27.07.2013 Views

Design og modellering af metanolanlæg til VEnzin-visionen Bilag

Design og modellering af metanolanlæg til VEnzin-visionen Bilag

Design og modellering af metanolanlæg til VEnzin-visionen Bilag

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Design</strong> <strong>og</strong> <strong>modellering</strong><br />

<strong>af</strong> <strong>metanolanlæg</strong> <strong>til</strong><br />

<strong>VEnzin</strong>-<strong>visionen</strong><br />

Lasse Røngaard Clausen<br />

Polyteknisk Eksamensprojekt<br />

MEK-ET-EP-2007-04<br />

Marts 2007<br />

Danmarks<br />

Tekniske<br />

Universitet<br />

Institut for<br />

Mekanik,<br />

Energi <strong>og</strong><br />

Konstruktion<br />

MEK<br />

Energiteknik


1 Abstract<br />

In connection with DONG Energy’s REtrol vision 1 a methanol plant is designed to<br />

obtain optimal energy efficiency and economy.<br />

A key element in the design is the usage of sustainable energy sources for the<br />

methanol production.<br />

6 different plant configurations, each with its own syngas production method, are<br />

compared and it is concluded that the highest methanol exergy efficiency of 74 % is<br />

achieved for the plant which uses bi<strong>og</strong>as as the primary exergy source for syngas<br />

production.<br />

The plant that only uses electricity as exergy source is the only plant with a significant<br />

lower methanol exergy efficiency of 67 %.<br />

By using the waste heat from the methanol plant for district heating the energy<br />

efficiency is increased considerably and the methanol cost is lowered.<br />

The lowest methanol cost of 95 kr/GJex is achieved for the plant which uses<br />

gasification of biomass and CO2 sequestration for syngas production.<br />

The methanol cost achieved for a number of the plant configurations can therefore<br />

compete with the commercial methanol price (142 kr/GJex) and the petrol price inc.<br />

duties (187 kr/GJex).<br />

It is also shown that a duty cut on the electricity price would result in a significant<br />

reduction in methanol cost, since 39-84 % of the total costs for the 6 plant<br />

configurations are for electricity.<br />

Additionally it is concluded that it is economically feasible to use underground gas<br />

storage for hydr<strong>og</strong>en and oxygen in a buffer system in connection with an electrolysis<br />

plant integrated in a methanol plant.<br />

The costs are reduced by operating the electrolysis plant only when the electricity<br />

price is low while the rest of the methanol plant is in constant operation.<br />

Simulations based on the electricity prices from DK-WEST in the period 2000-2006<br />

and a rate of interest of 5 % show the largest cost reductions at 5000 operation hours<br />

per year for the electrolysis plant.<br />

The cost reductions are up to 10.5 % and 6.1 % in average at 5000 operation hours.<br />

These cost reductions are close to the theoretical maximum for the used electricity<br />

prices. The maximum cost reductions are in theory up to 11.5 % and 7.7 % in average<br />

at 5000 operation hours.<br />

The greatest cost reductions are achieved when the calculations are based on the<br />

electricity prices with the largest standard deviation.<br />

Finally it is concluded that suitable locations for underground gas storage of hydr<strong>og</strong>en<br />

and oxygen are available in Denmark.<br />

1 Originally developed by the Danish power company Elsam.<br />

2


2 Resumé<br />

I forbindelse med DONG Energy’s <strong>VEnzin</strong>-vision 2 er et <strong>metanolanlæg</strong> designet ud fra<br />

optimal energiudnyttelse <strong>og</strong> økonomi.<br />

I designet indgår anvendelsen <strong>af</strong> vedvarende energikilder <strong>til</strong> metanolproduktionen,<br />

som et centralt element.<br />

6 forskellige anlægskonfigurationer, med hver sin syngasproduktionsmetode,<br />

sammenlignes, <strong>og</strong> det konkluderes, at den højeste metanolexergivirkningsgrad på 74<br />

% opnås for et anlæg, som benytter bi<strong>og</strong>as, som den primære exergikilde <strong>til</strong><br />

produktion <strong>af</strong> syntesegassen. Anlægget, der udelukkende benytter el som exergikilde,<br />

er det eneste med en signifikant lavere metanolexergivirkningsgrad på 67 %.<br />

Ved at udnytte spildvarmen fra <strong>metanolanlæg</strong>get <strong>til</strong> fjernvarmeproduktion øges<br />

energiudnyttelsen betydeligt, samtidig med at metanolomkostningerne reduceres.<br />

Den laveste specifikke metanolomkostning på 95 kr/GJex opnås for anlægget, som<br />

benytter forgasning <strong>af</strong> biomasse, med efterfølgende udvaskning <strong>af</strong> CO2 fra<br />

forgasningsgassen, <strong>til</strong> syntesegasproduktion.<br />

Den specifikke metanolomkostning for en række <strong>af</strong> anlægskonfigurationerne kan<br />

derfor konkurrer med den kommercielle metanolpris (142 kr/GJex) <strong>og</strong> benzinprisen<br />

inkl. <strong>af</strong>gifter (187 kr/GJex).<br />

Det vises desuden, at en <strong>af</strong>giftslettelse på elektriciteten vil betyde en markant<br />

reduktion <strong>af</strong> metanolomkostningen, idet 39-84 % <strong>af</strong> de samlede omkostninger for de 6<br />

anlægskonfigurationer er <strong>til</strong> elektricitet.<br />

Herudover bliver det fastslået, at det er økonomisk fordelagtigt at benytte<br />

underjordiske gaslagre <strong>til</strong> brint <strong>og</strong> ilt i et buffersystem i forbindelse med et<br />

elektrolyseanlæg, som er en del <strong>af</strong> et <strong>metanolanlæg</strong>.<br />

Omkostningerne bliver reduceret ved kun at have elektrolyseanlægget i drift, når elprisen<br />

er lav, mens det resterende <strong>metanolanlæg</strong> er i drift året rundt.<br />

Ud fra simuleringer baseret på el-priserne for DK-VEST for 2000-2006 <strong>og</strong> en<br />

kalkulationsrente på 5 % bliver de største besparelser opnået ved ca. 5000 driftstimer<br />

per år for elektrolyseanlægget. Besparelserne er op <strong>til</strong> 10,5 % <strong>og</strong> i gennemsnit 6,1 %<br />

ved 5000 driftstimer.<br />

Disse besparelser er tæt på det teoretisk maksimale for de benyttede el-priser. De<br />

teoretisk maksimale besparelser er op <strong>til</strong> 11,5 % <strong>og</strong> i gennemsnit 7,7 % ved 5000<br />

driftstimer.<br />

De største besparelser bliver opnået når beregningerne baseres på de el-priser, som har<br />

den største spredning.<br />

Endeligt bliver det konkluderet, at der er egnede lokationer for underjordiske gaslagre<br />

<strong>til</strong> brint <strong>og</strong> ilt i Danmark.<br />

2 Visionen blev oprindeligt udviklet <strong>af</strong> Elsam<br />

3


3 Forord<br />

I forbindelse med arbejdet på dette projekt, er der en række personer som jeg gerne vil<br />

takke:<br />

• Mine vejledere for god vejledning <strong>og</strong> sparring gennem projektforløbet. Specielt<br />

Brian Elmegaard for assistance med pr<strong>og</strong>rammeringen <strong>til</strong> simuleringsværktøjet<br />

DNA.<br />

• Martin Møller, DONG Energy for gode råd i forbindelse med opbygningen <strong>af</strong><br />

simuleringsmodellen <strong>af</strong> <strong>metanolanlæg</strong>get.<br />

• Afdelingsleder Tommy Mølbak, <strong>af</strong>deling for Modellering <strong>og</strong> Optimering, DONG<br />

Energy for projektidéer ved opstart <strong>af</strong> projektet.<br />

Hovedvejler:<br />

• Docent Niels Houbak, MEK, DTU.<br />

Medvejledere:<br />

• Lektor Brian Elmegaard, MEK, DTU.<br />

• Civilingeniør Torkild Christensen, <strong>af</strong>deling for Modellering <strong>og</strong> Optimering,<br />

DONG Energy.<br />

4


4 Indholdsfortegnelse<br />

1 Abstract.......................................................................2<br />

2 Resumé .......................................................................3<br />

3 Forord .........................................................................4<br />

4 Indholdsfortegnelse ....................................................5<br />

5 Indledning...................................................................7<br />

6 Problemformulering....................................................8<br />

7 <strong>Design</strong> <strong>og</strong> statisk <strong>modellering</strong> <strong>af</strong> <strong>metanolanlæg</strong>.........9<br />

7.1 Modelbeskrivelse ........................................................................10<br />

7.1.1 Kort modelbeskrivelse .........................................................................10<br />

7.1.2 Begrundelse for modeldesign ..............................................................10<br />

7.1.3 Simuleringsværktøjet DNA .................................................................12<br />

7.1.3.1 Tilføjelser <strong>til</strong> DNA...........................................................................12<br />

7.1.4 Komponentbeskrivelser .......................................................................14<br />

7.1.5 Antagelser i modellen ..........................................................................19<br />

7.1.6 Fastsættelse <strong>af</strong> parametre <strong>og</strong> brændselssammensætninger anvendt i<br />

modellen 20<br />

7.2 Anlægskonfigurationer................................................................23<br />

7.3 Økonomi......................................................................................25<br />

7.3.1 Komponentomkostninger.....................................................................25<br />

7.3.2 Brændsel/input-omkostninger..............................................................26<br />

7.4 Termoøkonomisk analyse ...........................................................29<br />

7.4.1 Teori.....................................................................................................29<br />

7.4.2 Resultater .............................................................................................32<br />

7.5 Resultater.....................................................................................34<br />

7.5.1 Anlægskonfigurationer ........................................................................34<br />

7.5.1.1 Økonomi ..........................................................................................38<br />

7.5.2 Parametervariation ...............................................................................45<br />

7.5.2.1 Metanolreaktortrykket......................................................................45<br />

7.5.2.2 Brint/kulstof-forholdet i syngassen..................................................52<br />

7.5.2.3 Forgassertrykket...............................................................................57<br />

7.5.2.4 Afkølingstemperaturen for den metanolholdige gas........................59<br />

7.6 Diskussion...................................................................................61<br />

7.6.1 Forbedring <strong>af</strong> anlægsdesign .................................................................62<br />

7.6.2 Alternative anlægsdesign.....................................................................63<br />

7.6.3 Integration med andre anlæg................................................................63<br />

8 Benyttelse <strong>af</strong> underjordiske gaslagre <strong>til</strong> brint <strong>og</strong> ilt i et<br />

<strong>metanolanlæg</strong> .................................................................65<br />

8.1 Underjordiske brintlagre .............................................................66<br />

8.2 Scenarier......................................................................................67<br />

8.2.1 Scenarie 1: Det teoretisk optimale scenarie .........................................71<br />

8.2.2 Scenarie 2: Det i praksis opnåelige scenarie........................................76<br />

5


8.3 Resultater.....................................................................................82<br />

8.3.1 Scenarie 1: Det teoretisk optimale scenarie .........................................82<br />

8.3.2 Scenarie 2: Det i praksis opnåelige scenarie........................................89<br />

8.4 Diskussion...................................................................................95<br />

9 Konklusion................................................................99<br />

10 Litteraturliste........................................................100<br />

11 Nomenklaturliste..................................................103<br />

6


5 Indledning<br />

Baggrunden for dette projekt, om design <strong>af</strong> et <strong>metanolanlæg</strong>, er DONG Energy’s<br />

<strong>VEnzin</strong>-vision 3 . En vision som omhandler produktion <strong>af</strong> brændsler <strong>til</strong><br />

transportsektoren, som metanol <strong>og</strong> etanol, i synergi med et kr<strong>af</strong>tværk.<br />

Denne produktion <strong>af</strong> brændsler <strong>til</strong> transportsektoren tænkes primært baseret på<br />

vedvarende energikilder, som biomasse - fx i form <strong>af</strong> halm - <strong>og</strong> elektricitet - fx fra<br />

vindmøller.<br />

I denne rapport er det undersøgt, hvorledes et anlæg <strong>til</strong> produktion <strong>af</strong> metanol, som<br />

kan indgå i denne vision, kan designes.<br />

Rapporten er opdelt i 2 dele:<br />

Den første del omhandler designet <strong>af</strong> det samlede <strong>metanolanlæg</strong>, mens den anden del,<br />

omhandler benyttelsen <strong>af</strong> gaslagre i forbindelse med elektrolyseanlægget, som er en<br />

del <strong>af</strong> <strong>metanolanlæg</strong>get.<br />

I problemformuleringen på næste side defineres projektet mere præcist.<br />

3 Visionen blev oprindeligt udviklet <strong>af</strong> Elsam<br />

7


6 Problemformulering<br />

Et <strong>metanolanlæg</strong> optimeret ud fra optimal energiudnyttelse <strong>og</strong> økonomi ønskes<br />

designet.<br />

Anvendelse <strong>af</strong> vedvarende energikilder <strong>til</strong> metanolproduktionen er desuden et centralt<br />

element i anlægsdesignet.<br />

Metanolanlægget designes vha. en statisk model <strong>af</strong> anlægget opbygget i et<br />

simuleringspr<strong>og</strong>ram.<br />

Ligeledes ønskes det undersøgt, hvorvidt det er økonomisk fordelagtigt at benytte<br />

underjordiske gaslagre <strong>til</strong> brint <strong>og</strong> ilt i forbindelse med et elektrolyseanlæg, som<br />

anvendes i et <strong>metanolanlæg</strong>.<br />

Gaslagrene tænkes benyttet i et buffersystem, således at elektrolyseanlægget<br />

producerer brint <strong>og</strong> ilt <strong>til</strong> lagrene, samtidig med at der er et forbrug <strong>af</strong> brint <strong>og</strong> ilt fra<br />

lagrene <strong>til</strong> metanolproduktion. På denne måde kan driften <strong>af</strong> elektrolyseanlægget<br />

<strong>af</strong>kobles fra det øvrige <strong>metanolanlæg</strong>.<br />

Det undersøges, om omkostningerne kan nedsættes, ved kun at have<br />

elektrolyseanlægget i drift når el-prisen er lav, mens det resterende <strong>metanolanlæg</strong><br />

opererer med et maksimum <strong>af</strong> driftstimer.<br />

8


7 <strong>Design</strong> <strong>og</strong> statisk <strong>modellering</strong> <strong>af</strong><br />

<strong>metanolanlæg</strong><br />

I denne del <strong>af</strong> rapporten er et <strong>metanolanlæg</strong> designet <strong>og</strong> optimeret ud fra optimal<br />

energiudnyttelse <strong>og</strong> økonomi.<br />

Metanolanlægget er designet vha. en statisk model <strong>af</strong> anlægget opbygget i et<br />

simuleringspr<strong>og</strong>ram.<br />

I første kapitel præsenteres modellen <strong>af</strong> <strong>metanolanlæg</strong>get, <strong>og</strong> begrundelserne for<br />

designet beskrives.<br />

Dernæst beskrives hvilke anlægskonfigurationer, som vil blive undersøgt <strong>og</strong> hvorfor<br />

de er relevante.<br />

I det 3. kapitel undersøges investeringsomkostningerne samt omkostningerne<br />

forbundet med drift <strong>og</strong> vedligehold <strong>af</strong> <strong>metanolanlæg</strong>get.<br />

Herefter udføres en termoøkonomisk analyse <strong>af</strong> <strong>metanolanlæg</strong>get, for at opnå en mere<br />

detaljeret forståelse <strong>af</strong> anlægget.<br />

Endelig præsenteres resultaterne for de forskellige anlægskonfigurationer <strong>og</strong> for<br />

parametervariationen for den optimale anlægskonfiguration.<br />

I det sidste kapitel diskuteres resultaterne.<br />

9


7.1 Modelbeskrivelse<br />

Figur 7.1. Flowsheet for <strong>metanolanlæg</strong>get. Se bilag 20 for en udgave i A3.<br />

Elektrolysedel<br />

Forgasserdel<br />

Dampreformeringsdel <br />

Metanolkonverterings-<br />

<strong>og</strong><br />

des<strong>til</strong>lationsdel<br />

7.1.1 Kort modelbeskrivelse<br />

Modellen <strong>af</strong> <strong>metanolanlæg</strong>get på Figur 7.1 er opbygget <strong>af</strong> en elektrolysedel, der<br />

producerer ilt <strong>til</strong> en forgasserdel <strong>og</strong> en dampreformeringsdel. Elektrolysedelen<br />

producerer udover ilt <strong>og</strong>så brint vha. elektrolyse <strong>af</strong> vand. Brinten blandes sammen<br />

med forgasningsgassen fra forgasserdelen, reformergassen fra dampreformeringen <strong>og</strong><br />

evt. CO2 <strong>til</strong> en syntese gas (syngas).<br />

Syngassen benyttes i en metanolkonverter <strong>til</strong> produktion <strong>af</strong> metanol. Denne metanol<br />

des<strong>til</strong>leres herefter <strong>til</strong> den ønskede renhed.<br />

7.1.2 Begrundelse for modeldesign<br />

<strong>Design</strong>et <strong>af</strong> <strong>metanolanlæg</strong>get er inspireret <strong>af</strong> Dong Energy’s flowsheet’s for et<br />

<strong>metanolanlæg</strong> (se et i bilag 18), samt modellen fra kurset Thermoeconomics (bilag 19)<br />

[Clausen et al., 2005], som blev udviklet sammen med 4 andre studerende fra DTU.<br />

Modellen vist på Figur 7.1 er standardmodellen. Der udføres en række simuleringer<br />

hvor dele <strong>af</strong> standardmodellen ikke benyttes.<br />

Grunden <strong>til</strong>, at modellen er opbygget <strong>af</strong> både en forgasserdel, en dampreformeringsdel<br />

<strong>og</strong> en CO2-<strong>til</strong>førsel, er for at sikre fleksibiliteten for anlægget,<br />

samtidig med at komponenterne <strong>til</strong>sammen kan producere en velegnet syngas <strong>til</strong><br />

metanolproduktion, uden overskud <strong>af</strong> ilt fra elektrolyseanlægget.<br />

Nedenfor er der kort argumenteret for hvorfor n<strong>og</strong>le <strong>af</strong> hovedkomponenterne er<br />

medtaget i modellen, samt andre forhold vedrørende modeldesignet<br />

Elektrolyseanlægget<br />

Elektrolyseanlægget benyttes pga. både brint <strong>og</strong> ilt med fordel kan benyttes <strong>til</strong><br />

metanolproduktion. Ilt benyttes <strong>til</strong> forgasning i stedet for atmosfærisk luft, for at<br />

undgå store mængder <strong>af</strong> inerte komponenter i forgasningsgassen, hvilket ikke er<br />

fordelagtigt ved konverteringen <strong>til</strong> metanol i metanolreaktoren. Med samme<br />

begrundelse er det <strong>og</strong>så fordelagtigt at benytte ilt <strong>til</strong> dampreformeringen.<br />

10


Brint er specielt fordelagtig <strong>til</strong> metanolproduktion hvis forgasningsgas samtidig<br />

benyttes <strong>til</strong> syngasproduktionen, da brint/kulstof-forholdet i forgasningsgas er for lavt<br />

<strong>til</strong> metanolproduktion (specielt ved recirkulation <strong>af</strong> uomsat syngas <strong>til</strong> metanolreaktor).<br />

I stedet for at benytte vand-elektrolyse <strong>til</strong> iltproduktionen kunne en luftseparator<br />

benyttes. Hvis ilten benyttes i en forgasser, vil den manglende brint fra<br />

elektrolyseanlægget d<strong>og</strong> medføre, at syngassen vil have et uhensigtsmæssigt lavt<br />

brint/kulstof-forhold. Ved at føre forgasningsgassen gennem en CO2-vasker kan<br />

brint/kulstof-forholdet d<strong>og</strong> hæves – det medfører <strong>til</strong> gengæld en dårligere udnyttelse<br />

<strong>af</strong> biomassen. Endelig er en luftseparator <strong>og</strong>så forbundet med et stort energiforbrug,<br />

selvom det er mindre end energiforbruget <strong>til</strong> elektrolyseanlægget.<br />

Hvis elektriciteten, som benyttes <strong>af</strong> elektrolyseanlægget, er produceret ud fra<br />

vedvarende energikilder, kan VE-metanol produceres. I denne situation kan<br />

elektrolyseanlægget <strong>og</strong>så benyttes som en <strong>af</strong>tager <strong>af</strong> overskuds-elektricitet – dvs.<br />

<strong>af</strong>tage el når el-prisen er lav pga. en stor el-produktion fra de vedvarende energikilder.<br />

Brinten produceret i et sådan <strong>til</strong>fælde vil <strong>og</strong>så direkte kunne benyttes <strong>til</strong><br />

metanolproduktion ved at iblande CO2 – fx indsamlet fra røggas.<br />

Forgasser<br />

Forgasseren er medtaget for at kunne benytte et billigere brændsel end elektricitet <strong>til</strong><br />

metanolproduktion, samtidig med at biomasse kan benyttes i forgasseren, <strong>og</strong> dermed<br />

sikre at metanolen produceres ud fra en vedvarende energikilde. Hvis forgasseren<br />

både kan operere på kul <strong>og</strong> biomasse vil det sikre en større brændselsfleksibilitet for<br />

anlægget.<br />

Metanol primært produceret på kul i Danmark vil muligvis ikke være<br />

konkurrencedygtig på prisen - <strong>og</strong> samtidig vil den producerede metanol ikke være<br />

baseret på vedvarende energikilder, hvilket kunne kompensere for den evt. højere pris<br />

end kommercielt metanol.<br />

Dampreformer<br />

Dampreformeren er medtaget i modellen fordi dampreformering <strong>af</strong> naturgas er den<br />

traditionelle metode <strong>til</strong> syngasproduktion i forbindelse med metanolproduktion. Det<br />

giver samtidig en brændselsfleksibilitet for anlægget. Endelig vil en sådan reformer<br />

<strong>og</strong>så kunne benyttes <strong>til</strong> bi<strong>og</strong>as, hvilket vil sikre at den producerede metanol<br />

udelukkende er baseret på vedvarende energikilder.<br />

I Danmark vil en metanolproduktion primært baseret på naturgas være<br />

ukonkurrencedygtig, da naturgas i Danmark er væsentlig dyrere end den naturgas<br />

kommerciel metanol bliver produceret på. Ofte foregår denne metanolproduktion ud<br />

fra naturgas, som tidligere har været anset for et spildprodukt i forbindelse med<br />

olieudvinding.<br />

Udnyttelse <strong>af</strong> spildvarmen fra kompressormellemkølingen<br />

Spildvarmen fra mellemkølingen <strong>af</strong> kompressorerne benyttes primært <strong>til</strong> tørring <strong>af</strong><br />

biomassen <strong>til</strong> forgasseren <strong>og</strong> sekundært <strong>til</strong> fjernvarmeproduktion. Dette gøres for at<br />

hæve anlæggets samlede energiudnyttelse. Omkostningen ved dette er et større<br />

kompressionsarbejde, idet syngassen ikke kan <strong>af</strong>køles <strong>til</strong> mere end ca. 130°C (ca. 33<br />

% større i forhold <strong>til</strong> <strong>af</strong>køling <strong>til</strong> 30°C).<br />

11


Udnyttelse <strong>af</strong> varme fra metanolkonverteringen <strong>og</strong> des<strong>til</strong>lationen<br />

Varmen udvundet fra metanolkonverteringskredsen benyttes <strong>til</strong> des<strong>til</strong>lationen, tørring<br />

<strong>af</strong> biomasse <strong>og</strong> <strong>til</strong> fjernvarmeproduktion.<br />

Varmen udvundet ved den <strong>af</strong>sluttende <strong>af</strong>køling <strong>af</strong> den metanolholdige gas i<br />

metanolkonverteringskredsen benyttes <strong>til</strong> fjernvarmeproduktion, hvilket betyder en<br />

lidt højere <strong>af</strong>kølingstemperatur for den metanolholdige gas, men ud fra <strong>af</strong>snit 7.5.2.4<br />

ses det, at det har meget begrænset betydning.<br />

Spildvarmen fra des<strong>til</strong>lationen <strong>af</strong> metanol/vand-blandingen udnyttes ligeledes <strong>til</strong><br />

fjernvarmeproduktion ved at tryksætte des<strong>til</strong>lationsprocessen (ca. 3,5 bar).<br />

Dette medfører at varmen, som benyttes <strong>til</strong> des<strong>til</strong>lationen skal være <strong>af</strong> en lidt højere<br />

kvalitet (forefindes ved højere temperatur). Hvis metanolkoncentrationen efter<br />

des<strong>til</strong>lationen er <strong>til</strong>strækkelig høj, er det imidlertid ikke n<strong>og</strong>et problem (se diskussion<br />

om dette i kapitel 7.6).<br />

7.1.3 Simuleringsværktøjet DNA<br />

Modellen <strong>af</strong> <strong>metanolanlæg</strong>get er opbygget i simuleringspr<strong>og</strong>rammet DNA (Dynamic<br />

Network Analysis). DNA er et komponentbaseret simuleringsværktøj, som er udviklet<br />

på MEK-DTU. Pr<strong>og</strong>rammet sørger for at energi- <strong>og</strong> masse-balancerne er overholdt <strong>og</strong><br />

har indbygget data for en række medier – både idealgasser <strong>og</strong> fluider.<br />

Endelig er data for standardexergier <strong>og</strong>så inkorporeret, hvorfor alle massestrømme i<br />

DNA-modellen får udregnet en <strong>til</strong>hørende kemisk exergistrøm. De fysiske<br />

exergistrømme bliver <strong>og</strong>så udregnet 4 .<br />

Pr<strong>og</strong>rammet er skrevet i Fortran <strong>og</strong> komponenterne i DNA er ligeledes skrevet i<br />

Fortran.<br />

7.1.3.1 Tilføjelser <strong>til</strong> DNA<br />

I forbindelse med udviklingen <strong>af</strong> modellen for <strong>metanolanlæg</strong>get, har det været<br />

nødvendigt med en række <strong>til</strong>føjelser. Det gælder <strong>til</strong>føjelse <strong>af</strong> metanol <strong>til</strong> DNA – både<br />

som fluid <strong>og</strong> som idealgas – <strong>og</strong> <strong>til</strong>føjelse <strong>af</strong> en række komponenter.<br />

7.1.3.1.1 Metanol som fluid<br />

Metanol er <strong>til</strong>føjet DNA ud fra data fra [Reuck, 1993]. Denne kilde indeholder<br />

ligninger for tryk, enthalpi, entropi <strong>og</strong> indre energi som funktion <strong>af</strong> temperaturen <strong>og</strong><br />

specifik volumen. Disse ligninger er inkorporeret i en Fortran-rutine (bilag 35) <strong>til</strong><br />

DNA, hvilket medfører at hvis ligevægts<strong>til</strong>standen for metanol skal bestemmes ud fra<br />

andre parametre end temperatur <strong>og</strong> specifik volumen er iteration nødvendig.<br />

Idet Fortran-rutinen er opbygget med generelle funktioner, kan den nemt benyttes <strong>til</strong><br />

andre fluider, som <strong>og</strong>så er beskrevet med ligninger, hvor temperaturen <strong>og</strong> specifik<br />

volumen er benyttet som variable. Det kræver kun udskiftning <strong>af</strong> ligningerne for de<br />

termodynamiske parametre (tryk, enthalpi, entropi <strong>og</strong> indre energi). IUPAC, som står<br />

bag [Reuck, 1993] har blandt andet <strong>og</strong>så lavet lignende bøger om N2 <strong>og</strong> CO2.<br />

7.1.3.1.2 Metanol som idealgas<br />

Metanol som idealgas er <strong>til</strong>føjet DNA ud fra data fra [Reid, 1987] <strong>og</strong> [Reuck, 1993].<br />

[Reid, 1987] indeholder standardenthalpien for metanol samt et polynomium for cp<br />

som funktion <strong>af</strong> temperaturen:<br />

Θ<br />

h = −201,<br />

3 kJ<br />

m<br />

mol<br />

4 I modellen defineres nulpunktet for den fysiske exergi ved 1 bar <strong>og</strong> 15°C.<br />

12


Ligning 7.1: Den specifikke varmekapacitet for konstant tryk for metanol<br />

= c + c ⋅T<br />

+ c<br />

2<br />

⋅T<br />

+ c<br />

3<br />

⋅T<br />

c p<br />

0<br />

= 21 , 15 + 7,<br />

092 ⋅10<br />

1<br />

2<br />

3<br />

⋅T<br />

+ 2,<br />

587 ⋅10<br />

⋅T<br />

− 2,<br />

852 ⋅10<br />

⋅T<br />

−2 −5<br />

2<br />

−8<br />

3<br />

[Reuck, 1993] indeholder værdien for standardentropien:<br />

Θ<br />

s = 239,<br />

81 J<br />

K⋅mol<br />

m<br />

J<br />

K ⋅ mol<br />

DNA indeholder en rutine, som kun behøver de ovenstående data for at udregne alle<br />

de termodynamiske parametre.<br />

7.1.3.1.3 Komponenter<br />

Følgende komponenter er udarbejdet <strong>til</strong> DNA <strong>og</strong> benyttet i modellen. Se beskrivelse<br />

<strong>af</strong> de relevante komponenter i <strong>af</strong>snit 7.1.4 <strong>og</strong> dokumentation for alle komponenterne<br />

<strong>til</strong> DNA-brugere i bilag 33. Fortran-koden for komponenterne kan ses i bilag 34. En<br />

del <strong>af</strong> de <strong>til</strong>føjede komponenter er modificeringer <strong>af</strong> allerede eksisterende<br />

komponenter i DNA.<br />

13


Navn / beskrivelse DNA-navn<br />

Elektrolyseanlæg ELECTROLYSER<br />

Damptørrer DRYER_04<br />

Gasrenser GASCLE_2<br />

Dampreformer STEAM_REFORMER<br />

Gaskøler med udkondensering <strong>af</strong> vand GASCOOL2<br />

Metanolreaktor MEOH_CONVERTER<br />

Gaskøler med udkondensering <strong>af</strong> vand <strong>og</strong> metanol GASCOOL4<br />

Blandetank MIXING_TANK<br />

Des<strong>til</strong>lationskolonne (des<strong>til</strong>lationstrin) DISTILLATION_STAGE<br />

El-motor EL_MOTOR<br />

Massestrømsdeler med variabelt antal opdelinger SPLITTER2<br />

Massestrømsdeler med fast opdelingsforhold SPLITTER3<br />

Idealgasblander med variabelt antal inputstrømme MIXER_03<br />

Trykseparator PRES_SEP<br />

Komponent, der sætter molbrøken <strong>af</strong> en komponent i en<br />

idealgasblanding<br />

SET_X<br />

Komponent, der sætter molbrøken <strong>af</strong> en komponent i en SET_X_REALFLUID<br />

2-komponent fluid-blanding<br />

Massestrømsmåler MEASURE_FLOW<br />

Massestrømsinds<strong>til</strong>ler SET_FLOW<br />

Temperaturinds<strong>til</strong>ler SET_TEMP<br />

Tabel 7.1. Tilføjede komponenter <strong>til</strong> DNA.<br />

7.1.4 Komponentbeskrivelser<br />

Nedenfor er alle de komponenter som benyttes i modellen <strong>af</strong> <strong>metanolanlæg</strong>get<br />

beskrevet.<br />

Elektrolyseanlæg<br />

Elektrolyseanlægget producerer ilt <strong>og</strong> brint ved at spalte vand vha. elektricitet.<br />

Anlægget er karakteriseret ved en virkningsgrad, som er defineret på følgende måde:<br />

Ligning 7.2: Elektrolysevirkningsgraden<br />

m H LHV<br />

2 H2<br />

P<br />

⋅ &<br />

η =<br />

el<br />

Hvor m& H er massestrømmen <strong>af</strong> brint,<br />

2<br />

er den elektriske effekt.<br />

LHV H er den nedre brændværdi <strong>af</strong> brint (massebasis) <strong>og</strong> Pel<br />

2<br />

Anlægget kan benyttes <strong>til</strong> både høj- <strong>og</strong> lav-temperaturelektrolyse samt tryksat<br />

elektrolyse.<br />

DNA-navn: ELECTROLYSER<br />

Damptørrer<br />

Damptørreren benytter vanddamp <strong>til</strong> tørring <strong>af</strong> biomasse. Produkterne fra<br />

komponenten er tørret biomasse <strong>og</strong> <strong>af</strong>kølet damp. Det fordampede vand fra biomassen<br />

blandes med den <strong>til</strong>førte damp.<br />

I denne komponent er temperaturen <strong>af</strong> den tørrede biomasse sat lig temperaturen <strong>af</strong><br />

den <strong>af</strong>kølede damp – svarende <strong>til</strong> fx en fluid bed tørringsproces.<br />

14


DNA-navn: DRYER_04<br />

Forgasser<br />

Forgasseren producerer forgasningsgas ud fra et fast brændsel <strong>og</strong> en oxygenholdig gas<br />

(evt. ren oxygen). Der er <strong>og</strong>så mulighed for at <strong>til</strong>føre vand/vanddamp <strong>til</strong> forgasseren.<br />

Forgasseren udregner gassammensætningen <strong>af</strong> forgasningsgassen vha. kemisk<br />

ligevægt (minimering <strong>af</strong> Gibbs-energi) mellem følgende 8 komponenter: hydr<strong>og</strong>en<br />

(H2), kulmonooxid (CO), kuldioxid (CO2), vanddamp (H2O), hydr<strong>og</strong>ensulfid (H2S),<br />

metan (CH4), nitr<strong>og</strong>en (N2) <strong>og</strong> argon (Ar).<br />

Forgasningsgas vil typisk <strong>og</strong>så indeholde klor (Cl), ammoniak (NH3), tjære <strong>og</strong><br />

partikler. Idet gasrensningen i modellen kun er udført ved at fjerne de uønskede<br />

komponenter fra forgasningsgassen uden effektforbrug eller tryktab, har det meget<br />

lille betydning, at ikke alle de omtalte komponenter forefindes i den udregnede<br />

forgasningsgas. Den eneste omkostning ved gasrensningen i modellen er økonomisk.<br />

DNA-navn: GASIFI_3<br />

Gasrenser<br />

Gasrenseren fjerner hydr<strong>og</strong>ensulfiden (H2S) fra forgasningsgassen. Den eneste<br />

omkostning ved gasrensningen er udgiften <strong>til</strong> gasrenseren.<br />

DNA-navn: GASCLE_2<br />

Dampreformer<br />

Denne komponent foretager en autotermisk reformering <strong>af</strong> naturgas eller en anden<br />

kulbrintegas. Det betyder at varmen <strong>til</strong> dampreformeringen kommer fra en delvis<br />

oxidation <strong>af</strong> kulbrintegassen. Dermed er der tre input <strong>til</strong> reformeren: en kulbrintegas,<br />

vanddamp <strong>og</strong> en oxygenholdig gas.<br />

Gassammensætningen <strong>af</strong> den reformerede gas udregnes vha. kemisk ligevægt<br />

(minimering <strong>af</strong> Gibbs-energi) mellem følgende 5 komponenter: hydr<strong>og</strong>en (H2),<br />

kulmonooxid (CO), kuldioxid (CO2), vanddamp (H2O) <strong>og</strong> metan (CH4).<br />

DNA-navn: STEAM_REFORMER<br />

Metanolreaktor<br />

Metanolreaktoren konverterer en syngas <strong>til</strong> en metanolholdig gas.<br />

Gassammensætningen <strong>af</strong> den konverterede gas udregnes vha. kemisk ligevægt<br />

(minimering <strong>af</strong> Gibbs-energi) mellem følgende 5 komponenter: hydr<strong>og</strong>en (H2),<br />

kulmonooxid (CO), kuldioxid (CO2), vanddamp (H2O) <strong>og</strong> metanol (CH3OH).<br />

I forbindelse med metanolkonverteringen er faktoren M for syngassen central:<br />

Ligning 7.3: M-faktor for produktion <strong>af</strong> flydende brændsler<br />

n&<br />

H − n&<br />

2 CO2<br />

M =<br />

n&<br />

+ n&<br />

CO2<br />

CO<br />

Hvis M=2 er forholdet mellem molstrømmene i syngassen således at alle 3 gasser (H2,<br />

CO, CO2) i teorien kan omdannes helt <strong>til</strong> metanol <strong>og</strong> vand (jævnfør Ligning 7.4 <strong>og</strong><br />

Ligning 7.5).<br />

Ligning 7.4: Reaktionsligning for metanolproduktion ud fra CO:<br />

CO + 2H 2 → CH 3OH<br />

Ligning 7.5: Reaktionsligning for metanolproduktion ud fra CO2:<br />

15


CO2 + 3 H 2 → CH 3OH<br />

+ H 2O<br />

DNA-navn: MEOH_CONVERTER<br />

Varmevekslere<br />

Standard<br />

Denne gruppe <strong>af</strong> varmevekslere er enten modstrømsvarmevekslere eller simple<br />

komponenter <strong>til</strong> opvarmning (HEATSRC0) eller <strong>af</strong>køling (HEATSNK0) <strong>af</strong> en<br />

massestrøm. Varmeveksleren HEATEX_2 er karakteriseret ved at benytte en ”pinch<br />

point”-temperatur (se Figur 7.3) <strong>og</strong> varmeveksleren HEATEX_4 er karakteriseret ved<br />

at benytte en varmevekslereffektivitet – defineret som den højeste <strong>af</strong> de 2 følgende<br />

udtryk:<br />

T1<br />

− T2<br />

T4<br />

− T3<br />

(er for <strong>af</strong>køling) <strong>og</strong> (er for opvarmning)<br />

T1<br />

− T3<br />

T1<br />

− T3<br />

hvor temperaturerne er angivet på figuren nedenfor<br />

T<br />

T1<br />

T4<br />

Figur 7.2. T-Q-diagram for modstrømsvarmeveksler.<br />

T3<br />

T2<br />

Q<br />

16


T<br />

Fordampning<br />

Pinch points<br />

Figur 7.3. T-Q-diagram for modstrømsvarmeveksler, som er karakteriseret ved en ”pinch point”temperatur.<br />

