SRS/IID-B's<br />

AIV 530 530 1.4 1.4 cleanliness control plan<br />

Bef Encapsul 1895 1895 cleanliness team<br />

Launch 2300 2300 4 4 Arianespace<br />

Orbit 0 5.05 52.7 EOL cleanliness analysis<br />

total EOL 5000 5000 60 63.1 =SRS when Summ is lower<br />

(assumes cleaning before bef) (only 5.8 on SR during orbit)<br />

The expected Herschel instrument FPU cleanliness degradation during AIV and launch phases will be<br />

lower than:<br />

Phase FPU LOU<br />

Particulate Molecular<br />

(ppm) (10-7 g/cm2)<br />

LOU<br />

windows<br />

reflectors FPU LOU<br />

LOU reflectors<br />

windows (same<br />

(int + ext) M1 & M2)<br />

contribution at delivery 300 300 300 300 40 40 2 2 SRS<br />

AIT 75 2060 2060 1600 42.5 14.6 51.2 0.87<br />

Cleanliness team annex 2-2 +<br />

permeation & on ground outgassing<br />

Launch 2300 2300 2300 4 4 4 Ariane, 2 weeks<br />

in orbit 5.7 0.7 0.7 0.7 0.3 5.0 495.3 7.0 EOL cleanliness analysis<br />

total EOL 1200 4660.7 4660.7 4500 82.8 63.6 552.5 40<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.15.2.4 Outgassing properties of material<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

134/136<br />

The material used to build the instruments shall be below the following outgassing properties<br />

Part TML CVCM<br />

FPU


5.15.4 Purging<br />

IIDA - SECTION 5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :5-<br />

135/136<br />

If it is demonstrated that during system level ground tests purging is absolutely necessary the PI shall<br />

provide an instrument purging plan, to be part of the IID-B which shall establish<br />

− definition of purging connection<br />

− provision of purging equipment<br />

− detail purging requirements and procedures<br />

− assistance in commissioning purging procedures<br />

During the final phase of launch preparations the performance of purge operations on a regular basis may<br />

violate safety procedures and hence be impossible.<br />

It is currently foreseen to provide purging for the LOU, according to the need expressed in HIFI IID-B.<br />

5.15.5 Mechanism positions<br />

Sometimes mechanisms should be placed in a certain position, to avoid possible damage caused by<br />

vibration during transport. Should this be the case then this position shall be listed in the IID-B (AD 1-1 to 1-<br />

6)<br />

5.16 Environment requirements<br />

This <strong>section</strong> is added to include the environmental requirements not covered by the test requirements in<br />

chapter 9.<br />

More information is given in RD 2 (EVTR Environment & test requirements)<br />

5.16.1 Pressure environment<br />

5.16.1.1 During Launch phase:<br />

The typical pressure variation during launch is defined in Figure 5.16.1-1. Typical slope of pressure variation<br />

is 20 mbar/s during the launch vehicle ascent phase with locally 45 mbars/s during the transonic phase.<br />

Référence Fichier :IID-A-05-3-1.doc du 06/02/04 16:16 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 5<br />

5.16.1.2 During orbital phase<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Figure 5.16.1-1: Variation of static pressure inside fairing<br />

During orbital life, the Satellite is exposed to free space vacuum (


IID-A SECTION 6<br />

6 GROUND SUPPORT EQUIPMENT<br />

6.1 Mechanical Ground Support Equipment<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :6-1/3<br />

Mechanical Ground Support Equipment (MGSE) is the total of the mechanical equipment or special<br />

tools necessary to support instrument (at system, subsystem, unit level) related activities, such as:<br />

• instrument handling and integration into the Payload Module (PLM) or parts thereof other than<br />

standard space industry equipment or tools)<br />

• instrument testing after its integration into the PLM and at level of the complete satellite<br />

• instrument protection against the environment at the various integration and test sites (normally<br />

class 100000 or class 100 clean room conditions)<br />

This MGSE shall be supplied in sufficient quantities (normally one per instrument model) to ensure<br />

efficient integration and testing of the various satellite models.<br />

6.2 Electrical Ground Support Equipment<br />

Electrical Ground Support Equipment (EGSE) is the total of the instrument specific electrical equipment<br />

necessary to support testing and operational activities of the instrument at various levels.<br />

The Herschel/Planck instrument teams have identified an EGSE implementation, which provides<br />

maximum reuse of resources (see below), since that system will also be used both during instrumentlevel<br />

testing, system level tests and in the operational phases of the mission (see IID-Bs).<br />

The EGSE shall be supplied with the instrument models.<br />

For Herschel, 2 sets of EGSE will be delivered for the 3 instruments:<br />

• One prime set (1 SCOS 2000 machine, 1 HCSS machine, 1 QLA machine)<br />

• One backup set (1 SCOS, 1 HCSS).<br />

The scope of Instrument EGSE is<br />

• to generate instrument command sequences (vs. Individuel commands)<br />

• to archive instrument TM for science or instrument purpose<br />

• to analyse instrument TM.<br />

6.3 Commonality<br />

Taking into account that it is a fundamental design goal of the Herschel/Planck mission that<br />

commonality should be pursued to the maximum extent possible, the Herschel instrument teams have<br />

been actively engaged in investigating such possibilities.


6.3.1 EGSE<br />

IID-A SECTION 6<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :6-2/3<br />

It has been agreed that a common Herschel EGSE system could be developed as a collaborative effort<br />

between instrument groups.<br />

The common approach is, that<br />

different instrument groups use the same EGSE-ILT and<br />

all different EGSE’s for the different phases are based on the same system, i.e. SCOS 2000.<br />

In addition, it has been agreed that this system would be applicable at various times during all the<br />

phases of the mission listed below:<br />

• Subsystem Level Testing<br />

• Instrument Level Testing<br />

• Module and System Level Testing<br />

• In-orbit instrument commissioning<br />

• Performance Verification<br />

• Routine operations<br />

In the interests of minimising the cost and maximising the reliability of such a system through the<br />

different phases the EGSE will:<br />

be based on SCOS 2000 – this system will be used in the ground segment by the MOC for controlling<br />

the satellite. The cost of the system (essentially free), its proven use in similar situations for other space<br />

projects and the support provided by ESOC, contribute to a cheaper and more reliable system.<br />

use the same interfaces between the EGSE and other systems, in order to improve reliability through<br />

reuse throughout the mission.<br />

Provide a constant implementation of the<br />

• Man Machine Interfaces<br />

• Data Archiving and Distribution facilities<br />

• On-board Software Management<br />

• On-board Maintenance (e.g. Software Development Environment, Software Validation Facility)<br />

• Common User Language (for Test procedures and in-orbit operations)<br />

Although this approach is not used by Planck instruments, the Planck EGSE interface to the CCS (Central<br />

Checkout System) should be similar to the Herschel one.


IID-A SECTION 6<br />

6.3.2 Instrument Control and Data Handling<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :6-3/3<br />

All three Herschel instruments are using the same supplier (IFSI) for their on-board control and data<br />

handling hardware and software systems, which interface to the spacecraft. This has ensured<br />

commonality in the areas of:<br />

• on-board microprocessor<br />

• On-board Programming language<br />

• Software Development Environments<br />

• Software Validation Facilities<br />

6.3.3 Other Areas<br />

Other areas of possible commonality will be addressed by working groups set up as and when<br />

necessary. These may cover:<br />

Follow up on Herschel Common Science System data base activities<br />

A common approach to IA/QLA systems.


IIDA - SECTION 7<br />

7. INTEGRATION, TESTING AND OPERATIONS<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-1/27<br />

Information in this chapter covers all instrument-related activities after the acceptance of the instruments by<br />

ESA and hand-over to the Contractor.<br />

7.1 AIV Sequence Overview<br />

7.1.1 Herschel/Planck Satellites Model Philosophy<br />

For Herschel and Planck the model philosophy at satellite level is:<br />

− A multipurpose Structural and Thermal Model (STM)<br />

− A single purpose Avionics Model (AVM)<br />

− A Proto-Flight Model (PFM)<br />

These models are completed by the followings PLM and Telescope development models:<br />

− an Engineering Qualification Model (EQM) and Proto-flight Model (PFM) of the Herschel E-PLM<br />

− a Cryogenic and RF Qualification Model (CQM/RFQM) and a Flight Model (FM) of the Planck PLM<br />

(PPLM)<br />

− a Radio Frequency Development Model (RFDM) of the Planck PLM<br />

− a Qualification Model (QM) and a Flight Model (FM) of the Planck Telescope.<br />

The main objectives of each model are given hereafter:<br />

7.1.1.1 AVM (Electrical Test Bench):<br />

− development model for functional design and S/S compatibility<br />

− Validation of Instrument warm units electrical interfaces (Power, data, synchro)<br />

− development model for on board software validation<br />

− EMC pre-qualification.<br />

7.1.1.2 Herschel STM and Planck STM:<br />

− development model for structure layout and certification<br />

− development model for thermal control certification<br />

− confirmation of mechanical and thermal environment before flight models testing.<br />

7.1.1.3 Herschel PFM and Planck PFM:<br />

− Proto-Flight Model for qualification completion in the areas where this qualification has not been<br />

completely achieved with the other models, and acceptance for flight.<br />

7.1.1.4 EQM of Herschel PLM (reuse of ISO cryostat):<br />

− development model for instruments compatibility and EMC at cryogenic temperature.<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

7.1.1.5 PFM of Herschel E-PLM:<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-2/27<br />

− Proto-Flight Model for mechanical and thermal qualification of the cryostat at Herschel STM level<br />

using instrument dummies and later on with the FM instruments used for acceptance testing of the<br />

PFM satellite.<br />

7.1.1.6 CQM/RFQM of Planck PLM:<br />

− development model for mechanical and cryogenic qualification (CQM)<br />

− instrument compatibility and EMC at cryogenic temperature<br />

− Radio Frequency a submillimetric performance certification (RFQM)<br />

7.1.1.7 RFDM of Planck PLM<br />

− specific model of telescope & baffles built around ARCHEOPS reflectors to validate and correlate the<br />

mathematical model.<br />

7.1.1.8 TTC RF Mock-up of Herschel and Planck Satellites<br />

− specific models to verify the RF pattern of the TTC antennas in both configurations.<br />

This approach is summarised by Figures 7.1.1-1 & 7.1.1-2.<br />

Development<br />

Models<br />

Qualification<br />

Models<br />

PFM<br />

SVM PLM Satellite<br />

Common SVM<br />

AVM<br />

Software validation<br />

Electrical compatibility test<br />

EGSE validation<br />

AIT proc edure validation<br />

SVM<br />

STM<br />

Structure qualification<br />

Thermal qualification<br />

Interface and lay-out<br />

verifications<br />

SVM<br />

PFM<br />

Functional/performance<br />

pre- EMC<br />

PLM<br />

EQM (cryostat ISO)<br />

Cool down<br />

functional test<br />

EMC<br />

EPLM<br />

STM/PFM<br />

Cool down<br />

Cryogenic & Thermal<br />

qualification<br />

Alignments<br />

EPLM<br />

PFM<br />

Cool down<br />

Functional test<br />

Alignments<br />

Herschel<br />

AVM (*)<br />

Software validation<br />

Electrical compatibility test<br />

EGSE validation<br />

AIT procedure validation<br />

pre-Conducted EMC<br />

(*) Includes Herschel instruments<br />

AVM WU<br />

Herschel<br />

STM<br />

Interface and lay-out<br />

verifications<br />

Mechanical qualification<br />

Alignments<br />

Herschel<br />

PFM<br />

Thermal qualification<br />

Mechanical acceptance<br />

Functional / performance<br />

Alignments<br />

EMC<br />

Figure 7.1.1-1: Model Philosophy for Herschel<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

Development<br />

Models<br />

Qualification<br />

Models<br />

PFM<br />

SVM<br />

Common SVM<br />

AVM<br />

Software validation<br />

Electrical compatibility test<br />

EGSE validation<br />

AIT procedure validation<br />

SVM<br />

STM<br />

Thermal qualification<br />

Interfac es and la yout<br />

verifications<br />

SVM<br />

PFM<br />

Functional/performance<br />

pre- EMC<br />

7.1.2 Herschel AIV Sequence Overview<br />

PLM<br />

RFDM<br />

Math. Mod el validation<br />

RFQM<br />

RF performances<br />

PLM<br />

CQ M<br />

Interfac es and la yout<br />

verifications<br />

Alignments<br />

Thermal qualification<br />

HFI Functio nal test<br />

PLM<br />

FM<br />

Functional test<br />

Alignments<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-3/27<br />

Satellite<br />

Planck<br />

AVM (*)<br />

Software validation<br />

Electrical compatibility test<br />

EGSE validation<br />

AIT procedure validation<br />

pre-Cond ucted EMC<br />

(*) Includes Pl anck instruments<br />

AVM/CQM WU<br />

PLANCK<br />

STM<br />

Interfaces and layout<br />

verifications<br />

Mechanical qualification<br />

Alignments<br />

PLANCK<br />

PFM<br />

Thermal acceptance<br />

Mechanical Acceptance<br />

Functional / performance<br />

Alignments<br />

EMC<br />

Figure 7.1.1-2: Model Philosophy for PLanck<br />

The Herschel AIV sequence, as far as related to the instruments, consists of three separate test campaigns, two<br />

related to tests with the PLM, i.e. inside the cryostat and one separate for the AVM testing. This is directly<br />

reflected in the instrument hardware model philosophy including their respective EGSE and MGSE (refer to<br />

chapter 9.2.2).<br />

The two test campaigns identified w.r.t. the activities on the Herschel Instruments that will be in the Herschel<br />

PLM are summarised by:<br />

− Integration of the CQM units in the PLM EQM -> PLM compatibility test -> EMC testing<br />

− Integration of the PFM units in the PFM cryostat -> PLM PFM integration and tests -> Integration<br />

(mating) with complete PFM SVM and satellite integration-> System PFM tests<br />

Notes:<br />

− For the mechanical and thermal qualification (STM sequence) of the Herschel satellite, instruments will<br />

be simulated by Mass & Thermal Dummy (MTD) not part of the instruments delivery.<br />

− At the end of the PLM EQM test campaign, the FPU CQM LOU will be returned to the instrument<br />

teams.. The warm units will be sent to SVM contractor and will remain there until the launch.<br />

The test campaign identified w.r.t. the specific activities on the Herschel Instruments (i.e. warm units) that will<br />

be in the Satellite AVM is summarised by:<br />

Herschel AVM Instrument integration in the AVM satellite in Herschel configuration --> EMC Conducted test --<br />

> Herschel AVM units electrical and software interface validation with system environment<br />

7.1.3 Planck AIV Sequence Overview<br />

The Planck AIV sequence, as far as related to the instruments, consists of three main test campaigns, two<br />

related to tests with PLM at satellite level and one separate for the AVM testing . This is directly reflected in the<br />

hardware model philosophy of instruments including their respective EGSE and MGSE (refer to chapter 9.2.2).<br />

There are two separate hardware models of the Planck Payload module (P-PLM):<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-4/27<br />

− a Cryogenic Qualification Model (CQM) which accommodates the CQM instruments<br />

− a FM which accommodates PFM instruments,<br />

The PPLM are associated with relevant models of the SVM for system test purposes (SVM dummy or SVM<br />

STM for Planck QM, SVM FM for Planck FM). An SVM dummy is used for the Planck CQM thermal tests ,<br />

and replaced later on with the SVM STM for the mechanical qualification (STM sequence) of the Planck<br />

Satellite.<br />

The two test campaigns identified w.r.t. the activities of the instruments on the Planck PLM are summarised by:<br />

− Planck instrument CQM and PLM CQM integration --> Integration (mating) with dummy SVM --><br />

System Thermal/cryogenic testing --> Replacement SVM dummy by SVM STM --> System mechanical<br />

testing<br />

− Planck instrument PFM and PLM FM integration --> Integration (mating) with complete PFM SVM --><br />

System PFM tests<br />

Notes:<br />

− For STM sequence, instruments not compatible of such testing will be simulated by Mass & Thermal<br />

Dummy (MTD) not part of the instruments delivery. The current situation is that all LFI units (warm &<br />

cold), Sorption cooler compressor, & HFI gas storage units are replaced by MTD for the thermal test.<br />

− At the end of the CQM/STM test campaign, the FPU CQM will returned to the instrument teams when<br />

the Warm Units CQM (or AVM) will be integrated on the AVM satellite in Planck configuration.<br />

The test campaign identified w.r.t. the specific activities on the Planck Instruments (i.e. warm units) that will be<br />

in the Satellite AVM is summarised by:<br />

− Planck AVM Instrument integration in the AVM satellite in Planck configuration --> EMC Conducted<br />

test --> Planck AVM units electrical and software interface validation with system environment<br />

7.1.4 Satellite Test Plans - Summary<br />

Herschel Planck<br />

Test AVM STM PFM QM/STM PFM<br />

Static test - at Primary<br />

Structure level<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

- - -<br />

Sine & acoustic - Q A Q A<br />

Shock test - X (**) - X (**) -<br />

Fit check - X X X X<br />

Mass properties - X X X X<br />

Alignments - X X X X<br />

Sun Simulation - at SVM STM<br />

level<br />

only<br />

Thermal Balance - at both modules<br />

level<br />

Simulated by<br />

skin heaters<br />

Delta Q on SVM<br />

A on PLM<br />

at SVM STM<br />

level Only<br />

at both modules<br />

level<br />

Simulated by<br />

skin heaters<br />

Delta Q on SVM<br />

A on PLM<br />

Thermal cycling - A A<br />

He Leak test X X X X<br />

Leak test - X X X X


Functional tests of<br />

instruments in<br />

Cryogenic env.<br />

IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-5/27<br />

Herschel Planck<br />

- On PLM EQM X On PLM CQM X<br />

ESD - - On equipment - On equipment<br />

EMC R - on PLM EQM<br />

(***)<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

X - X<br />

EMC C X on PLM EQM X On PLM CQM<br />

(during cryo test)<br />

RF perfos. N/A N/A N/A On RFQM LFI low freq.<br />

TTC RF Diagram - on RF Mockup on RF Mockup on RF Mockup on RF Mockup<br />

IST X - X - X<br />

SFT - - X - X<br />

SW compatibility X - X - X<br />

SVT SVT 0 - SVT 1 &2 - SVT 1 &2<br />

X = test performed<br />

Q = at qualification level when relevant<br />

A = at acceptance level when relevant<br />

«-« = no test<br />

(**) Q on equipment and final qualification achieved by analysis<br />

(***) with external source<br />

7.2 Integration<br />

Procedures detailing the individual integration steps will be prepared and reviewed in due time.<br />

7.2.1 HPLM Integration<br />

7.2.1.1 HPLM CQM Integration<br />

The integration sequence summarised in this Section 7.2.1.1 is considered as information only. The exact<br />

integration sequence will be optimised by Astrium. All details are given in the EQM AIT plan (RD28) and will<br />

be updated following the optimisation of all integration steps<br />

This paragraph reflects the integration of the CQM instruments into the test cryostat. The Herschel EQM used<br />

for this test is based on the ISO QM cryostat.<br />

The integration of the CQM instruments into this test cryostat starts with the open cryostat that has been<br />

adapted to this test before. The interface for the optical bench is the same as for Herschel. The Herschel upper<br />

bulkhead has been reproduced for this test and will be mounted after integration of the FPU’s.<br />

The integration flow of the instruments starts with mounting of the FPU’s on the optical bench and is<br />

considered completed with the closure of the cryostat at ambient temperature.<br />

The major steps that can be identified are:<br />

X


IIDA - SECTION 7<br />

− Integration of the WU AVM’s on dummy structures<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-6/27<br />

− Instrument FPU CQM’s integration on optical bench (mechanical/thermal and electrical)<br />

− Instrument FPU’s ambient temperature functional check using either the warm units or a specific FPU<br />

EGSE<br />

− Instrument FPU’s alignment check with respect to. HOB (Herschel Optical Bench)<br />

− Closure of optical bench (mechanical and straylight.<br />

− MLI closure for optical bench<br />

− Subsequent integration (shield by shield)<br />

− Integration of cryostat vacuum vessel outer shell upper part (connection of He filling/venting system,<br />

leak test of the He system after connection)<br />

− LOU CQM integration and LOU/CVV Alignment check with open cover<br />

− Closure of the cryostat with EQM cryostat cover and integral leak test of the cryostat vacuum vessel,<br />

pre-evacuation of the system<br />

− Transport of cryostat from integration area (clean-room class 100) to test area (clean-room class<br />

100.000) and preparation for CQM instrument testing.<br />

The integration is assumed to be similar to the final PFM integration sequence and is therefore not described<br />

in detail (see next paragraph).<br />

7.2.1.2 HPLM PFM Integration<br />

The integration sequence summarised in Section 7.2.1.2 is considered as information only. The exact<br />

integration sequence will be further optimised by Astrium. All details are given in the Herschel Satellite AIT<br />

plan (RD 29) and will be updated following the optimisation of all integration steps<br />

The integration of the instruments to the Herschel cryostat starts with the open cryostat at the completion of the<br />

earlier test phase, the STM programme, where instrument dummies are mounted in the PFM cryostat. The<br />

major tests completed at that point in time are:<br />

− cryostat thermal characterisation (lifetime, ground hold time)<br />

− cryogenic operations verification (cooling, filling, He II production and top-up, pressure drop, launch<br />

autonomy verification)<br />

− satellite structural qualification (sine vibration and acoustic noise)<br />

− alignment verification<br />

− procedure development (also on EQM and AVM)<br />

− warm up.<br />

The integration flow of the instruments starts after removal of the FPU MTD’s with mounting of the FPU PFM’s<br />

on the optical bench and is considered completed with the closure of the cryostat at ambient temperature.<br />

The major steps that can be identified are:<br />

− integration of the warm units on the FM SVM instrument panels<br />

− Instrument FPU PFM’s integration on optical bench (mechanical/thermal and electrical)<br />

− Instrument ambient temperature short functional test using the warm units or a specific FPU EGSE<br />

− Alignment check of the FPU PFM’s w.r.t. HOB<br />

− Closure of optical bench (mechanical and straylight)<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

− MLI closure for optical bench<br />

− Subsequent integration (shield by shield)<br />

− Integration of cryostat vacuum vessel outer shell upper part<br />

− Alignment of the HOB w. r. t. CVV Windows<br />

− LOU PFM integration and LOU/CVV Alignment check with open cover<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-7/27<br />

− Closure of the cryostat and integral leak test of the cryostat vacuum vessel, pre-evacuation of the<br />

system<br />

− Transport of cryostat from integration area (clean-room class 100) to test area (clean-room class<br />

100.000) and preparation for PLM testing.<br />

The sequence assumes the use of class 100 clean room and cleanliness control procedures similar to the<br />

integration of the ISO system.<br />

The following assumptions are used for the planning:<br />

7.2.1.2.1 Instrument integration to optical bench and Instrument Short Functional Test<br />

(SFT) at ambient temperature (functional check)<br />

Each instrument FPU is mounted separately to the optical bench. The integration is done according common<br />

practice on ESD protection in the class 100 clean-room. The thermal links are integrated from the tank, resp.<br />

the cooling loops. The harness is integrated from the CVV interface connectors to the FPU’s. Then it is foreseen<br />

to perform an Instrument SFT, instrument by instrument, at ambient temperature. Thus, the instrument Warm<br />

Units are needed for this test, the pre-integrated instrument panels have to be mounted together with a<br />

support structure onto the PLM. As an alternative, the short functional tests of the FPU’s can be done using a<br />

specific EGSE instead of the warm units. Herewith early delivery of the warm units could be avoided. An<br />

alignment check of the instruments FPU's w.r.t. the HOB has to be performed before closure of the HOB.<br />

Note: The instrument ambient temperature SFT shall clearly verify the integrity of the FPU’s. If this is not<br />

possible (e. g. due to limited operation of the FPU’s at ambient), dedicated contingency tests for the FPU’s<br />

have to be performed. If special test equipment is needed for such test (e. g. in order to avoid a potential<br />

damage of the FPU’s) , it shall be provided by the instruments.<br />

7.2.1.2.2 Closure of optical bench<br />

After completion of the above the optical bench can be closed. This is basically just putting the shield around<br />

the instruments.<br />

The validation of this integration approach is considered part of the CQM test sequence, so has been<br />

validated following the same lines.<br />

7.2.1.2.3 MLI closure for optical bench and subsequent shields integration<br />

The closure of the cryostat is systematic integration of the shields and closure of the MLI between the upper<br />

conical shield and the cylindrical part of the cryostat. One major element during the integration is the control<br />

and achievement of the cleanliness requirements.<br />

7.2.1.2.4 Integration of cryostat vacuum vessel outer shell upper part<br />

After integration of the insulation system the outer shell can be integrated. After that the LOU can be<br />

integrated.<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

7.2.1.2.5 Integration of FM cryostat cover<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-8/27<br />

The cryostat cover is mounted on top of the system with the opening mechanism. The integration is completed<br />

by a SFT at ambient temperatures. Upon completion of the cover integration the system is closed and ready<br />

for the integral leak test of the insulation system. The cryostat is pre evacuated and integral leak test<br />

performed. After that a (warm) alignment check is performed. The system is now ready for transport from the<br />

integration area to the test area and the start of the test sequence.<br />

7.2.2 PPLM Integration<br />

7.2.2.1 PPLM CQM Integration & tests<br />

This paragraph reflects the integration of the CQM instruments into the SVM dummy for thermal tests, and<br />

later on SVM STM for machanical tests<br />

The integration flow of the instruments starts with mounting the cryo structure. During the mating with the STM,<br />

all the WU’s will be mechanically and electrically integrated<br />

Note1: only HFI QM is present<br />

Note2: only nominal units iare used; redundant units will be replaced by MTD (Mechanical Thermal<br />

Dummies) for mechanical and thermal aspects (mass and dissipated power simulation)<br />

Note3: the SCC will not be mounted, the functionality will be insured by bottles (TBC). MTD of the compressor<br />

will be used for mechanical tests<br />

The major steps that can be identified are (following the chronology):<br />

− sorption cooler (SCC, SCE, harness, pipes) mechanical integration into theirs panels<br />

− cryo structure assembly (grooves) with the WU’s positioned on the sub platform ( HFI PAU, LFI FPU<br />

MTD (i.e FPU+WG+BEU)<br />

− WU’s integration on the STM panels: all the wu’s necessary for the STM/CQM tests will be<br />

mechanically and electrically integrated.<br />

− 0.1 K, 4 K pipes will be integrated<br />

− mating will be done after delivery from Alenia of the STM (including MTD for all the equipment's +<br />

partially RCS (tanks not mounted will be replaced by MTD)<br />

− after PPLM mated on the STM, the completion of the PPLM integration will be done with the telescope<br />

(mirrors and primary structure), JFET, 0.1 K pipes completion, FPU shims.<br />

− The completion of the STM/CQM will be done with the grooves extensions, STM upper panels, MLI….<br />

Note: electrical integration means that AIT team will:<br />

− check the signals at harness level before connecting to the EQM WU’s<br />

− connect the harness to the EQM<br />

− perform UFT tests.<br />

All the SVM functionalities (all the SVM equipment's will be replaced by MTD) will be insured by a test<br />

equipment named PLM EGSE<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

7.2.2.2 PPLM PFM Integration<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-9/27<br />

For the AIT team, one of the aim of the STM/CQM will be to validate the AIT sequence. So, the integration<br />

flow of the PFM will be the same than the STM/CQM one.<br />

The major steps that can be identified are (following the chronology)<br />

− sorption cooler (SCC, SCE, harness, pipes) mechanical integration into theirs panels<br />

− cryo structure assembly (grooves) with the WU’s positioned on the sub platform (DAE ctrl box for LFI,<br />

PAU for HFI, FPU assembly (i.e FPU+WG+BEU)<br />

− WU’s integration on the SVM panels: all the wu’s will be mechanically and electrically integrated<br />

− 0.1 K, 4 K pipes will be integrated<br />

At this state, the PPLM is not completely integrated. The completion will be done at satellite level after the<br />

mating of the PPLM on the SVM.<br />

Note: electrical integration means that AIT team will:<br />

− check the signals at harness level before connecting to the WU’s<br />

− connect the harness to the EQM<br />

− perform UFT tests.<br />

7.2.3 HSVM Integration<br />

The HSVM integration will be defined in due course in line with the instrument definitions and needs given in<br />

the IID B’s and the progress of the spacecraft and HSVM design activities in the industrial phase B.<br />

7.2.4 PSVM Integration<br />

The PSVM integration will be defined in due course in line with the instrument definitions and needs given in<br />

the IID B’s and the progress of the spacecraft and PSVM design activities in the industrial phase B.<br />

7.2.5 Herschel S/C PFM Integration<br />

The items to be integrated can be listed as:<br />

− Service module with PLM.<br />

− External structures<br />

− Herschel telescope<br />

− Herschel Sunshield and Sunshade<br />

The complete integration is performed with the He tank of the cryostat in cold conditions (i.e. 4.2K) and at<br />

normal pressure conditions. One filling could be expected during the integration period. The total available<br />

time for integration without filling is about 2 months.<br />

Additional explanations for each of the major integration steps:<br />

7.2.5.1 Integration of the Service Module with PLM<br />

The PLM is on the MGSE. The SVM support structure and the instrument panels are mounted to the PLM. The<br />

first step is therefore to remove the instrument panels and the support structure from the PLM. The integration<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-10/27<br />

of the SVM includes the mechanical mounting and the electrical re-connection of the warm units to the PLM<br />

units.<br />

The warm units of the instruments as coming from the PLM PFM test sequence need to be mechanically and<br />

electrically (functionally) integrated to the Herschel SVM to be ready for the integration of the SVM to the PLM.<br />

It includes the integration and de-integration of the necessary MGSE for lifting.<br />

7.2.5.2 External structures<br />

The activities foreseen comprise among others the integration of the external insulation of the cryostat on the<br />

front side, i.e. the side facing the sunshield, the upper conical part and the lower interface to the SVM. This<br />

includes, to partially mount already now the interfaces to the supporting struts for the sunshield.<br />

During these activities the cryostat will be refilled to 100 % with He I. The activities include mounting of the<br />

cryogenic GSE, filling and partial removal of the GSE. During these times the system needs to be connected to<br />

EGSE for cryostat control and commanding. The instruments need not be connected during this period. The<br />

ambient temperature units of the instruments as coming from the PLM PFM test sequence need to be<br />

mechanically and electrically (functionally) integrated to the Herschel SVM to be ready for the integration of the<br />

SVM to the PLM.<br />

7.2.5.3 Integration of the telescope<br />

The PLM/SVM composite is mounted on the MPT (Multi-Purpose-Trolley). The telescope is mounted on the PLM<br />

via the telescope mounting structure (TMS). Some special protection is applied to the telescope to avoid<br />

contamination. The external references of the telescope will be adjusted to the PLM reference. The thermal<br />

insulation/heating of the telescope will be mounted now, after completion of the mechanical/optical<br />

integration. The telescope reference cube will now be measured with respect to the CVV cube. It is not planned<br />

to perform any real telescope performance measurements now, e.g. measurement of the WFE.<br />

