28.07.2013 Views

Vibration-induced PM Noise in Oscillators and Studies of Correlation ...

Vibration-induced PM Noise in Oscillators and Studies of Correlation ...

Vibration-induced PM Noise in Oscillators and Studies of Correlation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

“<strong>Vibration</strong> <strong>Vibration</strong>-<strong><strong>in</strong>duced</strong> <strong><strong>in</strong>duced</strong> <strong>PM</strong> <strong>Noise</strong> <strong>in</strong><br />

<strong>Oscillators</strong> <strong>and</strong> <strong>Studies</strong> <strong>of</strong> <strong>Correlation</strong><br />

with <strong>Vibration</strong> Sensors” Sensors<br />

D. A. Howe, J. L. Lanfranchi, Lanfranchi,<br />

N. Ashby, L. Cuts<strong>in</strong>ger, Cuts<strong>in</strong>ger,<br />

C. W.<br />

Nelson, A. Hati<br />

National Institute <strong>of</strong> St<strong>and</strong>ards & Technology (NIST), Boulder, CO, CO,<br />

USA


Description <strong>of</strong> vibration equipment <strong>and</strong> <strong>PM</strong> noise measurement.<br />

Primary Measurement Effects due to Motion <strong>of</strong> an Ideal Device Under Test<br />

(DUT):<br />

Path fluctuation<br />

Uniform motion<br />

OUTLINE OF TALK<br />

Relativity under vibration<br />

Cable multipath <strong>in</strong>stability <strong>and</strong> impedance mismatch<br />

Calculation <strong>of</strong> Γ = 1/2 per g<br />

Measurements <strong>of</strong> <strong>PM</strong> noise <strong>of</strong> a low-vibe-sensitivity Qz under vibration:<br />

S<strong>in</strong>e-wave vibration, 20 – 2000 Hz<br />

R<strong>and</strong>om-noise vibration, 10 – 200 Hz<br />

Scatter plots <strong>of</strong> phase-fluctuations vs. acceleration<br />

Strategy for construct<strong>in</strong>g ultra-low noise microwave reference oscillator with<br />

reduced acceleration sensitivity.


<strong>Vibration</strong> phase noise test bed<br />

<strong>Vibration</strong> controller <strong>and</strong> amplifier, actuator, adaptor, <strong>and</strong><br />

power converter


<strong>Vibration</strong> phase noise test bed<br />

3-axis mount<strong>in</strong>g <strong>of</strong> low-vibrationsensitivity<br />

quartz oscillator (~5x10-11/g).


Path Fluctuations<br />

Δν<br />

rms 10<br />

= Gi = Gi7.3x10 ν π i<br />

0<br />

8<br />

2 10 (100)<br />

−11<br />

7.3x10 Γ= , @ fvibe =<br />

100Hz<br />

g<br />

rms<br />

−11


Uniform Motion<br />

The detected frequency will be identical to the<br />

proper frequency <strong>of</strong> the oscillator <strong>and</strong>, to first<br />

order <strong>in</strong> the velocity, this does not depend on<br />

the velocity.


Acceleration Effect<br />

−17<br />

2.4x10 / g<br />

Δν<br />

ν<br />

DUT<br />

0<br />

=−<br />

@ f =<br />

100 Hz,<br />

vibe<br />

1<br />

2<br />

v<br />

c<br />

2<br />

2


ρ<br />

α =<br />

Signal Multipath Effect from Impedance<br />

Mismatch, Dielectric Distortion, etc.<br />

Vt () = Acos[ ω t−α]<br />

( C / β )cos( pt / 2)<br />

−1<br />

0 0<br />

tan<br />

1 − ( C0 / β )s<strong>in</strong>( pt0<br />

/2)<br />

0<br />

1.46x10 Γ=<br />

g<br />

rms<br />

−10<br />

<strong>in</strong> the worst case.<br />

C0 is an <strong>in</strong>f<strong>in</strong>ite series <strong>in</strong>volv<strong>in</strong>g the coefficient <strong>of</strong><br />

reflection ρ. The quantity α represents a lagg<strong>in</strong>g<br />

phase error that depends upon the modulation<br />

<strong>in</strong>dex β . In the worst case, a reflected signal <strong>of</strong><br />

equal strength makes ρ equal to one-half the<br />

phase lag <strong>of</strong> the reflected signal.<br />

,


<strong>Vibration</strong> phase noise test bed<br />

Oscillator Under <strong>Vibration</strong><br />

An oscillator that is vibrated generates carrier-frequency<br />

sideb<strong>and</strong>s at v 0 +f v where f v is the vibration frequency.<br />

Usually f v is <strong>in</strong> the range 0 < f v < 5 kHz.