DNA-navne: HEATSNK0, HEATSRC0, HEATEX_1, HEATEX_2, HEATEX_4<br />

Med udkondensering <strong>af</strong> vand<br />

Denne varmeveksler kan håndtere udkondensering <strong>af</strong> vand fra en gasstrøm.<br />

Udkondenseringen forekommer hvis partialtrykket <strong>af</strong> vanddampen i gassen bliver<br />

højere en damptrykket for vand. Komponenten sætter i denne situation partialtrykket<br />

<strong>af</strong> vanddampen lig damptrykket for vand ved udgangstemperaturen for komponenten.<br />

Komponenten sikrer samtidig at 2. hovedsætning ikke overtrædes ved at undersøge<br />

”pinch point”-temperaturen hvor udkondenseringen starter (se Figur 7.4).<br />

Komponenten kan ligeledes håndtere fordampning <strong>af</strong> det opvarmede medie (se Figur<br />

7.3).<br />

DNA-navn: GASCOOL2<br />

Med udkondensering <strong>af</strong> vand <strong>og</strong> metanol<br />

Denne varmeveksler kan håndtere udkondensering <strong>af</strong> en vand/metanol-blanding fra en<br />

gasstrøm. Udkondenseringen forekommer hvis temperaturen <strong>af</strong> gasstrømmen <strong>af</strong>køles<br />

<strong>til</strong> under den temperatur, hvor en vand/metanol-blanding er i ligevægt med<br />

partialtrykkene for vanddampen <strong>og</strong> metanoldampen i gasstrømmen.<br />

Udkondenseringstemperaturen 5 beregnes ud fra partialtrykkene for vanddamp <strong>og</strong><br />

metanoldamp i gasstrømmen som <strong>til</strong>føres komponenten.<br />

Komponenten sikrer samtidig at 2. hovedsætning ikke overtrædes ved at undersøge<br />

”pinch point”-temperaturen hvor udkondenseringen starter (se Figur 7.4).<br />

Komponenten kan ligeledes håndtere fordampning <strong>af</strong> det opvarmede medie (se Figur<br />

7.3).<br />

5 Metoden <strong>til</strong> udregning <strong>af</strong> denne temperatur er NRTL-metoden (Non Random Two Liquid).<br />

Interaktionskoefficienterne som er benyttet er: ∆g(metanol, vand) = -1062,616 J/mol, ∆g(vand,<br />

metanol) = 3537,611 J/mol <strong>og</strong> α(metanol, vand) = 0,2994 <strong>og</strong> er fra [Gmehling, 1977].<br />

Q<br />

17


DNA-navn: GASCOOL4<br />

T<br />

Medie 1<br />

Medie 2<br />

Start på kondensation <strong>af</strong> gaskomponent(er)<br />

”Pinch points”<br />

Figur 7.4. T-Q-diagram for modstrømsvarmeveksler med udkondensering <strong>af</strong> vand eller en<br />

vand/metanol-blanding.<br />

Kompressor<br />

Denne komponent benyttes <strong>til</strong> komprimering <strong>af</strong> en gasstrøm. Komponenten er<br />

karakteriseret ved en isentropvirkningsgrad (sat <strong>til</strong> 0,9) <strong>og</strong> en mekanisk virkningsgrad<br />

(sat <strong>til</strong> 0,98).<br />

DNA-navn: COMPRE_1<br />

Des<strong>til</strong>lationskolonne<br />

Des<strong>til</strong>lationskolonnen er i denne model opbygget <strong>af</strong> mindre komponenter, såkaldte<br />

des<strong>til</strong>lationstrin. Et des<strong>til</strong>lationstrin simuleres ved en beholder, som får <strong>til</strong>ført 2<br />

massestrømme <strong>af</strong> en vand/metanol-blanding, én i gasfasen <strong>og</strong> én i væskefasen.<br />

Herudover udgår der 2 massestrømme <strong>af</strong> en vand/metanol-blanding fra komponenten,<br />

én i gasfasen <strong>og</strong> én i væskefasen. Disse 2 massestrømme er i ligevægt med hinanden.<br />

Metoden <strong>til</strong> udregning <strong>af</strong> denne ligevægt er den samme, som beskrevet i fodnote 5.<br />

Ved at koble disse des<strong>til</strong>lationstrin i serie opnås en des<strong>til</strong>lation <strong>af</strong> metanol/vandblandingen<br />

(se Figur 7.5).<br />

I modellen benyttes 17 des<strong>til</strong>lationstrin <strong>og</strong> feed-massestrømmen <strong>til</strong>føres i trin 6 (se<br />

bilag 17)<br />

DNA-navn: DISTILLATION_STAGE<br />

Q<br />

18


Massestrøm <strong>af</strong><br />

Metanol/vand-blanding ,<br />

som skal des<strong>til</strong>leres<br />

Figur 7.5. Principskitse for des<strong>til</strong>lationskolonne. På venstre side <strong>af</strong> kolonnen føres en massestrøm <strong>af</strong> en<br />

metanol/vand-blanding på væskefasen fra et trin <strong>til</strong> trinet under. På højre side <strong>af</strong> kolonnen føres en<br />

massestrøm <strong>af</strong> en metanol/vand-blanding på gasfasen fra et trin <strong>til</strong> trinet over. Fordi metanol har et<br />

lavere k<strong>og</strong>epunkt en vand vil denne des<strong>til</strong>lationsproces føre <strong>til</strong>, at metanolkoncentrationen er højst i<br />

toppen <strong>af</strong> kolonnen, mens vandkoncentrationen er højest i bunden <strong>af</strong> kolonnen. Se bilag 17 for et<br />

flowsheet for alle 17 des<strong>til</strong>lationstrin.<br />

7.1.5 Antagelser i modellen<br />

I forbindelse med <strong>modellering</strong>en <strong>af</strong> <strong>metanolanlæg</strong>get, har det været nødvendigt at<br />

foretage en række antagelser:<br />

• Kemisk ligevægt i forgasningsgassen fra forgasseren, i reformergassen fra<br />

dampreformeren <strong>og</strong> i metanolgassen fra metanolreaktoren. Hvis de virkelige<br />

komponenter designes så opholdstiden bliver lang nok <strong>og</strong> opblanding kr<strong>af</strong>tig nok,<br />

er det en god antagelse. I Viking-forgasseren på DTU er der erfaring med at<br />

metanindholdet er højere end udregnet vha. kemisk ligevægt [Clausen et al.,<br />

2004]. Det skyldes formentlig at de 2 omtalte kriterier ikke er opfyldt.<br />

Hvis metanindholdet i syngassen bliver så højt at det udgør en betydelig del <strong>af</strong><br />

restgassen fra metanolreaktorkredsen, kan det nedbringes ved at <strong>til</strong>føje yderligere<br />

damp <strong>til</strong> forgasseren <strong>og</strong>/eller dampreformeren (<strong>af</strong>hængig <strong>af</strong> hvor metanet stammer<br />

fra). Endelig kan en del <strong>af</strong> restgassen <strong>og</strong>så <strong>til</strong>bageføres <strong>til</strong> forgasseren eller<br />

dampreformeren for at reformere metanet. Ved at sænke trykket <strong>og</strong>/eller hæve<br />

temperaturen i forgasseren/dampreformeren kan metanindholdet naturligvis <strong>og</strong>så<br />

reduceres.<br />

• Ingen produktion <strong>af</strong> biprodukter (hovedsagelig etanol) ved metanolkonverteringen<br />

i metanolreaktoren. Med de moderne katalysatorer er produktionsraten <strong>af</strong><br />

biprodukter (i fx mol/s) omkring 1 ‰ <strong>af</strong> produktionsraten for metanol [Hansen,<br />

1998]. Dette medfører at den efterfølgende des<strong>til</strong>lationsproces, kun består i at<br />

adskille vand fra metanol i en enkelt des<strong>til</strong>lationskolonne. Des<strong>til</strong>lationsprocessen<br />

er mere kompliceret hvis biprodukter <strong>og</strong> gaskomponenter fra syngassen skal<br />

des<strong>til</strong>leres fra. Her<strong>til</strong> anvendes typisk 3 des<strong>til</strong>lationskolonner [NZIC, 2007].<br />

• Den eneste omkostning ved gasrensningen <strong>af</strong> forgasningsgassen er økonomisk.<br />

Der regnes ikke med n<strong>og</strong>et effektforbrug eller tryktab i forbindelse med<br />

19


gasrensningen. I forbindelse med Viking-forgasseren på DTU regner man ikke<br />

med at forgasningsgassen skal renses for andre komponenter end svovl, ammoniak<br />

<strong>og</strong> evt. tjære <strong>og</strong> klor hvis gassen skal benyttes <strong>til</strong> metanolproduktion [Iversen,<br />

2006]. Til sammenligning renses syngas fra naturgas for svovl <strong>og</strong> klor 6 vha.<br />

katalysatorer placeret inden metanolreaktoren ved samme temperatur <strong>og</strong> tryk.<br />

Forgasningsgassen fra Viking-forgasseren er i forvejen næsten tjærefri pga. totrins-forgasningsprocessen,<br />

<strong>og</strong> ammoniakindholdet er ligeledes lavt efter en<br />

<strong>af</strong>køling <strong>af</strong> gassen [Iversen, 2006]. I forbindelse med Viking-forgasseren er der<br />

ind<strong>til</strong> videre foretaget indledende forsøg med metanolproduktion vha. en syntetisk<br />

forgasningsgas [Iversen, 2006].<br />

• Trykfaldet i metanolkonverteringskredsen antages at være 5 bar <strong>og</strong> ligge over<br />

metanolreaktoren. Det formodes at trykfaldet i realiteten hovedsageligt vil ligge<br />

over væske/gas-separatorerne. Disse komponenter er imidlertid ikke medtaget i<br />

modellen, men de kunne <strong>til</strong>føjes.<br />

• Intet kulstof i asken fra forgasseren. I realiteten vil en andel forefindes i asken.<br />

• Varmetabet fra komponenterne <strong>til</strong> omgivelserne er negligeret, på nær for<br />

kompressorerne.<br />

• Tryktabet i komponenter <strong>og</strong> forbindelsesrør er negligeret.<br />

• Effektforbruget <strong>til</strong> tryksætning <strong>og</strong> cirkulation <strong>af</strong> vand er negligeret.<br />

7.1.6 Fastsættelse <strong>af</strong> parametre <strong>og</strong> brændselssammensætninger<br />

anvendt i modellen<br />

Ved <strong>modellering</strong>en <strong>af</strong> <strong>metanolanlæg</strong>get holdes en række parametre konstant. Det<br />

gælder bl.a. temperaturer, tryk <strong>og</strong> massestrømme.<br />

I bilag 22 er de fastholdte parametre angivet med gul farve 7 . I Tabel 7.3 er der angivet<br />

kilde på n<strong>og</strong>le <strong>af</strong> værdierne for de fastholdte parametre.<br />

Værdierne for de fastholdte parametre, som ikke kan vises i bilaget, kan ses i Tabel<br />

7.2.<br />

Hvis intet andet er anført er disse værdier for parametrene benyttet i de simuleringer,<br />

som ligger <strong>til</strong> grund for resultaterne i <strong>af</strong>snit 7.4.2 <strong>og</strong> i kapitel 7.5.<br />

6<br />

Der er <strong>og</strong>så en reaktor som renser for diverse urenheder (LSK-guard) [Iversen, 2006].<br />

7<br />

De temperaturer efter kompressorerne som er angivet med gul holdes ikke konstant, men lig<br />

hinanden.<br />

20


Parameter Værdi Komponenter Evt. kilde<br />

η 80 %<br />

Elektrolyseanlæg [Teknol<strong>og</strong>ikatal<strong>og</strong>et,<br />

2005]<br />

∆tminimum pinch point 10°C Varmevekslere<br />

ε 90 % Varmevekslere 8<br />

ηisentrop 90 % Kompressorer<br />

ηmekanisk 98 % Kompressorer<br />

m&<br />

damp<br />

m&<br />

1,0 (NG)<br />

0,2 (bi<strong>og</strong>as <strong>og</strong> FG) 9<br />

Dampreformer <strong>og</strong> forgasser<br />

&<br />

m recirkuleret<br />

brændsel<br />

m&<br />

0,95<br />

(metanolkonverteringskredsen)<br />

ηmekanisk 95 % El-motor<br />

Tabel 7.2. Værdier for en række termodynamiske parametre benyttet i modellen.<br />

Parameter Værdi Komponenter Kilde<br />

tligevægt 950°C Dampreformer [Wikipedia, 2007]<br />

pligevægt 10 bar Dampreformer [Wikipedia, 2007]<br />

tligevægt 235°C Metanolreaktor [Møller, 2006] se <strong>og</strong>så bilag 14<br />

tligevægt 144 bar Metanolreaktor [Møller, 2006]<br />

tligevægt 800°C Forgasser [Møller, 2006]<br />

Tabel 7.3. Værdier for en række termodynamiske parametre benyttet i modellen.<br />

Metanolproduktionen på 205 MWLHV, som holdes konstant i modellen (se bilag 22),<br />

svarer <strong>til</strong> 7 % <strong>af</strong> forbruget <strong>af</strong> motorbenzin <strong>til</strong> vejtransport i Danmark i 2004<br />

[Energistyrelsen, 2004] (bilag 8). Denne metanolproduktion vil kunne blandes i<br />

benzinen (koncentration på 7 %-energi 10 ) uden problemer for forbrændingsmotorerne<br />

[Clausen et al., 2005].<br />

Nedenfor er brændselssammensætningerne <strong>og</strong> brændværdierne for bi<strong>og</strong>as, naturgas <strong>og</strong><br />

biomasse angivet.<br />

8<br />

Varmevekslereffektiviteten benyttes for varmevekslerne HEATEX_4 (DNA-navn, kan ses på<br />

flowsheet).<br />

9<br />

Værdien er sat for at få metanindholdet i reformergassen <strong>og</strong> forgasningsgassen ned på ca. 0,5 mol-%.<br />

Parameteren benyttes ikke for anlægskonfiguration nr. 3, idet damp<strong>til</strong>førslen styres <strong>af</strong> CO2-indholdet i<br />

forgasningsgassen.<br />

10<br />

Var Elsams bud på andelen <strong>af</strong> metanol, som skulle blandes i benzinen [Clausen et al., 2005].<br />

21


Gaskomponent Naturgas (NG) 11<br />

[mol-%]<br />

Bi<strong>og</strong>as 12<br />

N2 0,311<br />

CO2 0,561 35 mol-%<br />

CH4 91,115 65 mol-%<br />

C2H6 5,032<br />

C3H8 1,839<br />

C4H10 0,473<br />

C4H10 0,353<br />

C5H12 0,230<br />

C6H14 0,055<br />

C7H16 0,003<br />

C8H18 0,0003<br />

C5H10 0,011<br />

C6H12 0,002<br />

C7H14 0,004<br />

C6H6 0,002<br />

C6H12 0,009<br />

H2S 500 ppm<br />

Tabel 7.4. Gassammensætning for kulbrinter benyttet i dampreformeren.<br />

Naturgas (NG) 11<br />

Bi<strong>og</strong>as 12<br />

LHV [MJ/kg] 48,5 20,2<br />

Tabel 7.5. Nedre brændværdi for kulbrinter benyttet i dampreformeren.<br />

Komponent Biomasse (træ)<br />

[masse-%]<br />

H 3,05<br />

O 18,86<br />

C 25,03<br />

S 0,005<br />

N 0,3<br />

Ar 0,205<br />

Aske 2,55<br />

Vand 50<br />

Tabel 7.6. Sammensætningen <strong>af</strong> biomassen benyttet i simuleringerne. LHV = 9,64 MJ/kg, cp = 1,35<br />

kJ/kg [Møller, 2006].<br />

11 Er indbygget i simuleringsværktøjet DNA.<br />

12 Gassammensætning efter gasrensning. Fra [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005].<br />

22


7.2 Anlægskonfigurationer<br />

Den opbyggede model <strong>af</strong> et <strong>metanolanlæg</strong> benyttes <strong>til</strong> <strong>modellering</strong> <strong>af</strong> en række<br />

forskellige anlægskonfigurationer.<br />

Forskellene mellem anlægskonfigurationerne er på syngasproduktionsmetoden.<br />

De anlægskonfigurationer der undersøges, består <strong>af</strong> følgende processer/kilder <strong>til</strong><br />

syngasproduktion:<br />

1. Elektrolyse, forgasning <strong>af</strong> biomasse <strong>og</strong> naturgasreformering<br />

2. Elektrolyse <strong>og</strong> forgasning <strong>af</strong> biomasse<br />

3. Elektrolyse <strong>og</strong> forgasning <strong>af</strong> biomasse (med CO2-fjernelse)<br />

4. Elektrolyse, naturgasreformering <strong>og</strong> CO2-<strong>til</strong>førsel<br />

5. Elektrolyse <strong>og</strong> bi<strong>og</strong>asreformering<br />

6. Elektrolyse <strong>og</strong> CO2-<strong>til</strong>førsel<br />

1. Elektrolyse, forgasning <strong>af</strong> biomasse <strong>og</strong> naturgasreformering<br />

Denne anlægskonfiguration er standardkonfigurationen.<br />

Dette anlæg kan producere en velegnet syngas <strong>til</strong> metanolproduktion samtidig med, at<br />

den producerede ilt fra elektrolyseanlægget, som ikke benyttes <strong>til</strong> forgasning anvendes<br />

<strong>til</strong> naturgasreformering.<br />

Anlægget producerer som udgangspunkt ikke 100 % VE-metanol, men hvis<br />

elektriciteten frems<strong>til</strong>les ud fra vedvarende energi <strong>og</strong> naturgassen erstattes <strong>af</strong> metan<br />

fra fx bi<strong>og</strong>as kan dette lade sig gøre.<br />

2. Elektrolyse <strong>og</strong> forgasning <strong>af</strong> biomasse<br />

Dette anlæg kan være fordelagtigt hvis 100 % VE-metanol ønskes produceret <strong>og</strong> hvis<br />

den overskydende ilt fra elektrolyseanlægget kan benyttes uden for anlægget.<br />

3. Elektrolyse <strong>og</strong> forgasning <strong>af</strong> biomasse (med CO2-fjernelse)<br />

Hvis anlægskonfiguration nr. 2 udbygges med CO2-fjernelse fra forgasningsgassen<br />

kan elektrolyseanlæggets størrelse reduceres, således at der ikke forekommer n<strong>og</strong>et<br />

iltoverskud.<br />

CO2’en kan enten lagres eller sendes ud <strong>til</strong> omgivelserne, da CO2’en stammer fra<br />

biomasse. Hvis den lagres, kan den evt. benyttes <strong>til</strong> metanolproduktion sammen med<br />

brint fra elektrolyse på et tidspunkt, hvor elektriciteten er billig.<br />

4. Elektrolyse, naturgasreformering <strong>og</strong> CO2-<strong>til</strong>førsel<br />

For at kunne sammenligne ovenstående anlægskonfigurationer med et anlæg baseret<br />

på naturgasreformering, som er den mest udbredte metode <strong>til</strong> syngasproduktion, er<br />

dette anlæg medtaget.<br />

5. Elektrolyse <strong>og</strong> bi<strong>og</strong>asreformering<br />

I stedet for forgasning kan bi<strong>og</strong>asreformering benyttes, hvis 100 % VE-metanol<br />

ønskes produceret.<br />

6. Elektrolyse <strong>og</strong> CO2-<strong>til</strong>førsel<br />

Denne anlægskonfiguration kunne være interessant hvis 100 % VE-metanol ønskes<br />

produceret uden benyttelse <strong>af</strong> biomasse. Et sådant anlæg vil kunne <strong>af</strong>tage betydelige<br />

23


mængder elektricitet <strong>og</strong> kunne blive interessant, hvis andelen <strong>af</strong> ukontrollerbar elproduktion,<br />

som sol-, vind- <strong>og</strong> vand-kr<strong>af</strong>t, steg markant.<br />

24


7.3 Økonomi<br />

For at kunne vurdere omkostningerne ved metanolproduktion på det modellerede<br />

anlæg er det nødvendigt at bestemme de faste <strong>og</strong> variable omkostninger.<br />

I denne sammenhæng er komponentomkostningerne <strong>og</strong> brændsel/input-omkostninger<br />

bestemt nedenfor.<br />

Det er bl.a. <strong>af</strong> hensyn <strong>til</strong> den termoøkonomiske analyse at alle<br />

komponentomkostninger fastsættes, i modsætning <strong>til</strong> at benytte en samlet<br />

anlægsomkostning.<br />

7.3.1 Komponentomkostninger<br />

Nedenfor er de specifikke priser for komponenterne anvendt i modellen angivet.<br />

For bedre at kunne relatere <strong>til</strong> komponentomkostningerne er de totale<br />

komponentpriser for anlægskonfiguration 1 vist herefter.<br />

Der benyttes specifikke komponentpriser for lettere at kunne sammenligne<br />

anlægsinvesteringen for de forskellige anlægskonfigurationer. I realiteten vil de<br />

specifikke komponentpriser <strong>af</strong>hænge <strong>af</strong> størrelsen <strong>af</strong> komponenterne, på den måde, at<br />

større komponenter vil have en mindre specifik pris.<br />

Komponent Specifik pris Kilde<br />

Elektrolyseanlæg 1,5 mio. kr. / MWe [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005]<br />

Damptørrer<br />

Forgasser<br />

4,1 mio. kr. / (kg/s)fordampet<br />

3,8 mio. kr. / MWbiomasse<br />

[Enerdry, 2007]<br />

13 [Choren, 2007, side 11]<br />

Gasrenser 0*<br />

Dampreformer 14 1,1 mio. kr. / MWgas 15 Læs nedenfor<br />

Metanolreaktor 121 mio. kr. / (kmol/s)syngas Læs nedenfor<br />

Des<strong>til</strong>lationskolonne 24 mio. kr. / (kg/s)feed Læs nedenfor<br />

Varmeveksler 0,4 mio. kr. / MWoverført Læs nedenfor<br />

Kompressor 4,5 mio. kr. / MWmek Læs nedenfor<br />

Tabel 7.7. Specifikke priser for komponenter benyttet i modellen. * Omkostningen for gasrenseren er<br />

indlejret i prisen for forgasseren.<br />

Varmevekslere <strong>og</strong> kompressorer<br />

Udgiften <strong>til</strong> varmevekslere <strong>og</strong> kompressorer er anslået ud fra [Peters, 1991]. Der er<br />

kun anvendt én specifik pris for varmevekslere <strong>og</strong> kompressorer for at simplificere<br />

udregningen <strong>af</strong> anlægsinvesteringen, samtidig med at disse komponenters andel <strong>af</strong> den<br />

samlede anlægspris kun er ca. 10 %. I realiteten <strong>af</strong>hænger den specifikke pris på<br />

varmevekslere <strong>og</strong> kompressorer fx <strong>af</strong> ved hvilken temperatur <strong>og</strong> ved hvilket tryk -<br />

eller trykforhold - der opereres ved.<br />

Dampreformer, metanolreaktor <strong>og</strong> des<strong>til</strong>lationskolonne<br />

Disse komponenter er prissat ud fra en samlet anlægspris på $20.000 per Barrels/dag<br />

[Fleisch, 2002, side 4] (1.026 kr./(liter/dag)), samt en antagelse om samme pris for<br />

alle 3 komponenter. For at kunne foretage denne prisfastsættelse, er modellen for<br />

13<br />

Det antages at effekten er baseret på nedre brændværdi.<br />

14<br />

Omkostningen i forbindelse med gasrensning <strong>af</strong> naturgas/bi<strong>og</strong>as antages at være indlejret i denne<br />

omkostning.<br />

15<br />

Effekten (MWnaturgas) er baseret på nedre brændværdi.<br />

25


<strong>metanolanlæg</strong>get inds<strong>til</strong>let således at syngassen kun produceres ud fra naturgas, idet<br />

syngassen <strong>til</strong> metanolproduktion oftest produceres ud fra naturgas i kommercielle<br />

anlæg. Det betyder mere præcist, at modellen er inds<strong>til</strong>let i det driftpunkt, hvor<br />

forgasseren ikke benyttes <strong>og</strong> hvor elektrolyseanlægget ikke producerer mere ilt, end<br />

der benyttes <strong>til</strong> naturgasreformeringen. Den producerede brint fra elektrolyseanlægget<br />

benyttes ikke <strong>til</strong> syngasproduktionen (se flowsheet for anlægget i dette driftpunkt i<br />

bilag 21).<br />

Komponent(er) Parameter<br />

Pris Prisandel<br />

[mio. kr] [%]<br />

Elektrolyseanlæg 56 MWe 86 6<br />

Damptørrer 5,9 (kg/s)fordampet 24 2<br />

Forgasser 121 MWbiomasse 461 32<br />

Dampreformer 92 MWgas 96 7<br />

Metanolreaktor 2,7 (kmol/s)syngas 327 23<br />

Des<strong>til</strong>lationskolonne 11,5 (kg/s)feed 270 19<br />

Varmevekslere 158 MWoverført 63 4<br />

Kompressorer 21 MWmek 96 7<br />

Tabel 7.8. Priser for komponenter benyttet i modellen for anlægskonfiguration 1. Den samlede<br />

anlægspris er 1580 mio. kr for denne anlægskonfiguration.<br />

Ud fra Tabel 7.8 ses det at specielt forgasseren udgør en stor del <strong>af</strong> den samlede<br />

anlægsomkostning. Komponenterne <strong>til</strong> metanolkonvertering <strong>og</strong> des<strong>til</strong>lation udgør d<strong>og</strong><br />

<strong>og</strong>så en betragtelig del <strong>af</strong> anlægsinvesteringen.<br />

Parameter Værdi<br />

Levetid 15 år<br />

Driftstid 8000 timer/år<br />

rD&V 2 % 16<br />

Tabel 7.9. Værdierne for n<strong>og</strong>le centrale økonomiske driftsparametre, som er benyttet i beregningerne.<br />

I Tabel 7.9 er n<strong>og</strong>le vigtige økonomiske driftsparametre vist. Driftstiden <strong>og</strong> rD&V er<br />

antagede værdier, mens levetiden bygger på levetiden <strong>af</strong> elektrolyseanlægget <strong>og</strong><br />

forgasseren fra [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005] 17 .<br />

Der regnes ikke med at anlægsinvesteringen betales med lånte penge, hvorfor<br />

eventuelle renter <strong>af</strong> et lån skal <strong>til</strong>lægges den beregnede produktionsomkostning.<br />

7.3.2 Brændsel/input-omkostninger<br />

Standardpriserne for de benyttede brændsler <strong>og</strong> andre input <strong>til</strong> <strong>metanolanlæg</strong>get er<br />

som følger:<br />

16<br />

Andel <strong>af</strong> anlægsinvesteringen, som benyttes <strong>til</strong> drift <strong>og</strong> vedligehold per år.<br />

17<br />

Levetiden for et elektrolyseanlæg <strong>og</strong> en forgasser i år 2010-2015 angives <strong>til</strong> henholdsvis 15 år <strong>og</strong> 15-<br />

20 år.<br />

26


Input-priser Kilde<br />

Elektricitet 18 1168 kr/MWh 324 kr/GJ [Energy T<strong>og</strong>ether, 2004] se bilag 3.<br />

[GE-NET, 2007] se bilag 4<br />

Mekanisk effekt<br />

1192 kr/MWh 341 kr/GJ Se tabelteksten nedenfor<br />

Biomasse (træ) 15 €/MWh 32 kr/GJ [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005] 19<br />

Naturgas 20 93 kr/GJ 93 kr/GJ [Energy T<strong>og</strong>ether, 2004] se bilag 5.<br />

[Naturgas<strong>af</strong>gifter, DONG Energy, 2007]<br />

se bilag 6.<br />

Bi<strong>og</strong>as<br />

55 kr/GJ 55 kr/GJ [Clausen et al., 2005] 21<br />

Vand 32 kr/m 3<br />

CO2<br />

(fra kr<strong>af</strong>tværksrøggas)<br />

32 kr/m 3 [Københavns Energi, 2007]<br />

se bilag 7<br />

15 €/ton 114 kr/ton [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005] 22<br />

Tabel 7.10. Standardpriser på de forskellige inputs med konventionelle enheder samt med<br />

sammenlignelige enheder. Prisen for den mekaniske effekt (cmek) fastsættes ud fra antagelse om<br />

c<br />

kr<br />

el 324 GJ<br />

benyttelse <strong>af</strong> en el-motor med 95 % virkningsgrad: c kr<br />

mek = = = 341 GJ .<br />

0,<br />

95 0,<br />

95<br />

El-prisen er fastsat ud fra en fremskrivning <strong>af</strong> el-prisen foretaget <strong>af</strong> Energy T<strong>og</strong>ether i<br />

2004 for det frie el-marked. Prisen på 300 kr/MWh er ved ”rest peak” for 2015, for at<br />

tage højde for at anlægget ikke er i drift når el-prisen er høj. El-prisen er herefter<br />

<strong>til</strong>lagt <strong>af</strong>gifter <strong>og</strong> tariffer.<br />

I resultat kapitlet (7.5.1.1) er det illustreret hvad en <strong>af</strong>giftsfritagelse på elektricitet<br />

betyder for den specifikke metanolomkostning, idet en hel eller delvis <strong>af</strong>giftsfritagelse<br />

er sandsynlig i fremtiden, for at sikre en bedre udnyttelse <strong>af</strong> specielt elektricitet fra<br />

vindmøllerne - jævnfør <strong>af</strong>giftslempelsen på elektricitet <strong>til</strong> fjernvarmeproduktion.<br />

For at illustrere hvor vanskeligt det er at fastsætte en el-pris er el-priserne fra den<br />

nordiske el-børs Nordpool 23 for 2000-2006 vist nedenfor på Figur 7.6.<br />

Der ses tydeligt en stigende tendens, hvorfor det er svært at estimere, hvad den<br />

gennemsnitlige el-pris bliver for et anlæg, som skal være i drift i mange år.<br />

18<br />

300 kr/MWh ved lidt under gennemsnitspris i 2015 (rest peak) – se første bilag angivet under ”kilde”<br />

i tabellen.<br />

868 kr/MWh i <strong>af</strong>gifter <strong>og</strong> tariffer for el <strong>til</strong> erhvervskunder (Årligt forbrug over 100.000 kWh), se andet<br />

bilag angivet under ”kilde” i tabellen.<br />

19<br />

Afsnit 10. For år 2004-2015.<br />

20<br />

37 kr/GJ (gaspris + nettarif), gennemsnit for 2010-2025 – se første bilag angivet under ”kilde” i<br />

tabellen.<br />

CO2-<strong>af</strong>gift på 19,8 øre/m 3 <strong>og</strong> energi<strong>af</strong>gift på 204,2 øre/m 3 (LHVNG = 40 MJ/Nm 3 ) -> 56 kr./GJ – se<br />

andet bilag angivet under ”kilde” i tabellen.<br />

21<br />

Bi<strong>og</strong>asomkostningen er beregnet ud fra oplysninger fra [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005]<br />

22<br />

Afsnit 2, for år 2010-15.<br />

23<br />

El-prisen fra Nordpool er for DK-VEST [Nordpool, 2007].<br />

27


Figur 7.6. El-priser for DK-vest fra Nordpool for 2000 <strong>til</strong> 2006 (timedata) i intervallet 0-1000 kr/MWh<br />

(de få resterende el-priser ligger i intervallet 1000-4500 kr/MWh). Den sorte linie er<br />

gennemsnitsprisen for alle år <strong>og</strong> den røde linie er et lineart fit <strong>til</strong> dataene.<br />

28


7.4 Termoøkonomisk analyse<br />

Der er udført en termoøkonomisk analyse <strong>af</strong> <strong>metanolanlæg</strong>get. Analysen viser hvor<br />

omkostningsstrømmene opstår <strong>og</strong> hvordan de føres gennem anlægget - for <strong>til</strong> sidst at<br />

havne i produkterne fra anlægget. Ineffektiviteterne som forefindes i anlægget<br />

kortlægges ligeledes, <strong>og</strong> det kan vurderes hvor det er mest omkostningseffektivt at<br />

foretage forbedringer.<br />

7.4.1 Teori 24<br />

Thermoeconomics eller termoøkonomi handler om at kæde en exergianalyse sammen<br />

med en økonomisk analyse. Mere specifikt <strong>til</strong>lægges alle exergistrømme i et<br />

energisystem en økonomisk omkostningsstrøm. Fordelingen <strong>af</strong> omkostningerne på de<br />

respektive exergistrømme bestemmes ud fra en definition <strong>af</strong> hvad der er produkter <strong>og</strong><br />

spild fra de enkelte komponenter.<br />

Vha. denne analysemetode kan der dannes et overblik over omkostningsstrømmene i<br />

et energisystem, som kan danne baggrund for en økonomisk <strong>og</strong> termodynamisk<br />

optimering.<br />

I analysen indgår 3 vigtige balancer, som udføres for hver komponent i systemet:<br />

• Energibalance<br />

• Exergibalance<br />

• Omkostningsbalance<br />

Efter energi- <strong>og</strong> exergibalancen er udført 25 for alle komponenter i systemet, skal hver<br />

enkelt strøm <strong>til</strong>lægges en omkostningsstrøm. Til dette formål benyttes<br />

omkostningsbalancer for alle komponenter i anlægget:<br />

Ligning 7.6: Omkostningsbalance for en komponent<br />

C&<br />

= Z&<br />

+ C&<br />

,<br />

p<br />

i<br />

hvor Ċp er omkostningsstrømmen [kr/s] for produkterne fra komponenten, Ż er omkostningsstrømmen<br />

[kr/s] forbundet med D&V <strong>og</strong> <strong>af</strong>skrivninger på komponentinvesteringen <strong>og</strong> Ċi er<br />

omkostningsstrømmen [kr/s] for inputs <strong>til</strong> komponenten.<br />

For at kunne udføre omkostningsbalancerne skal det defineres for hver komponent<br />

hvad der er produkter <strong>og</strong> hvad der er spild fra komponenten. I forbindelse med<br />

definitionerne <strong>af</strong> exergivirkningsgraderne i det følgende er det beskrevet hvad der er<br />

defineret som produkter <strong>og</strong> spild for alle komponenterne i anlægget. En strøm som<br />

defineres som spild <strong>til</strong>lægges ingen omkostningsstrøm.<br />

Hvis en komponent har flere produkter fordeles omkostningsstrømmen mellem<br />

produkterne således, at de får samme specifikke omkostning per exergienhed.<br />

I denne analyse er n<strong>og</strong>le strømme desuden defineret som neutrale. Det betyder at<br />

strømmen har den samme omkostningsstrøm [kr/s] ind <strong>og</strong> ud <strong>af</strong> komponenten.<br />

For at kunne sammenligne omkostningsstrømmene for produkterne i systemet<br />

udtrykkes det enkelte produkts omkostningsstrøm (Ċp), <strong>og</strong>så som en omkostning per<br />

exergi (cex) <strong>og</strong> masse (cm).<br />

24 Teorien bag den termoøkonomiske analyse bygger delvist på teorien fra [Clausen et al., 2005].<br />

25 Udføres automatisk <strong>af</strong> DNA.<br />

29


Efter disse omkostningsbalancer er udført udregnes exergivirkningsgrader for<br />

samtlige komponenter således at sammenligning er mulig.<br />

Exergivirkningsgraden er i udgangspunktet defineret ved:<br />

Ligning 7.7: Standardexergivirkningsgraden for en komponent<br />

η<br />

ex<br />

=<br />

∑<br />

∑<br />

, hvor Ėex, p er exergistrømmene for produkterne <strong>og</strong> Ėex, i er exergistrømmene <strong>af</strong> inputtene.<br />

Denne parameter er dermed <strong>af</strong>hængig <strong>af</strong> hvilke strømme, der defineres som produkter.<br />

For fx varmevekslere kan denne definition være meget svær at foretage, hvis der både<br />

ønskes en opvarmning <strong>af</strong> den ene strøm <strong>og</strong> en <strong>af</strong>køling <strong>af</strong> den anden 26 .<br />

I denne frems<strong>til</strong>ling er problems<strong>til</strong>lingen løst ved at definere den <strong>af</strong>kølede massestrøm<br />

som neutral 27 <strong>og</strong> den opvarmede som produkt. Det er gjort, fordi det er den kemiske<br />

exergi, som i dette <strong>til</strong>fælde er interessant i den <strong>af</strong>kølede massestrøm. Den fysiske<br />

exergi i den <strong>af</strong>kølede massestrøm har i dette anlæg ikke n<strong>og</strong>en direkte værdi.<br />

