30.07.2013 Views

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

WAVES AND VIBRATIONS IN INHOMOGENEOUS STRUCTURES ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Topological material layout in plates for vibration suppression and wave propagation control<br />

Fig. 1 Plate element showing rotations and translations. Coordinate<br />

system and dimensions<br />

will also be harmonic. We use the following complex<br />

notation<br />

<br />

ψx(x, y, t) =ℜ ˜ψx(x, y)e iωt<br />

(6)<br />

<br />

ψy(x, y, t) =ℜ ˜ψy(x, y)e iωt<br />

(7)<br />

w(x, y, t) =ℜ iωt<br />

˜w(x, y)e (8)<br />

in which the moments and forces have been written explicitly<br />

in terms of the complex deflection and rotation<br />

amplitudes.<br />

The equations are solved using a standard finite<br />

element method implementation, but first we derive expressions<br />

for energy transport in the plate in continuous<br />

form.<br />

3 Energy flow and the Poynting vector<br />

The Poynting vector P(x, y, z, t) is a measure of the<br />

point-wise instantaneous power flow in the plate. The<br />

in-plane components are (Auld 1973)<br />

Px =−σxx ˙ dx − σyx ˙ dy − σzx ˙ dz<br />

Py =−σxy ˙ dx − σyy ˙ dy − σzy ˙ dz<br />

(12)<br />

(13)<br />

where σij are the stress components and { ˙ dx, ˙ dy, ˙ dz} are<br />

the point-wise velocity components.<br />

The velocity components are related to the plate<br />

model degrees-of-freedom in the following way<br />

˙dx(x, y, z) =−z˙ψx(x, y) (14)<br />

˙dy(x, y, z) =−z ˙ψy(x, y) (15)<br />

˙dz(x, y, z) = ˙w(x, y) (16)<br />

assuming that the out-of-plane (z−direction) velocity<br />

is constant through the plate thickness and the in-plane<br />

velocities depend linearly with the distance z from the<br />

mid-plane (see Fig. 1).<br />

The total xy−plane power flow per unit area, denoted<br />

ˆP(x, y, t), is found by integrating P through the<br />

plate thickness:<br />

ˆP(x, y, t) =<br />

h/2<br />

−h/2<br />

P(x, y, z, t)dz (17)<br />

where a tilde denotes the complex amplitudes and i<br />

is the imaginary unit. ℜ symbolizes the real part of a<br />

complex quantity. Inserting (4)–(8), (1)–(3) canberewritten<br />

in the complex form<br />

<br />

D ˜ψx,x + ν ˜ψy,y<br />

,x +<br />

<br />

1 − ν<br />

2 D<br />

<br />

˜ψx,y + ˜ψy,x<br />

<br />

,y<br />

<br />

+ kGh ˜w,x − ˜ψx<br />

2 ρh3<br />

+ ω<br />

12 ˜ψx = 0 (9)<br />

<br />

D ˜ψy,y + ν ˜ψx,x<br />

,y +<br />

<br />

1 − ν<br />

2 D<br />

<br />

˜ψy,x + ˜ψx,y<br />

<br />

,x<br />

<br />

+ kGh ˜w,y − ˜ψy<br />

2 ρh3<br />

+ ω<br />

12 ˜ψy = 0 (10)<br />

<br />

kGh ˜w,x − ˜ψx<br />

,x +<br />

<br />

kGh ˜w,y − ˜ψy<br />

,y<br />

+ ω 2 so that<br />

ˆPx =<br />

ˆPy =<br />

ρh ˜w = 0 (11)<br />

The integrals can be expressed in terms of the defined<br />

moments and shear forces by using the relations<br />

h/2<br />

h/2<br />

Mx = σxxzdz, My = σyyzdz,<br />

−h/2<br />

−h/2<br />

h/2<br />

Mxy = σyxzdz,<br />

−h/2<br />

h/2<br />

h/2<br />

Tx = σzxdz, Ty = σzydz, (20)<br />

h/2<br />

(σxxz ˙ψx + σyxz ˙ψy − σzx ˙w)dz (18)<br />

−h/2<br />

h/2<br />

(σxyz ˙ψx + σyyz ˙ψy − σzy ˙w)dz (19)<br />

−h/2<br />

−h/2<br />

−h/2<br />

which give the following expressions for the Poynting<br />

vector integrated through the plate thickness<br />

ˆPx = Mx ˙ψx + Mxy ˙ψy − Tx ˙w (21)<br />

ˆPy = Myx ˙ψx + My ˙ψy − Ty ˙w (22)<br />

By inserting the expressions for the moments and<br />

shear forces we obtain<br />

1 − ν<br />

ˆPx =−D(ψx,x + νψy,y) ˙ψx −<br />

2 D(ψx,y + ψy,x) ˙ψy<br />

+ kGh(ψx − w,x) ˙w (23)<br />

1 − ν<br />

ˆPy =−<br />

2 D(ψx,y + ψy,x) ˙ψx − D(νψx,x + ψy,y) ˙ψy<br />

+ kGh(ψy − w,y) ˙w (24)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!