7.2.5.4 Integration Herschel Sunshield/Sunshade<br />

The sunshield/sunshade fixation design has mechanical interfaces to the cryostat and the SVM<br />

7.2.6 Planck S/C Integration<br />

Mating will be done after delivery from Alenia of the SVM. The six panels involving the WU’s will be delivered<br />

earlier in order to start the integration in parallel with the completion of the SVM. The SVM will be delivered<br />

with the two panels involving the platform equipment's.<br />

− after PPLM mated on the SVM, the completion of the PPLM integration will be done with the telescope<br />

(mirrors and primary structure), JFET, 0.1 K pipes completion, FPU shims.<br />

− The completion of the PFM will be done with the grooves extensions, SVM upper panels, MLI….<br />

One delicate point will be the BEU assembly shimming at sub platform level (assembly will be FPU+WG+BEU)<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


SCC<br />

panels, heat<br />

pipes,<br />

WU panels<br />

PLM data<br />

base<br />

LFI (reba,<br />

harness)<br />

HFI(dpu, REU,<br />

harness)<br />

+ Z WU<br />

panel<br />

Sorption<br />

cooler<br />

(SCC,SCCE,<br />

harness)<br />

Sorption<br />

cooler<br />

integration<br />

AI 2<br />

WUs<br />

electrical<br />

integration<br />

AI 1<br />

0.1Kcooler<br />

(dcce, pipes<br />

harness)<br />

REBAs<br />

harness<br />

0.1/4 K<br />

panels<br />

IIDA - SECTION 7<br />

0.1/4 K<br />

cooler<br />

panels<br />

assembly<br />

AI 4<br />

7.3 Herschel Testing<br />

DAE crt bx<br />

and harness<br />

subplatform<br />

Pwr<br />

interface<br />

harness<br />

4K cooler<br />

(ccu,cau,ceu,<br />

pipes harness,<br />

helium)<br />

Cryo.<br />

structure<br />

assembly<br />

AI 3<br />

Cryo.<br />

structure<br />

LFI (raa,<br />

harness)<br />

HFI(pau,<br />

harness)<br />

Grooves<br />

extentions,<br />

external MLI<br />

HFI(jfet)<br />

0.1 K cooler<br />

(pipes,<br />

helium)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-11/27<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Mating<br />

AI 6<br />

Telescope<br />

adjustment<br />

AI 7<br />

Planck<br />

satellite<br />

integration<br />

completion<br />

AI 8<br />

Figure 7.2.6-1 Planck integration organisation chart.<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Telescope<br />

and baffle<br />

Focal plane<br />

shims<br />

BEU shim<br />

plate<br />

SVM<br />

upper<br />

panels,<br />

MLI<br />

"SVM"<br />

prepara<br />

tion<br />

AI 5<br />

SVM<br />

integrated<br />

SVM<br />

extentions<br />

(SA,<br />

antennas,<br />

baffle)<br />

Tanks, piping<br />

MLI<br />

After completion of the integration, be it at the level of the HPLM, PPLM, HSVM, PSVM, Herschel S/C or Planck<br />

S/C, a series of verification tests will be carried-out.<br />

Each test will be defined in detail in a test procedure to be written by the Contractor, based on instrument<br />

group inputs. It will be reviewed and approved by the Herschel/Planck project group.<br />

7.3.1 Herschel PLM EQM Testing<br />

The test configuration is defined in line with the integration sequence as given in paragraph 7.2.1.1 above,<br />

i.e.:<br />

The test cryostat is the ISO QM Cryostat. The dimensions allow to mount the Herschel optical bench on top of<br />

the ISO spatial framework. This optical bench is assumed to be the Herschel Optical bench, at least w.r.t.<br />

thermal, electrical and optical interfaces. The upper part of the Herschel cryostat will be copied for this test, i.e.<br />

it is assumed to get the optical bench shield, three conical shields and the outer bulkhead of Herschel. For the<br />

instruments there is no difference to the real Herschel cryostat. The harness would be the Herschel harness<br />

with feedthroughs at the same or nearly the same place. The LOU will be mounted to the outside with<br />

representative interfaces. The cryostat cover will be equipped with a mirror surface in the line of view of the<br />

instruments, which can be actively cooled in order to simulate the optical background conditions. The orbital<br />

mass flow rate of about 2.1mg/s is further assumed to be reached for this test (at least for the instrument test<br />

periods)


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-12/27<br />

The scientific part of the outer cryostat harness will be electrically representative to the «real» Herschel harness.<br />

The instrument warm units will be mounted on an electrically representative plate (grounding etc.).<br />

The instrument units will be connected to a functionally representative CDMS and Power interfaces, which is<br />

part of the PLM EGSE.<br />

The total system will be deployed in a clean-room class 100.000 and the test will be carried out with the CVV<br />

at ambient temperature.<br />

7.3.1.1 Herschel PLM EQM Test Sequence<br />

The test sequence below has been defined in co-operation with the Herschel instrument teams. It is only a<br />

summary for information only. The overall test sequence, the test objectives and estimated duration will be<br />

defined in the Instrument test plan.<br />

The test sequence consists of the following major steps:<br />

− Alignment check and Short Functional Check (SFT) after integration<br />

− Evacuation and cool-down<br />

− Alignment check and SFT cold after evacuation and cool-down<br />

− Instrument Integrated Module Tests (IMT’s)<br />

− EMC tests (conducted & radiated)<br />

One major objective of the CQM Test Sequence is the development and execution of Instrument IMT’s as a<br />

reference for PFM testing.<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

Sequence Objective Remarks<br />

Warm units<br />

integration, optical<br />

bench integration<br />

Short functional test<br />

(SFT) warm<br />

Cryostat final<br />

integration and<br />

closing<br />

Cryostat evacuation<br />

and leak check<br />

Short functional test<br />

SFT of instruments (HIFI,<br />

PACS and SPIRE)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-13/27<br />

At ambient<br />

condition<br />

SFT of instruments (HIFI, At ambient<br />

(SFT) warm<br />

PACS and SPIRE) condition<br />

Cool down and Cool down and filling of<br />

filling/cold alignment cryostat with He I.<br />

Functional tests at He I<br />

temperature, alignment<br />

measurements during cool<br />

down, alignment adjustment<br />

after cool down, global cold<br />

leak test<br />

Short functional test SFT of instruments (HIFI, At He I condition<br />

(SFT) cold<br />

PACS and SPIRE)<br />

He II production and He II production in AXT and<br />

top up<br />

He II top up of AXT<br />

Integration EQM CCU Integration of CCU to SVM<br />

dummy plate<br />

Integrated Module Test of CCU with cryo At He II condition<br />

Test (IMT)<br />

instrumentation. Functional<br />

and performance testing of<br />

instruments (HIFI, PACS<br />

and SPIRE), incl. cooler<br />

recycling and PACS/SPIRE<br />

parallel operation.<br />

EMC test Instrument CE, CS and RS<br />

tests (HIFI, PACS and<br />

SPIRE). Incl. cooler<br />

recycling.<br />

At He II condition<br />

Conversion to He I Conversion of He II to He I<br />

in AXT<br />

Depletion and warm Depletion of AXT and warm<br />

up<br />

up of cryostat<br />

Table 7.3.1-1:Herschel Payload CQM Test sequence (the test sequence is still under optimisation and<br />

will be updated in due time as per Herschel AIT Plan)<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

7.3.2 Herschel S/C CQM Testing<br />

At present no test are defined on Herschel S/C level with the CQM instruments.<br />

7.3.3 Herschel PLM PFM Testing<br />

The test sequence in after integration considers the following major stages:<br />

− Alignment check and Short Functional Check (SFT) after integration<br />

− Alignment check and SFT cold after evacuation and cool-down<br />

− Integrated Module Test (IMT)<br />

− EMC test (conducted & radiated)<br />

Details see below:<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-14/27<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Sequence Objective Remarks<br />

Warm units<br />

integration, optical<br />

bench integration<br />

Short functional test<br />

(SFT 1) warm<br />

Cryostat final<br />

integration and<br />

closing<br />

Cryostat evacuation<br />

and leak check<br />

Cryostat bake out<br />

Cool down and<br />

filling/cold alignment<br />

Short functional test<br />

(SFT 2) cold<br />

He II production and<br />

top up<br />

Short functional test<br />

(SFT 3) cold<br />

Integrated Module<br />

Test (IMT)<br />

SFT of instruments (HIFI,<br />

PACS and SPIRE)<br />

Cool down and filling of<br />

cryostat with He I.<br />

Alignment measurements<br />

during cool down, alignment<br />

adjustment after cool down,<br />

global cold leak tests of He<br />

subsystem<br />

SFT of CCS, SFT of<br />

instruments (HIFI, PACS<br />

and SPIRE)<br />

He II production in main<br />

tank and He II top up of<br />

main tank<br />

SFT of CCS. SFT of<br />

instruments (HIFI, PACS<br />

and SPIRE).<br />

Test of CCU with cryo<br />

instrumentation. Functional<br />

and performance testing of<br />

instruments (HIFI, PACS<br />

and SPIRE), incl. cooler<br />

recycling, PACS/SPIRE<br />

parallel operation and<br />

SPIRE spectrometer test<br />

(PLM 90° tilted)<br />

EMC test Instrument CE test (HIFI,<br />

PACS and SPIRE). Incl.<br />

cooler recycling.<br />

Conversion to He I<br />

ISSUE : 3.1 PAGE : 7-15/27<br />

At warm condition<br />

At He I condition<br />

At He II condition<br />

At He II condition<br />

At He II condition<br />

Table 7.3.1-2 : Herschel Payload PFM Test sequence (the test sequence is still under<br />

optimisation and will be updated in due time as per Herschel AIT Plan)<br />

As can be seen the test sequence is dominated by activities that are related to the payload. Since the same<br />

cryogenic system has already been verified in the STM sequence the task to do here for the cryostat is reduced<br />

to validating that the performance is the same, i.e. that there is no degradation. The telescope is not planned<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-16/27<br />

to be mounted in this sequence, as part of the PLM activities, but as part of the system activities. As a<br />

performance test of the three instruments is foreseen, it is assumed that the LOU ( outside the cryostat) has<br />

been fully integrated, the control electronics are available and can be connected to appropriate EGSE. In this<br />

sequence there are a number of parallel activities, therefore further explanations are given for each step.<br />

7.3.3.1 Evacuation and bake out<br />

The cryostat is on its MGSE in the clean room and the vacuum pumps are finally connected (should be<br />

mounted already since needed for pre-evacuation) to evacuate the cryostat to reach high vacuum. The<br />

Helium venting system is connected to high temperature Nitrogen flow that increases the temperature of the<br />

Helium tank, piping HOB, and FPU's up to around 80°C during 3 days. Bakeout operation, including ramp-up<br />

& ramp down will take about 2 weeks. This is done in a controlled manner, to keep the instrument units<br />

always at the highest temperature (avoid to collect contamination). The purpose of the bake-out is twofold, on<br />

one side removal of contamination from the system on the other hand removal of water from the MLI to<br />

increase the later low temperature performance.<br />

7.3.3.2 Cool-down of the system and filling with He I<br />

After evacuation and leaktest, bake-out and a first alignment at warm conditions, the cryostat will be cooled<br />

down to He I temperatures (4.2K). This will be accompanied by alignment checks.. At this point the<br />

alignment of the LOU wrt. HIFI FPU will be checked.<br />

7.3.3.3 Alignment check after cooling<br />

The HOB position is now measured through the CVV windows. At this point the alignment of the local<br />

oscillator unit is performed, first via measurements of the HOB and LOU relative alignment through the<br />

dedicated alignment windows. The cryostat suspension pre-tensioning system (GSE) can now be removed.<br />

7.3.3.4 He II production and complete filling<br />

As a preparation of the integrated module test, the temperature of the Helium tank is reduced to 1.7 K and<br />

the tank filled up nearly completely. This is done in a sequential way, i.e. pumping the tank, filling, pumping,<br />

etc. The final condition is that the He II tank is filled with He at around 1.7 K to 1.8 K. Note: the thermal<br />

environment is not fully in-orbit representative since the CVV temperature is at ambient (see chapter 5.7)..<br />

During this time, as a parallel activity, the final electrical connection can be made to the warm electronic units.<br />

Necessary background temperatures will be ensur eby an actively cooled mirror, which is part of the cryostat<br />

cover.<br />

7.3.3.5 Integrated Module Test<br />

The integrated module test is the performance and functional test of the instruments, instrument by instrument<br />

and together. This includes the capability of the set-up to recycle the instrument sorption coolers. It has to be<br />

assumed that the procedures have already been validated with the CQM, so this test sequence is for validation<br />

and not procedure development. However, note that this is the first time that the PFM instruments are together.<br />

During this test some information is obtained on the performance of the cryostat, w.r.t. temperatures and<br />

lifetime, but this is gathered as a separate information and should not drive or dominate any of the sequences.<br />

At the end of the test sequence the He bath is heated to ambient pressure (He I). Latest, at the end of the<br />

sequence, the flight cavity is mounted to the cryostat.<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

7.3.3.6 Transport to system AIV<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-17/27<br />

The satellite has to be transported in cold and partly filled conditions to the system test facility. This means<br />

packing into the container and shipment.<br />

7.3.4 Herschel S/C PFM Testing<br />

After completion of the system integration the final test sequence can start. The sequence consists of all<br />

necessary major tests for system verification:<br />

− Integrated System Test 1 (IST1)<br />

The satellite has to be transported in cold and partly filled conditions to the system test facility. This means<br />

packing into the container and shipment.<br />

− System Validation Test 1 (ESOC Compatibility Test, SVT1)<br />

− EMC test<br />

− Sine Vibration test (acceptance level)<br />

− Thermal Vacuum and Thermal Balance test<br />

− Acoustic noise test<br />

− Alignment checks (telescope/spacecraft)<br />

− Integrated System Test 2 (IST2)<br />

− Mass properties<br />

− System Validation Test 2 (SVT2)<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-18/27<br />

Sequence Objective Remarks<br />

Satellite Integration<br />

Satellite alignment<br />

SVM mating, integration of sunshield/sunshade,<br />

integration telescope, completion of satellite<br />

He II production and top He II production in main tank and He II top up of<br />

up<br />

IST 1 (Integrated System<br />

Test)<br />

main tank<br />

Test of satellite bus. Test of CCU with cryo<br />

instrumentation. Functional and performance testing<br />

of instruments (HIFI, PACS and SPIRE), incl. cooler<br />

recycling, PACS/SPIRE parallel operation and<br />

SPIRE spectrometer test (PLM 90° tilted).<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

At He II condition<br />

Conversion to He I<br />

Transport to Test Facility At He I condition<br />

He II production and top<br />

up<br />

SVT 1 (System Validation<br />

Test of satellite and instrument (HIFI, PACS and At He II condition<br />

Test)<br />

SPIRE) command and control.<br />

TV/TB Test Launch autonomy verification, launch simulation,<br />

alignment check during TV test. Test of instruments<br />

(HIFI, PACS and SPIRE).<br />

At He II condition<br />

SFT after TV Test SFT of satellite bus and CCS. SFT of instruments<br />

(HIFI, PACS and SPIRE).<br />

At He II condition<br />

EMC Test<br />

Conversion to He I<br />

SFT cold<br />

At He II condition,<br />

conversion to He I after<br />

test<br />

Sine vibration test<br />

SFT cold<br />

Alignment check<br />

3 axis sine vibration test at acceptance level. At He I condition<br />

Acoustic noise test<br />

Alignment check<br />

SFT cold<br />

At He I condition<br />

IST 2 (Integrated System Functional testing of satellite bus. Test of CCU with At He I condition<br />

Test)<br />

Mass measurement<br />

cryo instrumentation. Functional and performance<br />

testing of instruments (HIFI, PACS and SPIRE), incl.<br />

cooler recycling, PACS/SPIRE parallel operation<br />

and SPIRE spectrometer test (PLM 90° tilted).<br />

SVT 2 (System Validation Test of satellite and instrument (HIFI, PACS and At He II condition<br />

Test)<br />

SPIRE) command and control.<br />

Details see below.<br />

Table 7.3.1-3:Herschel Satellite PFM Test sequence (the test sequence is still under optimisation<br />

and will be updated in due time as per Herschel AIT Plan)<br />

The main tests in this sequence are the integrated satellite test, the mechanical and the thermal tests. Some<br />

additional information to the different elements of the test flow are given below:<br />

7.3.4.1 Alignment and Cryostat refilling<br />

As a first step after system integration, the alignment of the different elements is verified and the system<br />

prepared for the integrated systeme test. This includes mounting of the cryogenic GSE, filling the system with


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-19/27<br />

He I, He II production and He II top-up. At the completion of this activity, the system is ready for functional test<br />

of the integrated spacecraft.<br />

7.3.4.2 Integrated Systeme Test (IST)<br />

The integrated system test is, for the scientific instruments, similar to the previously performed integrated<br />

module test, however, possibly with different thermal background for the focal plane instruments. Further to<br />

the instrument tests, the total integrated spacecraft is tested at this stage.<br />

7.3.4.3 System Validation Test (ESOC Compatibility Test, SVT)<br />

This system validation test has been included at two stages of the Herschel System test phase. The main<br />

purpose of these tests is the verification of the ground segment operations with the real flight hardware system.<br />

7.3.4.4 Thermal Vacuum and Thermal Balance test<br />

During the thermal test sequence the cool-down of the system (CVV, telescope, …) shall be verified. Therefore<br />

the He II bath is re-pumped to launch conditions and the system brought to launch autonomy configuration.<br />

For the integration into the facility it is assumed that this can be done in the Herschel system configuration, i.e.<br />

no dismounting of any equipment is necessary. The spacecraft integration and removal into and out of the<br />

facility is considered one of the most complicated integration sequences and need proper and detailed<br />

preparation. The actual facility test duration is taken long enough to perform the electrical functional tests of<br />

the spacecraft, integrated system test for the instruments and to verify adequate cool-down/transient behavior<br />

of the cryostat and the telescope. It is not possible to open the cryostat cover during this test and also a cooling<br />

of the cover mirror is not possible, i.e. the thermal background from the thermal shield in the cover will be<br />

above the orbit conditions. At completion of the actual test the system is removed from the facility for the EMC<br />

test and the structural verification tests.<br />

7.3.4.5 EMC test<br />

The system test sequence assumes that the system radiative EMC test is conducted with He II conditions,<br />

however in a launch autonomy mode configuration.<br />

7.3.4.6 Vibration test and Acoustic noise test<br />

The mechanical system verification is performed through a three-axis sine vibration test and the acoustic noise<br />

test. The vibration test is performed with normal He I in the system. Consequently the He II conditions are<br />

given up and the system is heated to He I conditions and transported to the test facility. In order to achieve<br />

proper conditions the He II tank is filled prior to each run to the nominal launch conditions, i.e. > 98% filling<br />

level. After completion of each axis vibration and the acoustic test, short functional tests at He I conditions (4.2<br />

K) demonstrate the health of the system and the instruments.<br />

The mechanical test sequence is completed by alignment checks afterwards. These are alignment checks of<br />

the instruments to the telescope and the spacecraft elements to each other. The system is transported at<br />

completion of the sequence back to the main test room for He II production and filling.<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


7.4 Planck testing<br />

IIDA - SECTION 7<br />

7.4.1 Planck PLM CQM / Planck Spacecraft STM Testing<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-20/27<br />

The test sequence after completion of the integration of the PLM CQM considers the following major test steps,<br />

with a change of configuration CQM --> STM (replacement SVM dummy by SVM STM).<br />

More, due to the late arrival of HFI, the CQM cryogenic test is split into 2 steps: Step 1 is performed during the<br />

facility blank test without HFI (validation of PPLM passive cooling), and step 2 is performed after HFI<br />

integration<br />

− Integration of Planck P-PLM (Cryo-structure, QM telescope, Pipes, RAA dummy)<br />

− Integration of SVM dummy<br />

− Mating Planck PLM on SVM dummy -> Planck PLM QM<br />

− Cryogenic test Step 1 (P-PLM passive cooling)<br />

− Integration of HFI<br />

− Functional check (IST)<br />

− Alignment check (FPU wrt PPLM)<br />

− Cryogenic Test Step 2 (Instruments tests: cooling and detection chains)<br />

− Demating, de-integration of warm units, integration on SVM STM, Mating --> Planck satellite STM<br />

− Functional check<br />

− Alignment check (FPU wrt PPLM)<br />

− Vibration Test (sinus, acoustic) and shock test<br />

− MCI - Balance test<br />

− Functional check<br />

− Satellite Alignment Check<br />

− Spacecraft and PPLM disassembly<br />

As can be seen the test sequence is dominated by activities that are related to the telescope and the payload.<br />

As a functional test of the two instruments is foreseen, it has been assumed that the control electronics are<br />

available and can be connected to appropriate EGSE. Further explanations are given for the above steps.<br />

7.4.1.1 Satellite Alignment Check<br />

The alignment of the telescope is measured w.r.t. a PLM fixed reference system after integration of the<br />

telescope with the SVM structure. The alignment to the FPU is measured via external references on the<br />

telescope, the PLM and the FPU.<br />

7.4.1.2 Instrument Integrated Satellite Tests (ambient)<br />

All instrument units that are mounted to the Payload module are properly integrated and connected.<br />

Instrument units, that are later mounted on the SVM, might be replaced by functional EM’s or the Avionics<br />

models (AVMs). The PLM is mounted in its MGSE in the clean-room.<br />

The integration of the PLM has been completed with all thermal and structural hardware of the PLM.<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-21/27<br />

The IST of the instruments at this stage is limited by the instrument verification possibilities at ambient<br />

temperature.<br />

7.4.1.3 Vibration Test<br />

The complete Planck STM satellite assembly will be structurally tested, i.e. via 3-axis vibration test. A short<br />

version of the instrument IST’s as described above and the alignment checks are clearly verification elements.<br />

7.4.1.4 Cryogenic Test<br />

7.4.1.4.1 Cryogenic test step 1: P-PLM CQM test<br />

The objective of this test is to verify the passive cooling concept of the Planck PLM.<br />

The configuration is a complete Planck, with Cryostructure, QM telescope, LFI-RAA dummy, all cooler pipes<br />

(not active), all cryoharnesses or simulator, and the SVM dummy (equipped with BEU and PAU MTD's).<br />

This test will be performed together with the CSL facility blanck test<br />

Note: this test might be replaced by an early acoustic test. In that case, the Cryogenic test step 1 would be<br />

performed as originaly foreseen, with step 2.<br />

7.4.1.4.2 Cryogenic test step 2: Planck instruments CQM test<br />

The cryogenic qualification step is expected to be the most demanding test of the CQM sequence. The<br />

objectives of this test are the verification of the passive thermal concept of the PLM (incl. its sensitivity) and the<br />

verification of the performance of the active coolers of the instruments.. Once the proper temperatures at the<br />

FPU are achieved an extended instrument functional/performance test is performed. In order to achieve the<br />

test objectives it is expected that the facility provides adequately low background for the FPU. During this test a<br />

limited EMC test (limited by the capabilities inside a facility) is carried out.<br />

The expected overall configuration and an integration and test sequence is outlined below. This description is<br />

a result of a working group activity with ESA, LFI, HFI and facility representatives from CSL. The anticipated test<br />

sequence, with test objectives and estimated duration is outlined inthe table below. Information on details of<br />

the instrument test sequences and needs are given in corresponding paragraphs in the LFI and HFI IID-B’s.<br />

Original test objectives had to be reviewed to comply with the definition of the specimen: SVM replace by SVM<br />

dummy, LFI replaced by and MTD, no sorption cooler compressor (PACS & PGSE), HFI dilution gaz storage<br />

unit located outside (DCCU inside SVM dummy)<br />

It is assumed that all instrument coolers have passed successfully a leak test after completion of the PPLM<br />

CQM vibration test. The overall configuration includes the PPLM only, i.e. not the full SVM. The need to<br />

simulate for thermal reasons the «real» SVM structure is not clear at present and has to be evaluated from the<br />

detailed design of Planck in line with the objectives of the test. The instruments, consisting out of the CQM<br />

units and the corresponding AVM units to operate the CQM’s, are all compatible with the vacuum facility and<br />

mounted in an electrically representative manner to the PPLM. The interfacing spacecraft units, i.e. the CDMS<br />

and the power units are functionally representative to the Planck SVM units and could be located outside the<br />

facility. It is assumed that these units will be operated by a (reduced) version of the system EGSE and that the<br />

instrument EGSE will interface to this system EGSE in the same way as in the PFM program. The facility will<br />

provide a venting/collection system for the helium of the dilution cooler. This pipes will be routed from the<br />

PPLM to the outside of the facility and connected to a recollection system provided by HFI. The Helium tanks<br />

for the dilution cooler are inside the facility filled to a level necessary for the completion of this test (e.g. up to<br />

100 bars).<br />

A small shroud in front of the focal plane units and connected to a helium cooling loop is implemented to<br />

provide the cold background for the instrument performance test and form the inner, coldest part of the<br />

shroud system. This shroud is covered with a Flat coating of Ecosorb, providing 20dB absortance at<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-22/27<br />

instruments wavelength. A further shroud that will be during test at 20 K («20 K shroud») is mounted around<br />

the PPLM, starting at the level of the upper face of the SVM (some mm clearance only) and completely closing<br />

off all PPLM elements. A further shroud that is mounted around this 20 K shroud completes the shroud system<br />

for the test.<br />

7.4.1.4.3 Cryogenic Test – Sequence<br />

The test sequence below has been defined in co-operation with the Planck instrument teams. This paragraph<br />

in the IID A provides the overall test sequence, the test objectives, estimated durations, however, does not<br />

include details of the instruments. These details together with specific instrument test objectives and<br />

requirements are given in the corresponding paragraph in the IID-B’s<br />

Planck CQM step 2 test sequence<br />

Ambient phase: (37 working days)<br />

• Specimen instrumentation and preparation<br />

• Vacuum chamber preparation<br />

• Test set up installation<br />

• Specimen and GSE verification<br />

• Specimen cleaning<br />

• Ambient functional test<br />

• Last check before closure (thermocouples, test heaters check), last specimen control (photos…)<br />

• Shrouds closure<br />

Vacuum phase: (5 days)<br />

• Pumping<br />

• Ambient leak checks (Facility tight, instrument pipes/coolers leak tight)<br />

• Instrument vibration measurement in parallel with above<br />

• De-sorption of CFRP under vacuum at ambient temperature: 2 days (TBC), vacuum better than 10 -3 Pa<br />

• Temperature monitoring<br />

PLM cooling down and SVM thermal cycling (8 days)<br />

• Cooling down of cryogenic shrouds<br />

• Wait for reaching 60K on the coldest v-groove shield (shield 3) TBC.<br />

Instruments test phase: (25 days)<br />

• Switch-on the PACE GSE.<br />

• Switch-on the pre-cooling of the HFI by the ground He loop until a TBD temperature criterion is met<br />

on HFI FPU<br />

• Wait for reaching 20 K on the RAA I/F .<br />

• Switch-on the HFI 4 K cooler (HFI pre-cooling loop will be stopped)<br />

• Wait for reaching 4 K on the HFI FPU and stable condition on the optical cryogenic shield<br />

• HFI cool-down - Start the Dilution cooler<br />

• Wait for reaching 0.1 K on the HFI detectors<br />

• HFI functional test<br />

• HFI Electromagnetic compatibility tests<br />

• HFI stand alone test<br />

• Cooler failure tests (20K, 4K and 0.1K).<br />

Return to ambient: (3 days)<br />

• Instrument short ambient functional test.<br />

Shrouds removal: (3 working days)<br />

Table 7.4.1-1: Planck PLM CQM test sequence<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


7.1.1.5 Ambient RF test<br />

IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-23/27<br />

Ambient RF test is performed at Planck RFQM levels with telescope QM and instrument RF mock-ups (made by<br />

the prime).<br />

7.1.2 Planck S/C CQM Testing<br />

This is covered in the previous <strong>section</strong>.<br />

7.1.3 Planck PLM PFM Testing<br />

The PLM PFM test sequence is to a major extent a repeat of the CQM sequence, however, now with the Flight<br />

model instrument units.<br />

The test sequence after integration is identical to the CQM sequence and considers the following major test<br />

steps:<br />

− Satellite Alignment Check<br />

− Functional Test of the instruments<br />

EMC<br />

CE/CS<br />

tests<br />

IST 1.1<br />

S/C alignement after<br />

mechanical test<br />

SFT 1.1<br />

S/C functional test<br />

after mechanical test<br />

SFT 1.2<br />

S/C reference<br />

tests<br />

IST 1.2<br />

S/C set-up after<br />

mechanical test<br />

Environment 1<br />

S/C ground segment<br />

test<br />

SVT 1<br />

S/C balancing and<br />

MCI measurements<br />

IST 1.3<br />

Cannes<br />

Sine acoustic<br />

vibrations<br />

Environment 1<br />

Cannes<br />

S/C preparation<br />

before thermal<br />

vacuum test<br />

(outside chamber)<br />

Environment 2<br />

S/C alignement<br />

before environment<br />

test<br />

IST 1.4<br />

S/C preparation<br />

before mechanical<br />

test<br />

Environment 1<br />

S/C preparation<br />

before thermal<br />

vacuum test<br />

(inside chamber)<br />

Environment 3<br />

Cannes CSL<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

EMC<br />

RE/RS<br />

tests<br />

Ambient LFI RF<br />

test<br />

IST 1.6<br />

Thermal<br />

vacuum tests<br />

Environment 4<br />

IST 1.5


S/C set-up after<br />

thermal vacuum test<br />

Environment 5<br />

S/C transportation<br />

to Kourou<br />

IIDA - SECTION 7<br />

S/C functional test after<br />

thermal vacuum test<br />

(exept RCS)<br />

SFT 2.1<br />

S/C set-up for launch<br />

campaign<br />

Launch 1<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-24/27<br />

S/C transfer CSL -><br />

Cannes<br />

Environment 6<br />

CSL Cannes<br />

S/C reference tests<br />

after environmental<br />

tests<br />

IST 2.1<br />

Cannes<br />

Figure 7.4.3-1: Planck PFM test logic<br />

7.1.3.1 Functional Test of the instruments<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

S/C alignement<br />

after thermal vacuum<br />

test<br />

SFT 2.2<br />

S/C functional test after<br />

thermal vacuum test<br />

(only RCS)<br />

SFT 2.3<br />

All instrument units that are mounted to the Payload module are properly integrated and connected.<br />

Instrument units that are later mounted on the SVM might be mounted on some MGSE, but are expected to be<br />

the real FM units. The PLM is mounted in its MGSE in the clean room.<br />

The integration of the PLM has been completed with all thermal and structural hardware of the PLM.<br />

The IST at this stage is limited by the instrument verification possibilities at ambient temperature.<br />

7.1.4 Planck S/C PFM Testing<br />

After completion of the PLM FM integration the Planck spacecraft will be fully integrated with the SVM PFM and<br />

the system tests will be carried out. Since this is the first fully representative Planck S/C system a number of<br />

system tests will be carried out for the first time. The test sequence envisaged is:<br />