Exergivirkningsgraden for varmevekslerne er dermed lig exergivirkningsgraden for<br />

varmevekslere, som benyttes <strong>til</strong> opvarmning [Krane] 28 :<br />

Ligning 7.8: Exergivirkningsgraden for en varmeveksler benyttet <strong>til</strong> opvarmning<br />

E&<br />

ex,<br />

c,<br />

o − E&<br />

ex,<br />

c,<br />

i<br />

η ex,<br />

heatex,<br />

op var mning =<br />

E&<br />

− E&<br />

ex,<br />

h,<br />

i<br />

ex,<br />

h,<br />

o<br />

hvor Ėex benævner exergistrømmen, indeks c <strong>og</strong> h står for henholdsvis den kolde <strong>og</strong> den varme strøm,<br />

<strong>og</strong> indeks i <strong>og</strong> o står for henholdsvis ind <strong>og</strong> ud. I det <strong>til</strong>fælde hvor der sker en udkondensation <strong>af</strong> vand<br />

<strong>og</strong> evt. metanol er Ėex, h, o inkl. den udkondenserede væskestrøm.<br />

For kompressorer er exergivirkningsgraden defineret som:<br />

Ligning 7.9: Exergivirkningsgraden for en kompressor<br />

E&<br />

ex,<br />

o − E&<br />

ex,<br />

i<br />

η ex,<br />

komp =<br />

,<br />

P<br />

komp<br />

hvor Pkomp er den mekaniske effekt, der <strong>til</strong>føres kompressoren.<br />

For elektrolyseanlæg, forgasser, dampreformer <strong>og</strong> metanolreaktor er<br />

exergivirkningsgraden defineret, som den er i udgangspunktet:<br />

Ligning 7.10: Standardexergivirkningsgraden for en komponent<br />

∑ E&<br />

ex,<br />

p<br />

ηex<br />

= ,<br />

E&<br />

∑<br />

E &<br />

E &<br />

ex , p<br />

ex , i<br />

ex,<br />

i<br />

hvor Ėex, p betegner produkternes exergistrømme <strong>og</strong> Ėex, i er exergistrømmene for samtlige inputs <strong>til</strong><br />

komponenten.<br />

Definitionen <strong>af</strong> produkterne fra en række komponenter findes i Tabel 7.11.<br />

26 Damptørreren opfattes i denne sammenhæng <strong>og</strong>så som en varmeveksler.<br />

27 I <strong>til</strong>fælde <strong>af</strong> udkondensation, opdeles omkostningsstrømmen mellem gasstrømmen <strong>og</strong><br />

væskestrømmen således at omkostningen per exergi er den samme.<br />

28 side EX-83<br />

30


Komponent Produkt(er) Spild<br />

Elektrolyseanlæg H2, O2 <strong>og</strong> fjernvarme<br />

Forgasser Forgasningsgas Aske<br />

Metanolreaktor Metanolholdig gas Vanddamp<br />

Des<strong>til</strong>lationskolonne Metanol/vand-blanding på gasfase <strong>og</strong> på væskefase 29<br />

Tabel 7.11. Definition <strong>af</strong> produkter <strong>og</strong> spild for de komponenter, som har flere output (gælder ikke<br />

varmevekslere, se evt. side 30).<br />

Anlæggets samlede exergivirkningsgrad er defineret på samme måde, som på<br />

komponentbasis. Der er benyttet samme definition <strong>af</strong> produkter, som angivet ovenfor:<br />

Ligning 7.11: Samlet exergivirkningsgrad for anlægget<br />

∑ E&<br />

ex,<br />

p E&<br />

ex,<br />

metanol + E&<br />

ex,<br />

FV,<br />

ud + E&<br />

ex<br />

ηex,<br />

total = =<br />

E&<br />

E&<br />

∑<br />

ex,<br />

i<br />

∑<br />

ex,<br />

i<br />

, ilt<br />

+ E&<br />

ex,<br />

syngas<br />

hvor Ėex, syngas er exergistrømmen for den del <strong>af</strong> syngassen som ikke omdannes <strong>til</strong> metanol eller vand <strong>og</strong><br />

derefter udkondenseres.<br />

I den samlede exergi, ΣĖex, i, er medtaget samtlige exergistrømme <strong>til</strong> systemet, både<br />

kemisk <strong>og</strong> fysisk exergi, dvs. inkl. el, FVind <strong>og</strong> brændsler.<br />

Tilsvarende er der defineret en metanolvirkningsgrad, hvor kun metanol opfattes som<br />

produkt:<br />

Ligning 7.12: Metanolexergivirkningsgrad for anlægget<br />

∑ E&<br />

ex,<br />

p E&<br />

ex,<br />

metanol<br />

ηex,<br />

metanol = =<br />

E&<br />

E&<br />

∑<br />

ex,<br />

i<br />

∑<br />

ex,<br />

i<br />

Endelig er der <strong>og</strong>så defineret 2 energivirkningsgrader, som har samme<br />

produktdefinitioner, som de 2 exergivirkningsgrader ovenfor:<br />

Ligning 7.13: Samlet energivirkningsgrad for anlægget<br />

∑ E&<br />

en,<br />

p E&<br />

en, metanol + E&<br />

en,<br />

FV + E&<br />

en<br />

ηen,<br />

total = =<br />

E&<br />

E&<br />

∑<br />

en,<br />

i<br />

∑<br />

en,<br />

i<br />

, syngas<br />

Ligning 7.14: Metanolenergivirkningsgrad for anlægget<br />

E&<br />

en, metanol<br />

ηen,<br />

metanol = ,<br />

E&<br />

∑<br />

en,<br />

i<br />

hvor Ėen, metanol er energistrømmen <strong>af</strong> metanol (nedre brændværdi), Ėen, FV er energiindholdet i<br />

fjernvarmen (Ėen, FV, ud - Ėen, FV, ind), Ėen, syngas er energistrømmen (nedre brændværdi) for den del <strong>af</strong><br />

syngassen, som ikke omdannes <strong>til</strong> metanol eller vand <strong>og</strong> derefter udkondenseres <strong>og</strong> Ėen, i inkluderer<br />

brændsler (nedre brændværdi) <strong>og</strong> el.<br />

For at kunne lokalisere de komponenter, som har størst indflydelse på anlæggets<br />

samlede exergivirkningsgrad udregnes hver komponents exergidestruktion:<br />

29<br />

Den del <strong>af</strong> metanol/vand-blandingen på væskefasen, som separeres fra efter des<strong>til</strong>lationskolonnen<br />

opfattes som spild.<br />

,<br />

31


Ligning 7.15: Exergidestruktion for komponent<br />

E&<br />

ex,<br />

dest = ∑ E&<br />

ex,<br />

i − ∑ E&<br />

ex,<br />

p ,<br />

hvor Ėex, i er exergistrømmene for inputtene <strong>og</strong> Ėex, p er exergistrømmene for produkterne.<br />

Denne exergidestruktion kan udtrykkes i to pengestrømme, Ċi,dest <strong>og</strong> Ċp,dest:<br />

Ligning 7.16: Omkostningsstrøm for komponentens exergidestruktion baseret på den gennemsnitlige<br />

specifikke exergiomkostning for inputs <strong>til</strong> komponenten<br />

C&<br />

i,<br />

dest = cex,<br />

i ⋅ E&<br />

ex,<br />

dest ,<br />

hvor cex,<br />

i = ∑C&<br />

i<br />

E&<br />

er den gennemsnitlige inputomkostning per exergi, Ċi er<br />

∑<br />

ex,<br />

i<br />

omkostningsstrømmene forbundet med inputtene <strong>til</strong> en komponent <strong>og</strong> Ėex, i er de <strong>til</strong>hørende<br />

exergistrømme.<br />

Ligning 7.17: Omkostningsstrøm for komponentens exergidestruktion baseret på den gennemsnitlige<br />

specifikke exergiomkostning for produkterne fra komponenten<br />

C&<br />

p,<br />

dest = cex,<br />

p ⋅ E&<br />

ex,<br />

dest ,<br />

hvor cex,<br />

p = ∑C&<br />

p<br />

E&<br />

er den gennemsnitlige produktomkostning per exergi, Ċp er<br />

∑<br />

ex,<br />

p<br />

omkostningsstrømmene forbundet med produkterne fra en komponent <strong>og</strong> Ėex, p er de <strong>til</strong>hørende<br />

exergistrømme.<br />

I forbindelse med varmevekslere er ci kun baseret på den opvarmede strøm, for at<br />

skabe konsistens med definitionen for cp for varmevekslere.<br />

7.4.2 Resultater<br />

Resultaterne fra den termoøkonomiske analyse præsenteres for anlægskonfiguration<br />

nr. 1, idet alle komponenter benyttes i denne konfiguration.<br />

Værdierne for de termoøkonomiske parametre, defineret i teori<strong>af</strong>snittet ovenfor, vises<br />

for alle komponenter <strong>og</strong> strømninger i bilag 23 30 .<br />

I tabellerne nedenfor er n<strong>og</strong>le udvalgte værdier fra bilaget vist.<br />

I Tabel 7.12 er værdierne for de vigtigste termoøkonomiske komponentparametre<br />

præsenteret. Det ses tydeligt at forgasseren er den komponent med det største<br />

exergitab, selvom komponentens exergivirkningsgrad er relativ høj. Det er naturligvis<br />

fordi exergistrømmen gennem komponenten er stor. Omkostningen forbundet med<br />

dette exergitab er <strong>til</strong> gengæld meget mindre end for elektrolyseanlægget, da prisen for<br />

elektricitet er meget højere end for biomasse. Det kan herudfra tydeligt ses at det<br />

bedst kan betale sig at mindske exergitabet i elektrolyseanlægget.<br />

Summen <strong>af</strong> exergitabene i tabellen er 34,5 MW hvilket svarer <strong>til</strong> 11 % <strong>af</strong><br />

exergiinputtet <strong>til</strong> anlægget på 320 MW. Det er dermed en stor del <strong>af</strong> det samlede tab<br />

på 20 % (jævnfør den totale exergivirkningsgrad på 80 % i Tabel 7.13). Det<br />

resterende exergitab er næsten udelukkende et tab i fysisk exergi. Det eneste ekstra<br />

tab i kemisk exergi er i forbindelse med metanolindholdet i spildevandet fra<br />

des<strong>til</strong>lationen.<br />

30 Der er lidt <strong>af</strong>vigelser mellem kemisk exergi i idealgas <strong>og</strong> fluid<br />

32


Tabet i fysisk exergi forekommer hovedsagelig i de komponenter, hvor der er<br />

faseovergang (fordampning eller kondensation).<br />

Komponent<br />

ηex<br />

[%] Ėex, dest<br />

[MW]<br />

Ċi, dest<br />

[kr/s]<br />

Ċp, dest<br />

[kr/s]<br />

Elektrolyseanlæg 80 11,6 3,74 4,77<br />

Damptørrer 46 3,5 0,03 0,03<br />

Forgasser 89 15,5 0,43 0,64<br />

Dampreformer 93 7,6 0,66 0,74<br />

Metanolreaktor 99,7 1,6 0,24 0,25<br />

Des<strong>til</strong>lationskolonne 73 2,3 0,38 0,39<br />

Tabel 7.12. Termoøkonomiske parametre for de vigtigste komponenter i <strong>metanolanlæg</strong>get. Til<br />

sammenligning kan det nævnes at det samlede exergiinput <strong>til</strong> anlægget i denne konfiguration er Ėex, total<br />

= 320 MW <strong>og</strong> den samlede omkostningsstrøm er Ċtotal = 43 kr/s.<br />

ηex, total<br />

80 %<br />

ηex, metanol 72 %<br />

ηen, total<br />

99 %<br />

ηen, metanol 70 %<br />

Tabel 7.13. Exergi- <strong>og</strong> energi-virkningsgrader for det samlede <strong>metanolanlæg</strong>.<br />

Ud fra Tabel 7.13 ses det at den totale energivirkningsgrad er på 99 %. Det er<br />

urealistisk højt, men det skyldes at alt spildvarmen i modellen benyttes <strong>til</strong><br />

fjernvarmeproduktion.<br />

Forskellen mellem de totale virkningsgrader <strong>og</strong> metanolvirkningsgraderne i Tabel<br />

7.13 er pga. energi- <strong>og</strong> exergi-indholdet i fjernvarmevandet <strong>og</strong> i den bortseparerede<br />

syngas.<br />

I Tabel 7.14 er exergi- <strong>og</strong> energi-strømmene for disse 2 produkter vist <strong>og</strong><br />

sammenlignet med værdierne for metanol.<br />

Produkt<br />

Ėex Ėen Ċp cex<br />

[MW] [MW] [kr/s] [kr/GJ]<br />

Metanol 231 205 39,7 172<br />

Fjernvarme 12 31 72 0,5 32<br />

Uomsat syngas 13 11 2,2 167<br />

Tabel 7.14. Exergi- <strong>og</strong> energi-strømme ud <strong>af</strong> <strong>metanolanlæg</strong>get samt de <strong>til</strong>hørende omkostningsstrømme<br />

<strong>og</strong> specifikke exergiomkostninger.<br />

Tabel 7.14 viser hvorledes investerings- <strong>og</strong> drifts-omkostninger fordeles på de 3<br />

produkter fra anlægget. Det kan ses at den specifikke exergiomkostning ved<br />

fjernvarmeproduktion er mindre end de øvrige produkter, hvilket skyldes at<br />

omkostningerne forbundet med specielt elektricitetsforbruget ikke ender i<br />

fjernvarmeproduktet, da fjernvarmen produceres ud fra spildvarme.<br />

Ud fra en sammenligning <strong>af</strong> produkterne metanol <strong>og</strong> syngas kan det ligeledes ses at<br />

omkostningerne ved des<strong>til</strong>lationen ikke er store. Det skyldes både den relativt<br />

begrænsede kapitalomkostning forbundet med des<strong>til</strong>lationen <strong>og</strong> det begrænsede<br />

exergitab.<br />

31<br />

Er defineret som exergistrømmen <strong>af</strong> fjernvarme ud <strong>af</strong> anlægget minus exergistrømmen <strong>af</strong> fjernvarme<br />

ind i anlægget.<br />

33


7.5 Resultater<br />

Resultaterne opnået vha. modellen <strong>af</strong> <strong>metanolanlæg</strong>get er præsenteret nedenfor.<br />

Først præsenteres resultaterne for de 6 forskellige anlægskonfigurationer, som er<br />

undersøgt. Dernæst foretages en parametervariation for den anlægskonfiguration, som<br />

vurderes <strong>til</strong> at være den mest optimale.<br />

7.5.1 Anlægskonfigurationer<br />

Resultaterne for de 6 anlægskonfigurationer, som er beskrevet i kapitel 7.2 er vist<br />

nedenfor.<br />

Først beskrives resultaterne vedrørende det termodynamiske hvorefter<br />

omkostningerne ved metanolproduktion for hver <strong>af</strong> de 6 anlægskonfigurationer<br />

præsenteres <strong>og</strong> sammenlignes.<br />

I bilag 24 forefindes flowsheets for alle 6 anlægskonfigurationer.<br />

Forskellen mellem de 6 anlægskonfigurationer er på syngasproduktionsmetoden<br />

(jævnfør kapitel 7.2), dvs. at syngassen i de 6 anlæg produceres ud fra forskellige<br />

sammensætninger <strong>af</strong> exergikilder. På Figur 7.7 ses præcist hvordan fordelingen<br />

mellem de 4 exergikilder er for de 6 anlæg. Exergiinputtet <strong>til</strong> anlægget går<br />

hovedsageligt <strong>til</strong> syngasproduktionen.<br />

34


Anlæg 1<br />

Total: 320 MWex (292 MW)<br />

79<br />

145<br />

0<br />

96<br />

Anlæg 4<br />

Total: 318 MWex (308 MW)<br />

99<br />

0<br />

0<br />

219<br />

Anlæg 2<br />

Total: 327 MWex (293 MW)<br />

121<br />

0<br />

0<br />

205<br />

Anlæg 5<br />

Total: 312 MWex (300 MW)<br />

0<br />

96<br />

Bi<strong>og</strong>as NG Biomasse Elektricitet<br />

216<br />

Anlæg 3<br />

Total: 322 MWex (280 MW)<br />

65<br />

0<br />

0<br />

256<br />

Anlæg 6<br />

Total: 345 MWex (345 MW)<br />

Figur 7.7. Exergiinputfordelingen for de 6 anlægskonfigurationer. Værdien angivet i parentes er<br />

energi<strong>til</strong>førslen (for brændsler er værdien baseret på den nedre brændværdi).<br />

Forskellene mellem de totale exergiinputs for anlæggene angivet på figuren ovenfor,<br />

<strong>af</strong>spejler metanolexergivirkningsgraderne angivet i Tabel 7.15, idet<br />

metanolproduktionen er konstant.<br />

Ud fra Tabel 7.15 ses det at virkningsgraderne for <strong>metanolanlæg</strong>get er <strong>af</strong>hængig <strong>af</strong><br />

sammensætningen <strong>af</strong> exergikilderne <strong>til</strong> metanolproduktionen.<br />

Det ses at de dårligste virkningsgrader opnås i anlæg nr. 6, hvilket skyldes den<br />

dårligere virkningsgrad for elektrolyseanlægget i forhold <strong>til</strong> forgasseren <strong>og</strong><br />

dampreformeren (se exergivirkningsgrader i Tabel 7.12) samt den dårligere udnyttelse<br />

<strong>af</strong> syngassen i metanolreaktoren pga. CO2 er mindre reaktionsvilligt end CO.<br />

Forskellene mellem virkningsgraderne for de øvrige anlæg er ikke store, idet<br />

virkningsgraden for dampreformeren kun er lidt bedre end forgasserens<br />

virkningsgrad. Grunden <strong>til</strong> at anlægget med de højeste exergivirkningsgrader (nr. 5)<br />

ikke <strong>og</strong>så har de højeste energivirkningsgrader er at energivirkningsgraderne er<br />

baseret på nedre brændværdi samt at forholdet mellem nedre brændværdi <strong>og</strong> kemisk<br />

exergi er lavere for biomasse end for naturgas.<br />

0<br />

345<br />

35


Anlægs-nr. ηex, metanol<br />

[%]<br />

ηex, total<br />

[%]<br />

ηen, metanol<br />

[%]<br />

ηen, total<br />

[%]<br />

1 72 80 70 99<br />

2 71 78 70 99<br />

3 72 78 73 102 32<br />

4 73 82 66 94<br />

5 74 82 68 95<br />

6 67 77 59 88<br />

Tabel 7.15. Exergi- <strong>og</strong> energi-virkningsgrader for de 6 forskellige anlægskonfigurationer.<br />

Anlæggene med naturgas/bi<strong>og</strong>as-<strong>til</strong>førsel får højere exergivirkningsgrader end<br />

anlæggene med biomasse<strong>til</strong>førsel på trods <strong>af</strong> at Tabel 7.16 viser at anlæggene med<br />

naturgas/bi<strong>og</strong>as-<strong>til</strong>førsel har et større exergitab i form <strong>af</strong> ukonverteret syngas.<br />

Størrelsen <strong>af</strong> exergitabet i form <strong>af</strong> ukonverteret syngas skyldes i høj grad CO/ CO2forholdet<br />

i syngassen (se Tabel 7.16). Desto mere CO syngassen indeholder i forhold<br />

<strong>til</strong> CO2 desto lavere bliver dette exergitab. Det skyldes som sagt at CO er mere<br />

reaktionsvilligt end CO2.<br />

Anlæg nr. 3 har det mindste exergitab i form <strong>af</strong> ukonverteret syngas fordi kulstoffet i<br />

syngassen udelukkende er i form <strong>af</strong> CO. Ligeledes er CO/ CO2-forholdet <strong>og</strong>så større<br />

for de øvrige anlæg som er baseret på biomasse i forhold <strong>til</strong> anlæggene der er baseret<br />

på naturgas/bi<strong>og</strong>as.<br />

y<br />

Anlægs-nr.<br />

Ėex, uomsat syngas<br />

[MWex]<br />

Msyngas<br />

[-]<br />

CO<br />

syngas y CO2<br />

[-]<br />

Pkompression<br />

[MWmek]<br />

Q& fjernvarme<br />

[MJ/s]<br />

1 13 1,67 6,5 21 72<br />

2 11 1,72 8,1 23 76<br />

3 8 1,78 ∞ 33 24 74<br />

4 19 1,45 1,1 21 71<br />

5 14 1,60 3,9 18 68<br />

6 18 1,31 0 31 84<br />

Tabel 7.16. Exergiflow <strong>af</strong> uomsat syngas, M-faktoren for syngassen (se Ligning 7.3), CO/ CO2forholdet<br />

for syngassen, fjernvarmeproduktionen <strong>og</strong> kompressionsarbejdet for de 6 forskellige<br />

anlægskonfigurationer.<br />

Ud fra Tabel 7.16 ses det at der er stor forskel på det samlede kompressionsarbejde<br />

for de 6 anlæg, selvom alle 6 anlæg opererer ved et metanolreaktortryk på 144 bar.<br />

Grunden <strong>til</strong> at anlæg nr. 6 har det største samlede kompressionsarbejde er at<br />

syngasvolumenstrømmen er størst for dette anlæg, hvilket skyldes den dårligere<br />

udnyttelse <strong>af</strong> syngassen samtidig med at kulstoffet i syngassen er i form <strong>af</strong> CO2 (der<br />

benyttes 3 H2-molekyler <strong>til</strong> et CO2-molekyle, mens der benyttes 2 H2-molekyler <strong>til</strong> et<br />

CO-molekyle, jævnfør reaktionsligningerne Ligning 7.4 <strong>og</strong> Ligning 7.5).<br />

Forklaringen på at kompressionsarbejdet er mindst for anlæg 4 <strong>og</strong> 5 er at<br />

kompressionen <strong>af</strong> naturgas <strong>og</strong> bi<strong>og</strong>as ikke medregnes. For naturgas er det en fornuftig<br />

32<br />

Grunden <strong>til</strong> at værdien kan være højere end 100 % er at virkningsgraden er baseret på den nedre<br />

brændværdi. Hvis den var baseret på den øvre brændværdi ville den for dette anlæg være 97 %.<br />

33<br />

Det antages at alt CO2 bliver vasket ud fra forgasningsgassen. I realiteten vil ikke alt CO2 blive<br />

udvasket.<br />

36


antagelse, da naturgasnettet er tryksat, mens det burde medregnes for bi<strong>og</strong>as. Det<br />

manglende kompressionsarbejde for bi<strong>og</strong>as anslås <strong>til</strong> at være 6 MWmek 34 .<br />

Tabel 7.16 viser desuden at der er en klar sammenhæng mellem<br />

fjernvarmeproduktionen <strong>og</strong> det samlede kompressionsarbejde. Det er pga.<br />

kompressormellemkølingen benyttes <strong>til</strong> fjernvarmeproduktion samtidig med at<br />

fjernvarmeproduktionen i forbindelse med metanolkonverteringen <strong>og</strong> des<strong>til</strong>leringen -<br />

som udgør den største andel <strong>af</strong> den samlede fjernvarmeproduktion - er næsten<br />

konstant for alle 6 anlæg.<br />

Anlægs-nr. xmetanol, før des<strong>til</strong>lation<br />

[mol-%]<br />

xmetanol, efter des<strong>til</strong>lation<br />

[mol-%]<br />

Q & des<strong>til</strong>lation<br />

[MJ/s]<br />

1 84 99,98 38<br />

2 89 99,98 39<br />

3 94 99,99 41<br />

4 63 99,89 34<br />

5 79 99,96 37<br />

6 50 99,51 27<br />

Tabel 7.17. Metanolkoncentrationer før <strong>og</strong> efter des<strong>til</strong>lation <strong>af</strong> vand/metanol-blandingen samt<br />

varmeeffekten benyttet <strong>til</strong> des<strong>til</strong>lationen for de 6 forskellige anlægskonfigurationer.<br />

Metanolkoncentrationerne før <strong>og</strong> efter des<strong>til</strong>lationen <strong>af</strong> vand/metanol-blandingen for<br />

de 6 anlæg er angivet i Tabel 7.17. Hvis metanolkoncentrationen før des<strong>til</strong>lationen<br />

sammenholdes med CO/ CO2-forholdet i syngassen fra Tabel 7.16, ses det tydeligt at<br />

metanolkoncentrationen er lavest for anlæg 6, fordi metanolen produceres ud fra CO2.<br />

Metanolkoncentrationen på 50 % for anlæg 6 stemmer overens med<br />

reaktionsligningen fra Ligning 7.5, idet der produceres 1 mol vand hver gang der<br />

produceres 1 mol metanol ud fra CO2.<br />

Grunden <strong>til</strong> at metanolkoncentrationen før des<strong>til</strong>lationen for anlæg 3 ikke når 100 %,<br />

selvom alt metanolen produceres ud fra CO, er at syngassen indeholder ca. 5 mol-%<br />

vand. En del <strong>af</strong> denne vandmængde udkondenseres sammen med metanolen efter<br />

metanolreaktoren (ca. 43 %), mens den resterende del omdannes vha. shiftreaktionen<br />

(Ligning 7.18) <strong>og</strong> ender som CO2 i den uomsatte syngas.<br />

Hvis yderligere vand ønskes fjernet fra syngassen, kan den temperatur, som syngassen<br />

<strong>af</strong>køles <strong>til</strong>, sænkes fra de ca. 135°C - eller reaktortrykket kan øges.<br />

Der forventes umiddelbart ikke at være n<strong>og</strong>en forskel mellem<br />

metanolkoncentrationerne før des<strong>til</strong>lationen for anlæg 4 <strong>og</strong> 5, idet syngassen i begge<br />

<strong>til</strong>fælde produceres ud fra metan 35 <strong>og</strong> CO2. Forskellen er imidlertid at bi<strong>og</strong>as, som<br />

anvendes i anlæg 5, indeholder CO2, hvorfor denne CO2 gennemstrømmer<br />

dampreformeren hvor shiftreaktionen (Ligning 7.18) kommer i ligevægt, mens CO2<br />

<strong>til</strong>føres efter dampreformeren i anlæg 4. CO/ CO2-forholdet i syngasserne fra Tabel<br />

7.16 viser klart betydningen <strong>af</strong> dette.<br />

Ligning 7.18: Shiftreaktionen<br />

CO + H O → CO + H<br />

2<br />

2<br />

2<br />

34 Vil fx kun betyde et fald i ηex, metanol på ca. 1 %-point <strong>og</strong> en stigning i den specifikke<br />

metanolomkostning på ca. 9 kr/GJex (se figur 7.9)<br />

35 Naturgas indeholder <strong>og</strong>så n<strong>og</strong>le højere kulbrinter<br />

37


Metanolkoncentrationen i vand/metanol-blandingen efter des<strong>til</strong>lationen <strong>af</strong>hænger<br />

naturligvis <strong>af</strong> metanolkoncentrationen i blandingen før des<strong>til</strong>lationen, men <strong>og</strong>så <strong>af</strong><br />

varmemængden benyttet <strong>til</strong> des<strong>til</strong>lationen.<br />

Varmen <strong>til</strong> des<strong>til</strong>lationen kommer hovedsageligt fra <strong>af</strong>kølingen <strong>af</strong> metanolreaktoren,<br />

men <strong>og</strong>så fra <strong>af</strong>kølingen <strong>af</strong> den metanolholdige gas efter metanolreaktoren.<br />

Forskellen i den benyttede varmemængde <strong>til</strong> des<strong>til</strong>lation for de 6 anlæg (Tabel 7.17)<br />

skyldes forskelle i varmetabet fra metanolreaktoren.<br />

Varmetabet ved metanolkonvertering ud fra CO er nemlig større end for CO2.<br />

I kapitel 7.6 diskuteres hvilke krav der er <strong>til</strong> metanolkoncentrationen i vand/metanolblandingen<br />

efter des<strong>til</strong>lationen.<br />

7.5.1.1 Økonomi<br />

De økonomiske resultater for de 6 anlægskonfigurationer er præsenteret nedenfor.<br />

Figur 7.8 viser hvilke udgifter der er ved metanolproduktion for hver <strong>af</strong> de 6<br />

anlægskonfigurationer.<br />

Figuren tydeliggør at anlæg nr. 3 er det billigste <strong>metanolanlæg</strong> mens anlæg nr. 6 er det<br />

dyreste. Den vigtigste årsag <strong>til</strong> dette er elektricitetsforbruget <strong>af</strong> elektrolyseanlægget.<br />

Det ses at netop disse 2 anlæg har henholdsvis det mindste <strong>og</strong> det største el-forbrug <strong>til</strong><br />

elektrolyse.<br />

Dermed er fordelen ved udvaskning <strong>af</strong> CO2 fra forgasningsgas, som benyttes i anlæg<br />

nr. 3, tydelig. Hvis anlæg 3 sammenlignes med anlæg 2, som <strong>og</strong>så benytter biomasse<br />

<strong>til</strong> syngasproduktionen, ses det at anlæg nr. 3 har opnået en stor besparelse på elforbruget<br />

mod en lille udgift <strong>til</strong> udvaskning <strong>af</strong> CO2.<br />

38


246<br />

562<br />

112<br />

Anlæg 1<br />

Total: 1222 mio. kr/år<br />

123<br />

210<br />

Anlæg 4<br />

Total: 1625 mio. kr/år<br />

22<br />

113<br />

210<br />

526<br />

710<br />

Anlæg 2<br />

Total: 1433 mio. kr/år<br />

158<br />

232<br />

323<br />

135<br />

Anlæg 5<br />

Total: 1321 mio. kr/år<br />

180<br />

97<br />

902<br />

715<br />

198<br />

Anlæg 3<br />

Total: 948 mio. kr/år<br />

30<br />

139<br />

239<br />

Anlæg 6<br />

Total: 3444 mio. kr/år<br />

312<br />

Electricitet Mekanisk effekt NG Bi<strong>og</strong>as<br />

Biomasse CO2 CO2-fjernelse Investering <strong>og</strong> D&V<br />

64<br />

142<br />

2908<br />

Figur 7.8. Omkostningsfordelingen for de 6 anlægskonfigurationer. Den specifikke omkostning ved<br />

CO2-fjernelse er 30,2 €/ton-CO2 [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005] 36 . De øvrige specifikke omkostninger,<br />

samt oplysninger om investering <strong>og</strong> D&V, kan findes i kapitel 7.3.<br />

Omkostningerne <strong>til</strong> investering <strong>og</strong> D&V for de 6 anlæg angivet på Figur 7.8 <strong>af</strong>spejler<br />

anlægspriserne angivet i Tabel 7.18.<br />

Det ses at anlæggene med forgassere (nr. 1, 2 <strong>og</strong> 3) er dyrere end de øvrige på nær<br />

anlæg nr. 6, som specielt har en større udgift <strong>til</strong> metanolreaktoren, pga. den store<br />

gasvolumenstrøm, som <strong>til</strong>føres metanolreaktoren. Gasvolumenstrømmen <strong>til</strong><br />

metanolreaktoren er større for anlæg 6, fordi den recirkulerede gasvolumenstrøm er<br />

større, idet CO2 er mindre reaktionsvilligt end CO. Desuden er udgiften <strong>til</strong><br />

elektrolyseanlægget <strong>og</strong>så meget stor for anlæg 6.<br />

Forskellen mellem anlæg 4 <strong>og</strong> 5 er <strong>og</strong>så hovedsagelig pga. udgiften <strong>til</strong><br />

metanolreaktoren. Forklaringen på dette er den samme, som angivet ovenfor.<br />

36 Prisen er for år 2004.<br />

371<br />

39


Anlægs-nr. Anlægspris<br />

[mia. kr]<br />

1 1,42<br />

2 1,56<br />

3 1,60<br />

4 1,30<br />

5 1,12<br />

6 1,64<br />

Tabel 7.18. Anlægspriser for de 6 <strong>metanolanlæg</strong>.<br />

De samlede omkostninger, som blev angivet på Figur 7.8, er direkte proportionale<br />

med den specifikke metanolomkostning vist på figuren nedenfor, idet<br />

metanolproduktionen er den samme for alle 6 anlæg.<br />

Metanolomkostning [kr/GJex]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Benzin<br />

1 2 3 4 5 6<br />

Anlægs-nr.<br />

Figur 7.9. Den specifikke metanolomkostning for hver <strong>af</strong> de 6 anlægskonfigurationer. Til<br />

sammenligning er prisen for benzin fra Tabel 7.19 angivet. I udregningen <strong>af</strong> den specifikke<br />

metanolomkostning er der taget højde for indtjeningen for fjernvarmeproduktionen. Se betydningen <strong>af</strong><br />

dette på Figur 7.10.<br />

40


Brændsel Pris Kilde<br />

[kr/L] [kr/GJex] [kr/GJen]<br />

Metanol 1,7 95 107<br />

Metanol (kommerciel) 37 2,5 142 160 [Methanex, 2007] se bilag 12<br />

Benzin (med <strong>af</strong>gift) 38 6,6 187 205<br />

Råolie 39 2,2 58 61 [Bloomberg.com, 2007] se bilag 11<br />

Etanol 40 2,4 100 111 [Ahring, 2006]<br />

Tabel 7.19. Brændselspriser for en række relevante brændsler <strong>til</strong> sammenligning med<br />

produktionsomkostningen for metanol for standardscenariet (angivet øverst i tabellen). Se bilag 9 for<br />

opsplitning <strong>af</strong> benzinprisen. Afgiften angivet i bilaget er d<strong>og</strong> 4,04 kr/l i år 2002 (se bilag 10) <strong>og</strong> ikke<br />

3,84 kr/l. Benzinprisen uden <strong>af</strong>gifter er dermed 74 kr/ GJex.<br />

Figur 7.9 <strong>og</strong> Tabel 7.19 viser at de specifikke metanolomkostninger for mange <strong>af</strong><br />

anlæggene kan konkurrere med priserne for en række relevante brændsler. Det<br />

skyldes ikke at omkostningerne <strong>til</strong> produktion <strong>af</strong> fx benzin <strong>og</strong> kommerciel metanol er<br />

i samme størrelsesorden, som omkostningerne ved metanolproduktion i de undersøgte<br />

anlæg, men at profitten er større på disse brændsler (samt <strong>af</strong>gift på benzin).<br />

Udover metanol er fjernvarmen det eneste produkt fra <strong>metanolanlæg</strong>get, som der<br />

regnes med en indtjening fra. Den uomsatte syngas regnes dermed som et<br />

spildprodukt.<br />

Indtjeningen for fjernvarmeproduktionen for de 6 anlæg er proportionel med<br />

fjernvarmeproduktionen (se Tabel 7.16), idet der regnes med en konstant specifik<br />

indtjening på 150 kr/GJ.<br />

I Danmark skal en fjernvarmeproduktion ”hvile i sig selv”, dvs. at udgifterne <strong>til</strong><br />

fjernvarmeproduktionen skal dækkes, men der må ikke skabes profit på<br />

fjernvarmeproduktionen. Det vides ikke hvorledes omkostningerne <strong>til</strong><br />

fjernvarmeproduktionen udregnes for de 6 anlæg, men vis omkostningerne fordeles<br />

mellem metanol <strong>og</strong> fjernvarme ud fra energiindhold opnås de specifikke<br />

fjernvarmepriser som er angivet i Tabel 7.20.<br />

På Figur 7.10 ses den specifikke metanolomkostnings <strong>af</strong>hængighed <strong>af</strong> den specifikke<br />

fjernvarmeindtjening for anlæg nr. 3. Det ses, at ved en specifik fjernvarmeindtjening<br />

på 118 kr/GJ (som angivet i Tabel 7.20) opnås en specifik metanolomkostning på 105<br />

kr/GJex (svarende <strong>til</strong> 118 kr/GJ).<br />

Den specifikke metanolomkostnings <strong>af</strong>hængighed <strong>af</strong> den specifikke<br />

fjernvarmeindtjening for de øvrige anlæg er omtrent den samme (samme hældning på<br />

gr<strong>af</strong>), idet fjernvarmeproduktionen næsten er konstant for alle 6 anlæg (se Tabel 7.16).<br />

37 €420/ton for marts 2007. Metanolprisen er steget voldsomt gennem de seneste år: I starten <strong>af</strong> 2002<br />

var prisen derfor €125/ton. Metanol: HHV= 22,4 MJ/kg, LHV= 19,9 MJ/kg, ρ = 0,79 kg/l<br />

