27.07.2013 Views

The importance of space and time when interpreting trophic ...

The importance of space and time when interpreting trophic ...

The importance of space and time when interpreting trophic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>importance</strong> <strong>of</strong> <strong>space</strong> <strong>and</strong> <strong>time</strong> <strong>when</strong><br />

<strong>interpreting</strong> <strong>trophic</strong> structure from stable isotopes<br />

Master thesis in biology<br />

Joan Holst Hansen<br />

20062632<br />

Marine Ecology, Department <strong>of</strong> Bioscience, Aarhus University<br />

August 2011<br />

<strong>The</strong> Greenl<strong>and</strong> Institute<br />

<strong>of</strong> Natural Resources<br />

Greenl<strong>and</strong> Climate<br />

Research Center


Forord<br />

Denne specialerapport indeholder en generel indledning, som beskriver specialeprojektet og teorierne<br />

bag dette, samt et engelsk artikeludkast omh<strong>and</strong>lende fødenetstrukturen i det marine miljø ved<br />

Grønl<strong>and</strong>. Artiklen er formateret til indsendelse til tidsskriftet Marine Ecology Progress Series.<br />

Specialet er lavet i samarbejde mellem Afdeling for Marin Økologi, Biologisk Institut, Aarhus<br />

Universitet, Grønl<strong>and</strong>s Naturinstitut og Grønl<strong>and</strong>s Klimaforskningscenter. Specialeprojektet har<br />

modtaget finansiel støtte af Grønl<strong>and</strong>s Klimaforskningscenter og Forskningsrådet.<br />

Peter Grønkjær og Jens Tang Christensen fra Aarhus Universitet var interne vejledere, og Rasmus Berg<br />

Hedeholm og Kaj Sünksen fra Grønl<strong>and</strong>s Naturinstitut var eksterne vejledere. Jeg vil hermed gerne<br />

rette en stor tak til alle fire for gode råd og grundig vejledning gennem hele specialeforløbet. En stor<br />

tak skal også lyde til Grønl<strong>and</strong>s Naturinstitut samt hele besætningen på RV Pâmiut, som stillede<br />

laboratorieudstyr til rådighed og hjalp med indsamlingen af data. Endvidere vil jeg gerne benytte<br />

lejligheden til at udvise min store taknemmelighed til Rasmus Berg Hedeholm og Kaj Sünksen for at<br />

bidrage til et fantastisk ophold i Nuuk.<br />

Joan Holst Hansen<br />

Aarhus Universitet, august 2011<br />

1


Resumé<br />

Specialet omh<strong>and</strong>ler fødenetstrukturen i de grønl<strong>and</strong>ske farv<strong>and</strong>e belyst ved hjælp af stabile kulst<strong>of</strong>-<br />

og kvælst<strong>of</strong>isotoper (δ 13C og δ 15N). δ 15N og δ 13C er et valideret og effektivt værktøj til økologiske<br />

studier. δ 15N værdien bruges som et integreret mål for en organismes tr<strong>of</strong>iske niveau, da δ 15N signalet<br />

i prædatorer typisk beriges med 3-4‰ i forhold til deres bytte. Samme berigelse ses ikke for δ 13C<br />

signalet. δ 13C bruges i stedet som et estimat for oprindelsen af den energi, der ernærer fødenettet<br />

(bentisk vs. pelagisk) og kan endvidere relateres til v<strong>and</strong>massernes oprindelse. Specialeprojektet<br />

omh<strong>and</strong>ler både en rumlig og en tidslig undersøgelse af det marine økosystem. Det rumlige forsøg blev<br />

udført langs den grønl<strong>and</strong>ske vest- og østkyst (59°N – 72°N). Tolv arter fra alle tr<strong>of</strong>iske niveauer<br />

(grønl<strong>and</strong>shaj, havkat, hellefisk, torsk, rødfisk, håising, lodde, polartorsk, rejer, krill, zooplankton og<br />

POM) blev udvalgt til beskrivelse af fødenettet. Det tidslige forsøg blev udført i Nuuk Fjorden over en<br />

periode på otte måneder fra april til november. Her blev isotopsignaturen undersøgt for ni arter<br />

(hellefisk, helleflynder, torsk, rødfisk, håising, lodde, krill, copepoder og POM) fanget inden for et lille<br />

geografisk område.<br />

Undersøgelserne af isotopsignaturen viste, at der både er variationer på det rumlige og tidslige plan.<br />

Der var en signifikant effekt i δ 15N på stor geografisk skala og studiet viste en parallelforskydningen af<br />

hele fødenettet med breddegraden. δ 15N værdierne langs den grønl<strong>and</strong>ske vestkyst ændres omkring<br />

3‰ svarende til et helt tr<strong>of</strong>isk niveau mellem det sydligste og nordligste undersøgte område. Det<br />

tidslige forsøg viste en signifikant forskel i δ 13C med stigende værdier i sommerperioden. Ingen<br />

signifikant forskel i δ 15N blev påvist i løbet af de otte måneder studiet varede.<br />

Isotopsignaturen for de undersøgte arter varierede altså på både et stort og lille geografisk område.<br />

Disse forskelle er af en størrelse som ikke alene kan skyldes ændret fødeadfærd, men s<strong>and</strong>synligvis<br />

skyldes variationer i de abiotiske faktorer, såsom forskelle i v<strong>and</strong>ets fysiske og biologiske egenskaber<br />

samt terrestrisk udledning til havet. Dette resultat har stor betydning for <strong>and</strong>re studier, som benytter<br />

stabile isotoper (δ 15N og δ 13C) til belysning af økologiske spørgsmål, idet manglende hensyntagen til<br />

rumlige og tidslige effekter kan have afgørende indflydelse på konklusionen.<br />

2


Summary<br />

<strong>The</strong> thesis is concerned with the structure <strong>of</strong> the marine food web in Greenl<strong>and</strong> using stable carbon<br />

<strong>and</strong> nitrogen isotopes (δ 13C <strong>and</strong> δ 15N). δ 13C <strong>and</strong> δ 15N is a validated <strong>and</strong> efficient tool <strong>when</strong> studying<br />

food webs. <strong>The</strong> δ 15N value is used as an integrated measure <strong>of</strong> an organisms <strong>trophic</strong> level, because the<br />

signal <strong>of</strong> δ 15N in predators are enriched by 3-4‰ compared to its prey. <strong>The</strong> same enrichment is not<br />

true for δ 13C. <strong>The</strong> δ 13C value is instead used as a proxy <strong>of</strong> the origin <strong>of</strong> the energy source <strong>of</strong> the food<br />

web (benthic vs. pelagic) <strong>and</strong> can also be related to the origin <strong>of</strong> the water masses. <strong>The</strong> thesis consists<br />

<strong>of</strong> both a spatial <strong>and</strong> a temporal study <strong>of</strong> the marine ecosystem. <strong>The</strong> spatial study was conducted along<br />

the Greenl<strong>and</strong>ic West <strong>and</strong> East coast (59°N - 72°N). Twelve species (Greenl<strong>and</strong>ic shark, wolffish,<br />

Greenl<strong>and</strong> halibut, Atlantic cod, redfish, American plaice, capelin, polar cod, shrimp, krill, copepods<br />

<strong>and</strong> POM) were collected representing all <strong>trophic</strong> levels to describe the food web. <strong>The</strong> temporal study<br />

was executed in the Nuuk Fjord during an eight month sampling period running from April through<br />

November. In this study the isotopic signature was examined for nine species (Greenl<strong>and</strong> halibut,<br />

Atlantic halibut, Atlantic cod, redfish, American plaice, capelin, krill, copepod <strong>and</strong> POM) sampled<br />

within a small geographic area.<br />

Comparing stable isotope signatures in the arctic marine food web demonstrated both spatially <strong>and</strong><br />

temporally variations. On a large geographic scale the spatial study showed a significantly latitudinal<br />

effect in δ 15N, revealing a parallel shift <strong>of</strong> the entire food web. δ 15N values along the West coast <strong>of</strong><br />

Greenl<strong>and</strong> changed around 3‰ from south to north, corresponding to a full <strong>trophic</strong> level. In the<br />

temporal study a significant difference in δ 13C values was demonstrated with increasing values during<br />

the summer. Regarding δ 15N values no significant difference was shown during the sampling period.<br />

Accordingly the isotopic signature <strong>of</strong> the examined species varied both on a small <strong>and</strong> large geographic<br />

scale. <strong>The</strong>se differences are <strong>of</strong> a size that not alone can be caused by chancing food preferences, but<br />

most likely are due to abiotic factors such as differences in physical <strong>and</strong> biological properties <strong>of</strong> the<br />

water masses as well as terrestrial inputs. This result will have a large influence on other ecological<br />

studies using stable isotopes (δ 13C <strong>and</strong> δ 15N) since such spatial <strong>and</strong> temporal effects can have a crucial<br />

influence on the conclusion if not included.<br />

3


Indholdsfortegnelse<br />

Dansk introduktion<br />

FORORD .............................................................................................................................................................................................. 1<br />

RESUMÉ .............................................................................................................................................................................................. 2<br />

SUMMARY.......................................................................................................................................................................................... 3<br />

INDHOLDSFORTEGNELSE .......................................................................................................................................................... 4<br />

INTRODUKTION .............................................................................................................................................................................. 6<br />

Arktiske fødekæder ................................................................................................................................................................. 6<br />

Stabile isotoper ......................................................................................................................................................................... 7<br />

Tr<strong>of</strong>isk fraktionering ......................................................................................................................................................... 9<br />

Regenereret produktion ................................................................................................................................................ 10<br />

Begrænsninger ved brugen af stabile isotoper ..................................................................................................... 10<br />

Det grønl<strong>and</strong>ske system ..................................................................................................................................................... 11<br />

Det grønl<strong>and</strong>ske fødenet ............................................................................................................................................... 12<br />

Oceanografiske forhold.................................................................................................................................................. 12<br />

Formål med specialet .......................................................................................................................................................... 14<br />

REFERENCER ................................................................................................................................................................................ 15<br />

Article: Stable isotope variability in an arctic marine food web on a spatial <strong>and</strong> temporal scale<br />

ABSTRACT ......................................................................................................................................................................................... 1<br />

INTRODUCTION .............................................................................................................................................................................. 1<br />

MATERIAL AND METHODS ........................................................................................................................................................ 3<br />

Spatial Study............................................................................................................................................................................... 3<br />

Field Sampling ..................................................................................................................................................................... 3<br />

Temporal Study ........................................................................................................................................................................ 4<br />

Field sampling ...................................................................................................................................................................... 4<br />

Stable isotope preparation <strong>and</strong> analysis for both spatial <strong>and</strong> temporal studies ........................................... 5<br />

Estimation <strong>of</strong> <strong>trophic</strong> level ................................................................................................................................................... 6<br />

Estimation <strong>of</strong> relative stable carbon <strong>and</strong> nitrogen values....................................................................................... 7<br />

Statistical analyses ................................................................................................................................................................... 7<br />

RESULTS............................................................................................................................................................................................. 7<br />

Spatial Study............................................................................................................................................................................... 8<br />

Trophic level ......................................................................................................................................................................... 9<br />

Temporal study ...................................................................................................................................................................... 10<br />

Inshore-<strong>of</strong>fshore comparison .......................................................................................................................................... 10<br />

DISCUSSION ................................................................................................................................................................................... 11<br />

4


Spatial Study............................................................................................................................................................................ 11<br />

Temporal Study ..................................................................................................................................................................... 14<br />

Inshore-<strong>of</strong>fshore comparison .......................................................................................................................................... 15<br />

CONCLUSION ................................................................................................................................................................................. 15<br />

ACKNOWLEDGEMENTS............................................................................................................................................................ 15<br />

REFERENCE ................................................................................................................................................................................... 17<br />

TABLES AND FIGURES .............................................................................................................................................................. 23<br />

5


Introduktion<br />

Til belysning af økologiske spørgsmål er det helt centralt, at skabe en forståelse af det givne systems<br />

struktur og interaktioner mellem de involverede arter. For at kunne gøre dette er det vigtigt at have en<br />

fundamental viden om de implicerede organismers fødeadfærd og indbyrdes afhængighedsforhold.<br />

Arktiske fødekæder<br />

Kort beskrevet er en fødekæde betegnelsen for hvem der spiser hvem. En fødekæde beskriver hvordan<br />

energien fra føden videregives fra primærproducenter gennem herbivorer og videre til carnivorer.<br />

Økologen Charles Elton (1927) var en af de første, som definerede en simpel fødekæde og opdagede at<br />

længden af en fødekæde <strong>of</strong>te er begrænset til fire eller fem led (tr<strong>of</strong>iske niveauer). Et eksempel på en<br />

fødekæde er den arktiske pelagiske fødekæde: Fytoplankton bliver spist af zooplankton såsom<br />

euphausider og copepoder. Disse zooplanktonarter er føde for en række carnivorer, heribl<strong>and</strong>t fisk,<br />

blæksprutter og bardehvaler som til sidst ender som føde for topprædatorer, såsom spækhuggeren<br />

(Fig. 1).<br />

Figur 1: Skematiseret eksempel af et arktisk fødenet. Efter http://maps.grida.no/go/graphic/arctic-<br />

pelagic-food-web<br />

6


Flere faktorer er dog medvirkende til, at fødekæder aldrig er så simple som dette eksempel. En<br />

fødekæde er ikke en isoleret enhed, men derimod sammenkædet med <strong>and</strong>re fødekæder i et større og<br />

mere kompliceret fødenet. Endvidere kan en art prædere på flere tr<strong>of</strong>iske niveauer, og aldersbaserede<br />

fødeskift gør også at en fisk kan bevæge sig ”op gennem” fødekæden efterhånden som de bliver større.<br />

Stabile isotoper<br />

Stabile isotoper er ikke-radioaktive atomer af samme grundst<strong>of</strong>. Stabile isotoper har samme antal<br />

protoner i kernen og derfor samme atomnummer, men har forskellige antal neutroner hvilket giver et<br />

forskelligt massetal. Mange grundst<strong>of</strong>fer har mere end én stabil isotop. Dette gælder for eksempel for<br />

grundst<strong>of</strong>ferne kulst<strong>of</strong> (C), kvælst<strong>of</strong> (N), ilt (O), svovl (S) og hydrogen (H), som forekommer i<br />

atmosfæren, jorden, planter og dyr. Eksempelvis akkumuleres kulst<strong>of</strong> og kvælst<strong>of</strong> i væv og knogler hos<br />

dyr.<br />

Stabile isotoper har store anvendelsesmuligheder og kan bl<strong>and</strong>t <strong>and</strong>et bruges til bestemmelse af en<br />

organismes forskellige fødekilder. Ikke kun i nulevende organismer, men også eksempelvis i fortidige<br />

mennesker hvor man ved hjælp af kulst<strong>of</strong>- og kvælst<strong>of</strong>isotoper i knogler kan se om føden stammer fra<br />

l<strong>and</strong>jorden, havet eller søer (Szepanski et al. 1999; Arneborg et al. 1999). Andre anvendelses-<br />

muligheder er iskernedatering, hvor iltisotoper bruges til at es<strong>time</strong>re tidligere tiders<br />

temperaturvariationer (Johnsen et al. 2001), es<strong>time</strong>ring af tr<strong>of</strong>isk niveau (Peterson & Fry 1987) eller<br />

identificering af forskellige biologiske processer (Lee et al. 2010).<br />

Marine økosystemer rummer <strong>of</strong>te store og komplekse fødenet (Fig. 1), hvilket komplicerer<br />

evalueringen af disse. Ved hjælp af stabile isotoper, særdeles kulst<strong>of</strong> og kvælst<strong>of</strong>, er det dog muligt at<br />

undersøge strukturen og dynamikken af marine fødenet (Peterson & Fry 1987; France 1995a; V<strong>and</strong>er<br />

Z<strong>and</strong>en et al. 1999). Brugen af stabile kulst<strong>of</strong>- og kvælst<strong>of</strong>isotoper til undersøgelse af marine<br />

økosystemer startede da DeNiro og Epstein (1978 og 1981) f<strong>and</strong>t en sammenhæng mellem ratioen af<br />

den tunge og den lettere isotop af kulst<strong>of</strong> ( 13C/ 12C) og kvælst<strong>of</strong> ( 15N/ 14N) i en organisme og dens føde.<br />

Der er i løbet af de seneste årtier bygget på denne viden, og brugen af stabile isotoper til evaluering af<br />

fødenet er tiltaget kraftigt (Hobson & Wasenaar 1999). Forholdet mellem 13C/ 12C og 15N/ 14N betegnes<br />

δ 13C og δ 15N, og udtrykkes i promille ved følgende notation:<br />

δ ø<br />

hvor X er 13C eller 15N og R er den tilhørende 13C/ 12C eller 15N/ 14N ratio.<br />

7


Grundet diskrimination mod de tunge isotoper ( 13C og 15N) i organismers biokemiske reaktioner<br />

akkumuleres de tunge isotoper op gennem fødekæden fra bytte til prædator i vævet. Berigelsen i<br />

isotopsammensætning mellem bytte og prædator, kaldet tr<strong>of</strong>isk fraktionering, er es<strong>time</strong>ret i flere<br />

studier til værende 0-1‰ for δ 13C og 3-4‰ for δ 15N (DeNiro & Epstein 1978 og 1981; Peterson & Fry<br />