− Integration of Planck S/C<br />

− Alignment Check<br />

− Integrated Satellite Test<br />

− EMC test<br />

− System Validation Test<br />

− Vibration Test<br />

− Acoustic Noise test<br />

− Alignment Check<br />

− TV test<br />

− Alignment Check<br />

− Integrated satellite test


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-25/27<br />

The test duration are adapted to the needs of a FM sequence, i.e. the objective is changed from qualification<br />

to acceptance. This means in some areas a reduction in duration since the demonstration can be limited. It<br />

has been assumed that control electronics are available and can be connected to appropriate EGSE.<br />

The main tests in this sequence are the integrated satellite test, the mechanical and the thermal tests. Some<br />

additional information to the different elements of the test flow are given below:<br />

7.1.4.1 Alignment<br />

As a first step after system integration, the alignment of the different elements is verified and the system<br />

prepared for the integrated satellite test. At the completion of this activity, the system is ready for functional test<br />

of the integrated spacecraft.<br />

7.1.4.2 Integrated Satellite Test<br />

The integrated satellite test is, for the scientific instruments, similar to the previously performed integrated<br />

module test, however, at this stage at ambient temperature. Further to the instrument tests, the total integrated<br />

spacecraft is tested at this stage.<br />

7.1.4.3 System Validation Test (ESOC Compatibility Test)<br />

The system validation test has been included at two stages of the Planck System test phase. The main purpose<br />

of these tests is the verification of the ground segment operations with the real flight hardware system.<br />

7.1.4.4 Vibration test and Acoustic noise test<br />

The mechanical system verification is performed through a three-axis sine vibration test and the acoustic noise<br />

test. After completion of each axis vibration and the acoustic test, short functional tests demonstrate the health<br />

of the system and the instruments.<br />

The mechanical test sequence is completed by alignment checks afterwards. These are alignment checks of<br />

the instruments to the telescope and the spacecraft elements to each other.<br />

7.1.4.5 EMC test<br />

The system test sequence assumes that the system radiative EMC test is conducted at ambient temperature<br />

conditions for the instruments<br />

7.1.4.6 Thermal Vacuum, Thermal Balance and PPLM Cryogenic test<br />

The thermal test is the last main test in the Planck test sequence. During this sequence also the cool-down of<br />

the PLM will be measured. The actual facility test duration is taken long enough to perform the electrical<br />

functional tests of the spacecraft, integrated satellite test for the instruments and to verify adequate cooldown/transient<br />

behaviour of the Planck PLM. At completion of the actual test the system is removed from the<br />

facility for the second ground segment compatibility test and preparation of the system for the carrier test<br />

programme.<br />

The cryogenic test is limited to the functional verification of the PLM thermal control and the proper operation<br />

of the active coolers of the instruments. Once the proper temperatures at the FPU are achieved an instrument<br />

functional test is expected to be performed.<br />

Both Sorption coolers will have to be tested. For that, Planck will have to be warmed up to allow the Second<br />

sorption cooler compressor to be oriented horizontally (rotate spacecraft by 90°)<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-26/27<br />

Planck FM Test sequence:<br />

Step 1 Planck cryogenic test (with Nominal Sorption cooler): 76 days, incl. 36 days under vacuum.<br />

Ambient phase: (37 working days)<br />

• Specimen instrumentation and preparation<br />

• Vacuum chamber preparation<br />

• Test set up installation<br />

• Specimen and GSE verification<br />

• Specimen cleaning<br />

• Ambient functional test<br />

• Last check before closure (thermocouples, test heaters check), last specimen control (photos…)<br />

• Shrouds closure<br />

Vacuum phase: (5 days)<br />

• Pumping<br />

• Ambient leak checks (Facility tight, instrument pipes/coolers leak tight)<br />

• Instrument vibration measurement in parallel with above<br />

• De-sorption of CFRP under vacuum at ambient temperature: 2 days (TBC), vacuum better than 10 -3 Pa<br />

• Temperature monitoring<br />

PLM cooling down and SVM thermal cycling (8 days)<br />

• Cooling down of cryogenic shrouds<br />

• SVM thermal cycling<br />

• Functional test of SVM subsystems<br />

• Wait for reaching 60K on the coldest V-groove shield (shield 3).<br />

• SVM thermal balance (in parallel to other activities)<br />

Instruments test phase: (20 days)<br />

• Switch-on the Sorption Cooler Compressor #N.<br />

• Switch-on the pre-cooling of the HFI by the ground He loop until a TBD temperature criterion is met<br />

on HFI FPU<br />

• Wait for reaching 20 K on the LFI FPU.<br />

• Switch-on the LFI<br />

• Preliminary functional test & switch-on the optical cryogenic shield<br />

• Switch-on the HFI 4 K cooler (HFI pre-cooling loop will be stopped)<br />

• LFI functional test II<br />

• Wait for reaching 4 K on the HFI FPU and stable condition on the optical cryogenic shield<br />

• HFI cool-down - Start the Dilution cooler (in parallel with LFI functional test)<br />

• Wait for reaching 0.1 K on the HFI detectors<br />

• HFI functional test<br />

Return to ambient: (3 days)<br />

• Instrument short ambient functional test.<br />

Shrouds removal: (3 working days)<br />

Step 2 Planck cryogenic test (with Redundant Sorption cooler) (52 days, 22 under vacuum)<br />

Ambient phase: (22 working days)<br />

• Change the orientation of the S/C in order to test the SSC#R + see §5.2.1 with reduced functional<br />

test.<br />

Vacuum phase: (5 days)<br />

• (Same as above)<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


PLM cooling down (7 days)<br />

• (Same as above)<br />

IIDA - SECTION 7<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE : 7-27/27<br />

Instrument test phase: (10 days)<br />

• This phase is reduced to the verification of the SCC#R<br />

• Switch-on the sorption cooler compressor #R.<br />

• Wait for reaching 20 K on the LFI FPU.<br />

• Switch on/off the LFI.<br />

• Limited cooler switchover procedure (TBC) (non-operational configuration of the SCC#N).<br />

Return to ambient: (3 days)<br />

Test set-up dismounting : (5 working days)<br />

Functionnal test at ambient (8 working days)<br />

Packing, Loading and departure: (4 working days)<br />

7.5 Operations<br />

Requirements in the OIRD, the PSICD and the naming convention (AD 16, 21, 22) apply.<br />

7.6 Commonality<br />

For the activities in chapters 7.2 and 7.3 commonality shall be pursued as per the applicable parts of chapter<br />

6.3.<br />

Référence Fichier :IID-A-07-3-1.doc du 06/02/04 16:12 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


8. PRODUCT ASSURANCE<br />

IID-A SECTION 8<br />

Product assurance requirements are given in AD 2.<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE :8- 8-1/2<br />

(this document applicable for instruments only. PA requirement for industry is covered by a specific<br />

document)


IID-A SECTION 8<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE :8- 2/2


IID-A SECTION 9<br />

9. DEVELOPMENT AND VERIFICATION<br />

9.1 General<br />

# Reference IIDA-DV-REQ-0005<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-1/63<br />

The PI shall, in a systematic manner, verify the instrument design and build status against each requirement in<br />

the IID-A and Bs (AD 04,05,06,07,08)<br />

This <strong>section</strong> establishes the verification requirements for the qualification and flight certification of the<br />

instrument units also giving specific test levels and durations and describing acceptance test and analytical<br />

methods for implementation of these requirements.<br />

# Reference IIDA-DV-REQ-0010<br />

The PI shall include in the Design Development and Verification Plan the tests and analyses that collectively<br />

demonstrate that hardware and software complies with the requirements.<br />

The plan shall allow the overall approach to accomplish the instrument qualification and acceptance<br />

programme. The interaction of the test and analysis activity shall be described.<br />

9.1.1 Definitions<br />

The following definitions are to be used:<br />

9.1.1.1 Design Qualification Verification:<br />

Tests and analyses intended to demonstrate that the item will function with performance specifications under<br />

simulated conditions more severe than those expected from ground handling, launch and orbital operations.<br />

The purpose is to uncover deficiencies in design and method of manufacture and is not intended to exceed<br />

design safety margins or to introduce unrealistic modes of failure.<br />

9.1.1.2 Acceptance Verification:<br />

Tests intended to demonstrate that hardware is acceptable for flight.<br />

It also serves as a quality control screen to detect deficiencies, and normally to provide the basis for delivery of<br />

an item under terms of a contract or agreement.<br />

9.1.1.3 Functional Tests:<br />

The operation of a unit in accordance with defined operational procedures to determine that functional<br />

performance is within the specified requirements.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.1.4 Performance verification:<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-2/63<br />

Determination by test, analysis, or a combination of the two that the complete instrument or instrument unit<br />

can operate as intended in a particular mission: this includes proof that the design of the complete instrument<br />

or instrument unit has been qualified and that the particular item has been accepted as compliant to the<br />

design and ready for flight operations.<br />

9.1.1.5 Thermal Balance Test:<br />

A test conducted to verify the adequacy of the Thermal Model, the adequacy of the thermal design, and the<br />

capability of the thermal control system to maintain thermal conditions within established mission limits.<br />

9.1.1.6 Thermal Cycling Tests:<br />

Tests to be conducted to verify that the instrument or instrument unit can withstand without degradation of its<br />

performance thermal cycles under vacuum.<br />

9.1.1.7 Thermal Vacuum Test:<br />

A test to demonstrate the validity of the design in meeting functional goals: it also demonstrates the capability<br />

of the test item to operate satisfactorily in vacuum at temperatures based on those expected for the mission.<br />

The test can also uncover latent defects in design, parts and workmanship.<br />

9.1.1.8 Thermal Shock Test:<br />

A test to be conducted to verify that the instrument or the instrument unit can withstand without degradation a<br />

cool down from room temperature.<br />

9.1.1.9 Static Loads:<br />

The maximum combination (longitudinal and lateral) of static loads which acts on an instrument, during the<br />

various segments of the flight profile. It consists of steady state accelerations (e.g. due to engine constant thrust<br />

or lateral wind loads) and quasi-static loads which are structure borne loads generated by the launch vehicle<br />

in the low frequency (less than 100 Hz) range (e.g. engine cut-off loads or wind gusts).<br />

9.1.1.10 Sine Vibration Test:<br />

A test to demonstrate that the instrument can withstand the mechanical environment of the low frequency (less<br />

than 100 Hz) sinusoidal and transient vibrations. This test can also be used to demonstrate compatibility with<br />

the static loads.<br />

9.1.1.11 Acoustic Random Vibration:<br />

An environment induced by high-intensity acoustic noise associated with various segments of the flight profile:<br />

it manifests itself throughout the instrument in the form of directly transmitted acoustic excitation and as<br />

structure-borne random vibration excitation.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

9.1.1.12 Integrated Satellite Test (IST):<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-3/63<br />

The detailed demonstration that the instrument and their units meet there performance requirements in all<br />

operational modes.<br />

9.1.1.13 Short Functional Test (SFT):<br />

The correctness of the instrument functions, for instance after a transport, is the objectives of the SFT.<br />

9.1.1.14 Electromagnetic Compatibility (EMC):<br />

The condition that prevails when various electronic devices are performing their functions according to design<br />

in a common electromagnetic environment.<br />

9.1.1.15 Electromagnetic Interference (EMI):<br />

Electromagnetic energy that interrupts, obstructs, or otherwise degrades or limits the effective performance of<br />

electrical equipment.<br />

9.1.1.16 Electromagnetic Susceptibility:<br />

Undesired response by a component, instrument or system to conducted or radiated electromagnetic<br />

emissions.<br />

9.1.2 Documentation<br />

The following plans, procedures, and reports are requested to document the instrument environmental<br />

verification programme.<br />

These documents shall be prepared by the instrument teams and are under their responsibility.<br />

The test procedures and test reports shall be available on request and will be part of the Qualification or<br />

Acceptance Data Package.<br />

9.1.2.1 Design Development and Verification Plan<br />

# Reference IIDA-DV-REQ-0015<br />

A design development and verification plan (DDVP) shall be prepared and shall describe the overall approach<br />

to accomplish the instrument qualification and acceptance programme. When appropriate, the interaction of<br />

the test and analyses activity shall be described. The overall logic shall be clearly established.<br />

For each analysis activity, the plan shall include objectives of the mathematical model with underlying<br />

assumptions. The DDVP shall be supported by the procedures and reports.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


9.1.2.2 Test Matrix<br />

# Reference IIDA-DV-REQ-0020<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-4/63<br />

In addition to the DDVP, the PI shall provide a test matrix that is in essence a synthesis of the verification<br />

programme. The test matrix summarises all the tests that will be performed on each instrument unit. The<br />

purpose of the matrix is to provide a ready reference to the contents of the test program in order to identify<br />

easily the deviations that could be requested. It has also the purpose of ensuring that flight hardware has been<br />

exposed to various environmental tests that are sufficient to demonstrate acceptable workmanship.<br />

In addition, the matrix shall provide traceability of the qualification heritage of hardware. All models shall be<br />

included in the matrix that shall be prepared in conjunction with the DDVP.<br />

9.1.2.3 Test Procedures<br />

# Reference IIDA-DV-REQ-0025<br />

For each verification test activity conducted at the instrument level, test procedures shall be prepared that<br />

describe the test objectives and success criteria, the configuration, the test article, and how it fits in the DDVP.<br />

The procedures shall contain all details which are necessary to make meaningful interpretations of the results,<br />

such as test parameters, instrumentation, monitoring, data collection, post-test verifications (alignment).<br />

It shall also address safety and contamination control provisions.<br />

Test procedures shall be provided to ESA for review prior to tests.<br />

9.1.2.4 Test Reports<br />

# Reference IIDA-DV-REQ-0030<br />

After each instrument verification activity has been completed a test report shall be submitted. The report shall<br />

describe the most significant results, comparison of the measured parameters with requirements or allocations<br />

and the degree to which the initial objectives were accomplished.<br />

In addition all as run procedures, test and analysis data shall be retained for review. Every failure shall be<br />

reported through an NCR (non-conformance report) in accordance with QA provisions.<br />

9.2 Model Philosophy<br />

9.2.1 Spacecraft Models<br />

9.2.1.1 Model Philosophy at Spacecraft Level<br />

See <strong>section</strong> 7.1.1<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.2.1.2 Model Philosophy at Instrument level<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-5/63<br />

Each instrument has its own critical areas and specific needs.<br />

ESA therefore expects each PI to define a set of development tests and their related hardware, software and<br />

support equipment to demonstrate progressively during the development period that all scientific and technical<br />

requirements are met (see Table 9.2.1-1).<br />

# Reference IIDA-DV-REQ-0035<br />

The Design and Development Plan (DDVP) of the instrument will therefore consider and integrate these<br />

development tests and the needs of the tests at system level. Table 9.2.1-1 lists the models required for each<br />

class of instrument units.<br />

The AVM and PFM units, when delivered to ESA, will not be returned to the PI’s.<br />

Herschel FPU’s (PACS & SPIRE DM<br />

FPU's for Herschel<br />

PLM STM test<br />

Development AVM CQM FM/PFM FS<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Sim’s Yes Yes CQM’s<br />

Herschel Warm Electronics no Yes TBD Yes Kits<br />

Herschel HIFI LOU no TBD Yes Yes Kits and<br />

partly<br />

CQM’s<br />

PLANCK HFI/LFI FPU’s no Sim’s Yes Yes Kits<br />

PLANCK HFI/LFI coolers No Sim’s Yes Yes Kits<br />

PLANCK HFI/LFI/Coolers<br />

Warm electronics<br />

Note: Sim’s stands for Simulators<br />

9.2.2 Deliverable Instrument Models<br />

9.2.2.1 Avionics Model<br />

The AVM system test objectives are:<br />

No Yes Yes Yes Kits<br />

Table 9.2.1-1: System level tests for instruments<br />

− verification of all electrical (including EMC) and software interfaces<br />

− verification of subsystem and instrument functional performance within system environment<br />

− Full validation of on-board software<br />

− verification of system performance<br />

− verification of operational procedures.<br />

For instruments AVM, the verification is therefore limited to the interfaces with the SVM (communication,<br />

software Power, EMC, Synchronisation).<br />

# *


IID-A SECTION 9<br />

The instrument AVM units therefore have to have the following built standard:<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-6/63<br />

− electronics flight standard except for parts. The build standard of AVM units EEE parts that will be<br />

used in the qualification program, have to be identical in form, fit and function to the flight parts,<br />

mechanisms flight representative for electrical actuators<br />

− software flight standard.<br />

− form, fit and function of the flight model<br />

− software of flight quality must be able to be run.<br />

In order to save cost the AVM hardware contents may be reduced by reducing redundancy:<br />

− cold redundant units or channels may be deleted if no automatic switch-over function is involved<br />

− multiple redundancy of hot redundant units or modules may be reduced by electrical dummies (to e.g.<br />

dual redundancy) if compatible with the AVM test objectives<br />

− simulators may be supplied of units not directly interfacing with spacecraft subsystems. The level of<br />

these simulators, to be agreed with ESA, will allow verification of the correct execution of the flight<br />

procedures.<br />

9.2.2.2 Cryogenic Qualification models<br />

Because of their new development status and/or of the criticality of their performance to the flow of the AIV<br />

program, specific units will deliver CQM models for the assembly tests at payload module level.<br />

These are:<br />

− Herschel focal plane units (HIFI, PACS and SPIRE), HIFI LOU, PACS BOLA<br />

− Planck focal plane unit (HFI and LFI)<br />

− Planck coolers (HFI and LFI)<br />

The cryogenic qualification models standard will be the same as flight models. It has been agreed that for<br />

PLM or S/C testing the AVM units could be used to control the CQM units. The AVM’s will be taken from the<br />

AVM test sequence for this period.<br />

9.2.2.3 Flight Model<br />

The PFM system test objective is the qualification of spacecraft system by functional and environmental tests<br />

The PFM units therefore shall have full flight standard verified by formal functional and environmental<br />

acceptance tests.<br />

9.2.2.4 Flight spares<br />

The FS objectives are:<br />

− replacement of failed or damaged equipment at integration and launch site.<br />

The FS units have to have the following built standard:<br />

− full flight standard verified by formal acceptance tests.<br />

In order to save cost the FS units:<br />

− may be derived from refurbished cryogenic qualification units if flight worthiness can be agreed,<br />

− may be reduced to repair kits for repair at manufacturer's site if predetermined turnaround time of one<br />

month is ensured for unit repair after failure.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

This approach has to be agreed with the project office on a case by case basis.<br />

9.2.3 Instruments Deliverable Hardware Matrix<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-7/63<br />

The following table give the Instrument deliverable hardware matrixes, as proposed in IID-B's. Product tree<br />

Identifiers (PTI's) s have been attributed to each instrument deliverable item (Box, cables, GSE), to fit both the<br />

herschel Planck product tree philosoply, and the instrument internal product hierarchy. For numbering,<br />

Herschel is 100000, Planck is 200000, Custumer Furnished Equipments are numbered x10000 (x=1 or 2 for<br />

Herschel & Planck), then instruments root PTI's are 111000 for HIFI , 112000 for SPIRE, 113000 for PACS,<br />

211000 for LFI, & 212000 for HFI)<br />

# Reference IIDA-DV-REQ-0040<br />

The instruments shall deliver instruments according to the tables given below.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


9.2.3.1 Herschel HIFI<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-8/63<br />

Product<br />

tree id<br />

111110<br />

111230<br />

111260<br />

111270<br />

111271<br />

111120<br />

111125<br />

111125<br />

111210<br />

111220<br />

111241<br />

111242<br />

111251<br />

111252<br />

111253<br />

111254<br />

111311<br />

111312<br />

111313<br />

111314<br />

111321<br />

111322<br />

111323<br />

111324<br />

111325<br />

111326<br />

111327<br />

111328<br />

111329<br />

111330<br />

111331<br />

111332<br />

111333<br />

111334<br />

111341<br />

111342<br />

111343<br />

111344<br />

111345<br />

111346<br />

111347<br />

111348<br />

111349<br />

111350<br />

111351<br />

111352<br />

description<br />

Focal Plane Unit<br />

Focal Plane Control Unit<br />

Instrument Control Unit<br />

IF upconverter Horizontal<br />

IF up converter Vertical<br />

Local Oscillator Unit<br />

Local Oscillator Unit<br />

Local Oscillator Unit<br />

Local Oscillator Control Unit<br />

Local Oscillator Source Unit<br />

HRS ACS Horizontal polarisation<br />

HRS ACS Vertical polarisation<br />

WBS Electronics for Horizontal Polarisation<br />

WBS Electronic for Vertical Polarisation<br />

WBS Optic for Horizontal Polarisation<br />

WBS Optic for Vertical Polarisation<br />

LCU to LSU secondary Power Main<br />

LCU to LSU secondary Redundant<br />

ICU to FCU secondary Main<br />

ICU to FCU secondary Redundant<br />

ICU Main to LCU Main<br />

ICU redundant to LCU Redundant<br />

ICU main to FCU Main<br />

ICU redundant to FCU Redundant<br />

ICU Main to HRH<br />

ICU Main to HRV<br />

ICU Main to WEH<br />

ICU Main to WEV<br />

ICU Redundant to HRH<br />

ICU Redundant to HRV<br />

ICU Redundant to WEH<br />

ICU Redundant to WEV<br />

LCU main to LSU Main<br />

LCU redundant to LSU Redundant<br />

LSU to HRH<br />

LSU to HRV<br />

LSU to WEH<br />

LSU to WEV<br />

HRH to HRV<br />

HRV to HRH<br />

3DH to HRH<br />

3DH to WEH<br />

3DV to HRV<br />

3DV to WEV<br />

WEH to WOH<br />

WEV to WOV<br />

code<br />

FH FPU<br />

FH FCU<br />

FH ICU<br />

FH IFH<br />

FH IFV<br />

FH LOU<br />

FH LOR<br />

FH LOR<br />

FH LCU<br />

FH LSU<br />

FH HRH<br />

FH HRV<br />

FH WEH<br />

FH WEV<br />

FH WOH<br />

FH WOV<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH HRS<br />

FH HRS<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WIH<br />

FH WBS<br />

FH<br />

EQM<br />

CQM<br />

DM<br />

QM<br />

DM<br />

N/A<br />

QM<br />

QM<br />

QM<br />

DM<br />

DM<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

N/A<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

N/A<br />

QM<br />

STM<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

(MTD) (*)<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

AVM<br />

N/A<br />

N/A<br />

DM<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

Simulator<br />

N/A<br />

Simulator<br />

Simulator<br />

Simulator<br />

Simulator<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

PFM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

FM<br />

Spare<br />

Spare<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

kits<br />

Spare<br />

kits<br />

Spare<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

Spare kits<br />

kits<br />

Comments<br />

Only band 3 for QM<br />

includes radiator. For QM only band 3 LOA<br />

+ mounting plate.<br />

No redundancy for DM, Resistors for<br />

simulator No redundancy for DM, Resistors for<br />

simulator<br />

111510 HIFI MGSE FH<br />

111520 HIFI Unit transport Container FH<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


9.2.3.2 Herschel SPIRE<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-9/63<br />

Product<br />

tree id<br />

description code EQM STM AVM PFM Spare Comments<br />

112110 Focal Plane Unit HS FPU CQM (MTD) (*) 0 PFM CQM refurb.<br />

112122 JFET (Spectrometer) HS JFP CQM (MTD) (*) 0 PFM CQM refurb.<br />

112121 JFET (Photometer) HS JFS CQM (MTD) (*) 0 PFM CQM refurb.<br />

112220 Focal Plane Control unit HS FCU QM1 (MTD) (*) DRCU Sim. PFM<br />

QM1 has different foot print (no Power<br />

CQM refurb.<br />

supply ?)<br />

112230 Detector Control unit HS DCU QM1 (MTD) (*) (one box) PFM Spare kits Spare kits from QM2<br />

112210 Digital Processing Unit HS DPU AVM (MTD) (*) AVM PFM Spare kits AVM = EM type<br />

112311 W1 HSDPU-P to HSDCU-P HS W1 QM1 (MTD) (*) QM1 PFM FS<br />

112312 W2 HSDPU-R to HSDCU-R HS W2 QM1 (MTD) (*) QM1 PFM FS<br />

112313 W3 HSDPU-P to HSSCU-P HS W3 QM1 (MTD) (*) QM1 PFM FS<br />

112314 W4 HSDPU-R to HSSCU-R HS W4 QM1 (MTD) (*) QM1 PFM FS<br />

112315 W5 HSDPU-P to HSMCU-P HS W5 QM1 (MTD) (*) QM1 PFM FS<br />

112316 W6 HSDPU-R to HSMCU-R HS W6 QM1 (MTD) (*) QM1 PFM FS<br />

112317 W7 HSFCU-P to HSDCU-P HS W7 QM1 (MTD) (*) QM1 PFM FS<br />

112318 W8 HSFCU-R to HSDCU-R HS W8 QM1 (MTD) (*) QM1 PFM FS<br />

112131 JFP to FPU HS BP QM1 (MTD) (*) QM1 PFM FS<br />

112132 JFS to FPU HS BS QM1 (MTD) (*) QM1 PFM FS<br />

112510 SPIRE MGSE HS 0 0 0 0 0 0<br />

112511 SPIRE unit transport containers HS 0 0 0 0 0 0<br />

112512 SPIRE instrument/cryostat integr HS 0 0 0 0 0 0<br />

112520 SPIRE OGSE HS 0 0 0 0 0 0<br />

112521 SPIRE optics primary alignment/ HS 0 0 0 0 0 0<br />

112530 SPIRE EGSE HS 0 0 0 0 0 0<br />

9.2.3.3 Herschel PACS<br />

Product<br />

description<br />

tree id<br />

code<br />

EQM STM AVM PFM Spare Comments<br />

113110 Focal Plane Unit FP FPU CQM (MTD) (*) Simulator PFM CQM refurb.<br />

113210 Detector & Mechanism Control (DEC/ FP DECM BB (MTD) (*) BB PFM Spare kits BB shall fit envelop<br />

113230 Bolometer Cooler Control unit FP BOLC BB (MTD) (*) BB PFM Spare kits No Power supply layer<br />

113240 Data Processing Unit FP DPU AVM (MTD) (*) AVM PFM Spare kits AVM type TBC<br />

113250 Signal processing unit Nominal (stacke FP SPU1 AVM (MTD) (*) AVM PFM Spare kits stacked<br />

113260 Signal processing unit Redundant FP SPU2 N/A (MTD) (*) N/A PFM Spare kits stacked<br />

113311 DPU nominal to MEC1 FP AVM (MTD) (*) AVM PFM -<br />

113312 DPU redundant to MEC2 FP AVM (MTD) (*) AVM PFM 0<br />

113313 DPU nominal to SWL SPU nominal FP AVM (MTD) (*) AVM PFM 0<br />

113314 DPU nominal to LWL SPU nominal FP AVM (MTD) (*) AVM PFM 0<br />

113315 DPU redundant to SWL SPU redundan FP AVM (MTD) (*) AVM PFM 0<br />

113316 DPU redundant to LWL SPU redundan FP AVM (MTD) (*) AVM PFM 0<br />

113321 SPU nominal to MEC1 FP AVM (MTD) (*) AVM PFM 0<br />

113322 SPU redundant to MEC2 FP AVM (MTD) (*) AVM PFM 0<br />

113331 MEC1 to SWL SPU (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113332 MEC1 to LWL SPU (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113333 MEC2 to SWL SPU (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113334 MEC2 to LWL SPU (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113335 MEC1 to BOLC data (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113336 MEC1 to BOLC Sync (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113337 MEC2 to BOLC data (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113338 MEC2 to BOLC Sync (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113339 MEC1 to DEC1 data (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113340 MEC1 to DEC1 Sync (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113341 MEC1 to DEC2 data (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113342 MEC1 to DEC2 Sync (nominal) FP AVM (MTD) (*) AVM PFM 0<br />

113343 MEC2 to DEC1 data (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113344 MEC2 to DEC1 Sync (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113345 MEC2 to DEC2 data (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113346 MEC2 to DEC2 Sync (redundant) FP AVM (MTD) (*) AVM PFM 0<br />