S<strong>in</strong>e <strong>Vibration</strong>-Induced Phase <strong>Noise</strong><br />

S<strong>in</strong>usoidal vibration produces spectral l<strong>in</strong>es at ±fv from the<br />

carrier, where fv is the vibration frequency.<br />

'<br />

L<br />

( ) ⎟ 0<br />

f = 20 log ⎜<br />

e.g., if Γ = 1 x 10 -9 /g <strong>and</strong> f 0 = 10 MHz, then even if the<br />

oscillator is completely noise free at rest, the phase “noise”<br />

i.e., the spectral l<strong>in</strong>es, due solely to a s<strong>in</strong>e vibration level <strong>of</strong><br />

1g will be;<br />

Vibr. freq., f v, <strong>in</strong> Hz<br />

1<br />

10<br />

100<br />

1,000<br />

10,000<br />

v<br />

4-70<br />

⎛ Γ • Af<br />

⎜<br />

⎝ 2fv<br />

⎞<br />

⎠<br />

L’(fv), <strong>in</strong> dBc<br />

-46<br />

-66<br />

-86<br />

-106<br />

-126


R<strong>and</strong>om <strong>Vibration</strong>-Induced Phase <strong>Noise</strong><br />

R<strong>and</strong>om vibration’s contribution to phase noise is given by:<br />

() [ ( )( ) ] 2<br />

1<br />

⎛ Γ • Af<br />

⎞ 0 L f = 20 log<br />

⎜ , where lAl<br />

= 2 PSD<br />

2f<br />

⎟<br />

⎝ ⎠<br />

e.g., if Γ = 1 x 10 -9 /g <strong>and</strong> f 0 = 10 MHz, then even if the<br />

oscillator is completely noise free at rest, the phase “noise”<br />

i.e., the spectral l<strong>in</strong>es, due solely to a vibration<br />

PSD = 0.1 g 2 /Hz will be:<br />

Offset freq., f, <strong>in</strong> Hz<br />

1<br />

10<br />

100<br />

1,000<br />

10,000<br />

R. L. Filler, "The Acceleration Sensitivity <strong>of</strong> Quartz Crystal <strong>Oscillators</strong>: A<br />

Review," IEEE Transactions on Ultrasonics, Ferroelectrics, <strong>and</strong> Frequency<br />

Control, Vol. 35, No. 3, pp. 297-305, May 1988.<br />

L’(f), <strong>in</strong> dBc/Hz<br />

-53<br />

-73<br />

-93<br />

-113<br />

-133


0000


Compensation Off


Compensation On


Acceleration<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

Phase <strong>Noise</strong> <strong>and</strong> Acceleration vs. Frequency<br />

X Axis<br />

1 10 100 1000<br />

-180<br />

10000<br />

Frequency (Hz)<br />

Acceleration<br />

Phase<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

Phase <strong>Noise</strong>


X Axis


Compensation Off


Compensation On


Acceleration<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

Phase <strong>Noise</strong> <strong>and</strong> Acceleration vs. Frequency<br />

Y Axis<br />

1 10 100 1000<br />

-180<br />

10000<br />

Frequency (Hz)<br />

Acceleration<br />

Phase<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

Phase <strong>Noise</strong>


Y Axis


Compensation Off


Compensation On


Acceleration<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

Phase <strong>Noise</strong> <strong>and</strong> Acceleration vs. Frequency<br />

Z Axis<br />

Acceleration<br />

Phase <strong>Noise</strong><br />

1 10 100 1000 10000<br />

Frequency (Hz)<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

-180<br />

Phase <strong>Noise</strong>


Z Axis


Strategy for construct<strong>in</strong>g ultra-low noise microwave<br />

reference oscillator with reduced acceleration sensitivity.<br />

While the oscillator is under vibration, an estimate <strong>of</strong> a complexconjugate<br />

(same amplitude, opposite phase) signal will be<br />

generated from accelerometer signals <strong>and</strong> used to modulate the<br />

oscillator’s output phase <strong>in</strong> such a way as to suppress or cancel the<br />

<strong><strong>in</strong>duced</strong> sideb<strong>and</strong>s. One-axis cancellation is shown for simplicity.