1987; Post 2002; McCutchan et al. 2003; Sweeting et al. 2007a og 2007b).<br />

Forskellen i fraktioneringsraten mellem kulst<strong>of</strong> og kvælst<strong>of</strong> skyldes forskelle i de st<strong>of</strong>skiftereaktioner i<br />

organismen, som forårsager fraktioneringerne. Fraktioneringen af kulst<strong>of</strong> skyldes hovedsageligt<br />

afgivelse af isotopisk set lettere CO2 i forhold til føden. Katabolisme af proteiner, lipider, og<br />

kulhydrater bevirker en diskriminering mod den tungere 13C isotop når acetyl-grupper oxideres og<br />

isotopisk let CO2 frigives fra organismen (Galimov 1985). Fraktioneringen i δ 13C er som tidligere nævnt<br />

lille (0-1‰, Peterson & Fry 1987) men også variabel, og faktisk f<strong>and</strong>t DeNiro & Epstein (1978)<br />

lignende δ 13C værdier mellem primærproducenter og primærkonsumenter, mens Sweeting et al.<br />

(2007b) f<strong>and</strong>t en fraktionering for fisk på 1-2‰. På grund af den lille fraktionering i δ 13C mellem bytte<br />

og prædator er stabile kulst<strong>of</strong>isotoper ikke ideelle til bestemmelse af tr<strong>of</strong>isk niveau som kvælst<strong>of</strong> er,<br />

men bruges i stedet til bestemmelse af organismers primære kulst<strong>of</strong>kilde (V<strong>and</strong>er Z<strong>and</strong>en &<br />

Rasmussen 1999, Post 2002). Dette skyldes en rumlig variation i sammensætningen af kulst<strong>of</strong><br />

isotoper, hvorved det er muligt at anvende δ 13C til bestemmelse af organismers levested samt<br />

eventuelle migrationsmønstre. Det er således muligt at undersøge om en organisme lever på l<strong>and</strong>, i<br />

ferskv<strong>and</strong> nær kysten eller i v<strong>and</strong>søjlen (France 1995b) eller i stille eller turbulent v<strong>and</strong> (Osmond et al.<br />

1981). Eksempelvis undersøgte V<strong>and</strong>er Z<strong>and</strong>en & Rasmussen (1999) isotopsignaturen hos<br />

primærkonsumenter i søer og f<strong>and</strong>t en forskel i δ 13C på cirka 4‰ mellem den littorale zone og den<br />

pelagiske zone, hvor primærkonsumenterne i den littorale zone havde mest berigede δ 13C værdier.<br />

Desuden er det også muligt, at undersøge om en marin art er tilhørende en pelagisk vs. indenskærs<br />

eller bentisk vs. udenskærs fødekæde (France 1995b; Lawson & Hobson 2000). Dette skyldes, at δ 13C<br />

værdien i bentiske organismers fødekilde har en <strong>and</strong>en isotopisk sammensætning end de pelagiske<br />

organismers, hvor pelagisk fytoplankton overvejende er kulst<strong>of</strong>kilden (Hobson 1999). Dette betyder at<br />

bentiske organismer har mere berigede δ 13C værdier (mindre negative) end pelagiske organismer, da<br />

bentiske primærproducenter lever i mindre turbulent v<strong>and</strong> og dermed bliver diffusionslaget større,<br />

hvilket bevirker at mere 13C assimileres af planten. Dette isotopsignal kan følges i <strong>and</strong>re organismer på<br />

højere tr<strong>of</strong>iske niveauer i både den bentiske og pelagiske fødekæde.<br />

Modsat kulst<strong>of</strong>isotoper er fraktioneringen i kvælst<strong>of</strong> stor og foregår under kvælst<strong>of</strong>udskillelse<br />

(Peterson & Fry 1987), hvor den lettere 14N isotop reagerer hurtigere end den tungere 15N isotop.<br />

Derved vil en prædator have en højere δ 15N værdi sammenlignet med dens føde. Fraktioneringen for<br />

akvatiske organismer i δ 15N er 3-4‰ og en gennemsnitlig værdi på 3,4‰ er generelt accepteret (Post<br />

2002). Der er dog ikke entydig konsensus omkring denne fraktioneringsgrad og flere studier har<br />

8


foreslået en lavere kvælst<strong>of</strong>fraktionering. Sweeting et al. (2007a) f<strong>and</strong>t en fraktionering på 2,9‰ ved<br />

analyse af hele fisk og McCutchan et al. (2003) f<strong>and</strong>t ved undersøgelse af tidligere studier en lavere<br />

gennemsnitlig fraktioneringsværdi på 1,4‰ for organismer, som har levet af invertebrater, mens<br />

konsumenter der fik en proteinholdig føde havde en fraktionering på 3,3‰.<br />

Tr<strong>of</strong>isk niveau<br />

På grund af denne store fraktionering i δ 15N mellem prædatorer og deres bytte, er δ 15N ideel til<br />

es<strong>time</strong>ring af tr<strong>of</strong>isk niveau. Dette kan gøres ved hjælp af følgende formel (Peterson & Fry 1987):<br />

δ æ δ<br />

δ<br />

hvor δ 15Nprædator er δ 15N værdien for den pågældende art, Δδ 15N er fraktioneringen i δ 15N per tr<strong>of</strong>isk<br />

niveau, δ 15Nbasis er den gennemsnitlige δ 15N værdi af den valgte art til basisniveau og TLbasis er det<br />

tr<strong>of</strong>iske niveau for den art (eks. 1 for fytoplankton, 2 for zooplankton under antagelse af, at det er<br />

herbivor zooplankton).<br />

Eksempelvis es<strong>time</strong>rede Nilsen et al. (2008) tr<strong>of</strong>isk niveau for en række invertebrater og fisk i en fjord<br />

i det nordlige Norge. Dette blev gjort både ved hjælp af δ 15N værdier og ovenstående formel samt til<br />

sammenligning ved brug af en økologisk model (ecopath). En ecopathmodel kan ved hjælp af relativ få<br />

og grundlæggende input om økosystemets komponenter (biomasse, produktion, konsumption)<br />

es<strong>time</strong>re tr<strong>of</strong>isk niveau for hver komponent. Nilsen et al. (2008) f<strong>and</strong>t en god korrelation (r 2 = 0,72)<br />

mellem tr<strong>of</strong>isk niveau beregnet ud fra δ 15N og beregnet ved brug af ecopathmodellen. Dette verificerer<br />

brugen af stabile kvælst<strong>of</strong>isotoper til es<strong>time</strong>ring af tr<strong>of</strong>isk niveau, uden man har en detaljeret viden om<br />

den faktiske fødeadfærd af en organisme, hvilket kræver en relativ stor indsats og kendskab til det<br />

pågældende system og dets arter.<br />

Tr<strong>of</strong>isk fraktionering<br />

Fraktioneringen i både kulst<strong>of</strong> og kvælst<strong>of</strong> er som nævnt ovenfor ikke konstant og kan variere<br />

afhængig af art, individets størrelse og kondition (Bode et al. 2007), temperaturen i det omgivende<br />

miljø (Barnes et al. 2007), væksthastighed (Trueman et al. 2005), vævstype og vævets omsætningsrate<br />

(Tieszen et al. 1983, Lorrain et al. 2002). Dette betyder bl<strong>and</strong>t <strong>and</strong>et, at væv med en høj<br />

omsætningsrate (måneder til år), såsom knogler og muskelvæv, integrerer isotopsignaturen fra føden<br />

over en længere periode end lever- og gonadevæv, der har en høj omsætningsrate (dage til uger). Det<br />

er derfor vigtigt, alt efter hvor lang en tidsperiode man er interesseret i at undersøge, at udvælge den<br />

korrekte vævstype til undersøgelse af isotopsignaturen (O’Reilly et al. 2002, Post 2002). Udover den<br />

9


høje omsætningsrate er væv som lever og gonader også <strong>of</strong>te lipidholdige organer. Sammenlignet med<br />

kulhydrater og proteiner indeholder lipider mindre 13C (Griffiths 1991; Sotiropoulos et al. 2004),<br />

hvilket betyder at en varierende mængde lipid i de forskellige væv påvirker δ 13C værdierne (Lorrain et<br />

al. 2002). Derfor anbefaler flere studier at lipidekstrahere, hvis man laver δ 13C analyser på lipidholdigt<br />

væv (Post 2002; Sweeting et al. 2007b). Med hensyn til δ 15N er effekten af lipidekstrahering mere<br />

uklar, da tidligere studier har vist et lidt tvetydigt resultat, med ingen eller lille effekt af<br />

lipidekstrahering (Sweeting et al. 2006; Sweeting et al. 2007a; Søreide et al. 2006).<br />

Regenereret produktion<br />

I den eufotiske zone er de vigtigste former for uorganisk kvælst<strong>of</strong> ammonium (NH4), nitrat (NO3) og N2<br />

gas (Michener & Kaufman 2008). δ 15N i primærproducenterne påvirkes af disse forskellige former af<br />

uorganisk kvælst<strong>of</strong>, som findes i v<strong>and</strong>søjlen, samt af forholdet mellem mængderne af ny og<br />

regenereret kvælst<strong>of</strong>. Kvælst<strong>of</strong> som tilføres de frie v<strong>and</strong>masser fra dybere v<strong>and</strong>e, kvælst<strong>of</strong>fiksering og<br />

atmosfæren betegnes som nyt kvælst<strong>of</strong>. Da kvælst<strong>of</strong>kredsløbet er et delvist lukket kredsløb vil dette<br />

kvælst<strong>of</strong> atter indgå efter nedbrydning, nu som regenereret kvælst<strong>of</strong>. Regenereret kvælst<strong>of</strong> er således<br />

den plantetilgængelige kvælst<strong>of</strong> (ammonium og urinst<strong>of</strong>) i den eufotiske zone, der bliver gendannet i<br />

havet. Dette kan påvirke δ 15N værdierne, da regenereret produktion <strong>of</strong>test har højere δ 15N værdier<br />

end ny produktion. Eksempelvis f<strong>and</strong>t Ostrom et al. (1997) i det kolde marine miljø ud for Conception<br />

Bay, Newfoundl<strong>and</strong>, højere δ 15N i partikulært organisk materiale (POM), grundet en drastisk berigelse<br />

i 15N angiveligt på grund af højere δ 15N i den regenererede produktion i området. Således var δ 15N<br />

værdierne for ammonium i v<strong>and</strong>et højere end δ 15N for nitrat. Det er dog ikke altid regenereret<br />

primærproduktionen giver berigede δ 15N værdier, som eksempelvis Needoba et al. (2006) der f<strong>and</strong>t<br />

lavere δ 15N værdier. Det er derfor altid vigtigt, at tage forbehold for disse eventuelle forskelle ved<br />

sammenligninger på tværs af studier.<br />

Begrænsninger ved brugen af stabile isotoper<br />

Brugen af stabile isotoper som et økologisk redskab indebærer en mængde fordele og muligheder.<br />

Disse er dog baseret på flere antagelser (eksempelvis fraktionering) og følgeligt flere begrænsninger.<br />

Når man bruger stabile kulst<strong>of</strong> og kvælst<strong>of</strong> isotoper til belysning af fødenetstruktur og energiflow,<br />

bliver resultatet som tidligere nævnt et integreret estimat af det samlede fødeindtag. Dette leder til en<br />

af de helt store begrænsninger, da det derved ikke er muligt direkte at udlede hvilke specifikke arter<br />

den undersøgte organisme har konsumeret. Til dette skal bruges en analyse af maveindholdet, hvilket<br />

dog kun giver et øjebliksbillede af den indtagne føde. En kombination af disse to metoder er derfor <strong>of</strong>te<br />

den optimale tilgang til en detaljeret fødeanalyse, ligesom fedtsyreanalyse kan supplere billedet af<br />

fødeadfærden (Petursdottir et al. 2008)<br />

10


En af de store udfordringer ved brugen af stabile isotoper er endvidere, at kunne sammenligne<br />

resultaterne på tværs af forskellige økosystemer. Ved sammenligninger på tværs af økosystemer giver<br />

δ 13C og δ 15N for én organisme alene ganske lidt information angående dens absolutte tr<strong>of</strong>iske niveau<br />

eller den ultimative kulst<strong>of</strong>kilde (Kling et al. 1992, Post et al. 2000). Dette skyldes, at der er betydelig<br />

variation mellem økosystemer i δ 13C og δ 15N ved fødekædens basis (δ 13Cbasis og δ 15Nbasis). Uden et<br />

korrekt estimat af δ 13Cbasis og δ 15Nbasis i hvert økosystem er det ikke muligt, at bestemme om en given<br />

variation i δ 13C og δ 15N hos en organisme skyldes ændringer i fødenetstruktur og kulst<strong>of</strong>kilde eller<br />

ændringer i δ 13C og δ 15N ved basis af fødekæden.<br />

Variation i δ 13Cbasis og δ 15Nbasis skyldes forskelle i isotoprationen i det biologisk tilgængelige kulst<strong>of</strong> og<br />

kvælst<strong>of</strong> ved basis af fødekæden og variation i fraktioneringsraten. De fleste primærproducenter i<br />

marine økosystemer har en høj variation i δ 13C og δ 15N over tid, hvilket komplicerer deres direkte<br />

anvendelighed som indikatorer af δ 13Cbasis og δ 15Nbasis for organismer højere oppe i fødekæden (Cabana<br />

& Rasmussen 1996). På grund af sådanne forskelle i oprindelsen af kvælst<strong>of</strong> kan der forekomme både<br />

rummelige og tidslige variationer i basisniveauet hos primærproducenterne og følgelig også på højere<br />

tr<strong>of</strong>iske niveauer.<br />

For at mindske variationen i basisniveau, vil det <strong>of</strong>te være mere ideelt at bruge længerelevende<br />

organismer med en længere omsætningsrate i vævet. Dette kunne eksempelvis være muslinger, da<br />

disse som regel lever i flere år og er forholdsvis stationære, hvilket gør dem mindre sensitive overfor<br />

tidslige variationer. Alternativt kan herbivore zooplanktonarter bruges, da de ernærer sig direkte af<br />

det tilgængelige fytoplankton. Det vil især være nødvendigt hvis man arbejder i ikke-kystnære<br />

systemer hvor muslinger ikke er tilgængelige.<br />

Det grønl<strong>and</strong>ske system<br />

Grønl<strong>and</strong> har en mere end 2300 kilometer lang uafbrudt nord-sydgående kyststrækning og en række<br />

faktorer er varierende grundet denne store breddegradsgradient. Eksempelvis er mængden af<br />

lysindstrålingen i v<strong>and</strong>et meget varierende fra syd til nord, hvilket skyldes et faldende antal sol<strong>time</strong>r<br />

og en stigende mængde is med breddegraden. Også temperaturen varierer langs denne<br />

breddegradsgradient. Generelt er temperaturen faldende med stigende breddegrad, hvilket også er<br />

tilfældet med lufttemperaturen i Grønl<strong>and</strong>, men ikke nødvendigvis for temperaturen i havet.<br />

V<strong>and</strong>temperaturen langs den Vestgrønl<strong>and</strong>ske kyst er mere kompliceret og styres overordnet af to<br />

forskelligt tempererede dominerende v<strong>and</strong>masser (se afsnittet om oceanografiske forhold)<br />

(Ribergaard 2011). Disse faktorer er medvirkende til, at også forårsopblomstringen af<br />

primærproduktionen i de grønl<strong>and</strong>ske farv<strong>and</strong>e er varierende langs denne breddegradsgradient.<br />

11


Det grønl<strong>and</strong>ske fødenet<br />

Det grønl<strong>and</strong>ske fødenet er som <strong>and</strong>re arktiske fødenet domineret af relativt få arter (Roy et al. 1998,<br />

Allen et al. 2002). Eftersom marine organismer direkte eller indirekte er afhængige af det første led i<br />

fødekæden, primærproduktionen, har den rumlige og tidslige variation af primærproduktionen stor<br />

betydning for hele fødekæden. Primærproduktionen i de grønl<strong>and</strong>ske farv<strong>and</strong>e er afhængig af<br />

mængden af sollys, men selvfølgelig også af mængden af tilgængelige næringsst<strong>of</strong>fer. Dette betyder, at<br />

der er store sæsonmæssige variationer i primærproduktionen (Fig. 2). Denne store tidslige variation i<br />

primærproduktionen har som tidlige nævnt ikke kun betydning for organismer, som lever direkte af<br />

primærproduktionen. En stor del af primærproduktionen ender som føde for eksempelvis copepoder,<br />

som udgør grundlaget for fødenettene i de frie v<strong>and</strong>masser, mens en <strong>and</strong>en del af<br />

primærproduktionen synker til havbunden og derved bidrager til at ernærer den bentiske fødekæde.<br />