113510 PACS MGSE FP<br />

113511 PACS unit transport containers FP<br />

113520 PACS EGSE FP<br />

113530 PACS OGSE FP<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

9.2.3.4 Planck LFI + Sorption cooler<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-10/63<br />

Product<br />

description<br />

tree id<br />

code<br />

STM AVM PFM Spare Comments<br />

211111 Front End Unit (FEU) PL FEU (MTD)(*) N/A FM Spare kits<br />

211112 DAE Back End Unit (BEU) PL BEU (MTD)(*) AVM FM Spare kits AVM = CQM + Loads<br />

211113 DAE Power Box PL CB (MTD)(*) CQM FM Spare kits<br />

211114<br />

4K Reference load (Mounted on<br />

HFI)<br />

PL 4K (MTD)(*) N/A FM CQM FS = refurbished CQM<br />

211115 Wave Guides (WG) PL WG (MTD)(*) N/A FM CQM FS = refurbished CQM<br />

211116 Heat switch PL A10 (MTD)(*) N/A FM CQM FS = refurbished CQM<br />

211131 FEU/DAE cryo Harness PL AHB (MTD)(*) N/A FM CQM FS = refurbished CQM<br />

211132 DAE Power Box/BEU Harness A PL AHA/A (MTD)(*) CQM FM Spare kits<br />

211133 DAE Power Box/BEU Harness B PL AHA/B (MTD)(*) CQM FM Spare kits<br />

211134 DAE BEU/lateral trays Harness PL AHA/C (MTD)(*) CQM FM Spare kits<br />

211121 REBA Nominal PL REN (MTD)(*) CQM FM Spare kits AVM shall be form and fit<br />

211122 REBA Redundant PL RER (MTD)(*) N/A FM 0<br />

same set of spare kits (MTD not part of<br />

instrument delivery)<br />

211135 REBA/BEU Harness PL EBO (MTD)(*) CQM FM Spare kits<br />

211510 LFI MGSE PL 0<br />

211511 LFI Transport Container PL 0<br />

211520 LFI EGSE PL 0<br />

211211 SC Cold End (SCCE) Nominal PS M1 CQM N/A FM1 parts SCCE + SCP = PACE<br />

211212 SC Pipes (SCP) Nominal PS M2 CQM N/A FM1 parts<br />

QM Pipes fed by PGSE (H2 supply<br />

system) provided by Alcatel<br />

211213 SC Compressor (SCC) Nominal PS M3 (MTD)(*) N/A FM1 parts<br />

211221 SC Electronics (SCE) Nominal PS M4 (MTD)(*) N/A FM1 FS<br />

211231<br />

SCE/SCC Harness (Power)<br />

Nominal<br />

PS M5A (MTD)(*) N/A FM1 FS<br />

211232<br />

SCE/SCC Harness (Signal)<br />

Nominal<br />

PS M5B (MTD)(*) N/A FM1 FS<br />

211233 SCE/SCCE Harness Nominal PS M5C (MTD)(*) N/A FM1 FS<br />

211234 SCC-SCCE Harness Nominal PS M5D (MTD)(*) N/A FM1 FS integrated with SCP<br />

211216 SC Cold End (SCCE) Redundant PS R1 (MTD)(*) N/A FM2 none<br />

211217 SC Pipes (SCP) Redundant PS R2 (MTD)(*) N/A FM2 none<br />

211218<br />

SC Compressor (SCC)<br />

Redundant<br />

PS R3 (MTD)(*)<br />

Simulato<br />

r<br />

FM2 none<br />

211222 SC Electronics (SCE) Redundant PS R4 (MTD)(*) CQM FM2 none<br />

211235<br />

SCE/SCC Harness (Power)<br />

Redundant<br />

PS R5A (MTD)(*) N/A FM2 FS<br />

211236<br />

SCE/SCC Harness (Signal)<br />

Redundant<br />

PS R5B (MTD)(*) CQM FM2 FS<br />

211237 SCE/SCCE Harness Redundant PS R5C (MTD)(*) CQM FM2 FS<br />

211238 SCC-SCCE Harness Redundant PS R5D (MTD)(*) CQM FM2 FS integrated with SCP<br />

211240 SCS MGSE 0 0<br />

211241 PACE transport Container 0 0<br />

211242 SCC Transport container 0 0<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


9.2.3.5 Planck HFI<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-11/63<br />

Product<br />

tree id<br />

description code<br />

STM AVM PFM Spare Comments<br />

212111 Focal Plane Unit (FPU) PH A CQM N/A PFM kits<br />

212112 Data Processing Unit (DPU) Nominal PH BA-N CQM CQM PFM FS only one FS for both N&R<br />

212113 Data Processing Unit (DPU) Redundant PH BA-R (MTD)(*) N/A PFM - (MTD not part of instrument delivery)<br />

212114 JFET Box PH CA CQM N/A PFM Spare kits<br />

212115 Pre-Amplifier Unit (PAU) PH CBA CQM CQM PFM Spare kits<br />

212116 Readout Electronics Unit (REU) PH CBC CQM CQM PFM Spare kits<br />

212151 FPU/JFET Box Harness PH AD CQM N/A PFM FS<br />

212152 DPU-N/REU Harness (Signal) PH BBA-N CQM CQM PFM FS only one FS for both N&R<br />

212153 DPU-R/REU Harness (Signal) PH BBA-R (MTD)(*) N/A PFM FS (MTD not part of instrument delivery)<br />

212154 DPU-N/REU Harness (Power) PH BBB-N CQM CQM PFM FS only one FS for both N&R<br />

212155 DPU-R/REU Harness (Power) PH BBB-R (MTD)(*) N/A PFM FS (MTD not part of instrument delivery)<br />

212156 DPU-N/4K-CDE Harness PH BBE-N CQM CQM PFM FS only one FS for both N&R<br />

212157 DPU-R/4K-CDE Harness PH BBE-R (MTD)(*) N/A PFM FS (MTD not part of instrument deliver)y<br />

212158 DPU-N/0.1K-DCCU Harness PH BBC-N CQM CQM PFM FS only one FS for both N&R<br />

212159 DPU-R/0.1K-DCCU Harness PH BBC-R (MTD)(*) N/A PFM FS (MTD not part of instrument delivery)<br />

212160 DPU-N/DPU-R Harness (x2) PH BBG (MTD)(*) N/A PFM FS (x1) (MTD not part of instrument delivery)<br />

212161 PAU/JFET Box Harness PH CBB CQM N/A PFM FS<br />

212162 PAU/REU Harness PH CBD CQM CQM PFM FS<br />

212211 4K Cooler Compressor Unit (CCU) PH DA CQM Simulator PFM CQM FS = refurbished CQM Simulator with<br />

212212 4K Cooler Ancillary Unit (CAU) PH DB CQM Simulator PFM CQM FS = refurbished CQM Simulator<br />

212213 4K Cooler Electronics Unit (4K-CDE) PH DC CQM CQM PFM kits<br />

212214 4K Cooler Cold End (CCE) PH DD CQM N/A PFM CQM FS = refurbished CQM<br />

212215 4K Cooler Current Regulator (CCR) PH DJ CQM CQM PFM CQM or kits FS = refurbished CQM<br />

212240 4K warm pipework CAU/SVM PH DE CQM N/A PFM CQM FS = refurbished CQM<br />

212251 4K-CDE/CCU PPO A Harness PH DFA-A CQM N/A PFM CQM<br />

212252 4K-CDE/CCU PPO B Harness PH DFA-B CQM N/A PFM CQM<br />

212253 4K-CDE/CCU Force Harness PH DFB CQM N/A PFM CQM<br />

212254 4K-CDE/CCU Drive A Harness PH DFC-A CQM N/A PFM CQM<br />

212255 4K-CDE/CCU Drive B Harness PH DFC-B CQM N/A PFM CQM<br />

212256 4K-CDE/CCU Temperature Harness PH DFE CQM N/A PFM CQM<br />

212257 4K-CDE/CAU Harness PH DFD CQM N/A PFM CQM<br />

212258 4K-CAU to to SVM connector harness PH FF CQM CQM PFM CQM<br />

212314 0.1K Dilution Cooler GSU 3He Tank (D3T) PH EAAA CQM N/A PFM CQM FS = refurbished CQM<br />

212311 0.1K Dilution Cooler GSU 4He Tank (D4T) #1 PH EAAB CQM N/A PFM CQM<br />

FS = refurbished CQM one FS for the 3<br />

tanks<br />

212312 0.1K Dilution Cooler GSU 4He Tank (D4T) #2 PH EAAC (MTD)(*) N/A PFM - (MTD not part of instrument delivery)<br />

212313 0.1K Dilution Cooler GSU 4He Tank (D4T) #3 PH EAAD (MTD)(*) N/A PFM - (MTD not part of instrument delivery)<br />

212321 D3T/0.1K-DCPU piping PH EABA CQM N/A PFM CQM<br />

212322 D4T #1/0.1K-DCPU piping PH EABB CQM N/A PFM CQM<br />

212323 D4T #2/0.1K-DCPU piping PH EABC CQM N/A PFM CQM<br />

212324 D4T #3/0.1K-DCPU piping PH EABD CQM N/A PFM CQM<br />

212325 GSU pipe fixing clamps on SVM PH EABE CQM N/A PFM Kits<br />

212351 D3T/0.1K-DCPU harness PH EACA CQM N/A PFM CQM<br />

212352 D4T #1/0.1K-DCPU harness PH EACB CQM N/A PFM CQM<br />

212353 D4T #2/0.1K-DCPU harness PH EACC CQM N/A PFM CQM<br />

212354 D4T #3/0.1K-DCPU harness PH EACD CQM N/A PFM CQM<br />

212355 GSU harness fixing clamps on SVM PH EACE CQM N/A PFM Kits<br />

212331 0.1K Dilution Cooler Control Unit (0.1K-DCCU) PH EB CQM CQM PFM kits<br />

plate with DCPU (DC pneumatic unit) &<br />

DCE (dilution control electronics)<br />

212241 0.1K Pipes between DCPU & SVM connector PH ECA CQM N/A PFM CQM FS = refurbished CQM<br />

212242 0.1K-Pipes between SVM connetor to 18K PH ECB CQM N/A PFM CQM FS = refurbished CQM<br />

212243 0.1K Harness between DCPU & SVM connector PH ECC CQM N/A PFM CQM FS = refurbished CQM<br />

212244 0.1K-Harness between SVM connetor to 18K PH ECD CQM N/A PFM CQM FS = refurbished CQM<br />

212510 HFI MGSE PH ZZ<br />

212511 HFI Transport Container PH 0<br />

212520 HFI EGSE PH ZY<br />

212521 HFI OGSE PH ZX<br />

212530 0.1K DCP MGSE PH EZZ<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

9.3 Deliverable Instrument Test Plan<br />

9.3.1 Instrument Verification<br />

# Reference IIDA-DV-REQ-0045<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-12/63<br />

The different types of instrument models and sub-units which will be used at system level will, as a minimum,<br />

be required a set of tests, necessary to insure that they will be able to perform correctly and reliably their<br />

functions within the overall system.<br />

For each type and model instrument the following minimum set of tests are requested (aside the verification of<br />

the performance requirements defined per each instrument see § 9.3.2).<br />

- AVM:<br />

AVM Electrical<br />

Functional (1)<br />

Herschel FPU (Sim’s) X<br />

Flight<br />

SW<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Limited<br />

EMC (2)<br />

Herschel Warm Electronics X X X<br />

Herschel HIFI LOU (Sim’s) X<br />

PLANCK FPU HFI/LFI (Sim’s) X<br />

PLANCK Coolers (Sim’s) X<br />

PLANCK HFI/LFI<br />

Warm Electronics<br />

X X X<br />

Sim’s stands for simulators<br />

Note:<br />

Functional tests will be run with procedures validated before the delivery to the system tests.<br />

Conductive EMC tests, as a minimum, will be those representative and coherent with the simulator standard.<br />

- CQM/PFM:<br />

CQM/PFM* Electrical<br />

functiona<br />

l<br />

Flight<br />

SW<br />

Sine/<br />

Random/<br />

Shock<br />

Mech.<br />

functiona<br />

l<br />

Thermal<br />

tests<br />

EMC<br />

Cond.<br />

# *<br />

EMC<br />

radiated<br />

Herschel FPU X X X X X X<br />

Herschel Warm<br />

Electronics<br />

X X X X X X<br />

Herschel HIFI LOU X X X X X X<br />

PLANCK FPU HFI and<br />

LFI<br />

X X X X X X<br />

PLANCK Coolers X X X X X X<br />

PLANCK<br />

HFI/LFI/Coolers<br />

Warm Electronics<br />

X X X X X X


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

* Those instruments or part of them which have delivered a qualification unit, will be<br />

allowed to be tested at acceptance level.<br />

9.3.2 Instrument Scientific Performance Validation<br />

# Reference IIDA-DV-REQ-0050<br />

ISSUE : 3.1 PAGE :9-13/63<br />

Each instrument shall carry out the verification steps required to insure that the scientific performance of<br />

his/her instrument is met. The instruments performance validation shall also include a proper calibration of<br />

the instruments or the units.<br />

9.4 Design and Analysis Requirements<br />

9.4.1 Mechanical Design and Analysis<br />

9.4.1.1 General Requirements<br />

# Reference IIDA-DV-REQ-0055<br />

A series of tests and analyses shall be conducted to qualify the design of the hardware, to verify the stiffness<br />

and mechanical environment requirements as well as the general requirements.<br />

9.4.1.2 Mechanical Models and Analyses<br />

# Reference IIDA-DV-REQ-0060<br />

Structural analysis of instrument units shall be performed in order to show that the stiffness and mechanical<br />

environment requirements as well as general requirements and shall be performed in NASTRAN. The<br />

structural analysis shall include stress and dynamic analysis. Requirements on the standards of the mechanical<br />

mathematical models are detailed in documents RD 52.<br />

9.4.1.2.1 Detailed Stress Analyses<br />

# Reference IIDA-DV-REQ-0065<br />

The stress analysis shall demonstrate that the instrument unit can withstand the limit loads factored by the<br />

appropriate safety factors. The analysis results shall be compiled in a technical note with at least:<br />

− a description of the configuration analysed with reference to interface controlled drawings,<br />

− a description of the mathematical finite element model and/or of the assumptions taken to verify the<br />

structure,<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-14/63<br />

− a description of all possible loading cases and an identification of the design driving load cases or<br />

load combinations,<br />

− a detailed description of the most loaded elements listed with relevant stresses, and the loading cases<br />

that generated them,<br />

− a list of the materials and structural components with characteristics data sheets (including long-life<br />

effects under space environment),<br />

− a set of tables showing, for each structural element, the maximum value on each type of stress or<br />

combination of them with the allowable value, and the load case that determines it together with its<br />

margin of safety.<br />

9.4.1.2.2 Dynamic Analyses<br />

# Reference IIDA-DV-REQ-0070<br />

The dynamic analysis shall be performed to demonstrate that the instrument and/or unit meets the stiffness<br />

requirements.<br />

Furthermore, it shall be detailed enough to predict the dynamic loads which size the structural elements, the<br />

interface loads and the notching necessary in the dynamic tests input spectrum.<br />

When mechanisms are part of the unit, different models shall be developed to account for the various<br />

configurations (stowed, fully deployed ...).<br />

The analysis results shall be compiled in a technical note with at least:<br />

− a description of the configuration analysed with reference to interface controlled drawings,<br />

− a description of the mathematical finite element model and/or the definition of the assumptions and<br />

reductions introduced in the analysis,<br />

− a description of the checks performed on the model to verify its quality (e.g. rigid body modes,<br />

residual forces),<br />

− a list of eigen-frequencies with relevant mode type and associated modal effective masses,<br />

− plots and listings of eigen-vectors.<br />

And when necessary:<br />

− frequency response analysis<br />

− acoustic response analysis<br />

− shock response analysis.<br />

9.4.1.2.3 Safety Factors and Sizing Factors<br />

# Reference IIDA-DV-REQ-0075<br />

Following safety factors are defined for the dimensioning of the equipment to cover uncertainties of load factor<br />

evaluation, material data and analysis as well as to avoid undesirable influences of manufacturing tolerances.<br />

They shall be applied to the design limit loads, yield against permanent deformation, ultimate against rupture<br />

and loss of functionality.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-15/63<br />

Item Yield SF Ultimate SF Buckling SF<br />

Conventional metallic materials 1.1 1.5 2.0<br />

Unconventional materials 1.4 2.0 2.0<br />

Inserts and joints 1.5 2.0 N/A<br />

9.4.1.2.4 Design Limit Loads<br />

# Reference IIDA-DV-REQ-0080<br />

The following limit loads (table 9.4.1.1) shall be applied for the structural design considering in addition the<br />

safety factors defined in 9.4.1.2.3:<br />

Longitudinal loads can have any sign.<br />

Lateral loads can have any direction.<br />

Longitudinal & Lateral loads should be combined<br />

DESIGN Limit Loads<br />

Location Case<br />

Longitudinal<br />

[g]<br />

Lateral [g]<br />

Herschel Optical Bench Instr.<br />

1<br />

2<br />

18<br />

7<br />

5<br />

8<br />

Herschel CVV LOU<br />

1<br />

2<br />

14<br />

7<br />

2.5<br />

8<br />

Herschel LOU Wave Guides TBD<br />

Herschel CVV BOLA<br />

1<br />

2<br />

removed<br />

Herschel SVM<br />

1<br />

2<br />

25 20<br />

Planck LFI/HFI (FPU)<br />

1<br />

2<br />

15 25<br />

Planck HFI JFET box<br />

1 30 15<br />

Planck HFI 0.1K & 4K pipes 1 50 50<br />

on Primary Reflector panel 2 50 50<br />

Planck LFI Wave Guides see sinus<br />

Planck Sorption Cooler<br />

Compressor Assembly<br />

1 25 20<br />

SVM subplateform<br />

(BEU/PAU/DAE control box<br />

Planck SVM warm units<br />

4K & 0.1K Pipes on SVM<br />

4K & 0,1K Pipes on subplatform<br />

IID-A 3.1<br />

1<br />

2<br />

25g (any direction)<br />

1<br />

2<br />

25 20<br />

1 150 40<br />

2 32 110<br />

1 75 40<br />

Frequency<br />

requirement ><br />

140Hz, except<br />

freq > 100Hz<br />

freq > 130HZ<br />

2 48 55<br />

Planck SCS Pipes on SVM 100<br />

freq > 130HZ<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

ref fax H-P-ASP-LT<br />

4281 (21/1/04)


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-16/63<br />

Table 9.4.1-1: Limit Loads for Herschel and Planck Instruments units<br />

9.4.1.2.5 Stiffness Requirements<br />

# Reference IIDA-DV-REQ-0085<br />

The structural stiffness of the instruments FPU’s shall be designed so that both the longitudinal eigenfrequency<br />

and lateral eigenfrequency is greater than 100 Hz. In hard-mounted condition all other units shall be<br />

designed with eigenfrequencies (any axis) above 140 Hz.<br />

Resonances of internal items (e.g. PCBs, CCD benches shall be at least one octave above these frequencies to<br />

avoid coupling).<br />

Note: Above mentioned levels cover the instrument global design. However, resonances can lead to important<br />

responses under random test conditions.<br />

This shall be covered by local sizing for the specified random test levels.<br />

9.4.1.2.6 Structural Design Margins<br />

# Reference IIDA-DV-REQ-0090<br />

All structural elements shall be designed to exhibit a positive margin of safety (MOS) after application of the<br />

relevant safety factors (yield and ultimate) for all worst load cases.<br />

The margin of safety is defined as the ratio of the allowable load (or stress) to the applied load (or stress):<br />

Allowable Load ( or Stress)<br />

MOS =<br />

−1<br />

Applied Load ( or Stress)<br />

9.4.1.3 Validation of Dynamic Mathematical Model<br />

# Reference IIDA-DV-REQ-0095<br />

The unit structural mathematical model shall be updated if necessary according to test results and supplied to<br />

ESA in order to run meaningful system analyses.<br />

This validation may be performed either through a specific modal survey test or a low level sine test whichever<br />

is the most practical and efficient.<br />

All the modes observed during the test will be identified by their mode shape, their frequency and their<br />

damping ratio.<br />

The predicted modes of the Structural Mathematical Model (SMM) shall be correlated / updated against<br />

modes whose effective mass is greater than 10 % of the rigid body mass. Local modes which require<br />

secondary notching shall be included whatever the effective mass. After validation, the SMM shall still describe<br />

the main nodes up 150 Hz.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.4.2 Thermal Verification Requirements<br />

9.4.2.1 General Requirements<br />

# Reference IIDA-DV-REQ-0100<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-17/63<br />

An appropriate set of tests and analyses shall be conducted by the PI to demonstrate the following instrument<br />

capabilities:<br />

− the satisfactory performances of all the instrument units in vacuum within the qualification or<br />

acceptance operating temperature range,<br />

− the capability of the instrument units to withstand without degradation, the qualification or acceptance<br />

non operating temperature range and the switch-on minimum temperature,<br />

− the ability of the internal thermal design of the instrument units to guarantee the required<br />

temperatures on internal critical items from the specified interface temperature at reference point and<br />

thermal environment of each instrument unit taking into account the repartition of heat sources,<br />

− the quality of the workmanship and the selected materials to pass thermal cycle test. In addition, the<br />

test must show the adequacy of the thermal mathematical model with the hardware thermal behaviour<br />

and the accuracy of the thermal predictions.<br />

9.4.2.1.1 Definition of the Thermal Environment<br />

# Reference IIDA-DV-REQ-0105<br />

The thermal design of the instruments and their units shall be compliant with the thermal interface temperature<br />

ranges defined in IID-B.<br />

9.4.2.1.2 Thermal Models and Analyses<br />

# Reference IIDA-DV-REQ-0110<br />

Each instrument unit shall be modelled by a Thermal Mathematical Model (TMM) under PI responsibility. All<br />

the thermal mathematical models are delivered to ESA. A simplified version of the instrument thermal model<br />

shall be build in ESATAN format to be incorporated in the general spacecraft thermal mathematical model.<br />

A corresponding simplified geometry mathematical model (GMM) shall be provided in ESARAD format.<br />

The degree of detail (i.e. number of nodes and conductors, etc.) shall be at least sufficient to show that all<br />

interface requirements are met. The model shall allow to perform transient analyses, hence a thermal capacity<br />

must be allocated to each node.<br />

Heat dissipation shall be identified in each operating mode, in steady state (average), and in a typical<br />

transient timeline. In case of an instrument unit with a large number of operating modes, the number of these<br />

operating modes can be reduced for thermal modelling purposes, in agreement with ESA.<br />

In particular, the following information is required:<br />

− material, cross-<strong>section</strong>s and length of all relevant suspensions<br />

− dissipations (average and vs. time) on different stages<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

− material, cross-<strong>section</strong>s, lengths, currents and duty-cycles of harness<br />

− material of the various temperature stages for transient calculations<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-18/63<br />

− thermo-optical properties of surfaces<br />

The PI shall give a description of the configuration, the interface control drawing as well as all the assumptions<br />

and simplifications used for modelling. The accuracy of all the thermal mathematical model shall be<br />

demonstrated by the PI using simple reference thermal loads.<br />

The requirements for reduced thermal models are given in RD 53.<br />

9.4.2.2 Validation of the Thermal Mathematical Models<br />

# Reference IIDA-DV-REQ-0115<br />

The unit thermal mathematical model shall be updated if necessary according to test results of the thermal<br />

vacuum and thermal balance tests and supplied to ESA in order to run meaningful system analyses. The level<br />

of required agreement between the mathematical model prediction and the test results will be agreed upon<br />

after completion of instrument design.<br />

9.4.3 Mechanism Verification Requirements<br />

9.4.3.1 General Requirements<br />

All subassemblies featuring parts moving under the action of command able internal forces shall be<br />

considered as mechanisms. They include all hold-down and release mechanisms, hinges, actuators and<br />

latches which are required for latching, alignment, positional control etc. of subsystems.<br />

9.4.3.1.1 Performance and Functional Requirements<br />

# Reference IIDA-DV-REQ-0120<br />

Each mechanism shall be analysed functionally and the following information shall be at least supplied:<br />

− a detailed description of the mechanisms, with particular reference to its discrete components<br />

(bearings, actuators, switches) and to its operational/ safety features,<br />

− a detailed description of the operating modes with reference to ground and orbital activations,<br />

− a definition of operating loads in various configurations with a clear definition of analysis<br />

assumptions. In particular, the functional analysis shall include the effects of the worst environmental<br />

conditions that could produce distortions or changes in clearance between movable parts (e.g.<br />

thermal gradient through bearings),<br />

− a Failure Modes, Effects and Criticality Analysis (FMECA) defining the failure modes and the functional<br />

margins of safety against each of them,<br />

− a performance description of the control system which includes the mechanisms.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.4.3.1.2 Design Requirements<br />

# Reference IIDA-DV-REQ-0125<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-19/63<br />

In addition to the functional requirements for the mechanisms, the following design specifications shall be<br />

taken into account by the PI’s:<br />

− the design of the mechanisms shall comply with the general requirements for mechanisms (ECSS-E-<br />

30A Part 3),<br />

− a detailed stress analysis of the mechanisms shall be established taking into account the applicable<br />

thermal environment and the safety factors and sizing factors defined in § 9.4.1.2.3.<br />

− Margins of safety will be evaluated,<br />

− stiffness requirements shall be established and demonstrated compatible with the structural and<br />

functional needs for all the envisaged configurations of the mechanisms,<br />

− sliding surfaces shall be avoided, only lubricants which are compliant with ESA PA requirements shall<br />

be allowed,<br />

− the lifetime of the mechanism shall be evaluated and demonstrated/qualified using representative<br />

samples with acceptable safety factors.<br />

The mathematical models of mechanisms shall comply with paragraph 4.2 of ECSS-E-30A Part 3.<br />

9.4.3.1.3 Mechanism Kinematics Mathematical Models<br />

# Reference IIDA-DV-REQ-0130<br />

The following mathematical models shall be established for the mechanisms:<br />

− structural models representative of the different configurations of the mechanisms,<br />

− thermal models representative of the different configurations of the mechanisms,<br />

− dynamical models representative of the various envisaged displacements and capable of describing<br />

the Kinematics and Dynamical Variables of the mechanisms with respect to time and taking into<br />

account ground and in orbit environmental conditions including mechanical shocks,<br />

− models establishing the maximal/minimal driving forces/torques compared to the worst realistic<br />

combinations of resistive forces/torques in both static and dynamic conditions.<br />

9.4.3.2 Validation of the Mechanism Mathematical Models<br />

# Reference IIDA-DV-REQ-0135<br />

The different mathematical models used for the evaluation of the mechanism shall be updated if necessary<br />

according to test results of performance/functionality and lifetime tests.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.4.4 Electrical and Software Verification Requirements<br />

9.4.4.1 General Requirements<br />

# Reference IIDA-DV-REQ-0140<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-20/63<br />

All electrical functions and on-board software of the units and the instruments shall be verified and qualified.<br />

9.4.4.2 Integrated System Tests<br />

# Reference IIDA-DV-REQ-0145<br />

The Integrated System Test (IST) shall be a detailed demonstration that the hardware and software meet their<br />

performance requirements within allowed tolerances. The test shall demonstrate operations of all redundant<br />

circuitry. It shall also demonstrate satisfactory performance in all operational modes. The initial IST shall serve<br />

as a baseline against which the results of all later IST’s can be readily compared.<br />

The test shall also demonstrate that when provided with appropriate stimuli, performance is satisfactory and<br />

outputs are within allowed limits.<br />

A limited version of the IST may be used in cases where comprehensive performance testing is unwarranted or<br />

impracticable. This limited version, Short Integrated System Test (SIST), shall be a subset of the IST and could<br />

for example be performed before, during and after environmental tests, as appropriate, in order to<br />

demonstrate that functional capability has not been degraded by the environmental tests.<br />

9.4.4.3 Short Functional Tests<br />

# Reference IIDA-DV-REQ-0150<br />

The purpose of the Short Functional Test (SFT) is to prove the correctness of the principal instrument functions<br />

via its housekeeping values. No connection for test signals, such as stimulation or calibration signals, is<br />

foreseen. This type of test will be applied for instance after transport and shall not exceed a duration of 30<br />

minutes per instrument. Normally instrument personnel are not required to attend the tests, which will be<br />

carried out by the Contractor, following procedures agreed with the PI.<br />

9.4.4.4 Software Verification<br />

9.4.4.4.1 General and Design Requirements<br />

# Reference IIDA-DV-REQ-0155<br />

The general requirements for the development of the software dedicated to the instruments are as follows:<br />

− The instrument on board software shall be verified and qualified before launch.<br />

− The on board software shall follow the requirements as defined in 5.13.2 above.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-21/63<br />

− The software development includes also ground software needed to support the validation and<br />

qualification of the on board software of the instruments.<br />

− The software verification shall be included in the instrument DDVP. Software tests shall be documented<br />

in line with the documentation requirements defined in tbd.<br />

As a general rule no untested software shall be used on any instrument model.<br />

9.4.4.4.2 Software Verification<br />

The detailed software verification approach is tbd.<br />

The instrument software deliveries are linked to the delivery of the instrument units.<br />

9.4.5 Radiation Environment Verification<br />

9.4.5.1 Radiation Environment<br />

The environment is described in IID-A <strong>section</strong> 5.16.2 (equivalent satellite protection) , and to RD2 (Enviroment<br />

& Test requirements, <strong>section</strong> 3.4.4.2)<br />

# Reference IIDA-DV-REQ-0160<br />

The instrument shall demonstrate by analysis that their equipement will survive the radiation environment<br />

during the mission if the components used have design dose lower than 10krads.<br />

9.5 Verification and Testing<br />

9.5.1 General Test Requirements<br />

− Verification approach :<br />

The instrument units belong in general to the category of new design equipment with performances to be fully<br />

demonstrated by both qualification and acceptance.<br />

Qualification acquisition through different models shall require ESA approval.<br />

− Test Sequences:<br />

No specific environmental test sequence is required. But the test programme should be arranged in a way to<br />

best disclose problems and failures associated with the characteristics of the hardware and the mission<br />

objectives. It is strongly recommended that the vibration/acoustic test precede the thermal vacuum test unless<br />

there is an overriding reason to reverse that sequence. Functional tests shall be performed before and after<br />

each test sequence and will be detailed in the DDVP.<br />

− Test facilities:<br />

The facilities shall be capable of maintaining operating conditions that ensure safe testing of the units, with<br />

special emphasis on cleanliness. Facility performance should be checked prior to any major test.<br />

− Test documentation :<br />

see 9.1.2<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

9.5.2 Test Level Tolerances<br />

# Reference IIDA-DV-REQ-0165<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-22/63<br />

For the mechanical and thermal tests, the following test tolerances are applicable, unless otherwise specified:<br />

Parameter Measurement Range Tolerances<br />

Temperature -55°C to +180°C<br />

- maximum temperature<br />

- minimum temperature<br />

below –55°C and above 10 K<br />

- maximum temperature<br />

- minimum temperature<br />

below 10 K<br />

- maximum temperature<br />

- minimum temperature<br />

Pressure - p > 0,1 mbar<br />

- p < 0,1 mbar<br />

0°C/+ 3°C<br />

- 3°C/0°C<br />

0K/+1 K<br />

-1 K/0 K<br />

0K/+0.1 K<br />

-0.1 K/0 K<br />

< ±1 %<br />

± 10 %<br />

Solar intensity ± 3 %<br />

Relative Humidity + 5 % RH<br />

Static test Force 0 % / 5 %<br />

Sinusoidal Vibration Acceleration/amplitude<br />

Frequency below 50 Hz<br />

Frequency above 50 Hz<br />

Random Vibration Power Spectral Density (g 2 /Hz)<br />

Overall g RMS<br />

Acoustic Vibration 1/3 octave band<br />

overall<br />

0 % / +5 %<br />

± 0.5 Hz<br />

± 2 %<br />

-1 dB/ +1.5 dB<br />

± 10%<br />

Shock response (Q=10) 1/6 octave band ± 3.0 dB<br />

Test Duration 0 %/ 5 %<br />

RF Power Level < ± 0.3 dB<br />

Spurious level < -20 dBc and up to 80 dBc < ± 0.5 dB<br />

Frequencies Audio < 20 kHz<br />

Video > 10 MHz<br />

Video < 10 Mz<br />

Voltage < 5 Volt<br />

> 5 Volt<br />

Current < 1 A<br />

> 1 A<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

-1.0 dB/3.0 dB (63 to 2000 Hz)<br />

-2.0 dB/4.0 dB (31.5 Hz)<br />

-1.0 dB/3.0 dB<br />

10 ppm<br />

1 ppm<br />

0.01 ppm<br />

≤ 0.2 %<br />

≤ 0.5 %<br />

≤ 0.5 %<br />

≤ 0.1 %<br />

DC Power ≤ 1.0 %<br />

VSWR 0.2 dB<br />

Leak Rate ±10 -5 Pa m 3. s -1 of Helium at 1013 hPa<br />

pressure differential<br />

± 10 -10 .Pa.m 3 s -1 for cryogenics parts


IID-A SECTION 9<br />

Table 9.5.2-1: Test Level Tolerances<br />

9.1.3 Mechanical Verification and Testing<br />

# Reference IIDA-DV-REQ-0170<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-23/63<br />

Mechanical testing shall be performed to show that the CQM unit meets the stiffness and environment<br />

mechanical requirements or that the FM unit is acceptable for flight.<br />

9.1.3.1 Mass, Moment of Inertia, Centre of Gravity<br />

# Reference IIDA-DV-REQ-0175<br />

The PI shall verify that all units comply with the requirements of interface control documents, that fixation<br />

points have the correct position and definition within specified tolerances. When necessary, 3D control results<br />

of the unit interface shall be supplied.<br />

The PI shall provide the following unit properties:<br />

− Mass<br />

− Moments of inertia<br />

− Position of the centre of gravity<br />

Except for mass and when tight balancing is required the other properties may be determined by analysis.<br />

9.1.3.2 Quasi Static Test and Strength Tests<br />

The main objective of this test is to demonstrate that the load carrying structure is able to withstand the flight<br />

limit loads without rupture, collapse, damage, permanent deformation or misalignment.<br />

