Design og modellering af metanolanlæg til VEnzin-visionen Bilag

Design og modellering af metanolanlæg til VEnzin-visionen Bilag Design og modellering af metanolanlæg til VEnzin-visionen Bilag

27.07.2013 Views

VEnzin.for c:/dna/source/ K_BET = $ ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\gt 0 \\\\ \\dot{m}_3 \\ $gt 0 \\\\ \\dot{m}_4 \\lt 0 $’ KMEDDS(1) =’Inlet gas’ KMEDDS(2) =’Oxygen or another gas’ KMEDDS(3) =’Steam’ KMEDDS(4) =’Reformed gas’ KMEDDS(5) =’Heat’ k_inp=’struc NG_reformer STEAM_REFORMER 412 403 423 431 313 1\\\\ $media 412 NATURAL_GAS 403 O2 431 NG_reformat\\\\ $fluid O2 O2 1\\\\ $addco q NG_reformer 313 0\\\\ $addco t NG_reformer 403 850 t NG_reformer 423 850 t NG_reformer $ 412 667\\\\ $addco t NG_reformer 431 950 M NG_reformer 412 0.34 p 403 10\\\\ $START M NG_reformer 403 0.3 M NG_reformer 423 0.3\\\\ $START Y_J NG_reformat H2 0.55 Y_J NG_reformat CO 0.21 Y_J $ NG_reformat H2O−G 0.18’ C GOTO 9999 C 9999 CONTINUE RETURN END C======================================================================= C*********************************************************************** SUBROUTINE GASCOOL2(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,ANTM2,MEDIE, $ ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q,PAR,RES,X_J,ZA,ZANAM, $ ANTEX,KOMDSC,K_PAR,K_lig,K_bet,KMEDDS,K_inp) C*********************************************************************** C C GASCOOL1 is a model of a gas cooler with steam condensation. C The model does not include equations concerning the heat exchange. C 1−2 is the heat emitting fluid. C C*********************************************************************** C CA FKOMP − INPUT − Flag with the value: CA 1: Initialize the component. CA 2: Initialize with actual system. CA 3: Fluid composition calculation (constant). CA 4: Find residuals. CA 5: Find residuals and check variables. CA 6: Output information about component. CA MDOT − INPUT − Massflows from nodes. CA P − INPUT − Pressure in nodes. CA H − INPUT − Enthalpy of massflows. CA PAR − INPUT − Parameters of the component. CA KOMTY − OUTPUT − Component name. CA ANTPK − OUTPUT − Number of parameters. CA ANTLK − OUTPUT − Number of equations. CA ANTEX − OUTPUT − Number of algebraic independent equations. CA ANTED − OUTPUT − Number of differential independent equations. CA ANTKN − OUTPUT − Number of nodes connected to the component. CA ANTM1 − OUTPUT − Number of massflows in the first conservation of CA mass equation. CA ANTM2 − OUTPUT − Number of massflows in the second. CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic CA mass and internal energy on side 1 and 2 respectively; CA and dynamic solid internal energy). CA MEDIE − IN/OUT − Media (fluid) of the connected nodes. CA The values mean: CA 99 : Water. CA ANTME − OUTPUT − Number of fluids with variable composition. CA RES − OUTPUT − Residuals for the component. C CL T1,T2 Temperature in first and second node. CL T3,T4 Temperature in third and fourth node. CL S Entropy. CL V Specific volume. CL X Quality. CL U Internal energy. CL DPA,DPB Pressure loss in heat exchanger. CL K_PAR Parameter description. CL K_LIG Equation description. CL K_BET Condition description. CL K_MED Media description. C 19/67 19−03−2007