38 Benzinpris på 8,2 kr/l d. 5/3-2007 fratrukket moms. Benzin: HHV= 35 MJ/l, LHV= 32 MJ/l.<br />

39 Markedspris d. 5/3-2007: $60/bbl. Dollarkurs d. 5/3-2007: 5,8 kr/$. 1 bbl = 159 l. Råolie: HHV= 42<br />

MJ/kg, LHV= 40 MJ/kg, ρ = 0,9 kg/l (værdierne kan variere).<br />

40 Produktionsomkostning. Etanol: HHV= 23,4 MJ/l, LHV= 21,1 MJ/l.<br />

41


Anlægs-nr.<br />

Metanol <strong>og</strong> fjernvarme<br />

[kr/GJ]<br />

1 153<br />

2 177<br />

3 118<br />

4 205<br />

5 168<br />

6 414<br />

Tabel 7.20. Specifik metanol- <strong>og</strong> fjernvarme-omkostning, hvis omkostningerne fra anlæggene fordeles<br />

på de 2 produkter efter energiindhold.<br />

Metanolomkostning [kr/GJex]<br />

115<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

Standardværdi<br />

100 110 120 130 140 150 160 170 180 190 200<br />

FV-indtjening [kr/GJ]<br />

Figur 7.10. Den specifikke metanolomkostning som funktion <strong>af</strong> indtjeningen for den producerede<br />

fjernvarme for anlæg nr. 3.<br />

Nedenfor er den specifikke metanolomkostnings <strong>af</strong>hængighed <strong>af</strong> brændsel/inputpriserne<br />

vist.<br />

Det ses at el-prisen har klart den største indflydelse på den specifikke<br />

metanolomkostning, hvilket stemmer overens med Figur 7.8.<br />

Det vurderes, at der er mulighed for en <strong>af</strong>giftslettelse på el-prisen <strong>til</strong><br />

metanolproduktion, ligesom el-<strong>af</strong>giften for nylig blev nedsat for fjernvarmeværker,<br />

som ønsker at producerer fjernvarme ud fra el.<br />

Muligheden for <strong>af</strong>giftslettelse anses for størst for de anlæg, som producerer metanol<br />

ud fra vedvarende energi (anlæg nr. 2, 3, 5 <strong>og</strong> <strong>til</strong> dels 1 <strong>og</strong> 6).<br />

42


Metanolomkostning [kr/GJex]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

0<br />

0 50 100 150 200<br />

El-pris [kr/GJ]<br />

250 300 350 400<br />

Figur 7.11. Den specifikke metanolomkostning som funktion <strong>af</strong> el-prisen for de 6<br />

anlægskonfigurationer. Standard-el-prisen fra Tabel 7.10 er angivet sammen med prisen uden <strong>af</strong>gifter<br />

samt benzinprisen fra Tabel 7.19. Prisen for den mekaniske effekt antages at følge el-prisen, som<br />

angivet ud fra ligningen under Tabel 7.10.<br />

Metanolomkostning [kr/GJex]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Uden <strong>af</strong>gifter<br />

Benzin<br />

Uden <strong>af</strong>gifter<br />

Benzin<br />

Standardværdi<br />

Standardværdi<br />

0 30 60 90 120 150<br />

NG-pris [kr/GJ]<br />

Figur 7.12. Den specifikke metanolomkostning som funktion <strong>af</strong> naturgasprisen for de 6<br />

anlægskonfigurationer. Standardnaturgasprisen fra Tabel 7.10 er angivet sammen med prisen uden<br />

<strong>af</strong>gifter samt benzinprisen fra Tabel 7.19.<br />

43


Metanolomkostning [kr/GJex]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

0<br />

0 10 20 30 40 50<br />

Biomassepris [kr/GJ]<br />

Figur 7.13. Den specifikke metanolomkostning som funktion <strong>af</strong> biomasseprisen for de 6<br />

anlægskonfigurationer. Standardbiomasseprisen fra Tabel 7.10 er angivet sammen med benzinprisen<br />

fra Tabel 7.19.<br />

Metanolomkostning [kr/GJex]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Benzin<br />

Benzin<br />

Standardværdi<br />

Standardværdi<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Bi<strong>og</strong>aspris [kr/GJ]<br />

Figur 7.14. Den specifikke metanolomkostning som funktion <strong>af</strong> bi<strong>og</strong>asprisen for de 6<br />

anlægskonfigurationer. Standardbi<strong>og</strong>asprisen fra Tabel 7.10 er angivet sammen med benzinprisen fra<br />

Tabel 7.19.<br />

44


7.5.2 Parametervariation<br />

Nedenfor er der foretaget en parametervariation for anlægskonfiguration nr. 3.<br />

Denne anlægskonfiguration er valgt pga. den relativt høje metanolvirkningsgrad for<br />

anlægget sammenholdt med anlæggets økonomi, som var den bedste <strong>af</strong> alle 6 anlæg,<br />

som blev undersøgt i <strong>af</strong>snit 7.5.1. Endelig er metanolproduktionen i anlæg 3 baseret<br />

på vedvarende energi, i form <strong>af</strong> biomasse, hvilket <strong>til</strong>lægges stor betydning.<br />

De parametre som er varieret nedenfor er:<br />

• Metanolreaktortrykket<br />

• Brint/kulstof-forholdet i syngassen<br />

• Forgassertrykket<br />

• Afkølingstemperaturen for den metanolholdige gas<br />

7.5.2.1 Metanolreaktortrykket<br />

I dette <strong>af</strong>snit beskrives metanolreaktortrykkets påvirkning <strong>af</strong> en række parametre for<br />

anlægskonfiguration nr. 3.<br />

Metanolreaktortrykket er varieret fra 40-200 bar. Standardværdien er 144 bar.<br />

Det optimale metanolreaktortryk forsøges bestemt.<br />

I bilag 25 forefindes flowsheets for n<strong>og</strong>le <strong>af</strong> driftspunkerne 41 .<br />

Først præsenteres påvirkningen på de termodynamiske parametre, hvorefter<br />

påvirkningen på metanolomkostningen vises.<br />

Metanolexergivirkningsgrad [%]<br />

73<br />

72<br />

71<br />

70<br />

69<br />

68<br />

67<br />

66<br />

65<br />

40 60 80 100 120<br />

Reaktortryk [bar]<br />

140 160 180 200<br />

Figur 7.15. Metanolexergivirkningsgraden ηex, metanol ved varierende reaktortryk for anlæg 3.<br />

41 40 bar, 82,7 bar <strong>og</strong> 200 bar.<br />

45


På Figur 7.15 ses metanolreaktortrykkets påvirkning på<br />

metanolexergivirkningsgraden (ηex, metanol). Det ses at højere reaktortryk giver bedre<br />

virkningsgrad.<br />

Forklaringen på dette kan ses ud fra Figur 7.16. Figur 7.16 viser at mængden <strong>af</strong><br />

uomsat syngas er mindst for højt metanolreaktortryk.<br />

Figur 7.17 viser mere præcist hvorfor mængden <strong>af</strong> uomsat syngas er mindst for højt<br />

metanolreaktortryk. Det ses at andelen <strong>af</strong> metanolstrømmen fra metanolreaktoren som<br />

udkondenseres er størst for højt metanolreaktortryk. Størstedelen (95 %) <strong>af</strong> den<br />

metanol som ikke udkondenseres efter metanolreaktoren recirkuleres <strong>til</strong><br />

metanolreaktoren, mens den resterende del havner i den uomsatte syngas, som<br />

bortledes.<br />

Uomsat syngas [MWex]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

40 60 80 100 120<br />

Reaktortryk [bar]<br />

140 160 180 200<br />

Figur 7.16. Exergistrømmen for den uomsatte syngas ved varierende reaktortryk for anlæg 3.<br />

46


Udkondenseret metanol [%]<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

40 60 80 100 120<br />

Reaktortryk [bar]<br />

140 160 180 200<br />

Figur 7.17. Andelen <strong>af</strong> metanolstrømmen fra metanolreaktoren som udkondenseres ved varierende<br />

reaktortryk for anlæg 3.<br />

Figur 7.18 <strong>og</strong> Figur 7.19 viser hvorfor andelen <strong>af</strong> metanolstrømmen fra<br />

metanolreaktoren som udkondenseres, er størst for højt metanolreaktortryk.<br />

Ud fra Figur 7.18 kan det ses at metanolandelen <strong>af</strong> gasstrømmen fra metanolreaktoren<br />

er størst for højt reaktortryk, hvilket skyldes trykkets påvirkning <strong>af</strong> den kemiske<br />

ligevægt. Det høje tryk medfører ligeledes at metanolandelen <strong>af</strong> gasstrømmen efter<br />

<strong>af</strong>kølingen er meget lavt (Figur 7.19). Det skyldes gas/væske-ligevægten for vand <strong>og</strong><br />

metanol ved den temperatur som der <strong>af</strong>køles <strong>til</strong>. Metanolpartialtrykket er imidlertid<br />

næsten u<strong>af</strong>hængig <strong>af</strong> totaltrykket, hvorfor metanolandelen i den gas med det højeste<br />

tryk er lavest.<br />

47


y [mol-%]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

40 60 80 100 120 140 160 180 200<br />

Reaktortryk [bar]<br />

H2<br />

N2<br />

CO<br />

CO2<br />

H2O<br />

CH4<br />

AR<br />

CH3OH<br />

Figur 7.18. Gassammensætningen i gasstrømmen fra metanolreaktoren ved varierende reaktortryk for<br />

anlæg 3.<br />

y [mol-%]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40 60 80 100 120 140 160 180 200<br />

Reaktortryk [bar]<br />

H2<br />

N2<br />

CO<br />

CO2<br />

H2O<br />

CH4<br />

AR<br />

CH3OH<br />

Figur 7.19. Gassammensætningen i den uomsatte syngas ved varierende reaktortryk for anlæg 3.<br />

48


Metanolrenhed efter des<strong>til</strong>lation [mol-%]<br />

100<br />

99.995<br />

99.99<br />

99.985<br />

99.98<br />

99.975<br />

99.97<br />

40 60 80 100 120 140 160 180 200<br />

Reaktortryk [bar]<br />

Figur 7.20. Metanolkoncentrationen efter des<strong>til</strong>lationen ved varierende reaktortryk for anlæg 3.<br />

Ved at se på reaktortrykkets påvirkning på virkningsgraden var det klart at højt<br />

reaktortryk var optimalt, men det er <strong>og</strong>så nødvendigt at se på påvirkningen <strong>af</strong><br />

metanolkoncentrationen efter des<strong>til</strong>lationen, idet metanolkoncentrationen efter<br />

des<strong>til</strong>lationen skal være <strong>til</strong>strækkelig høj.<br />

Ud fra Figur 7.20 ses det at metanolkoncentrationen efter des<strong>til</strong>lationen er højest ved<br />

højt tryk. Forklaringen på det kan ses ud fra Figur 7.21 <strong>og</strong> Figur 7.22.<br />

Figur 7.21 viser at varmemængden <strong>til</strong> des<strong>til</strong>lationen er størst for højt tryk, hvilket<br />

skyldes forskellen i den varmemængde, som udvindes ved <strong>af</strong>kølingen <strong>af</strong> den<br />

metanolholdige gas efter metanolreaktoren. Ved lavt tryk (mindre end ca. 80 bar) må<br />

denne varmeveksler nemlig udkobles, idet gastemperaturen <strong>til</strong> varmeveksleren bliver<br />

for lav i forhold <strong>til</strong> temperaturen <strong>af</strong> den metanol/vand-blanding, som skal fordampes.<br />

Varmemængden fra metanolreaktoren, som er den anden kilde <strong>til</strong> des<strong>til</strong>lationsvarme,<br />

er imidlertid næsten u<strong>af</strong>hængig <strong>af</strong> reaktortrykket, men ved lavt tryk må en lille del <strong>af</strong><br />

denne varme anvendes <strong>til</strong> tørring <strong>af</strong> biomasse.<br />

Figur 7.22 viser reaktortrykkets påvirkning på metanolkoncentrationen før<br />

des<strong>til</strong>lationen. Det ses at den højeste metanolkoncentration faktisk opnås ved lavt<br />

reaktortryk, men pga. des<strong>til</strong>lationsvarmen er lavere ved lavt tryk, opnås der en lavere<br />

metanolkoncentration efter des<strong>til</strong>lationen.<br />

49


Des<strong>til</strong>lationsvarme [MW]<br />

Metanolrenhed før des<strong>til</strong>lation [mol-%]<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

40 60 80 100 120 140 160 180 200<br />

Reaktortryk [bar]<br />

98<br />

97<br />

96<br />

95<br />

94<br />

93<br />

92<br />

91<br />

90<br />

Figur 7.21. Des<strong>til</strong>lationsvarmen ved varierende reaktortryk for anlæg 3.<br />

40 60 80 100 120<br />

Reaktortryk [bar]<br />

140 160 180 200<br />

Figur 7.22. Metanolkoncentrationen før des<strong>til</strong>lationen ved varierende reaktortryk for anlæg 3.<br />

Grunden <strong>til</strong> at metanolkoncentrationen før des<strong>til</strong>lationen er lavest ved ca. 80 bar, kan<br />

ses ud fra Figur 7.23 <strong>og</strong> Figur 7.24.<br />

Figur 7.23 viser at vandkoncentrationen i syngassen er størst ved ca. 80 bar, <strong>og</strong> idet<br />

molstrømmen <strong>af</strong> syngas næsten er u<strong>af</strong>hængig <strong>af</strong> trykket, er vandmængden i syngassen<br />

størst ved ca. 80 bar. Vandet i syngassen stammer fra damp<strong>til</strong>førslen i forgasseren, <strong>og</strong><br />

denne damp<strong>til</strong>førsel følger kurven på Figur 7.24 idet mere <strong>til</strong>ført damp betyder mere<br />

CO2 i forgasningsgassen, som derefter udvaskes i gasrenseren. Grunden <strong>til</strong> at<br />

50


vandkoncentrationen i syngassen falder efter ca. 80 bar er, at der udkondenseres mere<br />

vand fra syngassen i kompressionsmellemkølingen desto højere trykket bliver.<br />

Figur 7.22 viser imidlertid at metanolkoncentrationen før des<strong>til</strong>lationen er højere ved<br />

ca. 40 bar end ved 200 bar, hvilket ikke stemmer overens med Figur 7.23.<br />

Forklaringen på dette er at en større del <strong>af</strong> vandmængden i syngassen omdannes vha.<br />

shiftreaktionen (Ligning 7.18) ved lavt tryk, idet der er mere CO <strong>til</strong>gængeligt (jævnfør<br />

Figur 7.24).<br />

yH2O [mol-%]<br />

M [-]<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

40 60 80 100 120<br />

Reaktortryk [bar]<br />

140 160 180 200<br />

1.45<br />

Figur 7.23. Vandkoncentrationen i syngassen ved varierende reaktortryk for anlæg 3.<br />

1.9<br />

1.85<br />

1.8<br />

1.75<br />

1.7<br />

1.65<br />

1.6<br />

1.55<br />

1.5<br />

1.4<br />

40 60 80 100 120<br />

Reaktortryk [bar]<br />

140 160 180 200<br />

Figur 7.24. Brint/kulstof-forholdet for syngassen ved varierende reaktortryk for anlæg 3. I anlæg 3 er<br />

alt kulstof i syngassen i form <strong>af</strong> CO.<br />

51


Specifik metanolomkostning [kr/GJex]<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

Reference Uden kompressionsomkostninger<br />

50<br />

40 60 80 100 120 140 160 180 200<br />

Reaktortryk [bar]<br />

Figur 7.25. Den specifikke metanolomkostning ved varierende reaktortryk for anlæg 3. Til<br />

sammenligning er den specifikke metanolomkostning uden kompressionsomkostningerne vist.<br />

Figur 7.25 viser, at den laveste metanolomkostning opnås ved ca. 150 bar. Grunden <strong>til</strong><br />

at metanolomkostningen ikke er mindre ved 200 bar er at omkostningerne <strong>til</strong><br />

kompressionsarbejdet stiger mere end omkostningerne <strong>til</strong> biomasse <strong>og</strong> el <strong>til</strong><br />

elektrolyseanlægget falder.<br />

Det optimale reaktortryk er dermed omkring 150 bar for anlæg 3, idet virkningsgraden<br />

næsten var konstant fra 150 bar <strong>til</strong> 200 bar. Det er d<strong>og</strong> med det forbehold at<br />

metanolkoncentrationen efter des<strong>til</strong>lationen ved 150 bar er <strong>til</strong>strækkelig højt.<br />

Hvis der kommer en <strong>af</strong>giftslettelse på el <strong>til</strong> metanolproduktion, vil det være<br />

fordelagtigt at øge trykket <strong>til</strong> ca. 200 bar, idet el-forbruget er størst ved 200 bar.<br />

Omkostningerne vist på Figur 7.25 er stort set u<strong>af</strong>hængige <strong>af</strong> indtjeningen fra<br />

fjernvarmen, da fjernvarmeproduktionen næsten er u<strong>af</strong>hængig <strong>af</strong> reaktortrykket.<br />

7.5.2.2 Brint/kulstof-forholdet i syngassen<br />

I dette <strong>af</strong>snit beskrives brint/kulstof-forholdets påvirkning <strong>af</strong> en række parametre for<br />

anlægskonfiguration nr. 3.<br />

Brint/kulstof-forholdet i syngassen varieres ved at ændre hvor meget damp der <strong>til</strong>føres<br />

forgasseren, idet mere damp betyder mere CO2 i forgasningsgassen, som derefter<br />

udvaskes i gasrensningen.<br />

Brint/kulstof-forholdet i syngassen varieres fra M=1,55 <strong>til</strong> M=2,35. Standardværdien<br />

er M=1,78.<br />

Det optimale brint/kulstof-forhold i syngassen forsøges bestemt.<br />

I bilag 26 forefindes flowsheets for n<strong>og</strong>le <strong>af</strong> driftspunkerne 42 .<br />

Først præsenteres påvirkningen på de termodynamiske parametre, hvorefter<br />

påvirkningen på metanolomkostningen vises.<br />

42 M=1,55 <strong>og</strong> M=2,35.<br />

52


Metanolexergivirkningsgrad [%]<br />

73<br />

72<br />

71<br />

70<br />

69<br />

68<br />

67<br />

66<br />

65<br />

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4<br />

M [-]<br />

Figur 7.26. Metanolexergivirkningsgraden ηex, metanol ved varierende brint/kulstof-forhold for syngassen<br />

(M) for anlæg 3.<br />

Figur 7.26 viser at den højeste metanolexergivirkningsgrad opnås ved ca. M=1,85.<br />

Forklaringen på det kan ses ud fra Figur 7.27, som viser at det mindste exergitab i<br />

form <strong>af</strong> uomsat syngas opnås ved ca. M=1,85.<br />

Ud fra teorien kunne man forvente at det mindste exergitab i form <strong>af</strong> uomsat syngas<br />

ville opnås ved M=2, da en syngas med dette brint/kulstof-forhold i teorien kan<br />

omdannes fuldstændigt <strong>til</strong> metanol.<br />

Molstrømmen <strong>af</strong> uomsat syngas er d<strong>og</strong> <strong>og</strong>så mindst ved M=2, men exergiindholdet i<br />

brint er imidlertid så stort, at det mindste exergitab i form <strong>af</strong> uomsat syngas opnås ved<br />

et lidt lavere brint/kulstof-forhold.<br />

53


Uomsat syngas [MWex]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4<br />

M [-]<br />

Figur 7.27. Exergistrømmen for den uomsatte syngas ved varierende brint/kulstof-forhold for<br />

syngassen (M) for anlæg 3.<br />

Figur 7.28 viser hvor meget gassammensætningen i den uomsatte syngas <strong>af</strong>hænger <strong>af</strong><br />

brint/kulstof-forholdet. Ved M=2 svarer andelen <strong>af</strong> brint i den uomsatte syngas <strong>til</strong><br />

andelen <strong>af</strong> brint i syngassen, mens andelen <strong>af</strong> brint i den uomsatte syngas for M=1,78<br />

(30 mol-%) er meget lavere end andelen i syngassen, som er på 61 mol-%.<br />

y [mol-%]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H2<br />

N2<br />

CO<br />

CO2<br />

H2O<br />

CH4<br />

AR<br />

CH3OH<br />

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4<br />

M [-]<br />

Figur 7.28. Gassammensætningen i den uomsatte syngas ved varierende brint/kulstof-forhold for<br />

syngassen (M) for anlæg 3.<br />

54


Metanolrenhed efter des<strong>til</strong>lation [mol-%]<br />

100<br />

99.995<br />

99.99<br />

99.985<br />

99.98<br />

99.975<br />

99.97<br />

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4<br />

M [-]<br />

Figur 7.29. Metanolkoncentrationen efter des<strong>til</strong>lationen ved varierende brint/kulstof-forhold for<br />

syngassen (M) for anlæg 3.<br />

Ved at se på brint/kulstof-forholdets påvirkning på virkningsgraden var det klart at et<br />

forhold på M=1,85 var optimalt, men det er <strong>og</strong>så nødvendigt at se på påvirkningen <strong>af</strong><br />

metanolkoncentrationen efter des<strong>til</strong>lationen, idet metanolkoncentrationen efter<br />

des<strong>til</strong>lationen skal være <strong>til</strong>strækkelig høj.<br />

Ud fra Figur 7.29 ses det at metanolkoncentrationen efter des<strong>til</strong>lationen er højest ved<br />

det laveste brint/kulstof-forhold. Forklaringen på det kan ses ud fra Figur 7.30 <strong>og</strong><br />

Figur 7.31.<br />

Figur 7.30 viser at metanolkoncentrationen før des<strong>til</strong>lationen, ligesom<br />

koncentrationen efter des<strong>til</strong>lationen, er højest ved det laveste brint/kulstof-forhold.<br />

Des<strong>til</strong>lationsvarmen vist på Figur 7.31 varierer dermed ikke i en sådan grad at<br />

tendensen fra Figur 7.30 ikke kan genfindes på Figur 7.29.<br />

Grunden <strong>til</strong> at metanolkoncentrationen før des<strong>til</strong>lationen er højest ved det laveste<br />

brint/kulstof-forhold er, at der omsættes mere vand vha. shiftreaktionen (Ligning<br />

7.18) ved lavt brint/kulstof-forhold, idet der er mere CO <strong>til</strong>gængeligt. Vandet<br />

omdannes på den måde <strong>til</strong> CO2 <strong>og</strong> ender i den uomsatte syngas (Figur 7.28).<br />

55


Metanolrenhed før des<strong>til</strong>lation [mol-%]<br />

Des<strong>til</strong>lationsvarme [MW]<br />

100<br />

99<br />

98<br />

97<br />

96<br />

95<br />

94<br />

93<br />

92<br />

91<br />

90<br />

89<br />

88<br />

87<br />

86<br />

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4<br />

M [-]<br />

Figur 7.30. Metanolkoncentrationen før des<strong>til</strong>lationen ved varierende brint/kulstof-forhold for<br />

syngassen (M) for anlæg 3.<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4<br />

M [-]<br />

Figur 7.31. Des<strong>til</strong>lationsvarmen ved varierende brint/kulstof-forhold for syngassen (M) for anlæg 3.<br />

Variationen i des<strong>til</strong>lationsvarmen, som kan ses på Figur 7.31 skyldes at varmen <strong>til</strong><br />

des<strong>til</strong>lation opnået ved <strong>af</strong>køling <strong>af</strong> den metanolholdige gas efter metanolreaktoren er<br />

højest ved M=2. Forklaringen på det er at varmen benyttet <strong>til</strong> forvarmning <strong>af</strong> den<br />

recirkulerede gas er mindst ved M=2, idet molstrømmen <strong>af</strong> den recirkulerede gas er<br />

mindst. Samtidig er temperaturen <strong>af</strong> metanol/vand-blandingen fra<br />

des<strong>til</strong>lationskolonnen, som skal fordampes, mindst ved lavt brint/kulstof-forhold.<br />

56


Dette betyder at den metanolholdige gas kan <strong>af</strong>køles <strong>til</strong> en <strong>til</strong>svarende lavere<br />

temperatur, som forklarer hvorfor des<strong>til</strong>lationsvarmen øges fra M=1,65 <strong>til</strong> M=1,55.<br />

Temperaturen <strong>af</strong> metanol/vand-blandingen fra des<strong>til</strong>lationskolonnen, som skal<br />

fordampes, er mindst når metanolkoncentrationen før des<strong>til</strong>lationen er højest.<br />

Varmen opnået ved <strong>af</strong>køling <strong>af</strong> metanolreaktoren, som er den anden kilde <strong>til</strong><br />

des<strong>til</strong>lationsvarme er næsten u<strong>af</strong>hængig <strong>af</strong> brint/kulstof-forholdet.<br />

Specifik metanolomkostning [kr/GJex]<br />

112<br />

110<br />

108<br />

106<br />

104<br />

102<br />

100<br />

98<br />

96<br />

94<br />

92<br />

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4<br />

M [-]<br />

Figur 7.32. Den specifikke metanolomkostning ved varierende brint/kulstof-forhold for syngassen (M)<br />

for anlæg 3.<br />

Figur 7.32 viser, at den laveste metanolomkostning opnås ved ca. M=1,85, hvilket<br />

svarer <strong>til</strong> det brint/kulstof-forhold som gav den bedste virkningsgrad (Figur 7.26).<br />

Det optimale brint/kulstof-forhold er dermed omkring M=1,85. Det er d<strong>og</strong> med det<br />

forbehold at metanolkoncentrationen efter des<strong>til</strong>lationen ved M=1,85 er <strong>til</strong>strækkelig<br />

højt.<br />

Omkostningerne vist på Figur 7.32 er stort set u<strong>af</strong>hængige <strong>af</strong> indtjeningen fra<br />

fjernvarmen, da fjernvarmeproduktionen næsten er u<strong>af</strong>hængig <strong>af</strong> brint/kulstofforholdet.<br />

7.5.2.3 Forgassertrykket<br />

I dette <strong>af</strong>snit beskrives forgassertrykkets påvirkning <strong>af</strong> en række parametre for<br />

anlægskonfiguration nr. 3.<br />

Tryksat forgasning ved 5 bar sammenlignes med atmosfærisk forgasning (1 bar).<br />

Standardkonfigurationen er atmosfærisk forgasning.<br />

I bilag 27 forefindes flowsheet’et for <strong>metanolanlæg</strong>get med tryksat forgasning.<br />

57


Atmosfærisk forgasning<br />

(1 bar)<br />

Tryksat forgasning<br />

(5 bar)<br />

cmetanol [kr/GJex] 95 89<br />

Pkompression [MWel] 25 17<br />

Q & fjernvarme [MJ/s] 74 66<br />

Tabel 7.21. Forgassertrykkets påvirkning <strong>af</strong> en række parametre for anlæg nr. 3.<br />

Ud fra Tabel 7.21 ses det, at metanolomkostningerne kan reduceres ved overgang <strong>til</strong><br />

tryksat forgasning. Forklaringen på det er, at kompressionsomkostningerne reduceres<br />

ved at kompressionsarbejdet mindskes fra 25 MWel <strong>til</strong> 17 MWel. Faldet i<br />

kompressionsarbejdet sænker d<strong>og</strong> <strong>og</strong>så fjernvarmeproduktionen med samme omfang<br />

(8 MJ/s), hvilket gør at metanolomkostningerne ikke reduceres mere end <strong>til</strong> 89<br />

kr/GJex.<br />

I disse beregninger er det antaget at den specifikke forgasserpris er konstant. I<br />

realiteten vil den formentlig være større for den tryksatte forgasser. Samtidig vil der i<br />

praksis <strong>og</strong>så være et energiforbrug i forbindelse med <strong>til</strong>førsel <strong>af</strong> biomasse <strong>til</strong> den<br />

tryksatte forgasser. Dette mindsker samlet set fordelen ved benyttelse <strong>af</strong> tryksat<br />

forgasning.<br />

I modellen er effektforbruget <strong>til</strong> tryksætningen <strong>af</strong> dampen <strong>til</strong> den tryksatte forgasserer<br />

heller ikke medregnet. Dampen vil d<strong>og</strong> med fordel kunne tryksættes inden den<br />

fordampes, dette kræver d<strong>og</strong> et andet modeldesign omkring den tryksatte forgasser.<br />

Forskellen mellem parametrene angivet i Tabel 7.22 skyldes modelopbygningen <strong>af</strong><br />

<strong>metanolanlæg</strong>get, men vil i realiteten ikke <strong>af</strong>vige meget fra hinanden.<br />

Modellen <strong>af</strong> <strong>metanolanlæg</strong>get er konstrueret på en sådan måde at udvaskningen <strong>af</strong><br />

CO2, som benyttes i anlæg nr. 3, foregår ved at alt CO2 fjernes fra forgasningsgassen.<br />

Det ønskede brint/kulstof-forhold opnås derfor ved at ændre mængden <strong>af</strong> damp som<br />

<strong>til</strong>føres forgasseren, idet mere damp betyder mere CO2 i forgasningsgassen.<br />

Ved tryksat forgasning vil andelen <strong>af</strong> metan i forgasningsgassen imidlertid øges pga.<br />

trykkets påvirkning <strong>af</strong> den kemiske ligevægt (se Tabel 7.22). Metanandelen kunne<br />

sænkes ved at øge damp<strong>til</strong>førslen <strong>til</strong> forgasseren, men dette vil i modellen påvirke<br />

brint/kulstof-forholdet pga. en øget CO2-udvaskning.<br />

Hvis kun en del <strong>af</strong> CO2’en i forgasningsgassen blev udvasket i modellen ville<br />

metanandelen i forgasningsgassen fra den tryksatte forgasser kunne sænkes ved at øge<br />

damp<strong>til</strong>førslen <strong>til</strong> forgasseren uden at påvirke brint/kulstof-forholdet, hvilket ville<br />

give en mere realistisk driftssituation.<br />

Resultaterne angivet i Tabel 7.21 vil d<strong>og</strong> ikke være påvirket nævneværdigt <strong>af</strong><br />

ovenstående, idet forskellen mellem omkostningerne for anlæggene med tryksat <strong>og</strong><br />

atmosfærisk forgasning svarer <strong>til</strong> reduktionen i kompressionsomkostningerne.<br />

58


Atmosfærisk forgasning<br />

(1 bar)<br />

Tryksat forgasning<br />

(5 bar)<br />

ηex, metanol [%] 72 68<br />

Ėex, uomsat syngas [MWex] 8 32<br />

y CH4 , uomsat syngas [mol-%] 3 32<br />

y [mol-%] 0,15 2,23<br />

,<br />

CH 4<br />

FG<br />

xmetanol, efter des<strong>til</strong>lation [mol-%] 99,992 99,974<br />

xmetanol, før des<strong>til</strong>lation [mol-%] 93,8 90,4<br />

Q & des<strong>til</strong>lation [MJ/s] 41,4 33,9<br />

Tabel 7.22. Forgassertrykkets påvirkning <strong>af</strong> en række parametre for anlæg nr. 3. Forskellen mellem<br />

disse parametre skyldes modelopbygningen <strong>af</strong> <strong>metanolanlæg</strong>get (læs ovenfor).<br />

7.5.2.4 Afkølingstemperaturen for den metanolholdige gas<br />

I dette <strong>af</strong>snit beskrives påvirkningen på en række parametre for anlægskonfiguration<br />

nr. 3 ved variation <strong>af</strong> <strong>af</strong>kølingstemperaturen for den metanolholdige gas.<br />

Afkølingstemperaturen for den metanolholdige gas er defineret som temperaturen i<br />

node 605 eller 611 (se fx bilag 22). Standardtemperaturen er 60°C <strong>og</strong> der<br />

sammenlignes med en <strong>af</strong>kølingstemperatur på 100°C.<br />

I bilag 28 forefindes flowsheet’et for <strong>metanolanlæg</strong>get ved en <strong>af</strong>kølingstemperatur på<br />

100°C.<br />

T<strong>af</strong>køling = 60°C T<strong>af</strong>køling = 100°C<br />

ηex, metanol [%] 71,82 71,51<br />

Ėex, uomsat syngas [MWex] 7,8 8,9<br />

Udkondenseret metanol 43 [%] 98 92<br />

y [mol-%] 0,59 2,45<br />

CH3OH, uomsat syngas<br />

xmetanol, efter des<strong>til</strong>lation [mol-%] 99,992 99,994<br />

xmetanol, før des<strong>til</strong>lation [mol-%] 93,8 93,8<br />

Q & des<strong>til</strong>lation [MJ/s] 41,4 43,7<br />

Q & fjernvarme [MJ/s] 73,85 74,02<br />

cmetanol [kr/GJex] 94,5 95,1<br />

Tabel 7.23. Afkølingstemperaturens påvirkning <strong>af</strong> en række parametre for anlæg nr. 3.<br />

Ud fra Tabel 7.23 ses det at effekterne ved at variere <strong>af</strong>kølingstemperaturen er<br />

begrænsede. Der ses d<strong>og</strong> et lille fald i virkningsgrad ved at øge <strong>af</strong>kølingstemperaturen<br />

pga. et øget tab <strong>af</strong> exergi i form <strong>af</strong> uomsat syngas. Grunden <strong>til</strong> det øgede tab <strong>af</strong> exergi<br />

i form <strong>af</strong> uomsat syngas er, at der udkondenseres mindre metanol fra gassen.<br />

Metanolkoncentrationen i den <strong>af</strong>kølede gas bestemmes <strong>af</strong> gas/væske ligevægten for<br />

metanol <strong>og</strong> vand ved den temperatur, som der <strong>af</strong>køles <strong>til</strong>.<br />

Tabel 7.23 viser <strong>og</strong>så at metanolkoncentrationen efter des<strong>til</strong>lationen øges ved at hæve<br />

<strong>af</strong>kølingstemperaturen, idet des<strong>til</strong>lationsvarmen øges.<br />

43 Angiver hvor stor en del <strong>af</strong> metanolen fra metanolreaktoren som udkondenseres. Størstedelen (95 %)<br />

<strong>af</strong> den metanol som ikke udkondenseres recirkuleres <strong>til</strong> metanolreaktoren.<br />

59


Des<strong>til</strong>lationsvarmen øges pga. des<strong>til</strong>lationsvarmen udvundet ved at <strong>af</strong>køle den<br />

metanolholdige gas øges, idet varmen brugt <strong>til</strong> forvarmning <strong>af</strong> den recirkulerede gas<br />

<strong>til</strong> metanolreaktoren mindskes, da temperaturen kun skal hæves fra 100°C.<br />

Grunden <strong>til</strong> den lille stigning i metanolomkostningerne, som opstår ved at hæve<br />

<strong>af</strong>kølingstemperaturen (se Tabel 7.23), skyldes hovedsagelig en stigning i el- <strong>og</strong><br />

brændsels-omkostningerne, pga. den lidt lavere virkningsgrad ved højere<br />

<strong>af</strong>kølingstemperatur.<br />

Den lille ændring i fjernvarmeproduktionen har ikke n<strong>og</strong>en reel betydning.<br />

Ud fra Tabel 7.23 <strong>og</strong> Tabel 7.24 kan det <strong>og</strong>så konkluderes at det ikke kan betale sig at<br />

sænke <strong>af</strong>kølingstemperaturen yderligere, hvilket ville medføre at varmen udvundet<br />

ved denne <strong>af</strong>køling ikke ville kunne udnyttes <strong>til</strong> fjernvarme, medmindre<br />

varmeveksleren blev opdelt i 2.<br />

Afkølingsvarme <strong>til</strong> fjernvarme Afkølingsvarme ikke <strong>til</strong> fjernvarme<br />

Q& fjernvarme [MJ/s] 73,8 68,1<br />

cmetanol [kr/GJex] 94,5 98,2<br />

Tabel 7.24. Fjernvarmeproduktionens <strong>og</strong> den specifikke metanolomkostnings <strong>af</strong>hængighed <strong>af</strong> om<br />

varmen udvundet ved <strong>af</strong>køling <strong>af</strong> den metanolholdige gas udnyttes <strong>til</strong> fjernvarme (varmeveksleren, som<br />

er placeret efter node 643, se fx bilag 22)<br />

60


7.6 Diskussion<br />

I parametervariationen ovenfor blev det vist at værdierne for metanolreaktortrykket <strong>og</strong><br />

brint/kulstof-forholdet, som blev benyttet i simuleringerne for anlægskonfiguration nr.<br />

3 i sammenligning med de øvrige anlægskonfigurationer, var tæt på de optimale<br />

værdier.<br />

De optimale værdier for de 2 parametre for de øvrige anlægskonfigurationer er<br />

nødvendigvis ikke de samme. Det vurderes imidlertid, at det optimale reaktortryk for<br />

de øvrige anlægskonfigurationer ikke er mindre, idet problemet med uomsat syngas<br />

ved lavere reaktortryk, må være mere udtalt for de øvrige anlægskonfigurationer<br />

(jævnfør Tabel 7.16 <strong>og</strong> Figur 7.16), pga. CO2 er mindre reaktionsvilligt end CO.<br />

Uomsat syngas var hovedårsagen <strong>til</strong> at både virkningsgrad <strong>og</strong> metanolomkostning var<br />

lavest ved et metanolreaktortryk på 150 bar eller derover.<br />

Ligeledes vurderes det at brint/kulstof-forholdene benyttet for de øvrige<br />

anlægskonfigurationer, som var mellem M=1,31 <strong>og</strong> M=1,72 (Tabel 7.16) var tæt på<br />

de optimale værdier.<br />

Det skyldes, at et højere brint/kulstof-forhold ville betyde et for stort tab <strong>af</strong> brint i den<br />

uomsatte syngas 44 , hvilket både ville betyde lavere virkningsgrad <strong>og</strong> højere<br />

omkostninger. Et lavere brint/kulstof-forhold ville bl.a. kræve en endnu større<br />

metanolreaktor, idet den recirkulere volumenstrøm <strong>af</strong> uomsat syngas ville øges,<br />

hvilket <strong>og</strong>så ville øge omkostningerne.<br />

Et lavt brint/kulstof-forhold i metanolreaktoren betyder <strong>og</strong>så at produktionen <strong>af</strong><br />

biprodukter, som fx etanol øges [Hansen, 1998], hvilket betyder en lavere<br />

metanolproduktion <strong>og</strong> en dyrere des<strong>til</strong>lationsproces.<br />