Amplitude (g level) is the flight limit loads factored by the qualification or acceptance factor (see 9.4.1.2.3)<br />

# Reference IIDA-DV-REQ-0180<br />

The Quasi static test is required except for the following cases (which are usually the case):<br />

− if analysis demonstrates positive margin of safety against the limit loads<br />

− if the test is being covered by the sine vibration test at low frequency.<br />

9.1.3.3 Sine Vibration Tests<br />

# Reference IIDA-DV-REQ-0185<br />

Sinusoidal tests are required to demonstrate that the instrument units can survive all stressing events whether<br />

during launch, handling, transportation or the S/C AIV program.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.3.3.1 General Requirements<br />

9.1.3.3.1.1 Facility<br />

# Reference IIDA-DV-REQ-0190<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-24/63<br />

The vibration test facility and procedure shall satisfy the following minimum requirements:<br />

− the shaker shall have at least 20% margin with respect to the maximum expected interface load,<br />

− the control equipment shall be able to maintain the specified tolerances,<br />

− the data handling equipment shall be sized according to the requested instrumentation.<br />

− in case of unexpected incidents, smooth abort shall be programmed<br />

− all test incidents shall be reported and fully explained before going on with the test sequence.<br />

− blank test using the item fixture is not mandatory but is strongly advised.<br />

9.1.3.3.1.2 Test facility cleanliness<br />

# Reference IIDA-DV-REQ-0195<br />

Every precaution shall be taken to avoid contamination by oils, greases... The test should take place in a class<br />

100,000 clean room or better. A protection shall be used if needed.<br />

9.1.3.3.1.3 Fixture requirement<br />

# Reference IIDA-DV-REQ-0200<br />

The Unit shall be hard mounted on a stiff fixture by all its spacecraft attachment points. The PI will be<br />

responsible for the definition and procurement of the test fixture. The design of the fixture shall guarantee that<br />

the major modes of the unit are not modified (as a typical value, frequency shifts should be less than 5 % on<br />

the lower frequency modes).<br />

9.1.3.3.1.4 Configuration<br />

# Reference IIDA-DV-REQ-0205<br />

The unit shall be vibrated in the launch configuration, except possibly for thermal hardware (MLI) when it does<br />

not contribute to the test article stiffness. All non-flight items shall be removed except for optical cubes, which<br />

may be needed to monitor the unit alignment and any other low weight instrumentation control equipment.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.3.3.1.5 Vibration and control equipment<br />

# Reference IIDA-DV-REQ-0210<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-25/63<br />

To control the vibration level applied to the test specimen, at least 2 three-axis accelerometers shall be rigidly<br />

attached on the test fixture near the specimen/fixture interface and shall be aligned with the excitation axis.<br />

Accelerometers shall be calibrated for frequency response in the range 5-2000 Hz.<br />

9.1.3.3.1.6 Recording instrumentation<br />

# Reference IIDA-DV-REQ-0215<br />

All tests shall be fully recorded and records be properly labelled. All accelerometers shall be calibrated and<br />

show linear response in the range 5-2000 HZ for amplitudes up to 1.25 times the maximum expected during<br />

the tests. Some carefully selected accelerometers will be used for automatic notching and abort in order to<br />

protect the test article.<br />

9.1.3.3.2 Sine Vibration Test Levels and Duration<br />

Note: The values below have been derived from PDR system level frequency response analysis and are<br />

considered as the most suitable mechanical environment expected to be experienced by the instruments. Steps<br />

are initiated within Arianespace (Coupled Load Analysis with launcher) to further refine these values with the<br />

intention to reduce them whenever possible.<br />

# Reference IIDA-DV-REQ-0220<br />

Sinus vibration Qualification test levels are specified in the table 9.5.3.1 below.<br />

Herschel<br />

FPU<br />

LOU<br />

SVM<br />

Longit.<br />

Lateral<br />

Longit.<br />

Lateral<br />

Out of Plane<br />

in plane<br />

Frequency<br />

acceleration<br />

qualif accept<br />

Hz Hz g g<br />

5 21 10 mm 8 mm<br />

21 40 18 14.4<br />

40 100 18 14.4<br />

5 14 10 mm 8 mm<br />

14 45 8 6.4<br />

45 100 8 6.4<br />

5 19 10 mm 8 mm<br />

19 80 14 11.2<br />

80 100 14 11.2<br />

5 14 10 mm 8 mm<br />

14 20 8 6.4<br />

20 100 8 6.4<br />

5 25 10 mm 8 mm<br />

25 100 25 20<br />

5 22 10 mm 8 mm<br />

22 100 20 16<br />

qualif factor 1.25<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


Sweep rate: 2 Oct./min<br />

IID-A SECTION 9<br />

FPU<br />

JFET Box<br />

20K Pipes on<br />

PPLM<br />

0.1K & 4K Pipes<br />

on PPLM<br />

HFI bellow<br />

LFI wave-guides<br />

all Pipes on SVM all directions<br />

SCC<br />

BEU/PAU/DAE<br />

power box<br />

Other units on<br />

SVM<br />

Planck<br />

Out of Plane<br />

In Plane<br />

Out of Plane<br />

In Plane<br />

Out of Plane<br />

In Plane<br />

all directions<br />

Out of Plane<br />

in plane<br />

Out of Plane<br />

In Plane<br />

Out of Plane<br />

In Plane<br />

Frequency<br />

acceleration<br />

qualif accept<br />

Hz Hz g g<br />

5 30 5 mm 4 mm<br />

30 100 15 12<br />

5 30 7 mm 6mm<br />

30 100 25 20<br />

5 30 9mm 7mm<br />

30 100 30 24<br />

5 30 5mm 4mm<br />

30 100 15 12<br />

5 25 10 mm 8 mm<br />

25 50 25 20<br />

50 65 60 48<br />

65 110 25 20<br />

5 25 10 mm 8 mm<br />

25 100 25 20<br />

5 25 10 mm 8 mm<br />

25 110 25 20<br />

see 9.5.3.3.2.1<br />

see 9.5.3.3.2.1<br />

5 25 10 mm 8 mm<br />

25 110 25 20<br />

5 25 10 mm 8 mm<br />

25 60 25 20<br />

60 100 25 20<br />

5 22 10 mm 8 mm<br />

22 60 20 16<br />

60 100 20 16<br />

5 25 10 mm 8 mm<br />

25 100 25 20<br />

5 22 10 mm 8 mm<br />

22 100 20 16<br />

5 25 10 mm 8 mm<br />

25 100 25 20<br />

5 22 10 mm 8 mm<br />

22 100 20 16<br />

qualif factor 1.25<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Table 9.5.3-1 Sine Vibration Qualification Test Levels<br />

Acceptance levels are to be derived by dividing the qualification levels by a factor 1.25.<br />

Acceptance sweep rate is 4 Oct./min.<br />

# Reference IIDA-DV-REQ-0225<br />

ISSUE : 3.1 PAGE :9-26/63<br />

Low level sine test shall be performed to determine resonance frequencies to evaluate the behaviour of the test<br />

fixture and item integrity. Resonance search shall be carried out before and after vibration test for each axis<br />

between 5 to 2000 Hz with a level of 0.5 g (sweep rate: 2 oct/min).<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.3.3.2.1 Special case for wave-guides and HFI bellow<br />

# Reference IIDA-DV-REQ-0230<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-27/63<br />

For the HFI PAU to JFET bellow, and the LFI wave-guides, the following equivalent sinus test levels shall be<br />

applied on the equipment.<br />

9.1.3.3.2.1.1 Bellow<br />

These specifications shall be applied separately for each interface. Other interface points are clamped.<br />

Each tubing shall be sized separately for each interface. That is to say : the accelerations shall be applied<br />

homogeneously on all the attachment points on the interface considered. The part of the pipe going up or<br />

down from the interface (to another interface for instance) shall be simply supported at the next attachment<br />

point, with no acceleration applied. The stiffness of this attachment point shall be introduced.<br />

9.1.3.3.2.1.1.1 JFET interface<br />

The results are given in the ORDP coordinate system, that is to say : Z perpendicular to the PR panel and X in<br />

the satellite (XZ) plane.<br />

X axis Y axis Z axis<br />

0-6 Hz 10mm 0-7 Hz 10mm 0-6 Hz 10mm<br />

6-20 Hz 1.7g 5-12 Hz 2.25g 6-15 Hz 1.8g<br />

20-30 Hz 4.5g 12-20 Hz 6.45g 15-30 Hz 10.5g<br />

30-40 Hz 5.7g 20-35 Hz 3.75g 30-40 Hz 5.7g<br />

40-50 Hz 13.8g 35-60 Hz 1.5g 40-52 Hz 12.6g<br />

50-70 Hz 3g 60-75 Hz 2.9g 52-65 Hz 25.5g<br />

70-90 Hz 4.8g 75-100 Hz 0.8g 65-75 Hz 4.5g<br />

90-100 Hz 0.6g 75-90 Hz 11g<br />

Acceptance levels will be obtained by dividing those values by 1.25.<br />

9.1.3.3.2.1.1.2 PAU interface<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

90-100 Hz 4.2g<br />

Those results are given in the satellite coordinate system (uptated in version 3.1 to take into account the<br />

behaviour of the subplateform).<br />

X axis Y axis Z axis<br />

0-8Hz 10mm 0-6Hz 10mm 0-6Hz 10mm<br />

8-20Hz 2.0g 6-25Hz 1.6g 6-25Hz 1.6g<br />

20-35Hz 2.5g 25-35Hz 12.9g 25-35Hz 10.7g<br />

35-55Hz 3.5g 35-50Hz 2.3g 35-50Hz 2.4g<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-28/63<br />

X axis Y axis Z axis<br />

55-65Hz 4.7g 50-70Hz 8.4g 50-70Hz 7.4g<br />

65-85Hz 33g 70-90Hz 8.7g 70-90Hz 6.3g<br />

85-100Hz 14.8g 90-100Hz 3g 90-100Hz 1.7g<br />

Acceptance levels will be obtained by dividing those values by 1.25.<br />

9.1.3.3.2.1.1.3 Frame interface<br />

Those results are given with respect to the plane of the frame, at the attachment point location.<br />

Out of plane In plane<br />

0-7Hz 10mm 0-6Hz 10mm<br />

7-20Hz 1.8g 6-13Hz 1.5g<br />

20-40Hz 3.1g 13-35Hz 4.4g<br />

40-47Hz 5.9g 35-50Hz 5.4g<br />

47-70Hz 3g 50-65Hz 3.6g<br />

70-75Hz 1g 65-85Hz 1.9g<br />

75-90Hz 2.6g 85-100Hz 0.6g<br />

90-100Hz 0.9g<br />

Acceptance levels will be obtained by dividing those values by 1.25.<br />

9.1.3.3.2.1.1.4 Cryo-struts Interface<br />

The results are given in the cylindrical coordinate frame of the cryostructure (with Z axis corresponding to X<br />

satellite axis).<br />

Radial Tangential Longitudinal<br />

0-10Hz 10mm 0-10Hz 10mm 0-10Hz 10mm<br />

10-20Hz 2.5g 10-25Hz 2.5g 10-25Hz 2.0g<br />

20-35Hz 8.2g 25-35Hz 10.5g 25-35Hz 7.2g<br />

35-100Hz 4.2g 35-65Hz 3.3g 35-50Hz 3.2g<br />

Acceptance levels will be obtained by dividing those values by 1.25.<br />

9.1.3.3.2.1.2 LFI Wave guides<br />

65-100Hz 1.2g 50-65Hz 8.3g<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

65-100Hz 2.3g<br />

The Planck cooler pipes and LFI wave guides are connecting units located on the SVM and FPU, and have<br />

mechanical and thermal interfaces on the V-Groove shields.


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-29/63<br />

As this mechanical environment is complex, we propose here an equivalent mechanical environment that is<br />

applied at the interface points, giving similar dynamic levels and frequencies.<br />

By running such dynamic analysis, it should allow:<br />

− - to optimise the location of natural frequencies of the WG<br />

− - to optimise the WG support structure to minimise the stresses and the acceleration levels on the WG.<br />

This environment will be applied on a rigid support on which the FPU, the BEU and the WG support structure<br />

are rigidly mounted (all degrees of rotation are clamped, only translations are free)<br />

The equivalent sine environment includes three load cases which correspond to the three sine excitation axis X,<br />

Y Z. This environment are presented on the following tables<br />

Load Case 1 Satellite X excitation<br />

Sine excitation applied along X axis Sine excitation applied along Z axis<br />

Frequency IF Acceleration [g] Frequency [Hz] IF Acceleration [g]<br />

4 Hz - 45 Hz 1.8 4 Hz - 45 Hz 2<br />

45 Hz - 47 Hz 4 45 Hz - 50 Hz 6<br />

47 Hz - 50 Hz 4 50 Hz - 80 Hz 4.5<br />

50 HZ - 68 Hz 5 80 Hz - 100 Hz 2.7<br />

68 Hz - 80 Hz 25<br />

80 Hz - 100 Hz 4<br />

Table 9.5.3-2 Planck PLM Load case 1 (X satellite excitation)<br />

Load Case 2 Satellite Y excitation<br />

Sine excitation applied along Y axis<br />

Frequency IF Acceleration [g]<br />

4 Hz - 20 Hz 1<br />

20 Hz - 28 Hz 1.6<br />

28 Hz - 60 Hz 0.1<br />

60 HZ - 70 Hz 0.1<br />

70 Hz - 82 Hz 0.55<br />

82 Hz - 90 Hz 0.75<br />

90 Hz - 95 Hz 0.2<br />

95 Hz - 100 Hz 4<br />

Table 9.5.3-3: Load case 2 (Y satellite excitation)<br />

Load Case 3 Satellite Z excitation<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

Load Case 3 Satellite Z excitation<br />

Sine excitation applied along Z axis<br />

Frequency IF Acceleration [g]<br />

IF Acceleration [g] 1.5<br />

43 Hz - 50 Hz 2<br />

50 Hz - 60 Hz 0.8<br />

60 HZ - 100 Hz 1<br />

9.1.3.4 Random Vibration Tests<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Table 9.5.3-4 Load case 3 (Z satellite excitation)<br />

ISSUE : 3.1 PAGE :9-30/63<br />

Note: The values below have been derived from an early system level analysis and are considered<br />

conservative. Steps are initiated within the project to further evaluate these values with the intention to reduce<br />

them.<br />

# Reference IIDA-DV-REQ-0235<br />

The Random vibration test Qualification levels to be applied to instrument units are specified in the tables<br />

9.5.3.5 to 9.5.3.7 below. Duration: 2 min. per axis.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


Herschel Random<br />

vibration test<br />

Qualification levels<br />

HPLM<br />

SVM<br />

warm<br />

units<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

F1 F2 Slope / Unit g RMS<br />

Level<br />

(Hz) (Hz) (calc)<br />

FPU<br />

Normal to<br />

fixation<br />

plane<br />

20<br />

100<br />

150<br />

300<br />

20<br />

100<br />

150<br />

300<br />

2000<br />

100<br />

3<br />

0.05<br />

0.02<br />

-7<br />

3<br />

dB/Oct<br />

g2/Hz<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

3.47<br />

2.54<br />

Other axes<br />

100<br />

150<br />

150<br />

300<br />

0.02<br />

0.0125<br />

g2/Hz<br />

g2/Hz<br />

300 2000 -7 dB/Oct<br />

Normal to 20 100 3 dB/Oct 7.57<br />

fixation 100 300 0.1 g2/Hz<br />

LOU<br />

plane 300<br />

20<br />

2000<br />

100<br />

-5<br />

3<br />

dB/Oct<br />

dB/Oct 5.35<br />

Other axes 100 300 0.05 g2/Hz<br />

300 2000 -5 dB/Oct<br />

BOLA removed<br />

Normal to 20 80 3 dB/Oct 10.79<br />

PACS<br />

Warm<br />

units<br />

fixation<br />

plane<br />

Other axes<br />

80<br />

300<br />

20<br />

80<br />

300<br />

2000<br />

80<br />

300<br />

0.2<br />

-5<br />

3<br />

0.1<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

7.63<br />

300 2000 -5 dB/Oct<br />

Normal to 20 80 3 dB/Oct 10.79<br />

HIFI<br />

Warm<br />

units<br />

fixation<br />

plane<br />

Other axes<br />

80<br />

300<br />

20<br />

80<br />

300<br />

2000<br />

80<br />

300<br />

0.2<br />

-5<br />

3<br />

0.1<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

7.63<br />

300 2000 -5 dB/Oct<br />

Normal to 20 80 3 dB/Oct 10.79<br />

SPIRE<br />

Warm<br />

units<br />

fixation<br />

plane<br />

Other axes<br />

80<br />

300<br />

20<br />

80<br />

300<br />

2000<br />

80<br />

300<br />

0.2<br />

-5<br />

3<br />

0.1<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

7.63<br />

300 2000 -5 dB/Oct<br />

Qualification Duration: 2 min. per axis.<br />

Acceptance levels are to be derived by dividing<br />

the qualification levels by a factor 1.5625 .<br />

Acceptance duration is 1 min. per axis.<br />

Qualification factor 1.5625<br />

ISSUE : 3.1 PAGE :9-31/63<br />

Table 9.5.3-5: Random Vibration for Herschel, Qualification test levels"<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-32/63<br />

Planck Random vibration test F1 F2 Slope / Unit g RMS<br />

Qualification levels (Hz) (Hz) Level<br />

(calc)<br />

20 100 3 dB/Oct 12.00<br />

Normal to 100 200 0.4 g2/Hz<br />

Planck FPU<br />

(levels at LFI<br />

bipods / PPLM<br />

interface)<br />

fixation plane<br />

Other axes<br />

200<br />

300<br />

20<br />

100<br />

170<br />

300<br />

2000<br />

100<br />

170<br />

300<br />

0.2<br />

-5<br />

3<br />

0.1<br />

0.25<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

g2/Hz<br />

11.20<br />

rem. This is for X axis only (FPU ref frame)<br />

300 2000 -5 dB/Oct<br />

Y (horizontal) can remain at 0.1g2/Hz between 100 &<br />

170Hz<br />

HFI JFET<br />

Normal to<br />

fixation plane<br />

20<br />

100<br />

300<br />

20<br />

100<br />

300<br />

2000<br />

100<br />

3<br />

0.4<br />

-5<br />

3<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

15.13<br />

10.70<br />

Other axes 100 300 0.2 g2/Hz<br />

300 2000 -5 dB/Oct<br />

dB/Oct FPU interface: To be estimated by LFI<br />

PPLM<br />

Wave guides<br />

Normal to<br />

fixation plane<br />

g2/Hz<br />

dB/Oct<br />

Primary panel I/F = FPU I/F<br />

PPLM Frame= No excitation from acoustic (TBC)<br />

dB/Oct Lower part = BEU<br />

Other axes<br />

g2/Hz<br />

dB/Oct<br />

Normal to<br />

HFI coolers (0.1K fixation plane<br />

& 4K Pipes on V-<br />

10<br />

100<br />

350<br />

100<br />

350<br />

1000<br />

6<br />

4<br />

-6<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

45.24 update mail from JBR 28/3/2003 H-P-ASP-LT-2915<br />

Grooves 1, 2, & Other axes 10 70 6 dB/Oct 14.58<br />

3)<br />

70 350 0.4 g2/Hz<br />

350 1000 -6 dB/Oct<br />

30 100 6 dB/Oct 12.48 ref fax H-P-ASP-LT 4281 (21/1/04)<br />

HFI coolers (0.1K<br />

& 4K Pipes) on<br />

Any direction<br />

Primary<br />

reflector panel<br />

100<br />

180<br />

180<br />

350<br />

0.2<br />

0.35<br />

g2/Hz<br />

g2/Hz<br />

between groove 3 and FPU<br />

300 1000 -6 dB/Oct<br />

SVM<br />

Subplatf<br />

orm<br />

Normal to<br />

HFI PAU, LFI fixation plane<br />

BEU, DAE Power<br />

box<br />

Other axes<br />

Normal to<br />

fixation plane<br />

Cooler pipes on<br />

20<br />

80<br />

300<br />

20<br />

80<br />

300<br />

20<br />

50<br />

300<br />

80<br />

300<br />

2000<br />

80<br />

300<br />

2000<br />

50<br />

300<br />

2000<br />

3<br />

0.3<br />

-5<br />

3<br />

0.15<br />

-5<br />

3<br />

0.9<br />

-5<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

13.21<br />

9.34<br />

23.15<br />

subplatform<br />

20 50 3 dB/Oct 16.37<br />

Other axes 50 300 0.45 g2/Hz<br />

300 2000 -5 dB/Oct<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

Planck Random vibration F1 F2 Slope / Unit g RMS<br />

Qualification levels (Hz) (Hz) Level<br />

(calc)<br />

Sorption<br />

cooler<br />

Out of<br />

Plane<br />

20<br />

80<br />

300<br />

80<br />

300<br />

2000<br />

3<br />

0.2<br />

-5<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

10.79<br />

compres<br />

20 80 3 dB/Oct 7.63<br />

sor In Plane 80 300 0.1 g2/Hz<br />

300 2000 -5 dB/Oct<br />

Normal 20 80 3 dB/Oct 13.21<br />

Sorption to 80 300 0.3 g2/Hz<br />

cooler fixation 300 2000 -5 dB/Oct<br />

Electroni<br />

cs<br />

Other<br />

axes<br />

20<br />

80<br />

300<br />

80<br />

300<br />

2000<br />

3<br />

0.15<br />

-5<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

9.34<br />

Normal 20 80 3 dB/Oct 13.21<br />

4K CU, to 80 300 0.3 g2/Hz<br />

4KCDE, fixation 300 2000 -5 dB/Oct<br />

4KCR,<br />

4KU<br />

Other<br />

axes<br />

20<br />

80<br />

300<br />

80<br />

300<br />

2000<br />

3<br />

0.15<br />

-5<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

9.34<br />

Normal 20 80 3 dB/Oct 10.79<br />

HFI<br />

DCCU,<br />

LFI REBA<br />

to<br />

fixation<br />

Other<br />

axes<br />

80<br />

300<br />

20<br />

80<br />

300<br />

300<br />

2000<br />

80<br />

300<br />

2000<br />

0.2<br />

-5<br />

3<br />

0.1<br />

-5<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

7.63<br />

Normal 20 80 3 dB/Oct 10.79<br />

to<br />

SVM<br />

HFI fixation<br />

warm<br />

REU/DPU<br />

units<br />

Other<br />

axes<br />

80<br />

300<br />

20<br />

80<br />

300<br />

300<br />

2000<br />

80<br />

300<br />

2000<br />

0.2<br />

-5<br />

3<br />

0.1<br />

-5<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

7.63<br />

Normal<br />

TBD dB/Oct<br />

HFI He<br />

tanks in<br />

SVM<br />

to<br />

fixation<br />

Other<br />

axes<br />

TBD<br />

TBD<br />

TBD<br />

TBD<br />

TBD<br />

g2/Hz<br />

dB/Oct<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

Normal 20 50 3 dB/Oct 10.91<br />

Pipes in to 50 300 0.2 g2/Hz<br />

SVM fixation 300 2000 -5 dB/Oct<br />

lateral<br />

panels<br />

Other<br />

axes<br />

20<br />

50<br />

300<br />

50<br />

300<br />

2000<br />

3<br />

0.1<br />

-5<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

7.72<br />

Normal 20 70 3 dB/Oct 20.26<br />

Pipes on to 70 300 0.7 g2/Hz<br />

shear fixation 300 2000 -5 dB/Oct<br />

webs (4K<br />

Other<br />

& 0.1K)<br />

axes<br />

20<br />

70<br />

300<br />

70<br />

300<br />

2000<br />

3<br />

0.35<br />

-5<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

14.33<br />

Normal 20 100 3 dB/Oct 10.70<br />

Pipes on to 100 300 0.2 g2/Hz<br />

Cone (4K fixation 300 2000 -5 dB/Oct<br />

/ 0.1K /<br />

SCC)<br />

Other<br />

axes<br />

20<br />

100<br />

300<br />

100<br />

300<br />

2000<br />

3<br />

0.1<br />

-5<br />

dB/Oct<br />

g2/Hz<br />

dB/Oct<br />

7.57<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-33/63<br />

Table 9.5.3-6: Random Vibration Qualification test levels for Planck.<br />

Acceptance levels are to be derived by dividing the qualification levels by a factor 1.5625 .<br />

Acceptance duration is 1 min. per axis.<br />

For Planck cooler pipes on V_Groove shields, the specific levels shall be used to size the pipes and supports:<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


V-groove 1<br />

V-groove 2<br />

V-groove 3<br />

IID-A SECTION 9<br />

Out of Plane<br />

In Plane<br />

Out of Plane<br />

In Plane<br />

Out of Plane<br />

In Plane<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

F1 F2 Slope / Unit g RMS<br />

(Hz) (Hz) Level<br />

(g)<br />

10 50 3 dB/Oct 53.93<br />

50 300 6 g2/Hz<br />

300 1000 -6 dB/Oct<br />

10 70 6 dB/Oct 21.72<br />

70 250 0.4 g2/Hz<br />

250 400 1 g2/Hz<br />

400 1000 -6 dB/Oct<br />

10 60 6 dB/Oct 50.04<br />

60 200 4 g2/Hz<br />

200 300 6 g2/Hz<br />

300 1000 -6 dB/Oct<br />

10 70 6 dB/Oct 11.80<br />

70 300 0.3 g2/Hz<br />

300 1000 -6 dB/Oct<br />

10 70 6 dB/Oct 71.19<br />

70 170 8 g2/Hz<br />

170 350 10 g2/Hz<br />

350 1000 -6 dB/Oct<br />

10 70 6 dB/Oct 24.08<br />

70 170 0.4 g2/Hz<br />

170 350 1.3 g2/Hz<br />

350 1000 -6 dB/Oct<br />

Qualification factor 1.5625<br />

Qualification test duration is 2 min. per axis.<br />

Acceptance test duration is 1 min. per axis.<br />

Acceptance levels are to be derived by dividing the<br />

qualification levels by a factor 1.5625<br />

ISSUE : 3.1 PAGE :9-34/63<br />

Table 9.5.3-7: Random Vibration Qualification test levels for Sorption cooler pipes on Planck<br />

V-Grooves.<br />

# Reference IIDA-DV-REQ-0240<br />

Low level sine test shall be performed to determine resonance frequencies to evaluate the behaviour of the test<br />

fixture and item integrity. Resonance search shall be carried out before and after vibration test for each axis<br />

between 5 to 2000 Hz with a level of 0.5g (sweep rate: 2 oct/min)..<br />

Note: Random vibration levels heve been estimated from a vibroacoustic analysis performed on the complete<br />

satellites configuration, and using ASTRYD software (with 26 distributed sources).<br />

9.1.3.5 Acoustic Tests<br />

# Reference IIDA-DV-REQ-0245<br />

The accoustic levels to be used for design and test of equipments are specified in the table 9.5.3.8 below. The<br />

are extracted from the ARIANE 5 Users Manual. Relevance level: 2 10 -5 Pascal.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


Octave Band<br />

Centre Frequency (Hz)<br />

31,5<br />

63<br />

125<br />

250<br />

500<br />

1000<br />

2000<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-35/63<br />

Qualification level (dB) Acceptance level (dB) Test Tolerance<br />

132<br />

134<br />

139<br />

143<br />

138<br />

132<br />

128<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

128<br />

130<br />

135<br />

139<br />

134<br />

128<br />

124<br />

Overall level 146 142<br />

Duration 2 min 1 min<br />

9.1.3.6 Shock Test Levels<br />

# Reference IIDA-DV-REQ-0250<br />

Table 9.5.3-8:Acoustic test levels<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

-2g +4g<br />

-1g +3g<br />

-1g +3g<br />

-1g +3g<br />

-1g +3g<br />

-1g +3g<br />

-1g +3g<br />

The shock response spectrumspecified below (figure 9.5.3-1) is applicable to the instrument of Planck and to<br />

the Herschel instruments accommodated in the SVM.<br />

It is to be applied along all three axes.<br />

All units Pipes (Planck)<br />

Frequency (Hz) Shock Level (g) Frequency (Hz) Shock Level (g)<br />

200 200 100 25<br />

600 800 350 350<br />

2000 2000 1000 2000<br />

10000 2000 4000 2930<br />

10000 2930<br />

Acceleration (g)<br />

10000<br />

1000<br />

100<br />

10<br />

Shock Qualification at Unit Level in SVM<br />

Pipes (Planck)<br />

Units<br />

IID-A 3.1<br />

100 1000 10000<br />

Frequency (Hz)<br />

Figure 9.5.3-1: Shock Response Spectrum for units and pipes on SVM.<br />

The present assumptions are confirmed with Herschel and Planck in a dual launch configuration.<br />

# *<br />

# *


9.1.3.7 Displacements<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-36/63<br />

For Planck, cooler pipes and bellows are routed between the Service module and the PPLM. These modules<br />

are behaving differently under launch loads, and displacement between Planck components are expected, with<br />

impact on the pipes and bellows.<br />

In this <strong>section</strong> are introduced the dynamic displacements (new requirements) and the integration and<br />

thermoelastic displacements have been moved from <strong>section</strong> 5.16.4 (IID 3.0)<br />

# Reference IIDA-DV-REQ-0255<br />

The rule for combination of displacements to design the pipes is the following:<br />

Dynamic displacements shall be combined with integration displacements<br />

Thermoelastic displacements shall be combined with Integration displacements.<br />

9.1.3.7.1 Dynamic displacements<br />

9.1.3.7.1.1 Dynamic displacement inside Planck SVM<br />

# Reference IIDA-DV-REQ-0260<br />

In the Planck SVM, the cooler pipes shall be compatible with the following displacements:<br />

Item in plane<br />

out of<br />

plane unit<br />

4K Pipes ± 1.5 1.5 mm<br />

0.1K Pipes - He Tank to DCCU Shear web ± 1.2 1.6 mm<br />

0.1K pipes - DCCU to subplatform Lateral panel ± 2.1 2.1 mm<br />

0.1K pipes - DCCU to subplatform Shear web ± 1.7 2.2 mm<br />

SCS Pipes ± 2 2.5 mm<br />

9.1.3.7.1.2 Dynamic displacements in the PPLM<br />

9.1.3.7.1.2.1 Sorption Cooler Pipes in PPLM<br />

The sorption cooler pipe shall be compliant with the following displacements occuring between planck V-<br />