VEnzin.for c:/dna/source/ C Subroutines : STATES C CP Programmer : Brian Elmegaard 2000 CP Dept. of Energy Eng., DTU, Denmark. C*********************************************************************** C C Include the common "environment" C INCLUDE ’ENVIRO.INI’ INCLUDE ’THERPROP.DEC’ C C Parameter variables C INTEGER ANTLK, ANTKN, MEDIE(6), ANTPK, ANTEX, & ANTM1, ANTM2, ANTME, VARME(4), ANTEL(4), & VAREL(ANTST,4) DOUBLE PRECISION RES(52), MDOT(5), P(5), H(5), Q, PAR(3), & X_J(MAXME,ANTST),ZA(10) CHARACTER*80 KOMTY,ZANAM(10) C C Local variables C INTEGER K_MED(6),I DOUBLE PRECISION V, S, U,M_BL1,M_BL2, T1, T2, T3, T4, T5, X, : NIN,NOUT,NSTIN,NSTOUT,NCOND,PSTOUT,X0,HD,XSTOUT,H2, : X1,HPH,TPH,HSAT0,TPL,TPL1,TPH1,DTP,E1,E2,XST,HPHST,Ntotal,N $ ,PST,NCONDST,HST,HX(ANTST),Htotal,H_water,H_water2,H1,P3 CHARACTER*100 K_PAR(3),K_STAT(1) CHARACTER*500 K_LIG(50), K_BET CHARACTER*1000 KOMDSC, K_INP CHARACTER*100 KMEDDS(6) logical EVAP EXTERNAL STATES INCLUDE ’THERPROP.INI’ C======================================================================= GOTO (100,200,1,400,400,200,1) FKOMP 1 RETURN C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− C Component name C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 100 CONTINUE KOMTY = ’GASCOOL2’ GOTO 9999 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− C Component characteristics C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 200 CONTINUE KOMTY = ’GASCOOL2’ ANTKN = 5 ANTPK = 3 ANTLK = 47 ANTEX = 5 ANTM1 = 3 ANTM2 = 2 MEDIE(1) = ANYGAS$ MEDIE(2) = ANYGAS$ MEDIE(3) = 97 MEDIE(4) = ANYFLU$ MEDIE(5) = ANYFLU$ ANTME = 4 VARME(1) = NODE1$ VARME(2) = NODE2$ VARME(3) = NODE4$ VARME(4) = NODE4$ ANTEL(1) = 0 ANTEL(2) = ANTST ANTEL(3) = 0 ANTEL(4) = 0 DO I=1,ANTST VAREL(I,2) = I ENDDO ZANAM(1) = ’T−diff boil’ ZANAM(2) = ’T−boil’ ZANAM(3) = ’T−diff cond’ ZANAM(4) = ’T−cond’ ZANAM(5) = ’Trans. heat’ C IF (FKOMP.EQ.6) GOTO 600 20/67 19−03−2007

<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C Subroutines : STATES<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmegaard 2000<br />

CP Dept. of Energy Eng., DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN, MEDIE(6), ANTPK, ANTEX,<br />

& ANTM1, ANTM2, ANTME, VARME(4), ANTEL(4),<br />

& VAREL(ANTST,4)<br />

DOUBLE PRECISION RES(52), MDOT(5), P(5), H(5), Q, PAR(3),<br />

& X_J(MAXME,ANTST),ZA(10)<br />

CHARACTER*80 KOMTY,ZANAM(10)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(6),I<br />

DOUBLE PRECISION V, S, U,M_BL1,M_BL2, T1, T2, T3, T4, T5, X,<br />

: NIN,NOUT,NSTIN,NSTOUT,NCOND,PSTOUT,X0,HD,XSTOUT,H2,<br />

: X1,HPH,TPH,HSAT0,TPL,TPL1,TPH1,DTP,E1,E2,XST,HPHST,Ntotal,N<br />

$ ,PST,NCONDST,HST,HX(ANTST),Htotal,H_water,H_water2,H1,P3<br />

CHARACTER*100 K_PAR(3),K_STAT(1)<br />

CHARACTER*500 K_LIG(50), K_BET<br />

CHARACTER*1000 KOMDSC, K_INP<br />

CHARACTER*100 KMEDDS(6)<br />

l<strong>og</strong>ical EVAP<br />

EXTERNAL STATES<br />

INCLUDE ’THERPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200,1) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’GASCOOL2’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’GASCOOL2’<br />

ANTKN = 5<br />

ANTPK = 3<br />

ANTLK = 47<br />

ANTEX = 5<br />

ANTM1 = 3<br />

ANTM2 = 2<br />

MEDIE(1) = ANYGAS$<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = 97<br />

MEDIE(4) = ANYFLU$<br />

MEDIE(5) = ANYFLU$<br />

ANTME = 4<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE2$<br />

VARME(3) = NODE4$<br />

VARME(4) = NODE4$<br />

ANTEL(1) = 0<br />

ANTEL(2) = ANTST<br />

ANTEL(3) = 0<br />

ANTEL(4) = 0<br />

DO I=1,ANTST<br />

VAREL(I,2) = I<br />

ENDDO<br />

ZANAM(1) = ’T−diff boil’<br />

ZANAM(2) = ’T−boil’<br />

ZANAM(3) = ’T−diff cond’<br />

ZANAM(4) = ’T−cond’<br />

ZANAM(5) = ’Trans. heat’<br />

C<br />

IF (FKOMP.EQ.6) GOTO 600<br />

20/67<br />

19−03−2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!