Sæsonvariationen i primærproduktionen har altså stor betydning for hele fødenettet også for<br />

organismer på højere tr<strong>of</strong>iske niveauer.<br />

Figur 2: Årlig variation i primærproduktionen ved Nuuk (64°N) i 2007 (Jensen & Rasch 2008).<br />

Oceanografiske forhold<br />

De hydrografiske forhold omkring den sydlige del af Grønl<strong>and</strong> er karakteriseret af den Øst- og<br />

Vestgrønl<strong>and</strong>ske Strøm (Fig. 3). Den kolde og lavsaline Østgrønl<strong>and</strong>ske Strøm fra Polarhavet mødes<br />

med den tempererede Irmingerstrøm i Danmarksstrædet mellem Grønl<strong>and</strong> og Isl<strong>and</strong>.<br />

Irmingerstrømmen er en gren af den Nordatlantiske Strøm, der udgøres af varmt og højsalint v<strong>and</strong>.<br />

Disse to havstrømme samles under vedvarende opbl<strong>and</strong>ing langs den grønl<strong>and</strong>ske vestkyst i den<br />

Vestgrønl<strong>and</strong>ske Strøm (Ribergaard 2010, Fig. 3), hvor den tungere og varmere Irmingerstrøm<br />

placeres under den Østgrønl<strong>and</strong>ske Strøm. Den gradvise opbl<strong>and</strong>ing af de to v<strong>and</strong>masser langs den<br />

grønl<strong>and</strong>ske vestkyst resulterer i en opvarmning overfladev<strong>and</strong>et og vice versa for bundv<strong>and</strong>et.<br />

12


Omkring Diskoøen (69°N) har den Vestgrønl<strong>and</strong>ske Strøm aftaget i styrke og forgrener sig mod David<br />

Strædet, hvilket dermed resulterer i at v<strong>and</strong>ets overfladetemperatur falder fra Diskoøen og længere<br />

nordpå. Dog varierer sammensætningen af komponenterne i den Vestgrønl<strong>and</strong>ske Strøm fra år til år,<br />

hvilket er en medvirkende faktor til temperaturvariationer i v<strong>and</strong>masserne langs den grønl<strong>and</strong>ske<br />

kyst (Ribergaard 2010). Sådanne udsving i temperatur mellem år kan have stor betydning for<br />

organismer på alle tr<strong>of</strong>iske niveauer i det marine økosystem. Det er bl<strong>and</strong>t <strong>and</strong>et vist, at væksten hos<br />

flere arter i grønl<strong>and</strong>sk farv<strong>and</strong> påvirkes af disse rumlige forskelle i v<strong>and</strong>massernes abiotiske faktorer.<br />

Hos hellefisk (Reinhardtius hippoglossoides) og lodde (Mallotus villosus) ses ændringer i væksten<br />

grundet temperaturvariationerne i v<strong>and</strong>masserne. Således har hellefisk en faldende vækstrate med<br />

stigende breddegrad (Sünksen 2009), mens det modsatte vækstmønster ses for lodden (Hedeholm<br />

2010) konsistent med det inverse temperaturmønster som følge af opbl<strong>and</strong>ingen. Udover disse<br />

overordnede mønstre giver den lokale bundtypografi og meget dybe fjorde en yderligere variation i<br />

v<strong>and</strong>massernes input til forskellige områder (Mortensen et al. 2011).<br />

Figur 3: Havstrømme ved Grønl<strong>and</strong>s Vest- og Østkyst (Pedersen & Smidt 2000).<br />

13


Formål med specialet<br />

Kun ganske få studier har tidligere undersøgt den marine fødekæde langs Grønl<strong>and</strong>. Størstedelen af<br />

disse har brugt mere traditionelle metoder, såsom maveanalyser. Enkelte analyser med stabile<br />

isotoper er blevet udført til belysning af den marine fødekæde langs vestkysten, men i disse studier<br />

har eventuelle ændringer i basisniveau langs breddegradsgradienten ikke været medtaget. Der er altså<br />

så vidt vides ingen tidligere studier, som har undersøgt eventuelle tidslige eller rumlige forskelle i<br />

isotopsignalet i den marine fødekæde ved Grønl<strong>and</strong>. Det er netop disse problemstillinger jeg vil belyse<br />

i specialeprojektet. Resultaterne fra det rumlige forsøg langs den grønl<strong>and</strong>ske vest- og østkyst vil give<br />

et detaljeret billede af det marine fødenet på et stort geografisk område, samt klarlægge om en<br />

ændring af basisniveau langs kysten er forårsaget af opbl<strong>and</strong>ing af v<strong>and</strong>masser. Resultaterne fra det<br />

tidslige forsøg udført i Nuuk fjorden fra april til november, vil kunne belyse organismers eventuelle<br />

fødeskift samt ændringer i basisniveau i løbet af perioden.<br />

Resultaterne fra dette projekt har også stor betydning for <strong>and</strong>re studier, som benytter stabile isotoper<br />

(δ 13C og δ 15N) til belysning af økologiske spørgsmål. Dette gør sig ikke kun gældende for studier udført<br />

i det arktiske miljø, men for alle studier som undersøger fødenetstrukturer, da manglende<br />

hensyntagen til rumlige og tidslige effekter kan have afgørende indflydelse på konklusionen.<br />

14


Referencer<br />

Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, <strong>and</strong> the energetic-<br />

equivalence rule. Science 297:1545-1548<br />

Arneborg J, Heinemeier J, Lynnerup N, Nielsen HL, Rud N, Sveinbjörnsdóttir ÁE (1999) Changes <strong>of</strong> diet<br />

<strong>of</strong> the Greenl<strong>and</strong> Vikings determined from stable carbon isotope analysis <strong>and</strong> 14C dating <strong>of</strong> their<br />

bones. Radiocarbon 41:157-168<br />

Barnes C, Sweeting CJ, Jennings S, Barry JT, Polunin NVC (2007) Effect <strong>of</strong> temperature <strong>and</strong> ration size<br />

on carbon <strong>and</strong> nitrogen stable isotope <strong>trophic</strong> fractionation. Funct Ecol 21:356-362<br />

Bode A, Alvarez-Ossorio MT, Cunha ME, Garrido S, Peleteiro JB, Porteiro C, Valdés L, Varela M (2007)<br />

Stable nitrogen isotope studies <strong>of</strong> the pelagic food web on the Atlantic shelf <strong>of</strong> the Iberian<br />

Peninsula. Prog Oceanogr 74:115-131<br />

Cabana C, Rasmussen JB (1996) Comparison <strong>of</strong> aquatic food chains using nitrogen isotopes. Proc Natl<br />

Acad Sci 93:10844-10847<br />

DeNiro MJ, Epstein S (1978) Influence <strong>of</strong> diet in the distribution <strong>of</strong> carbon isotopes in animals.<br />

Geochim Cosmoshim Acta 42:495-506<br />

DeNiro MJ, Epstein S (1981) Influence <strong>of</strong> diet in the distribution <strong>of</strong> nitrogen isotopes in animals.<br />

Geochim Cosmoshim Acta 45:341-351<br />

Elton CS (1927) Animal ecology. Sidgwick & Jackson, London, UK.<br />

France RL (1995a) Differentiation between littoral <strong>and</strong> pelagic food webs in lakes using carbon<br />

isotopes. Limnol Oceanogr 40:1310-1313<br />

France R (1995b). Carbon-13 enrichment in benthic compared to pelagic algae: food web implications.<br />

Mar Ecol Prog Ser 124:307-312<br />

Galimov EM (1985) <strong>The</strong> biological fractionation <strong>of</strong> isotopes. Academic Press, Orl<strong>and</strong>o, FL.<br />

15


Griffiths H (1991) Applications <strong>of</strong> stable isotope techonology in physiological ecology. Funct Ecol<br />

5:254-269<br />

Hedeholm R (2010) <strong>The</strong> <strong>importance</strong> <strong>of</strong> small pelagic fishes to the energy flow in marine ecosystems:<br />

the Greenl<strong>and</strong>ic capelin. Ph.D. dissertation. Aarhus University, Aarhus, Denmark.<br />

Hobson KA (1999) Tracing origins <strong>and</strong> migration <strong>of</strong> wildlife using stable isotopes: a review. Oecologia<br />

120:314-326<br />

Hobson KA, Wasenaar LI (1999) Stable isotope ecology: an introduction. Oecologia 120:312-313<br />

Jensen LM, Rasch M (2008) Nuuk ecological research operations 1 st annual report, 2007. Copenhagen,<br />

Danish Polar Centre, Danish Agency for Science, Technology <strong>and</strong> Innovation, Ministry <strong>of</strong> Science<br />

Technology <strong>and</strong> Innovation.<br />

Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V,<br />

Sveinbjörnsdottir AE, White J (2001) Oxygen isotope <strong>and</strong> palaeotemperature records from six<br />

Greenl<strong>and</strong> ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renl<strong>and</strong> <strong>and</strong> NorthGRIP. J<br />

Quaternary Sci 16:299-307<br />

Kling GW, Fry B, O Brien WJ (1992) Stable isotopes <strong>and</strong> plantonic <strong>trophic</strong> structure in arctic lakes.<br />

Ecology 73:561-566<br />

Lawson JW, Hobson KA (2000) Diet <strong>of</strong> harp seals (Pagophilus groenl<strong>and</strong>icus) in nearshore northeast<br />

Newfoundl<strong>and</strong>: inferences from stable-carbon (δ 13C) <strong>and</strong> nitrogen (δ 15N) isotope analyses. Mar<br />

Mamm Sci 16:578-591<br />

Lee P, Wahjudi PN, Xu J, Go VL (2010) Tracer-based metabolomics: Concept <strong>and</strong> practices. Clinical<br />

Biochemistry 43:1269-1277<br />

Lorrain A, Paulet YM, Chauvaud L, Savoye N, Donval A, Saout C (2002) Differential δ 13C <strong>and</strong> δ 15N<br />

signatures among scallop tissues: implications for ecology <strong>and</strong> physiology. J Exp Mar Biol Ecol<br />

275:47-61<br />

16


McCutchan JH Jr., Lewis WM Jr., Kendall C, McGrath CC (2003) Variation in <strong>trophic</strong> shift for stable<br />

isotope ratios <strong>of</strong> carbon, nitrogen, <strong>and</strong> sulfur. Oikos 102:378-390<br />

Mortensen J, Lennert K, Bendtsen J, Rysgaard S (2011) Heat sources for glacial melt in a sub-Arctic<br />

fjord (Godthåbsfjord) in contact with the Greenl<strong>and</strong> Ice Sheet. J Geophys Res C 116.<br />

Michener RH, Kaufman L (2008) Stable isotope ratios as tracers in marine food webs: an<br />

updateisotopes in ecology <strong>and</strong> enviromental science, Oxford, UK.<br />

Needoba JA, Marchetti A, Henry MF, Harrison PJ, Wong CS, Johnson WK, Pedersen TF (2006) Stable<br />

notrigen isotope dynamics <strong>of</strong> a mesoscale iron enrichment experiment in the NE Subarctic<br />

Pacific. Deep-Sea Res Part II 53:2214-2230<br />

Nilsen M, Pedersen T, Nilssen EM, Fredriksen S (2008). Trophic studies in a high-latitude fjord<br />

ecosystem – a comparison <strong>of</strong> stable isotope analyses (δ 13C <strong>and</strong> δ 15N) <strong>and</strong> <strong>trophic</strong>-level estimates<br />

from a mass-balance model. Can J Fish Aquat Sci 65:2791-2806<br />

O’Reilly MC, Hecky RE, Cohen AS, Plisnier PD (2002) Interpreting stable isotopes in food webs:<br />

Recognizing the role og <strong>time</strong> averaging at different <strong>trophic</strong> levels. Limnol Oceanogr 47:306-309<br />

Osmond CB, Valaane N, Haslan SM, Uotila P, Roks<strong>and</strong>ic Z (1981) Comparisons <strong>of</strong> δ 13C values in leaves<br />

<strong>of</strong> aquatic macrophytes from different habitats in Britain <strong>and</strong> Finl<strong>and</strong>: some implications for<br />

photosynthesis processes in aquatic plants. Oecologia 50:117-124<br />

Ostrom NE, Macko SA, Deibel D, Thompson R (1997) Seasonal variation in the stable carbon <strong>and</strong><br />

nitrogen isotope biogeochemistry <strong>of</strong> a coastal cold ocean environment. Geochim Cosmochim<br />

Acta 61:2929-2942<br />

Pedersen SA, Smidt ELB (2000) Zooplankton distribution <strong>and</strong> abundance in West Greenl<strong>and</strong> waters,<br />

1950-1984. J Northwest Atl Fish Soc 26:45-102<br />

Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293-320<br />

17


Petursdottir H, Gislason A, Falk-Petersen S, Hop H, Svavarsson J (2008) Trophic interactions <strong>of</strong> the<br />

pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid <strong>and</strong> stable isotope<br />

analyses. Deep-Sea Res Part II 55:83-93<br />

Post DM, Pace ML, Hairston Jr NG (2000) Ecosystem size dertermines fodd-chain length in lakes.<br />

Nature 405:1047-1049<br />

Post DM (2002) Using stable isotopes to estimate <strong>trophic</strong> position: models, methods, <strong>and</strong> assumptions.<br />

Ecology 83:703-718<br />

Ribergaard MH (2011) Oceanographic Investigations <strong>of</strong>f West Greenl<strong>and</strong> 2010. Danish Meteorological<br />

Institute Centre for Ocean <strong>and</strong> Ice: 44 pp.<br />

Roy K, Jablonski D, Valentine JW, Rosenberg G (1998) Marine latitudinal diversity gradients: Tests <strong>of</strong><br />

causal hypotheses. Proc Natl Acad Sci USA 95:3699-3702<br />

Sotiropoulos MA, Tonn WM, Wassenarr LI (2004) Effects <strong>of</strong> lipid extraction on stable carbon <strong>and</strong><br />

nitrogen isotope analyses <strong>of</strong> fish tissues: potential consequences for food web studies. Ecol<br />

Freshw Fish 13:155-160<br />

Sweeting CJ, Polunin NVC, Jennings S (2006) Effects <strong>of</strong> chemical lipid extraction <strong>and</strong> arithmetic lipid<br />

correction on stable isotope ratios <strong>of</strong> fish tissues. Rapid Commun Mass Spectrom 20:595-601<br />

Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007a) Effects <strong>of</strong> body size <strong>and</strong> environment<br />

on diet-tissue δ 15N fractionation in fishes. J Exp Mar Biol Ecol 340:1-10<br />

Sweeting CJ, Barry JT, Polunin NVC, Jennings S (2007b) Effects og body size <strong>and</strong> environment on diet-<br />

tissue δ 13C fractionation in fishes. J Exp Mar Biol Ecol 352:165-176<br />

Sünksen K, Stenberg C, Grønkjær P (2009) Temperature effects on growth <strong>of</strong> juvenile Greenl<strong>and</strong><br />

halibut (Reinhardtius hippoglossoides Walbaum) in West Greenl<strong>and</strong> waters. J Sea Res 64:125-132<br />

Szepanski MM, Ben-David M, Van Ballenberghe V (1999) Assessment <strong>of</strong> anadromous salmon resources<br />

in the diet <strong>of</strong> the Alex<strong>and</strong>er Archipelago wolf using stable isotope analysis. Oecologia 120:327-<br />

335<br />

18


Søreide JE, Hop H, Carroll ML, Falk-Petersen S, Hegseth EN (2006) Seasonal food web structures <strong>and</strong><br />

sympagic-pelagic coupling in the European Arctic revealed by stable isotopes <strong>and</strong> a two-source<br />

food web model. Prog Oceanogr 71:59-87<br />

Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation <strong>and</strong> turnover <strong>of</strong> stable carbon<br />

isotopes in animal tissues: implications for δ 13C analysis <strong>of</strong> diet. Oecologia 57:32-37<br />

Trueman CN, McGill RAR, Guyard PH (2005) <strong>The</strong> effect <strong>of</strong> growth rate on tissue-diet isotopic spacing in<br />

rapidly growing animals. An experimental study with Atlantic salmon (Salmon salar). Rapid<br />

Commun Mass Spectrom 19:3239-3247<br />

V<strong>and</strong>er Z<strong>and</strong>en MJ, Rasmussen JB (1999) Primary consumer δ 13C <strong>and</strong> δ 15N <strong>and</strong> the <strong>trophic</strong> position <strong>of</strong><br />

aquatic consumers. Ecology 80:1395-1404<br />

V<strong>and</strong>er Z<strong>and</strong>en MJ, Shuter BJ, Lester N, Rasmussen JB (1999) Patterns <strong>of</strong> food chain length in lakes: a<br />

stable isotope study. Am Nat 154:406-416<br />

19


Stable isotope variability in an arctic marine food web on a<br />

spatial <strong>and</strong> temporal scale<br />

Joan Holst Hansen 1, Rasmus Berg Hedeholm 2,3, Kaj Sünksen 2, Jens Tang Christensen 1, Peter Grønkjær 1<br />

1Marine Ecology, Department <strong>of</strong> Bioscience, Aarhus University, 8000 Aarhus C, Denmark<br />

2Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources, PO box 570, 3900 Nuuk, Greenl<strong>and</strong><br />