Grooves 1 to 3.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

Pipe portion<br />

V-Groove 1 to<br />

V-Groove 2<br />

V-Groove 2 to<br />

V-Groove 3<br />

Precooler 3B<br />

to Precooler<br />

3C<br />

Groove 3 pipe<br />

support to Coil<br />

# Reference IIDA-DV-REQ-0265<br />

Axis<br />

(respon<br />

se)<br />

Sine X<br />

mm<br />

Sine Y<br />

mm<br />

Sine Acoust<br />

Z mm ic mm<br />

X 2 0.6 0.7 2.9<br />

Y 0.4* 0.4* 0.8* 1<br />

Z 0.6* 1.1* 0.8* 1<br />

X 1 0.7 0.3 2.1<br />

Y 0.7* 0.7* 0.3* 0.9<br />

Z 0.7* 0.8* 0.3* 1.1<br />

X 2.1 1.3 1 -<br />

Y 0.3 0.2 0.2<br />

Z 0.4 0.3 0.2<br />

X 2 0.9 0.4 -<br />

Y 0.4 0.3 0.4<br />

Z 0.6 0.5 0.5<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-37/63<br />

Load cases (excitation) data related to SCS FEM<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Pairi<br />

ng<br />

Lower<br />

grid<br />

point<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Upper<br />

grid<br />

point<br />

3 90204 90226<br />

4 90249 90273<br />

5 90374 90397<br />

6 90432 90538<br />

Load cases to be applied separately<br />

*expressed in the nodes local coordinate system<br />

For each load case, displacements shall have any sign and shall be combined.<br />

Integration displacements must be added to those load cases.<br />

These displacements have been computed with the JPL FEM provided in<br />

September 2002, ref 352G:02:024:PDM. They are expressed in the satellite<br />

Only grey-coloured load cases must be applied (other load cases are covered<br />

by the grey ones).<br />

In addition, between the SVM, and the V-groove 1, the following displacements shall be taken into account for<br />

the sorption cooler pipes<br />

# *


Pipe portion<br />

IID-A SECTION 9<br />

Axis<br />

(response<br />

)<br />

Sine X<br />

(mm)<br />

Load cases (Excitation)<br />

Sine Y<br />

(mm)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-38/63<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Sine Z<br />

(mm)<br />

Acoustic<br />

(mm)<br />

Between last cone support X 1.7 1.6 1.3 1.8<br />

and 1st V-groove 1 support Y 0.3 3.8 0.3 0.6<br />

(-Y side)<br />

Z 1.4 0.5 3 0.6<br />

Between 1st V-groove 1 X 0.8 0.9 1.1 -<br />

support and H.E. I/F (-Y Y 0.1 0.2 0.1<br />

side)<br />

Z 0.1 0.1 0.1<br />

Between last cone support<br />

and H.E. I/F (+Y side)<br />

X<br />

Y<br />

Z<br />

2.4<br />

0.3<br />

1.4<br />

2.3<br />

3.9<br />

0.4<br />

1.2<br />

0.3<br />

3<br />

1.8<br />

0.6<br />

0.6<br />

Between megaphone-pipe<br />

I/F and cold end<br />

X<br />

Y<br />

1.1<br />

0.2<br />

0.6<br />

5<br />

1<br />

0.3<br />

2<br />

0.8<br />

Z 1.9 0.3 3.5 1<br />

For each load case, displacements shall have any sign and shall be combined. Integration<br />

displacements must be added to those load cases.<br />

Note : the lateral displacement between the subplatform and the V-groove 1 of 3.5mm under<br />

sine environment, mentioned during the meeting on February 24th in Alcatel was computed with<br />

the JPL FEM that is no more valid. This explains the slight increase of the lateral displacement<br />

between the cone and the V-groove 1.<br />

These displacements have been computed directly on the PPLM FEM, because no pipe FEM<br />

corresponding to the last design issue was available. They are expressed in the satellite coordinate<br />

system.<br />

Only grey-coloured load cases must be applied (other load cases are covered the grey ones).<br />

9.1.3.7.1.2.2 0.1K & 4K Cooler pipes<br />

# Reference IIDA-DV-REQ-0270<br />

For the HFI 4K & 0.1K Cooler pipes, the following dynamic displacements shall apply (expressed in satellite<br />

reference frame):<br />

Reproduction interdite © ALCATEL SPACE Company confidential


Pipe portion<br />

Between subplatform<br />

and V-groove 1<br />

Between V-groove 1<br />

and V-groove 2<br />

Between V-groove 2<br />

and V-groove 3<br />

Between V-groove 3<br />

and frame<br />

Primary reflector Panel<br />

Interface (between the<br />

last point on the lower<br />

beam, and the FPU<br />

interface)<br />

IID-A SECTION 9<br />

Axis<br />

(response)<br />

Sine X (mm) Sine Y (mm) Sine Z (mm)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-39/63<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Acoustic<br />

(mm)<br />

X 0.7 0.9 0.4 0.6<br />

Y 0.2 3.4 0.2 0.7<br />

Z 1.4 0.3 2.7 0.7<br />

X 0.5 1.2<br />

Y 0.4 1.2<br />

Z 1.2 1.1<br />

X 1.5<br />

Y 1.1<br />

Z 1.3<br />

X 1.4 0.8<br />

Y 2.9 1.7<br />

Z 2.2 3.1<br />

X<br />

Y<br />

Z<br />

Load cases (Excitation)<br />

9.1.3.7.2 Integration and thermoelastic displacements<br />

(moved from <strong>section</strong> 5.16.4 in previous version 3.0 of IID-A)<br />

9.1.3.7.2.1 Displacements in Planck PPLM<br />

# Reference IIDA-DV-REQ-0275<br />

0.4<br />

2.5<br />

0.3<br />

Boundary conditions: The last attachment point on<br />

the lower beam is clamped, the displacement are<br />

applied at the FPU interface. ref H-P-ASP-LT-4281<br />

21/01/04<br />

The following <strong>section</strong> gives the expected displacement of the Planck PLM interface points during integration or<br />

cool-down. These displacements shall be used to size the pipes and supports, with the combination rules as<br />

given in <strong>section</strong> 9.5.3.7.<br />

9.1.3.7.2.1.1 Sorption cooler<br />

Integration displacements<br />

S/C interface part SVM Panel Subplatform Groove 1 Groove 2 Groove 3 int. Groove 3 ext. FPU<br />

Concerned items Compressors<br />

Support points on<br />

Subplatform<br />

1st heat exchanger<br />

+Support points on G1<br />

2nd heat exchanger<br />

+Support points on G2<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Rem<br />

3rd and 4th heat<br />

exchangers +Support<br />

points on G3<br />

5th heat exchanger<br />

+Support points on G3<br />

SC Cold End<br />

Radial translation 0 +/-0.5 +/-2.5 +/-2.5 +/-2.5<br />

+/-3.8<br />

Tangent translation 0 +/-0.5 +/-1.5 +/-1.5 +/-1.5<br />

+/-1<br />

Axial translation 0 +/-0.5 +/-2 +/-2 +/-2<br />

+/-4.3<br />

Radial rotation 0 +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd<br />

+/-0.50 mrd<br />

Tangent rotation 0 +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd<br />

+/-0.50 mrd<br />

Axial rotation 0 +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd<br />

+/-0.50 mrd<br />

Thermo-elastic instability<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-40/63<br />

S/C interface part SVM Panel Subplatform Groove 1 Groove 2 Groove 3 int. Groove 3 ext. FPU<br />

Concerned items Compressors<br />

Support points on<br />

Subplatform<br />

1st heat exchanger<br />

+Support points on G1<br />

2nd heat exchanger<br />

+Support points on G2<br />

3rd and 4th heat<br />

exchangers +Support<br />

points on G3<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

5th heat exchanger<br />

+Support points on G3<br />

SC Cold End<br />

Radial translation 0 +/-0.2 -2,3 -3,1 -3,8 -4,5 +/-1<br />

Tangent translation 0 +/-0.2 0 0 0 0 0<br />

Axial translation 0 +/-0.2 +/-0,5 -1 -1,5 +1 -0,5<br />

Radial rotation 0 +/-0.3 mrd +/-3 mrd +/-3 mrd +/-3 mrd +/-1 mrd +/-0.10 mrd<br />

Tangent rotation 0 +/-0.3 mrd +10 mrd +10 mrd +10 mrd +5 mrd +/-0.10 mrd<br />

Axial rotation 0 +/-0.3 mrd +/-0.02 mrd +/-0.05 mrd +/-0.10 mrd +/-0.15 mrd +/-0.10 mrd<br />

Nota : the Coordinate system is a cylindrical one with Xs/c for the axial axis.<br />

Integration displacements and thermo-elastic instability shall be combined<br />

9.1.3.7.2.1.2 4 K cooler<br />

Integration displacements<br />

S/C interface part SVM Panel Subplatform Groove 1 Groove 2 Groove 3 Telescope FPU<br />

Concerned items Ancillary Deconnexion box Support points on G1 Support points on G2<br />

3th heat exchanger<br />

+Support points on G3<br />

Telescope Back Rod and<br />

Frame support points<br />

HFI 18K Plate IF<br />

Radial translation / +/-3.8 +/-2.5 +/-2.5 +/-2.5 +/-1 +/-3.8<br />

Tangent translation / +/-1 +/-1.5 +/-1.5 +/-1.5 +/-1 +/-1<br />

Axial translation / +/-4.3 +/-2 +/-2 +/-2 +/-1 +/-4.3<br />

Radial rotation / +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd +/-0.50 mrd +/-0.50 mrd<br />

Tangent rotation / +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd +/-0.50 mrd +/-0.50 mrd<br />

Axial rotation / +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd +/-0.50 mrd +/-0.50 mrd<br />

Thermo-elastic instability<br />

S/C interface part SVM Panel Subplatform Groove 1 Groove 2 Groove 3 Telescope FPU<br />

Concerned items Ancillary Deconnexion box Support points on G1 Support points on G2<br />

3th heat exchanger<br />

+Support points on G3<br />

Telescope Back Rod and<br />

Frame<br />

HFI 18K Plate IF<br />

Radial translation / +/-0.2 -2,7 -3,6 -4,4 -4,4 +/-1<br />

Tangent translation / +/-0.2 0 0 0 0 0<br />

Axial translation / +/-0.2 -2 -1 -2,5 -2,5 -0,5<br />

Radial rotation / +/-0.3 mrd +/-3 mrd +/-3 mrd +/-1 mrd +/-1 mrd +/-0.10 mrd<br />

Tangent rotation / +/-0.3 mrd +10 mrd +10 mrd +5 mrd +5 mrd +/-0.10 mrd<br />

Axial rotation / +/-0.3 mrd +/-0.02 mrd +/-0.05 mrd +/-0.10 mrd +/-0.10 mrd +/-0.10 mrd<br />

All the values are TBC<br />

Nota : the Coordinate system is a cylindrical one with Xs/c for the axial axis.<br />

Integration displacements and thermo-elastic instability shall be combined<br />

9.1.3.7.2.1.3 0.1K cooler<br />

Integration displacements<br />

S/C interface part SVM Panel Subplatform Groove 1 Groove 2 Groove 3 Telescope FPU<br />

Concerned items DCCU Deconnexion box<br />

1st heat exchanger<br />

+Support points on G1<br />

2nd heat exchanger<br />

+Support points on G2<br />

3th heat exchanger<br />

+Support points on G3<br />

Telescope Back Rod and<br />

Frame support points<br />

HFI 18K Plate IF<br />

Radial translation / +/-3.8 +/-2.5 +/-2.5 +/-2.5 +/-1 +/-3.8<br />

Tangent translation / +/-1 +/-1.5 +/-1.5 +/-1.5 +/-1 +/-1<br />

Axial translation / +/-4.3 +/-2 +/-2 +/-2 +/-1 +/-4.3<br />

Radial rotation / +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd +/-0.50 mrd +/-0.50 mrd<br />

Tangent rotation / +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd +/-0.50 mrd +/-0.50 mrd<br />

Axial rotation / +/-0.5 mrd +/-1 mrd +/-1 mrd +/-1 mrd +/-0.50 mrd +/-0.50 mrd


Thermo-elastic instability<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-41/63<br />

S/C interface part SVM Panel Subplatform Groove 1 Groove 2 Groove 3 Telescope FPU<br />

Concerned items DCCU Deconnexion box<br />

1st heat exchanger<br />

+Support points on G1<br />

2nd heat exchanger<br />

+Support points on G2<br />

3th heat exchanger<br />

+Support points on G3<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

Telescope Back Rod and<br />

Frame<br />

HFI 18K Plate IF<br />

Radial translation / +/-0.2 -2,7 -3,6 -4,4 -4,4 +/-1<br />

Tangent translation / +/-0.2 0 0 0 0 0<br />

Axial translation / +/-0.2 -2 -1 -2,5 -2,5 -0,5<br />

Radial rotation / +/-0.3 mrd +/-3 mrd +/-3 mrd +/-1 mrd +/-1 mrd +/-0.10 mrd<br />

Tangent rotation / +/-0.3 mrd +10 mrd +10 mrd +5 mrd +5 mrd +/-0.10 mrd<br />

Axial rotation / +/-0.3 mrd +/-0.02 mrd +/-0.05 mrd +/-0.10 mrd +/-0.10 mrd +/-0.10 mrd<br />

Nota : the Coordinate system is a cylindrical one with Xs/c for the axial axis.<br />

Integration displacements and thermo-elastic instability shall be combined<br />

9.1.3.7.2.1.4 Displacements at the FPU/telescope interface<br />

Maximum displacement/rotation<br />

1 Radial translation in the PR panel plane : relative displacement between the FPU<br />

and the telescope panel induced by cooling down the FPU from 293 K down 40 K<br />

when the 6 I/F areas are clamped on a support which has a CTE = 0<br />

µm/µrd<br />

2 Translation in the PR panel plane : random displacement of each I/F area ± 200<br />

(TBC)<br />

3 Out the panel plane translation (along Zordp : random displacement of each I/F<br />

area<br />

/<br />

± 100 (TBC)<br />

4 Rotation around the axis in the PR panel plan: random rotation of each I/F area ± 500 (TBC)<br />

All these load cases shall be combined<br />

9.1.4 Thermal Verification and Testing<br />

9.1.4.1 General Test Requirements and Test Arrangement<br />

When possible development tests will be performed with samples to demonstrate the adequacy of the selected<br />

materials and of the design. However, the qualification thermal tests will be performed with fully representative<br />

hardware. The details of the thermal tests to be performed and the logic how the thermal qualification of the<br />

units will be achieved shall be presented in the instrument Design & Development Plan.<br />

# Reference IIDA-DV-REQ-0280<br />

As a general requirement each instrument unit must be tested with conductive and radiative interfaces as close<br />

as possible with the spacecraft interfaces in orbit. In particular:<br />

− each instrument unit shall be connected to the test mounting panel using identical fixation interfaces<br />

as its fixation onto the PLM or SVM (insulation washers, interface filler,...),<br />

− the test mounting panel temperature must be representative of the flight mounting panel temperature<br />

(margin to be added in test),<br />

− its external thermo-emissive properties must be identical to the flight ones,<br />

− the radiative environment must be as close as possible with the flight one (margin to be added in test).


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-42/63<br />

Because qualification and acceptance temperature range encompass in orbit temperature range, the test<br />

interface temperature and/or power must be such to ensure the margin on temperature equipment is<br />

adequate<br />

The thermal vacuum test arrangement must be designed to give the required qualification or acceptance<br />

temperatures on the equipment with approximately representative heat flows to and from the environment.<br />

A possible test set-up is that the in flight mounting panel is replaced by a thermally controlled conductive<br />

support frame used as heat sink. The equipment is directly mounted to this heat sink.<br />

A shroud surrounding the instrument unit simulates the radiative environment. The temperature of the<br />

instrument unit can be controlled both radiatively by adjusting the shroud temperature and conductively by<br />

adjusting the temperature of the fluid circulating in the mounting frame.<br />

For all electronics units located into the SVM, the shroud temperature is maintained around the ambient<br />

temperature during the test. The conductive heat sink temperature is controlled to achieve the required<br />

temperature level on the instrument unit base-plate. Temperature range can be controlled using both the<br />

shroud and the heat sink temperatures.<br />

9.1.4.2 General Test Condition and Instrumentation<br />

# Reference IIDA-DV-REQ-0285<br />

The following minimum test requirements shall be satisfied:<br />

− equipment shall be tested in a thermal vacuum environment having a pressure of 0.0013 Pa or less.<br />

The test may begin when the pressure falls below 0.013 Pa, and a pressure of 0.0013 Pa or less shall<br />

be achieved prior to startup of the units not operating during first ascent,<br />

− stabilisation is achieved when the equipment temperatures have been maintained within tolerance and<br />

have not changed by more than 1°C during the previous one hour period.<br />

# Reference IIDA-DV-REQ-0290<br />

The PI shall be responsible to define the adequate test instrumentation in order to demonstrate that<br />

temperature levels are achieved and to validate the instrument unit thermal mathematical model.<br />

This test instrumentation shall include as a minimum:<br />

− for the shroud temperature, the instrumentation necessary to allow accurate temperature control by<br />

using fluid loop or/and electrical resistance heaters,<br />

− for the instrument unit at least one temperature sensor on each unit casing wall, and one temperature<br />

sensor on each unit foot,<br />

− for the mounting plate, at least one temperature sensor close to each unit mounting foot, and four<br />

temperature sensors to derive the lateral gradients inside the mounting panel.<br />

# Reference IIDA-DV-REQ-0295<br />

The general requirements for the design verification, qualification and proto-qualification tests are the<br />

following:<br />

− During testing, the same item shall be tested in the normal post-lift-off sequence, to the thermal<br />

environments appropriate to non-operating, switch-on (start-up) and operating qualification<br />

temperature limits.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-43/63<br />

− If preferred the temperature cycle profile can be changed to give a hot phase first. The temperature<br />

gradient dT/dt must be < 2°C/min for electronics boxes inside the SVM. For instrument units mounted<br />

externally of PLM and SVM, temperature profiles with higher slopes can be defined in the equipment<br />

specification.<br />

− Heat dissipations: the PI shall demonstrate the units dissipate not more than the maximum values<br />

defined in IID-B (AD 04,05,06,07,08) for each unit and instrument.<br />

# Reference IIDA-DV-REQ-0300<br />

The general requirements for the acceptance tests are the following:<br />

− In order to ensure the application of the maximum stress condition, the unit shall be operated<br />

continuously throughout the test which shall comprise 8 cycles for Qualification and 4 cycles for<br />

Acceptance (ref ECSS-E-10-03A), with full functional testing at the last 2 extremes, and adequate<br />

monitoring during the remainder of the test.<br />

9.1.4.3 Thermal Vacuum and Balance Test<br />

9.1.4.3.1 Thermal Vacuum Test:<br />

# Reference IIDA-DV-REQ-0305<br />

The thermal vacuum test is required to evaluate and demonstrate the functional performance under vacuum of<br />

the instrument units. This is performed under the extreme and nominal modes of operation, with temperature<br />

conditions for the instrument more severe than the maximum and minimum temperatures predicted for the<br />

mission, namely within the acceptance or qualification temperature range.<br />

9.1.4.3.2 Thermal Balance Test:<br />

# Reference IIDA-DV-REQ-0310<br />

A thermal balance test at instrument level shall be conducted on instrument units whose thermal control is<br />

under PI responsibility. The results of the thermal balance test are used to correlate and update the instrument<br />

thermal mathematical models.<br />

The thermal balance test simulates nominal conditions to verify the thermal control system. The number of<br />

energy balance conditions simulated during the tests shall be sufficient to verify the thermal design. The<br />

exposure shall be sufficient enough for the test item to reach stabilisation so that the temperature distribution<br />

in steady state condition may be verified.<br />

The PI shall establish in the Design & Development Plan how and when the thermal vacuum and thermal<br />

balance will take place and shall demonstrate what is the logic to reach the qualification/ acceptance of the<br />

instruments and its units.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.4.4 Thermal Cycling Tests<br />

# Reference IIDA-DV-REQ-0315<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-44/63<br />

Thermal cycling tests will be performed in order to demonstrate that the instruments and its units are able to<br />

withstand without degradation and under vacuum a number of thermal cycles representative of the lifetime of<br />

the instruments with margins starting from the minimal temperatures to the maximal temperatures defined in<br />

the IID-B (AD 04, 05, 06, 07, 08). Each thermal cycle shall include a soak time long enough to achieve<br />

thermal equilibrium of the instrument or the unit (T change 1°C/hour).<br />

The PI shall define in the Design & Development Plan how the demonstration of the thermal cycling test<br />

adequacy will be conducted on the basis of results with representative samples or with flight units/instruments.<br />

9.1.4.5 Thermal Shock Test<br />

# Reference IIDA-DV-REQ-0320<br />

A thermal shock test will be conducted to verify that the instruments or the units can withstand a rapid cooldown<br />

under vacuum from room temperature to the minimal temperature defined in the IID-B. The PI shall<br />

establish what is the minimal duration of the cool-down still compatible with the unit/instrument. However, this<br />

duration shall be no greater than 5 hours for Herschel, and 24 hours for Planck (interface PPLM-FPU).<br />

9.1.4.6 Thermal Bake-out Test<br />

# Reference IIDA-DV-REQ-0325<br />

A thermal bake-out will be conducted (at least) for the Herschel focal plane units inside the cryostat (about<br />

80°C for 3 days). The capability of the FPU to withstand this bake out shall be demonstrated by test.<br />

9.1.5 Mechanism Verification and Testing<br />

9.1.5.1 General Test Conditions<br />

In the Design & Development Plan, the PI shall present how he intends to demonstrate the functional<br />

performances of the mechanisms of the instruments and/or units on the basis of the results of tests at sample<br />

or of instrument/units tests and how the mechanisms will be qualified.<br />

9.1.5.2 Performance Verification Testing<br />

# Reference IIDA-DV-REQ-0330<br />

The performance validation of the mechanisms shall be established in agreement with the following<br />

requirements:<br />

− the verification of the performances of the mechanisms shall be possible on ground at unit, assembly<br />

and system level,<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-45/63<br />

− the operation of the mechanisms at system level shall not require special jigs or special attitudes of the<br />

units/instruments. (Note that it has been agreed to accept certain attitude of the HPLM for sorption<br />

cooler recycling and for SPIRE FTS),<br />

− the testing shall demonstrate that all functional requirements are met with margins in representative<br />

environmental conditions.<br />

9.1.5.3 Lifetime Verification Testing<br />

Because mechanisms will operate during the whole lifetime of the mission, special attention shall be devoted<br />

to demonstrate the lifetime capabilities of the mechanisms.<br />

# Reference IIDA-DV-REQ-0335<br />

The following requirements for lifetime verification shall be fulfilled:<br />

− the lifetime of the mechanisms shall be demonstrated/qualified by test in a configuration<br />

representative of the realistic worst case conditions of the flight model,<br />

− for test demonstration, the nominal number of cycles predicted for the flight items shall be multiplied<br />

by the following factors:<br />

Type/number of predicted cycles Applicable factor for tests<br />

ground operation before flight 4 (min. number is 10)<br />

in orbit predicted cycles (when prediction is 1 - 10) 10<br />

in orbit predicted cycles (when prediction is 11 - 1000) 4 (min. number is 100)<br />

in orbit predicted cycles (when prediction is 1001 -<br />

100000)<br />

2 (min. number is 4000)<br />

in orbit predicted cycles (when prediction > 100000) 1.25 (min. number is 20000)<br />

An actuation is a full output cycle or a full revolution of the mechanism to be applied.<br />

# Reference IIDA-DV-REQ-0340<br />

lifetime of critical mechanism components shall be declared successful if the following conditions are satisfied:<br />

− no metal to metal contact identified,<br />

− no chemical degradation of dry lubricant,<br />

− operational requirements met within specified tolerances for entire life tests,<br />

− no rupture or loss of functionality of any part,<br />

− stiffness requirement met for entire life test.<br />

9.1.6 EMC Verification and Testing<br />

The approach taken for the system EMC verification is by analysis and test. This is outlined below and defined<br />

in the EMC control plan (document Alcatel H-P-1-ASPI-PL-0038). The analysis and the inputs to be provided<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-46/63<br />

by the instruments are defined in Alcatel Herschel/Planck EMC Control Plan H-P-1-ASPI-PL-0038 §5.1.2<br />

"Instruments EMC models".<br />

9.1.6.1 EMC Verification Methods<br />

The methods to be used in verifying the specified design requirements for both subsystem and equipment are<br />

defined in this <strong>section</strong>. The verification activities include:<br />

9.1.6.1.1 Analysis (A)<br />

Verification by analysis will be accomplished to satisfy specified requirements that do not necessitate test or<br />

demonstration to assure that these requirements have been met. Calculation replaces the test results.<br />

9.1.6.1.2 Review of Design (ROD)<br />

The verification of physical requirements will be performed by review of drawings, circuit diagrams etc.<br />

Commentary: Example Correct use of shielded wires, twisted wires, twisting rate, shield grounding,<br />

grounding diagrams.<br />

9.1.6.1.3 Inspection (INS)<br />

Verification by inspection will be accomplished to satisfy requirements such as:<br />

− Conformance of drawings<br />

− Workmanship<br />

− Use of proper parts and materials<br />

Commentary: Example Use of correct wire and cable types, minimum distance between different wire<br />

classes for harness routing.<br />

9.1.6.1.4 Test (T), (DT), (QT), (AT)<br />

Several kind of testing will be used for verification of requirements during the different stages of the subsystem<br />

equipment project.<br />

9.1.6.1.4.1 Development testing (DT)<br />

Development testing is performed to substantiate analyses and to verify:<br />

− Conformance characteristics<br />

− Safety Margins<br />

− Failure Modes.<br />

The development tests will not be performed to formal test procedures. Breadboards and engineering models<br />

that must be of flight configuration in all the important electrical aspects will be used for these tests.<br />

9.1.6.1.4.2 Qualification Testing (QT)<br />

Formal qualification testing will be fully documented. Test data will be recorded on data sheets that are an<br />

integral part of the formal test procedures utilised for verification of the subsystem equipment.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

The EMC qualification test sequence is outlined below:<br />

− Bonding<br />

− Isolation<br />

− Grounding and conductivity test of space exposed surfaces<br />

− Conducted emission<br />

− Conducted susceptibility<br />

− Radiated emission<br />

− Radiated suceptibility<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-47/63<br />

− ESD.<br />

Note: Electrostatic susceptibility tests can be waived if they are critical for the health of the units.<br />

9.1.6.1.4.3 Acceptance testing (AT)<br />

Acceptance testing are conducted to prove that the subsystem equipment design is like the design that was<br />

qualified, to demonstrate that the workmanship used meets the required standards and to demonstrate that<br />

the subsystem equipment meets the specification requirements. Formal acceptance testing will also be fully<br />

documented as required for qualification testing.<br />

This test shall be accomplished on all FM hardware. Acceptance level testing shall comprise the verification of:<br />

− Bonding<br />

− Isolation<br />

− Grounding and conductivity test of space exposed surfaces<br />

− Conducted emission<br />

− Conducted susceptibility<br />

− ESD.<br />

Note: Electrostatic susceptibility tests can be waived if they are critical for the health of the units.<br />

9.1.6.1.5 Similarity Assessment (SIM)<br />

Similarity verification will be accomplished for equipment/components where proof exists that it was previously<br />

qualified to the same, or more severe, environment.<br />

Commentary: Example A qualified pressure transducer used in an earlier mission and still manufactured<br />

can be verified by similarity.<br />

9.1.6.1.6 Verification Matrix<br />

Verification Method Verification Phase<br />

Similarity A. Design<br />

AnalysisB. Development<br />

Inspection C. Qualification<br />

Review D.<br />

Test<br />

Acceptance<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-48/63<br />

It is responsibility of the Prime Contractor and/or the relevant Subcontractor to complete the matrix in Table<br />

9.5.6-1 in accordance with the requirements of the previous <strong>section</strong> and to submit it to ESA for approval.<br />

The Prime Contractor is responsible to provide an overall verification matrix at subsystem level for approval by<br />

ESA.<br />

EMC Performance<br />

Requirement Reference<br />

Verification Methods Document Reference<br />

and Remarks<br />

N/A A B C D<br />

Table 9.5.6-1: Example of Verification Matrix<br />

9.1.6.2 Test Facility and Test Instrumentation Requirements<br />

The test shall be performed following the applicable requirements contained in this <strong>section</strong>. Any condition,<br />

method not covered by these requirements or deviation to them shall be agreed with the prime.<br />

# Reference IIDA-DV-REQ-0345<br />

The actual test condition and methods selected for the test in question shall be described and documented in<br />

the relevant test documentation.<br />

9.1.6.2.1 Ambient Electromagnetic Levels<br />

# Reference IIDA-DV-REQ-0350<br />

Ambient conducted and radiated emission levels shall be measured prior to test and shall be at least 6 dB<br />

below the applicable limits. These measurements shall be performed with the test article turned off and with all<br />

the auxiliary equipment turned on. Ambient levels on power leads shall be measured with the leads<br />

disconnected from the test article and connected to a resistive load which draws the same current as the test<br />

article. The LISN shall be included in the test set-up.<br />

9.1.6.2.2 Test Site Conditions<br />

# Reference IIDA-DV-REQ-0355<br />

Testing shall be performed under the following atmospheric conditions where possible:<br />

− Temperature 19° C to 26° C<br />

− Pressure 813 to 1040 hPa<br />

− Relative humidity 20% to 80%<br />

Restriction as required by the ESA (e.g. Cleanliness class) might be added to those requirements.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.6.2.3 Shielded Enclosures<br />

# Reference IIDA-DV-REQ-0360<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-49/63<br />

Shielded enclosures shall be of sufficient size to adequately accept the test article without sacrificing test<br />

accuracy or requiring deviation from the methods specified herein.<br />

9.1.6.2.4 RF Absorber Material<br />

# Reference IIDA-DV-REQ-0365<br />

RF absorber material shall be used in shielded enclosures to reduce reflections from the surface of the<br />

enclosure to the measurement antennas.<br />

9.1.6.2.5 Ground Plane<br />

# Reference IIDA-DV-REQ-0370<br />

A solid plate ground plane shall be used. It shall have a minimum thickness of 0.25 mm for copper or 0.63<br />

mm for brass and be 2.25 m 2 or larger in area with the smaller side no less than 76 cm in length. When<br />

testing is performed in a shielded enclosure, the ground plane shall be bonded to the shielded room such that<br />

the DC bonding resistance shall not exceed 2.5 mΩ. In addition, the bonds shall be placed at distances no<br />

greater than 90 cm apart. For large test articles mounted on a metal test stand, the test stand shall be<br />

considered a part of the ground plane for testing purposes and shall be bonded accordingly.<br />

9.1.1.3 Measuring Equipment/Instrumentation<br />

This <strong>section</strong> describes the test equipment and instrumentation used in the test methods contained in this<br />

document.<br />

Any other instruments that are capable of measuring the parameters of this specification may be used, after<br />

approval by the prime. In any case, the actual characteristics of the instrumentation used (factors, useful<br />

bandwidths, accuracy, sweep speeds etc) shall be listed in the test documentation.<br />

9.1.1.3.1 Measurement Receivers / Spectrum Analysers.<br />

Any frequency selective receiver can be used to perform the testing described in this document. The receiver<br />

characteristics (i.e. sensitivity, selection of the bandwidths, detector functions dynamic range and frequency of<br />

operations) shall meet the requirements specified in this standard and shall be sufficient to demonstrate<br />

compliance with the applicable limits. Concerning the use of spectrum analysers, they can be used when<br />

overloading protection is provided by means of pre-selection input filters.<br />

Commentary: In EMI testing, one of the most important considerations is preventing saturation of the<br />

spectrum analyser because spurious responses can be created within the instrument. A solution is to use a<br />

band-pass or tracking pre-selector that will greatly increase the analyser’s tolerance to broadband overload.<br />