Det optimale metanolreaktortryk <strong>og</strong> brint/kulstof-forhold for de 6<br />

anlægskonfigurationer <strong>af</strong>hænger <strong>og</strong>så <strong>af</strong> hvad kravene <strong>til</strong> metanolkoncentrationer efter<br />

des<strong>til</strong>lation er. Kravene <strong>til</strong> metanolkoncentrationen <strong>af</strong>hænger imidlertid <strong>af</strong> hvilket<br />

marked, som metanolen produceres <strong>til</strong>.<br />

Kommercielt metanol har en renhed på 99,99 % 45 <strong>og</strong> 46 [NZIC,2007], men hvis<br />

metanolen benyttes <strong>til</strong> iblanding i benzin eller diesel kan en koncentration på 99,85<br />

% 45 [Nykomb, 1997] benyttes.<br />

Motorforsøg med en dieselmotor viser d<strong>og</strong>, at metanol kan indeholde n<strong>og</strong>le procent<br />

vand uden problemer for dieselmotoren [Nykomb, 1997].<br />

Hvis den producerede metanol tænkes benyttet i DMFC brændselsceller, er vand i<br />

metanolen heller ikke n<strong>og</strong>et problem, idet brændslet <strong>til</strong> disse brændselsceller består <strong>af</strong><br />

vand med en lav metanolkoncentration. Biprodukterne ved metanolproduktionen, vil<br />

imidlertid muligvis medføre at en des<strong>til</strong>lation <strong>af</strong> metanolen alligevel er påkrævet.<br />

44 Brint/kulstof-forholdet blev bestemt ved at fastholde brintandel i den uomsatte syngas på 30 mol-%.<br />

45 Det er ikke angivet i kilden om det er mol-% eller vægt-%.<br />

46 Værdien for metanolkoncentrationen stammer fra <strong>metanolanlæg</strong> ejet <strong>af</strong> Methanex. Methanex er <strong>og</strong>så<br />

kilden <strong>til</strong> den kommercielle metanolpris benyttet tidligere i rapporten.<br />

61


Anlægs-nr. xmetanol, efter des<strong>til</strong>lation<br />

[mol-%]<br />

1 99,98<br />

2 99,98<br />

3 99,99<br />

4 99,89<br />

5 99,96<br />

6 99,51<br />

Tabel 7.25. Metanolkoncentrationer efter des<strong>til</strong>lation <strong>af</strong> vand/metanol-blandingen for de 6 forskellige<br />

anlægskonfigurationer. Værdier fra Tabel 7.17.<br />

Ud fra Tabel 7.25<strong>og</strong> beskrivelsen ovenfor 47 kan det konkluderes at anlæg 3 er det<br />

eneste anlæg som kan producere kommercielt metanol, mens de øvrige anlæg 48 ved de<br />

undersøgte driftspunkter kan producere metanol <strong>til</strong> iblanding med benzin <strong>og</strong> diesel.<br />

Værdierne angivet i Tabel 7.25 er d<strong>og</strong> kun vejledende, idet des<strong>til</strong>lationen i modellen<br />

<strong>af</strong> <strong>metanolanlæg</strong>get kun omfatter des<strong>til</strong>lation <strong>af</strong> en metanol/vand-blanding, som<br />

dermed ikke inkluderer de biprodukter, der <strong>og</strong>så skal des<strong>til</strong>leres fra i et <strong>metanolanlæg</strong>.<br />

7.6.1 Forbedring <strong>af</strong> anlægsdesign<br />

Nedenfor er angivet n<strong>og</strong>le forslag <strong>til</strong> forbedring <strong>af</strong> anlægsdesignet for<br />

<strong>metanolanlæg</strong>get:<br />

• Udnyttelse <strong>af</strong> uomsat syngas<br />

• Udnyttelse <strong>af</strong> metanol fra spildvandet fra des<strong>til</strong>lationsprocessen<br />

Den uomsatte syngas fra metanolkonverteringskredsen, som i dette anlægsdesign<br />

udgør flere MW (19 MW for anlæg nr. 4), kan anvendes <strong>til</strong> el-produktionen vha. en<br />

gasturbine, et brændscellesystem eller ved at sende gassen <strong>til</strong> et kr<strong>af</strong>tværk.<br />

Gassen kunne <strong>og</strong>så benyttes <strong>til</strong> dampproduktion, som kunne drive kompressorerne i<br />

anlægget.<br />

I forbindelse disse udnyttelsesmuligheder kan der <strong>og</strong>så produceres varme, som fx kan<br />

benyttes <strong>til</strong> des<strong>til</strong>lationsprocessen eller fjernvarme.<br />

Spildevandet fra des<strong>til</strong>lationsprocessen, som har et metanolindhold på ca. 2,3 MWex i<br />

det undersøgte anlægsdesign kan udnyttes <strong>til</strong> dampproduktion <strong>til</strong> dampreformeren i<br />

stedet for rent vand. Hvis dampreformeren ikke benyttes <strong>af</strong>hænger<br />

udnyttelsespotentialet <strong>af</strong> metanolkoncentrationen i spildevandet. Denne<br />

metanolkoncentrationen varierer fra 1 mol-% (anlæg 6) <strong>til</strong> 13 mol-% (anlæg 3). Hvis<br />

metanolkoncentrationen er for lav, kan det formentlig ikke betale sig at udvinde<br />

metanolen.<br />

Endelig kan anlægsdesignet forbedres på en sådan måde, at n<strong>og</strong>le <strong>af</strong> antagelserne<br />

angivet i <strong>af</strong>snit 7.1.5 kan undværes.<br />

47<br />

Hvis det antages at metanolkoncentrationerne angivet i [NZIC,2007] <strong>og</strong> [Nykomb, 1997] er i mol-%.<br />

48<br />

Metanolkoncentrationen for anlæg nr. 6 er lavere end 99,85 %, men det vides ikke hvor streng denne<br />

grænse er.<br />

62


7.6.2 Alternative anlægsdesign<br />

Nedenfor er angivet n<strong>og</strong>le forslag <strong>til</strong> alternative anlægsdesign, hvis følgende krav gør<br />

sig gældende:<br />

• Metanolkoncentrationen efter des<strong>til</strong>lationen skal øges<br />

• Forgasningen skal foregå under tryk<br />

Hvis metanolkoncentrationen efter des<strong>til</strong>lationen skal øges, kan enten<br />

des<strong>til</strong>lationsvarmen eller metanolkoncentrationen før des<strong>til</strong>lationen øges.<br />

Des<strong>til</strong>lationsvarmen kan fx øges ved at opdele forvarmningen <strong>af</strong> den uomsatte syngas<br />

i metanolkonverteringsloopet ved at <strong>til</strong>føje en varmeveksler mellem varmeveksleren<br />

som producerer fjernvarme <strong>og</strong> varmeveksleren som leverer des<strong>til</strong>lationsvarme. Det vil<br />

øge des<strong>til</strong>lationsvarmen, fordi temperaturen <strong>af</strong> den metanolholdige gas <strong>til</strong><br />

varmeveksleren, som leverer des<strong>til</strong>lationsvarme, vil øges.<br />

Des<strong>til</strong>lationsvarmen kan <strong>og</strong>så øges ved at sænke des<strong>til</strong>lationstrykket, hvorved den<br />

omtalte varmeveksler, som leverer des<strong>til</strong>lationsvarme, kan <strong>af</strong>køle den metanolholdige<br />

gas <strong>til</strong> en lavere temperatur. Hvis des<strong>til</strong>lationstrykket sænkes skal fjernvarmevandet<br />

produceret ud fra spildvarmen fra des<strong>til</strong>lationen d<strong>og</strong> eftervarmes. Det kan lade sig<br />

gøre i n<strong>og</strong>le <strong>af</strong> de andre varmevekslere som producerer fjernvarme andre steder i<br />

anlægget.<br />

Metanolkoncentrationen før des<strong>til</strong>lationen kan fx øges ved at <strong>af</strong>køle syngassen<br />

yderligere inden den <strong>til</strong>føres metanolkonverteringsloopet, således at yderligere vand<br />

udkondenseres. Varmen fra denne <strong>af</strong>køling kan <strong>til</strong> dels benyttes <strong>til</strong><br />

fjernvarmeproduktion <strong>og</strong> syngassen kan efter <strong>af</strong>kølingen forvarmes med en del <strong>af</strong><br />

kompressormellemkølingsvarmen.<br />

I forbindelse med anlægskonfiguration nr. 3 kan denne forbedrede tørring <strong>af</strong><br />

syngassen muligvis medføre, at metanolkoncentrationen før des<strong>til</strong>lationen bliver så<br />

høj, at metanolen kan benyttes som brændstof <strong>til</strong> transportsektoren - evt. ved<br />

<strong>til</strong>sætning <strong>til</strong> benzin eller diesel - uden des<strong>til</strong>lation.<br />

Hvis tryksat forgasning ønskes anvendt kan problematikken i forbindelse med <strong>til</strong>førsel<br />

<strong>af</strong> biomassen <strong>til</strong> forgasseren løses ved at forbehandle biomassen, så den gøres<br />

flydende, hvilket muliggør at biomassen kan pumpes ind i forgasseren (entrained flow<br />

forgasning). Det betyder naturligvis at tørring <strong>af</strong> biomassen ikke kan benyttes, hvilket<br />

medfører, at en betydelig del <strong>af</strong> brændværdien i biomassen benyttes <strong>til</strong> fordampning <strong>af</strong><br />

vand.<br />

7.6.3 Integration med andre anlæg<br />

Hvis <strong>metanolanlæg</strong>get integreres i et kr<strong>af</strong>tværk, som <strong>VEnzin</strong>-<strong>visionen</strong> lægger op <strong>til</strong>,<br />

kan der opnås en række fordele – både økonomisk <strong>og</strong> exergimæssigt.<br />

3 oplagte muligheder for integration mellem de to anlæg er:<br />

• Den del <strong>af</strong> varmen udvundet ved <strong>af</strong>køling <strong>af</strong> forgasningsgassen, som i modellen<br />

benyttes <strong>til</strong> dampproduktion <strong>til</strong> tørring <strong>af</strong> biomasse kunne i stedet benyttes <strong>til</strong><br />

overhedning <strong>af</strong> højtryksdamp fra et kr<strong>af</strong>tværk, mod at kr<strong>af</strong>tværket leverede<br />

lavtemperaturdamp <strong>til</strong> tørringen <strong>af</strong> biomassen. Det vil samtidig kunne betyde at<br />

kompressormellemkølingsvarmen ikke behøves at blive benyttet <strong>til</strong> tørring <strong>af</strong><br />

biomasse, hvilket kan medføre at gastemperaturerne inden kompressorerne kan<br />

63


sænkes. Kompressormellemkølingsvarmen kan i stedet evt. benyttes <strong>til</strong><br />

fjernvarme, hvilket kun vil betyde et ca. 10 % højere kompressionsarbejde 49 .<br />

• Den del <strong>af</strong> varmen udvundet ved <strong>af</strong>køling <strong>af</strong> reformergassen, som i modellen<br />

benyttes <strong>til</strong> dampproduktion <strong>til</strong> dampreformeren kunne i stedet benyttes <strong>til</strong><br />

overhedning <strong>af</strong> højtryks- <strong>og</strong> lavtryksdamp fra et kr<strong>af</strong>tværk. Højtryksdampen skulle<br />

benyttes i kr<strong>af</strong>tværket mens lavtryksdamp (ved dampreformeringstrykket)<br />

benyttes i dampreformeren.<br />

• Kompressorerne i <strong>metanolanlæg</strong>get kan drives dampturbiner, som får leveret<br />

højtryksdamp fra kr<strong>af</strong>tværket.<br />

For at integrationen mellem <strong>metanolanlæg</strong>get <strong>og</strong> kr<strong>af</strong>tværket skal give mening, skal<br />

elektrolyseanlægget ikke være i drift når kr<strong>af</strong>tværket producerer elektricitet. Det<br />

skyldes, at kr<strong>af</strong>tværket med fordel kan producere elektricitet når el-prisen er høj, mens<br />

elektrolyseanlægget med fordel kan være i drift når el-prisen er lav.<br />

Ved benyttelse <strong>af</strong> det buffersystem <strong>til</strong> elektrolyseanlægget, som omtales i anden del <strong>af</strong><br />

rapporten (kapitel 8), er integrationen mellem de to anlæg mulig.<br />

Ud over integration med et kr<strong>af</strong>tværk lægger <strong>VEnzin</strong>-<strong>visionen</strong> <strong>og</strong>så op <strong>til</strong> integration<br />

med en etanolproduktion. Fordelene ved at integrere disse to anlæg er:<br />

• Biomasserestproduktet fra etanolproduktionen kan benyttes i forgasseren i<br />

<strong>metanolanlæg</strong>get.<br />

• Brinten <strong>og</strong> CO2’en, som udledes fra etanolproduktionen, kan benyttes <strong>til</strong><br />

syngasproduktion i <strong>metanolanlæg</strong>get.<br />

Udover disse to integrationsmuligheder, vil varme ved forskellige temperaturer,<br />

formentlig <strong>og</strong>så med fordel kunne udveksles.<br />

49 Hvis kompressionsarbejdet sammenlignes for kompressorindgangstemperaturne 30°C <strong>og</strong> 60°C.<br />

64


8 Benyttelse <strong>af</strong> underjordiske gaslagre <strong>til</strong> brint<br />

<strong>og</strong> ilt i et <strong>metanolanlæg</strong><br />

I denne del <strong>af</strong> rapporten undersøges det, hvorvidt det er økonomisk fordelagtigt at<br />

benytte underjordiske gaslagre <strong>til</strong> brint <strong>og</strong> ilt i et <strong>metanolanlæg</strong>, som inkluderer et<br />

elektrolyseanlæg.<br />

Gaslagrene tænkes benyttet i et buffersystem, således at elektrolyseanlægget<br />

producerer brint <strong>og</strong> ilt <strong>til</strong> lagrene, samtidig med at der er et forbrug <strong>af</strong> brint <strong>og</strong> ilt fra<br />

lagrene <strong>til</strong> metanolproduktion. På denne måde kan driften <strong>af</strong> elektrolyseanlægget<br />

<strong>af</strong>kobles fra det øvrige <strong>metanolanlæg</strong>.<br />

Det undersøges, om omkostningerne kan nedsættes, ved kun at have<br />

elektrolyseanlægget i drift når el-prisen er lav, mens det resterende <strong>metanolanlæg</strong><br />

opererer med et maksimum <strong>af</strong> driftstimer.<br />

Der er ops<strong>til</strong>let 2 scenarier, for at kunne undersøge dette. De gennemgås i det<br />

følgende, efter et kapitel om underjordiske brintlagre<br />

65


8.1 Underjordiske brintlagre<br />

Hvis der ønskes opbevaret store mængder brint, er den klart billigste løsning et<br />

underjordisk brintlager [Amos, 1998].<br />

Et underjordisk brintlager kan etableres ud fra tomme olie- eller gas-felter, i salt<br />

horste, klippe hulrum (rock caverns) eller i vandførende jordlag (aquifers) [Taylor et<br />

al., 1986].<br />

I litteraturen kan man finde meget forskellige priser for et underjordisk brintlager (se<br />

Tabel 8.1), bl.a. fordi det <strong>af</strong>hænger <strong>af</strong> hvilken <strong>af</strong> de 4 lagertyper, som benyttes, <strong>og</strong> om<br />

hulrummene er naturligt forekommende, eller de skal mineres.<br />

Erfaringerne med underjordiske brintlagre tæller bl.a. et lager ved Beynes i Frankrig,<br />

hvor Gaz de France har opbevaret bygas indeholdende 50 % brint i et aquifer-lager på<br />

330 mio. Nm 3 fra 1957 <strong>til</strong> 1974 uden n<strong>og</strong>en særlige problemer overhovedet.<br />

Et andet eksempel er Imperial Chemical Industries ved Teeside i England, som<br />

opbevarer/opbevarede brint i en salt horst ved 50 bar [Taylor et al., 1986].<br />

I Danmark benytter man i dag salt horste som naturgaslagre i naturgasnettet. Salt<br />

horste, der kan benyttes <strong>til</strong> gaslagring, forefindes kun i Nordjylland i Danmark<br />

[Jørgensen, 2007]. Hvis det ønskes at konstruere gaslagre andre steder i Danmark, kan<br />

der fx konstrueres aquifer-lagre. Denne type gaslager benyttes som naturgaslager ved<br />

Stenlille på Sjælland. Det kan imidlertid være et problem at få <strong>til</strong>ladelse <strong>til</strong> opførsel <strong>af</strong><br />

et sådant lager, bl.a. pga. en større risiko for udsivning [Jørgensen, 2007].<br />

I en intern DONG-rapport lavet <strong>af</strong> DONG, KBB, Rambøll <strong>og</strong> MTS [DONG, 2003] er<br />

det undersøgt, hvad et gaslager i en salt horst ved Lille Torup i Jylland vil koste.<br />

Lageret tænkes benyttet <strong>til</strong> CAES (Compressed Air Energy Storage), <strong>og</strong> er på 500.000<br />

m 3 . Hvis prisen for gaslageret omregnes <strong>til</strong> en energispecifik pris for et brintlager 50 ,<br />

vil denne ligge under værdierne angivet i Tabel 8.1. Den eksakte pris er fortrolig.<br />

Prisen angivet i [DONG, 2003] er detaljeret sammensat <strong>af</strong> delomkostninger, <strong>og</strong> må<br />

anses for en passende kilde, idet lagerprisen er for et gaslager placeret i Danmark,<br />

hvilket denne rapport <strong>og</strong>så tager udgangspunkt i. Endeligt er lagerstørrelsen (500.000<br />

m 3 ) <strong>og</strong>så <strong>til</strong>strækkelig <strong>til</strong> formålet (jævnfør resultaterne senere i rapporten).<br />

Kilde Original værdi Omregnet værdi<br />

[kr/MJ]<br />

[Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005] 0,2 kr/MJ 0,2<br />

[Amos, 1998] $2,50-$18,90/kg-H2 0,125 – 0,945<br />

Tabel 8.1. Specifikke brintlagerpriser (cbrintlager) fra en række kilder. [Amos, 1998] er en<br />

oversigtsrapport ligesom Teknol<strong>og</strong>ikatal<strong>og</strong>et, hvorfor det angivede interval stammer fra 3 andre kilder<br />

(publiceret 1986-1994).<br />

Til denne undersøgelse anvendes prisen fra [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005], fordi den<br />

anses for et fornuftigt kompromis, <strong>og</strong> samtidig delvist bygger på [Amos, 1998]. I den<br />

høje ende <strong>af</strong> prisintervallet angivet <strong>af</strong> [Amos, 1998] er der desuden typisk medtaget<br />

udstyr som kompressorer <strong>og</strong> lignende. Det er ikke ønskeligt i denne sammenhæng, da<br />

lageret integreres i et <strong>metanolanlæg</strong>, som allerede indeholder det meste <strong>af</strong> dette<br />

udstyr.<br />

50 i omregningen <strong>til</strong> er der antaget et brintlagertryk på ca. 100 bar. LHVbrint=10,78 MJ/Nm 3<br />

66


8.2 Scenarier<br />

Der er undersøgt 2 scenarier i forbindelse med benyttelse <strong>af</strong> gaslagre i sammenhæng<br />

med et elektrolyseanlæg i et <strong>metanolanlæg</strong>.<br />

Det første scenarie undersøger, hvad der er teoretisk muligt at mindske<br />

omkostningerne med ved benyttelse <strong>af</strong> gaslagre. Det andet scenarie undersøger, hvad<br />

omkostningerne i realiteten kan mindskes med.<br />

I begge scenarier antages det at <strong>metanolanlæg</strong>get - eksklusiv elektrolyseanlægget – er<br />

i drift hele året. Antallet <strong>af</strong> driftstimer for elektrolyseanlægget – <strong>og</strong> dermed <strong>og</strong>så<br />

størrelsen <strong>af</strong> elektrolyseanlægget – optimeres efter økonomi.<br />

I tabellen nedenfor er værdierne for en række nøgleparametre, som benyttes <strong>til</strong><br />

simuleringerne, angivet.<br />

Parameter Værdi Evt. kilde/kommentar<br />

celektrolyse 1,5 mio. kr/MWe<br />

cbrintlager 0,2 kr/MJ [Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005]<br />

klagerpris 1 51<br />

ηelektrolyse 80 %<br />

Levetid 15 år<br />

rD&V 2 %<br />

r 5 % Antaget kalkulationsrente<br />

klager-max/min 5 Læs nedenfor<br />

Tabel 8.2. Standardværdier benyttet i simuleringerne for scenarierne. Definitionen for ηelektrolyse er vist i<br />

Ligning 7.2 på side 14. Værdierne uden kildeanvisning eller kommentar er sat efter standardværdierne<br />

for <strong>metanolanlæg</strong>get vist i Tabel 7.2 side 21, Tabel 7.7 <strong>og</strong> Tabel 7.9 side 26.<br />

Forholdet mellem den maksimale <strong>og</strong> den minimale lagerbeholdning angivet i Tabel<br />

8.2 (klager-max/min) svarer n<strong>og</strong>enlunde <strong>til</strong> forholdet mellem maksimal- <strong>og</strong> minimaltrykket<br />

i gaslageret. Forholdet har betydning for den samlede pris for et gaslager, idet den<br />

angiver, hvor stor den effektive lagerstørrelse er i forhold <strong>til</strong> den samlede<br />

lagerstørrelse. Forskellen mellem den effektive <strong>og</strong> den samlede lagerstørrelse kaldes<br />

”cushion gas”. Parameteren klager-max/min er typisk større end 3 [Taylor et al., 1986].<br />

Der er foretaget n<strong>og</strong>le antagelser i forbindelse med denne undersøgelse:<br />

• Der er ikke n<strong>og</strong>et krav om en minimums operationstid, hvilket betyder, at<br />

anlægget kan være i drift den ene time <strong>og</strong> ude <strong>af</strong> drift i den næste. Det stemmer<br />

godt overens med elektrolyseanlæggets hurtige opstarts <strong>og</strong> reguleringstid<br />

[Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005].<br />

• Der er i sammenligningen mellem <strong>metanolanlæg</strong> med <strong>og</strong> uden gaslagre ikke taget<br />

højde for det ekstra energiforbrug <strong>til</strong> tryksætning, som formentlig vil være<br />

forbundet med benyttelse <strong>af</strong> gaslagre i et <strong>metanolanlæg</strong>. Størrelsen <strong>af</strong> dette ekstra<br />

forbrug <strong>af</strong>hænger meget <strong>af</strong> designet <strong>af</strong> <strong>metanolanlæg</strong>get: hvis trykket i<br />

metanolreaktoren ikke er større end brintlagertrykket, er der intet ekstra<br />

energiforbrug <strong>til</strong> tryksætning <strong>af</strong> brint. Hvis iltlagringstrykket sættes lavt, <strong>og</strong><br />

51 Forhold mellem brint- <strong>og</strong> ilt-lagerprisen:<br />

iltlageret er det samme som for brintlageret.<br />

C<br />

k = . Det antages, at udgiften <strong>til</strong><br />

iltlager<br />

lagerpris Cbrintlager<br />

67


ekspansionen fra iltlageret foregår vha. en turbine, kan det ekstra energiforbrug<br />

minimeres.<br />

• Regulerkr<strong>af</strong>tmarkedet inkluderes ikke i denne undersøgelse, selvom det største<br />

potentiale formentlig forekommer her. Det skyldes, at formålet med denne<br />

undersøgelse kun er at sandsynliggøre, at der er bedre økonomi i et <strong>metanolanlæg</strong><br />

med gaslagre - end i et uden.<br />

De el-priser som benyttes i scenarierne, er fra DK-VEST for årene 2000-2006 (se elpriserne<br />

på Figur 7.6). Der er anført gennemsnitspriser <strong>og</strong> spredninger for disse elpriser<br />

i tabellen nedenfor.<br />

2000 2001 2002 2003 2004 2005 2006 2000-2006 (ref)<br />

c el,<br />

år<br />

[kr/MWh]<br />

122 177 189 250 214 277 330 223<br />

σel, år<br />

[kr/MWh]<br />

93 73 119 160 50 127 99 126<br />

Tabel 8.3. Den gennemsnitlige el-pris <strong>og</strong> spredningen på el-priserne.<br />

For lettere at kunne forholde sig <strong>til</strong> omkostningerne forbundet med drift <strong>af</strong> et<br />

elektrolyseanlæg med gaslagre, som præsenteres senere i rapporten, defineres en<br />

række referenceomkostninger. Omkostningerne defineres ud fra et fiktivt år på 8760<br />

timer med en gennemsnitlig el-pris på 223 kr/MWh (fra ”2000-2006” i Tabel 8.3).<br />

Ligning 8.1: De specifikke reference-el-omkostninger<br />

c = c ⋅ e ⋅ levetid = 223 kr ⋅8760<br />

MWh ⋅15<br />

= 29,<br />

3<br />

ref , el<br />

el,<br />

år<br />

el<br />

MWh<br />

Hvor de specifikke reference-el-omkostninger er omkostningen <strong>til</strong> el for et elektrolyseanlæg på 1<br />

MWe, som er i drift u<strong>af</strong>brudt gennem hele levetiden ved en gennemsnits-el-pris. eel er det specifikke elforbrug<br />

for et elektrolyseanlæg [energiforbrug / installeret effekt].<br />

Ligning 8.2: De specifikke referenceomkostninger<br />

c = c ⋅ ( 1+<br />

r ⋅ levetid)<br />

+ c<br />

mio.<br />

kr = 1,<br />

5 ⋅ ( 1+<br />

0,<br />

02 ⋅15)<br />

+ 29,<br />

3<br />

ref<br />

elektrolyse<br />

D&V<br />

ref , el<br />

MWe<br />

MWe<br />

mio<br />

. kr<br />

MWe<br />

mio.<br />

kr<br />

mio.<br />

kr = 31,<br />

3 MWe<br />

Hvor de specifikke referenceomkostninger, er omkostningerne <strong>til</strong> et elektrolyseanlæg på 1 MWe, som<br />

er i drift u<strong>af</strong>brudt, samt D&V <strong>og</strong> el for hele anlæggets levetid.<br />

Ligning 8.3: De specifikke reference-el-omkostninger regnet i nutidsværdi<br />

i=<br />

levetid cel,<br />

år<br />

c ref , el,<br />

nutidsværdi<br />

= eel<br />

⋅ ∑<br />

i<br />

1+<br />

r<br />

i=<br />

15 223 kr<br />

MWh<br />

MWh<br />

= 8760 MWe ⋅∑<br />

i<br />

1+<br />

0,<br />

05<br />

= 20,<br />

3<br />

i=<br />

1<br />

( ) i=<br />

1 ( )<br />

Ligning 8.4: De specifikke referenceomkostninger regnet i nutidsværdi<br />

i levetid rD&V<br />

⋅ celektrolyse<br />

c ref , nutidsværdi<br />

= celektrolyse<br />

+ ∑<br />

+ c<br />

i<br />

ref , el,<br />

nutidsværdi<br />

i 1 ( 1+<br />

r)<br />

=<br />

=<br />

i 15<br />

mio.<br />

kr<br />

mio. kr 0,<br />

02 ⋅1,<br />

5 MWe mio.<br />

kr<br />

mio<br />

= 1 , 5 MWe + ∑ + 20,<br />

3<br />

i<br />

MWe = 22,<br />

1<br />

1+<br />

0,<br />

05<br />

=<br />

i=<br />

1<br />

( )<br />

For alle årene 2000-2006 er følgende parameter defineret:<br />

. kr<br />

MWe<br />

mio<br />

. kr<br />

MWe<br />

MWe<br />

68


Ligning 8.5: Reference-el-omkostningerne baseret på el-priserne for et <strong>af</strong> årene fra 2000-2006<br />

= c ⋅ E ⋅ levetid<br />

C ref , el,<br />

år el,<br />

år el<br />

hvor Eel er el-forbruget per år<br />

Følgende 5 parametre benyttes ved frems<strong>til</strong>ling <strong>af</strong> resultaterne for simuleringerne <strong>og</strong><br />

<strong>til</strong> sammenligninger mellem de 2 scenarier i resultatkapitlet (8.3):<br />

Ligning 8.6: Sparede omkostninger<br />

=<br />

Sparede omkostninger − C<br />

⋅ ( 1+<br />

r ⋅ levetid)<br />

Csparet el ekstra anlægsomkostning<br />

D&V<br />

⎛ ⎛ x ⎞ ⎞<br />

( − C ) − ⎜C<br />

⋅ ⎜ −1⎟<br />

+ C ⎟ ⋅ ( 1+<br />

r ⋅ levetid)<br />

= C ref , el,<br />

år el<br />

⎝<br />

elektrolyse<br />

⎝ Driftstimer<br />

⎠<br />

lagre<br />

⎠<br />

D&V<br />

,<br />

Hvor Cel er de samlede el-omkostninger gennem levetiden. Celektrolyse = celektrolyse<br />

⋅ Pel,<br />

ref , hvor Pel, ref<br />

er el-effekten for referenceelektrolyseanlægget (anlægget der er i drift u<strong>af</strong>brudt). x er antallet <strong>af</strong> timer<br />

per år (8760 eller 8784). Clagre er omkostningen for både brint- <strong>og</strong> ilt-lager.<br />

Ligning 8.7: Tilbagebetalingstiden<br />

C<br />

Tilbagebetalingstid =<br />

Csparet<br />

el<br />

− C<br />

levetid<br />

=<br />

C<br />

elektrolyse<br />

ekstra anlægsomkostning<br />

ekstra anlægsomkostning<br />

⎛ x ⎞<br />

⋅ ⎜ −1⎟<br />

+ C<br />

⎝ Driftstimer<br />

⎠<br />

⋅ r<br />

D&V<br />

⎛ ⎛ x ⎞ ⎞<br />

( cel,<br />

år − cel<br />

) ⋅ E el − ⎜C<br />

elektrolyse<br />

⋅⎜<br />

−1⎟<br />

+ Clagre<br />

⎟ ⋅ rD&V<br />

Hvor el<br />

⎝<br />

c er gennemsnits-el-prisen.<br />

Ligning 8.8: Forrentning <strong>af</strong> investeringen<br />

⎝ Driftstimer<br />

1<br />

Forrentning <strong>af</strong> investering =<br />

Tilbagebetalingstid<br />

=<br />

( c − c )<br />

el,<br />

år<br />

el<br />

⋅ E<br />

el<br />

C<br />

elektrolyse<br />

lagre<br />

⎛ ⎛ x ⎞<br />

− ⎜C<br />

elektrolyse<br />

⋅⎜<br />

−1⎟<br />

+ C<br />

⎝ ⎝ Driftstimer<br />

⎠<br />

⎛ x ⎞<br />

⋅ ⎜ −1⎟<br />

+ Clagre<br />

⎝ Driftstimer<br />

⎠<br />

2 <strong>af</strong> parametrene ovenfor beregnes <strong>og</strong>så i nutidsværdi:<br />

⎠<br />

⎠<br />

Csparet<br />

el<br />

− C<br />

=<br />

levetid<br />

C<br />

lagre<br />

⎞<br />

⎟ ⋅ r<br />

⎠<br />

ekstra anlægsomkostning<br />

ekstra anlægsomkostning<br />

D&V<br />

⋅ r<br />

D&V<br />

69


Ligning 8.9: Sparede omkostninger i nutidsværdi<br />

Sparede omkostninger i nutidsværdi<br />

⎛<br />

⎛<br />

⎜<br />

⎛ x ⎞<br />

( c − ) ⋅ − ⎜ ⋅⎜<br />

− ⎟ +<br />

i=<br />

levetid el,<br />

år cel<br />

E el Celektrolyse<br />

1 C<br />

⎜<br />

⎝ ⎝ Driftstimer<br />

⎠<br />

= ∑ ⎜<br />

i<br />

i=<br />

1 ⎜<br />

( 1+<br />

r)<br />

⎜<br />

⎝<br />

⎛ ⎛ x ⎞ ⎞<br />

− ⎜C<br />

elektrolyse<br />

⋅ ⎜ −1⎟<br />

+ Clagre<br />

⎟<br />

⎝ ⎝ Driftstimer<br />

⎠ ⎠<br />

Tilbagebetalingstiden regnet i nutidsværdi findes ved at sætte ”Sparede omkostninger<br />

i nutidsværdi” = 0 <strong>og</strong> så bestemme parameteren ”levetid”, som i dette <strong>til</strong>fælde vil<br />

være lig ”<strong>til</strong>bagebetalingstiden regnet i nutidsværdi”.<br />

De specifikke referenceomkostninger på 31,3 mio. kr/MWe for det fiktive år (Ligning<br />

8.2) benyttes <strong>til</strong> normering <strong>af</strong> de sparede omkostninger beregnet ud fra Ligning 8.6 <strong>og</strong><br />

Ligning 8.9 i resultatdelen, for lettere at kunne relatere <strong>til</strong> størrelserne.<br />

For at kunne forholde sig <strong>til</strong> omkostningerne <strong>til</strong> gaslagrene defineres parameteren<br />

klagerprisandel, som den samlede gaslagerpris delt med prisen for<br />

referenceelektrolyseanlægget:<br />

Ligning 8.10: Lagerprisandelen<br />

Clagre<br />

k lagerprisandel<br />

=<br />

C<br />

elektrolyse<br />

I forbindelse med benyttelsen <strong>af</strong> gaslagre defineres en række parametre, som benyttes<br />

senere i rapporten:<br />

Ligning 8.11: Energiindholdet i brintlageret<br />

E br int lager =<br />

k<br />

Clagre<br />

+ 1 ⋅ c<br />

( lagerpris ) br int lager<br />

Ligning 8.12: Det specifikke energiindhold i brintlageret<br />

E br int lager<br />

e br int lager = =<br />

P P ⋅ k<br />

Clagre<br />

+ 1 ⋅ c<br />

k<br />

=<br />

lagerprisandel<br />

2 ⋅ 0,<br />

2<br />

el,<br />

ref<br />

⋅1,<br />

5<br />

mio<br />

kr<br />

MJ<br />

. kr<br />

MWe<br />

el,<br />

ref<br />

= k<br />

=<br />

lagre<br />

lagerprisandel<br />

⎞<br />

⎟ ⋅ r<br />

⎠<br />

⋅ c<br />

D&V<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

elektrolyse<br />

( lagerpris ) br int lager ( k lagerpris + 1)<br />

⋅ c br int lager<br />

lagerprisandel<br />

⋅1042<br />

MWh<br />

MWe<br />

Ud fra dette kan det beregnes, hvor lang tid et fyldt lager kan forsyne<br />

<strong>metanolanlæg</strong>get med gas:<br />

k<br />

70


Ligning 8.13: Tidskonstant for lageret<br />

T<br />

lager<br />

k<br />

=<br />

E<br />

=<br />

P<br />

br int lager,<br />

effektiv<br />

el,<br />

ref<br />

lagerprisandel<br />

0,<br />

8<br />

⋅ η<br />

elektrolyse<br />

⋅1042<br />

MW<br />

MWe<br />

E<br />

=<br />

MWh<br />

MWe<br />

⋅<br />

br int lager<br />

4<br />

5<br />

P<br />

el,<br />

ref<br />

= k<br />

k<br />

⋅<br />

k<br />

lager−max/<br />

min<br />

⋅ η<br />

lager−max/<br />

min<br />

elektrolyse<br />

lagerprisandel<br />

Gaslagervolumenet for et <strong>af</strong> lagrene er:<br />

Ligning 8.14: Gaslagervolumenet for et lager<br />

Clagre<br />

Vlager<br />

=<br />

( k<br />

p<br />

lagerpris + 1)<br />

⋅ c brintlager ⋅ LHVbrint<br />

⋅<br />

p<br />

−1<br />

e<br />

=<br />

⋅1042h<br />

= k<br />

Det specifikke gaslagervolumen for et <strong>af</strong> lagrene er:<br />

Ligning 8.15: Det specifikke gaslagervolumen for et lager<br />

Vlager<br />

v lager =<br />

Pel,<br />

ref<br />

=<br />

P ⋅ ( k<br />

k lagerprisandel<br />

⋅ Celektrolyse<br />

+ 1)<br />

⋅ c ⋅ LHV<br />

el,<br />

ref<br />

lagerpris<br />

brintlager<br />

Hvis lagertrykket antages at være 100 bar:<br />

ref<br />

brint<br />

⋅<br />

br int lager<br />

k<br />

⋅<br />

k<br />

η<br />

lagerprisandel<br />

p<br />

p<br />

ref<br />

lager−max/<br />

min<br />

lager−max/<br />

min<br />

elektrolyse<br />

⋅ 43dage<br />

Ligning 8.16: Det specifikke gaslagervolumen for et lager på 100 bar<br />

k c<br />

k 1,<br />

5 mio.<br />

kr<br />

lagerprisandel<br />

⋅ elektrolyse<br />

lagerprisandel<br />

⋅<br />

MWe<br />

v lager =<br />

=<br />

( k 1)<br />

c LHV<br />

p<br />

2 0,<br />

2 kr 10,<br />

78 MJ 100bar<br />

lagerpris + ⋅ brintlager ⋅ brint ⋅<br />

MJ<br />

3<br />

p<br />

⋅ ⋅ ⋅ Nm<br />

ref<br />

1bar<br />

3<br />

= k m<br />

lagerprisandel<br />

⋅3479<br />

MWe<br />

Det betyder, at hvis referenceelektrolyseanlægget er på 1 MWe <strong>og</strong> klagerprisandel = 1, vil lagerstørrelsen<br />

være ca. 3479 m 3 per lager.<br />

8.2.1 Scenarie 1: Det teoretisk optimale scenarie<br />

Scenarie 1 beskriver det teoretisk optimale scenarie for et <strong>metanolanlæg</strong> med et<br />

elektrolyseanlæg, som benytter gaslagre <strong>til</strong> brint <strong>og</strong> ilt.<br />