3Greenl<strong>and</strong> Climate Research Centre, PO box 570, 3900 Nuuk, Greenl<strong>and</strong><br />

Abstract<br />

Stable isotopes <strong>of</strong> carbon (δ 13C) <strong>and</strong> nitrogen (δ 15N) were used to examine <strong>trophic</strong> structures in an<br />

arctic marine food web on both a spatial <strong>and</strong> temporal scale. 12 species in total were examined around<br />

the Greenl<strong>and</strong>ic West <strong>and</strong> East coast, from primary producers through Greenl<strong>and</strong> shark. <strong>The</strong>re was a<br />

significant latitudinal effect on δ 15N values, with a difference <strong>of</strong> 2‰ to 4‰ between the most southern<br />

<strong>and</strong> northern areas. <strong>The</strong> temporal study was conducted on nine species in the Nuuk Fjord during an<br />

eight month long sampling period. A significant temporal effect was seen in δ 13C values, with enriched<br />

values during the summer period. δ 15N values did not change significantly with <strong>time</strong>, but an increasing<br />

tendency occurred at the end <strong>of</strong> the period (November). <strong>The</strong>se significant differences in isotopic<br />

signatures on both a large <strong>and</strong> small geographic scale are most likely unrelated to feeding, but rather<br />

due to different physical <strong>and</strong> biological properties <strong>of</strong> the water masses, which would be reflected in the<br />

<strong>trophic</strong> signatures at the base <strong>of</strong> the food web <strong>and</strong> thereby also in higher <strong>trophic</strong> levels. Generally the<br />

results illustrate the <strong>importance</strong> <strong>of</strong> <strong>space</strong> <strong>and</strong> <strong>time</strong> <strong>when</strong> <strong>interpreting</strong> <strong>trophic</strong> structure from stable<br />

isotopes.<br />

Key words: δ 15N, δ 13C, Greenl<strong>and</strong>, latitudinal effects, marine food web<br />

Introduction<br />

Analyses <strong>of</strong> nitrogen <strong>and</strong> carbon stable isotopes are a validated <strong>and</strong> commonly applied method to<br />

describe food web structure in marine ecosystems (e.g. Peterson & Fry 1987; Post 2002). <strong>The</strong> stable<br />

isotope ratios <strong>of</strong> carbon (δ 13C) <strong>and</strong> nitrogen (δ 15N) provide a <strong>time</strong>-integrated measure <strong>of</strong> an organisms<br />

<strong>trophic</strong> position <strong>and</strong> feeding ecology covering periods ranging from weeks to months, compared to the<br />

1


traditional “snap-shot” picture provided by stomach content analyses, <strong>and</strong> have the potential to track<br />

energy flow through food webs (Hobson & Welch 1992; Hobson et al. 1995; Post 2002). <strong>The</strong> method is<br />

based on the principle that heavier isotopes ( 13C <strong>and</strong> 15N) accumulates from prey to predator (i.e.<br />

fractionation). <strong>The</strong> fractionation <strong>of</strong> nitrogen in consumers is on average between 3-4‰ relative to<br />

their diet (Post 2002; Søreide 2006). Thus stable nitrogen isotopes provide a good estimate <strong>of</strong> a<br />

consumers <strong>trophic</strong> position given a known baseline δ 15N. Stable carbon isotopes are a less useful index<br />

<strong>of</strong> <strong>trophic</strong> position because the <strong>trophic</strong> fractionation <strong>of</strong> 13C typically is less than 1‰ (DeNiro & Epstein<br />

1978 <strong>and</strong> 1981; V<strong>and</strong>er Z<strong>and</strong>en & Rasmussen 2001; Post 2002). <strong>The</strong> stable carbon isotope ratio (δ 13C)<br />

can however be useful <strong>when</strong> evaluating sources <strong>of</strong> primary production in marine systems as well as<br />

general patterns <strong>of</strong> inshore or benthic versus <strong>of</strong>fshore or pelagic feeding preferences (France 1995a;<br />

Lawson & Hobson 2000). Benthic <strong>and</strong> inshore organisms in marine ecosystems in general have more<br />

enriched δ 13C values as opposed to the more depleted δ 13C values <strong>of</strong> pelagic <strong>and</strong> <strong>of</strong>fshore organisms<br />

(France 1995a). Thus, the integrated use <strong>of</strong> δ 13C <strong>and</strong> δ 15N can provide valuable information on both<br />

food web structure <strong>and</strong> carbon source.<br />

Trophic level is estimated relative to a chosen food web base (δ 15Nbase). This allows for comparison <strong>of</strong><br />

segregated samples (spatially <strong>and</strong>/or temporally) in spite <strong>of</strong> differences in δ 15Nbase. <strong>The</strong>refore, if a<br />

proper δ 15Nbase estimate is not available it is not possible to determine if variation in δ 15N values<br />

between systems reflects differences in food web structure or baseline variation. δ 15Nbase values are<br />

predominantly influenced by nitrogen limitation (Pennock et al. 1996), inter-specific differences in<br />

isotope fractionation (Needoba et al. 2003) <strong>and</strong> form <strong>of</strong> nitrogen assimilated (new primary production<br />

(nitrate) vs. regenerated production (ammonium), Ostrom et al. 1997). Because <strong>of</strong> these influencing<br />

factors both the baseline <strong>and</strong> the absolute nitrogen values will vary in <strong>time</strong> <strong>and</strong> <strong>space</strong> due to changing<br />

chemical <strong>and</strong> biological conditions (Cabana & Rasmussen 1996; Post 2002) <strong>and</strong> changes can be seen<br />

on a small geographic scale (Pentoja et al. 2002). <strong>The</strong> water masses in the coastal areas around<br />

Greenl<strong>and</strong> are complex <strong>and</strong> consist <strong>of</strong> two main currents. <strong>The</strong>se are the cold low saline East Greenl<strong>and</strong><br />

Current from the Polar Sea <strong>and</strong> the temperate saline Irminger Current which originates from the<br />

Atlantic Ocean. <strong>The</strong> two currents meet at the southern area <strong>of</strong> the Greenl<strong>and</strong> East coast, with the<br />

heavier Irminger Current subducting the relatively low saline East Greenl<strong>and</strong> current. <strong>The</strong> water<br />

masses round Cape Farewell, forming the West Greenl<strong>and</strong> Current were the two water masses<br />

gradually mix flowing north (Ribergaard 2011).<br />

Petursdottir et al. (2008) showed that the δ 15N value <strong>of</strong> Calanus finmarchicus caught in June in the<br />

Irminger Current <strong>of</strong> the Reykjanes Ridge south <strong>of</strong> Icel<strong>and</strong> was (mean ± SE) 3.5 ± 0.1‰, while Søreide<br />

et al. (2006) found a δ 15N value <strong>of</strong> 6.4 ± 0.2‰ in September for C. finmarchicus in the Fram Strait west<br />

2


<strong>of</strong> Svalbard. This clearly demonstrates that water masses around Greenl<strong>and</strong> have different physical<br />

<strong>and</strong>/or biological properties, which is reflected in shifts in the isotopic baseline dependent on the<br />

degree <strong>of</strong> mixture between water masses. This in turn can be affected by large scale circulation<br />

patterns or local area bathymetry such as sill fjords. Hence differences in the isotopic baselines would<br />

be expected to vary on both large (Tamel<strong>and</strong>er et al. 2009) <strong>and</strong> small geographical scale (Tamel<strong>and</strong>er<br />

et al. 2006). <strong>The</strong>refore, it is hypothesized that a significant latitudinal gradient in δ 15N values would be<br />

found as illustrated in capelin by Hedeholm (2010) in Greenl<strong>and</strong>. As Greenl<strong>and</strong> has an extensive north-<br />

south directed coast line with a number <strong>of</strong> relative large fjord systems with glacier run <strong>of</strong>f that differ<br />

from <strong>of</strong>fshore regions (Mortensen et al. 2011) it is an ideal place to study effects <strong>of</strong> geographical<br />

separation on food web structure <strong>and</strong> shifts in δ 15N <strong>and</strong> δ 13C values irrespective <strong>of</strong> changes in <strong>trophic</strong><br />

position.<br />

<strong>The</strong> main objectives <strong>of</strong> this study were threefold. 1) Provide a novel detailed description <strong>of</strong> the marine<br />

food web on a large geographic scale along the Greenl<strong>and</strong> coast with a quantification <strong>of</strong> the effect<br />

differences in sampling site may have on isotopic signatures. 2) Temporal variation in stable isotope<br />

structure <strong>and</strong> finally 3) <strong>importance</strong> <strong>of</strong> local area variation was described by comparing samples from<br />

the Nuuk fjord <strong>and</strong> adjacent <strong>of</strong>fshore waters.<br />

Material <strong>and</strong> Methods<br />

<strong>The</strong> study has both a spatial <strong>and</strong> temporal component. <strong>The</strong> species <strong>and</strong> size categories selected for<br />

sampling in both aspects <strong>of</strong> the study were based on their ecological relevance in the Greenl<strong>and</strong>ic<br />

ecosystem while also attempting to span as much as possible <strong>of</strong> the ecosystems <strong>trophic</strong> range.<br />

Spatial Study<br />

Field Sampling<br />

All samples were collected from the trawler RV Pâmiut (722 GRT) from June to August 2010 during<br />

the annual stratified-r<strong>and</strong>om bottom trawl surveys carried out by the Greenl<strong>and</strong> Institute <strong>of</strong> Natural<br />

Resources in Greenl<strong>and</strong>ic waters. Samples included seven teleost fish species: wolffish (Anarhichas<br />

lupus <strong>and</strong> Anarhichas minor), Atlantic cod (Gadus morhua (small (25-35cm) <strong>and</strong> large (45-55cm))),<br />

polar cod (Boreogadus saida) American plaice (Hippoglossoides platessoides), capelin (Mallotus<br />

villosus), Greenl<strong>and</strong> halibut (Reinhardtius hippoglossoides), redfish (Sebastes mentella (small (15-<br />

25cm) <strong>and</strong> large (35-45cm))) <strong>and</strong> Greenl<strong>and</strong> shark (Somniosus microcephalus), shrimps (P<strong>and</strong>alus<br />

3


orealis), krill (Thysanoessa raschii), copepods (Calanus finmarchicus <strong>and</strong> C. glacialis) <strong>and</strong> filtered POM<br />

giving a total <strong>of</strong> 14 sample groups (Table I <strong>and</strong> II).<br />

Fish were sampled in six predetermined areas at depths between 88 <strong>and</strong> 1 446 meter along the<br />

Greenl<strong>and</strong>ic coast from Upernavik (72˚N) in west to Tasiilaq (66˚N) in east (Fig. 1). For each <strong>of</strong> the<br />

predetermined areas it was attempted to sample five individuals <strong>of</strong> each sample group (Table I). To<br />

obtain the best representation <strong>of</strong> the within area variation, individuals were sampled from as many<br />

catches within each area as possible. Whenever, regardless <strong>of</strong> the six predetermined areas, a<br />

Greenl<strong>and</strong> shark was caught the total length, weight <strong>and</strong> sex was determined <strong>and</strong> a muscle sample was<br />

taken near the dorsal fin before it was released.<br />

Shrimps, krill, copepods <strong>and</strong> filtered POM were collected at eleven different sites separated by<br />

approximately two latitudinal degrees (Fig. 1 <strong>and</strong> Table II). Shrimps <strong>and</strong> krill were taken from trawl<br />

hauls whereas copepods <strong>and</strong> filtered POM were sampled using a 500 µm plankton net <strong>and</strong> Niskin<br />

water bottle (5 L), respectively. <strong>The</strong> plankton net was lowered to 150 m <strong>and</strong> then slowly retrieved (20<br />

m · min -1) while the vessel was moving at 1 knot. This was done in the evening to minimize copepod<br />

gut content (Lampert & Taylor 1985; Head & Harris 1987). <strong>The</strong> content from the cod end was first<br />

filtered though a 2 cm sieve <strong>and</strong> afterwards a 200 µm sieve to remove jellyfish, chaetopods etc. <strong>and</strong><br />

retain the larger copepods, respectively. <strong>The</strong> copepods were kept frozen on a filter until further<br />

analysis. <strong>The</strong> Niskin bottle was lowered to ten <strong>and</strong> twenty meters, respectively. Two liters from each<br />

depth was filtered though a 200 µm filter to remove large organisms (i.e. jellyfish, amphipods etc).<br />

Three liters <strong>of</strong> this water was then filtered onto a pre-combusted (450°C for 24 hours) GF/F filter (47<br />

mm in diameter). All samples from all groups were immediately frozen at -20°C.<br />

A CTD pr<strong>of</strong>ile was obtained at approximately every latitudinal degree along the Greenl<strong>and</strong>ic west coast<br />

(60-71°N). Unfortunately the CTD malfunctioned on all East coast stations <strong>and</strong> at 62°N, 65°N <strong>and</strong> 66°N<br />

on the West coast.<br />

Temporal Study<br />

Field sampling<br />

Samples were collected in the Nuuk Fjord (64˚N, Fig. 1) four <strong>time</strong>s during an eight-month period from<br />

April to November 2010 <strong>and</strong> included six fish species (Atlantic cod (small <strong>and</strong> large), redfish, American<br />

plaice, Atlantic halibut, Greenl<strong>and</strong> halibut <strong>and</strong> capelin), krill, copepods (C. finmarchicus) <strong>and</strong> filtered<br />

POM (Table III). Most fish species (except Greenl<strong>and</strong> halibut) <strong>and</strong> phytoplankton were sampled at the<br />

same location, but logistic circumstances entailed that copepods <strong>and</strong> to some extent krill had to be<br />

sampled at a different site within the fjord (Fig. 1). Most fish species were caught using fishing rods,<br />

whereas undigested capelin were taken from cod stomachs immediately upon capture. Greenl<strong>and</strong><br />

4


halibut were bought from the local fish market <strong>and</strong> were caught in the fjord using a long-line set at 300<br />

– 500 meters. Krill <strong>and</strong> copepods were collected at the inner part <strong>of</strong> the fjord with a 2 m in diameter<br />

<strong>and</strong> 600 µm mesh size MIK net <strong>and</strong> a MultiNet (Hydrobios) equipped with five 300 µm net. Samples <strong>of</strong><br />

filtered POM were collected similarly to the spatial study.<br />

Stable isotope preparation <strong>and</strong> analysis for both spatial <strong>and</strong> temporal studies<br />

Total length, weight <strong>and</strong> sex <strong>of</strong> the fish were determined in the laboratory. Length <strong>of</strong> shrimps <strong>and</strong> krill<br />

were measured from the post-orbital notch to the posterior margin <strong>of</strong> the carapace <strong>and</strong> from the post-<br />

orbital notch to the posterior end <strong>of</strong> the uropods, respectively. <strong>The</strong> weight <strong>of</strong> shrimp, krill <strong>and</strong><br />

copepods were noted.<br />

Fish samples were prepared by removing white muscle tissue (10.31 ± 4.26 g wet weight, mean ± SD)<br />

dorsally from both sides <strong>of</strong> the fish, posterior to the dorsal fin which ensured that no bones were<br />

present in the sample. All skin was subsequently removed. White muscle tissue was used for stable<br />

isotope analysis because it best represents the isotopic signature <strong>of</strong> fish (Rounick <strong>and</strong> Hicks 1985;<br />

Hesslein et al. 1993) <strong>and</strong> does not require the removal <strong>of</strong> inorganic carbonates (Pinnegar & Polunin<br />

1999). Muscle tissue was also dissected from shrimp <strong>and</strong> krill after the chitinous exoskeleton <strong>and</strong> the<br />

gut were removed. All samples were freeze-dried (Freeze dryer ALPHA 1-2/LD plus) to constant mass<br />

at -60°C for 24 hours. <strong>The</strong> dry samples were kept in an exsiccator containing silica gel until further<br />

analysis.<br />

In order to make stable isotope results from the lipid-rich copepods (Lee et al. 2006) comparable to<br />

other groups, lipids were removed using a chlor<strong>of</strong>orm-methanol solution (2:1) (Søreide et al. 2007). In<br />

order to confirm that this was necessary an initial experiment was performed at the Greenl<strong>and</strong><br />

Institute <strong>of</strong> Natural Resources. It was found that removing lipids had a significant effect on δ 13C values<br />

<strong>and</strong> these significant values were then comparable to other groups. Whereas the removal <strong>of</strong><br />

exoskeleton (using 10% HCL) had no significant effect compared to the non-treated samples on<br />

neither δ 13C nor δ 15N values.<br />

<strong>The</strong> dried muscle tissue from shark, fish, shrimps <strong>and</strong> krill was homogenized using a mortar <strong>and</strong><br />

pestle. Approximately 1 mg (dry weight, dw) <strong>of</strong> sample (1.14 ± 0.10 dw, mean ± SD) was weighed into<br />

pre-weighted tin capsules (5x9 mm). Copepods with no visible stomach content were selected, <strong>and</strong><br />

packed into the tin capsules as whole individuals. At least three copepods collected at the same <strong>time</strong><br />

<strong>and</strong> place were pooled in one sample to obtain sufficient material for isotopic analysis. Filtered POM<br />

