28.07.2013 Views

Effects of bilayer phases on phospholipid-poloxamer interactions†

Effects of bilayer phases on phospholipid-poloxamer interactions†

Effects of bilayer phases on phospholipid-poloxamer interactions†

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PAPER www.rsc.org/s<str<strong>on</strong>g>of</str<strong>on</strong>g>tmatter | S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> <str<strong>on</strong>g>phases</str<strong>on</strong>g> <strong>on</strong> <strong>phospholipid</strong>-<strong>poloxamer</strong> interacti<strong>on</strong>s†<br />

Guohui Wu, a Htet A. Khant, b Wah Chiu b and Ka Yee C. Lee* a<br />

Received 1st August 2008, Accepted 5th January 2009<br />

First published as an Advance Article <strong>on</strong> the web 17th February 2009<br />

DOI: 10.1039/b813354a<br />

Poloxamers are amphiphilic copolymers capable <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting with biological membranes, while the<br />

fundamental mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s is not yet fully understood. Using liposomes as model<br />

membranes, we have investigated the interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>poloxamer</strong> with <strong>phospholipid</strong>s <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s by<br />

isothermal titrati<strong>on</strong> calorimetry (ITC) and electr<strong>on</strong> cryomicroscopy (cryo-EM). The results suggest<br />

that the phase structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> plays a critical role in regulating <strong>poloxamer</strong> inserti<strong>on</strong> into<br />

lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s. ITC shows that the <strong>poloxamer</strong> is incorporated into the liposome at temperatures (T)<br />

above the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> main phase transiti<strong>on</strong> temperature (T m) but the incorporati<strong>on</strong> is completely inhibited<br />

otherwise. This distinct effect from the phase structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> determines the c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> incorporated into the membrane and affects the morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> the self-assembled<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid-<strong>poloxamer</strong> mixtures. When <strong>poloxamer</strong>s are introduced at c<strong>on</strong>centrati<strong>on</strong>s above the<br />

critical micelle c<strong>on</strong>centrati<strong>on</strong> to pre-formed liposomes, liposomes are disrupted into flat discs at<br />

temperatures above Tm but remain as spherical shells at temperatures below Tm, as evidenced by cryo-<br />

EM. With relatively low c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s introduced during liposome formati<strong>on</strong>,<br />

spherical <strong>poloxamer</strong>-lipid vesicles are formed at T > T m; The spherical-shell structure <str<strong>on</strong>g>of</str<strong>on</strong>g> binary<br />

<strong>poloxamer</strong>-lipid liposomes changes to flat discs over a short time scale when the temperature is dropped<br />

below Tm. These flat discs are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reverting to the spherical vesicular structure when the<br />

temperature is raised above Tm, though a much l<strong>on</strong>ger time is needed. Understanding the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> phase in lipid-<strong>poloxamer</strong> interacti<strong>on</strong>s can help improve the design <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s for<br />

pharmaceutical use.<br />

Introducti<strong>on</strong><br />

Poloxamers, also known as Plur<strong>on</strong>ics, are n<strong>on</strong>-i<strong>on</strong>ic triblock<br />

copolymers composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a central hydrophobic poly(propylene<br />

oxide) (PPO) chain capped by two hydrophilic chains <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(ethylene<br />

oxide) (PEO). Poloxamers have gained increasing<br />

attenti<strong>on</strong> due to their abilities in repairing biological membranes<br />

damaged by trauma and diseases, 1–12 in sterically stabilizing<br />

liposomes for drug delivery, 6 in improving cell survivability in<br />

gene therapy, and in inhibiting drug efflux from drug resistant<br />

cancer cells via interacti<strong>on</strong> with membranes. 13 Despite the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s, the fundamental mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

interacti<strong>on</strong>s with membranes is not yet fully understood. For<br />

example, despite the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s as membrane<br />

sealants, there have been c<strong>on</strong>tradictory reports that <strong>poloxamer</strong>s<br />

disturb lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> structural integrity. 14,15 It was observed that<br />

<strong>poloxamer</strong>s accelerated the permeati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the entrapped antitumor<br />

drug doxorubicin through lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s. Moreover, it is<br />

not clear why mouse tumor cells accumulated approximately 3<br />

times more <strong>poloxamer</strong> P181 and P235 than normal murine blood<br />

a Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Institute for Biophysical Dynamics, James<br />

Franck Institute, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Chicago, Chicago, Illinois, 60637, USA<br />

b Nati<strong>on</strong>al Center for Macromolecular Imaging, Verna and Marrs McLean<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Molecular Biology, Baylor College <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Medicine, Houst<strong>on</strong>, Texas, 77030, USA. E-mail: kayeelee@uchicago.<br />

edu; Fax: (+773) 702-0805; Tel: (+773) 702-7068<br />

† Electr<strong>on</strong>ic supplementary informati<strong>on</strong> (ESI) available: Particle size<br />

distributi<strong>on</strong> determined from dynamic light scattering; cryo-EM<br />

micrographs. Both show that the particle size is more uniform with the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>.<br />

cells. 16 Apparently <strong>poloxamer</strong>-cell interacti<strong>on</strong> depends <strong>on</strong> the cell<br />

type. 17<br />

Different biological membranes vary in lipid compositi<strong>on</strong>,<br />

packing and fluidity (or membrane microviscosity). Due to the<br />

complexity inherent in biological membranes, we use lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s<br />

as simplified models to investigate the <strong>poloxamer</strong>-membrane<br />

interacti<strong>on</strong>s. We hypothesize that the mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>poloxamer</strong>s, either as a transport enhancer or as a membrane<br />

sealant, is affected by how much <strong>poloxamer</strong> can be accumulated<br />

in the lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s before reaching their saturati<strong>on</strong> limit above<br />

which the <strong>poloxamer</strong>s solubilize <strong>phospholipid</strong>s to form micelles.<br />

This <strong>poloxamer</strong>-<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> interacti<strong>on</strong> depends <strong>on</strong> both the hydrophilic-hydrophobic<br />

balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s, and the fluidity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>. In detail, a certain <strong>poloxamer</strong> can insert into the<br />

more fluid cell membranes and alter the molecular packing <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s to cause the permeabilized structures to reform into<br />

c<strong>on</strong>tinuous <strong>on</strong>es; but for less fluid cell membranes, the same<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> can overload the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s and solubilize<br />

some lipids into micelle-like structures and stabilize the pore<br />

formati<strong>on</strong>, and hence make <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s leaky. To c<strong>on</strong>firm this, we<br />

investigate the role <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluidity <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s in the <strong>poloxamer</strong>-<str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

interacti<strong>on</strong>s by changing the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> phase structure.<br />

Previous studies 18,19 reveal that lipid packing density<br />

regulates the incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> into Langmuir<br />

m<strong>on</strong>olayers. This is achieved by allowing <strong>poloxamer</strong>s to insert<br />

into lipid m<strong>on</strong>olayers <strong>on</strong>ly with a packing density below that in<br />

intact <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s; 20,21 <strong>on</strong>ce inserted the <strong>poloxamer</strong> can eventually be<br />

eliminated from the lipid m<strong>on</strong>olayer when the lipid packing<br />

density increases bey<strong>on</strong>d a threshold. 22,23 However, the lipid<br />

1496 | S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009


m<strong>on</strong>olayer has been a c<strong>on</strong>troversial model for lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s, and<br />

it is shown that the lateral ordering in <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s is significantly less<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> an m<strong>on</strong>olayer with equivalent surface pressure. 24<br />