These pre-selectors will virtually eliminate multiple and image responses. For these reasons, EMI receivers are<br />

preferred but spectrum analysers are allowed if input pre-selectors are used.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.1.3.2 Computer Controlled Receivers<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-50/63<br />

A detailed description of the operations that are directed by software for computer controlled receivers, shall<br />

be included in the test plan. Verification techniques used to demonstrate proper performance of the software<br />

shall also be included.<br />

9.1.1.3.3 Detector Function<br />

# Reference IIDA-DV-REQ-0375<br />

A peak detector shall be used for all emission and susceptibility measurements. This device shall detect the<br />

peak value of the modulation envelope in the receiver band-pass. The output of the measurement receiver<br />

shall be calibrated in terms of equivalent root mean square (RMS) value of a sine wave with the same peak<br />

value. When other measurement devices such as oscilloscopes, non-selective voltmeters etc are used for<br />

testing, correction factors shall be applied for modulated test signals to correct the reading to equivalent RMS<br />

values under the peak of the modulation envelope.<br />

9.1.1.3.4 Current Probes<br />

The current probe transfer impedance which is defined as the ratio between secondary voltage across a 50 Ω<br />

load to the primary current shall be determined using the following procedure:<br />

Terminate the signal generator with a short length of wire (20 cm) and a 50 Ω non-inductive resistor. The<br />

primary current Ip can be calculated.<br />

Clamp the current probe around the wire between the signal generator and the 50 Ω load.<br />

Connect the current probe to a receiver (50 Ω input impedance) and measure the secondary voltage Vs. The transfer impedance is Zt = Vs/ Ip # Reference IIDA-DV-REQ-0380<br />

The transfer impedance of the current probe shall be included in the Test Procedure and Test Report. Any<br />

current probe capable of measuring to the limits specified in this document may be used. The current probe<br />

shall be located not more than 5 cm apart from the test article.<br />

9.1.1.1.5 Test Antennas<br />

# Reference IIDA-DV-REQ-0385<br />

Antennas used in performing the radiated emission and susceptibility tests shall be listed in the EMI test<br />

procedure.<br />

The following antenna characteristics are recommended:<br />

− 30 Hz – 50 kHz, (RE01): Sensors that measure only magnetic fields<br />

• a): Electrically small loops, whose impedance shall not resonate over the frequency range of use.<br />

• b): Active magnetic sensors, which sense amplitude as opposed to the time derivative of the<br />

amplitude.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-51/63<br />

− 14 kHz – 30 MHz, (RE02): Electrically short high impedance electric field probe, vertically polarised.<br />

Traditionally the 41’’ rod with active or passive matching network to 50 Ω has been used.<br />

− 14 kHz – 30 MHz, (RS03): The parallel plate (and its numerous modifications), long wire, and E-Field<br />

generator are available and listed in order of preference. The E-Field generator should be reserved for<br />

the case in which the test article is too large for other methods.<br />

− 30 MHz – 200 MHz, (RE02/RS03): Dipole-like antennas. Typical antenna used in this band has been<br />

the bi-conical. Care should be exercised in the antenna selection to ascertain that the balun does an<br />

adequate job of matching the low frequency high antenna impedance to 50 Ω.<br />

− 200 MHz – 1 GHz, (RE02, RS03): The traditional Log-Periodic and Log-Conical are available. The<br />

double ridge horn can also be used, although the gain increases dramatically with the frequency. In<br />

this case, accurate calibration of the double ridge horn shall be proven and included in the EMC Test<br />

procedure.<br />

− 1 GHz – 10 GHz, (RE02/RS03): Broadband (ridged) or standard gain horn. Log-Conicals are also<br />

available.<br />

− 10 GHz and above (RE02/RS03): 20 dB standard gain horns.<br />

9.1.1.1.6 Test Antenna Counterpoise (Monopole):<br />

# Reference IIDA-DV-REQ-0390<br />

The following requirements shall be used when rod antennas that require a counterpoise are used. The test<br />

antenna counterpoise shall be referenced to the same ground reference used for the Electromagnetic<br />

Interference (EMI) meters. In shielded enclosures, the counterpoise shall be bonded to the reference ground<br />

plane. The bonding strap shall be a solid metal sheet having the same width as the counterpoise, welded<br />

along the entire edge at the points of contact. Alternatively, the counterpoise shall be clamped and/or<br />

soldered to the ground plane in two places. If desired, the counterpoise may be configured so that one<br />

dimension is of adequate length to reach the test article ground plane.<br />

9.1.1.1.7 Impulse generators<br />

Impulse generators shall conform to the above requirements:<br />

− Calibrated in terms of output to a 50 Ω load.<br />

− Spectrum shall be flat over its frequency range with an amplitude accuracy of ± 1 dB within the<br />

frequency band being displayed by the spectrum analyser.<br />

9.1.1.1.8 Standard Laboratory Equipment (SLE)<br />

# Reference IIDA-DV-REQ-0395<br />

All SLE shall be operated as prescribed by the applicable instruction manual unless otherwise specified therein.<br />

This requirements document shall take precedence in the event of conflict with instruction manuals or other<br />

documents issued by industry or other Agencies unless identified in an approved test plan. For test<br />

repeatability, all test parameters used to configure the test shall be recorded in the EMI test plan and the EMI<br />

test report. These parameters shall include measurement bandwidths, video bandwidths, sweep speeds etc.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

9.1.1.1.9 Power Supply Characteristics<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-52/63<br />

Power supplies for test articles requiring a power source for their operation, supplied or not as part of the test<br />

article Electrical Ground Support Equipment (EGSE), shall have characteristics and tolerances as specified in<br />

the test article detailed specification measured at the test article input.<br />

9.1.1.1.10 Signal Sources<br />

# Reference IIDA-DV-REQ-0400<br />

Any commercially available signal source, power amplifier and general purpose amplifier capable of<br />

supplying the power required to develop the susceptibility level specified herein, may be used provided the<br />

following requirements are met:<br />

− Frequency accuracy shall be within ± 2%.<br />

− Amplitude accuracy shall be within ± 2 dB.<br />

− Harmonic content and spurious outputs shall be no more that –30 dB as related to fundamental<br />

power level.<br />

9.1.1.1.11 Test Article Electrical Ground Support Equipment (EGSE)<br />

# Reference IIDA-DV-REQ-0405<br />

The EGSE shall simulate the actual loads of the test article using the actual interface required in flight.<br />

Grounding techniques different from those approved are forbidden. The EGSE shall not interfere or cause EMI<br />

to the normal test article operations and shall withstand without malfunctions the environment in which it shall<br />

operate. Whenever possible, during the EMC tests the EGSE shall be located outside the shielded test<br />

enclosure area in an adjacent, attached shielded enclosure.<br />

9.1.1.4 Measurement Requirements<br />

9.1.1.4.1 Measuring Equipment Calibration<br />

# Reference IIDA-DV-REQ-0410<br />

Measuring instruments and accessories used in determining compliance with this document shall be calibrated<br />

under an approved program in accordance with MIL-STD-45662A.<br />

9.1.1.4.2 Measurement Accuracy<br />

# Reference IIDA-DV-REQ-0415<br />

All test equipment (SLE, EGSE etc) shall be capable of measuring to within the following accuracy:<br />

− 2% for frequency<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *<br />

# *


− 3 dB for amplitude<br />

IID-A SECTION 9<br />

9.1.1.4.3 Measurement Bandwidths<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Narrow-band ranges for each tuned frequency range are listed in Table 9.5.7-1 below:<br />

ISSUE : 3.1 PAGE :9-53/63<br />

Tuned Frequency (Hz) Bandwidth Range (Hz)<br />

30 – 300 1 – 30<br />

300 – 3 k 5 – 50<br />

3k – 30 k 10 – 500<br />

30k – 1M 300 – 5k<br />

1M – 30 M 1k – 50 k<br />

30M – 1G 1k – 100 k<br />

1G – 40G 100k – 50 M<br />

Table 9.5.7-1: Narrow-band range for each tuned frequency range<br />

N.B. For conducted emission 30 Hz to 15 kHz (CE01) range the limit shall be measured with an effective<br />

bandwidth not exceeding 100 Hz.<br />

9.1.1.4.4 Measurement frequency range<br />

A continuous scan and recording of the specified frequency range for each applicable test shall be performed.<br />

9.1.1.4.5 Susceptibility Frequency Range<br />

Whether the interference shall be applied as continuous swept or as discrete frequencies shall be determined<br />

on the basis of the susceptibility criteria. When acceptable, discrete frequencies and their number/decade shall<br />

be approved by the prime.<br />

9.1.1.5 Test set-up arrangement.<br />

9.1.1.5.1 Isolation<br />

Test instruments shall use an isolation transformer on the AC power lines and a separate ground cable to the<br />

central ground point. The ground cable shall consist of a braided cable.<br />

9.1.1.5.2 Test Article Arrangement<br />

# Reference IIDA-DV-REQ-0420<br />

Interconnecting cable assemblies and supporting structures shall simulate actual installation and usage.<br />

Shielded leads shall not be used in the test set up unless they have been specified in approved installation<br />

drawings. Diagrams of all cables that interconnect the test article showing all conductors, shielded and<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-54/63<br />

unshielded, shall be included in both the EMC test plan and EMC test report. In the event that the as-run<br />

procedure is included as an appendix to the test report, the cable diagrams in the test procedure will satisfy<br />

the requirement. Cables and test article shall be so arranged that there is minimum shielding interposed<br />

between the test article cables and the measurement antennas.<br />

All leads and cables shall be located within 10 cm from the ground plane edge nearest the measurement<br />

antenna and shall be supported at least 5 cm above the ground plane on non-conductive spacers.<br />

9.1.1.6 Test Harness<br />

The test article shall be connected to the relevant EGSE and SLE via dedicated cabling, which consist of:<br />

− Standard Cabling<br />

− Additional Cabling<br />

− Connector Savers<br />

9.1.1.6.1 Standard Cabling<br />

The standard cabling shall implement the connection between the test article and its interfaces, simulated by<br />

the EGSE and SLE. It shall be identical to the respective flight cabling for the following aspects:<br />

− Number and type of wires.<br />

− Shielding termination<br />

− Over-shielding and termination<br />

The adopted shielding termination technology shall be agreed with ESA. In particular, shield disconnection<br />

shall be possible.<br />

9.1.1.6.2 Additional Cabling<br />

The additional cabling shall be interposed between the test article and the standard cabling as required by test<br />

methods. This cabling shall be configured as necessary to accommodate test needs (probe insertion, LISN<br />

insertion, etc) while maintaining the standard cabling configuration for all the other cables that are not<br />

involved.<br />

9.1.1.6.3 Connector Savers<br />

The type of connector savers shall be agreed with ESA. They shall not impair the shielding effectiveness of the<br />

standard cabling.<br />

9.1.1.6.4 Shock and Vibration Isolators<br />

If the test article is mounted on a base with shock or vibration isolators in the operational installation, the test<br />

set up shall include such mounting provisions. Bonding hardware and application for the test article shall be<br />

identical to the approved installation drawing. If no provisions for bond strap are made on the installation<br />

drawings, then no bond straps shall be used during testing.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


IID-A SECTION 9<br />

9.1.1.7 Test Article loading<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-55/63<br />

The test article shall be loaded with the full mechanical and electrical load or equivalent for which it is<br />

designed. If worst case EMI condition exist at a reduced load, the test shall include the reduced level loads as<br />

well as the full load.<br />

9.1.1.7.1 Representative loading<br />

The loads used shall simulate the impedance of the actual load. Mechanical devices, if any, shall also be<br />

operated under load. The test article shall be actuated by the same means as in the installation. As an<br />

example, if a solenoid is actuated through a silicon-controlled rectifier (SCR), a toggle switch shall not be used<br />

to operate the solenoid for the test.<br />

9.1.1.7.2 Signal Inputs<br />

Actual or simulated signal inputs and software required to activate, utilise or operate a representative set of all<br />

circuits shall be used during emission and susceptibility testing.<br />

9.1.1.7.3 Source/Loads for Communication-Electronics Test Articles<br />

All RF outputs of communication electronics test article shall be terminated with shielded dummy loads as<br />

appropriate for the test article and the test being performed to produce maximum normal output. At the<br />

frequencies of concern, the Voltage Standing Wave Ratio (VSWR) of the resistive dummy loads, attenuators,<br />

directional couplers, samplers, power dividers and the internal standard impedance of the signal generators<br />

shall not be greater than:<br />

− Transmitter Loads 1.5:1<br />

− All other dummy loads and pads 1.3:1<br />

− Standard signal generators 1.3:1<br />

9.1.1.8 Measurement Antenna Position<br />

9.1.1.8.1 Location<br />

# Reference IIDA-DV-REQ-0425<br />

When performing radiated emission and susceptibility tests, no points of the antennas shall be less than 1 m<br />

from the walls, ceiling or floors of the shielded enclosure or obstruction.<br />

9.1.1.8.2 Biconical Antenna<br />

A minimum distance of 30 cm from the floor and ceiling and 1 m from the walls of the shielding enclosure or<br />

obstruction can be accepted when the biconical antenna is used in vertical polarisation.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


IID-A SECTION 9<br />

9.1.1.8.3 Linearly polarised antennas<br />

# Reference IIDA-DV-REQ-0430<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-56/63<br />

For radiated emission measurements above 30 MHz, linearly polarised antennas shall be positioned to<br />

measure the vertical and horizontal components of the emission<br />

For radiated susceptibility measurements above 30 MHz, linearly polarised test antennas shall be positioned<br />

so as to generate vertical and horizontal fields.<br />

9.1.1.9 Line Impedance Stabilisation Network (LISN)<br />

# Reference IIDA-DV-REQ-0435<br />

In order to reproduce the system power bus impedance and to standardise the measurement conditions used<br />

in different test sites, emissions and susceptibility measurements on primary power lines shall be performed on<br />

inserting a Line Stabilisation Network (LISN) between the EGSE power supply and the unit under test.<br />

The LISN schematic and the relevant impedance versus frequency are given in Fig. 9.5.6-1 and Fig. 9.5.6-2<br />

shall be used.<br />

Figure 9.5.6-1: LISN schematic<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *<br />

# *


IID-A SECTION 9<br />

Impedance Amplitude (Ohms)<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 2<br />

125 mOhm<br />

10 4<br />

10 6<br />

Frequency (Hz)<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-57/63<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

50 Ohm<br />

Figure 9.5.6-2:Output impedance of the LISN with shorted input terminals<br />

9.1.1.10 Test Configuration and Operation Requirements<br />

9.1.1.10.1 Test Article Operations<br />

# Reference IIDA-DV-REQ-0440<br />

For a representative set of all modes of operation, controls on the EUT shall be operated and adjusted as<br />

prescribed in the instruction manuals or as required by the test article specification in order to obtain optimum<br />

design performance. For susceptibility testing, the expected most susceptible modes shall be selected. For<br />

emission noise, the noisier modes shall be selected.<br />

9.1.1.10.2 Input Voltage Selection<br />

Except when specified differently, the voltage at the test article input power leads shall be selected as the worst<br />

case value with respect to the test within the nominal voltage range.<br />

9.1.1.10.3 Interface Signal Operation<br />

Interface signal of the test article shall be active during testing as required by operations defined in paragraph<br />

9.5.6.10.1.<br />

9.1.1.10.4 Susceptibility Criteria<br />

# Reference IIDA-DV-REQ-0445<br />

The threshold of susceptibility shall be determined for test articles unable to meet the susceptibility criteria.<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

10 8<br />

10 10<br />

# *<br />

# *


9.1.1.10.5 Time Duration<br />

# Reference IIDA-DV-REQ-0450<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-58/63<br />

Each susceptibility level shall be maintained for a minimum time in order to ensure that possible susceptibility<br />

conditions are achievable and detectable.<br />

9.1.1.10.6 Test Equipment Warm-up time.<br />

Prior to performing tests, the measuring equipment shall have been switched on for a period of time adequate<br />

to allow parameter stabilisation. If the operation manual does not specify a specific warm up time, the<br />

minimum warm up period shall be 1 hour.<br />

9.1.1.11 Bonding, Isolation and Grounding/Conductivity Tests<br />

These tests are carried out to demonstrate compliance with the required instrument performance.<br />

9.1.1.12 Conducted Emission Tests<br />

The suggested test set-ups for CEDM and CECM are shown in figure 9.5.6-3.<br />

I DM<br />

to spectrum<br />

analyser<br />

I DM<br />

HF probe<br />

I CM/2<br />

I CM/2<br />

to spectrum<br />

analyser<br />

HF probe<br />

Figure 9.5.6-3: Conducted Emission - Test set-up for DM and CM<br />

9.1.1.13 Conducted Susceptibility Tests<br />

The test set-up for differential mode susceptibility on primary power lines is shown in Figure 9.5.6-4 for<br />

frequencies up to 50kHz. For the frequency range 50kHz-50MHz then the test set-ups shown in Figure 9.5.6-5<br />

or Figure 9.5.6-6 should be used. The injected voltage relevant to the susceptibility threshold shall be<br />

monitored and recorded. The injected current shall be limited to 1 Ar.m.s on the input power lines.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-59/63<br />

Figure 9.5.6-4: Conducted susceptibility on primary power lines, differential mode. Frequency<br />

domain 30Hz-50kHz<br />

EGSE<br />

Primary Power<br />

Signal Lines<br />

+ve<br />

-ve<br />

Generator Amplifier<br />

Ground Plane<br />

Isolation<br />

Transformer<br />

Oscilloscope<br />

Note:<br />

Coupling Capacitor C<br />

50kHz-1MHz - 1uF<br />

1MHz-50MHz - 0.1uF<br />

or use R.F. Coupler<br />

Figure 9.5.6-5: Conducted susceptibility on primary power lines, differential mode. Frequency<br />

domain 50kHz-50MHz<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

C


IID-A SECTION 9<br />

Power<br />

Supply<br />

Signal<br />

Generator<br />

LISN<br />

Amplifier<br />

(power return<br />

grounded at input)<br />

Injection<br />

probe<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-60/63<br />

Oscilloscope<br />

(voltage measured<br />

with differential input<br />

or differential probe)<br />

Equipment<br />

Under Test<br />

(performance monitor<br />

for degradation or deviation)<br />

Figure 9.5.6-6: Conducted susceptibility on primary power lines, differential mode. Frequency<br />

domain 50kHz-50MHz<br />

The text set-up for common mode susceptibility on primary power lines and on signal bundles is shown in<br />

Figure 9.5.6-7. The signal lines shall be loaded with electrical simulators of the interfacing circuits.<br />

Signal<br />

Generator<br />

Power<br />

Supply<br />

LISN<br />

Amplifier<br />

(power return<br />

grounded at input)<br />

Injection<br />

probe<br />

Oscilloscope<br />

(voltage measured<br />

with differential input<br />

or differential probe)<br />

Equipment<br />

Under Test<br />

(performance monitor<br />

for degradation or deviation)<br />

Figure 9.5.6-7 Conducted susceptibility on primary power lines and signal bundles. Common<br />

mode, frequency domain 10kHz-50MHz<br />

The test set-up for common mode conducted susceptibility between the subsystem equipment signal reference<br />

and the ground plane (transient and steady state) is shown in Figure 9.5.6-8 (externally accessible ground<br />

wire) and Figure 9.5.6-9 (no accessible ground wire).<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-61/63<br />

Figure 9.5.6-8; Conducted susceptibility, common mode between signal reference and ground,<br />

transient and steady state, externally accessible ground wire<br />

Figure 9.5.6-9: Conducted susceptibility, common mode between signal reference and ground,<br />

transient and steady state, no accessible ground wire<br />

9.1.1.14 Radiated Emission Tests<br />

# Reference IIDA-DV-REQ-0455<br />

The suggested test set-up is as shown in Figure 9.5.6-10. The emission at the antenna at one metre distance<br />

from the test object, which gives the highest reading, shall be the Radiated Electric Field Emission (REE). Above<br />

30 MHz, the requirement shall be met for both horizontally and vertically polarised waves. The upper<br />

frequency range of the measurement shall be in accordance with the following Table 9.5.6-2.<br />

Tenth harmonic of highest operating frequency<br />

of equipment<br />

Required Upper Limit<br />

< 1 GHz 1 GHz<br />

> 1 GHz 18 GHz<br />

Table 9.5.6-2: Radiated E-Field Frequency Range for Emission Test<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


# Reference IIDA-DV-REQ-0460<br />

IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

Figure 9.5.6-10: Radiated Emission E-Field Test<br />

ISSUE : 3.1 PAGE :9-62/63<br />

The Radiated Emission E-field in the notch defined to protect the spacecraft TC band shall be tested for all<br />

equipment involving high frequency (> 10 MHz) clocks or signals.<br />

9.1.1.15 Electro Static discharge ESD Tests<br />

Figure 9.5.6-11 contains a suggested arc source schematic capable of establishing the required discharge.<br />

The discharge circuit must be adjusted in order to get the energy and the voltage specified in paragraph<br />

5.14.3.11.<br />

Any other equivalent type of circuitry (e.g. ESD simulator) can be used and shall be fully described in the<br />

relevant plan.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential<br />

# *


IID-A SECTION 9<br />

REFERENCE : SCI-PT-IIDA-04624<br />

DATE : 12/02/2004<br />

ISSUE : 3.1 PAGE :9-63/63<br />

Figure 9.5.6-11: Arc source schematic capable of generating the discharge<br />

A minimum of 10 discharges shall be performed.<br />

The discharge shall be a direct discharge of current through the equipment chassis and shall be generated by<br />

putting the tip of the gun in contact with the chassis or/and by moving it closer to the chassis until the<br />

discharge occurs<br />

9.1.7 Qualification to the Radiation Environment<br />

Although, it will not be possible to effectively demonstrate the compatibility of the design of the instruments<br />

and their units with the specified radiation environment, the design shall achieve the following requirements:<br />

− the components and their shielding shall be compatible with the requirements of the radiation<br />

environment such that neither Cumulative Effects (Dose / Displacement Damage) neither Single Event<br />

Effects will cause failures or produce unacceptable changes in performance,<br />

− components shall be qualified (either based on existing or new test data) to withstand twice the<br />

expected level of ionising Dose . Displacement Damage sensitivity shall be considered for optoelectronics<br />

− in the design there shall be included the tools necessary to restore the original performance of the<br />

detector systems (curing). It is highly recommended that detectors and associated electronics are<br />

exposed to a simulated radiation environment with the objectives of establishing preliminary curing<br />

procedures and determining realistic performance predictions.<br />

− Single Event Effects such as SEU (logic devices) or SET (linear bipolar devices and digital optocouplers)<br />

shall not result in failure propagation outside the instruments.<br />

Référence Fichier :IID-A-09-3-1.doc du 06/02/04 16:13 Référence du modèle : DOORS - Modèle de page seule_v76.dot<br />

Reproduction interdite © ALCATEL SPACE Company confidential


IID-A Section 10<br />

10 MANAGEMENT, PROGRAMME, SCHEDULE<br />

10.1 General<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-1/19<br />

A major constraint of ESA’s Herschel/Planck programme is to implement a mission, which meets its<br />

scientific objectives within the defined financial envelope. In order to meet these constraints, it is ESA’s<br />

policy to minimise the spacecraft development risks by using as far as possible off the shelf hardware<br />

and to minimise the risks by following a properly phased design, development and verification<br />

programme. However, the programme may also be extremely vulnerable to potential payload<br />

problems. It is therefore essential that the PI adheres to the requirements established in this chapter.<br />

These requirements address:<br />

the management structure of the instrument team, to ensure that an efficient organisational<br />

structure is established which will perform the design, development and verification of the<br />

instrument within the constraints of the programme<br />

project control processes to ensure that the work to be performed is adequately scoped and<br />

scheduled, and that appropriate configuration management principles are implemented<br />

regular reviews and reporting to provide an assessment of the completion status of the instruments<br />

and early identification of potential risks which may impact the performance of the instruments, the<br />

satellite interfaces and resources, and the schedule of deliverables<br />

the definition of deliverables as a working basis for spacecraft development and implementation<br />

the Herschel/Planck programme baseline schedule to synchronise due dates of deliverables.<br />

10.2 Management<br />

10.2.1 ESA Responsibilities<br />

The overall management of the implementation and execution of the Herschel/Planck programme will<br />

be under the responsibility of the ESA Project Manager (PM) located at ESTEC, Noordwijk, The<br />

Netherlands. He will have overall responsibility for the implementation and execution of all technical<br />

and programmatic aspects including:<br />

- Spacecraft development, integration and test<br />

- Launch<br />

- Initial Orbit Phase<br />

- Spacecraft/Instrument Commissioning Phase<br />

The ESA PM will be directly supported in the execution of the programme by an ESA Project Office<br />

located at ESTEC.<br />

All scientific aspects of the programme will be co-ordinated by the ESA Herschel/Planck Project<br />

Scientists (PS’s), who are the formal interface for scientific matters.<br />

The ESA Space Science Department will be responsible for the Herschel/Planck scientific operations<br />

after successful completion of the Spacecraft/Instrument Commissioning Phase.


10.2.2 ESA Organisation<br />

IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-2/19<br />

Under the responsibility of the ESA PM, a formal ESA Project Office structure will be implemented,<br />

which will include the following disciplines:<br />

- System Engineering<br />

- Spacecraft Engineering<br />

- Payload Engineering<br />

- Overall Spacecraft Assembly, Integration and Verification<br />

- Mission Operations<br />

- Product Assurance<br />

Within the Payload Engineering, a group of engineers will be the interface on the ESA side between the<br />

Project Office and the Principal Investigator (PI) team, and will:<br />

- Co-ordinate with the Pl and his/her team on all matters pertaining to their instrument<br />

- control the programmatic and technical interfaces as defined in the (to be) approved Instrument<br />

Interface Documents (AD 04,05,06,07,08)<br />

- ensure that the Project Office is fully cognisant of the PI’s needs on the spacecraft and mission<br />

design<br />

- assist the PI’s from the Project Office’s side in resolution of technical or programmatic problems as<br />

appropriate, and pursue formal approval of possible changes<br />

- witness the pre-delivery acceptance tests of the instrument on behalf of the ESA using appropriate<br />

PI team expertise.<br />

10.2.3 Prime contractor Responsibilities<br />

The ESA intends to delegate to the Prime contractor the responsibility of the management of all<br />

technical interfaces of the payload with the spacecraft system including all margins and schedules.<br />

In the frame of its responsibilities, the Prime contractor will:<br />

• Design, produce and verify Herschel and Planck spacecraft in compliance with the ESA<br />

system requirements and;<br />

• Deliver in time a flight-worthy Flight Model for both spacecraft including the respective<br />

scientific instruments.<br />

As part of its tasks related to instrument interfaces, the Prime contractor and its industrial team will<br />

jointly :<br />

• Maintain (update & issue) the Instrument Interface Document (IID) part B, describing each<br />

instrument interface data to be used for the spacecraft design, manufacturing and<br />

verification, using inputs from each relevant instrument team and after agreement with the<br />

relevant PI,<br />

• Design, develop and verify both spacecraft in compliance with instrument interfaces as<br />

specified in each Instrument Interface Document (IID) part B,<br />

• Produce this Instrument Interface Document (IID) part A, describing each spacecraft<br />

interface data to be used for the instrument design, manufacturing and verification.<br />

These activities will be conducted under the supervision of the ESA and according to the rules defined in<br />

the ESA prime Contract. In particular, the Prime contractor with participation of the Instrument


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-3/19<br />

Consortium shall directly manage, define, analyse, verify all technical interfaces (mechanical, thermal,<br />

electrical, optical, software, …) between the Instrument and the spacecraft in order to guarantee the<br />

compatibility of the instrument with the spacecraft and with the other instruments.<br />

Monitoring of the interfaces will be done via a close follow up of the instrument activities, and<br />

synchronisation with the satellites developments: technical meetings, teleconferences, exchange of<br />

technical documents, analyses of monthly report, reviews, …<br />

The agency will approve the IID-B / IID-A, ensure the compliance of these documents with the scientific<br />

objectives of the mission and manage the interfaces of the instruments with the ground segment.<br />

Industry responsibilities related to instrument interfaces are described in more details in RD10.<br />

10.2.4 Prime contractor Organisation related to instrument interfaces<br />

(refer to RD 91)<br />

PACS<br />

HIFI<br />

HIFI FPU<br />

SPIRE<br />

SPIRE FPU<br />

PACS FPU<br />

Herschel EPLM contractor:<br />

ASED<br />

Prime contractor Herschel - Planck : Alcatel<br />

Herschel EPLM<br />

Project Manager<br />

K;Moritz / W.Ruehe<br />

Payload engineering<br />

manager<br />

E.Hoelzle<br />

HIFI FPU<br />

Interfaces<br />

S.Idler<br />

SPIRE FPU<br />

Interfaces<br />

H.Faas<br />

PACS FPU<br />

Interfaces<br />

D.Schink<br />

Herschel / Planck<br />

Alcatel Project Manager<br />

J.J.Juillet<br />

Herschel<br />

Instruments<br />

Manager<br />

G.Doubrovik<br />

Instrument Interface<br />

Manager<br />

B.Collaudin<br />

Planck Instrument<br />

Manager<br />

J.P.Chambelland<br />

SVM contractor: Alenia<br />

Herschel Planck<br />

SVM's Project<br />

Manager<br />

O.Tornani / P.Musi<br />

System Engineer<br />

M.Sias<br />

Instrument<br />

interface engineer<br />

Marco Cesa<br />

Figure 10.2.4-1 Prime contractor organisation related to Instrument interfaces<br />

10.2.5 Principal Investigator Responsibilities<br />

The PI shall represent the single point formal interface for the instrument with the ESA Project Office. It<br />

is the overall responsibility of the PI to ensure that the complete instrument programme is implemented<br />

and executed in a manner such that the science objectives are achieved within the mission constraints<br />

of the approved project.<br />

HFI<br />

LFI


IID-A Section 10<br />

Specifically the responsibility of the PI will include:<br />

10.2.5.1 Management<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-4/19<br />

- Taking full responsibility for the instrument at all times and retaining full authority within the<br />

instrument team over all aspects related to the procurement and execution of the instrument<br />

programme. In this context the PI shall be empowered to take commitments and make decisions on<br />

behalf of the other participants in the instrument team.<br />

- Establishing an efficient and effective managerial scheme to be utilised in all aspects of the<br />

instrument project.<br />

- Organising the efforts, assigning tasks and guiding other members of his/her team<br />

- The establishment, implementation, analysis and reporting of schedule network planning as<br />

required<br />

- Providing the formal managerial interface of the instrument to ESA Project Office and supporting<br />

ESA management requirements (e.g. Instrument progress reviews, Spacecraft and Mission Project<br />

reviews, Change procedures, Product Assurance etc.) as required.<br />

10.2.5.2 Scientific<br />

- Attending meetings of the Science Teams and supporting groups as appropriate and taking a full<br />

and active part in their work<br />

- Participation in Herschel/Planck workshops and scientific conferences<br />

- Publishing scientific results<br />

- Cooperation with other Herschel/Planck PIs, Guest Observers, Mission and Survey<br />

- Scientists, or other science colleagues in order to maximise the scientific return of the<br />

Herschel/Planck mission.<br />

10.2.5.3 Hardware<br />

- Defining functional requirements of his/her instrument and its ancillary equipment<br />

- Ensuring the development, construction, testing and delivery of the hardware associated with the<br />

instrument. This shall be in accordance with the scientific performance, technical and<br />

programmatic requirements in the (to be) approved IIDs (AD04, 05, 06, 07, 08)<br />

- Ensuring adequate scientific calibration of all parts of the instrument both on the ground and in<br />

orbit<br />

- Ensuring that the design and construction of necessary hardware, and its development and test<br />

programmes are appropriate to the objectives of his/her instrument, and reflect properly the<br />

environmental and interface constraints to which the hardware will be subjected during the<br />

complete mission<br />

- To ensure that all procured hardware is compliant with ESA requirements through participation in<br />

technical working groups and control boards as requested, to ensure system level compatibility to<br />

be maintained.