Conclusion<br />

State-<strong>of</strong>-art phase noise measurements plus vibration test facility.<br />

“Acceleration, <strong>Vibration</strong> <strong>and</strong> Shock Effects-IEEE St<strong>and</strong>ards Project P1193” by Vig, Audo<strong>in</strong>, Cutler,<br />

Driscoll, EerNisse, Filler, Garvey, Riley, Smythe <strong>and</strong> Wegle<strong>in</strong>, Proc. Of the 46 rd Ann.<br />

Symp. On Frequency Control, pp. 763-781, 1992.<br />

“The Acceleration Sensitivity <strong>of</strong> Quartz Crystal <strong>Oscillators</strong>: A Review,” by Filler, IEEE<br />

Transactions on Ultrasonics, Ferroelectrics <strong>and</strong> Frequency Control, pp. 297-305, 1988.<br />

“A Measurement Technique for Determ<strong>in</strong>ation <strong>of</strong> Frequency vs. Acceleration Characteristics <strong>of</strong><br />

Quartz Crystal Units,” by Healy, Hahn, <strong>and</strong> Powell, Proc. Of the 37 th Ann. Symp. On Frequency<br />

Control, pp.284-289, 1983, AD-A136673.<br />

“Improved <strong>Vibration</strong> Performance <strong>in</strong> Passive Atomic Frequency St<strong>and</strong>ards by Servo-Loop<br />

Control,” by Kwon <strong>and</strong> Hahn, Proc. Of the 37 th Ann. Symp. On Frequency Control, pp.28-20,<br />

1983, AD-A136673.<br />

“Mechanical <strong>and</strong> Acoustic Effects <strong>in</strong> Low Phase <strong>Noise</strong> Piezoelectric <strong>Oscillators</strong>,” by Renoult,<br />

Girardet <strong>and</strong> Bidart, Proc. Of the 43 rd Ann. Symp. On Frequency Control, pp. 439-446, 1989, IEEE<br />

Catalog No. 89CH2690-6.<br />

“The Physics <strong>of</strong> the Environmental Sensitivity <strong>of</strong> Rubidium Gas Cell Atomic Frequency<br />

St<strong>and</strong>ards,” by Riley, IEEE Transactions on Ultrasonics, Ferroelectrics <strong>and</strong> Frequency Control,<br />

vol. 39, pp. 232-240, 1992.<br />

<strong>Vibration</strong> Analysis for Electronic Equipment, by Ste<strong>in</strong>berg, John Wiley & Sons, 1988.<br />

“Technique for Measur<strong>in</strong>g the Acceleration Sensitivity <strong>of</strong> SC-cut Quartz Resonators,” by Watts,<br />

EerNisse, Ward, <strong>and</strong> Wigg<strong>in</strong>s, Proc. Of the 42 rd Ann.<br />

Symp. On Frequency Control, pp. 442-446, 1988, AD-A217275.<br />

“The <strong>Vibration</strong>-Induced Phase <strong>Noise</strong> <strong>of</strong> a Visco-Elastically Supported Crystal Resonator,” by<br />

Wegle<strong>in</strong>, Proc. Of the 43 rd Ann. Symp. On Frequency Control, pp. 433-438, 1989. IEEE Catalog<br />

No. 89CH2690-6.


The End<br />

D. A. Howe, J. L. Lanfranchi, Lanfranchi,<br />

N. Ashby, L. Cuts<strong>in</strong>ger, Cuts<strong>in</strong>ger,<br />

C. W.<br />

Nelson, A. Hati<br />

National Institute <strong>of</strong> St<strong>and</strong>ards & Technology (NIST), Boulder, CO, CO,<br />

USA


Conclusion<br />

State-<strong>of</strong>-art phase noise measurements plus vibration test facility.<br />

J.R. Vig, C. Audo<strong>in</strong>, L.S. Cutler, M.M. Driscoll, E.P. EerNisse, R.L. Filler, R.M. Garvey, W.L. Riley,<br />

R.C. Smythe, R.D. Wegle<strong>in</strong>, “Acceleration, <strong>Vibration</strong> <strong>and</strong> Shock Effects-IEEE St<strong>and</strong>ards Project<br />

P1193” Proc. Of the 46 rd Ann.<br />

Symp. On Frequency Control, pp. 763-781, 1992<br />

R.L. Filler, “The Acceleration Sensitivity <strong>of</strong> Quartz Crystal <strong>Oscillators</strong>: A Review,” IEEE<br />

Transactions on Ultrasonics, Ferroelectrics <strong>and</strong> Frequency Control, pp. 297-305, 1988.<br />