The fundamental questi<strong>on</strong> is whether the distinct effects <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

packing in lipid m<strong>on</strong>olayers <strong>on</strong> c<strong>on</strong>trolling the <strong>poloxamer</strong><str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

interacti<strong>on</strong>s can be observed in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s.<br />

Here we report our experimental findings which clearly<br />

dem<strong>on</strong>strate that the manner in which <strong>poloxamer</strong>s partiti<strong>on</strong> into<br />

the lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> is determined by the underlying phase state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the liposome. Our isothermal titrati<strong>on</strong> calorimetry (ITC) results<br />

indicate that <strong>poloxamer</strong>s <strong>on</strong>ly partiti<strong>on</strong> into fluid-phase liposomes<br />

and hardly ever into gel-phase <strong>on</strong>es. As the phase state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the liposome is temperature-dependent, so is the interacti<strong>on</strong><br />

between <strong>poloxamer</strong>s and liposomes. In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s,<br />

lipids can change their self-assembled structure from<br />

intact spherical vesicles to flat discs when experiencing either<br />

decreased or increased temperature depending <strong>on</strong> whether the<br />

<strong>poloxamer</strong> is incorporated before or after the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

liposomes, respectively. The understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> self-assembly<br />

structure-property relati<strong>on</strong>ship may clarify the mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>poloxamer</strong>-membrane interacti<strong>on</strong>s and help improve <strong>poloxamer</strong><br />

design for pharmaceutical use.<br />

Results and discussi<strong>on</strong><br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane phase structure<br />

It has been well established that the lipid packing is dependent <strong>on</strong><br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> <str<strong>on</strong>g>phases</str<strong>on</strong>g>. The area per lipid molecule increases by about<br />

15% to 20% up<strong>on</strong> the gel-fluid transiti<strong>on</strong>. 25 We investigate the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane phase structure by studying the interacti<strong>on</strong><br />

between <strong>poloxamer</strong>s and liposomes as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

temperature. To closely examine the interacti<strong>on</strong>, we use a simple<br />

model system with synthetic dimyristoylphosphocholine<br />

(DMPC) and <strong>poloxamer</strong> 338 (P338, (EO)132-(PO)50-(EO)132,<br />

molecular weight ¼ 14600 g/mol, polydispersity Mw/Mn ¼ 1.2) 26<br />

to represent <strong>phospholipid</strong>s and <strong>poloxamer</strong>s, respectively. Using<br />

isothermal titrati<strong>on</strong> calorimetry (ITC), we have quantitatively<br />

studied the partiti<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s between lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s and<br />

water at temperatures above and below the main phase transiti<strong>on</strong><br />

temperature, T m ¼ 24 C, <str<strong>on</strong>g>of</str<strong>on</strong>g> DMPC. At temperatures above T m,<br />

the DMPC liposome is in the fluid-phase. ITC results at 37 C<br />

dem<strong>on</strong>strate that P338 is incorporated into the fluid-phase<br />

DMPC <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> (Fig. 1A and B) in a fashi<strong>on</strong> similar to other n<strong>on</strong>i<strong>on</strong>ic<br />

detergents which partiti<strong>on</strong> into liposomes. 27 Each injecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid-phase DMPC liposomes into the P338 soluti<strong>on</strong><br />

produces an endothermic heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> which decreases with<br />

injecti<strong>on</strong>s. This endothermic phenomen<strong>on</strong> is c<strong>on</strong>sistent with the<br />

partiti<strong>on</strong>ing process <str<strong>on</strong>g>of</str<strong>on</strong>g> detergent into stable <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s with little<br />

curvature strain. 28 The decay <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> heat is due to the fact<br />

that with time less and less free P338 is available in the aqueous<br />

envir<strong>on</strong>ment to associate with liposomes. Eventually, the heat<br />

flow simply resembles the heat <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong> as all free P338 has<br />

been used up and incorporated into the liposomes, leaving<br />

almost no free polymer for further associati<strong>on</strong> (Fig. 1A, after 70<br />

minutes). In Fig. 1B, it is evident that the simple thermodynamic<br />

partiti<strong>on</strong>ing model by Heerklotz 29 gives an excellent descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the high sensitivity calorimetric results <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>poloxamer</strong><br />

partiti<strong>on</strong>ing between water and the fluid-phase membrane. The<br />

fitting gives the molar enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>ing, DH ¼ 12 1<br />

Fig. 1 Isothermal titrati<strong>on</strong> calorimetry data comparing fluid- and gel-phase DMPC liposomes reacting with P338. A series <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 mg/ml DMPC<br />

liposomes (10 ml each) are injected into a cell <str<strong>on</strong>g>of</str<strong>on</strong>g> volume 1.4045 ml, filled with P338 soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (A, B) 0.05 mg/ml at 37 C (C, D) 0.1 mg/ml at 5 C. (A, C)<br />

Heat flow vs. time; (B, D) integrated heat per injecti<strong>on</strong> normalized with respect to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> DMPC injected. In each experiment, both<br />

liposomes and P338 soluti<strong>on</strong>s are equilibrated at the same desired temperatures. At 37 C, DMPC liposomes are in the fluid-phase and incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

P338 into the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> generates endothermic reacti<strong>on</strong> heat. The solid line is a n<strong>on</strong>linear least-square fit <str<strong>on</strong>g>of</str<strong>on</strong>g> the equilibrium partiti<strong>on</strong>ing model, 29 assuming<br />

impermeability <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> for P338 (P338 interacts with the outer leaflet <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> and no trans<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> migrati<strong>on</strong> occurs) within the experimental<br />

time scale. The fitting parameters are DH ¼ 12 1 kcal/mol, K ¼ (28 2) 10 4 . The permeable model has also been thoroughly tested but turns out to be<br />

invalid in the titrati<strong>on</strong> time scale for our system. 32 At 5 C, DMPC liposomes are in the gel-phase. The small, c<strong>on</strong>stant, and exothermic heat flows are due<br />

to simple diluti<strong>on</strong>, suggesting no incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> into the gel-phase lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>.<br />

This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 | 1497


kcal/mol, and the partiti<strong>on</strong> coefficient, K ¼ (28 2) 104 ,at37<br />

C. C<strong>on</strong>sequently, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> P338 partiti<strong>on</strong>ing into the fluidphase<br />

lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> at 37 C can be calculated to be 64 cal/mol.<br />

Similar results are obtained when the temperature is decreased to<br />

30 and 26 C at which point the DMPC liposomes are in the<br />

fluid-phase. However, at these reduced temperatures, less heat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reacti<strong>on</strong> is generated (data not shown), indicating less <strong>poloxamer</strong><br />

inserti<strong>on</strong>. The partiti<strong>on</strong> coefficient, K, indicates the sp<strong>on</strong>taneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the process: when K > 1, the process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> partiti<strong>on</strong>ing<br />

into the lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> is sp<strong>on</strong>taneous; and the higher the K value,<br />

the higher the tendency is for the process to occur. A comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fitting parameters at 30 C<str<strong>on</strong>g>of</str<strong>on</strong>g>DH¼ 13 1 kcal/mol and K<br />