Grunden <strong>til</strong> at det er et teoretisk optimum, som beregnes, er at driftsoptimeringen for<br />

et specifikt år, udføres på basis <strong>af</strong> el-priserne for det år - forstået på den måde, at man<br />

ved starten <strong>af</strong> året har kendskab <strong>til</strong> el-priserne resten <strong>af</strong> året.<br />

Ud over timedata for el-priserne benyttes dataene i Tabel 8.2 <strong>til</strong> at optimere antallet <strong>af</strong><br />

driftstimer - <strong>og</strong> fordelingen <strong>af</strong> driftstimerne - for elektrolyseanlægget, således at de<br />

samlede omkostninger minimeres. De samlede omkostninger består <strong>af</strong> årlige<br />

omkostninger <strong>til</strong> el <strong>og</strong> D&V samt investeringen i elektrolyseanlæg <strong>og</strong> gaslagre.<br />

Proceduren bag optimeringen er: Ved et givent antal driftstimer per år for<br />

elektrolyseanlægget, fordeles disse i første omgang således, at elektrolyseanlægget<br />

kun er i drift ved de laveste el-priser. Dette medfører en ulige fordeling <strong>af</strong><br />

driftstimerne henover året (se Figur 8.2), hvilket dermed kræver en hvis størrelse<br />

gaslagre.<br />

−1<br />

71


Ved at antage en fast specifik lagerpris kan det beregnes hvor stor en besparelse, der<br />

kan opnås ved at flytte en driftstime fra område 1 <strong>til</strong> område 2 (se Figur 8.1), således<br />

at lagerbeholdningen reduceres. Den driftstime som flyttes, er den med den højeste elpris<br />

i område 1, <strong>og</strong> den time der udvælges som ny driftstime i område 2, er den med<br />

den laveste el-pris.<br />

På et tidspunkt i optimeringsprocessen er det nødvendigt at flytte mere end 1<br />

driftstime, for at kunne reducere størrelsen på gaslagrene. På Figur 8.4 ses det, at det<br />

er nødvendigt at flytte en driftstime fra både område 1 <strong>og</strong> 3 <strong>til</strong> område 2 <strong>og</strong> 4 for at<br />

opnå en lagereduktion.<br />

Når der er blevet flyttet et vist antal driftstimer, bliver lagerbeholdningen hen over<br />

året (se fx Figur 8.1) opdateret. Det gøres for at sikre at en driftstime, som er blevet<br />

flyttet, ikke risikerer at blive flyttet igen.<br />

Denne optimeringsproces fortsættes, ind<strong>til</strong> der ikke længere opnås en besparelse (se<br />

Ligning 8.17 <strong>og</strong> Figur 8.5).<br />

Ligning 8.17: Den specifikke besparelse (besparelsen ved at flytte en times produktion på 1MWe)<br />

c besparelse = clagerbesparelse<br />

− cel−omkostning<br />

k lager−max/min<br />

= ( k lagerpris + 1)<br />

⋅ c brintlager ⋅<br />

⋅ ηelektrolyse<br />

− ( cel,<br />

1 − cel,<br />

2 ) ⋅ levetid<br />

k −1<br />

lager−max/min<br />

( c − c ) ⋅15<br />

= 1440 kr − ( c − c ) 15<br />

5<br />

= 2 ⋅ 0,<br />

2 kr 3600 MJ<br />

MJ ⋅<br />

MWh ⋅ ⋅ 0,<br />

8 − el,<br />

1 el,<br />

2<br />

MWh el,<br />

1 el,<br />

2 ⋅ ,<br />

5 −1<br />

hvor cel, 1 er el-prisen for den driftstime i område 1, som flyttes, <strong>og</strong> cel, 2 er el-prisen for den driftstime i<br />

område 2, som der flyttes <strong>til</strong>.<br />

Ud fra Ligning 8.17 kan den maksimalt <strong>til</strong>ladte forskel i el-pris udregnes (cbesparelse =<br />

0):<br />

Ligning 8.18: Maksimal el-prisforskel mellem de 2 områder<br />

1440 kr<br />

MWh<br />

( c ) kr<br />

el,<br />

1 − cel,<br />

2 = = 96<br />

maks<br />

MWh<br />

15<br />

Hvis der flyttes mere end en driftstime, er det summen <strong>af</strong> disse el-pris-differencer,<br />

som ikke må overstige værdien angivet i Ligning 8.18.<br />

Se Matlab-koden for denne optimeringsproces i bilag 29.<br />

72


Brintlagerbeholdning [MWh]<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Område 2<br />

Område 1 Område 2<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.1. Lagerbeholdningen henover et år – før optimeringen (drift ved de laveste el-priser). For år<br />

2002 ved 2000 driftstimer. Pel, ref = 1 MWe. Område 1 angiver den periode, hvor der forekommer en<br />

stigning fra minimums- <strong>til</strong> maksimums-beholdningen. Område 2 angiver den periode, hvor der<br />

forekommer et fald fra maksimums- <strong>til</strong> minimums-beholdningen. Se Figur 8.2 for den <strong>til</strong>hørende<br />

fordeling <strong>af</strong> driftstimerne henover året.<br />

73


Driftstimer per uge [h]<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Uge-nr. [-]<br />

Figur 8.2. Fordelingen <strong>af</strong> driftstimer henover et år – før optimeringen (drift ved de laveste el-priser).<br />

For år 2002 ved 2000 driftstimer.<br />

Driftstimer per uge [h]<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Uge-nr. [-]<br />

Figur 8.3. Fordelingen <strong>af</strong> driftstimer henover et år – efter optimeringen. For år 2002 ved 2000<br />

driftstimer.<br />

74


Brintlagerbeholdning [MWh]<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Område 2<br />

Område 1<br />

Område 4 Område 3<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.4. Lagerbeholdningen henover et år – efter optimeringen. For år 2002 ved 2000 driftstimer. Pel,<br />

ref = 1 MWe. Område 1 <strong>og</strong> 3 angiver de 2 perioder, hvor der forekommer en stigning fra minimums- <strong>til</strong><br />

maksimums-beholdningen. Område 2 <strong>og</strong> 4 angiver de 2 perioder, hvor der forekommer et fald fra<br />

maksimums- <strong>til</strong> minimums-beholdningen. Se Figur 8.3 for den <strong>til</strong>hørende fordeling <strong>af</strong> driftstimerne<br />

henover året.<br />

75


Omkostninger [%]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Iterationsnummer [-]<br />

El<br />

Gaslagre<br />

Elektrolyseanlæg<br />

D&V<br />

Sparede omkostninger<br />

Figur 8.5. Udvikling gennem optimeringsprocessen ved 2000 driftstimer, hvis beregningerne foretages<br />

på basis <strong>af</strong> el-priserne for år 2002. Omkostningerne er angivet i procent <strong>af</strong> referenceomkostningerne for<br />

år 2002 (kan beregnes vha. Ligning 8.2). Summen <strong>af</strong> gr<strong>af</strong>erne giver derfor 100 %. Alle omkostninger er<br />

beregnet for hele anlæggets levetid.<br />

8.2.2 Scenarie 2: Det i praksis opnåelige scenarie<br />

Scenarie 2 beskriver det praktisk opnåelige scenarie for et <strong>metanolanlæg</strong> med et<br />

elektrolyseanlæg, som benytter gaslagre <strong>til</strong> brint <strong>og</strong> ilt.<br />

Scenariet adskiller sig fra scenarie 1, ved at driften for et år ikke optimeres ud fra et<br />

forhåndskendskab <strong>til</strong> el-priserne for et helt år. Det besluttes i stedet time for time, om<br />

elektrolyseanlægget er i drift eller ej.<br />

Det er valgt at basere driftsbeslutningen ud fra el-priserne for de forudgående 8760<br />

timer samt lagerbeholdningerne i gaslagrene 52 .<br />

Nedenfor er vist den simple regulator, som bestemmer, om elektrolyseanlægget skal i<br />

drift eller ej.<br />

Ligning 8.19: Regulatorligningen eller el-pris-funktionen<br />

⎛ k lager-max/min<br />

+ 1 Vlager,<br />

nu ⎞<br />

cel, drift = cel,<br />

hist + ⎜<br />

− ⎟ ⋅ cel,<br />

lager ,<br />

⎜ 2 k lager-max/min<br />

V ⎟<br />

⎝ ⋅<br />

lager ⎠<br />

hvor cel, drift er en drift-el-pris, som er med <strong>til</strong> at definere, hvornår elektrolyseanlægget er i drift (se<br />

nedenfor). cel, hist er en funktion <strong>af</strong> det ønskede antal <strong>af</strong> driftstimer samt de historiske el-priser - hvor de<br />

historiske el-priser er el-priserne for de foregående 8760 timer. Hvis n angiver det ønskede antal<br />

driftstimer per år er cel, hist den n’de laveste <strong>af</strong> de historiske el-priser. Vlager, nu er lagerbeholdningen ved<br />

52<br />

Det antages at ilt- <strong>og</strong> brint-lagrene tømmes i samme takt, hvorfor den efterfølgende beskrivelse kun<br />

omhandler brintlageret.<br />

76


den time, hvor regulatorligningen benyttes. Vlager er lagerstørrelsen. cel, lager er en fastsat faktor - se<br />

nedenfor for en beskrivelse <strong>af</strong> hvordan den er bestemt. Standardværdien for cel, lager = 300 kr/Mwh.<br />

Vlager,<br />

nu k lager-max/min<br />

+ 1<br />

Hvis halvdelen <strong>af</strong> lagerets effektive lagerplads er fyldt: = = 0,<br />

6 er<br />

c = c .<br />

el,<br />

drift<br />

el,<br />

hist<br />

V<br />

lager<br />

2 ⋅ k<br />

lager-max/min<br />

For at sikre at gaslagrene ikke tømmes eller bliver overfuldt, er der <strong>og</strong>så andre<br />

betingelser, for hvornår elektrolyseanlægget skal være i drift. Alle betingelserne for<br />

drift er angivet nedenfor:<br />

Vlager<br />

Drift hvis: c el < cel,<br />

drift <strong>og</strong> V lager,<br />

nu < Vlager<br />

eller hvis V <<br />

Der er ikke drift hvis: c el > cel,<br />

drift <strong>og</strong><br />

V<br />

lager,<br />

nu<br />

k<br />

lager-max/min<br />

lager<br />

V lager,<br />

nu > eller hvis V lager,<br />

nu > Vlager<br />

k lager-max/min<br />

Det betyder, at elektrolyseanlægget er i drift, hvis el-prisen er mindre end el-prisfunktionen<br />

(cel, drift), forudsat at lagrene ikke er fyldt. Elektrolyseanlægget er ligeledes<br />

i drift, hvis lagerbeholdningen kommer under minimumslagerbeholdningen.<br />

Ud over betingelserne for drift som er angivet ovenfor, vil der i realiteten <strong>og</strong>så være et<br />

krav om, at el-prisen ikke er så høj, at det medfører, at de variable omkostninger ved<br />

metanolproduktionen overstiger indtjeningen ved metanolsalget.<br />

Ligning 8.19 indeholder faktoren cel, lager, som angiver, hvor <strong>af</strong>hængig cel, drift skal være<br />

<strong>af</strong> lagerbeholdningen. På Figur 8.6 <strong>til</strong> Figur 8.11 ses det, hvordan variationer på cel,<br />

lager påvirker udviklingen i cel, drift <strong>og</strong> i lagerbeholdningen henover et år for en fastsat<br />

lagerstørrelse. Figur 8.7 <strong>og</strong> Figur 8.10 viser den økonomisk optimale udvikling for det<br />

specifikke år.<br />

Ud fra en sammenligning <strong>af</strong> Figur 8.9 <strong>og</strong> Figur 8.10 kan det derfor konkluderes, at det<br />

ikke er optimalt, hvis lageret er fyldt eller tomt i for lang tid <strong>af</strong> gangen. Ud fra en<br />

sammenligning <strong>af</strong> Figur 8.11 <strong>og</strong> Figur 8.10 kan det samtidig konkluderes, at det heller<br />

ikke er optimalt, hvis hele lagerstørrelsen ikke udnyttes. Det optimale er derfor store<br />

udsving i lagerbeholdningen henover året.<br />

Grunden <strong>til</strong> at det ikke er optimalt, hvis lageret er fyldt eller tomt i for lang tid <strong>af</strong><br />

gangen, er; at hvis lageret er fyldt, er der ikke mulighed for drift, hvis el-prisen er lav<br />

- <strong>og</strong> hvis lageret er tomt, er der ikke mulighed for at inds<strong>til</strong>le driften, hvis el-prisen er<br />

høj.<br />

Grunden <strong>til</strong> at det ikke er optimalt, hvis hele lagerstørrelsen ikke udnyttes, er, at<br />

udgiften <strong>til</strong> gaslageret er større end nødvendigt. Ud fra Figur 8.8 ses det <strong>og</strong>så, at en for<br />

høj værdi <strong>af</strong> cel, lager medfører en mulighed for drift ved højere el-priser end<br />

nødvendigt.<br />

Det er vanskeligt at bestemme de optimale værdier for lagerstørrelsen <strong>og</strong> faktoren cel,<br />

lager, idet de optimale værdier fundet ud fra el-priserne for et specifikt år kan være<br />

meget forskellige fra de optimale værdier fundet ud fra el-priserne for et andet år.<br />

Det er derfor nødvendigt, at fastsætte værdierne ud fra de historiske el-priser, samt en<br />

fremskrivning <strong>af</strong> el-priserne. I denne undersøgelse holdes faktoren cel, lager konstant,<br />

men den kunne reguleres automatisk ud fra spredningen på el-priserne for – fx - de<br />

forudgående 8760 timer.<br />

77


Det er naturligvis mest kritisk med fastsætningen <strong>af</strong> gaslagerstørrelsen, idet den ikke<br />

er lige<strong>til</strong> at ændre, efter gaslageret er konstrueret.<br />

I resultat<strong>af</strong>snittet for dette scenarie (<strong>af</strong>snit 8.3.2) forsøges værdierne optimeret ud fra<br />

el-priserne for år 2000-2006.<br />

El-pris-funktionen [kr/MWh]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.6. Udvikling i el-pris-funktionen (cel, drift) for år 2005 ved cel, lager = 100 kr/MWh. Antallet <strong>af</strong><br />

driftstimer er 4000. klagerprisandel = 0,1.<br />

78


El-pris-funktionen [kr/MWh]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.7. Udvikling i el-pris-funktionen (cel, drift) for år 2005 ved cel, lager = 300 kr/MWh. Antallet <strong>af</strong><br />

driftstimer er 4000. klagerprisandel = 0,1.<br />

El-pris-funktionen [kr/MWh]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.8. Udvikling i el-pris-funktionen (cel, drift) for år 2005 ved cel, lager = 1500 kr/MWh. Antallet <strong>af</strong><br />

driftstimer er 4000. klagerprisandel = 0,1.<br />

79


Brintlagerbeholdning [MWh]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.9. Udvikling i lagerbeholdningen for år 2005 ved cel, lager = 100 kr/MWh. Antallet <strong>af</strong> driftstimer<br />

er 4000. klagerprisandel = 0,1. Pel, ref = 1 MWe.<br />

Brintlagerbeholdning [MWh]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.10. Udvikling i lagerbeholdningen for år 2005 ved cel, lager = 300 kr/MWh. Antallet <strong>af</strong><br />

driftstimer er 4000. klagerprisandel = 0,1. Pel, ref = 1 MWe.<br />

80


Brintlagerbeholdning [MWh]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000<br />

Time på året [-]<br />

Figur 8.11. Udvikling i lagerbeholdningen for år 2005 ved cel, lager = 1500 kr/MWh. Antallet <strong>af</strong><br />

driftstimer er 4000. klagerprisandel = 0,1. Pel, ref = 1 MWe.<br />

Se Matlab-koden for dette scenarie i bilag 30.<br />

81


8.3 Resultater<br />

Resultaterne for de 2 scenarier er præsenteret nedenfor.<br />

For at lette sammenligningen mellem de 2 scenarier er følgende parametre beregnet<br />

for begge scenarier <strong>og</strong> præsenteret gr<strong>af</strong>isk:<br />

• Sparet omkostninger<br />

• Sparet omkostninger (nutidsværdi)<br />

• Forrentning<br />

• Tilbagebetalingstid<br />

• Tilbagebetalingstid (nutidsværdi)<br />

Parametrene er defineret i teori<strong>af</strong>snittet (s. 69).<br />

Parametrene sammenligninger resultater for det enkelte scenarie med et<br />

referenceanlæg, som det kan læses ud fra definitionerne <strong>af</strong> parametrene.<br />

I resultat<strong>af</strong>snittet for scenarie 2 (<strong>af</strong>snit 8.3.2) sammenlignes værdierne for<br />

parametrene med de teoretisk optimale værdier, som blev præsenteret i scenarie 1.<br />

I diskussions<strong>af</strong>snittet (<strong>af</strong>snit 8.4) sammenlignes yderligere resultater fra de 2<br />

scenarier, <strong>og</strong> resultaterne diskuteres.<br />

8.3.1 Scenarie 1: Det teoretisk optimale scenarie<br />

I dette <strong>af</strong>snit præsenteres resultaterne for scenarie 1. Resultaterne tydeliggør hvad<br />

omkostningerne i forbindelse med drift <strong>af</strong> et elektrolyseanlæg i et <strong>metanolanlæg</strong>,<br />

teoretisk set kan reduceres med ved <strong>til</strong>føjelse <strong>af</strong> gaslagre <strong>til</strong> brint <strong>og</strong> ilt.<br />

82


Omkostninger [%]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

El<br />

Gaslagre<br />

Elektrolyseanlæg<br />

D&V<br />

Sparede omkostninger<br />

Figur 8.12. Omkostninger som funktion <strong>af</strong> antallet <strong>af</strong> driftstimer baseret på el-priserne for år 2005.<br />

Omkostningerne er angivet i procent <strong>af</strong> referenceomkostningerne baseret på år 2005 (kan beregnes vha.<br />

Ligning 8.2). Summen <strong>af</strong> gr<strong>af</strong>erne giver derfor 100 %. Alle omkostninger er beregnet for hele<br />

anlæggets levetid. Ved hvert datapunkt er den teoretisk optimale fordeling <strong>af</strong> driftstimerne beregnet,<br />

som beskrevet i teori<strong>af</strong>snittet (8.2.1). Det betyder samtidig, at lagerstørrelserne udregnes for hvert<br />

punkt.<br />

Figur 8.12 viser, hvordan omkostningerne i forbindelse med investering <strong>og</strong> drift <strong>af</strong> et<br />

elektrolyseanlæg med gaslagre <strong>til</strong> brint <strong>og</strong> ilt <strong>af</strong>hænger <strong>af</strong> antallet <strong>af</strong> driftstimer. Hvis<br />

anlægget kun er i drift få timer om året, får kapitalomkostningerne stor betydning,<br />

mens el-omkostningerne reduceres, idet driftstimerne hovedsageligt fordeles efter elprisernes<br />

størrelse. Ved et bestemt antal driftstimer kan det ikke betale sig at reducere<br />

driftstiden yderlige, da kapitalomkostningerne stiger hurtigere, end el-omkostningerne<br />

falder. Dette optimum kan ses ud fra gr<strong>af</strong>en for sparede omkostninger.<br />

Hvis omkostningsberegningerne baseres på el-priserne for år 2005, ses det ud fra<br />

Figur 8.12, at det optimale antal driftstimer er ca. 4000 per år.<br />

Det ses samtidig ud fra Figur 8.12, at omkostningerne <strong>til</strong> gaslagre ikke stiger<br />

nævneværdigt, når antallet at driftstimer sænkes. Ud fra Figur 8.13 kan det ses, at<br />

gaslagerstørrelserne for år 2005 faktisk mindskes, når antallet <strong>af</strong> driftstimer reduceres<br />

fra 4500 <strong>til</strong> 3000. Det skyldes el-prisernes lidt stokastiske karakter. Det kan <strong>og</strong>så<br />

forklares ud fra et eksempel:<br />

Hvis man antager, at en optimal fordeling <strong>af</strong> driftstimerne er fundet ved et specifikt<br />

antal driftstimer, hvilket dermed <strong>og</strong>så indbefatter en optimal gaslagerstørrelse, kan<br />

den optimale fordeling <strong>af</strong> driftstimerne for et større antal driftstimer vise sig at værre<br />

83


mere koncentreret i visse områder, pga. el-prisernes fordeling, hvilket medfører en<br />

større optimal gaslagerstørrelse.<br />

Samlet lagerpris [%]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.13. Den samlede lagerpris udtrykt som en procentdel <strong>af</strong> referenceelektrolyseanlægsprisen (1,5<br />

mio. kr/MWe) for varierende antal driftstimer. Denne normering <strong>af</strong> den samlede gaslagerpris betegnes<br />

klagerprisandel. Ved en samlet lagerpris på 100 %, kan et fyldt lager levere gas <strong>til</strong> <strong>metanolanlæg</strong>get i 43<br />

dage (se evt. Ligning 8.13). Hvis referenceelektrolyseanlægget er på 1 Mwe, betyder det endvidere, at<br />

lagerstørrelsen er ca. 3479 m 3 per lager.<br />

Ud fra Figur 8.13 kan det ses, at den optimale gaslagerstørrelse er meget <strong>af</strong>hængig <strong>af</strong>,<br />

hvilket år beregningerne baseres på. Udgiften <strong>til</strong> gaslagrene udgør d<strong>og</strong> kun en lille del<br />

<strong>af</strong> de samlede udgifter (se Figur 8.12), hvorfor lagerstørrelsen kan sættes <strong>til</strong>strækkelig<br />

stor.<br />

For hvert datapunkt på Figur 8.13 er det bl.a. <strong>og</strong>så beregnet, hvor stort potentialet for<br />

besparelser teoretisk set er. Kurven for sparede omkostninger for 2005 kunne ses på<br />

Figur 8.12, men nedenfor er kurverne for alle 7 år samlet.<br />

84


Sparede omkostninger [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2000<br />

2001<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

Figur 8.14. Sparede omkostninger som funktion <strong>af</strong> antallet <strong>af</strong> driftstimer. De sparede omkostninger er i<br />

procent <strong>af</strong> referenceomkostningerne på 31,3 mio. kr/MWe (Ligning 8.2). Alle gr<strong>af</strong>erne vil skære xaksen,<br />

hvor antallet <strong>af</strong> driftstimer er lig antallet <strong>af</strong> timer per år, idet referencen er et elektrolyseanlæg,<br />

som er i drift hele året. På Figur 8.13 ses de <strong>til</strong>hørende lagerstørrelser <strong>til</strong> hvert datapunkt.<br />

På Figur 8.14 ses det, at besparelsespotentialet <strong>af</strong>hænger stærkt <strong>af</strong>, hvilke el-priser<br />

beregningerne baseres på.<br />

Det optimale antal driftstimer varierer meget fra år <strong>til</strong> år – fra ca. 2000 <strong>til</strong> ca. 6500<br />

driftstimer.<br />

Ud fra Tabel 8.4 ses det, at besparelsespotentialet er størst, hvis beregningerne baseres<br />

på de el-priser, som har den største spredning. Det er kun el-priserne for år 2006, som<br />

skiller sig lidt ud.<br />

Maks. sparede omkostninger [%] 4 7 9 15 22 24 26<br />

Maks. sparede omkostninger [mio. 1,3<br />

kr/MWe]<br />

2,2 2,8 4,7 6,9 7,5 8,1<br />

År 2004 2001 2000 2002 2005 2006 2003<br />

c el,<br />

år<br />

[kr/MWh]<br />

214 177 122 189 277 330 250<br />

σel, år<br />

[kr/MWh]<br />

50 73 93 119 127 99 160<br />

Tabel 8.4. Den gennemsnitlige el-pris <strong>og</strong> spredningen på el-priserne for år 2000-2006 sorteret efter<br />

maksimalt sparede omkostninger (kan <strong>af</strong>læses på Figur 8.14).<br />

Hvis beregningerne baseres på el-priserne fra 2002, er besparelsespotentialet ca. 4,7<br />

mio. kr for det elektrolyseanlæg, som har 4000 driftstimer, hvis der sammenlignes<br />

med et referenceelektrolyseanlæg på 1 MWe (referenceelektrolyseanlægget er i drift i<br />

85


alle årets timer). Elektrolyseanlægget, som har 4000 driftstimer, er ca. dobbelt så stort<br />

(2 MWe) som referenceelektrolyseanlægget, da der normeres efter samme<br />

gasproduktion per år.<br />

For at få et mere korrekt billede <strong>af</strong> besparelsespotentialet skal de sparede<br />

omkostninger på elektricitet, som opnås hvert år, omregnes <strong>til</strong> nutidsværdi. Idet<br />

besparelsespotentialet hovedsageligt <strong>af</strong>hænger <strong>af</strong> spredningen på el-priserne, er det<br />

ikke nødvendigt at tage højde for el-prisstigninger i anlæggets levetid.<br />

På figuren nedenfor er værdierne fra Figur 8.14 omregnet <strong>til</strong> nutidsværdi.<br />

Sparede omkostninger i nutidsværdi [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.15. Sparede omkostninger i nutidsværdi som funktion <strong>af</strong> antallet <strong>af</strong> driftstimer. De sparede<br />

omkostninger er i procent <strong>af</strong> referenceomkostningerne på 31,3 mio. kr/MWe (Ligning 8.2). Alle<br />

gr<strong>af</strong>erne vil skære x-aksen, hvor antallet <strong>af</strong> driftstimer er lig antallet <strong>af</strong> timer per år, idet referencen er et<br />

elektrolyseanlæg, som er i drift hele året. På Figur 8.13 ses de <strong>til</strong>hørende lagerstørrelser <strong>til</strong> hvert<br />

datapunkt.<br />

Figur 8.15 adskiller sig bl.a. fra Figur 8.14, ved at toppunkterne for gr<strong>af</strong>erne er<br />

forskudt mod højre. Det optimale antal driftstimer for de forskellige år befinder sig<br />

dermed i intervallet fra ca. 3000 <strong>til</strong> ca. 7000 driftstimer.<br />

Det ses desuden, at den største ændring <strong>af</strong> besparelsespotentialet forekommer ved et<br />

lavt antal driftstimer. Det skyldes, at besparelsen på el stiger ved faldende antal<br />

driftstimer (jævnfør Figur 8.12).<br />

Et elektrolyseanlæg, som ikke er i drift hele året, vil som nævnt være større end<br />

referenceelektrolyseanlægget, som er i drift hele året, idet der normeres efter et fast<br />

output per år. Det betyder en større investering i år nul, <strong>og</strong>så pga. investeringen i<br />

gaslagre. Denne ekstra investering i forhold <strong>til</strong> reference<strong>til</strong>fældet kan opfattes som en<br />

86


selvstændig investering <strong>og</strong> de omkostninger, som der spares per år i forhold <strong>til</strong><br />

referencen, kan opfattes som en forrentning <strong>af</strong> denne investering.<br />

Nedenfor er forrentningen, <strong>og</strong> den <strong>til</strong>hørende <strong>til</strong>bagebetalingstid, vist for de samme<br />

datapunkter, som er brugt på Figur 8.13 <strong>til</strong> Figur 8.15.<br />

Forrentning <strong>af</strong> investering [%]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.16. Forrentning <strong>af</strong> ekstrainvestering i forhold <strong>til</strong> referencen som funktion <strong>af</strong> antallet <strong>af</strong><br />

driftstimer. Definitionen <strong>af</strong> denne parameter kan læses ovenfor eller ses i Ligning 8.8. Gr<strong>af</strong>erne vil<br />

være diskontinuerte ved punktet, hvor antallet <strong>af</strong> driftstimer er lig antallet <strong>af</strong> timer per år, idet der i<br />

dette punkt hverken er n<strong>og</strong>en besparelse i forhold <strong>til</strong> referencen eller n<strong>og</strong>en ekstra investering.<br />

Af Figur 8.16, Figur 8.17 <strong>og</strong> Figur 8.18 kan det ses, at det næsten altid kan betale sig<br />

at benytte gaslagre, således at antallet <strong>af</strong> driftstimer kan reduceres. Figurerne antyder<br />

d<strong>og</strong>, at den bedste økonomi opnås ved et så højt antal driftstimer som muligt - i<br />

modsætning <strong>til</strong> gr<strong>af</strong>erne på Figur 8.14 <strong>og</strong> Figur 8.15. Det skyldes, at<br />

ekstrainvesteringen, i forhold <strong>til</strong> referencen, er meget begrænset ved et højt antal<br />

driftstimer. Samtidig med, at et højt antal driftstimer medfører en del sparede<br />

omkostninger (se evt. Figur 8.12), pga. der undgås drift ved de højeste el-priser.<br />

87


Tilbagebetalingstid [år]<br />

15<br />

10<br />

5<br />

0<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.17. Tilbagebetalingstid for ekstrainvestering i forhold <strong>til</strong> referencen som funktion <strong>af</strong> antallet <strong>af</strong><br />

driftstimer. Definitionen <strong>af</strong> denne parameter kan ses i Ligning 8.7.<br />

88


Tilbagebetalingstid (beregnet ud fra nutidsværdi) [år]<br />

15<br />

10<br />

5<br />

0<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.18. Tilbagebetalingstid beregnet ud fra nutidsværdi for ekstrainvestering i forhold <strong>til</strong> referencen<br />

som funktion <strong>af</strong> antallet <strong>af</strong> driftstimer. Definitionen <strong>af</strong> denne parameter kan ses under Ligning 8.9.<br />

8.3.2 Scenarie 2: Det i praksis opnåelige scenarie<br />

I dette <strong>af</strong>snit præsenteres resultaterne for scenarie 2. Resultaterne tydeliggør hvad<br />

omkostningerne i forbindelse med drift <strong>af</strong> et elektrolyseanlæg i et <strong>metanolanlæg</strong>, i<br />

realiteten kan reduceres med ved <strong>til</strong>føjelse <strong>af</strong> gaslagre <strong>til</strong> brint <strong>og</strong> ilt. Disse resultater<br />

sammenlignes med de teoretiske værdier præsenteret i scenarie 1. For en generel<br />

beskrivelse <strong>og</strong> forklaring <strong>af</strong> figurerne henvises <strong>til</strong> <strong>af</strong>snit 8.3.1.<br />

Resultaterne præsenteres for cel, lager = 300 kr/MWh <strong>og</strong> klagerprisandel = 0,1, da disse<br />

værdier i gennemsnit medfører den største besparelse ved benyttelse <strong>af</strong> gaslagre (se<br />

evt. bilag 31). Værdien for klagerprisandel på 0,1 betyder, at størrelsen <strong>af</strong> gaslagrene er<br />

således, at et fyldt gaslager kan levere gas <strong>til</strong> <strong>metanolanlæg</strong>get i 4,3 dage (se evt.<br />

89


Ligning 8.13). Hvis referenceelektrolyseanlægget er på 1 Mwe, betyder det endvidere,<br />

at lagerstørrelsen er ca. 348 m 3 per lager.<br />

Beregningerne i det følgende er foretaget på basis <strong>af</strong> el-priserne for år 2001-2006 (elpriserne<br />

for år 2000 benyttes som historiske el-priser for beregningen for år 2001).<br />

Sparede omkostninger [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.19. Sparede omkostninger som funktion <strong>af</strong> antallet <strong>af</strong> driftstimer. De sparede omkostninger er i<br />

procent <strong>af</strong> referenceomkostningerne på 31,3 mio. kr/MWe (Ligning 8.2). cel, lager = 300 kr/MWh <strong>og</strong><br />

klagerprisandel = 0,1. Alle gr<strong>af</strong>erne vil skære x-aksen, hvor antallet <strong>af</strong> driftstimer er lig antallet <strong>af</strong> timer per<br />

år, idet referencen er et elektrolyseanlæg, som er i drift hele året.<br />

90


Sparede omkostninger i nutidsværdi [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.20. Sparede omkostninger i nutidsværdi som funktion <strong>af</strong> antallet <strong>af</strong> driftstimer. De sparede<br />

omkostninger er i procent <strong>af</strong> referenceomkostningerne på 31,3 mio. kr/MWe (Ligning 8.2). cel, lager =<br />

300 kr/MWh <strong>og</strong> klagerprisandel = 0,1. Alle gr<strong>af</strong>erne vil skære x-aksen, hvor antallet <strong>af</strong> driftstimer er lig<br />

antallet <strong>af</strong> timer per år, idet referencen er et elektrolyseanlæg, som er i drift hele året.<br />

Figur 8.19 <strong>og</strong> Figur 8.20 viser, hvad omkostningerne kan reduceres med ved<br />

benyttelse <strong>af</strong> gaslagre. Ved sammenligning med Figur 8.14 <strong>og</strong> Figur 8.15 fra scenarie<br />

1 ses det, at besparelserne opnået i dette scenarie kun er lidt lavere end det teoretisk<br />

mulige. Den største forskel mellem de omtalte figurer fra scenarie 1 <strong>og</strong> 2 ses ved et<br />

lavt antal driftstimer.<br />

Ud fra Figur 8.20 ses det, at det optimale antal driftstimer for de forskellige år ligger i<br />

intervallet 3500-7000.<br />

Nedenfor er gr<strong>af</strong>erne for forrentning <strong>og</strong> <strong>til</strong>bagebetalingstid for investeringen vist.<br />

Gr<strong>af</strong>erne viser en lidt lavere forrentning <strong>og</strong> en lidt længere <strong>til</strong>bagebetalingstid end de<br />

teoretisk mulige fra scenarie 1.<br />

91


Forrentning <strong>af</strong> investering [%]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.21. Forrentning <strong>af</strong> ekstrainvestering i forhold <strong>til</strong> referencen som funktion <strong>af</strong> antallet <strong>af</strong><br />

driftstimer. Definitionen <strong>af</strong> denne parameter kan læses ovenfor eller ses i Ligning 8.8. cel, lager = 300<br />

kr/MWh <strong>og</strong> klagerprisandel = 0,1. Gr<strong>af</strong>erne vil være diskontinuerte ved punktet, hvor antallet <strong>af</strong> driftstimer<br />

er lig antallet <strong>af</strong> timer per år, idet der i dette punkt hverken er n<strong>og</strong>en besparelse i forhold <strong>til</strong> referencen<br />

eller n<strong>og</strong>en ekstra investering.<br />

92


Tilbagebetalingstid [år]<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.22. Tilbagebetalingstid for ekstrainvestering i forhold <strong>til</strong> referencen som funktion <strong>af</strong> antallet <strong>af</strong><br />

driftstimer. Definitionen <strong>af</strong> denne parameter kan ses i Ligning 8.7. cel, lager = 300 kr/MWh <strong>og</strong> klagerprisandel<br />

= 0,1.<br />

93


Tilbagebetalingstid (beregnet ud fra nutidsværdi) [år]<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

Figur 8.23. Tilbagebetalingstid beregnet ud fra nutidsværdi for ekstrainvestering i forhold <strong>til</strong> referencen<br />

som funktion <strong>af</strong> antallet <strong>af</strong> driftstimer. Definitionen <strong>af</strong> denne parameter kan ses under Ligning 8.9. cel,<br />

lager = 300 kr/MWh <strong>og</strong> klagerprisandel = 0,1.<br />

94


8.4 Diskussion<br />

Resultaterne præsenteret i det foregående viste, hvad omkostningerne i teorien <strong>og</strong> i<br />

realiteten kan reduceres med, ved benyttelse <strong>af</strong> gaslagre <strong>og</strong> et større elektrolyseanlæg i<br />

et <strong>metanolanlæg</strong>.<br />

Det blev vist, at besparelserne <strong>af</strong>hang meget <strong>af</strong> antallet <strong>af</strong> driftstimer for<br />

elektrolyseanlægget, <strong>og</strong> dermed størrelsen <strong>af</strong> elektrolyseanlægget, samt hvor stor en<br />

spredning der var på de el-priser, som beregningerne blev baseret på.<br />

Bestemmelsen <strong>af</strong> det optimale antal driftstimer for elektrolyseanlægget <strong>af</strong>hænger<br />

derfor <strong>af</strong> hvilket års el-priser, som er mest repræsentative for de fremtidige el-priser.<br />

Hvis man forventer, at andelen <strong>af</strong> ukontrollerbar el-produktion vil stige, vil<br />

spredningen på el-priserne stige, hvorfor årene 2003, 2005, 2006 vil være mest<br />

repræsentative (se Tabel 8.3). Ukontrollerbar el-produktion indbefatter fx vindkr<strong>af</strong>t,<br />

bølgekr<strong>af</strong>t <strong>og</strong> solenergi.<br />

Hvis el-forbruget imidlertid bliver mere priselastisk, kan spredningen på el-priserne<br />

mindskes, hvorfor årene 2000, 2001, 2004 vil være mest repræsentative (se Tabel<br />

