30.07.2013 Views

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

11. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-oninsulator:<br />

novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006).<br />

http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7063<br />

12. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal<br />

circuits," Opt. Lett. 31, 59-61 (2006).<br />

http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-1-59<br />

13. S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl.<br />

Phys. Lett. Vol. 67, pp. 3114-3116 (1995)<br />

14. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, "Fabrication of 5 nm<br />

linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. Vol. 84, pp. 5299-5301,<br />

(2004)<br />

15. P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, "Topology<br />

optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004).<br />

http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1996<br />

16. L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund, "Broadband photonic<br />

crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004).<br />

http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-5916<br />

17. A. Lavrinenko, P.I. Borel, L.H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H.<br />

Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12,<br />

234-248 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-2-234<br />

18. TEBN-1 by Tokuyama Corp., Tokyo, Japan http://www.tokuyama.co.jp<br />

19. B. Bilenberg, M. Schøler, P. Shi, M. S. Schmidt, P. Bøggild, M. Fink, C. Schuster, F. Reuther, G.<br />

Gruetzner, and A. Kristensen, "Comparison of High Resolution Negative Electron Beam Resists," J. Vac.<br />

Sci. Technol. B 24, 1776-1779 (2006)<br />

20. B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A.<br />

Kristensen, "High Resolution 100 kV Electron Beam Lithography in SU-8," Microlectron. Eng. 83, 1609-<br />

1612 (2006)<br />

21. A.A. Ayón, D.-Z. Chen, R. Khanna, R. Braff, H.H. Sawin, and M.A. Schmidt, "Novel integrated MEMS<br />

process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool, " Mat. Res. Soc.<br />

605, 141-147 (2000)<br />

22. H. Schulz, F. Osenberg, J. Engemann, and H.-C. Scheer, "Mask fabrication by nanoimprint lithography<br />

using anti-sticking layers, " Proc. SPIE 3996, 244-249 (2000)<br />

23. micro resist technology GmbH, Berlin, Germany, http://www.microresist.com<br />

24. T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, and A. Kristensen, “Nanoimprint<br />

lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant<br />

thermoplast,” J. Vac. Sci. Technol. B 22, 1770-1775 (2004)<br />

25. J. S. Jensen and O. Sigmund. “Systematic design of photonic crystal structures using topology optimization:<br />

low-loss waveguide bends,” Appl. Phys. Lett., 84, 2022-2024 (2004)<br />

26. M. P. Bendsøe and O. Sigmund, Topology optimization — Theory, Methods and Applications (Springer-<br />

Verlag, 2003)<br />

1. Introduction<br />

Within recent years the development of planar silicon-on-insulator (SOI) based nanophotonic<br />

structures such as photonic wires and 2D photonic crystal waveguides (PhCWs) [1-6] has<br />

progressed to a level of performance and functionality where technological applications<br />

within optical communication [7-10] and sensing [11,12] have become feasible. In the context<br />

of transferring SOI-based nanophotonics from research to applications it is of relevance to<br />

assess methods of volume manufacture of such components and systems.<br />

The optical performance of SOI-based nanophotonic components is highly sensitive to<br />

the nanometer feature size definition of the components. Even small deviations from the<br />

design may be devastating for the functionality and/or the target operating frequency. This<br />

calls for state-of-the-art nanofabrication technologies, where electron beam lithography (EBL)<br />

and deep-ultraviolet lithography (DUVL) have been successfully applied for device<br />

demonstration. EBL, in particular, provides nanophotonic structures with extremely high<br />

resolution, and this fabrication method is appropriate for many research investigations.<br />

However, being a serial fabrication process it is not optimal for mass fabrication of photonic<br />

devices. DUVL, on the other hand, is developed for mass fabrication. In this case, however,<br />

the production volume must be large enough to support the substantial costs affiliated with the<br />

#76773 - $15.00 USD Received 6 November 2006; revised 18 January 2007; accepted 19 January 2007<br />

(C) 2007 OSA 5 February 2007 / Vol. 15, No. 3 / OPTICS EXPRESS 1262

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!