30.07.2013 Views

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Topology optimization and fabrication of<br />

photonic crystal structures<br />

P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen<br />

Research Center COM, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark<br />

pib@com.dtu.dk, harpoeth@com.dtu.dk, lhf@com.dtu.dk, mk@com.dtu.dk<br />

http://www.com.dtu.dk/research/glass/pipe/index.html<br />

P. Shi<br />

Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark<br />

pxshi@mic.dtu.dk<br />

J. S. Jensen and O. Sigmund<br />

Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark<br />

jsj@mek.dtu.dk, sigmund@mek.dtu.dk<br />

http://www.topopt.dtu.dk<br />

Abstract: Topology optimization is used to design a planar photonic crystal<br />

waveguide component resulting in significantly enhanced functionality.<br />

Exceptional transmission through a photonic crystal waveguide Z-bend is<br />

obtained using this inverse design strategy. The design has been realized in<br />

a silicon-on-insulator based photonic crystal waveguide. A large low loss<br />

bandwidth of more than 200 nm for the TE polarization is experimentally<br />

confirmed.<br />

©2004 Optical Society of America<br />

OCIS codes: (000.3860) Mathematical methods in physics; (000.4430) Numerical<br />

approximation and analysis; (130.2790) Guided waves; (130.3130) Integrated optics materials;<br />

(220.4830) Optical systems design; (230.5440) Polarization-sensitive devices; (230.7390)<br />

Waveguides, planar; (999.9999) Photonic crystals.<br />

References and links<br />

1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.<br />

58, 2059-2062 (1987).<br />

2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58,<br />

2486-2489 (1987).<br />

3. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at<br />

near-infrared wavelengths,” Nature 383, 699-702 (1996).<br />

4. M. Thorhauge, L. H. Frandsen and P. I. Borel, “Efficient Photonic Crystal Directional Couplers,” Opt. Lett.<br />

28, 1525-1527 (2003).<br />

5. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P.<br />

Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, “Ultra-low-loss 3-dB Photonic Crystal Waveguide<br />

Splitter,” Opt. Lett. (to be published).<br />

6. D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A Compact Twodimensional<br />

Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251<br />

(2003).<br />

7. M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization<br />

method,” Comput. Meth. Appl. Mech. Eng. 71, 197-224 (1988).<br />

8. M. P. Bendsøe and O. Sigmund, Topology optimization — Theory, Methods and Applications (Springer-<br />

Verlag, 2003).<br />

9. T. P. Felici and D. F. G. Gallagher, “Improved waveguide structures derived from new rapid optimization<br />

techniques,” Proc. SPIE 4986, 375-385 (2003).<br />

10. J. Smajic, C. Hafner and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt.<br />

Express 11, 1378-1384 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378.<br />

#4140 - $15.00 US Received 30 March 2004; revised 23 April 2004; accepted 26 April 2004<br />

(C) 2004 OSA 3 May 2004 / Vol. 12 No. 9 / OPTICS EXPRESS 1996

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!