8.3). Det vurderes d<strong>og</strong>, at en øgning <strong>af</strong> spredningen på el-priserne vil være mest<br />

sandsynligt, pga. en forventelig udbygning med ukontrollerbar el-produktion samtidig<br />

med, at der skal være et større incitament, før el-forbruget bliver mere priselastisk.<br />

Derfor vil et elektrolyseanlæg med ca. 4500 driftstimer sandsynligvis være et godt<br />

bud på et optimalt anlæg ud fra den teoretiske analyse i scenarie 1, mens et<br />

elektrolyseanlæg med ca. 5000 driftstimer vil være optimalt for scenarie 2. Dette<br />

forudsætter, at en kalkulationsrente på 5 % anvendes.<br />

I Tabel 8.5 er de sparede omkostninger for scenarie 1 <strong>og</strong> 2 sammenlignet ved 5000<br />

driftstimer for at tydeliggøre forskellen mellem de 2 scenarier. Det ses, at resultaterne<br />

fra scenarie 2 kommer tæt på de maksimale værdier fra scenarie 1.<br />

Hvis der tages udgangspunkt i den gennemsnitlige besparelse på 6,1 % (Tabel 8.5) <strong>og</strong><br />

<strong>metanolanlæg</strong>get, fra den første del <strong>af</strong> rapporten, kan der opnås en samlet besparelse<br />

for <strong>metanolanlæg</strong>get på 0,9-1,3 % 53 . Grunden <strong>til</strong> at besparelsen ikke er større, er<br />

hovedsagelig pga. den danske el-<strong>af</strong>gift, som er medtaget i den første del <strong>af</strong><br />

rapporten 54 .<br />

År 2001 2002 2003 2004 2005 2006 Gennemsnit<br />

Scenarie 1 [%] 2,7 8,1 11,2 1,7 11,5 11,2 7,7<br />

Scenarie 2 [%] 1,5 6,0 8,3 0,6 10,5 9,7 6,1<br />

Tabel 8.5. Sparede omkostninger i nutidsværdi for scenarie 1 <strong>og</strong> 2 ved 5000 driftstimer. Værdierne er i<br />

procent <strong>af</strong> referenceomkostningerne på 31,3 mio. kr/MWe (Ligning 8.2) <strong>og</strong> kan <strong>af</strong>læses på Figur 8.15<br />

<strong>og</strong> Figur 8.20.<br />

Den optimale gaslagerstørrelse i scenarie 2 på klagerprisandel = 0,1 eller 348 m 3 /MWe per<br />

lager betyder, at omkostningen <strong>til</strong> gaslagre udgør en meget lille del <strong>af</strong> de totale<br />

omkostninger. Omkostningen for gaslagrene vil d<strong>og</strong> være mest troværdig, hvis<br />

gaslagerstørrelsen er i nærheden <strong>af</strong> 500.000 m 3 , idet den specifikke gaslagerpris som<br />

benyttes, bl.a. baseres på et gaslager <strong>af</strong> denne størrelse. Hvis gaslagerstørrelsen sættes<br />

så højt, betyder det imidlertid, at <strong>metanolanlæg</strong>get skal være meget stort.<br />

53<br />

For anlægskonfiguration 3 (0,9 %) <strong>og</strong> 6 (1,3 %).<br />

54<br />

Desuden er de 6,1 % baseret på nutidsværdi, hvilket der ikke regnes med i den første del <strong>af</strong><br />

rapporten.<br />

95


Omkostningen <strong>til</strong> gaslagrene kan imidlertid <strong>til</strong>lades at være en del større end beregnet,<br />

uden at det påvirker den samlede økonomi voldsomt.<br />

Gennemsnittet <strong>af</strong> de optimale gaslagerstørrelser i scenarie 1 (jævnfør Figur 8.13) var<br />

større end den optimale i scenarie 2 (klagerprisandel = 0,1). Det skyldes, at den simple<br />

regulator benyttet i scenarie 2 egner sig godt <strong>til</strong> at udnytte døgnrytmen i el-prisen (se<br />

Figur 8.25), men ikke er lige så god <strong>til</strong> at udnytte de mere stokastiske variationer i elprisen,<br />

som kan forekomme henover et år (se evt. Figur 7.6). Det medfører, at<br />

elektrolyseanlægget hovedsageligt er i drift i nattetimerne i scenarie 2.<br />

Ud fra Figur 8.24 ses det, at elektrolyseanlægget <strong>og</strong>så hovedsageligt er i drift i<br />

nattetimerne i scenarie 1, men at udsvingene i driftsmønstret er lidt mindre. De mindre<br />

udsving skyldes netop, at optimeringen i scenarie 1 <strong>og</strong>så tager højde for de mere<br />

stokastiske variationer i el-prisen, som kan forekomme henover et år.<br />

Hvis Figur 8.24 sammenlignes med Figur 8.25, ses det, hvor klart el-prisen påvirker<br />

driften <strong>af</strong> elektrolyseanlægget.<br />

Antal driftstimer [timer]<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Laveste el-priser<br />

Scenarie 1<br />

Scenarie 2<br />

0<br />

0 4 8 12<br />

Time på døgnet [-]<br />

16 20 24<br />

Figur 8.24. Antallet <strong>af</strong> driftstimer for hver time på døgnet for scenarie 1 <strong>og</strong> 2 ved 5000 driftstimer per<br />

år. Driftsmønstret for de 2 scenarier sammenlignes med hvordan driftsmønstret ville se ud, hvis der var<br />

drift i de 5000 timer med de laveste el-priser. Gr<strong>af</strong>en er produceret på baggrund <strong>af</strong> el-priserne for år<br />

2003. cel, lager = 300 kr/MWh <strong>og</strong> klagerprisandel = 0,1 for scenarie 2.<br />

96


El-pris [kr/Mwh]<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 4 8 12<br />

Time på døgnet [-]<br />

16 20 24<br />

Figur 8.25. Den gennemsnitlige el-prisvariation henover døgnet for år 2000-2006.<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

Der er i denne undersøgelse foretaget sammenligninger med et<br />

reference<strong>metanolanlæg</strong> uden gaslagre, som er i drift hele året – uanset el-prisen.<br />

Driften på et <strong>metanolanlæg</strong> uden gaslagre vil imidlertid <strong>af</strong>brydes, hvis de variable<br />

omkostninger bliver større end indtjeningen fra metanolsalget.<br />

Hvis der ses bort fra andre variable omkostninger end elektricitet (ud fra Figur 7.8 ses<br />

det, at el-omkostningen er klart den største variable omkostning), vil <strong>metanolanlæg</strong>get<br />

inds<strong>til</strong>le driften, hvis el-prisen bliver højere end en specifik værdi (drift-el-prisen).<br />

Denne drift-el-pris vil <strong>og</strong>så være relevant for <strong>metanolanlæg</strong> med gaslagre.<br />

Elektrolyseanlægget i et sådan <strong>metanolanlæg</strong> må ligeledes inds<strong>til</strong>le driften, hvis elprisen<br />

bliver højere end drift-el-prisen, men pga. gaslagrene kan driften <strong>af</strong><br />

<strong>metanolanlæg</strong>get fortsættes. Driften kan fortsættes så længe, der er gas i gaslagrene.<br />

Den optimale gaslagerstørrelse, som blev bestemt i scenarie 2, må antages at være<br />

<strong>til</strong>strækkelig, da el-prisen følger en døgnrytme.<br />

Hvis der i analysen var blevet taget højde for drift-el-prisen, ville det derfor have<br />

betydet, at referenceanlægget (uden gaslagre) ville få færre driftstimer, mens<br />

<strong>metanolanlæg</strong>get med gaslagre (ekskl. elektrolyseanlægget) stadig ville kunne være i<br />

drift hele året.<br />

Derfor må det konkluderes, at et <strong>metanolanlæg</strong> med gaslagre vil have bedre økonomi<br />

end et <strong>metanolanlæg</strong> uden gaslagre.<br />

Hvis <strong>metanolanlæg</strong>get inkluderer en forgasser, kan der være en måde hvorpå et<br />

<strong>metanolanlæg</strong> uden gaslagre, kan opnå ligeså god - eller bedre - økonomi,<br />

sammenlignet med et anlæg med gaslagre.<br />

Forgasningsgassen fra forgasseren vil kunne benyttes <strong>til</strong> metanolproduktion, når elprisen<br />

er lav, <strong>og</strong> <strong>til</strong> el-produktion - fx vha. en gasturbine - når el-prisen er høj. Idet<br />

97


forgasseren typisk vil være den dyreste komponent i et sådan anlæg, vil reduktionen i<br />

antallet <strong>af</strong> driftstimer for de øvrige komponenter <strong>til</strong> metanolproduktion ikke påvirke<br />

anlægsøkonomien voldsomt. Endelig behøves antallet <strong>af</strong> driftstimer for elproduktionsdelen<br />

ikke være stort, før der kan opnås god økonomi (jævnfør et<br />

spidslastkr<strong>af</strong>tværk).<br />

Der bliver i øjeblikket skrevet eksamensprojekt om denne anlægskombination på<br />

MEK-DTU <strong>af</strong> Alvise Valenti.<br />

98


9 Konklusion<br />

I den første del <strong>af</strong> rapporten blev en model <strong>af</strong> et <strong>metanolanlæg</strong> designet ud fra optimal<br />

energiudnyttelse <strong>og</strong> økonomi.<br />

Anvendelsen <strong>af</strong> vedvarende energikilder <strong>til</strong> metanolproduktionen var desuden et<br />

centralt element i anlægsdesignet.<br />

Der blev undersøgt 6 forskellige anlægskonfigurationer, med hver sin<br />

syngasproduktionsmetode – hver i sær baseret på en kombination <strong>af</strong> de 4 exergikilder:<br />

elektricitet, biomasse, naturgas <strong>og</strong> bi<strong>og</strong>as.<br />

Det blev vist at den højeste metanolexergivirkningsgrad på 74 % blev opnået for<br />

anlæg nr. 5, men kun anlæg nr. 6, som udelukkende benyttede el som exergikilde,<br />

havde en signifikant lavere metanolexergivirkningsgrad på 67 %.<br />

Ved at udnytte spildvarmen fra <strong>metanolanlæg</strong>get <strong>til</strong> fjernvarmeproduktion blev<br />

energiudnyttelsen øget betydeligt, samtidig med at metanolomkostningerne blev<br />

reduceret.<br />

Den laveste specifikke metanolomkostning på 95 kr/GJex blev opnået for anlæg nr. 3,<br />

som benyttede forgasning <strong>af</strong> biomasse med efterfølgende udvaskning <strong>af</strong> CO2 fra<br />

forgasningsgassen.<br />

Den specifikke metanolomkostning for en række <strong>af</strong> anlægskonfigurationerne kunne<br />

derfor konkurrer med den kommercielle metanolpris (142 kr/GJex) <strong>og</strong> benzinprisen<br />

inkl. <strong>af</strong>gifter (187 kr/GJex).<br />

Det blev desuden vist, at en <strong>af</strong>giftslettelse på elektriciteten ville betyde en betydelig<br />

reduktion <strong>af</strong> metanolomkostningen, idet 39-84 % <strong>af</strong> de samlede omkostninger for de 6<br />

anlægskonfigurationer var <strong>til</strong> elektricitet.<br />

I den anden del <strong>af</strong> rapporten blev det vist, at det var økonomisk fordelagtigt at benytte<br />

underjordiske gaslagre <strong>til</strong> brint <strong>og</strong> ilt i et buffersystem - i forbindelse med et<br />

elektrolyseanlæg i et <strong>metanolanlæg</strong>.<br />

Omkostningerne blev reduceret ved kun at have elektrolyseanlægget i drift, når elprisen<br />

var lav, mens det resterende <strong>metanolanlæg</strong> var i drift året rundt.<br />

Ud fra simuleringer baseret på el-priserne for DK-VEST for 2000-2006 <strong>og</strong> en<br />

kalkulationsrente på 5 % blev den største besparelse opnået ved ca. 5000 driftstimer<br />

per år for elektrolyseanlægget. Besparelsen var op <strong>til</strong> 10,5 % <strong>og</strong> i gennemsnit 6,1 %<br />

ved 5000 driftstimer.<br />

Disse besparelser var tæt på det teoretisk maksimale for de undersøgte el-priser. De<br />

teoretisk maksimale besparelser var op <strong>til</strong> 11,5 % <strong>og</strong> i gennemsnit 7,7 % ved 5000<br />

driftstimer.<br />

De største besparelser blev opnået for de el-priser, som havde den største spredning.<br />

Endeligt blev det konkluderet, at der er egnede lokationer for underjordiske gaslagre<br />

<strong>til</strong> brint <strong>og</strong> ilt i Danmark.<br />

99


10 Litteraturliste<br />

[Ahring, 2006]<br />

Professor Birgitte Ahring, DTU. Udleveret faktaark om andengenerations bioetanol<br />

fra november 2006, kopi i bilag 13.<br />

[Amos, 1998]<br />

Wade A. Amos, “Costs of Storing and Transporting Hydr<strong>og</strong>en”, National Renewable<br />

Energy Laboratory, A national laboratory of the U.S. Department of Energy, 1998.<br />

[Bloomberg.com, 2007]<br />

Bloomberg.com. Leverandør <strong>af</strong> finansnyheder. D. 5/3-2007. Råoliepris:<br />

http://www.bloomberg.com/markets/commodities/energyprices.html se kopi i bilag<br />

11.<br />

[Choren, 2007]<br />

Choren Industries GmbH, ”Strom und wärme aus biomasse”, (anlæg på 30 MWth),<br />

http://www.choren.com/dl.php?file=Strom_und_Waerme_aus_Biomasse_6.pdf,<br />

udprint fra 30/1-2007 i bilag 2.<br />

[Clausen et al., 2004]<br />

Lasse Røngaard Clausen, Christian Bang-Møller, ” Forgasningsgas i gasturbiner”,<br />

polyteknisk midtvejsprojekt, MEK, DTU, 2004.<br />

[Clausen et al., 2005]<br />

Lasse Røngaard Clausen, Christian Bang-Møller, Catarina Marcus-Møller, Henrik<br />

Hilleke Mortensen <strong>og</strong> Johan Hardang Vium, ”Termoøkonomisk analyse <strong>af</strong><br />

metanolproduktion i Elsams <strong>VEnzin</strong>-vision”, Rapport i specialkurset<br />

thermoeconomics ved vejleder lektor Brian Elmegaard, MEK, DTU, 2005.<br />

[DONG, 2003]<br />

DONG, KBB, Rambøll, MTS, ”PowerStore – Feasibility study for a danish location<br />

– objectives, scope and cost estimate”, Final report v. 1.0 – phase 1, 2003. Intern<br />

rapport.<br />

[Enerdry, 2007]<br />

Enerdry ApS. Firma som arbejder med damptørring:<br />

http://www.enerdry.com/index.php?id=489, udprint fra d. 30/1-2007 i bilag 1.<br />

[Energistyrelsen, 2004]<br />

Energistyrelsen. Energistatistik for 2004,<br />

http://www.ens.dk/graphics/Energi_i_tal_<strong>og</strong>_kort/statistik/Hjemmeside/sp_frameset.h<br />

tm se kopi i bilag 8.<br />

[Energy T<strong>og</strong>ether, 2004]<br />

DONG Energy, 2004, Energy T<strong>og</strong>ether: Scenario 1 – Det frie marked, el-pris:<br />

http://www.energyserver.net/ET1/Default%20inkl%20CO2/_html/Default%20Scenari<br />

o%201.htm#Elpriser se kopi i bilag 3 <strong>og</strong> gas-pris:<br />

100


http://www.energyserver.net/ET1/Default inkl CO2/Default Scenario 1.xls se kopi i<br />

bilag 5.<br />

[Fleisch, 2002]<br />

T. H. Fleisch et al., “2002 - Emergence of the Gas-to-Liquids Industry: a Review of<br />

Global GTL Developments”, Journal of Natural Gas Chemistry 11 (2002) 1-14, 2002.<br />

[GE-NET, 2007]<br />

GE-NET A/S, El-<strong>af</strong>gifter <strong>og</strong> –tariffer <strong>til</strong> erhvervskunder, 2007, http://www.ge.dk/GE-<br />

Net/Priser.htm, se kopi i bilag 4.<br />

[Gmehling, 1977]<br />

J. Gmehling, U. Onken and W. Arlt, "Vapor-Liquid Equilibrium Data Collection",<br />

The Chemistry Data Series volume 1, 1977, DECHEMA, Frankfurt.<br />

[Hansen, 1998]<br />

Jens Erik Hansen, ”Plant Wide Dynamic Simulation and Control of Chemical<br />

Process: Methanol Synthesis Loop. Energy Integrated Dis<strong>til</strong>lation Column. Flow<br />

Swing Reactor”. Ph.D. Thesis, Kemiteknik, DTU, 1998.<br />

[Iversen, 2006]<br />

Henrik Laudal Iversen, “Produktion <strong>af</strong> flydende biobrændsler udfra syngas”,<br />

Polyteknisk eksamensprojekt (PEP), MEK, DTU, 2006.<br />

[Jørgensen, 2007]<br />

Per Jørgensen, Rambøll, telefonsamtale, februar 2007.<br />

[Krane]<br />

Robert J. Krane: Exergy analysis, (ukendt årstal).<br />

note udleveret i specialkurset Thermoeconomics efteråret 2005 ved Institut for<br />

Mekanik, Energi <strong>og</strong> Konstruktion, Danmarks Tekniske Universitet.<br />

[Københavns Energi, 2007]<br />

Københavns Energi, 2007, vand for erhvervskunder,<br />

http://www.ke.dk/portal/page/portal/Erhverv/Vand/Prisen_paa_vand?page=146,<br />

se kopi i bilag 7.<br />

[Møller, 2006]<br />

Martin Møller, DONG Energy. Data om modeldesign <strong>af</strong> et <strong>metanolanlæg</strong> modtaget i<br />

2006.<br />

[Methanex, 2007]<br />

Methanex. Verdens største metanolproducent. Marts 2007. Månedspriser fra år 2002<br />

frem <strong>til</strong> marts 2007:<br />

http://www.methanex.com/products/documents/MxAvgPrice_Feb262007.pdf se kopi<br />

i bilag 12 fra d. 6/3-2007. Linket ovenfor bliver ændret hver måned, i takt med at nye<br />

månedspriser bliver <strong>til</strong>føjet. Det aktuelle link <strong>til</strong> de historiske månedspriser kan findes<br />

på: http://www.methanex.com/products/methanolprice.html<br />

[Naturgas<strong>af</strong>gifter, DONG Energy, 2007]<br />

101


DONG Energy A/S, Naturgas<strong>af</strong>gifter, 2007,<br />

http://www.dongenergy.dk/erhverv/produkter/naturgas/listepris.htm,<br />

se kopi i bilag 6.<br />

[Nordpool, 2007]<br />

Nordpool-data fra Energinet.dk, el-priser for DK-VEST for perioden 2000-2006:<br />

http://www.energinet.dk/da/menu/Marked/Udtr%c3%a6k+<strong>af</strong>+markedsdata/Udtr%c3<br />

%a6k+<strong>af</strong>+markedsdata.htm.<br />

[Nykomb, 1997]<br />

Nykomb Synergetics, http://www.nykomb.se, svensk firma, som bl.a. arbejder med<br />

produktion <strong>af</strong> metanol <strong>og</strong> andre brændsler. Paper baseret på data fra 1997:<br />

http://www.nykomb.se/pdf/methanol.pdf, kopi i bilag 15.<br />

[NZIC, 2007]<br />

New Zealand Institute of Chemistry, http://www.nzic.org.nz/ChemProcesses/energy/,<br />

infomation om metanolproduktion hentet d. 20/3-2007:<br />

http://www.nzic.org.nz/ChemProcesses/energy/7D.pdf, kopi i bilag 14.<br />

[Peters, 1991]<br />

Peters and Timmerhaus, ”Plant <strong>Design</strong> and Economics for Chemical Engineers”, 4.<br />

udgave, 1991.<br />

[Reuck, 1993]<br />

K.M. de Reuck and R.J.B. Craven, “Methanol – International Thermodynamic tables<br />

of the fluid state – 12”, International Union of Pure and Applied Chemistry (IUPAC),<br />

1993, ISBN: 0-632-03455-6.<br />

[Reid, 1987]<br />

R. C. Reid, et al. ”The properties of gases and liquids”, 4. udgave, 1987,<br />

ISBN: 0-07-051799-1<br />

[Taylor et al., 1986]<br />

J. B. Taylor, J. E. A. Alderson, K. M. Kalyanam, A. B. Lyle and L. A. Phillips,”<br />

Technical and economic assessment of methods for the storage of large quantities of<br />

hydr<strong>og</strong>en”, International journal of Hydr<strong>og</strong>en Energy, International Association for<br />

Hydr<strong>og</strong>en Energy, 1986.<br />

[Teknol<strong>og</strong>ikatal<strong>og</strong>et, 2005]<br />

Energistyrelsen, Elkr<strong>af</strong>t System <strong>og</strong> Eltra, “Technol<strong>og</strong>y Data for<br />

Electricity and Heat Generating Plants”, 2005, ISBN: 87-7844-502-7 (web edition:<br />

87-7844-503-5). http://www.energinet.dk/NR/rdonlyres/4F6480DC-207B-41CF-<br />

8E54-BF0BA82926D7/0/Teknol<strong>og</strong>ikatal<strong>og</strong>050311.pdf<br />

[Wikipedia, 2007]<br />

Wikipedia, online <strong>og</strong> åben encyklopædi. Data om metanolproduktion:<br />

http://en.wikipedia.org/wiki/Methanol, se kopi hentet d. 21/3-2007 i bilag 16.<br />

102


11 Nomenklaturliste<br />

c omkostning per enhed (se indeks for enhed) eller specifik varmekapacitet<br />

c gennemsnitlig omkostning per exergienhed, fx [kr/GJ]<br />

Ċ omkostningsstrøm forbundet med en exergistrøm, fx [kr/s]<br />

Ċi, dest omkostningsstrøm for exergidestruktionen baseret på den gennemsnitlige<br />

inputomkostning per exergi, fx [kr/s]<br />

Ċp, dest omkostningsstrøm for exergidestruktionen baseret på den gennemsnitlige<br />

produktomkostning per exergi, fx [kr/s]<br />

D&V drift <strong>og</strong> vedligehold<br />

E energi, fx [MJ]<br />

Ė exergi- eller energi-strøm (se indeks), fx [kJ/s]<br />

FV fjernvarme<br />

g gibbs energi, fx [J/mol]<br />

h enthalpi, fx [kj/mol]<br />

LHV nedre brændværdi, fx [MJ/kg]<br />

m& massestrøm, fx [kg/s]<br />

M faktor for syngas (i forbindelse med produktion <strong>af</strong> flydende brændsler som<br />

metanol) [-]<br />

n& molstrøm, fx [kmol/s]<br />

O omkostninger, fx [kr]<br />

p tryk, fx [bar]<br />

P Elektrisk eller mekanisk effekt (se indeks), fx [MW]<br />

Q& Varmestrøm, fx [MJ/s]<br />

r rente, fx [%]<br />

s entropi, fx [ J<br />

K⋅<br />

mol ]<br />

SO sparede omkostninger, fx [kr]<br />

t temperatur [°C]<br />

T absolut temperatur [K]<br />

x væskeandel, fx [mol-%]<br />

y gasandel, fx [mol-%]<br />

Ż omkostningsstrøm forbundet med D&V <strong>og</strong> <strong>af</strong>skrivninger på<br />

komponentinvesteringen, fx [kr/s]<br />

Græske b<strong>og</strong>staver<br />

ε varmevekslereffektivitet<br />

η virkningsgrad<br />

∆ forskel eller ændring<br />

Indeks<br />

c kold<br />

D&V Drift <strong>og</strong> vedligehold<br />

dest destruktion<br />

en energi<br />

ex exergi<br />

h varm<br />

i input eller ind<br />

komp kompressor<br />

103


LHV nedre brændværdi, fx [MJ/kg]<br />

m masse<br />

mek mekanisk effekt<br />

o ud<br />

p produkt eller tryk<br />

ref reference<br />

Θ standard<br />

104


<strong>Design</strong> <strong>og</strong> <strong>modellering</strong><br />

<strong>af</strong> <strong>metanolanlæg</strong> <strong>til</strong><br />

<strong>VEnzin</strong>-<strong>visionen</strong><br />

<strong>Bilag</strong><br />

Lasse Røngaard Clausen<br />

Polyteknisk Eksamensprojekt<br />

MEK-ET-EP-2007-04<br />

Marts 2007<br />

Danmarks<br />

Tekniske<br />

Universitet<br />

Institut for<br />

Mekanik,<br />

Energi <strong>og</strong><br />

Konstruktion<br />

MEK<br />

Energiteknik


<strong>Bilag</strong>soversigt<br />

1. Damptørrer - Enerdry ApS<br />

2. Forgasserpris - Choren<br />

3. Elpris - Energy T<strong>og</strong>ether<br />

4. El-<strong>af</strong>gifter <strong>og</strong> –tariffer GE-NET A/S<br />

5. Naturgaspris - Energy T<strong>og</strong>ether<br />

6. Naturgas<strong>af</strong>gifter – DONG Energy<br />

7. Vandpris – Københavns Energi<br />

8. Benzinforbrug <strong>til</strong> vejtransport<br />

9. Benzinpris<br />

10. Benzin<strong>af</strong>gift<br />

11. Råoliepris<br />

12. Metanolpris<br />

13. Faktaark om produktion <strong>af</strong> andengenerations<br />

bioetanol<br />

14. Metanolproduktion, NZIC<br />

15. Metanolproduktion, Nykomb<br />

16. Metanolproduktion, Wikipedia<br />

17. Des<strong>til</strong>lationskolonne. Flowsheet for anlæg 3.<br />

18. Flowsheet for et <strong>metanolanlæg</strong> (fra DONG Energy)<br />

19. Flowsheet for et <strong>metanolanlæg</strong> (fra kurset<br />

thermoeconomics)<br />

20. Flowsheet for <strong>metanolanlæg</strong> – uden værdiangivelser<br />

21. Flowsheet for <strong>metanolanlæg</strong> – <strong>til</strong> bestemmelse <strong>af</strong><br />

komponentpriser for dampreformer, metanolreaktor<br />

<strong>og</strong> des<strong>til</strong>lationskolonne.<br />

22. Flowsheet for <strong>metanolanlæg</strong> – <strong>til</strong><br />

parameterfastsættelse<br />

23. Flowsheets for <strong>metanolanlæg</strong> - <strong>til</strong> den<br />

termoøkonomiske analyse.<br />

24. Flowsheets for <strong>metanolanlæg</strong> – for de 6 forskellige<br />

anlægskonfigurationer


25. Flowsheets for <strong>metanolanlæg</strong> – for<br />

parametervariationen (metanolreaktortryk)<br />

26. Flowsheets for <strong>metanolanlæg</strong> – for<br />

parametervariationen (brint/kulstof-forholdet i<br />

syngassen)<br />

27. Flowsheet for <strong>metanolanlæg</strong> – for<br />

parametervariationen (tryksat forgasning)<br />

28. Flowsheet for <strong>metanolanlæg</strong> – for<br />

parametervariationen (<strong>af</strong>kølingstemperaturen for<br />

den metanolholdige gas)<br />

29. Matlab-kode <strong>til</strong> Scenarie 1<br />

30. Matlab-kode <strong>til</strong> Scenarie 2<br />

31. Scenarie 2: variation <strong>af</strong> cel, lager <strong>og</strong> klagerprisandel<br />

32. DNA-kode for <strong>metanolanlæg</strong><br />

33. Dokumentation for <strong>til</strong>føjede DNA-komponenter<br />

34. Tilføjede komponenter <strong>til</strong> DNA – Fortran-kode<br />

35. Metanol (fluid) <strong>til</strong> DNA – Fortran-kode


1. Damptørrer - Enerdry ApS<br />

Enerdry ApS. Firma som arbejder med damptørring.<br />

Kopi fra: http://www.enerdry.com/index.php?id=489, d. 30/1-2007


2. Forgasserpris - Choren<br />

Choren Industries GmbH, ”Strom und wärme aus biomasse”, (anlæg på 30 MWth),<br />

http://www.choren.com/dl.php?file=Strom_und_Waerme_aus_Biomasse_6.pdf, kopi<br />

fra side 11 d. 30/1-2007:


3. Elpris - Energy T<strong>og</strong>ether<br />

DONG Energy, Energy T<strong>og</strong>ether (2004): Scenario 1 – Det frie marked,<br />

http://www.energyserver.net/ET1/Default%20inkl%20CO2/_html/Default%20Scenari<br />

o%201.htm#Elpriser fra d. 31/1-2007:


4. El-<strong>af</strong>gifter <strong>og</strong> –tariffer GE-NET A/S<br />

El-<strong>af</strong>gifter <strong>og</strong> –tariffer <strong>til</strong> erhvervskunder (Årligt forbrug over 100.000 kWh), GE-<br />

NET A/S: http://www.ge.dk/GE-Net/Priser.htm, fra d. 31/1-2007:


5. Naturgaspris - Energy T<strong>og</strong>ether<br />

DONG Energy, Energy T<strong>og</strong>ether: Scenario 1 – Det frie marked,<br />

http://www.energyserver.net/ET1/Default inkl CO2/Default Scenario 1.xls<br />

fra d. 31/1-2007:


6. Naturgas<strong>af</strong>gifter – DONG Energy<br />

Naturgas<strong>af</strong>gifter, 2007:<br />

http://www.dongenergy.dk/erhverv/produkter/naturgas/listepris.htm


7. Vandpris – Københavns Energi<br />

Vandpris hos Københavns Energi. 2007.<br />

http://www.ke.dk/portal/page/portal/Erhverv/Vand/Prisen_paa_vand?page=146 fra d.<br />

31/1-2007.


8. Benzinforbrug <strong>til</strong> vejtransport<br />

Energistyrelsens energistatistik 2004 med variablene: Aktør/aktivitet=Vejtransport;<br />

Energivare=Motorbenzin; Årstal=2004:<br />

http://www.ens.dk/graphics/Energi_i_tal_<strong>og</strong>_kort/statistik/Hjemmeside/sp_frameset.h<br />

tm (d. 1/2-2007).


9. Benzinpris<br />

Benzinpriser fra konkurrencestyrelsen fra år 2000.<br />

http://www.ks.dk/publikationer/konkurrence/2000/benzin-olie/bilag6/ hentet d. 5/3-<br />

2007.


10. Benzin<strong>af</strong>gift<br />

Benzin<strong>af</strong>gifter fra skatteministeriet fra d. 14/03-2002.<br />

http://www.skm.dk/publikationer/udgivelser/1510/1543/ hentet d. 5/3-2007.


11. Råoliepris<br />

Råoliepris fra Bloomberg.com fra d. 5/03-2007.<br />

http://www.bloomberg.com/markets/commodities/energyprices.html hentet d. 5/3-<br />

2007.


12. Metanolpris<br />

Metanolpriser fra Methanex (verdens største metanolproducent). Månedspriser fra år<br />

2002 frem <strong>til</strong> marts 2007:<br />

http://www.methanex.com/products/documents/MxAvgPrice_Feb262007.pdf hentet<br />

d. 6/3-2007. Linket ovenfor bliver ændret hver måned, i takt med at nye månedspriser<br />

bliver <strong>til</strong>føjet. Det aktuelle link <strong>til</strong> de historiske månedspriser kan findes på:<br />

http://www.methanex.com/products/methanolprice.html


Methanex Monthly Average Regional Posted Contract Price History<br />

Methanex Non-Discounted<br />

Reference Price<br />

Methanex European<br />

Posted Contract Price<br />

(MNDRP) (EPCP)<br />

Methanex Asian Posted<br />

Contract Price<br />

(APCP)<br />

Date $/gal $/MT €/MT $/MT<br />

Jan-01 n/a n/a n/a<br />

Feb-01 n/a n/a n/a<br />

Mar-01 n/a n/a n/a<br />

Apr-01 n/a n/a n/a<br />

May-01 $0.770 $256 n/a n/a<br />

Jun-01 $0.670 $223 n/a n/a<br />

Jul-01 $0.570 $190 n/a n/a<br />

Aug-01 $0.510 $170 n/a n/a<br />

Sep-01 $0.420 $140 n/a n/a<br />

Oct-01 $0.370 $123 n/a n/a<br />

Nov-01 $0.400 $133 n/a n/a<br />

Dec-01 $0.400 $133 n/a n/a<br />

Jan-02 $0.375 $125 € 125 n/a<br />

Feb-02 $0.360 $120 € 125 n/a<br />

Mar-02 $0.375 $125 € 125 n/a<br />

Apr-02 $0.420 $140 € 145 n/a<br />

May-02 $0.500 $166 € 165 n/a<br />

Jun-02 $0.560 $186 € 185 n/a<br />

Jul-02 $0.620 $206 € 208 n/a<br />

Aug-02 $0.620 $206 € 208 n/a<br />

Sep-02 $0.620 $206 € 208 $202<br />

Oct-02 $0.620 $206 € 208 $202<br />

Nov-02 $0.620 $206 € 208 $202<br />

Dec-02 $0.620 $206 € 208 $202<br />

Jan-03 $0.690 $229 € 228 $230<br />

Feb-03 $0.790 $263 € 228 $252<br />

Mar-03 $0.820 $273 € 245 $270<br />

Apr-03 $0.820 $273 € 260 $275<br />

May-03 $0.820 $273 € 260 $275<br />

Jun-03 $0.820 $273 € 240 $275<br />

Jul-03 $0.775 $258 € 225 $260<br />

Aug-03 $0.720 $239 € 225 $250<br />

Sep-03 $0.700 $233 € 210 $241<br />

Oct-03 $0.680 $226 € 190 $230<br />

Nov-03 $0.680 $226 € 190 $230<br />

Dec-03 $0.680 $226 € 190 $230<br />

Jan-04 $0.750 $249 € 200 $250<br />

Feb-04 $0.750 $249 € 200 $250<br />

Mar-04 $0.750 $249 € 200 $250<br />

Apr-04 $0.750 $249 € 200 $250<br />

May-04 $0.750 $249 € 200 $250<br />

Jun-04 $0.810 $269 € 200 $260<br />

Jul-04 $0.840 $279 € 230 $272<br />

Page 1


Methanex Non-Discounted<br />

Reference Price<br />

Methanex European<br />

Posted Contract Price<br />

(MNDRP) (EPCP)<br />

Methanex Asian Posted<br />

Contract Price<br />

(APCP)<br />

Date $/gal $/MT €/MT $/MT<br />

Aug-04 $0.840 $279 € 230 $272<br />

Sep-04 $0.840 $279 € 230 $272<br />

Oct-04 $0.840 $279 € 230 $272<br />

Nov-04 $0.900 $299 € 230 $272<br />

Dec-04 $0.950 $316 € 230 $292<br />

Jan-05 $0.950 $316 € 230 $302<br />

Feb-05 $0.950 $316 € 230 $302<br />

Mar-05 $0.950 $316 € 230 $302<br />

Apr-05 $0.950 $316 € 230 $302<br />

May-05 $0.950 $316 € 230 $302<br />

Jun-05 $0.950 $316 € 230 $290<br />

Jul-05 $0.900 $299 € 220 $280<br />

Aug-05 $0.900 $299 € 220 $270<br />

Sep-05 $0.900 $299 € 220 $260<br />

Oct-05 $0.960 $319 € 235 $280<br />

Nov-05 $0.960 $319 € 235 $280<br />

Dec-05 $1.020 $339 € 235 $295<br />

Jan-06 $1.020 $339 € 268 $320<br />

Feb-06 $1.070 $356 € 268 $330<br />

Mar-06 $1.070 $356 € 268 $330<br />

Apr-06 $1.070 $356 € 285 $330<br />

May-06 $1.030 $343 € 285 $310<br />

Jun-06 $1.030 $343 € 285 $310<br />

Jul-06 $1.000 $333 € 250 $305<br />

Aug-06 $1.030 $343 € 250 $310<br />

Sep-06 $1.330 $442 € 250 $420<br />

Oct-06 $1.800 $599 € 400 $550<br />

Nov-06 $1.800 $599 € 400 $550<br />

Dec-06 $1.800 $599 € 400 $520<br />

Jan-07 $1.800 $599 € 420 $520<br />

Feb-07 $1.650 $549 € 420 $490<br />

Mar-07<br />

Apr-07<br />

May-07<br />

Jun-07<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

$1.550 $516 € 420 $490<br />

Page 2


13. Faktaark om produktion <strong>af</strong> andengenerations<br />

bioetanol


14. Metanolproduktion, NZIC<br />

New Zealand Institute of Chemistry (NZIC),<br />

http://www.nzic.org.nz/ChemProcesses/energy/, infomation om metanolproduktion:<br />

http://www.nzic.org.nz/ChemProcesses/energy/7D.pdf, kopi fra d. 20/3-2007


THE PRODUCTION OF METHANOL AND GASOLINE<br />

Methanol is made from methane (natural gas) in a series of three reactions:<br />