(3.09 ± 0.05 mg dw, mean ± SD) was carefully removed from the filter with needles to minimize the<br />

amount <strong>of</strong> GF/F filter mixed into the sample, <strong>and</strong> weighed into tin cups.<br />

5


A total <strong>of</strong> 397 samples were analyzed in the spatial study (Table I <strong>and</strong> II) <strong>and</strong> 118 samples in the<br />

temporal study (Table III). Stable carbon <strong>and</strong> nitrogen isotope analyses were performed at the UC<br />

Davis Stable Isotope Facility in California, USA. Samples were combusted in a PDZ Europa ANCA-GSL<br />

elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd.,<br />

Cheshire, UK). <strong>The</strong> crimped tin capsules were introduced via a solid autosampler <strong>and</strong> combusted at<br />

1000°C in a reactor packed with chromium oxide <strong>and</strong> silvered cobaltous/cobaltic oxide. Following<br />

combustion, oxides are removed in a reduction reactor (reduced copper at 650°C). A post-reactor gas<br />

chromatography (GC) column was kept at 65°C for separation <strong>of</strong> evolved N2 <strong>and</strong> CO2 before entering<br />

the IRMS. Stable isotopes are expressed in a δ notation as the deviation from international st<strong>and</strong>ards<br />

in parts per thous<strong>and</strong> (‰) according to the formula:<br />

where X is 13C or 15N <strong>and</strong> R is the corresponding ratio 13C/ 12C or 15N/ 14N.<br />

δ<br />

St<strong>and</strong>ards for δ 13C <strong>and</strong> δ 15N were calibrated against Vienna PeeDee Belemnite <strong>and</strong> atmospheric air,<br />

respectively.<br />

Estimation <strong>of</strong> <strong>trophic</strong> level<br />

Trophic level (TLN) was estimated for all groups based on the following formula:<br />

δ δ<br />

δ<br />

where δ 15Nconsumer is the δ 15N <strong>of</strong> the species in question, Δδ 15N is the enrichment in δ 15N per <strong>trophic</strong><br />

level, δ 15Nbase is the average δ 15N <strong>of</strong> the group chosen as the base <strong>of</strong> the food web <strong>and</strong> TLbase is the<br />

<strong>trophic</strong> level <strong>of</strong> that group. Copepods (C. finmarchicus <strong>and</strong> C. glacialis) were chosen as the base<br />

assuming a strictly herbivorous diet (e.i. TLbase = 2, Hobson & Welch 1992; Søreide et al. 2006; Nilsen<br />

et al. 2008). Filtered POM was not used as the values showed some irregularities (see results <strong>and</strong><br />

discussion). A Δδ 15N <strong>of</strong> 3.4‰ was applied for invertebrates which were based on analyzes <strong>of</strong> samples<br />

from the Barents Sea (Søreide et al. 2006) <strong>and</strong> a separate Δδ 15N value <strong>of</strong> 3.2‰ for fish (Sweeting et al.<br />

2007). <strong>The</strong> two different enrichment factors indirectly indicate variations in enrichment correlated to<br />

body size, diet (Fry et al. 1999), growth rate (Trueman et al. 2005) <strong>and</strong> tissue catabolism (Kurle &<br />

Worthy 2001; Olive et al. 2003).<br />

6


Estimation <strong>of</strong> relative stable carbon <strong>and</strong> nitrogen values<br />

In order to detect changes in the isotopic signal across latitudes for the entire food web, comparable<br />

relative values <strong>of</strong> δ 13C <strong>and</strong> δ 15N were calculated. A single relative value was first estimated for each<br />

species in each area according to the formula:<br />

A single relative value was then calculated for each predetermined area as the mean <strong>of</strong> all species<br />

within that area:<br />

where is the relative value <strong>of</strong> δ 13C or δ 15N in any <strong>of</strong> the predetermined areas referred to as i.<br />

is the mean <strong>of</strong> either δ 13C or δ 15N for a given species in one <strong>of</strong> the areas. N is the number <strong>of</strong> areas. In<br />

this study N always equals six because there are six predetermined study areas. n is the number <strong>of</strong><br />

species in area i, which in this study equals ten because if a species is not caught in every area it is not<br />

included in this calculation since this would bias the result.<br />

Statistical analyses<br />

All analyses were carried out using the statistical computing program R (R Development Core Team<br />

2011). St<strong>and</strong>ard parametric test were preceded by test for assumptions. When these were violated the<br />

data were either transformed or non-parametric statistics were applied. Filtered POM was excluded<br />

from all statistical analyzes as the measured δ 15N values were unusually high in some <strong>of</strong> the sampling<br />

stations (see discussion).<br />

Results<br />

A total <strong>of</strong> 515 samples were taken along the Greenl<strong>and</strong> coast from 72°N on the west coast to 66°N on<br />

the east coast (N = 397) <strong>and</strong> in the Nuuk Fjord (N = 118) during 2010. Stable carbon <strong>and</strong> nitrogen<br />

isotope ratios were analyzed for all samples representing 13 species <strong>and</strong> 15 sampling groups (Tables<br />

I-III).<br />

7


Spatial Study<br />

Twelve species <strong>and</strong> 14 sampling groups were analyzed for δ 13C <strong>and</strong> δ 15N (Table I <strong>and</strong> II). Average<br />

stable isotope composition <strong>of</strong> the analyzed species ranged from -25.3‰ to -15.2‰ in δ 13C <strong>and</strong> from<br />

3.3‰ to 17.2‰ in δ 15N. <strong>The</strong> most depleted δ 15N values (mean ± SE) were found in filtered POM (6.43<br />

± 1.40‰) <strong>and</strong> copepods (7.76 ± 0.57‰) while Greenl<strong>and</strong> shark (16.68 ± 0.25‰) followed by wolffish<br />

(13.35 ± 0.79‰) <strong>and</strong> Greenl<strong>and</strong> halibut (12.87 ± 0.39‰) were the most enriched in δ 15N. <strong>The</strong> strictly<br />

benthic organisms (i.e. Greenl<strong>and</strong> shark, wolffish, American plaice <strong>and</strong> shrimp) were enriched in δ 13C<br />

(-19.22‰ to -15.63‰) compared with strictly pelagic organisms (copepod, krill, polar cod, capelin<br />

<strong>and</strong> Greenl<strong>and</strong> halibut) which ranged from -21.26‰ to -20.29‰ (Fig. 2). <strong>The</strong>re were large variations<br />

in δ 15N values for filtered POM among the six different sampling areas. δ 15N values ranged from (mean<br />

± SE) 10.77 ± 1.57‰ in area 1 to 3.26 ± 0.19‰ in area 6. It is also remarkable that the δ 15N values <strong>of</strong><br />

wolffish in all cases were higher on the West coast compared to δ 15N values <strong>of</strong> Greenl<strong>and</strong> halibut, but<br />

on the East coast the opposite pattern was found (Fig. 2). Furthermore, the mean δ 13C values <strong>of</strong> polar<br />

cod on the East coast were depleted 2.1‰ compared to the mean values on the West coast (Fig. 2).<br />

<strong>The</strong>re were significant regional differences in δ 15N values among the six study areas along the<br />

Greenl<strong>and</strong>ic coast (Two-way ANOVA, F5,351 = 99.58, P < 0.0001) irrespective <strong>of</strong> the also significant<br />

species effect (Two-way ANOVA, F13,351 = 91.41, P < 0.0001). Species specific tests showed a significant<br />

effect <strong>of</strong> area (i.e. latitude) on all species (P ≤ 0.026) except for Greenl<strong>and</strong> shark (P = 0.35), which<br />

could be due to its limited number <strong>of</strong> areas included (N = 3, Table I). For most species the δ 15N values<br />

decreased from north (area 1) to south (area 4) on the West coast <strong>and</strong> increased slightly on the East<br />

coast (area 5 <strong>and</strong> 6). A clear example <strong>of</strong> this pattern was seen in shrimps (Fig. 3). However, a few<br />

species did diverge (small cod, capelin, polar cod <strong>and</strong> wolffish) from this general pattern. For instance,<br />

the δ 15N values <strong>of</strong> capelin did not decline gradually from north to south. Rather, the δ 15N value (mean ±<br />

SD) <strong>of</strong> capelin declined significantly (Kruskal-Wallis, χ 2 = 19.01, P < 0.0001) from a high value in area 1<br />

<strong>and</strong> 2 (12.64 ± 0.12‰) to a lower mean value in area 3, 4, 5 <strong>and</strong> 6 (9.58 ± 0.77‰). Also, wolffish<br />

showed a different pattern in δ 15N. <strong>The</strong> values <strong>of</strong> δ 15N did not increase on the East coast, but rather<br />

continued to decline from high values (mean ± SD) in the most northern area on the West coast (16.11<br />

± 0.44‰) to the lowest value in the northern area on the East coast (11.25 ± 0.51‰). Comparing δ 15N<br />

values on the West coast separately for each species, it was found that the δ 15N values for most species<br />

did not differ significantly among two adjacent areas, but for most species there was a significant<br />

difference between areas which were not adjacent (Table IV).<br />

Similar to δ 15N values there was a significant effect <strong>of</strong> area on δ 13C values in most species (ANOVA, F4-5,<br />

18-34 ≤ 57.42, P ≤ 0.04), but not in capelin (ANOVA, F5,24 = 0.53, P = 0.75) <strong>and</strong> small redfish (Kruskal-<br />

8


Wallis, χ 2 = 9.28, P = 0.10). For most species δ 13C values were declining from area 3 to 6 whereas no<br />

clear trend was found for the northern area on the West coast. An example <strong>of</strong> this pattern <strong>of</strong> δ 13C along<br />

the coast was seen in shrimps (Fig. 3).<br />

In order to reveal the difference between areas across all species, relative values <strong>of</strong> δ 15N <strong>and</strong> δ 13C were<br />

calculated. <strong>The</strong> regional differences were also reflected in the relative δ 15N values calculated for each<br />

area which differed significantly (ANOVA, F5,54 = 28.86, P < 0.0001, Fig. 4). On the West coast the<br />

highest relative δ 15N value were in the most northern study area (area 1) being 29% higher than the<br />

most southern study area (area 4). Hence, along the investigated 1300 km gradient on the Greenl<strong>and</strong>ic<br />

West coast there was a positive relationship between latitude <strong>and</strong> relative δ 15N values (linear<br />

regression, F1,38 = 141.5, r 2 = 0.79, P < 0.0001, Fig. 4). On the East coast the two relative δ 15N values did<br />

not differ significantly from each other (Tukey’s post hoc test, P = 0.55), neither did the relative values<br />

from the East coast (areas combined) differ from the most southern area on the West coast (Tukey’s<br />

post hoc test, P > 0.97) (Fig. 4 <strong>and</strong> Table VI). <strong>The</strong> relative δ 13C values also differed significantly<br />

between areas (ANOVA, F5,54 = 5.92, P = 0.0002), but this was only caused by area 3 having a<br />

significant lower relative δ 13C value than areas 1, 5 <strong>and</strong> 6 (Tukey’s post hoc test, P < 0.02, Fig.4). <strong>The</strong><br />

relative δ 13C values <strong>of</strong> area 1, 2 <strong>and</strong> 3 increased with latitude, like the relative values <strong>of</strong> δ 15N. However,<br />

the relative δ 13C value <strong>of</strong> area 4 is approximately the same as the relative δ 13C value <strong>of</strong> area 5 on the<br />

East coast. <strong>The</strong>re is an almost linear relationship among area 1, 2 <strong>and</strong> 3 (linear regression, F1,28 = 10.37,<br />

r 2 = 0.27, P = 0.003) <strong>and</strong> between area 4, 5 <strong>and</strong> 6 (linear regression, F1,28 = 5.80, r 2 = 0.17, P = 0.02,<br />

Fig.4).<br />

Trophic level<br />

Greenl<strong>and</strong> shark was the apex predator with a mean <strong>trophic</strong> level (mean ± SE) <strong>of</strong> 4.77 ± 0.22 followed<br />

by wolffish (3.74 ± 0.16) <strong>and</strong> Greenl<strong>and</strong> halibut (3.60 ± 0.18, Table V). <strong>The</strong>re was a significant<br />

difference in <strong>trophic</strong> level between species (ANOVA, F12,341 = 84.75, P < 0.0001) <strong>and</strong> there was also an<br />

area effect (ANOVA, F5,341 = 31.91, P < 0.0001). However, this effect was primarily caused by West <strong>and</strong><br />

East coast differences, with 77% (37 <strong>of</strong> 48) <strong>of</strong> the significant species comparisons between areas being<br />

West <strong>and</strong> East coast related. <strong>The</strong> only species not being significantly different between the coasts were<br />

krill (ANOVA, F5,34 = 1.46, P = 0.23). On the west coast only small cod (ANOVA, F2,12 = 13.17, P ><br />

0.0009), polar cod (ANOVA, F3,16 = 15.67, P < 0.0001) <strong>and</strong> shrimp (ANOVA, F3,16 = 13.09, P > 0.0001)<br />

showed a significant difference between areas. <strong>The</strong> estimated <strong>trophic</strong> level <strong>of</strong> polar cod <strong>and</strong> shrimp<br />

were both significantly higher in area 3 <strong>and</strong> 4 compared to area 1 <strong>and</strong> 2 (Tukey’s post hoc test, P ≤<br />

0.03). <strong>The</strong> same pattern was not found for small cod. Here only area 3 had a higher value <strong>of</strong> <strong>trophic</strong><br />

level, which was significantly different from both area 2 <strong>and</strong> 4 (Tukey’s post hoc test, P ≤ 0.01).<br />

9


Temporal study<br />

118 muscle samples divided between nine species <strong>and</strong> ten sampling groups were analyzed for δ 13C<br />

<strong>and</strong> δ 15N during April, June, August <strong>and</strong> November 2010 in the Nuuk Fjord (Table III). Average isotopic<br />

values ranged from -16.20 to -21.66 in δ 13C <strong>and</strong> from 8.40 to 14.83 in δ 15N (Fig. 5).<br />

Mean δ 15N values differed significantly between species (ANCOVA, F8,96 = 15.76, P < 0.0001) but there<br />

was no effect <strong>of</strong> <strong>time</strong>-<strong>of</strong>-catch (ANCOVA, F1,96 = 0.16, P = 0.69). However, a significant interaction term<br />

(ANCOVA, F8,96 = 2.97, P = 0.005), indicates that some species do vary in δ 15N during the eight month<br />

long sampling period. Thus, δ 15N values for small cod increased from 12.84‰ in April to 14.17‰ in<br />

November (ANOVA, F1,16 = 13.23, P = 0.002). Similarly, large redfish (ANOVA, F1,18 = 9.74, P = 0.006)<br />

<strong>and</strong> krill (ANOVA, F1,13 = 6.66, P > 0.03) increased from 13.95‰ to 14.83‰ <strong>and</strong> 9.53‰ to 10.16‰,<br />

respectively during the sampling period, but this trend was not true for all species. Atlantic halibut <strong>and</strong><br />

large cod showed almost no variation while American plaice showed a decrease in the middle <strong>of</strong> the<br />

sampling period (Fig 6).<br />

δ 13C values varied both between species (ANCOVA, F8,104 = 46.30, P > 0.001) <strong>and</strong> as a result <strong>of</strong> <strong>time</strong>-<strong>of</strong>-<br />

catch (ANCOVA, F1,104 = 11.12, P = 0.001) with a tendency <strong>of</strong> increasing values. <strong>The</strong>re was no<br />

significant interaction (ANOVA, F8,96 = 0.44, P = 0.90) (Fig. 6). This general tendency is for example<br />

shown by small cod <strong>and</strong> krill where δ 13C values (mean ± SD) <strong>of</strong> small cod increasing from the lowest<br />

value in June (-18.73 ± 0.32‰) to the highest value in November (-17.77 ± 0.34‰). Likewise, krill<br />

showed a slight increase from -20.26 ± 0.54‰ to -19.66 ± 0.17‰ (mean ± SD) during the sampling<br />

period.<br />

Inshore-<strong>of</strong>fshore comparison<br />

Comparing species caught in- (Nuuk Fjord) <strong>and</strong> <strong>of</strong>fshore (area 3) at approximately the same <strong>time</strong> (June<br />

<strong>and</strong> July 2010) there was a significant area effect (i.e. in- vs. <strong>of</strong>fshore) with regard to both δ 13C<br />

(ANOVA, F1,51 = 9.36, P = 0.004) <strong>and</strong> δ 15N (ANOVA, F1,51 = 13.03, P = 0.0007) values. Also, there was a<br />

significant species effect in both δ 13C (ANOVA, F7,51 = 31.93, P < 0.0001) <strong>and</strong> δ 15N (ANOVA, F7,51 =<br />

22.51, P < 0.0001). In general values were highest inshore, however significant interactions terms<br />

(δ 13C: ANOVA, F7,51 = 7.81, P < 0.0001 <strong>and</strong> δ 15N: ANOVA, F7,51 = 3.27, P = 0.006) show that the pattern<br />

is not similar for all species. In the case <strong>of</strong> δ 13C values, this was caused by copepods being the only<br />

value higher <strong>of</strong>fshore compared to inshore (Fig.7). Regarding δ 15N values, they were for all species<br />

higher inshore compared to <strong>of</strong>fshore, but not significantly in all species (Fig. 7). It is noteworthy that<br />