D.J. Healy, H. Hahn, S. Powell, “A Measurement Technique for Determ<strong>in</strong>ation <strong>of</strong> Frequency vs.<br />

Acceleration Characteristics <strong>of</strong> Quartz Crystal Units,” Proc. Of the 37 th Ann. Symp. On Frequency<br />

Control, pp.284-289, 1983, AD-A136673.<br />

T.M. Kwon, T. Hahn, “Improved <strong>Vibration</strong> Performance <strong>in</strong> Passive Atomic Frequency St<strong>and</strong>ards<br />

by Servo-Loop Control,” Proc. Of the 37 th Ann. Symp. On Frequency Control, pp.28-20, 1983, AD-<br />

A136673.<br />

P. Renoult, E. Girardet, L. Bidart, “Mechanical <strong>and</strong> Acoustic Effects <strong>in</strong> Low Phase <strong>Noise</strong><br />

Piezoelectric <strong>Oscillators</strong>,” Proc. Of the 43 rd Ann. Symp. On Frequency Control, pp. 439-446, 1989,<br />

IEEE Catalog No. 89CH2690-6.<br />

W. Riley,“ The Physics <strong>of</strong> the Environmental Sensitivity <strong>of</strong> Rubidium Gas Cell Atomic Frequency<br />

St<strong>and</strong>ards,” IEEE Transactions on Ultrasonics, Ferroelectrics <strong>and</strong> Frequency Control, vol. 39, pp.<br />

232-240, 1992.<br />

D. Ste<strong>in</strong>berg, <strong>Vibration</strong> Analysis for Electronic Equipment, John Wiley & Sons, 1988.<br />

M.H. Watts, E.P. EerNisse, R.W. Ward, R.B. Wigg<strong>in</strong>s, “Technique for Measur<strong>in</strong>g the Acceleration<br />

Sensitivity <strong>of</strong> SC-cut Quartz Resonators,” Proc. Of the 42 rd Ann.<br />

Symp. On Frequency Control, pp. 442-446, 1988, AD-A217275.<br />

R.D. Wegle<strong>in</strong>, “The <strong>Vibration</strong>-Induced Phase <strong>Noise</strong> <strong>of</strong> a Visco-Elastically Supported Crystal<br />

Resonator,” Proc. Of the 43 rd Ann. Symp. On Frequency Control, pp. 433-438, 1989. IEEE<br />

Catalog No. 89CH2690-6.


0000


Low-noise Oscillator w/ Active <strong>Vibration</strong><br />

L(f)<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

<strong>Vibration</strong>-Induced Phase <strong>Noise</strong><br />

Nom<strong>in</strong>ally 5 x 10^(-10)/g <strong>and</strong> f0 = 100 MHz<br />

1 10 100 1000 10000 100000 1000000 10000000<br />

Frequency


Low-noise Oscillator w/<strong>Vibration</strong><br />

L(f) dBc/Hz<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

-180<br />

-190<br />

aPROPOS Performance Goals at 10 GHz<br />

Nom<strong>in</strong>al 1g r<strong>and</strong>om vibration with uniform PSD, 0.05 g2/Hz<br />

1 10 100 1000 10000 100000 1000000 10000000<br />

Frequency (Hz)<br />

NIST 100 MHz mult. to 10 GHz w/<br />

<strong>Vibration</strong><br />

Phase I w/ <strong>Vibration</strong>


<strong>Vibration</strong>-<strong><strong>in</strong>duced</strong> <strong>PM</strong> <strong>Noise</strong> <strong>in</strong><br />

<strong>Oscillators</strong> <strong>and</strong> <strong>Studies</strong> <strong>of</strong> <strong>Correlation</strong><br />

with <strong>Vibration</strong> Sensors<br />

D. A. Howe, J. L. Lanfranchi, N. Ashby, L. Cuts<strong>in</strong>ger, C. W.<br />

Nelson, A. Hati<br />

National Institute <strong>of</strong> St<strong>and</strong>ards & Technology (NIST), Boulder, CO, USA