¼ (6 1) 104 to those at 37 C shows that the higher<br />

temperature gives rise to str<strong>on</strong>ger interacti<strong>on</strong>s between <strong>poloxamer</strong>s<br />

and the lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>. More <strong>poloxamer</strong>s are incorporated<br />

into <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s at elevated temperatures possibly because the<br />

fluidity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>, as well as the hydrophobicity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>poloxamer</strong> increase. 30,31 In the future, the amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong><br />

inserted into vesicles can be obtained by solving the equati<strong>on</strong><br />

defining the partiti<strong>on</strong> coefficient (eqn (1) in the Experimental<br />

<strong>poloxamer</strong> in <str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

sessi<strong>on</strong>, for the value <str<strong>on</strong>g>of</str<strong>on</strong>g> ,<br />

lipid<br />

Pb<br />

), and their<br />

L<br />

subsequent correlati<strong>on</strong> with vesicles’ size can also be studied.<br />

When the system is cooled to temperatures below Tm, however,<br />

ITC results show that <strong>poloxamer</strong>s do not partiti<strong>on</strong> at all into gelphase<br />

liposomes. When the titrati<strong>on</strong> was performed at 5 C, the<br />

heat flow was small and exothermic, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> liposomes injected (Fig. 1C and 1D). The integrated heat<br />

normalized by the injected amount <str<strong>on</strong>g>of</str<strong>on</strong>g> DMPC gives an average<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.013 kcal/mol, which is equivalent to the total diluti<strong>on</strong><br />

heats from DMPC liposome and P338 soluti<strong>on</strong>s (under similar<br />

c<strong>on</strong>diti<strong>on</strong>s, the measured heats <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong> are qdil (DMPC) ¼<br />

0.010 kcal/mol and qdil (P338) ¼ 0.004 kcal/mol). Systematic<br />

experiments were performed at temperatures between 5 and 22<br />

C, and similarly, <strong>on</strong>ly diluti<strong>on</strong> heats were generated with titrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DMPC liposomes despite the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> in the<br />

experimental cell. These results indicate that the gel-phase <str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

completely inhibits the <strong>poloxamer</strong> incorporati<strong>on</strong>. This inhibiti<strong>on</strong><br />

is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the exact temperature, as l<strong>on</strong>g as it is below Tm.<br />

It is worth noting that the change <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature affects the<br />

physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s as reflected by their inverse<br />

temperature dependence in solubility. A decrease in temperature<br />

causes the PPO chains to be more polar and hydrated and hence<br />

the <strong>poloxamer</strong>s to be less hydrophobic. 30 To c<strong>on</strong>firm that it is<br />

indeed the phase structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the liposome rather than changes in<br />

the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>poloxamer</strong> with temperature that is affecting<br />

the interacti<strong>on</strong>, we have also tested fluid-phase liposomes at 5 C.<br />

Palmitoyloleoylphosphocholine (POPC) liposomes have a Tm ¼<br />

2 C and hence are in a fluid-phase at 5 C. At this low<br />

temperature, the injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 mg/ml POPC liposomes into a 2<br />

mg/ml P338 soluti<strong>on</strong> produces similar data as those in Fig. 1A<br />

and 1B with fitted parameters DH ¼ 0.23 0.02 kcal/mol and K<br />

¼ (76 7) 104 (Fig. 2). The observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> endothermic<br />

reacti<strong>on</strong> heat clearly shows that at 5 C P338 partiti<strong>on</strong>s into fluidphase<br />

POPC liposomes. The fact that P338 partiti<strong>on</strong>s into<br />

disordered, fluid-phase POPC liposomes instead <str<strong>on</strong>g>of</str<strong>on</strong>g> ordered, gelphase<br />

DMPC liposomes allows us to c<strong>on</strong>clude that the phase<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> the membrane is crucial for the interacti<strong>on</strong> between<br />

Fig. 2 Isothermal titrati<strong>on</strong> calorimetry data showing <strong>poloxamer</strong> P338<br />

partiti<strong>on</strong>s into fluid-phase POPC liposomes at 5 C. A series <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 mg/ml<br />

POPC liposomes (10 ml each) are injected into a P338 soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 mg/ml.<br />

(A) Heat flow vs. time; (B) integrated heat per injecti<strong>on</strong> normalized with<br />

respect to the injected number <str<strong>on</strong>g>of</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> POPC. The solid line is<br />

a n<strong>on</strong>linear least-square fit <str<strong>on</strong>g>of</str<strong>on</strong>g> the equilibrium partiti<strong>on</strong>ing model, 29<br />

assuming impermeability <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> for P338 (P338 interacts with the<br />

outer leaflet <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> and no trans<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> migrati<strong>on</strong> occurs)within<br />

the experimental time scale. The fitting parameters are DH ¼ 0.23 0.02<br />

kcal/mol and K ¼ (76 7) 10 4 .<br />

<strong>poloxamer</strong>s and lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s. Our data in Fig. 1 provide further<br />

evidence for the inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>poloxamer</strong> inside the fluid-phase<br />

lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> rather than just having the <strong>poloxamer</strong> adsorbed<br />

<strong>on</strong>to the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the liposome, otherwise there would not have<br />

been such a distincti<strong>on</strong> in the heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> between the geland<br />

the fluid-phase liposomes.<br />

In the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> using <strong>poloxamer</strong>s as sealants to repair<br />

structurally compromised membranes, the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s<br />

to distinguish subtle differences in the lipid packing density<br />

allows them to associate preferentially with damaged cell<br />

membranes (owing to a reducti<strong>on</strong> in their lipid packing density)<br />

while not interfering with normal <strong>on</strong>es (with tightly packed<br />

lipid molecules). This finding is c<strong>on</strong>sistent with c<strong>on</strong>clusi<strong>on</strong>s<br />

from earlier studies <strong>on</strong> m<strong>on</strong>olayers, 18,22 where <strong>poloxamer</strong>s were<br />

found to insert into m<strong>on</strong>olayers <strong>on</strong>ly when lipid packing density<br />

is low. As the level <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> interacti<strong>on</strong> depends <strong>on</strong> the<br />

phase state <str<strong>on</strong>g>of</str<strong>on</strong>g> the membrane which in turn is temperaturedependent,<br />

<strong>on</strong>e can envisage using this temperature-sensitive<br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the lipid-<strong>poloxamer</strong> interacti<strong>on</strong> to protect healthy<br />

tissues via <strong>poloxamer</strong>-assisted cancer chemotherapy. Poloxamers<br />

are am<strong>on</strong>g the most potent sensitizers <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistant<br />

cancer cells 13 and are able to reduce anti-cancer drug efflux<br />

from tumor cells. In chemotherapy, if the surrounding normal<br />

tissues are slightly cooled, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> <strong>on</strong><br />

membranes <str<strong>on</strong>g>of</str<strong>on</strong>g> these tissues would be minimized. As a result, the<br />

normal cells would be unaffected by the <strong>poloxamer</strong> while the<br />

cancer cells can be selectively targeted.<br />

1498 | S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009


Morphological changes by adding <strong>poloxamer</strong> to pre-formed<br />

liposomes<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> <str<strong>on</strong>g>phases</str<strong>on</strong>g> <strong>on</strong> lipid-<strong>poloxamer</strong> interacti<strong>on</strong>s are<br />

clearly visible from the different morphologies <str<strong>on</strong>g>of</str<strong>on</strong>g> self-assembled<br />

structures resulting from the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s at c<strong>on</strong>centrati<strong>on</strong>s<br />

above the critical micelle c<strong>on</strong>centrati<strong>on</strong> (CMC) to preformed<br />

liposomes. At c<strong>on</strong>centrati<strong>on</strong>s above CMC, the <strong>poloxamer</strong><br />

is referred to as being at high c<strong>on</strong>centrati<strong>on</strong> in this report.<br />

The micellizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong> is not a sharp transiti<strong>on</strong>, but<br />

spans a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s at a given temperature due<br />

to its polydispersity as well as the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities.<br />

Depending <strong>on</strong> the methods used, a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> CMCs have<br />

been reported for P338, from 0.03 to 0.1 mg/ml at 37 C, 0.3 to 45<br />

mg/ml at 25 C, and $1 mg/ml at 20 C. 33,34<br />

The morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixed system was m<strong>on</strong>itored by cryo-<br />

EM. Stock soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mg/ml pre-formed DMPC liposomes<br />

and 200 mg/ml P338 were mixed to give a soluti<strong>on</strong> with a final<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.5 and 50 mg/ml for DMPC and P338,<br />

respectively. The mixing experiment was c<strong>on</strong>ducted at either 4 or<br />

37 C and the mixed soluti<strong>on</strong> was stored at the corresp<strong>on</strong>ding<br />

temperature. The sample stored at 4 C was allowed to equilibrate<br />

at 21 C for 15 minutes prior to cryo-EM specimen preparati<strong>on</strong>.<br />

Cryo-EM images show that after the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P338,<br />

DMPC liposomes remain as spherical vesicles at 21 C (Fig. 3A),<br />

but those stored at 37 C are disrupted into discs with diameters<br />

ranging from 30 to 100 nm (Fig. 3B). The side view <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

floppy discs is captured as shown in Fig. 3C-a, revealing two<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> leaflets with a 5.5 nm thickness, which is c<strong>on</strong>sistent with<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> the DMPC <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>. 35,36 The high electr<strong>on</strong> density shown<br />

as a relatively darker color in the leaflets is attributed to the<br />

<strong>phospholipid</strong> headgroups. In Fig. 3A, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> intact<br />

Fig. 3 Cryo-EM images comparing the morphologies <str<strong>on</strong>g>of</str<strong>on</strong>g> objects in<br />

soluti<strong>on</strong> when mixing the gel- and the fluid-phase DMPC liposomes with<br />

P338. The soluti<strong>on</strong>s were vitrified 25 minutes after mixing 10 mg/ml<br />

DMPC liposomes and 200 mg/ml P338 (the final c<strong>on</strong>centrati<strong>on</strong>s are 7.5<br />

and 50 mg/ml for DMPC and P338, respectively) (A) at 21 C, and (B)–<br />

(D) at 37 C. With the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P338 at a final c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 mg/<br />

ml, the DMPC liposomes remain as spherical vesicles at 21 C, but<br />

transform to <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs at 37 C. (C) and (D) are high magnificati<strong>on</strong><br />

images <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample in (B) displaying relatively large <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs as<br />

observed edge-<strong>on</strong> (a) and face-<strong>on</strong> (b). In (A) and (B), bar ¼ 200 nm; in (C)<br />

and (D) bar ¼ 20 nm.<br />

DMPC liposomes at 21 C despite the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a high<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s is due to the low level <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong><br />

between <strong>poloxamer</strong>s and liposomes. These results clearly<br />

dem<strong>on</strong>strate that it is not necessarily relevant whether the<br />

<strong>poloxamer</strong> c<strong>on</strong>centrati<strong>on</strong> in the bulk soluti<strong>on</strong> is above CMC or<br />

not; what really matters is the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>poloxamer</strong><br />

accumulated in the membrane which determines the changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the self-assembled structure. 37 These observati<strong>on</strong>s corroborate<br />

the fact that <strong>poloxamer</strong>s partiti<strong>on</strong> into disordered, fluid-phase<br />

lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s rather than ordered, gel-phase <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s.<br />

Morphological transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-mixed DMPC/P338<br />

liposomes with temperature<br />

Cryo-EM further reveals the morphology change <str<strong>on</strong>g>of</str<strong>on</strong>g> the selfassembly<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lipid and <strong>poloxamer</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature<br />

with the <strong>poloxamer</strong> at a moderate c<strong>on</strong>centrati<strong>on</strong> (below CMC).<br />

Pre-mixed DMPC-P338 liposomes were prepared by drying P338<br />

together with DMPC from a chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm soluti<strong>on</strong> at a c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mg/ml for each comp<strong>on</strong>ent then hydrating with<br />

water. As a result, <strong>poloxamer</strong>s were incorporated into liposomes<br />

during the self-assembly process. The temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong><br />

was c<strong>on</strong>trolled to be 10 to 15 C above the Tm <str<strong>on</strong>g>of</str<strong>on</strong>g> the DMPC<br />

liposomes during the hydrati<strong>on</strong> and extrusi<strong>on</strong> steps in preparati<strong>on</strong><br />

as well as in storage. When the temperature was above Tm,<br />

the incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s into the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> resulted in<br />

a narrower size-distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spherical liposomes as indicated<br />

by the cryo-EM images and the particle size measurements<br />

from dynamic light scattering (ESI†). This increase in m<strong>on</strong>odispersity<br />

has been previously reported for PEG-lipid analog<br />

grafted liposomes. 38<br />

The incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s into the liposomes can<br />

facilitate a temperature-triggered structural change which does<br />

not occur in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s. When cooled through<br />

Tm to 4 C, DMPC liposomes with no <strong>poloxamer</strong>s do not show<br />

much change and retain their spherical-shell structure at 4 C.<br />

The structure observed at this low temperature is similar to that<br />

above Tm, except for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> faceted surfaces <strong>on</strong> the<br />

vesicle (Fig. 4) which is c<strong>on</strong>sistent with the fact that DMPC<br />

liposomes exist in the more rigid gel-phase. 39,40 However, when<br />

binary DMPC-P338 liposomes are cooled from 37 to 22 C<br />

(below their T m ¼ 24 C) and stored for 30 minutes,<br />

a pr<strong>on</strong>ounced difference in the turbidity <str<strong>on</strong>g>of</str<strong>on</strong>g> the dispersi<strong>on</strong> is<br />

observed. The sample stored at 37 C remains opalescent, while<br />

the <strong>on</strong>e stored at 22 C becomes translucent (Fig. 5). The<br />

decrease in turbidity clearly suggests a decrease in particle size.<br />

The same phenomen<strong>on</strong> is observed when the sample is stored at 4<br />

C at which temperature the sample changes from opalescent to<br />

translucent within a shorter time ( 15 minutes).<br />

Cryo-EM was used to examine the size and morphology<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-mixed DMPC-P338 liposomes stored at temperatures<br />

below (Fig. 6A) and above (Fig. 6B) Tm. Below Tm,<br />

a dramatic change in the morphology was observed where<br />

spherical vesicles present at higher temperatures disappeared,<br />

instead there were <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs (Fig. 6A) with uniform diameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 30 nm. The smaller size <str<strong>on</strong>g>of</str<strong>on</strong>g> these discs is<br />

c<strong>on</strong>sistent with the decrease in the observed sample turbidity.<br />

This decreased size is also c<strong>on</strong>firmed by dynamic light scattering<br />