δ 15N values (mean ± SE) for copepod (9.98 ± 0.18‰) <strong>and</strong> krill (9.96 ± 0.19‰) inshore were<br />

approximately the same, while there was a difference <strong>of</strong> 2.3‰ in δ 15N values between copepod (7.26 ±<br />

10


0.28‰) <strong>and</strong> krill (8.92 ± 0.46‰) <strong>of</strong>fshore. Values <strong>of</strong> δ 13C were likewise higher (i.e. less negative) for<br />

all species, except copepods, inshore compared to <strong>of</strong>fshore (Fig. 7). Especially δ 13C values (mean ± SE)<br />

<strong>of</strong> American plaice caught inshore (-16.20 ± 0.48‰) were higher than δ 13C values <strong>of</strong>fshore (-18.95 ±<br />

0.13‰).<br />

Comparing <strong>trophic</strong> level for each species caught in- <strong>and</strong> <strong>of</strong>fshore there was an area effect (Kruskal-<br />

Wallis, χ 2 = 11.08, P = 0.0009) as well as a species effect (Kruskal-Wallis, χ 2 = 43.90, P < 0.0001). <strong>The</strong><br />

mean <strong>trophic</strong> level were for all species higher <strong>of</strong>fshore compared to inshore, which properly is a result<br />

<strong>of</strong> higher δ 15N baseline values (i.e. copepods) <strong>of</strong>fshore. Hence, the compared food webs is fairly<br />

similarly in composition (Fig. 2 <strong>and</strong> 5). Even though the estimated mean <strong>trophic</strong> level were higher<br />

<strong>of</strong>fshore compared to inshore only four out <strong>of</strong> the eight species sampled differed significantly (krill,<br />

ANOVA, F1,8 = 8.00, P = 0.022; American plaice, ANOVA, F1,6 = 34.05, P = 0.001; small cod, ANOVA, F1,8 =<br />

38.51, P = 0.0003 <strong>and</strong> large cod, ANOVA, F1,8 = 6.59, P = 0.033, Fig 8).<br />

Discussion<br />

Spatial Study<br />

δ 15N values differed significantly between six predetermined areas along the Greenl<strong>and</strong> West <strong>and</strong> East<br />

coast being positively correlated with latitude. For all species (except Greenl<strong>and</strong> shark) δ 15N values<br />

increased between 2‰ <strong>and</strong> 4‰ (Fig. 2) from the most southern area to the northern study area on<br />

the West coast, which is equivalent to a full <strong>trophic</strong> level (Post 2002). On the East coast the overall<br />

pattern was the same (Fig. 3), but a few species have a reversed pattern <strong>of</strong> decreasing δ 15N values with<br />

latitude (i.e. wolffish, polar cod, small cod <strong>and</strong> Greenl<strong>and</strong> halibut, Fig. 2). <strong>The</strong>se represent very<br />

different ecosystem components, <strong>and</strong> the reason for the discrepancy is unknown but could be related<br />

to migration patterns or actual feeding differences between areas. <strong>The</strong> same latitudinal gradient was<br />

not evident in δ 13C values. <strong>The</strong> general pattern <strong>of</strong> δ 13C values were not gradually increasing but instead<br />

divided in two with increasing values from area 1 to 3 on the West coast <strong>and</strong> decreasing values from<br />

area 4 to 6. A rather large difference <strong>of</strong> up to 1.5‰ appears between area 3 <strong>and</strong> 4 (Fig. 3).<br />

<strong>The</strong> latitudinal gradients can be explained by a multitude <strong>of</strong> factors. This includes a change in food<br />

consumption with changing latitude (Sweeting et al. 2005), but given the consistent shift across the<br />

entire food web in especially δ 15N values the explanation must be <strong>of</strong> a more fundamental nature.<br />

Supporting this is the fact that the estimated <strong>trophic</strong> level for each species does not change<br />

consistently with latitude, but stays fairly constant across study areas (Table V). In addition to some<br />

11


ase line induced coastal differences in <strong>trophic</strong> level, only three species (shrimp, polar cod <strong>and</strong> small<br />

cod) differed significantly in <strong>trophic</strong> level between some <strong>of</strong> the West coast areas (Table V). So although<br />

it is not possible to totally disregard an effect <strong>of</strong> small feeding differences across latitudes, we do not<br />

believe they contribute significantly to the large latitudinal shifts in δ 15N values.<br />

More likely, changes are a result <strong>of</strong> changing isotope values at the base <strong>of</strong> the food web with changing<br />

degree <strong>of</strong> latitude which then cascades through the food web. <strong>The</strong> baseline isotope values are<br />

potentially influenced by physical, chemical <strong>and</strong> biological properties <strong>of</strong> the currents (Pantoja 2002),<br />

terrestrial input (Sherwood & Rose 2005) <strong>and</strong> primary producer species composition <strong>and</strong> bloom<br />

progression (Tamel<strong>and</strong>er et al. 2009). <strong>The</strong> combined effect <strong>of</strong> these direct <strong>and</strong> indirect effects on the<br />

primary produces will change the values on all higher <strong>trophic</strong> levels.<br />

<strong>The</strong> currents along the Greenl<strong>and</strong>ic west coast are a mixture <strong>of</strong> the cold low saline East Greenl<strong>and</strong>ic<br />

Current coming from the north <strong>and</strong> the temperate saline Irminger Current branching <strong>of</strong> from the Gulf<br />

Stream (Ribergaard 2011). <strong>The</strong> two currents meet at the southern Greenl<strong>and</strong> East coast <strong>and</strong> then<br />

merge gradually, homogenizing the water masses moving north along the West coast. If the water<br />

masses differ in isotope signal in the biological available nutrients this will be reflected in POM <strong>and</strong><br />

consequently in higher <strong>trophic</strong> levels. Hence, the parallel shift <strong>of</strong> the food web may well be related to<br />

shifts in the relative contributions <strong>of</strong> the two dominant water masses around Greenl<strong>and</strong>.<br />

Two previous studies conducted in the two main currents dominating the waters around Greenl<strong>and</strong><br />

(East Greenl<strong>and</strong> Current <strong>and</strong> the Irminger Current) supports the notion <strong>of</strong> differing water masses<br />

influencing δ 15N <strong>and</strong> δ 13C (Table VII). Sarà et al. (2009) measured stable isotopes in the Irminger<br />

Current on the Reykjanes Ridge south <strong>of</strong> Icel<strong>and</strong>, whereas Hobson et al. (1995) performed stable<br />

isotope analyses in the East Greenl<strong>and</strong> Current (Table VII). Comparing species, or ecologically similar<br />

species, between areas demonstrates relatively large differences in δ 15N values, with species caught in<br />

the Northeast Water Polynya (East Greenl<strong>and</strong> Current) having similar or higher values than those<br />

caught in the Irminger Current. However, all mean δ 15N values in the most northern area on the West<br />

coast (area 1) were all higher compared to mean δ 15N values in the northern area on the East coast<br />

(area 6) opposite <strong>of</strong> what intuitively to expect given the simplified current pattern described here,<br />

suggesting a complex mixing pattern or some other contributing factor. However, given the differences<br />

in water masses, it surely in some way contributes to the pattern described here.<br />

This gradual mixing <strong>of</strong> water masses could also possibly be related to the migrational pattern <strong>of</strong> the<br />

sampled species. Wolffish is considered a stationary species (Riget & Messtorff 1988) <strong>and</strong> displays a<br />

very large latitudinal gradient (3.2‰) whereas the more migratory behavior seen in for instance<br />

Greenl<strong>and</strong> shark (Skomal & Benz 2004) could serve to dilute the effect <strong>of</strong> latitudinal related<br />

12


differences in δ 15N values give little north-south difference (0.8‰). However, too little is known about<br />

the migration <strong>of</strong> the sampled species to make any conclusions.<br />

<strong>The</strong> parallel shift in δ 15N values with latitude across groups could also be related to the length <strong>of</strong> the<br />

productive open-water period (Blicher et al. 2007). In high-Arctic areas this period is identical with<br />

the ice-free period, while diminishing day lengths have a pronounced effect further south were ice-free<br />

periods are longer. <strong>The</strong> productive open-water period is here defined according to Blicher et al. (2007)<br />

as the annual number <strong>of</strong> days with open water <strong>and</strong> a minimum day length <strong>of</strong> six hours. <strong>The</strong>re is a<br />

significant relationship between the productive open-water period <strong>and</strong> the relative δ 15N values in the<br />

four West coast areas <strong>and</strong> a similar tendency in the two East coast areas (Fig. 9). Hence, the shorter the<br />

productive open-water period is this higher is the relative δ 15N values. A possible explanation could be<br />

that a longer period with ice cover results in an increasing primary production intensity, whereby<br />

nutrients are exhausted at a faster rate which ultimately could lead to more regenerated production<br />

<strong>and</strong> subsequently increasing δ 15N values (Wainright & Fry 1994). Another explanation could be that a<br />

longer ice cover period stabilizes the water column, either due to the ice cover or the outlet <strong>of</strong><br />

freshwater which would cause a stronger stratification thereby decreasing possible upwelling also<br />

leading to more regenerated primary production (Wu et al. 1997).<br />

Exploring the results from the POM analyses should help in <strong>interpreting</strong> the results. We have<br />

nevertheless chosen to exclude them from most analyses as the variation in mean POM δ 15N values<br />

between areas was large, ranging from 3.3‰ to 10.8‰, <strong>and</strong> <strong>of</strong>ten exceeded other groups being<br />

biologically impossible (Fig. 2). However, given the low intra-area variation in isotope values <strong>and</strong><br />

general high analyses precision, measurement error does not appear to be a factor. Rather, some POM<br />

samples were taken close to or over the shelf edge (Fig. 1) <strong>and</strong> δ 15N values in these samples were<br />

generally higher (mean 8.5-12.1‰) compared to the values <strong>of</strong> POM sampled on the shelf (3.3-6.5‰).<br />

CTD pr<strong>of</strong>iles taken simultaneously with POM samples clearly demonstrate that different water masses<br />

are present (Fig. 10), but whether these cause the differences in δ 15N values is unknown, as other<br />

factors such as changes in POM composition or seasonal progression could give similar differences<br />

(Tamel<strong>and</strong>er et al. 2009). Thus, as there clearly is some spatial effect on the results on both a large <strong>and</strong><br />

small spatial scale (see also the inshore-<strong>of</strong>fshore section) so whatever the ultimate cause <strong>of</strong> this<br />

latitudinal related pattern in isotopic values (irrespective <strong>of</strong> feeding behavior) is, it must be taken into<br />

account <strong>when</strong> addressing hypotheses by means <strong>of</strong> stable isotope analysis covering a noticeable<br />

geographical range (Møller, 2006, Riget et al. 2007), especially <strong>when</strong> considering a few number <strong>of</strong><br />

species that does not reveal any geographical effect.<br />

Lastly, the vast latitudinal gradient in the present study is naturally associated with a similar<br />

temperature gradient. Barnes et al. (2007) showed in a laboratory study that rising temperature can<br />

have a negative effect on δ 15N values. In Greenl<strong>and</strong> benthic fish will generally experience colder<br />

13


temperatures moving north (Sünksen et al. 2009) while the reverse may be the case for the strictly<br />

pelagic species such as capelin, at least on the West coast (Hedeholm 2010) but as the potential effect<br />

<strong>of</strong> temperature is small (i.e. -0.06‰ per 1°C for δ 15N assuming linearity, Barnes et al. 2007) compared<br />

to the differences in isotope values <strong>and</strong> temperature observed here (Fig. 2 <strong>and</strong> 10) it <strong>of</strong>fers little<br />

explanation in the present study.<br />

Temporal Study<br />

During the eight month sampling period from April to November there was an overall effect <strong>of</strong> Day-<strong>of</strong>-<br />

year on δ 13C. <strong>The</strong> most enriched <strong>and</strong> depleted values <strong>of</strong> δ 13C were obtained in June <strong>and</strong> August <strong>and</strong><br />

April <strong>and</strong> November, respectively (Fig. 5 <strong>and</strong> 6) with only small cod showing a different pattern.<br />

Greenl<strong>and</strong> halibut <strong>and</strong> large redfish experienced the largest peak in δ 13C with a difference <strong>of</strong> about<br />

1‰ in the summer period. <strong>The</strong> increasing δ 13C values in the summer period are consistent with other<br />

studies investigating primary production, invertebrates <strong>and</strong> fish (Sarà et al. 2002; Vizzini & Mazzola<br />

2003). This increase in δ 13C during the summer period could indicate a shift in feeding preference<br />

towards a more benthic diet. However, generally evidence <strong>of</strong> isotopic temporal variability is confined<br />

to relatively short-lived primary producers <strong>and</strong> consumers (e.g. Nordström et al. 2009; Vizzina &<br />

Mazzola 2003) <strong>and</strong> the finding <strong>of</strong> temporal changes <strong>of</strong> this magnitude are unexpected, as muscle<br />

turnover is relatively slow <strong>and</strong> feeding induced changes exceeds that normally associated with small<br />

feeding shifts (Bootsma et al. 1996). Hence, a substantial influence from differences in the isotopic<br />

baseline also appears to be <strong>of</strong> <strong>importance</strong> in the inshore area which could be due to differences in<br />

water masses, currents <strong>and</strong> terrestrial input example due to increasing glacial ice melt.<br />

Although there was no significant <strong>time</strong> effect on δ 15N irrespective <strong>of</strong> species, the general pattern <strong>of</strong><br />

mean δ 15N showed an increasing trend at the end <strong>of</strong> the sampling period (Fig. 5 <strong>and</strong> 6) perhaps<br />

indicating a beginning <strong>of</strong> a winter peak similar to δ 13C. Given the <strong>time</strong> laps in the response <strong>of</strong> muscle<br />

tissue (weeks to months, Hesslein et al. 1993) this could be caused by an intensified summer feeding<br />

period following a winter period with lower feeding intensity. In order to demonstrate this potentially<br />

annual isotopic pattern a longer <strong>and</strong> maybe more intense sampling period must be conducted.<br />

Like in the spatial study a large variation occurred in δ 15N values <strong>of</strong> POM. <strong>The</strong> largest difference<br />

occurred between the first two sampling periods with a variation <strong>of</strong> 4‰. Again this large different in<br />

isotopic signatures <strong>of</strong> primary production is most likely caused by changes in physical <strong>and</strong> chemical<br />

properties <strong>of</strong> the water masses during the sampling period, hence the water masses <strong>and</strong> conditions <strong>of</strong><br />

the currents in the Nuuk Fjord change between summer <strong>and</strong> winter <strong>and</strong> increasing freshwater run<strong>of</strong>f<br />

during summer (Mortensen et al. 2011). It is however also possible that the large difference is due to<br />

variation in species composition <strong>of</strong> the primary production in the different sampling periods.<br />

14


Inshore-<strong>of</strong>fshore comparison<br />

When comparing stable isotope data measured <strong>of</strong>fshore (area 3) <strong>and</strong> inshore (Nuuk Fjord) almost all<br />

comparable species (except copepods) had higher δ 13C <strong>and</strong> δ 15N values inshore than <strong>of</strong>fshore. This is<br />

in agreement with the observation that inshore species have a more enriched δ 13C values compared to<br />

the more depleted <strong>of</strong>fshore species, as benthic primary production generally exhibit less δ 13C<br />

fractionation during carbon fixation than do pelagic phytoplankton (V<strong>and</strong>er Z<strong>and</strong>en & Rasmussen<br />

1999, Fig. 7). <strong>The</strong> pattern in δ 15N values agrees with those <strong>of</strong> Sherwood & Rose (2005) which on a<br />

similar geographic scale also found lower δ 15N values <strong>of</strong>fshore, but is in contrast with result<br />

represented by France 1995b. One explanation <strong>of</strong> the higher δ 15N values inshore could be a high<br />

degree <strong>of</strong> vertical mixing caused by physical processes involving ocean currents, wind <strong>and</strong> tides<br />

leading to high levels <strong>of</strong> nutrient availability <strong>and</strong> productivity in the inshore waters (Sherwood & Rose<br />

2005). Because <strong>of</strong> the relatively large difference in the base <strong>of</strong> the food web (i.e. copepods) between<br />

inshore <strong>and</strong> <strong>of</strong>fshore the estimated <strong>trophic</strong> level <strong>of</strong>fshore is shifted upwards for all species, but<br />

maintains the same relative pattern (Fig. 8).<br />

Conclusion<br />

Comparing stable isotope signatures in the arctic marine food web demonstrated large differences on<br />

both a large <strong>and</strong> small geographic scale. <strong>The</strong> spatial study showed a significantly latitudinal effect,<br />

revealing increasing δ 15N values with latitude. Also a temporal effect was demonstrated, even though<br />

only significant in δ 13C. In order to accurately demonstrate the <strong>importance</strong> <strong>of</strong> a temporal change in<br />