Low-noise Oscillator w/<strong>Vibration</strong><br />

Milestones, accomplishments, experiences:<br />

Motivation for DSP us<strong>in</strong>g Wavelet Decomposition<br />

The functions from accelerometers are time-doma<strong>in</strong>, asymmetric signals that conta<strong>in</strong><br />

phase <strong>in</strong>formation <strong>in</strong> a distribution <strong>of</strong> frequencies that do not necessarily have harmonic<br />

relationships.<br />

Swept-s<strong>in</strong>e tests <strong>of</strong> g-sensitivity are <strong>in</strong>formative, but not completely satisfactory,<br />

because harmonics <strong>of</strong> f_v have phases that need to be suppressed. The g-sensitivity<br />

vs. N x f_v must <strong>in</strong>clude the phase <strong>of</strong> harmonics, so a superior test is swept-triangle at<br />

low f_v to account for harmonic phase-match<strong>in</strong>g.<br />

Ideally, r<strong>and</strong>om noise should be used to characterize all harmonic <strong>and</strong> anharmonic<br />

phases <strong>in</strong> the suppression.<br />

We must resort to adaptive transfer functions <strong>in</strong> the feed-forward suppression (FFS).


L(f) dBc/Hz<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

-180<br />

-190<br />

Phase II Goal for Low-noise<br />

Oscillator w/<strong>Vibration</strong><br />

aPROPOS Performance Goals at 10 GHz<br />

Nom<strong>in</strong>al 1g r<strong>and</strong>om vibration with uniform PSD, 0.05 g2/Hz<br />

1 10 100 1000 10000 100000 1000000 10000000<br />

Frequency (Hz)<br />

Phase II NIST Active w/ <strong>Vibration</strong>, Goal<br />

Phase I<br />

Phase II & III<br />

Phase I w/ <strong>Vibration</strong><br />

Phase II w/ <strong>Vibration</strong><br />

Phase III w/ <strong>Vibration</strong>


L(f) dBc/Hz<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

-180<br />

-190<br />

Phase II Goal for Low-noise<br />

Oscillator w/<strong>Vibration</strong><br />

aPROPOS Performance Goals at 10 GHz<br />

Nom<strong>in</strong>al 1g r<strong>and</strong>om vibration with uniform PSD, 0.05 g2/Hz<br />

1 10 100 1000 10000 100000 1000000 10000000<br />

Frequency (Hz)<br />

Phase II w/ <strong>Vibration</strong><br />

Phase II NIST Active w/ <strong>Vibration</strong>, Goal<br />

Phase II & III<br />

Phase I w/ <strong>Vibration</strong><br />

NIST 100 MHz mult. to 10 GHz w/<br />

<strong>Vibration</strong><br />

SLCO 10 GHz<br />

Phase I<br />

NIST Power CSO<br />

Phase III w/ <strong>Vibration</strong>


Phase noise under vibration is for Γ = 1 x 10-9 R<strong>and</strong>om <strong>Vibration</strong>-Induced Phase <strong>Noise</strong><br />

per g <strong>and</strong> f = 10 MHz<br />

L (f) (dBc)<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

5<br />

L(f) under the r<strong>and</strong>om vibration shown<br />

L(f) without vibration<br />

45 dB<br />

300<br />

4-72<br />

1K 2K<br />

PSD (g 2 /Hz)<br />

.04<br />

.07<br />

5 300 1K 2K<br />

Frequency (Hz)<br />

Typical aircraft<br />

r<strong>and</strong>om vibration<br />

envelope


While the oscillator is under vibration, an estimate <strong>of</strong> a<br />

complex-conjugate (same amplitude, opposite phase)<br />

signal will be generated from accelerometer signals <strong>and</strong><br />

used to modulate the oscillator’s output phase <strong>in</strong> such a<br />

way as to suppress or cancel the <strong><strong>in</strong>duced</strong> sideb<strong>and</strong>s.<br />

One-axis cancellation is shown for simplicity.


Acceleration<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Phase <strong>Noise</strong> <strong>and</strong> Acceleration vs. Frequency<br />

Y Axis<br />

-20<br />

-180<br />

1 10 100 1000 10000<br />

Frequency (Hz)<br />

Acceleration<br />

Phase<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

Phase <strong>Noise</strong><br />

Acceleration<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Phase <strong>Noise</strong> <strong>and</strong> Acceleration vs. Frequency<br />

Z Axis<br />

-20<br />

-180<br />

1 10 100 1000 10000<br />

Frequency (Hz)<br />

Acceleration<br />

Phase <strong>Noise</strong><br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

-140<br />

-150<br />

-160<br />

-170<br />

Phase <strong>Noise</strong>


Qz Osc w/ <strong>Vibration</strong> Suppression: Phase Dev. vs. Z-accel.


Qz Osc w/ <strong>Vibration</strong> Suppression: Phase Dev. vs. Y-accel.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!