(data not shown).<br />

This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 | 1499


Fig. 4 Cryo-EM image <str<strong>on</strong>g>of</str<strong>on</strong>g> DMPC (10 mg/ml) liposomes stored at 4 C<br />

revealing spherical vesicles with faceted surfaces. Scale bar ¼ 100 nm.<br />

Fig. 5 Temperature effect <strong>on</strong> pre-mixed DMPC/P388 (10/10 mg/ml)<br />

liposomes. The DMPC/P338 liposome soluti<strong>on</strong> was aliquoted into two<br />

vials and stored for 0.5 hour at 37 (a) and 22 C (b), respectively. The<br />

sample stored at 37 C remained opalescent while the <strong>on</strong>e stored at 22 C<br />

became translucent. The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> turbidity was caused by a decrease in<br />

particle size in the soluti<strong>on</strong>.<br />

When the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the DMPC-P338 <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs (in<br />

Fig. 6A) was raised back above Tm to 31 C and equilibrated for<br />

2 weeks, a fair amount <str<strong>on</strong>g>of</str<strong>on</strong>g> spherical vesicles re-appeared and coexisted<br />

with <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs (Fig. 6B). The diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> these vesicles<br />

varied from 50 to 200 nm. Meanwhile, the remaining <str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

discs grew bigger and spanned a larger size range (Fig. 6B), in<br />

c<strong>on</strong>trast to a uniform size <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 nm (Fig. 6A) when the temperature<br />

was first brought below T m. It is worth noting that the<br />

structural transformati<strong>on</strong>s, from vesicles to <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs and vice<br />

versa, take place over two rather different time scales. Complete<br />

transiti<strong>on</strong> from intact vesicles to <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs occurs within 30<br />

minutes while the reverse process takes 2 weeks to transform <strong>on</strong>ly<br />

a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the discs to vesicles.<br />

The sharp transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> binary DMPC-P338 spherical vesicles<br />

to <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs up<strong>on</strong> cooling, is due to lipid solubilizati<strong>on</strong> by<br />

<strong>poloxamer</strong>. The phase separati<strong>on</strong> between <strong>poloxamer</strong>s and gelphase<br />

lipid domains causes the disintegrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liposomes into<br />

small <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs. The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs at temperatures<br />

below T m is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2D crystalline lipid core with<br />

<strong>poloxamer</strong>s decorating the edge. 41 To avoid the unfavorable free<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> exposing hydrophobic <strong>phospholipid</strong> tails to water, the<br />

<strong>poloxamer</strong> with its flexible hydrophobic and hydrophilic moieties<br />

acts to stabilize the 30 nm planar lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>. Meanwhile, the<br />

Fig. 6 Cryo-EM images showing the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> pre-mixed<br />

DMPC/P338 liposomes. Both DMPC and P338 are at 10 mg/ml. After<br />

sample preparati<strong>on</strong> at a temperature above 24 C, the pre-mixed DMPC/<br />

P338 liposome soluti<strong>on</strong> was then (A) stored at 4 C for 0.5 hour and<br />

imaged by cryo-EM. The soluti<strong>on</strong> changed from opalescent to translucent,<br />

and uniform <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs with a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 nm were revealed by the<br />

cryo-EM image. The discs were randomly oriented so that both the topview<br />

and side-view <str<strong>on</strong>g>of</str<strong>on</strong>g> the discs are captured; (B) the translucent soluti<strong>on</strong> is<br />

then heated and kept at 31 C for two weeks. The soluti<strong>on</strong> changed from<br />

translucent to opalescent, with most discs reverting to spherical vesicles.<br />

Arrows (a, b) denote <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs as observed edge-<strong>on</strong> (a) and face-<strong>on</strong> (b),<br />

arrow (c) denotes a spherical vesicle, and arrow (d) points to the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

carb<strong>on</strong> film <str<strong>on</strong>g>of</str<strong>on</strong>g> the EM grid. In (A–B), bar ¼ 200 nm.<br />

<strong>poloxamer</strong> cannot partiti<strong>on</strong> into the crystalline lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

phase that exists at temperatures below Tm. This is based <strong>on</strong> our<br />

previous X-ray scattering and simulati<strong>on</strong> studies, 18,22,42 which<br />

shows that <strong>poloxamer</strong>s phase-separate from the ordered lipid<br />

phase due to the hydrophobic mismatch between the PPO block<br />

in <strong>poloxamer</strong>s and the acyl chains in lipids; this is further<br />

corroborated by our current ITC experiments which show that<br />

<strong>poloxamer</strong>s do not incorporate into gel-phase lipids. Therefore,<br />

the <strong>on</strong>ly feasible way for the <strong>poloxamer</strong> to stabilize the small<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs is to reside at the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs. As the lipid<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> undergoes the fluid-to-gel transiti<strong>on</strong> when the temperature<br />

is decreased below Tm, <strong>poloxamer</strong>s originally mixed with<br />

fluid lipid molecules phase-separate from the ordered lipid<br />

domains and accumulate at the gel-phase domain boundaries.<br />

The enhanced rigidity <str<strong>on</strong>g>of</str<strong>on</strong>g> the gel-phase lipid and the accumulated<br />

<strong>poloxamer</strong>s at domain boundaries eventually cause the vesicular<br />

structure to break up and adopt a thermodynamically favored<br />

disc c<strong>on</strong>figurati<strong>on</strong> with the ordered lipids occupying the center<br />

porti<strong>on</strong> and the <strong>poloxamer</strong>s decorating the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>,<br />

thereby stabilizing the otherwise hydrophobic rim <str<strong>on</strong>g>of</str<strong>on</strong>g> an open<br />

lipid disc. This structure has been dem<strong>on</strong>strated for other lipid/<br />

detergent mixed discs as evident from NMR, calorimetry and Xray<br />

scattering data, 41 and resembles the highly m<strong>on</strong>odisperse<br />

<strong>phospholipid</strong> <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> nanodiscs. 43<br />

Similar nanosized <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs have been recently reported <strong>on</strong><br />

lipid mixtures c<strong>on</strong>taining phosphatidylethanolamine-PEG (PE-<br />

PEG). 44,45 These nanodiscs are promising model membranes in<br />

drug partiti<strong>on</strong> studies. However, c<strong>on</strong>jugati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG to PE<br />

involves a carbamate linkage that results in a net negative charge<br />

<strong>on</strong> the phosphate group <str<strong>on</strong>g>of</str<strong>on</strong>g> the PE-PEG and this extra charge<br />

could be a c<strong>on</strong>cern. 45 Since <strong>poloxamer</strong>s are uncharged n<strong>on</strong>-i<strong>on</strong>ic<br />

polymers, they are good candidates to replace expensive PE-PEG<br />

for the preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform nanodiscs without inducing<br />

unwanted charges and are available at very reas<strong>on</strong>able prices.<br />

1500 | S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009


Furthermore, the size homogeneity found in our system can also<br />

be useful. 44<br />

The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs when the system is cooled to T <<br />

Tm can be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as a nucleati<strong>on</strong> process where the lipids<br />

form ‘‘crystalline’’ gel domains. Such a process involves first the<br />

nucleati<strong>on</strong> and then the subsequent growth <str<strong>on</strong>g>of</str<strong>on</strong>g> gel-phase<br />

domains. We c<strong>on</strong>jecture that the uniform size <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs<br />