δ 15N values a more balanced <strong>and</strong> intensive sampling may be required. <strong>The</strong>se differences in isotopic<br />

signature both spatial <strong>and</strong> temporal are probably caused by abiotic factors, differences in physical <strong>and</strong><br />

biological properties <strong>of</strong> the water masses as well as terrestrial inputs. <strong>The</strong>se results will have a large<br />

influence on comparative studies if such differences are not considered <strong>when</strong> studying isotopic<br />

signatures.<br />

Acknowledgements<br />

<strong>The</strong> authors acknowledge the staff at the Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources for permission to<br />

use laboratory facilities <strong>and</strong> sampling assistance. Also, we are thankful to the staff at RV Pâmiut <strong>and</strong><br />

Sanne Kjellerup <strong>and</strong> Rasmus Swalethorp (DTU Aqua, DK) for sampling assistance. <strong>The</strong> study received<br />

15


financial support from the Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources <strong>and</strong> the Danish Agency for<br />

Science, Technology <strong>and</strong> Innovation <strong>and</strong> is a part <strong>of</strong> the Greenl<strong>and</strong> Climate Research Centre.<br />

16


References<br />

Barnes C, Sweeting CJ, Jennings S, Barry JT, Polunin NVC (2007) Effect <strong>of</strong> temperature <strong>and</strong> ration size<br />

on carbon <strong>and</strong> nitrogen stable isotope <strong>trophic</strong> fractionation. Funct Ecol 21:356-362<br />

Blicher ME, Rysgaard S, Sejr MK (2007) Growth <strong>and</strong> production <strong>of</strong> sea urchin Strongylocentrotus<br />

droebachiensis in a high-Arctic fjord, <strong>and</strong> growth along a climatic gradient (64 to 77°N). Mar Ecol<br />

Prog Ser 341:89-102<br />

Bootsma HA, Hecky RE, Hesslein RH, Turner GF (1996) Food partitioning among Lake Malawi<br />

nearshore fishes as revealed by stable isotope analyses. Ecology 77:1286-1290<br />

Cabana G, Rasmussen JB (1996) Comparison <strong>of</strong> aquatic food chains using nitrogen isotopes. Proc Natl<br />

Acad Sci 93:10844-10847<br />

DeNiro MJ, Epstein S (1978) Influence <strong>of</strong> diet on the distribution <strong>of</strong> carbon isotopes in animals.<br />

Geochim Cosmochim Acta 42:495-506<br />

DeNiro MJ, Epstein S (1981) Influence <strong>of</strong> diet on the distribution <strong>of</strong> nitrogen isotopes in animals.<br />

Geochim Cosmochim Acta 45:341–351<br />

France R (1995a). Carbon-13 enrichment in benthic compared to pelagic algae: food web implications.<br />

Mar Ecol Prog Ser 124:307-312<br />

France R (1995b) Stable Nitrogen Isotopes in Fish: Literature Synthesis on the Influence <strong>of</strong> Ecotonal<br />

Coupling. Est Coast Shelf Sci 41:737-742<br />

Fry B, Mumford PL, Tam F, Fox DD, Warren GL, Havens KE, Steinman AD (1999) Trophic position <strong>and</strong><br />

individual feeding historied <strong>of</strong> fish from Lake Okeechobee. Can J Fish Aquat Sci 56:590-600<br />

Head EJH, Harris LR (1987) Copepod feeding patterns before <strong>and</strong> during a spring bloom in Bedford<br />

Bassin, Nova Scotia. Mar Ecol Prog Ser 40:221-230<br />

17


Hedeholm R (2010) <strong>The</strong> <strong>importance</strong> <strong>of</strong> small pelagic fishes to the energy flow in marine ecosystems:<br />

the Greenl<strong>and</strong>ic capelin. Ph.D. dissertation. Aarhus University, Aarhus, Denmark.<br />

Hesslein RH, Hallard KA, Ramlal P (1993) Replacement <strong>of</strong> sulfur, carbon, <strong>and</strong> nitrogen in tissue <strong>of</strong><br />

growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ 34S, δ 13C<br />

<strong>and</strong> δ 15N. Can J Fish Aquat Sci 50:2071–2076<br />

Hobson KA, Welch HE (1992) Determination <strong>of</strong> <strong>trophic</strong> relationships within a high Arctic marine food<br />

web using δ 13C <strong>and</strong> δ 15N analysis. Mar Ecol Prog Ser 84:9–18<br />

Hobson KA, Ambrose Jr WG, Renaud PE (1995) Sources <strong>of</strong> primary production, benthic-pelagic<br />

coupling, <strong>and</strong> <strong>trophic</strong> relationships within the Northeast Water Polynya: insights from δ 13C <strong>and</strong><br />

δ 15N analysis. Mar Ecol Prog Ser 128:1-10<br />

Kurle CM, Worthy GAJ (2001) Stable isotope assessment <strong>of</strong> temporal <strong>and</strong> geographic differences in<br />

feeding ecology <strong>of</strong> northern fur seals (Callorhinus ursinus) <strong>and</strong> their prey. Oecologia 126:254-<br />

265<br />

Lampert W, Taylor BE (1985) Zooplankton grazing in eu<strong>trophic</strong> lake: implications <strong>of</strong> diel vertical<br />

migration. Ecology 66:68-82<br />

Lawson JW, Hobson KA (2000) Diet <strong>of</strong> harp seals (Pagophilus groenl<strong>and</strong>icus) in nearshore northeast<br />

Newfoundl<strong>and</strong>: inferences from stable-carbon (δ 13C) <strong>and</strong> nitrogen (δ 15N) isotope analyses. Mar<br />

Mamm Sci 16:578-591<br />

Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273-<br />

306<br />

Mortensen J, Lennert K, Bendtsen J, Rysgaard S (2011) Heat sources for glacial melt in a sub-Arctic<br />

fjord (Godthåbsfjord) in contact with the Greenl<strong>and</strong> Ice Sheet. J Geophys Res C 116.<br />

Møller P (2006) Lipids <strong>and</strong> stable isotopes in marine food webs in West Greenl<strong>and</strong> - Trophic relations<br />

<strong>and</strong> health implications. Ph.D. dissertation. National Environmental Research Institute.<br />

Denmark.<br />

18


Needoba JA, Waser NA, Harrison PJ, Calvert SE (2003) Nitrogen isotope fractionation in 12 species <strong>of</strong><br />

marine phytoplankton during growth on nitrate. Mar Ecol Prog Ser 225:81-91<br />

Nilsen M, Pedersen T, Nilssen EM, Fredriksen S (2008). Trophic studies in a high-latitude fjord<br />

ecosystem – a comparison <strong>of</strong> stable isotope analyses (δ 13C <strong>and</strong> δ 15N) <strong>and</strong> <strong>trophic</strong>-level estimates<br />

from a mass-balance model. Can J Fish Aquat Sci 65:2791-2806<br />

Nordström M, Aarnio K, Bondsdorff E (2009) Temporal variability <strong>of</strong> a benthic food web: patterns <strong>and</strong><br />

processes in an low-diversity system. Mar Ecol Prog Ser 378:13-26<br />

Olive PJV, Pinnegar JK, Polunin NVC, Richards G, Rachel W (2003) Isotope <strong>trophic</strong>-step fractionation: a<br />

dynamic equilibrium model. J Anim Ecol 72:608-617<br />

Ostrom NE, Macko SA, Deibel D, Thompson R (1997) Seasonal variation in the stable carbon <strong>and</strong><br />

nitrogen isotope biogeochemistry <strong>of</strong> a coastal cold ocean environment. Geochim Cosmochim<br />

Acta 61:2929-2942<br />

Pennock JR, Velinsky DJ, Ludlam JM, Fogel ML (1996) Isotopic fractionation <strong>of</strong> ammonium <strong>and</strong> nitrate<br />

during uptake by Skeletonema costatum: Implications for δ 15N dynamics under bloom<br />

conditions. Limnol Oceanogr 41:451-459<br />

Pentoja S, Repeta DJ, Sachs JP, Sigman DM (2002) Stable isotope constraints on the nitrogen cycle <strong>of</strong><br />

the Mediterranean Sea water column. Deep-Sea Res Part I 49:1609-1621<br />

Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293-320<br />

Petursdottir H, Gislason A, Falk-Petersen S, Hop H, Svavarsson J (2008) Trophic interactions <strong>of</strong> the<br />

pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid <strong>and</strong> stable isotope<br />

analyses. Deep-Sea Res Part II 55:83-93<br />

Pinnegar JK, Polunin NVC (1999) Differential fractionation <strong>of</strong> δ 13C <strong>and</strong> δ 15N among fish tissues:<br />

implications for the study <strong>of</strong> <strong>trophic</strong> interactions. Funct Ecol 13:225–231<br />

Post DM (2002) Using stable isotopes to estimate <strong>trophic</strong> position: models, methods, <strong>and</strong> assumptions.<br />

Ecology 83:703-718<br />

19


R Development Core Team (2011). R: A language <strong>and</strong> environment for statistical computing. R<br />

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-<br />

project.org/.<br />

Ribergaard MH (2011) Oceanographic Investigations <strong>of</strong>f West Greenl<strong>and</strong> 2010. Danish Meteorological<br />

Institute Centre for Ocean <strong>and</strong> Ice: 44 pp.<br />

Riget F, Møller P, Dietz R, Nielsen TG, Asmund G, Str<strong>and</strong> J, Larsen MM, Hobson KA (2007) Transfer <strong>of</strong><br />

mercury in the marine food web <strong>of</strong> West Greenl<strong>and</strong>. J Environ Monitor 9:877-883<br />

Riget F, Messtorff J (1988) Distribution, abundance <strong>and</strong> migration <strong>of</strong> Atlantic wolffish (Anarhichas<br />

lupus) <strong>and</strong> spotted wolffish (Anarhichas minor) in West Greenl<strong>and</strong> waters. J Northw Atl Fish Sci<br />

12:13-20<br />

Rounick JS, Hicks BJ (1985) <strong>The</strong> stable carbon isotope ratios <strong>of</strong> fish <strong>and</strong> their invertebrate prey in four<br />

New Zeal<strong>and</strong> Rivers. Freshw Biol 15:207–214<br />

Sarà G, Vizzini S, Mazzola A (2002) <strong>The</strong> Effect <strong>of</strong> Temporal Changes <strong>and</strong> environmental Trophic<br />

Condition on the Isotopic Composition (δ 13C <strong>and</strong> δ 15N) <strong>of</strong> Atherina boyeri (Risso, 1810) <strong>and</strong><br />

Gobius niger (L., 1758) in a Mediterranean Coastal Lagoon (Lake <strong>of</strong> Sabaudia): Implications for<br />

Food Web Structure. Mar Ecol 23:352-360<br />

Sarà G, De Pirro M, Sprovieri M, Rumolo P, Halldórsson HP, Svavarsson J (2009) Carbon <strong>and</strong> nitrogen<br />

stable isotope inventory <strong>of</strong> the most abundant demersal fish captured by benthic gears in<br />

southwest Icel<strong>and</strong> (North Atlantic). Helgol Mar Res 63:309-315<br />

Sherwood GD, Rose GA (2005) Stable isotope analysis <strong>of</strong> some representative fish <strong>and</strong> invertebrates if<br />

the Newfoundl<strong>and</strong> <strong>and</strong> Labrador continental shelf food web. Est Coast Shelf Sci 63:537-549<br />

Skomal GB, Benz GW (2004) Ultrasonic tracking <strong>of</strong> Greenl<strong>and</strong> sharks, Somniosus microcephalus, under<br />

Arctic ice. Mar Biol 145:489-498<br />

Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor <strong>of</strong> tissue<br />

turnover <strong>and</strong> degree <strong>of</strong> omnivory. Funct Ecol 19:777-784<br />

20


Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007) Effects <strong>of</strong> body size <strong>and</strong> environment on<br />

diet-tissue δ 15N fractionation in fishes. J Exp Mar Biol Ecol 340:1-10<br />

Sünksen K, Stenberg C, Grønkjær P (2009) Temperature effects on growth <strong>of</strong> juvenile Greenl<strong>and</strong><br />

halibut (Reinhardtius hippoglossoides Walbaum) in West Greenl<strong>and</strong> waters. J Sea Res 64:125-132<br />

Søreide JE, Hop H, Carroll ML, Falk-Petersen S, Hegseth EN (2006) Seasonal food web structures <strong>and</strong><br />

sympagic-pelagic coupling in the European Arctic revealed by stable isotopes <strong>and</strong> a two-source<br />

food web model. Prog Oceanogr 71:59-87<br />

Søreide JE, Tamel<strong>and</strong>er T, Hop H, Hobson KA, Johansen I (2007) Sample preparation effects on stable C<br />

<strong>and</strong> N isotope values: a comparison <strong>of</strong> methods in Arctic marine food web studies. Mar Ecol Prog<br />

Ser 328:17-28<br />

Tamel<strong>and</strong>er T, Renaud PE, Hop H, Carroll ML, Ambrose WG, Hobson KA (2006) Trophic relationships<br />

<strong>and</strong> pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by<br />

stable carbon <strong>and</strong> nitrogen isotope measurements. Mar Ecol Prog Ser 310:33-46<br />

Tamel<strong>and</strong>er T, Kivimäe C, Bellerby RGJ, Renaud PE, Kristiansen S (2009) Base-line variations in stable<br />

isotope values in an Arctic marine ecosystem: effects <strong>of</strong> carbon <strong>and</strong> nitrogen uptake by<br />

phytoplankton. Hydrobiologia 630:63-73<br />

Trueman CN, McGill RAR, Guyard PH (2005) <strong>The</strong> effect <strong>of</strong> growth rate on tissue-diet isotopic spacing in<br />

rapidly growing animals. An experimental study with Atlantic salmon (Salmon salar). Rapid<br />

Commun Mass Spectrom 19:3239-3247<br />

V<strong>and</strong>er Z<strong>and</strong>en MJ, Rasmussen JB (1999) Primary consumer δ 13C <strong>and</strong> δ 15N <strong>and</strong> the <strong>trophic</strong> position <strong>of</strong><br />

aquatic consumers. Ecology 80:1395-1404<br />

V<strong>and</strong>er Z<strong>and</strong>en MJ, Rasmussen JB (2001) Variation in δ 15N <strong>and</strong> δ 13C Trophic Fractionation:<br />

Implications for Aquatic Food Web Studies. Limnol Oceanogr 46:2061-2066<br />

21


Vizzini S, Mazzola A (2003) Seasonal variations in the stable carbon <strong>and</strong> nitrogen isotope ratios<br />

( 13C/ 12C <strong>and</strong> 15N / 14N) <strong>of</strong> primary producers <strong>and</strong> consurmers in a western Mediterranean coastal<br />

lagoon. Mar Biol 142:1009-1018<br />

Wainright SC, Fry B (1994) Seasonal Variation <strong>of</strong> the Stable Isotopic Compositions <strong>of</strong> Coastal Marine<br />

Plankton from Woods Hole, Massachusetts <strong>and</strong> Geoges Bank. Estuaries 3:552-560<br />

Wu J, Calvert SE, Wong CS (1997) Nitrogen isotope variations in the subarctic northeast Pacific:<br />

relationships to nitrate utilization <strong>and</strong> <strong>trophic</strong> structure. Deep-Sea Res Part I 44:287-314<br />

22


Table I. Sampling from six areas along the Greenl<strong>and</strong> coast (Fig. 1). Mean total length, st<strong>and</strong>ard deviation (SD) <strong>and</strong> number (N) sampled are<br />

illustrated for each species in each area.<br />

Species<br />

Size interval<br />

(cm)<br />

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6<br />

70-72°N<br />

West coast<br />

1-5 July<br />

67-69°N<br />

West coast<br />

16 June–11 July<br />

63-65°N<br />

West coast<br />

11 June-21 July<br />

59-61°N<br />

West coast<br />

25-31 July<br />

Total length (mean cm ± SD (N))<br />

59-62°N<br />

East coast<br />

5-8 August<br />

63-66°N<br />

East coast<br />

10-29 August<br />

Anarhichas sp. (Wolffish) 30-60 47 ± 9 (4) 42 ± 4 (5) 33 ± 1 (5) 52 ± 5 (5) 50 ± 0 (1) 48 ± 8 (4)<br />

Boreogadus saida (Polar cod) 5-20 12 ± 3 (5) 11 ± 1 (5) 12 ± 0 (5) 15 ± 2 (5) 11 ± 0 (1) 12 ± 0 (5)<br />

Gadus morhua (Atlantic cod), small 25-35 27 ± 0 (5) 31 ± 1 (5) 28 ± 0 (5) 28 ± 3 (5) 29 ± 2 (5)<br />

Gadus morhua (Atlantic cod), large 45-55 47 ± 1 (5) 48 ± 3 (6) 46 ± 0 (5) 50 ± 2 (5) 49 ± 0 (5)<br />

Hippoglossoides platessoides (American plaice) 20-40 29 ± 1 (5) 31 ± 2 (5) 25 ± 1 (5) 23 ± 1 (5) 25 ± 2 (5) 30 ± 0 (5)<br />