10.2.5.4 Software<br />

IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-5/19<br />

- To ensure the development, testing and documenting of all software necessary for the control,<br />

monitoring, testing, operation and data retrieval of his/her instrument<br />

- To ensure the delivery of such software and its documentation to ESA or elsewhere, as requested in<br />

due time, to support each project phase such as Assembly, Integration, Verification (AIV), Launch<br />

and Flight Operations<br />

- To ensure that all instrument software that interfaces with the project is compliant with ESA<br />

requirements<br />

10.2.5.5 Documentation<br />

- Providing all required analysis and documentation as specified in the IIDs (AD 04,05,06,07,08).<br />

10.2.5.6 Product Assurance<br />

- Providing Product Assurance functions that are compliant with the requirements in AD 19.<br />

10.2.5.7 Data Processing and Dissemination<br />

- Ensuring that calibrated data of the instrument is made available in due time for payload<br />

operations and planning as agreed by the Herschel/Planck Science Teams.<br />

- Generation of retrieval and processing software that will ensure accessibility of the data generated<br />

by the instrument to Guest Observers and/or users of data banks.<br />

- Making data and scientific results available to ESA in a timely manner and in a form suitable for<br />

public relations purposes (also for general public) as and when required.<br />

- Provision of due acknowledgement to ESA in all published material<br />

10.2.6 Instrument Team Organisation<br />

The PI shall establish a detailed organisation chart for his/her team with defined named responsibilities<br />

clearly showing that all aspects of the instrument are efficiently covered by the appropriate expertise.<br />

Co-investigators shall be identified in the organisation chart. Managerially team members shall have<br />

no FORMAL interface with ESA and shall communicate formally to ESA via the PI.<br />

Key personnel, including technical Instrument Managers, should be identified within the management<br />

scheme together with a short description of their tasks and functions.<br />

10.2.7 Formal Communication<br />

10.2.7.1 Principal Investigators<br />

All FORMAL communication and agreements concerning technical and programmatic aspects shall be<br />

agreed between the PI, the Prime contractor PM and are to be approved of ESA PM.


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-6/19<br />

All formal communication and agreements concerning scientific aspects shall be made between the PI<br />

and the ESA PS.<br />

10.2.7.2 Communication with ESA Contractors<br />

All communication between PI’s and the Spacecraft Prime Contractor shall be conducted directly, with<br />

copy to the ESA Project Manager.<br />

10.2.7.3 Communication with ESA Departments<br />

Contacts with ESA departments concerning all non-scientific aspects of the instrument controlled by the<br />

PI/ESA agreement including post-launch activities shall be via the ESA Project Office.<br />

This does not apply for direct, separate contracts outside the PI/ESA agreement.<br />

10.2.8 Financing<br />

PI’s shall at all times be responsible for the funding arrangements of their instruments and the<br />

management thereof.<br />

PI’s shall not assume any funding from ESA for any part of their instrument. Should, for programmatic<br />

or technical reasons, a PI requests to use an ESA facility, then the use will be charged to the PI.<br />

This requirement shall apply up to the point of final acceptance of the instrument by ESA.<br />

10.3 Project Control<br />

10.3.1 Project Control Objectives<br />

In order to manage the overall Herschel/Planck programme, the Principal Investigator (PI) will<br />

implement project control systems and procedures focusing on the definition, maintenance and<br />

reporting of schedule, costs, and configuration information.<br />

The objective of this <strong>section</strong> is to clearly specify the management information required from each<br />

Instrument Team. Due to the importance of the instruments in the programme, it is critical that each PI<br />

supports this scheme with relevant schedule and configuration information. In case the Principal<br />

Investigator feels that the spirit of the requirement could be met by a more appropriate approach, he<br />

should propose alternatives which will be reviewed by ESA.<br />

10.3.2 Project Breakdown Structures<br />

In order to clearly identify the instrument, the scope of the work and the responsibilities involved, the<br />

following structures will be created by the Instrument Team:<br />

- the Product Tree (PT) to break down the instrument into its components, both hardware and<br />

software<br />

- the Work Breakdown Structure (WBS) to define the scope of the work and the responsibilities of the<br />

Co-I’s involved.<br />

-<br />

Product Tree:


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-7/19<br />

A Product Tree shall be developed by the PI, depicting a product oriented breakdown of the instrument<br />

into successive levels of detail. The Product Tree shall be submitted to ESA.<br />

Work Breakdown Structure:<br />

A Work Breakdown Structure shall be developed by the PI, based on its agreed Product Tree and<br />

extending the applicable elements to include appropriate development models and support functions<br />

necessary to produce all the deliverables.<br />

For each Work Package, the PI shall complete a Work Package Description (WPD). The PI shall ensure<br />

all the responsibilities assigned to manage or to perform all the Work Packages are identified in the<br />

instrument team organisation chart (see <strong>section</strong> 10.1). The WBS shall be submitted to ESA.<br />

10.4 Schedule Control<br />

10.4.1 Baseline Master Schedule<br />

The PI shall establish and submit to ESA, a Baseline Master Schedule covering all the instrument<br />

programme activities identified in the Work Breakdown Structure.<br />

All milestones specified by ESA, shall be included in the schedule and be agreed by the Instrument<br />

Team. The PI shall identify additional milestones as required and agree them with ESA.<br />

All interfaces, such as procurement items, hardware deliveries, reviews, etc. shall be clearly identified.<br />

The schedule shall reflect the result of detailed task analysis and critical review of all the activities<br />

associated with the instrument programme. It shall contain all activity interdependencies, durations and<br />

constraints.<br />

Directly from the Baseline Master Schedule, a set of bar charts shall be created, covering:<br />

- Overall instrument programme<br />

- Individual instrument models<br />

- Instrument model integration and testing<br />

- Detailed bar chart of critical activities<br />

Changes to the Baseline Master Schedule shall only be made with the approval of ESA.<br />

10.4.2 Schedule Monitoring<br />

The PI shall continuously record progress achieved and maintain forecasts.<br />

The PI shall consolidate the progress and forecasts of all groups contributing to the instrument and<br />

compare schedule performance with respect to the overall Baseline Master Schedule.<br />

Where deviations to the baseline have occurred or are predicted, the PI shall develop and implement<br />

corrective actions.<br />

10.4.3 Schedule Reporting<br />

In order to track the progress, the PI shall provide to the prime contractor and to ESA, the following<br />

schedule reports as part of the reporting procedure (see <strong>section</strong> 10.10):<br />

- on a monthly basis:


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-8/19<br />

- Quick Look Report<br />

- additionally, on a quarterly basis, progressed bar charts showing:<br />

- a summary of the whole instrument project<br />

- a summary of each constituent and each organisation<br />

- details of the next 6 months period.<br />

During the manufacture and test phases the frequency of schedule reports may be increased should the<br />

ESA judge progress to be critical.<br />

10.5 Configuration Management<br />

10.5.1 Objectives<br />

The objectives of Configuration Management are to establish:<br />

- a configuration identification baseline system which defines through approved specifications,<br />

interface documents and associated data the requirements for the instrument<br />

- a configuration control system which controls all the changes to the identified configuration of the<br />

instrument<br />

- a configuration accounting system which documents all changes to the baseline configurations,<br />

maintains an accurate record of configuration change incorporation, and ensures conformity<br />

between the end item As Built Configuration (ABCL) and its appropriate design and qualification<br />

identification (CIDL including waivers).<br />

10.5.2 Responsibilities<br />

The PI shall be responsible for managing the configuration of his/her instrument and the lower level<br />

products of which it consists. For this purpose, he shall set up the necessary organisation and means for<br />

satisfying the objectives and requirements of configuration management.<br />

The PI shall also impose configuration management requirements on contractors and suppliers as<br />

appropriate for the items being provided to the instrument. For this purpose, the PI shall ensure<br />

compatibility between his/her own configuration management and the one implemented by all other<br />

participants to his/her instrument programme.<br />

The PI shall be responsible for the implementation and operation of a Configuration Control Board<br />

(CCB) at his/her level.<br />

10.5.3 Configuration Identification<br />

The configuration baseline shall be established with respect to requirements, design and verification.<br />

The baseline shall include:<br />

- Instrument System Specification<br />

- Instrument System Support Specification<br />

- Interface Control Documents<br />

- Design Analysis documents<br />

- Design Specification


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-9/19<br />

- Drawings (Design and manufacturing)<br />

- Manufacturing Procedures<br />

- Alignment Plan<br />

- Parts, Materials and Process lists<br />

- Verification test plan.<br />

The configuration baseline shall be established and reviewed at each Instrument Review. It may also be<br />

established and reviewed as required at selected intermediate stages.<br />

The "as designed" baseline shall be finalised at the Instrument Hardware Design Review. Verification<br />

documents including design analyses and test reports shall make reference to the configuration status<br />

of the design or the hardware or software being evaluated.<br />

10.6 Configuration Control<br />

10.6.1 Instrument Internal Configuration Control<br />

As a Herschel/Planck part of the management structure, the PI shall set up a configuration control<br />

procedure for his/her instrument in such a manner that the status of all aspects of the instrument such<br />

as the design and manufacturing of hardware and development of software can be unambiguously<br />

defined at any time.<br />

The control procedure shall allow ESA, to conduct a configuration audit at any point in the programme<br />

in order to obtain the up-to-date status of the instrument.<br />

10.6.2 IID Configuration Control<br />

The requirements defined in the IID Part A and Bs (AD 04,05,06,07,08) will be subject to configuration<br />

control and shall reflect the up to date agreed configuration baseline between ESA, prime contractor<br />

and the PI. Changes to these documents shall be handled using the Engineering Change Request (ECR)<br />

form. Deviations from the requirements defined in IID A and B will be handled using the Request for<br />

Waiver (RFW) form.<br />

10.7 Configuration Status Accounting<br />

The current status of all configured documents shall be sent to ESA, as part of the reporting procedure<br />

required in <strong>section</strong> 10.10.<br />

Configuration Item Data Lists (CIDL) listing all the documents and their applicable issues and revisions<br />

which define the configuration baseline shall be prepared and submitted for each Instrument Review.<br />

The PI shall establish and maintain As Built Configuration Lists (ABCL) listing all the documents and<br />

their issues and revisions defining the as built configuration.<br />

Differences between the as designed baseline and the as built configuration list shall be identified for<br />

all qualification and flight hardware and software. The validity of all design verifications, including<br />

analyses and tests, shall be assessed for all the differences and modifications from the as designed<br />

baseline.


10.8 Reviews and reporting<br />

10.8.1 General<br />

IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-10/19<br />

The technical and programmatic aspects of each instrument programme shall be assessed between<br />

ESA, and each Instrument Team through:<br />

- a cycle of formal Instrument Reviews<br />

- instrument progress meetings<br />

- regular progress reporting.<br />

The overall scientific performance shall be monitored by ESA, during the review cycle and through the<br />

regular progress reporting supplied by the PI. Detailed scientific aspects shall be reviewed within the<br />

context of the Herschel/Planck Science Teams, as defined in the Herschel/Planck Science Management<br />

Plans.<br />

Operations and data processing aspects shall be reviewed according to the Herschel and Planck<br />

SIRD’s. (AD 4-1 & 2)<br />

10.8.2 Instrument Reviews<br />

10.8.2.1 General<br />

There shall be six major reviews for each instrument selected for the Herschel/Planck mission. The<br />

reviews form part of the overall Herschel/Planck review programme.<br />

For each of the reviews, a review board will be set-up. The board will consist of ESA Personnel and will<br />

be chaired by the Herschel/Planck Payload Manager together with the Project Scientist or their<br />

designated representatives.<br />

The reviews shall be conducted by ESA, nominally at ESA premises. The objectives will be to ensure<br />

that:<br />

- The instrument design will be compatible for achieving the instrument performance.<br />

- The instrument design complies with the interface requirements of the Instrument Interface<br />

Documents (IID’s)<br />

- The scheduled delivery dates are compliant with the system level programme.<br />

The data package to be reviewed shall cover both the instrument hardware and software together with<br />

details of any other deliverables such as MGSE, EGSE, OGSE and documentation and shall be<br />

delivered to the ESA Project Team as a minimum twenty working days prior to the scheduled review<br />

date.<br />

The output of the review shall provide recommendations for consideration by the ESA Project Manager<br />

of the Principal Investigator in technical or programmatic areas. Either party shall provide a formal<br />

response to such recommendations within one month of review completion.<br />

Non-compliance with other system elements will be brought forward to the following system level<br />

review for resolution.<br />

Following the system level reviews the IID’s will be formally reissued to reflect the results of the review.<br />

It is realised that, aside the formal ESA reviews defined in this paper, instruments might want to conduct<br />

further instrument reviews, e.g. for internal monitoring of progress, request from funding agencies. In<br />

order to avoid duplication of effort combination of instrument internal and formal ESA reviews can be


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-11/19<br />

envisaged, as long as the objectives of both reviews match. For that reason it is planned to handle the<br />

below given dates for reviews in a flexible way, i.e. allowing a bandwidth of several months.<br />

The following Instrument Reviews shall be held:<br />

- the Instrument Science Verification Review (ISVR, end 1999 / early 2000 )<br />

- the Instrument Intermediate Design Review (IIDR, end 2000 / early 2001)<br />

- the Instrument Baseline Design Review (IBDR, mid/end 2002)<br />

- the Instrument Hardware Design Review (IHDR, mid/end 2003)<br />

- the Instrument Critical Design Review (ICDR, mid/end 2004)<br />

- the Instrument Flight Acceptance Review (IFAR, date 3rd quarter 2006)<br />

In addition, Instrument Acceptance Reviews (IAR's) will be held at delivery of each of the instrument<br />

models.<br />

10.8.2.2 Instrument Science Verification Review (ISVR)<br />

It shall be conducted after instrument selection, in preparation for the release of the ITT for S/C<br />

development.<br />

The objectives of the review shall be to demonstrate that:<br />

- the instrument conceptual design has been finalised/ i.e. is compatible for achieving the<br />

instrument performance<br />

- the instrument design will achieve the anticipated science objectives<br />

- the overall interface requirements definition has been finalised<br />

- the conceptual design for on-board software has been finalised<br />

- the conceptual design for the necessary MGSE, EGSE and OGSE has been finalised.<br />

10.8.2.3 Instrument Intermediate Design Review (IIDR)<br />

It shall be conducted at the time of Prime Contractor selection.<br />

The objectives of the review shall be to demonstrate that:<br />

- the instrument detailed system design has been finalised<br />

- the instrument subsystem design has been finalised<br />

- the detailed interface requirements have been finalised<br />

- the design for the on-board software has been finalised (User Requirements Document)<br />

- the design of the necessary MGSE, EGSE and OGSE has been finalised.<br />

10.8.2.4 Instrument Baseline Design Review (IBDR)<br />

It shall be conducted in preparation for the S/C SRR.<br />

The objectives of the review shall be:


IID-A Section 10<br />

- the freeze of instrument system and subsystem requirements<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-12/19<br />

- the freeze of the on-board software requirements (Software Requirements Documents)<br />

- the release for manufacture of instrument Avionics Model (AVM) and Cold Qualification<br />

Model (CQM)<br />

- the freeze of the MGSE, EGSE and OGSE design<br />

- the release for manufacture of the MGSE, EGSE and OGSE.<br />

10.8.2.5 Instrument Hardware Design Review (IHDR)<br />

It shall be conducted in preparation for the S/C AVM/CQM phase.<br />

The objectives of the review shall be:<br />

- the assessment of the instrument AVM/CQM programme<br />

- acceptance of the AVM/CQM models for spacecraft system level<br />

- the acceptance and freeze of the on-board software (Architectural Design Document)<br />

10.8.2.6 Instrument Critical Design Review (ICDR)<br />

It shall be conducted towards the end of the industrial phase C, in preparation for the S/C CDR, after<br />

release of the AVM/CQM test reports.<br />

The objectives of the review shall be:<br />

- the assessment of the results of the instrument level tests of the AVM/CQM<br />

- the assessment of the results of qualification on instrument unit and subsystem level<br />

- the confirmation of instrument Flight Model Design, its Instrument Users' Manual and the<br />

on-board software Detailed Design Document.<br />

10.8.2.7 Instrument Flight Acceptance Review (IFAR)<br />

This review shall be conducted after completion of the spacecraft system level FM electrical verification<br />

including on-line compatibility tests with the respective flight operations centres and shall precede the<br />

programme level Flight Acceptance Review.<br />

The objectives of the review shall be:<br />

- the assessment of the results of the system level FM testing with respect to the instrument<br />

- the assessment of the completion of qualification of instrument units and subsystems<br />

- the update of the Instrument Users' Manual as required<br />

- the close out any outstanding issue.<br />

10.9 Instrument Progress Meetings<br />

Regular Instrument Progress Meetings shall be held nominally on the premises of the PI’s during the<br />

design, development and verification programme of the instrument.


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-13/19<br />

These meetings will be conducted between ESA, the Prime Contractor and each Instrument Team with<br />

the objective of ensuring that the interface technical design integrity of the instrument, its compatibility<br />

with the spacecraft system, and instrument programmatics are proceeding in a manner which will not<br />

jeopardise the overall programme.<br />

The Instrument Team shall be represented by the necessary team to provide the required information,<br />

i.e. by the PI, the CO-Is, the Instrument Manager and the Local Project Managers as necessary.<br />

The meetings shall be held on a quarterly basis. The frequency may be changed on request of ESA.<br />

Detailed technical problems occurring on either side of the interface shall be flagged during these<br />

meetings and corrective actions, including their schedule impact, agreed and implemented.<br />

10.10 Reporting<br />

The Principal Investigator shall submit to the Prime contractor and to ESA, 5 days after the end of the<br />

month, a Monthly Progress Report in which the current status of each activity is described and problem<br />

areas or potential problem areas are highlighted together with identification of proposed remedial<br />

action.<br />

The Monthly Progress Report shall include the following topics:<br />

- Overall summary<br />

- Design Development and Verification status<br />

- PA status<br />

- Programmatic status, including schedule reports<br />

- Science Performance status<br />

- Problem areas and corrective actions.<br />

The Monthly Progress Reports submitted will be analysed in conjunction with the overall spacecraft<br />

programme by the prime contractor and ESA, and will serve as input to the regular Instrument Progress<br />

Meetings. By this monitoring action early alerting to potential conflicts will be communicated back to<br />

the PI. In the case of major conflicts ESA and the prime contractor, may call for special schedule<br />

meetings to resolve the issue.<br />

10.11 Deliverable Items<br />

10.11.1 Mathematical Models<br />

The PI shall deliver a Structural Mathematical Model (SMM) ,a Thermal Mathematical Model (TMM), an<br />

optical model, and a straylight model of his/her instrument units. These instrument mathematical<br />

models shall be updated as the design progresses. They will serve as input to the spacecraft<br />

mathematical models.<br />

10.11.2 Instrument Models<br />

10.11.2.1 General<br />

The PI shall deliver the instrument models as defined in <strong>section</strong> 9.2:


IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-14/19<br />

Warm Electronic Units:<br />

After the delivery of the PFM and for the duration of its testing, the AVM shall stay with the PFM for<br />

immediate replacement in the case of a failure in a PFM unit for which only spare subassemblies are<br />

available. The failed PFM shall be reparable within a period of 30 calendar days.<br />

FPU/LOU/ Coolers:<br />

For all units where CQM units will be refurbished as flight spares (see para 9.2.1.2), the CQM/FS units<br />

will be returned after test to the instrument team and shall be delivered at the defined date.<br />

Each delivery shall include, as appropriate, instrument hardware, on-board software and ground<br />

support equipment. Each item delivered shall be accompanied by an<br />

End Item Data Package.<br />

Prior to delivery, each item shall undergo formal acceptance on the basis of mutually agreed<br />

acceptance programme witnessed by engineers from ESA, and the spacecraft Prime Contractor.<br />

This acceptance shall include as a minimum the formal verification of all interfaces between the<br />

instrument and spacecraft together with review of all applicable test reports and supporting analyses<br />

and documentation.<br />

Shipment of the instrument models and any other equipment required by either ESA or the PI, shall be<br />

the financial responsibility of the PI. This responsibility shall extend to return for repair and return of all<br />

equipment following launch.<br />

The points of delivery of all items will be determined later in the programme and be included in this<br />

document.<br />

Any insurance deemed necessary by the Principal Investigator for his/her equipment during shipment or<br />

whilst on the premises of ESA, its Contractors or on the launch site, shall be the financial responsibility<br />

of the Principal Investigator.<br />

10.11.2.2 Instrument Hardware<br />

The build standard of each model shall be defined in IID-B and agreed with ESA.<br />

The PFM and the FS shall be fully calibrated before delivery.<br />

The PI shall support the system level integration and test activities as well as the launch preparation by<br />

supplying the GSE and the appropriate manpower and expertise.<br />

10.11.2.3 On-board Software<br />

The instrument on-board software shall be delivered together with the corresponding instrument model.<br />

The on-board software shall either reside in the instrument in a non volatile memory or be delivered in<br />

a format such that it can be loaded through the spacecraft telecommand up-link.<br />

In addition to the flight software, special test software for instrument diagnostics and failure<br />

investigation may be required.<br />

The on-board software to be delivered shall comply with the ESA software standard AD 14 and its<br />

guide to implementation.<br />

The PI remains responsible for the maintenance of the instrument software after delivery up to the end<br />

of mission. He shall support the verification of updated instrument software at system level.


IID-A Section 10<br />

10.11.2.4 Ground Support Equipment<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-15/19<br />

The PI shall deliver the following ground support equipment together with each instrument model:<br />

- Mechanical Ground Support Equipment (MGSE) necessary to transport, handle and integrate<br />

instrument hardware together with appropriate documentation and proof load and calibration<br />

certificates,<br />

- Electrical Ground Support Equipment (EGSE) necessary to stimulate the instrument and to perform<br />

quick look analysis of instrument TM during system tests. It shall be designed such that it can be<br />

integrated into the system EGSE set-up. The instrument EGSE software to be delivered with the<br />

EGSE equipment shall comply with the ESA software standard AD14.<br />

The instrument ground support equipment shall remain at the spacecraft integration site until launch.<br />

However, the PI remains responsible for the maintenance of this equipment.<br />

The PI shall also provide the necessary manpower and expertise support to integrate the instrument<br />

EGSE into the system EGSE.<br />

10.12 Review Data Packages<br />

A data package shall be provided for each of the scheduled Instrument reviews, detailed above. The<br />

package shall be delivered to the ESA Project Team in electronic form (PDF-file).<br />

The packages shall contain the following information to the appropriate level (system, subsystem, unit)<br />

as required by the objective of the review and shall be adapted to each specific review. In order to<br />

avoid duplication of effort, the project is prepared to discuss and accept on a case by case basis<br />

different ways to provide the required information, i.e. either in a self-standing document package<br />

(preferred way) or distributed among instrument generated documents and technical notes with a guide<br />

identifying the location of the information.<br />

Instrument Description Document:<br />

- A description of the current instrument design, its expected performance and interfaces<br />

Instrument Interface Document(s):<br />

- The IID-B updated to the current status<br />

Development Plan/AIV:<br />

Test reports:<br />

User Manual:<br />

- A New/critical technologies demonstration plan<br />

- The Instrument Development and Verification plan<br />

- Integration Plan and Procedures<br />

- Test reports of environmental and functional tests, which demonstrate that the objectives of<br />

the instrument development, scheduled for the time of the review, have been met<br />

- The User Manual


Product Assurance:<br />

Schedule:<br />

Management:<br />

IID-A Section 10<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-16/19<br />

- Product Assurance documentation as required in the Product Assurance Requirements for<br />

the Herschel/Planck instruments<br />

- Schedule network and bar-chart together with an assessment of progress and problem<br />

areas covering all aspects of the instrument and associated equipment<br />

- Management Plan<br />

Ground Support Equipment:<br />

Software:<br />

Notes:<br />

- Electrical ground support equipment, design, development and verification status including<br />

both hardware and software<br />

- Mechanical ground support equipment, design, development and verification status<br />

- Optical ground support equipment, design, development and verification status.<br />

- Onboard software (OBSW) – URD, SRD, ADD, DDD<br />

- GSE’s, e.g. s/c simulator<br />

- Technical notes, covering any topic or analysis which is either required by the IID or has<br />

been requested by the ESA Project Team<br />

10.13 Baseline schedule<br />

10.13.1 Overall Herschel/Planck Baseline Schedule<br />

The overall baseline schedule for Herschel/Planck is given on next page.<br />

10.13.2 Baseline Schedule of Deliverables<br />

The baseline schedule for all deliverables is given in Table 10.13.2-1<br />

Deliverable item Need/Delivery Date<br />

Herschel AVM (involved in QM test) 13 May 2004<br />

Herschel CQM 3 May2004<br />

Return Herschel CQM to PI (1 year after delivery by PI’s)


IID-A Section 10<br />

Herschel PFM 3 May2005<br />

Herschel FS 1 Jan 2006<br />

AVMs not involved in QM test (LFI, SCE,<br />

HIFI)<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-17/19<br />

1 March 2005<br />

Planck HFI CQM 13 April 2004<br />

Return Planck CQM to PI warm electronics are kept for AVM tests,<br />

the rest returns for FS upgrade 1 year<br />

after delivery<br />

Planck PFM 31 Jan 2005<br />

Planck FS 1 Jan 2006<br />

Note: LFI QM is not delivered, and replaced by a MTD (mass & thermal dummy) provided by Alcatel.<br />

Special agreement for Planck Sorption cooler<br />

Sorption Cooler Need/Delivery Date<br />

CQM PACE (simulates redundant cooler<br />

ie +Y side) + Cryoharnesses (JPL & ISN)<br />

1 March 2004<br />

FM1 & FM2 SCS (TMU + SCE) 15 Feb 2005<br />

Note: Sorption cooler compressors for the QM tests are provided by Alcatel: PGSE for the PPLM<br />

cryogenic test, and MTD’s for the SVM thermal test and system mechanical test<br />

Table 10.13.2-1: Baseline Schedule of Instrument Deliverables


IID-A Section 10<br />

Planck Satellite<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-18/19<br />

ASPI<br />

Update 9th July 2003<br />

2002 2003 2004 2005 2006<br />

N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D<br />

SVM STM AIT (Alenia)<br />

Planck CQM/SM<br />

RFQM<br />

SVM FM AIT (Alenia)<br />

Planck FM<br />

21/05 08/09<br />

STM AIT Transportation to test facility<br />

09/09 25/11<br />

Thermal Balance (Alenia at Estec) & NO Shocks test/Shogun Transportation to Alcatel<br />

01/03<br />

PACE CQM<br />

03/05<br />

HFI QM<br />

01/03 24/03<br />

SVM dummy SVM dummy preparation<br />

30/03 28/04<br />

Cryostructure QM Telescope & baffle QM<br />

03/05 17/09<br />

CQM assembly<br />

19/07<br />

CSL available<br />

28/02<br />

LFI and SCE AVM<br />

03/01 16/03<br />

SM Integration<br />

20/09 24/12 17/03 30/05<br />

CSL Thermal tests Mechanical tests<br />

22/12<br />

SVM Batch 1<br />

22/10<br />

Cryo-structure FM<br />

03/05<br />

02/01<br />

CQM to PI except WU (need date) Instruments FS<br />

11/01<br />

WUs for AVM Dismounting<br />

17/06 09/11<br />

RFQM (TBD)<br />

08/12 16/09<br />

SVM FM AIT<br />

31/01<br />

PFM instruments<br />

15/02<br />

SCC FMs<br />

01/04<br />

Batch 2<br />

08/02<br />

Telescospe struct.FM<br />

16/09<br />

Batch 3<br />

15/02 26/07 25/08 25/10<br />

FM WU preparation & assy & full integration<br />

IST1, RF, EMC & SVT 1 tests<br />

27/07 24/08<br />

FM S/C end of integration (ALS with ASP support DURATION TBC)<br />

26/10 10/02<br />

Mechanical tests<br />

13/02 15/08<br />

CSL thermal tests (2 config.)<br />

Figure 10.13-1: Planck Schedule<br />

16/08 03/10<br />

IST2 / (SVT2 shifted was 10d) Del.


IID-A Section 10<br />

Herschel EPLM & Satellite<br />

Reference : SCI-PT-IIDA-04624<br />

Date : 12/02/2004<br />

Issue : 3.1 PAGE : 10-19/19<br />

ASPI<br />

Update 11th July 2003<br />

2002 2003 2004 2005 2006<br />

N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D<br />

Herschel PLM EQM<br />

13/05<br />

AVM's (involved in QM test)<br />

07/01<br />

WU need date<br />

31/07<br />

ISO refurbisht / prep. & assy<br />

01/08 24/10<br />

Integration AXT & Closure<br />

15/10 16/01<br />

EQM early training phase<br />

03/05<br />

CQM's<br />

SVM STM AIT (Alenia) STM AIT<br />

H-EPLM & Satellite Qualification<br />

07/06<br />

Cryo Unit need date<br />

24/03 13/09<br />

Final integration PLM<br />

23/12 15/09<br />

Integration PLM PFM<br />

16/09 18/10<br />

PLM Level Qualification Test<br />

02/05<br />

CQM FPUs return to PIs<br />

02/09 14/03<br />

EQM Test phase<br />

30/11<br />

Delivered to ASED<br />

19/10 31/05<br />

STM sat. Integr., Qualif. & TV/TB test<br />

SVM FM AIT (Alenia) FM AIT<br />

H-EPLM & Satellite Acceptance<br />

17/02<br />

WU panels del. to ASED<br />

22/03<br />

AVM's and EGSE available for AVM campaign<br />

03/05<br />

FM's<br />

31/01<br />

Cryo. Units need date<br />

31/01<br />

WU need date<br />

16/11 07/04<br />

FM EGSE & WU int.<br />

17/01<br />

Delivered to ASED<br />

02/01<br />

Instr. FS<br />

16/06 23/09<br />

FM Cryo Unit Integration & PLM FM Completion<br />

26/09 16/12<br />

PLM FM acceptance tests<br />

16/12 14/02<br />

PFM Satellite Integration<br />

15/02 29/09<br />

PFM Sat. Acceptance Tests Del.<br />

Figure 10.13-2: Herschel Schedule

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!