(Fig. 3A) is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> successive nucleati<strong>on</strong>s. This means that<br />

the diffusi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s and lipid molecules inside the<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> are slow compared to the quick increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nucleati<strong>on</strong> sites; hence the process is nucleati<strong>on</strong> dominated. The<br />

uniform length scale observed in the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs formed here is<br />

a comm<strong>on</strong> feature <str<strong>on</strong>g>of</str<strong>on</strong>g> processes which occur by successive<br />

nucleati<strong>on</strong>s. 46–49<br />

When the temperature is increased bey<strong>on</strong>d Tm, the lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

changes to fluid-phase and the <strong>poloxamer</strong> partiti<strong>on</strong>s again into<br />

the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> and no l<strong>on</strong>ger prefers to stay <strong>on</strong> the open edge.<br />

Subsequent fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these more flexible <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s results in the reformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spherical vesicles which is apparently the favored<br />

structure at the elevated temperature though the time scale for<br />

this transiti<strong>on</strong> is much slower.<br />

Our <strong>on</strong>-going studies reveal that within the time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> ITC<br />

experiments (typically 200 min), <strong>poloxamer</strong> partiti<strong>on</strong>s primarily<br />

into the outer leaflet <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid-phase lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> instead <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

permeating through the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> into the inner leaflet. 50 Therefore,<br />

the <strong>poloxamer</strong> is likely to have adopted a different c<strong>on</strong>figurati<strong>on</strong><br />

in pre-mixed DMPC/P338 liposomes (where P338 can access<br />

both the inner and outer leaflets) compared with that added to<br />

the pre-formed liposomes (which <strong>on</strong>ly has access to the outer<br />

leaflet <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>).<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

In this work we dem<strong>on</strong>strate that the temperature-sensitive<br />

interacti<strong>on</strong>s between lipids and <strong>poloxamer</strong>s, as well as the<br />

resulting self-assembled structures crucially depend <strong>on</strong> the lipid<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> phase. ITC and cryo-EM results reveal that the <strong>poloxamer</strong><br />

is <strong>on</strong>ly incorporated into fluid-phase lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s rather<br />

than gel-phase <strong>on</strong>es. When the <strong>poloxamer</strong> is at a c<strong>on</strong>centrati<strong>on</strong><br />

above CMC, it disrupts the spherical lipid vesicles into discs at<br />

temperatures higher than Tm; while leaving the vesicles intact at<br />

lower temperatures. When the <strong>poloxamer</strong> c<strong>on</strong>centrati<strong>on</strong> is below<br />

CMC, the pre-mixed fluid-phase lipid/<strong>poloxamer</strong> liposomes<br />

change from spherical vesicles to <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs when cooled<br />

through T m, due to the phase separati<strong>on</strong> between <strong>poloxamer</strong>s<br />

and gel-phase lipids and the fact that the latter is stabilized by<br />

<strong>poloxamer</strong> at the edges. These <str<strong>on</strong>g>bilayer</str<strong>on</strong>g> discs can reversibly<br />

transform back to spherical vesicles up<strong>on</strong> heating through Tm<br />

under which c<strong>on</strong>diti<strong>on</strong>s <strong>poloxamer</strong>s and fluid-phase lipid <str<strong>on</strong>g>bilayer</str<strong>on</strong>g><br />

re-mix. Both liposomes and <strong>poloxamer</strong>s are promising agents for<br />

drug encapsulati<strong>on</strong> and delivery, and elucidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their interacti<strong>on</strong>s<br />

can improve their design for pharmaceutical use. The<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g> phase-dependant interacti<strong>on</strong> between lipids and <strong>poloxamer</strong>s<br />

suggests that the localized heating or cooling can be used<br />

to promote or suppress the <strong>poloxamer</strong> inserti<strong>on</strong> into different<br />

cells. In reality, the biological membranes are always in the fluidphase.<br />

Nature uses different lipid compositi<strong>on</strong>s to regulate the<br />

fluidity or membrane microviscosity in various cells. One<br />

important comp<strong>on</strong>ent is cholesterol. Cholesterol can affect<br />

membrane microviscosity and decrease the lipid membrane<br />

permeability and is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten included in liposomes for drug delivery.<br />

Mixing with cholesterol can change the phase behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s and split <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s into liquid ordered and liquid disordered<br />

<str<strong>on</strong>g>phases</str<strong>on</strong>g>. 51 In the future, model membranes with more<br />

realistic compositi<strong>on</strong>s such as cholesterol and unsaturated lipids<br />

will be used to explore the membrane-<strong>poloxamer</strong> interacti<strong>on</strong>s.<br />

Experimental<br />

Liposome preparati<strong>on</strong><br />

Liposomes were prepared via the freeze-thaw extrusi<strong>on</strong> procedure.<br />

Dimyristoylphosphocholine (DMPC) and palmitoyloleoylphosphocholine<br />

(POPC) were purchased from Avanti Polar<br />

Lipids, Inc. (Alabaster, AL). The dry lipid was hydrated by Milli-<br />

Q water and vortexed. After ten freeze-thaw cycles, the suspensi<strong>on</strong><br />

was passed through a polycarb<strong>on</strong>ate filter having a pore size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 100 nm with the aid <str<strong>on</strong>g>of</str<strong>on</strong>g> a lipid mini-extruder (Avanti Polar<br />

Lipids Inc., Alabaster, AL). During hydrati<strong>on</strong> and extrusi<strong>on</strong>, the<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the lipid soluti<strong>on</strong> was maintained higher than<br />

T m. 52–54 The size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting liposomes was<br />

determined by dynamic light scattering (PD2000DLS, Precisi<strong>on</strong><br />

Detectors, Franklin, MA), and was typically found to center at<br />

a diameter 140 nm with a standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 nm. The<br />

liposomes were stored for at least 4 hours at a desired temperature<br />

before a given experiment. Poloxamer 338 (P338) was<br />

provided by BASF (Parisippany, NJ). The pre-mixed lipid<strong>poloxamer</strong><br />

vesicles were prepared by drying a chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm soluti<strong>on</strong><br />

c<strong>on</strong>taining both lipid and <strong>poloxamer</strong>, then hydrating the<br />

mixture film at the desired c<strong>on</strong>centrati<strong>on</strong>.<br />

Isothermal titrati<strong>on</strong> calorimetry<br />

Isothermal titrati<strong>on</strong> calorimetry (ITC) was carried out using<br />

a VP isothermal titrati<strong>on</strong> calorimeter from MicroCal (Northampt<strong>on</strong>,<br />

MA). Each ITC experiment c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

injecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the DMPC (or POPC) liposome suspensi<strong>on</strong><br />

from a 298.67 ml syringe into the 1.4045 ml cell loaded with P338<br />

soluti<strong>on</strong> at a c<strong>on</strong>centrati<strong>on</strong> below its CMC. Both the syringe and<br />

the cell equilibrate at the same temperature. The differential<br />

power needed to compensate the reacti<strong>on</strong> heat to maintain zero<br />

temperature difference between sample and reference cells after<br />

the injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liposome titrant is recorded as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time.<br />

Integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual calorimeter traces yielded the heat<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> binding reacti<strong>on</strong>, h i, <str<strong>on</strong>g>of</str<strong>on</strong>g> each injecti<strong>on</strong> step.<br />

To analyze our data, n<strong>on</strong>linear least-square curve fitting was<br />

c<strong>on</strong>ducted <strong>on</strong> the model suggested by Heerklotz 29,55 for the<br />

partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>poloxamer</strong>s into lipid membranes. Briefly, in Heerklotz’s<br />

model the partiti<strong>on</strong> coefficient K is defined in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mole fracti<strong>on</strong>s: 29,56<br />