Mallotus villosus (Capelin) 10-15 11 ± 0 (5) 13 ± 0 (5) 13 ± 1 (5) 12 ± 1 (5) 14 ± 1 (5) 12 ± 0 (5)<br />

Reinhardtius hippoglossoides (Greenl<strong>and</strong> halibut) 35-45 39 ± 2 (5) 40 ± 0 (5) 45 ± 3 (5) 45 ± 7 (4) 43 ± 3 (2) 41 ± 1 (5)<br />

Sebastes sp. (Redfish), small 15-25 17 ± 0 (5) 17 ± 8 (5) 16 ± 8 (5) 16 ± 0 (5) 23 ± 2 (4) 22 ± 1 (5)<br />

Sebastes sp. (Redfish), large 35-45 34 ± 1 (3) 38 ± 2 (5) 38 ± 2 (5) 38 ± 3 (5) 39 ± 2 (5) 37 ± 1 (5)<br />

Somniosus microcephalus (Greenl<strong>and</strong> shark) Any 270 ± 0 (1) 445 ± 0 (1) 449 ± 17 (6)<br />

23


Species<br />

Table II: Sampling from eleven stations along the Greenl<strong>and</strong> coast. Mean length, st<strong>and</strong>ard deviation (SD) <strong>and</strong> number (N) sampled are<br />

illustrated for each species at each location. Only N is illustrated for Calanus sp. because the individuals were not measured. At all stations the<br />

krill species was Thysanoessa raschii except at station 10 were it was Meganyctiphanes norvegica.<br />

Station 1<br />

71°N<br />

West coast<br />

4 July<br />

Station 2<br />

69°N<br />

West coast<br />

15 June-11 July<br />

Station 3<br />

66°N<br />

West coast<br />

Station 4<br />

64°N<br />

West coast<br />

17-18 July<br />

Station 5<br />

62°N<br />

West coast<br />

22-23 July<br />

Station 6<br />

61°N<br />

West coast<br />

24-25 July<br />

Length (mean cm ± SD (N))<br />

Station 7<br />

60°N<br />

West coast<br />

28 July<br />

Station 8<br />

60°N<br />

East coast<br />

5-6 August<br />

Station 9<br />

62°N<br />

East coast<br />

7 August<br />

Station 10<br />

64°N<br />

East coast<br />

11 August<br />

24<br />

Station 11<br />

66°N<br />

East coast<br />

18-20 August<br />

Calanus sp. N = 3 N =3 N =3 N =3 N =3 N =3 N =3 N =3 N =3 N =3 N =3<br />

Krill 2.0 ± 0.2 (5) 1.5 ± 0.1 (5) 1.8 ± 0.1 (5) 1.9 ± 0.1 (5) 1.9 ± 0.3 (5) 1.8 ± 0.1 (5) 1.9 ± 0.1 (5) 1.9 ± 0.1 (5) 1.8 ± 0.1 (5) 1.8 ± 0.1 (5)<br />

Filtered POM N = 2 N = 2 N = 2 N = 2 N = 2 N = 2 N = 2 N = 2 N = 2 N = 2 N = 2<br />

P<strong>and</strong>alus borealis 2.6 ± 0.1 (5) 2.3 ± 0.1 (5) 2.6 ± 0.1 (5) 2.5 ± 0.1 (5) 2.1 ± 0.2 (5) 2.2 ± 0.2 (5) 2.4 ± 0.4 (4) 2.7 ± 0.2 (5)


Table III. Samples caught in the Nuuk Fjord. All fish species were sampled at the same location except R. hippoglossoides, while krill <strong>and</strong><br />

copepods were sampled in a nearby bay (see text <strong>and</strong> Fig. 1).<br />

Species<br />

Position<br />

(°N;°W)<br />

Size interval<br />

(cm)<br />

Sampling depth<br />

(m)<br />

April June August November<br />

Length (mean cm ± SD (N))<br />

Gadus morhua (Atlantic cod), small 64.25;50.88 30-40 5-20 35 ± 1 (3) 35 ± 3 (5) 34 ± 4 (5) 42 ± 2 (5)<br />

Gadus morhua (Atlantic cod), large 64.25;50.88 50-60 5-20 54 ± 2 (5) 55 ± 3 (4) 55 ± 3 (5) 51 ± 2 (5)<br />

Hippoglossus hippoglossus (Atlantic halibut) 64.25;50.88 35-55 8-15 38 ± 0 (1) 48 ± 10 (2) 49 ± 0 (2) 45 ± 0 (1)<br />

Hippoglossoides platessoides (American plaice) 64.25;50.88 30-40 8-15 39 ± 1 (5) 36 ± 2 (2) 34 ± 5 (5) 37 ± 2 (5)<br />

Mallotus villosus (Capelin) 64.25;50.88 10-15 13 ± 0 (4) 12 ± 1 (2)<br />

Reinhardtius hippoglossoides (Greenl<strong>and</strong> halibut) 64.34;51.16 35-50 300-500 Unknown (2) Unknown (2) Unknown (2)<br />

Sebastes sp. (Redfish), large 64.25;50.88 35-45 60-80 40 ± 1 (5) 41 ± 3 (5) 39 ± 4 (5) 42 ± 2 (5)<br />

Calanus finmarchicus 64.45;50.25 N = 3 N = 3<br />

Thysanoessa raschii 64.45;50.25 1.4 ± 0.1 (5) 1.4 ± 0.1 (5) 1.2 ± 0.1 (5)<br />

Filtered POM 64.21;51.22 10 + 20 N = 1 N = 1 N = 1 N =1<br />

25


Table IV. Species specific comparisons <strong>of</strong> δ 15N values in the different areas (see Fig 1). indicate a significant difference (P < 0.05), ns indicates<br />

no significant difference between the species in the compared study areas <strong>and</strong> – indicate species absence in one/both areas. Shaded section is<br />

comparisons between west <strong>and</strong> east coast.<br />

Species<br />

Comparison <strong>of</strong> different areas<br />

1 vs. 2 1 vs. 3 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4 1 vs. 5 1 vs. 6 2 vs. 5 2 vs. 6 3 vs. 5 3 vs. 6 4 vs. 5 4 vs. 6 5 vs. 6<br />

Anarhichas sp. (Wolffish) ns ns ns ns ns ns<br />

Boreogadus saida (Polar cod) ns ns ns ns ns ns ns ns ns ns<br />

Gadus morhua (Atlantic cod), small - - - ns - - ns <br />

Gadus morhua (Atlantic cod), large - - - ns - - ns ns ns<br />

Hippoglossoides platessoides (American plaice) ns * ns ns ns ns ns<br />

Mallotus villosus (Capelin) ns ns ns ns ns ns ns<br />

Reinhardtius hippoglossoides (Greenl<strong>and</strong> halibut) ns ns ns ns ns ns ns ns ns ns ns ns ns ns<br />

Sebastes sp. (Redfish), small ns ns ns ns ns <br />

Sebastes sp. (Redfish), large ns ns ns ns ns ns ns ns<br />

Calanus sp. (Copepod) ns ns ns ns ns ns ns ns ns ns ns ns ns ns<br />

Thysanoessa raschii (Krill) ns ns ns ns ns ns <br />

P<strong>and</strong>alus borealis (Shrimp) ns ns ns ns ns ns ns ns<br />

26


Table V. Trophic level estimated according to Nilsen et al. (2008) <strong>and</strong> Søreide et al. (2006). Calanus sp.<br />

were used as baseline in <strong>trophic</strong> level estimation. <strong>The</strong> mean <strong>trophic</strong> level is an unweighted mean<br />

across areas.<br />

Species<br />

Trophic Level<br />

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Mean<br />

Calanus sp. (Copepods) 2.00 2.00 2.00 2.00 2.00 2.00 2.00<br />

Thysanoessa raschii (Krill) 2.42 2.13 2.49 2.35 2.48 2.33 2.37<br />

P<strong>and</strong>alus borealis (Shrimp) 2.56 2.62 2.95 2.91 3.02 2.61 2.78<br />

Mallotus villosus (Capelin) 3.01 3.09 2.86 2.98 2.90 2.49 2.89<br />

Sebastes sp. (Redfish), small 2.93 3.00 3.16 2.89 3.29 2.75 3.01<br />

Boreogadus saida (Polar cod) 2.79 2.98 3.56 3.38 3.68 2.70 3.18<br />

Gadus morhua (Atlantic cod), small 3.43 3.76 3.28 3.91 2.44 3.37<br />

Sebastes sp. (Redfish), large 3.70 3.49 3.45 3.94 2.99 2.98 3.43<br />

Hippoglossoides platessoides (American plaice)<br />

3.48 3.71 3.69 3.60 3.28 3.04 3.47<br />

Gadus morhua (Atlantic cod), large<br />

3.75 3.75 3.83 3.57 2.97 3.57<br />

Reinhardtius hippoglossoides (Greenl<strong>and</strong> halibut)<br />

3.28 3.32 3.74 3.51 4.42 3.30 3.60<br />

Anarhichas sp. (Wolf fish)<br />

4.01 3.99 3.85 3.66 4.00 2.98 3.74<br />

Somniosus microcephalus (Greenl<strong>and</strong> shark)<br />

4.34<br />

4.88 5.09<br />

4.77<br />

27


Table VI. Comparison <strong>of</strong> the relative δ 13C <strong>and</strong> δ 15N values in study areas along the Greenl<strong>and</strong>ic West<br />

<strong>and</strong> East coast. indicate a significant difference (P < 0.05) while ns indicate no difference between<br />

the two areas in question (P > 0.05).<br />

Area 2 Area 3 Area 4 Area 5 Area 6<br />

δ 13C δ 15N δ 13C δ 15N δ 13C δ 15N δ 13C δ 15N δ 13C δ 15N<br />

Area 1 ns ns <br />

Area 2 ns ns ns ns <br />

Area 3 ns ns <br />

Area 4 ns ns ns ns<br />

Area 5 ns ns<br />

28


Table VII. A comparison <strong>of</strong> different ecosystems in different water masses, based on the current study <strong>and</strong> literature review. Data<br />

from Icel<strong>and</strong> is by Sarà et al. (2009), Northeast Water Polynya is by Hobson et al. (1995) <strong>and</strong> Greenl<strong>and</strong> Area 1 <strong>and</strong> 6 is from the<br />

current study (Fig. 1). a indicate st<strong>and</strong>ard error instead <strong>of</strong> st<strong>and</strong>ard deviation, - indicate data not available. All values from Hobson<br />

et al. (1995) are lipid extracted.<br />

Species<br />

Icel<strong>and</strong>,<br />

Irminger Current<br />

Northeast Water Polynya,<br />

East Greenl<strong>and</strong> Current<br />

Greenl<strong>and</strong>, Area 1,<br />

West Greenl<strong>and</strong> Current<br />

Stable isotope values (‰ ± SD)<br />

Greenl<strong>and</strong>, Area 6,<br />

East Greenl<strong>and</strong> Current<br />

δ 15N δ 13C δ 15N δ 13C δ 15N δ 13C δ 15N δ 13C<br />

Anarhichas sp./Icelus bicornis 13.1 ± 1.7 -16.5 ± 0.6 13.7 ± 0.4 -21.0 ± 0.2 16.2 ± 0.4 -18.5 ±0.9 11.3 ± 0.5 -18.5 ± 0.5<br />

Boreogadus saida 13.7 ± 0.0 -21.6 ±0.5 12.2 ±0.5 -20.4 ± 0.4 10.4 ± 0.6 -22.6 ± 0.2<br />

Gadus morhua (Atlantic cod), small 12.8 ± 0.1 -17.0 ± 0.5 - - - - 9.5 ± 0.7 -20.3 ± 0.1<br />

Hippoglossus platessoides/Lycodes rossi 12.0 ± 0.7 -17.5 ± 0.3 15.3 ± 0.6 -20.5 ± 0.3 14.4 ±1.0 -19.5 ± 0.2 11.4 ± 0.2 -19.4 ± 0.2<br />

Mallotus villosus/Micromesistus poutassou 10.8 ± 0.1 -22.5 ± 0.3 13.1 ± 0.4 -21.3 ±0.2 12.9 ±0.1 -20.5 ±0.1 9.7 ±0.9 -20.7 ± 0.5<br />

Sebastes sp. (redfish), small 11.6 ± 0.1 -18.6 ± 0.1 14.5 ± 0.0 -21.4 ± 0.0 12.7 ±0.3 -20.4 ± 0.1 10.5 ± 0.1 -20.6 ± 0.3<br />

Calanus sp. 3.5 ± 0.1 a -20.3 ± - a 8.2 ± 0.0 -22.3 ± 0.0 9.7 ±0.0 -22.1 ± 0.4 8.1 ± 0.4 -21.2 ±0.2<br />

Krill/<strong>The</strong>misto sp. 11.0 ± 0.3 -17.9 ± 0.2 10.4 ± 0.0 -24.2 ± 0.0 11.1 ± 0.8 -20.8 ±0.4 9.2 ±1.1 -20.9 ± 0.3<br />

POM 5.2 ± 0.5 -21.1 ± 0.4 5.0 ±0.0 -28.4 ±0.0 10.8 ± 2.2 -25.1 ± 0.2 3.3 ± 0.3 -25.3 ± 0.3<br />

29


Figure 1. <strong>The</strong> southern part <strong>of</strong> Greenl<strong>and</strong>. <strong>The</strong> <strong>of</strong>fshore squares represent the study areas in which all<br />

fish species were sampled. <strong>The</strong> gray circles mark the stations where shrimps, krill, copepod, POM <strong>and</strong><br />

CTD-measurements (CTD-measurements were only sampled on the West coast) were sampled. <strong>The</strong><br />

line indicates the 500 meter depth contour <strong>and</strong> thereby the shelf edge. <strong>The</strong> small map shows the Nuuk<br />

fjord system with Nuuk city, fish (except Greenl<strong>and</strong> halibut) <strong>and</strong> POM station (open square), sampling<br />

station <strong>of</strong> copepod <strong>and</strong> krill (black circle) <strong>and</strong> the sampling site <strong>of</strong> Greenl<strong>and</strong> halibut (black triangle)<br />

marked.<br />

30


Figure 2. δ 13C <strong>and</strong> δ 15N (‰) values (mean ± SE) along the Greenl<strong>and</strong>ic coast for the analyzed species:<br />

Filtered POM (POM), copepod (COP), krill (KRI), shrimp (SHR), capelin (CAP), polar cod (POL), small<br />

redfish (RES), large redfish (REL), American plaice (APL), small cod (ATS), large cod (ATL), Greenl<strong>and</strong><br />

halibut (GHL), wolffish (WOF) <strong>and</strong> Greenl<strong>and</strong> shark (GSK).<br />

31


Figure 3. <strong>The</strong> general pattern <strong>of</strong> δ 15N (‰) <strong>and</strong> δ 13C values (mean ± SE) along the Greenl<strong>and</strong>ic west<br />

(area no. 1, 2, 3 <strong>and</strong> 4) <strong>and</strong> east coast (area no. 5 <strong>and</strong> 6), represented by shrimp. Note the difference in<br />

scale on the y-axis.<br />

32


Figure 4. <strong>The</strong> calculated relative values (± SE) <strong>of</strong> δ 13C <strong>and</strong> δ 15N against latitude (°N). Note the<br />

difference in scale on the y-axis.<br />

33


Figure 5. δ 13C <strong>and</strong> δ 15N (‰) values (mean ± SE) in the Nuuk Fjord for the analyzed species: Filtered<br />

POM (POM), copepod (COP), krill (KRI), capelin (CAP), small cod (ATS), large cod (ATL), redfish (large)<br />

(REL), American plaice (APL), Greenl<strong>and</strong> halibut (GHL), Atlantic halibut (AHL)).<br />

34


Figure 6. Mean index values <strong>of</strong> δ 13C <strong>and</strong> δ 15N for each sampling date in the Nuuk Fjord during the<br />

sampling period in 2010. Mean index values are calculated based on the mean values <strong>of</strong> each species in<br />

each sampling period divided by the mean <strong>of</strong> the given species at all sampling dates, <strong>and</strong> then a mean<br />

value <strong>of</strong> all species at each sampling dates were calculated. <strong>The</strong> mean index values <strong>of</strong> δ 13C <strong>and</strong> δ 15N is<br />

in this way centered around one. All δ 15N data points are displaced two days from the original<br />

sampling day. Error bars represent st<strong>and</strong>ard error.<br />

35


Figure 7. Inshore <strong>and</strong> <strong>of</strong>fshore comparison <strong>of</strong> δ 15N <strong>and</strong> δ 13C (‰) values (mean ± SE). indicate<br />

significant difference (P ≤ 0.05).<br />

36


Figure 8. Mean <strong>trophic</strong> level (± SE) comparison among species inshore <strong>and</strong> <strong>of</strong>fshore. indicate a<br />

significant difference (P < 0.05).<br />

37


Figure 9. Relative δ 15N values <strong>of</strong> the study areas <strong>of</strong>fshore plotted against productive open-water<br />

period.<br />

38


Figure 10. CTD-pr<strong>of</strong>iles from the west coast showing the temperature <strong>and</strong> salinity with depth.<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!