29.07.2013 Views

Tuning Reactivity of Platinum(II) Complexes

Tuning Reactivity of Platinum(II) Complexes

Tuning Reactivity of Platinum(II) Complexes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

List <strong>of</strong> Figures<br />

Figure 2.1: Structures <strong>of</strong> some mon<strong>of</strong>unctional platinum(<strong>II</strong>) complexes active against human<br />

colon carcinoma cell line (HCT-116). 11 ................................................................................. 2<br />

Figure 2.2: Potential energy pr<strong>of</strong>iles <strong>of</strong> different mechanisms occurring at a square planar Pt(<strong>II</strong>) centre as<br />

proposed by Langford-Gray. 5 .............................................................................................. 4<br />

Figure 2.3: Typical plots <strong>of</strong> the pseudo first-order rate constants, kobs versus. the concentration <strong>of</strong><br />

the entering nucleophiles for the substitution reaction <strong>of</strong> a dinuclear Pt(<strong>II</strong>) complex at 298 K in<br />

aqueous solution. .............................................................................................................. 10<br />

Figure 2.4: Summary <strong>of</strong> reaction techniques and their associated time scales available for the monitoring<br />

chemical kinetics. 28 ........................................................................................................... 17<br />

Figure 2.5: A schematic diagram <strong>of</strong> a continuous flow kinetic system. d = distance from the mixer<br />

to the point <strong>of</strong> observation. ................................................................................................ 19<br />

Figure 2.6: Schematic diagram <strong>of</strong> a stopped flow apparatus. 13 ............................................... 20<br />

Figure 2.7: Kinetic trace at 448 nm for the substitution reaction between CH3PhisoqPtCl (0.054<br />

mM) and I - (6.06 mM) at 298 K, I = 0.1 M Li(SO3CF3) in methanol. .......................................... 20<br />

Figure 2.8: A schematic diagram <strong>of</strong> a UV-Visible Spectrophotometry set-up. .......................................... 21<br />

Figure 2.9: Rates <strong>of</strong> Pt(<strong>II</strong>) complexes correlated with trans-[Pt(py)2Cl2] as reference, for different<br />

entering nucleophiles: • = trans-[Pt(PEt3)2Cl2] in methanol at 30 °C; ▲ = [Pt(en)Cl2] in water at<br />

35 °C. 18............................................................................................................................. 27<br />

Figure 2.10: The steric effect on the trigonal bipyramidal intermediate <strong>of</strong> the cis isomer in<br />

comparison to trans-isomer. 36 ............................................................................................ 32<br />

Figure 2.11: Geometry <strong>of</strong> an aryl square-planar complex showing the ortho- substituents block<br />

the site <strong>of</strong> attack. 6,26,37 ........................................................................................................ 32<br />

Figure 2.12: (a) σ-donation from the filled ligand px orbital to vacant metal 5dx 2 -y 2 orbital. (b) πback-donation<br />

from the filled metal dxz orbital to the antibonding linear combination <strong>of</strong> carbons’<br />

px orbitals in C2H4. 51 .......................................................................................................... 37<br />

ii

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!