PbW<br />

K ¼<br />

ðPb þ LÞðPt PbÞ<br />

where W ¼ 55.5 M is the molarity <str<strong>on</strong>g>of</str<strong>on</strong>g> water, and L and P are the<br />

lipid and <strong>poloxamer</strong> (playing effectively the role <str<strong>on</strong>g>of</str<strong>on</strong>g> detergent)<br />

c<strong>on</strong>centrati<strong>on</strong>s. The subscripts t and b represent the total<br />

<strong>poloxamer</strong> as well as the <strong>poloxamer</strong> in the <str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s.<br />

This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 | 1501<br />

(1)


The normalized heat q obs, resulting from the total amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lipid and <strong>poloxamer</strong> introduced up<strong>on</strong> the injecti<strong>on</strong> is expressed<br />

as:<br />

qobs ¼ DH X syr<br />

P<br />

where<br />

vPb<br />

vPt<br />

þð1 X syr<br />

P Þ vPb<br />

vL<br />

P syr<br />

b<br />

P syr<br />

t þ L syr þ qdil (2)<br />

vPb 1<br />

¼<br />

vL 2 þ<br />

KðPt þ LÞþW<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

2 K 2ðPt þ LÞ 2 þ2KWðL PtÞþW 2<br />

q<br />

vPb<br />

¼<br />

vPt<br />

1<br />

2 þ<br />

KðPt þ LÞ W<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

2 K 2ðPt þ LÞ 2 þ2KWðL PtÞþW 2<br />

q<br />

DH is the molar enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>ing, which is the molar heat<br />

resulting from the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>poloxamer</strong> from water to<br />

<str<strong>on</strong>g>bilayer</str<strong>on</strong>g>s: DH ¼ hb P hw P, Xsyr P denotes the total <strong>poloxamer</strong> mole<br />

fracti<strong>on</strong> in the syringe. The term qdil is the molar heat <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the injectant, and can be measured separately by a c<strong>on</strong>trol<br />

experiment.<br />

Electr<strong>on</strong> cryo-microscopy (cryo-EM)<br />

Particles suspended across a thin layer <str<strong>on</strong>g>of</str<strong>on</strong>g> vitreous ice were<br />

prepared by rapidly plunging into liquid ethane after excess<br />

liquid <str<strong>on</strong>g>of</str<strong>on</strong>g> the specimen soluti<strong>on</strong> was blotted <str<strong>on</strong>g>of</str<strong>on</strong>g>f by a filter paper 57<br />

using the Vitrobot (FEI company, Oreg<strong>on</strong>). To study the<br />

morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> self-assemblies as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature, the<br />

soluti<strong>on</strong> was maintained at the desired temperature during<br />

transfer and was kept at a pre-set temperature inside the Vitrobot<br />

chamber prior to freezing. The specimen grid travelling time<br />

between the chamber and the liquid ethane c<strong>on</strong>tainer, as well as<br />

the vitrificati<strong>on</strong> time in the liquid ethane, is short enough that the<br />

particle morphology would be preserved. 58 Cryo-EM imaging<br />

was performed <strong>on</strong> a JEM 1200 microscope operating at 100 kV<br />

with a Gatan liquid nitrogen specimen cryo-holder under a low<br />

dose c<strong>on</strong>diti<strong>on</strong>. The images were collected <strong>on</strong> Kodak SO163 films<br />

developed in full strength D19 at 20 C. The films were subsequently<br />

digitized in a Nik<strong>on</strong> Super Coolscan 8000 ED scanner at<br />

6.35 mm/pixel step size. High magnificati<strong>on</strong> images were acquired<br />

using a JEOL2010F electr<strong>on</strong> microscope (JEOL, Tokyo Japan)<br />

with a field emissi<strong>on</strong> gun operated at 200 kV and were recorded<br />

by a Gatan US4000 4k 4k CCD camera (Gatan, Pleasant<strong>on</strong><br />

CA).<br />

Acknowledgements<br />

G.W. acknowledges the support <str<strong>on</strong>g>of</str<strong>on</strong>g> Burroughs Wellcome Fund<br />

Interfaces No. 1001774. W.C. was supported by NIH grant<br />

(P41RR02250). K.Y. C. L. is grateful for support from the<br />

Packard (99–1465) and Sloan (BR-4028) Foundati<strong>on</strong>s.<br />

References<br />

1 M. Johnss<strong>on</strong>, M. Silvander, G. Karlss<strong>on</strong> and K. Edwards, Langmuir,<br />

1999, 15, 6314–6325.<br />

2 K. Kostarelos, M. Kipps, T. F. Tadros and P. F. Luckham, Colloids<br />

Surf. A, 1998, 136, 1–9.<br />

3 K. Kostarelos, P. F. Luckham and T. F. Tadros, J. Liposome Res.,<br />

1995, 5, 117–130.<br />

4 K. Kostarelos, P. F. Luckham and T. F. Tadros, J. Chem. Soc.,<br />

Faraday Trans., 1998, 94, 2159–2168.<br />

5 K. Kostarelos, T. F. Tadros and P. F. Luckham, Langmuir, 1999, 15,<br />

369–376.<br />

6 M. C. Woodle, M. S. Newman and F. J. Martin, Int. J. Pharm., 1992,<br />

88, 327–334.<br />

7 R. C. Lee, L. P. River, F.-S. Pan, L. Ji and R. L. Wollmann, Proc.<br />

Natl. Acad. Sci. USA, 1992, 89, 4524–4528.<br />

8 J. T. Padanilam, J. C. Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>, R. C. Lee, E. G. Cravalho,<br />

R. G. Tompkins, M. L. Yarmush and M. T<strong>on</strong>er, Ann. N.Y. Acad.<br />

Sci., 1994, 720, 111–123.<br />

9 J. Hannig, D. Zhang, D. J. Canaday, M. A. Beckett,<br />

R. D. Astumian, R. Weichselbaum and R. C. Lee, Radiat. Res.,<br />

2000, 154, 171–177.<br />

10 E. P. Orringer, J. F. Casella, K. I. Ataga, M. Koshy, P. Adams-<br />

Graves, L. Luchtman-J<strong>on</strong>es, T. Wun, M. Watanabe, F. Shafer,<br />

A. Kutlar, M. Abboud, M. Steinberg, B. Adler, P. Swerdlow,<br />

C. Terregino, S. Saccente, B. Files, S. Ballas, R. Brown,<br />

S. Wojtowicz-Praga and J. M. Grindel, JAMA, 2001, 286, 2099–2106.<br />

11 J. D. Marks, C.-Y. Pan, T. Bushell, W. Cromie and R. C. Lee, FASEB<br />

J., 2001, 15, 1107–1109.<br />

12 S. Yasuda, D. Townsend, D. E. Michele, E. G. Favre, S. M. Day and<br />

J. M. Metzger, Nature, 2005, 436, 1025–1029.<br />

13 E. Batrakova, S. Lee, S. Li, A. Venne, V. Alakhov and A. Kabanov,<br />

Pharm. Res., 1999, 16, 1373–1379.<br />

14 V. Y. Erukova, O. O. Krylova, Y. N. Ant<strong>on</strong>enko and N. S. Melik-<br />

Nubarov, Biochim. Biophys. Acta, 2000, 1468, 73–86.<br />

15 T. Demina, I. Grozdova, O. Krylova, A. Zhirnov, V. Istratov,<br />

H. Frey, H. Kautz and N. Melik-Nubarov, Biochemistry, 2005, 44,<br />

4042–4054.<br />

16 N. S. Melik-Nubarov, O. O. Pomaz, T. Y. Dorodynch, G. A. Badun,<br />

A. L. Ksen<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>tov, O. B. Schemchukova and S. A. Arzhakov, FEBS<br />

Lett., 1999, 446, 194–198.<br />

17 A. E. Zhirnov, T. V. Demina, O. O. Krylova, I. D. Grozdova and<br />

N. S. Melik-Nubarov, Biochim. Biophys. Acta, 2005, 1720, 73–83.<br />

18 G. Wu, J. Majewski, C. Ege, K. Kjaer, M. J. Weygand and<br />

K. Y. C. Lee, Biophys. J., 2005, 89, 3159–3173.<br />

19 L. Wu, O. Zaborina, A. Zaborin, E. B. Chang, M. Musch,<br />

C. Holbrook, J. Shapiro, J. R. Turner, G. Wu, K. y. C. Lee and<br />

J. C. Alverdy, Gastroenterology, 2004, 126, 488–498.<br />

20 D. Marsh, Biochim. Biophys. Acta, 1996, 1286, 183–223.<br />

21 S. R. Shaikh, A. C. Dumaual, L. J. Jenski and W. Stillwell, Biochim.<br />

Biophys. Acta, 2001, 1512, 317–328.<br />

22 G. Wu, J. Majewski, C. Ege, K. Kjaer, M. J. Weygand and<br />

K. Y. C. Lee, Phys. Rev. Lett., 2004, 93, 028101–028104.<br />

23 S. A. Maskarinec, J. Hannig, R. C. Lee and K. Y. C. Lee, Biophy. J.,<br />

2002, 82, 1453–1459.<br />

24 C. E. Miller, J. Majewski, E. B. Watkins, D. J. Mulder, T. Gog and<br />

T. L. Kuhl, Phys. Rev. Lett., 2008, 100, 058103/058101–058103/<br />

058104.<br />

25 H. I. Petrache, S. Tristram-Nagle and J. F. Nagle, Chem. Phys. Lipids,<br />

1998, 95, 83–94.<br />

26 J. A. Shar, T. M. Obey and T. Cosgrove, Colloids Surf. A, 1998, 136,<br />

21–33.<br />

27 H. Heerklotz and J. Seelig, Biochim. Biophys. Acta, 2000, 1508, 69–85.<br />

28 R. M. Epand and R. F. Epand, Biophys. J., 1994, 66, 1450–1456.<br />

29 H. H. Heerklotz, H. Binder and R. M. Epand, Biophys. J., 1999, 76,<br />

2606–2613.<br />

30 C. Guo, J. Wang, H.-z. Liu and J.-y. Chen, Langmuir, 1999, 15, 2703–<br />

2708.<br />

31 B. Lindman, A. Carlss<strong>on</strong>, G. Karlstroem and M. Malmsten, Adv.<br />

Colloid Interface Sci., 1990, 32, 183–203.<br />

32 G. Wu, Ph.D., the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Chicago, 2005.<br />

33 A. V. Kabanov, I. R. Nazarova, I. V. Astafieva, E. V. Batrakova,<br />

V. Y. Alakhov, A. A. Yaroslavov and V. A. Kabanov,<br />

Macromolecules, 1995, 28, 2303–2314.<br />

34 P. Alexandridis, J. F. Holzwarth and T. A. Hatt<strong>on</strong>, Macromolecules,<br />

1994, 27, 2414–2425.<br />

35 N. Kucerka, M. A. Kiselev and P. Balgavy, Eur. Biophys. J, 2004, 33,<br />

328–334.<br />

36 A. Brechling, M. Sundermann, U. Kleineberg and U. Heinzmann,<br />

Thin Solid Films, 2003, 433, 281–286.<br />

37 M. Almgren, Biochim. Biophys. Acta, 2000, 1508, 146–163.<br />

38 R. Joannic, L. Auvray and D. D. Lasic, Phys. Rev. Lett., 1997, 78,<br />

3402–3405.<br />

1502 | S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009


39 M. Anderss<strong>on</strong>, L. Hammarstroem and K. Edwards, J. Phys. Chem.,<br />

1995, 99, 14531–14538.<br />

40 D. Lichtenberg, E. Freire, C. F. Schmidt, Y. Barenholz, P. L. Felgner<br />

and T. E. Thomps<strong>on</strong>, Biochemistry, 1981, 20, 3462–3467.<br />

41 S. S. Funari, B. Nuscher, G. Rapp and K. Beyer, Proc. Natl. Acad.<br />

Sci. USA, 2001, 98, 8938–8943.<br />

42 D. Zhang, M. A. Carignano and I. Szleifer, Phys. Rev. Lett., 2006, 96,<br />

028701/028701–028701/028704.<br />

43 A. Nath, W. M. Atkins and S. G. Sligar, Biochemistry, 2007, 46, 2059–<br />

2069.<br />

44 M. C. Sandstroem, E. Johanss<strong>on</strong> and K. Edwards, Biophys. Chem.,<br />

2008, 132, 97–103.<br />

45 E. Johanss<strong>on</strong>, A. Lundquist, S. Zuo and K. Edwards, Biochim.<br />

Biophys. Acta, 2007, 1768, 1518–1525.<br />

46 N.-b. Ming, M. Wang and R.-W. Peng, Phys. Rev. E, 1993, 48, 621–<br />

624.<br />

47 A. S. Muresan, Ph.D., The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Chicago, 2003.<br />

48 D. Wang, Y. Zhao and Z. Wu, J. Appl. Phys., 1992, 71, 5904–<br />

5907.<br />

49 M. Wang, X.-Y. Liu, C. S. Strom, P. Bennema, W. van Enckevort and<br />

N.-B. Ming, Phys. Rev. Lett., 1998, 80, 3089–3092.<br />

50 G. Wu and K. Y. C. Lee, to be submitted, 2008.<br />

51 A. Filippov, G. Oradd and G. Lindblom, Biophys. J., 2003, 84, 3079–<br />

3086.<br />

52 D. Lichtenberg, P. L. Felgner and T. E. Thomps<strong>on</strong>, Biochim. Biophys.<br />

Acta, 1982, 684, 277–281.<br />

53 J. C. Weaver and Y. A. Chizmadzhev, Bioelectrochem. Bioenerg.,<br />

1996, 41, 135–160.<br />

54 J. R. Silvius, in Lipid-Protein Interacti<strong>on</strong>s, John Wiley & S<strong>on</strong>s, Inc.,<br />

New York, 1982.<br />

55 A. D. Tsamaloukas, S. Keller and H. Heerklotz, Nat. Protoc., 2007, 2,<br />

695–704.<br />

56 C. Tanford, The Hydrophobic Effect: Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Micelles and<br />

Biological Membranes, Wiley, New York, 2nd edn, 1980.<br />

57 J. Dubochet, M. Adrian, J. J. Chang, J. C. Homo, J. Lepault,<br />

A. W. McDowall and P. Schultz, Q Rev. Biophys., 1988, 21, 129–228.<br />

58 P. M. Frederik, M. C. A. Stuart, P. H. H. Bomans, W. M. Busing,<br />

N. J. Burger and A. J. Verkleij, J. Microsc., 1991, 161, 253–262.<br />

This journal is ª The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter, 2009, 5, 1496–1503 | 1503

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!