Ni/800 0 C<br />

• Steam reforming: CH4 + H2O CO + 3H2 ∆rH = +206 kJ mol -1<br />

Ni/800 0 C<br />

• Water shift reaction CO + H2O CO2 + H2 ∆rH = +206 kJ mol -1<br />

• Synthesis 2H2 + CO CH3OH ∆rH = -92 kJ mol -1<br />

Cu-Zn<br />

Thus overall: CO2 + CO + 5H2 → 2CH3OH + H2O + heat<br />

The methanol thus formed may be converted to gasoline by the Mobil process. First<br />

methanol is dehydrated to give dimethyl ether:<br />

2CH3OH CH3OCH3 + H2O<br />

This is then further dehydrated over a zeolite catalyst, ZSM-5, to give a gasoline with 80%<br />

C5 + hydrocarbon products.<br />

The Methanex plant and sites in Taranaki are described.<br />

INTRODUCTION<br />

Methanol or methyl alcohol (CH3OH) is a colourless liquid with a boiling point of 65 o C.<br />

Methanol will mix with a wide variety of organic liquids as well as with with water and<br />

accordingly it is often used as a solvent for domestic and industrial applications. It is most<br />

familiar in the home as one of the constituents of methylated spirits.<br />

Methanol is the raw material for many chemicals, formaldehyde, dimethyl terephphalate,<br />

methylamines and methyl halides, methyl methacrylate, acetic acid, gasoline etc.<br />

Methanol and gasoline are produced from Kapuni and Maui natural gas (methane) by<br />

Methanex New Zealand Ltd around Waitara and New Plymouth in North Taranaki. Methane<br />

is steam reformed to make syngas (hydr<strong>og</strong>en and carbon monoxide), and this in turn is used<br />

to make methanol some of which can be used in methanol to gasoline (MTG) production.<br />

For economic reasons the MTG plant was taken out of production in late 1996, but could be<br />

recommissioned if the economic situation warranted it.<br />

In this article the overall layout and production steps at the Methanex plants will be<br />

described, followed by sections on the chemistry of methanol and gasoline production.<br />

THE METHANEX PLANTS<br />

Methanex owns two methanol plants, the stand alone plant at Waitara Valley which came on<br />

stream in 1983 and which can produce 1500 tonnes per day of crude methanol and dis<strong>til</strong> 3000<br />

tonnes per<br />

VII-Energy-D-Methanol-1


Maui Gas Supply<br />

Kapuni Gas<br />

Supply<br />

NGC MX<br />

VII-Energy-D-Methanol-2<br />

Faull Rd.<br />

Gas mixing<br />

station<br />

Kapuni gas<br />

pipeline<br />

150 mm NB<br />

NGC MX<br />

Waitara Valley<br />

Methanol production<br />

and storage<br />

Fuel gas pipeline<br />

300 mm NB<br />

Process gas pipeline<br />

600 mm NB<br />

Crude<br />

methanol<br />

pipeline<br />

150 mm NB<br />

Product<br />

methanol<br />

pipeline<br />

150 mm NB<br />

Motunui<br />

Methanol and gasoline<br />

production and storage<br />

IPS 1<br />

Intermediate<br />

pumping<br />

station one<br />

IPS 2<br />

Intermediate<br />

pumping<br />

station two<br />

Product methanol pipeline 200 mm NB<br />

Omata 1<br />

Methanol storage<br />

and transfer pumps<br />

2 x 25,000 tonnes<br />

Gasoline loadout line<br />

450 mm NB<br />

Omata 2<br />

Gasoline storage and<br />

ship loadout pumps<br />

2 x 25,000 tonnes<br />

Treated water to<br />

Hongihongi stream<br />

Figure 1 - Flow schematic of Methanex NZ production and storage facilities<br />

Port<br />

Methanol storage and<br />

ship loadout pumps<br />

2 x 27,000 tonnes<br />

Product methanol<br />

loadout line<br />

300 mm NB<br />

Newton King Wharf<br />

Methanol loading arm<br />

Gasoline loading arm<br />

Deballast<br />

water<br />

transfer<br />

pipeline<br />

400 mm NB<br />

Deballast<br />

Deballast water<br />

treatment


day of crude methanol into product methanol, and the Motunui site plant which also<br />

produces gasoline. Here crude methanol is produced in two Davy McKee designed methanol<br />

plants, each with a capacity to produce 2600 t/d of crude methanol. Crude methanol generally<br />

has a water content of 18% w/w, and contains small quantities of by-products from methanol<br />

synthesis. This crude can then be used directly in the MTG process, or piped to the Waitara<br />

Valley site and dis<strong>til</strong>led to give product grade methanol.<br />

Production and storage facilities<br />

The flow relationships of natural gas supply, crude methanol, product methanol, and gasoline<br />

are shown in Figure 1.<br />

Faull Road gas mixing station<br />

The purpose Faull Rd gas mixing station is to carry out custody metering and control the<br />

mixing of Maui gas (low CO2 content) and Kapuni gas (high CO2 content) as the process gas<br />

supply for the Motuni plant with a CO2 content of 16%. The plant is operated for Methanex<br />

by the Natural Gas Corporation NCG). Figure 2 outlines the process.<br />

Figure 2 - Block diagram of Faull Rd gas mixing station<br />

Motunui site<br />

Motunui produces 5200 tonnes per day of crude methanol. This can be converted to either<br />

gasoline by the MTG process, or product methanol with dis<strong>til</strong>lation. Up to 25% of the crude<br />

methanol can be exported to Waitara Valley for dis<strong>til</strong>lation into product methanol. Figure 3<br />

outlines the processes.<br />

Figure 3 - Block diagram for the overall process at Motunui.<br />

VII-Energy-D-Methanol-3


Gas metering and letdown<br />

The process gas and fuel gas from Faull Rd is metered at Motunui for custody transfer and<br />

meter checking, and then letdown to the required process pressures to be used in the plant.<br />

Figure 4 outlines this.<br />

Figure 4 - Gas metering and letdown<br />

Crude methanol production<br />

Crude methanol is produced in two Davy McKee designed methanol plants, each with a<br />

capacity to produce 2600 t/d of crude methanol. Crude methanol generally has a water<br />

content of 18% w/w, and contains small quantities of by-products from methanol synthesis.<br />

Figure 5 outlines the manufacturing process at Motunui.<br />

Figure 5 - The crude methanol manufacturing process at Motunui<br />

Methanol ot gasoline (MTG) production<br />

Gasoline can be produced from methanol using a process developed by Mobil, which uses<br />

ZSM-5 Zeolite catalyst. The plant consists of five identical trains for conversion, and has a<br />

maximum design capacity of 2200 tonnes per day of product gasoline. Figure 6 outlines the<br />

process.<br />

Heavy Gasoline Treatment (HGT)<br />

The gasoline produced by the MTG process contains Durene, a substance with a high melting<br />

point (79°C). The Durene produced by the MTG process is more than that permitted under<br />

product gasoline specifications. The Durene content is reduced by treating the heavy gasoline<br />

produced in MTG, in the Heavy Gasoline Treatment plants prior to blending into product<br />

gasoline. Figure 7 outline the process.<br />

Gasoline Blending and Storage<br />

The separate gasoline components of light gasoline, heavy gasoline, and high vapour pressure<br />

gasoline are all stored in intermediate storage facilities.<br />

Gasoline of product specification is then produced by the controlled blending of these<br />

components<br />

VII-Energy-D-Methanol-4


Figure 6 - The gasoline manufacturing process<br />

Figure 7 - The heavy gasoline treatment process<br />

Figure 8 - Blending and storing gasoline<br />

in the correct proportions. The product is then transferred by pipeline to the Omata 2 storage<br />

facility for storage and load-out to ships. Figure 8 represents these processes.<br />

VII-Energy-D-Methanol-5


Methanol Dis<strong>til</strong>lation<br />

Crude methanol can be dis<strong>til</strong>led, to remove Water and by-products formed during methanol<br />

synthesis, into product methanol. This is done at Motunui in Dis<strong>til</strong>lation III and IV, which are<br />

both rated at 2000 t/d of production. Figure 9 shows the process.<br />

Figure 9 - The methanol dis<strong>til</strong>lation process<br />

The product methanol is stored in rundown tanks initially for quality checking, and then<br />

transferred by pipeline to Waitara Velley, for transfer to Omata 1 or the port.<br />

Waitara Valley<br />

The Waitara Valley methanol plant can produce 1500 t/d of crude methanol and dis<strong>til</strong> 3000<br />

t/d of crude methanol into product methanol in Dis<strong>til</strong>lation I and II.<br />

The additional crude methanol to match dis<strong>til</strong>lation capacity is transferred from Motunui via<br />

the<br />

crude methanol pipeline for dis<strong>til</strong>lation at Waitara Valley. The overall process at Waitara<br />

Valley is shown in Figure 10.<br />

Figure 10 - Overall process at Waitara Valley<br />

The methanol manufacturing process is very similar to that used at Motunui and is shown in<br />

Figure 11.<br />

The crude methanol is then dis<strong>til</strong>led in either Dis<strong>til</strong>lation I or Distallation II as shown in<br />

Figure 12. The plant dis<strong>til</strong>lation designs vary, with Dis<strong>til</strong>lation I incorporating a three tower<br />

design, and Dis<strong>til</strong>lation II using a two tower design.<br />

Pipelines<br />

The Methanex facilities u<strong>til</strong>ise a number of underground pipelines for the transfer of products<br />

between the plants, and to the Port for shipment. See Figure 1.<br />

VII-Energy-D-Methanol-6


Figure 11 - Methanol manufacturing process at Waitara Valley<br />

Figure 12 - Dis<strong>til</strong>lation at Waitara Valley<br />

Process Gas Pipeline (600 mm NB)<br />

To supply mixed gas feedstock to Motunui from Faull Rd Gas Mixing Station.<br />

Fuel Gas Pipeline (300 mm NB)<br />

To supply Maui gas for fuel gas to Motunui from Faull Rd Gas mixing station.<br />

Waitara Valley Kapuni Gas Pipeline (150 mm NB)<br />

To supply Kapuni gas to Waitara Valley from Faull Rd.<br />

Crude Methanol Pipeline (150 mm NB)<br />

To transfer crude methanol from Motunui to Waitara Valley.<br />

Motunui - Waitara Valley Product Methanol Pipeline (200 mm NB)<br />

To transfer product methanol from Motunui to Waitara Valley, for storage and onward<br />

transfer to the Port or Omata 1.<br />

Product Methanol Pipeline (200 mm NB)<br />

This pipeline is used to transfer all product methanol produced at Waitara Valley and<br />

Motunui, to the Port and Omata 1. The pipeline requires the use of two intermediate pumping<br />

stations to transfer the required volumes.<br />

Product methanol from Omata 1 is transferred to the Port using the section of Product<br />

Methanol Pipeline located between the two sites.<br />

VII-Energy-D-Methanol-7


Product Gasoline Pipeline (250 mm NB)<br />

This pipeline is used to transfer product gasoline from Motunui to Omata 2 for storage and<br />

subsequent ship load-out.<br />

Gasoline Load-out Line (450 mm NB)<br />

The product gasoline is loaded onto ships by transferring the gasoline from Omata 1 directly<br />

to the gasoline loading arm on the Port Taranaki Newton King Wharf.<br />

Pumping stations<br />

Intermediate Pumping Station 1 (IPS 1)<br />

At higher flows, between 270-360 m 3 /h, in the Product methanol Pipeline, IPS 1 is required<br />

to boost the pressure in the pipeline in order to maintain the required flowrates.<br />

IPS 1 consists for four pumps, which operate in parallel, to increase the pressure of the<br />

product methanol from 6 bar to 40 bar. The intermediate pumping station can be by-passed<br />

when it is not required for use. IPS 1 is an unmanned site and is operated from Waitara<br />

Valley<br />

Intermediate Pumping Station 2 (IPS 2)<br />

At maximum pipeline flowrates in the Product Methanol Pipeline (360-430 m 3 /h), IPS 2 is<br />

required, in addition to IPS 1, in order to boost the pressure and maintain the required<br />

flowrate. IPS 2 is an unmanned site and is operated from Waitara Valley.<br />

Storage<br />

Omata 1 Product Methanol Storage<br />

Product methanol can be diverted from the 200 mm NB Product methanol pipeline to storage<br />

at Omata 1.<br />

Omata 1 consists of two 25,000 tonne fixed roof storage tanks and three transfer pumps. The<br />

facility is remotely operated from the Port. The pumps are used to transfer methanol from the<br />

Omata 1 storage tanks to the Port storage tanks, using the Product methanol pipeline.<br />

Omata 2 Gasoline Storage<br />

Omata 2 is used for the storage of Product gasoline prior to ship load-out.<br />

The facility consists of two 25,000 tonne floating roof tanks and two ship load-out pumps.<br />

One of the floating roof tanks is being converted to dual use, with a vented fixed roof and<br />

internal floating roof, allowing it to be used for either gasoline or methanol. It is currently to<br />

be returned to gasoline service.<br />

The ship load-out pumps transfer the gasoline directly to the gasoline ship load-out arm on<br />

the Port Taranaki Newton King -wharf, via the 450 mm NB Gasoline load-out line.<br />

Port Storage and Load-out Facilities<br />

The Port storage facility is used for the storage of product methanol prior to loading onto<br />

ships. The facility consists of two 27,000 tonne fixed roof tanks, and four ship load-out<br />

pumps. The load-out pumps transfer methanol to the methanol shiploading arm on the<br />

Newton king Wharf, via the 300 mm NB load-out line.<br />

VII-Energy-D-Methanol-8


The gasoline and Methanol ship loading arms have been included as part of the Port facilities<br />

for the risk assessment.<br />

Deballast Facility<br />

The deballast facility is used to treat ballast water from ships. The ballast water contains<br />

small quantities of oil from ship storage tanks. The deballast facility separates the oil from<br />

the water, and then discharges the water into the nearby Hongihongi Stream. The recovered<br />

oil is returned to crude oil storage<br />

The facility consists of a deballast water storage tank, a small recovered oil storage tank, and<br />

an API separator and dissolved air flotation unit.<br />

THE METHANOL PRODUCTION PROCESS<br />

The main process area of the plant can be divided into three sections as shown in Figure 5:<br />

• Reforming<br />

• Compression and Synthesis<br />

• Dis<strong>til</strong>lation<br />

In addition, a number of support u<strong>til</strong>ities are required, including a conventional water<br />

treatment plant, an ion-exchange demineralizer to produce higher quality water for boilers, a<br />

package boiler, a cooling water system, an inert gas system, an instrument air system and an<br />

electricity generator.<br />

Reforming<br />

The term "steam-hydrocarbon reforming" refers to the endothermic reaction between steam<br />

and methane (or any other alkane) which produces carbon monoxide, carbon dioxide and<br />

hydr<strong>og</strong>en. The reaction is carried out in a furnace at high temperatures over a nickel catalyst<br />

inside tubes. Fired burners supply heat for the endothermic reaction:<br />

Ni/800 0 C<br />

CH4 + H2O CO + 3H2 ∆rH = +206 kJ mol -1<br />

Under these conditions, the water gas shift reaction also occurs to a small extent:<br />

Ni/800 0 C<br />

CO + H2O CO2 + H2 ∆rH = +206 kJ mol -1<br />

Thus the products of the reforming reaction ("synthesis gas") include carbon oxides and<br />

hydr<strong>og</strong>en as well as unreacted methane, nitr<strong>og</strong>en, and steam. They leave the furnace at over<br />

800 o C. Heat is recovered from this stream as it is cooled to 32 o C.<br />

The recovered heat is used to generate high-pressure steam; heat boiler feed water, and to<br />

supply heat to the dis<strong>til</strong>lation section. Some heat, which cannot be recovered, is rejected to<br />

the atmosphere (air coolers) and the cooling water system. After cooling, steam in the<br />

reformed gas is condensed and recycled to water treatment.<br />

Waste flue gases leave the furnace at over 1000°C. In order to increase plant efficiency and<br />

decrease thermal pollution, the flue gas is used to generate and superheat high pressure<br />

VII-Energy-D-Methanol-9


steam, preheat the reactants (steam and hydrocarbons), and heat the combustion air to the<br />

furnace. The flue gas leaves the stack at 150 o C.<br />

Maui gas is considered almost sulphur-free but, as sulphur in only trace amounts is a poison<br />

to the reformer catalyst, a sulphur removal system is included in the process as a<br />

precautionary measure. Desulphurization of the hydrocarbon feedstock is carried out at<br />

400 o C. It is mixed with a small amount of hydr<strong>og</strong>en-rich purge gas from the converter and<br />

passed over a cobalt-molybdenum catalyst that converts any thiols, sulphides and carbonyl<br />

sulphides to hydr<strong>og</strong>en sulphide H2S. It then passes through a zinc-oxide bed where the H2S is<br />

absorbed by the zinc oxide.<br />

Co-Mo-400 o C<br />

(R-SH, R-S-R, SO2, etc) + H2 → H2S + R-H<br />

VII-Energy-D-Methanol-10<br />

400 0 C<br />

H2S + ZnO → ZnS + H2O<br />

Compression and Synthesis<br />

The "synthesis gas" from the reformer is then compressed in a centrifugal compressor. A<br />

turbine which draws its power from the high pressure steam system drives this compressor.<br />

Extraction steam from the turbine is used in the reforming reaction and drives other turbines<br />

in the process.<br />

The compressed synthesis gas enters the converter reactor containing copper zinc and catalyst<br />

and the synthesis reaction occurs, according to the equation:<br />

2H2 + CO CH3OH ∆rH = -92 kJ mol -1<br />

This reaction is highly exothermic and this excess heat is used to heat boiler feed water and<br />

to pre-heat reactant gas.<br />

Since the reaction is exothermic, low temperatures favour conversion to methanol. On the<br />

other hand, the rate of reaction increases with increasing temperature. Pressure will also<br />

<strong>af</strong>fect the position of the equilibrium, with increasing pressure favouring methanol formation.<br />

The final conditions used involve a copper oxide based catalyst at about 5 MPa (50<br />

atmospheres) pressure and about 270 o C.<br />

As carbon monoxide is used up in the methanol synthesis reaction the water gas shift reaction<br />

reverses producing more carbon monoxide:<br />

H2 + CO2 CO + H2O ∆rH = +41 kJ mol -1<br />

These reactions combine to produce approximately 40% conversion of carbon oxides to<br />

methanol each pass through the reactor. On leaving the reactor the gas mixture is cooled and<br />

methanol and water condense out. The remaining gas is returned to the circulator, mixed with<br />

incoming compressed synthesis gas and recycled through the methanol converter.


Hence, the overall reactions by which methanol is produced from synthesis gas may be<br />

summarised into the following equation:<br />

Cu-Zn<br />

CO2 + CO + 5H2 → 2CH3OH + H2O + heat<br />

A feature of the steam reforming reaction and the methanol synthesis reaction is that for<br />

every three moles of hydr<strong>og</strong>en gas produced in the steam reformer, only two moles are used<br />

in the recycled gas being returned to the methanol converter and the mixture must be purged<br />

to remove this excess. At present this purge is used as fuel in the reformer, but the potential<br />

for using hydr<strong>og</strong>en as a feedstock for other reactions (e.g. production of ammonia, reduction<br />

of iron sands) should be noted.<br />

It should also be noted that although the converter catalyst is highly specific in producing<br />

methanol, some side reactions occur which produce higher alcohols (ethanol, propanol,<br />

butanol) and alkanes. These may be summarised:<br />

nCO + 2(n-½)H2 → CnH2nOH + (n-1)H2O<br />

nCO + CH3OH + 2nH2 → CnH2n+3OH + nH2O<br />

The crude methanol and water produced in the converter are reduced in pressure in a letdown<br />

"flash" vessel. Gas from this vessel is recycled to the furnace as fuel. The crude is then<br />

sent to "in process storage".<br />

This crude methanol contains a large range of impurities which have to be removed to<br />

produce methanol of chemical grade quality. The technique used for purification is<br />

dis<strong>til</strong>lation.<br />

Dis<strong>til</strong>lation<br />

The dis<strong>til</strong>lation system consists of an extraction column, a refining column, and a recovery<br />

column.<br />

The first step is the removal of the vola<strong>til</strong>e impurities and dissolved gases - these include<br />

carbon dioxide, carbon monoxide, hydr<strong>og</strong>en, nitr<strong>og</strong>en, acetone, ethers, esters and vola<strong>til</strong>e<br />

alkanes up to decane - which are carried out in the extraction column. The temperature in this<br />

column is kept as low as possible to prevent significant methanol loss by evaporation.<br />

The bottom of the extraction column provides the feed for the reforming column. The feed is<br />

vapourised and enters the refining column about a third of the way up the column. Methanol<br />

is now the most vola<strong>til</strong>e component and it leaves the top of the column with a purity of<br />

99.99%. This is product methanol.<br />

A mixture of ethanol and methanol is purged from the column (about half way up) and is sent<br />

to the recovery column for further treatment. Propanol and other higher alcohols are purged<br />

off (at quarter height) and pumped to the 'tails' tank. Quantities of these alcohols are so small<br />

that it is not economic to recover them and they are added to the reformer fuel gas stream and<br />

burned. Essentially pure water is drawn from the bottom trays and pumped to waste.<br />

VII-Energy-D-Methanol-11


As it is very difficult to separate methanol from ethanol, a third column (the recovery<br />

column) is completely allocated for this purpose. The feed for this column is the purge from<br />

the refining column described above. High purity methanol leaves the top of the column,<br />

combines with the refining column product, and is pumped to the storage tanks. From there it<br />

is transferred by pipeline to two 27 000 tonne capacity storage tanks at Port Taranaki in New<br />

Plymouth for subsequent export. The 'bottoms' of the recovery column are pumped to the<br />

'tails' tank and subsequently used as fuel for the reformer.<br />

U<strong>til</strong>ities<br />

The main process areas require the following u<strong>til</strong>ities:<br />

• A package boiler which generates steam at intermediate pressure. This is essential for<br />

plant start up and useful as a stream pressure controller during steady operation.<br />

• A conventional water treatment plant to treat water abstracted from the Waitara River.<br />

All the water is clarified and some is further treated by filtration.<br />

• An ion-exchange demineralisation plant. This plant removes ions from filtered river<br />

water, so that less than 0.1 mg/L of impurities remain. Returning turbine and process<br />

condensate streams are also treated here before joining with demineralised water to<br />

become boiler feedwater.<br />

• A cooling water system which cools various areas in the plant and is in turn cooled by<br />

evaporation of some of the warm water returning from the process in cooling towers.<br />

• An inert gas (nitr<strong>og</strong>en) supply and distribution system. Nitr<strong>og</strong>en is required during the<br />

plant start up before steam and natural gas are introduced to the reformer. It keeps<br />

some coils in the flue gas section cool while warming up and drying out the refractory<br />

in the reformed gas boiler. It is also used for pressure control in some areas, and is a<br />

back-up for the instrument air system.<br />

• An instrument air compressor and distribution system. Instrument air is required to<br />

operate most of the control valves in the plant. It also serves as a source of air which<br />

is used for plant maintenance.<br />

• An electricity generator is required to maintain supply to essential process areas in the<br />

event of failure of the main supply to the plant.<br />

The complete process is designed to make most efficient use of resources any recycling of<br />

waste streams is carried out wherever possible. This has the added benefit of minimising the<br />

volumes of waste to be discharged from the plant.<br />

The product methanol is stored in rundown tanks initially for quality checking, and then<br />

transferred by pipeline to Waitara Valley, for transfer to Omata 1 or the Port.<br />

METHANOL TO GASOLINE - THE MOBIL PROCESS<br />

The Methanol to Gasoline (MTG) process was developed by Mobil in the early 1970's. In<br />

1979, the New Zealand government decided to employ the Mobil MTG process as an<br />

alternative in reducing the dependence on imported crude oil. A plant was built at Motunui<br />

with a production of about 14 000 barrels per day of unleaded gasoline, having an octane<br />

rating of 92 to 94.<br />

The MTG plant was the first commercial synthetic gasoline plant using new technol<strong>og</strong>y<br />

developed since the Second World War. The gasoline coming out from the plant can be<br />

shipped to the Marsden Point refinery for blending into the New Zealand gasoline pool. The<br />

VII-Energy-D-Methanol-12


methanol requirement for this process comes from the two 2,200 tonnes (water free basis) per<br />

day methanol plants.<br />

Catalyst<br />

In the 1970's, Mobil synthesised a new zeolite catalyst, which became a key element in the<br />

MTG process. Zeolites are porous, crystalline materials with three dimensional framework<br />

composed of AlO4 and SiO4 tetrahedra.<br />

This catalyst, known as ZSM-5 (Figure l3) can convert methanol to hydrocarbon products<br />

which are similar to the gasoline fraction of conventional petroleum.<br />

ZSM-5 has an intermediate pore diameter about 6Å and a unique channel structure. There<br />

are two sets of intersecting channels present: elliptical, l0-membcred ring channels present<br />

and near circular (sinusoidal) channels. It is this unique combination of channel shapes and<br />

sizes that make ZSM-5 so efficient and special in MTG conversion, producing gasoline range<br />

molecules (C4 - C10 ) with practically no hydrocarbons above Cl0. In other words, ZSM-5<br />

ccatalyst produces the right kind of shape and size selectivity properties suitable for gasoline<br />

synthesis. These selectivities also give ZSM-5 a reputation for high resistance to<br />

deactivation. Hence, a novel route to gasoline from either coal or natural gas can be achieved.<br />

Figure 13 - Representation of the ZSM-5 catalyst<br />

VII-Energy-D-Methanol-13


Operational processes<br />

A schematic layout for the Motunui plant is shown in Figure 6.<br />

The natural gas is first desulphurised and saturated before entering the reformer furnace<br />

where it reacts with steam to produce synthesis gas of hydr<strong>og</strong>en, carbon monoxide (and<br />

carbon dioxide). The synthesis gas coming out from the reformer is cooled compressed<br />

reheated then sent to the methanol converter. The crude methanol produced contains about<br />

20% of water. The feed gas desulphurization facilities are included to protect the reformer<br />

and methanol catalyst from sulphur poisoning. H2S is removed by ZnO pellets contained in a<br />

reactor vessel<br />

There are three stages involved in the MTG process<br />

• Petrol synthesis<br />

• Dis<strong>til</strong>lation<br />

• Heavy Petrol treating<br />

Catalyst regeneration is also an essential part of the MTG process<br />

Petrol synthesis<br />

The crude methanol is initially preheated, vapourised and then superheated to between 300-<br />

320 0 C in a series of heat exchangers. The vapour is then sent to the dimelhy l ether (DME)<br />

reactor containing a dehydration catalyst (alumina) where approximately 75% of the<br />

methanol is partially dehydrated to an equilibrium mixture of DME, water and methanol.<br />

VII-Energy-D-Methanol-14<br />

2CH3OH CH3OCH3 + H2O<br />

The reaction is rapid, reversible and exothermic. About 20% of the total heat produced is<br />

liberated in this step.<br />

The mixture (at the temperature between 400-420 o C) is then mixed witl recycle gas and<br />

passes to thc conversion reactors Thc recycle gas, composed mainly of light hydrocarbons,<br />

CO2 and H2 serve to absorb the heat of reaction. In the conversion reactor which contains<br />

ZSM-5 catalyst DME is further dehydrated to give light alkenes which oligomerize (ie.<br />

undergoing chain growth by joining two or more alkene molecules t<strong>og</strong>ether) and cyclise to<br />

give the final products with the liberation of the remainder of the heat.<br />

Thc mixed effluent is cooled, by generating medium pressure steam by preheating the<br />

methanol feed and recycle gas, by air and water. It contains approximately) 94 weight<br />

percent (w/w %) of hydrocarbons and 56 w/w% of water, the expected stoichiometric ratio.<br />

The conversion is essentially 100%. About 85-90% of thc hydrocarbon products can be used<br />

as gasoline the renainder is fuel gas. Small amounts of CO, CO2 and coke are formed as byproducts.<br />

Coke is defined (in simple terms) as the reaction product that is depositcd on the<br />

surface and fills the pores of the catalyst. This process leads to the deactivation of the<br />

catalyst.<br />

The recycle gas, water and hydrocarhons then goes to the product separator. The water is<br />

normally recycled to thc reformer saturator, the recycle gas returns to the compressor and<br />

liquid hydrocarbons are sent to the dis<strong>til</strong>lation section.


Dis<strong>til</strong>lation<br />

The MTG hydrocarbon is refined in three dis<strong>til</strong>lation columns. A portion of the lighter and<br />

more vola<strong>til</strong>e hydrocarbons dissolved gases and some water is removed by the first column.<br />

The second column removes the remaining light hydrocarbons, which are cooled to form<br />

LPG. It also recovers a high vapour pressure petrol blending component. The petrol is then<br />

split into light and heavy fraction in a splicer column. The light petrol is stored. The heavy<br />

fraction is sent to the treating facility.<br />

Heavy Petrol treatment<br />

Heavy petrol produced in the MTG process contains a component known as durene (1,2,4,5tetramethylbenzene)<br />

which has a high melting point (79°C). The concentration of durene is<br />

reduced in the heavy petrol treating section, by converting to low melting point petrol<br />

components, e.g. isodurene (1,2,3,5-tetramethylbenzene) with melting point of -23.7°C.<br />

H 3C<br />

CH3<br />

CH 3<br />

CH 3<br />

Product composition<br />

The composition of the synthetic gasoline is quite similar to conventional high quality<br />

gasoline. The products from the MTG process are summarised below:<br />

H3C<br />

CH3<br />

CH3<br />

CH3<br />

Hydrocarbon product w/w % Gasoline composition w/w %<br />

Light Gas 1.4 Highly branched alkanes 53<br />

Propane 5.5 Highly branched alkenes 12<br />

Propene 0.2 Napthenes (cycloalkanes) 7<br />

Isobutane 8.6 Aromatics 28<br />

n-Butane 3.3<br />

Butenes l.1<br />

C5 + Gasoline 79.9<br />

Chemistry of reactions<br />

The steam reforming process can be represented by the general equation:<br />

CnH2n+2 + nH2O nCO + (2n+ l )H2<br />

where CnH2n+2 is any alkane and n is a positive integer. For natural gas, which is almost<br />

entirely methane, the above equation becomes:<br />

CH4 + H2O CO + 3H2<br />

Hence, synthesis gas is formed which can be used for methanol synthesis.<br />

VII-Energy-D-Methanol-15


The reaction of the synthesis gas can give a range of products e.g.<br />

nCO + 2nH2 → CH3(CH2)n-1OH + (n-l)H2O<br />

nCO + (2n+1)H2 → CH3(CH2)n-2CH3 + nH2O<br />

Hence, methanol synthesis requires proper choice of catalyst, which gives high selectivity for<br />

methanol. From above if n=l, then:<br />

CO + 2H2 → CH3OH<br />

The chemistry involved in the MTG process is quite complex. A simplified reaction scheme<br />

(proposed by Chang and Silvestri) is shown below.<br />

-H2O -H2O<br />

2CH3OH CH3OCH3 → C2 - C5 alkenes → alkanes, cycloalkanes, aromatics<br />

+H2O<br />

Figure 14 shows the product selectivity measured over a wide range of space time (contact<br />

time). The contact time measures the time of contact between the catalyst and the reactant<br />

molecules. At shorter contact time (in the order of 10 -3 hr), water and DME are the main<br />

products obtained. When the contact time is increased, the yield of DME reaches a maximum<br />

<strong>af</strong>ter which it decreases, since DME now has more chance to further dehydrate to give C2-C5<br />

alkenes. With further increase in the contact time, alkanes/C6+ alkenes and aromatics are<br />

obtained.<br />

Figure 14 - Product time plot of products in w/w% against space time in hours<br />

The MTG process is a selective catalytic conversion. The rate limiting step is the conversion<br />

of DME to alkenes, a reaction step that appears to be autocatylic. The catalytic conversion of<br />

methanol relies on the action of protonic (Bronsted acid) sites, ie. the hydroxyl groups of the<br />

zeolitic structure. The condensation of methanol molecules to DME is thought to involve the<br />

VII-Energy-D-Methanol-16


formation of surface methoxy group formed by the protonation and subsequently removal of<br />

water. The second step, i.e. the oligomerization of alkene molecules probably involves<br />

carbocation intermediates, by protonation of alkene double bonds.<br />

Constraints of the MTG process<br />

• The MTG process is highly exothermic. producing heat at 1740 kJ/kg of methanol<br />

consumed. The principal problem in reactor design is thus heat removal, which is<br />

important. The recycle gas then provides a good absorbent for the heat of reaction.<br />

• One of the undesirable products in the MTG process is durene, which causes<br />

carburettor "icing" because of its high melting point. The synthetic gasoline contains<br />

higher concentration of durene (about 3-6 wt. %) than is normally present in<br />

conventional gasoline (about 0.2-0.3 wt. %). Durene can be isomerized to give isodurene<br />

by the process discussed above to reduce its concentration in the synthetic<br />

gasoline. However, durene can potentially be used as a feed stock in the polymer<br />

industry.<br />

• Catalyst aging is an inevitable problem in catalysis. There are two types. The first is<br />

reversible aging caused by coking. The coked catalyst, hence, requires regeneration<br />

every three or four weeks. Coke is burned off with a heated air-nitr<strong>og</strong>en mixture.<br />

Operation of the MTG process is kept continuous by using multliple reactors<br />

(Figurc14). The Motunui plant uses five swing reactors, with one undergoing off-line<br />

regeneration at any given time while the other four are run in parallel for MTG. Thc<br />

second type is irreversible, caused by steam (a reaction product), which leads to<br />

dealumination and loss of crystallinity. It can beminimised by operating at low<br />

temperatures and pressures.<br />

• In fixed-bed reactors, especially with fresh catalyst, the reaction only occurs over a<br />

relatively narrow band of the catalyst bed. As coke deposits first deactivate the front<br />

part of the bed, the active reaction zone move down the bed along the flow of the<br />

reactants. This phenomenon is known as band aging, which finally allows the<br />

reactant to break through te bed unconverted.<br />

• The major products of the MTG process are hydrocarbon and water. Therefore, any<br />

unconverted methanol will dissolve in the water and be lost unless a dis<strong>til</strong>lation step is<br />

added to the process for recovering the methanol. Thus, essentially complete<br />

conversion of methanol is highly preferred.<br />

• The principal disadvantage of the Mobil process is its inability to directly produce<br />

diesel and jet fuel. Both diesel and jet fuel are composed of linear, long chain alkanes<br />

which the ZSM-5 catalyst does not produce. Jet fuel for example is made up of<br />

mainly C9-C14 alkanes with maximum at about C11. Diesel is made up of mainly C10-<br />

C16 alkanes with maximum around C14.<br />

Advantages of the process<br />

• The synthetic gasoline is free of sulphur and nitr<strong>og</strong>en.<br />

• The overall energy efficiency of the MTG process including processing energy is<br />

high, about 92-93%. The energy balance is extremely favourable, 95% of the thermal<br />

energy of the methanol feed is preserved in the hydrocarbon product. The remaining<br />

5% is liberating as heat of reaction. However, if one includes the thermal efficiency<br />

for the methanol synthesis process from natural gas (~60%), then the overall energy<br />

efficiency (natural gas to gasoline) is about 50-60%.<br />

• The product meets or exceeds existing gasoline specifications.<br />

• Methanol conversion is virtually complete. Gasoline yield high.<br />

VII-Energy-D-Methanol-17


Figure 15 - Flowsheet of the MTG process section<br />

• The feed (methanol) for the MTG process can be made from the wide variety of<br />

sources, namely natural gas, coal, biomass etc. In fact, the MTG process will convert<br />

most types of alcohol to gasoline, although methanol produced from either natural gas<br />

or coal will probably continue to be the most economic feedstock.<br />

ROLE OF THE LABORATORY<br />

The role of the laboratory is to analyse all process streams. This involves analysis of natural<br />

gas, process gas, cooling water, boiler feed water, waste water and methanol. It is the<br />

laboratory's task to ensure that these streams are within their specification. On the basis of the<br />

analytical results, process conditions can be changed and optimised<br />

Gas streams are analysed continuously with on-line gas chromat<strong>og</strong>raphy and at regular<br />

intervals with the laboratory gas chromat<strong>og</strong>raphy. For each gas stream different pr<strong>og</strong>rams are<br />

used to ensure complete separation and detection of the individual components<br />

Methanol is frequently sampled at various stages of the process and undergoes a series of<br />

physical and chemical tests<br />

Cooling water and boiler feed water are analysed several times a day for pH, hardness,<br />

chloride, phosphate etc. to ensure their corrosive properties are minimal<br />

All plant waste effluents are regularly analysed and checked to see that they meet<br />

environmental restrictions and conditions<br />

VII-Energy-D-Methanol-18


ENVIRONMENTAL IMPLICATIONS<br />

The production of methanol from natural gas poses only limited pressure on the environment.<br />

Only one product is manufactured (methanol) which is a compound of relative low toxicity.<br />

A special methanol sewer collects any methanol wastes spilled on the plant site. This waste<br />

is burned in the reformer as fuel .<br />

A storm pond collects rainwater from the plant and is analysed for methanol and other<br />

contaminants prior to discharge to the river.<br />

Rewritten by John Packer from the two articles of volume 2, compiled by P. Kooy (Petrolgas<br />

- Waitara Valley) and Dr C M Kirk (Taranaki Polytechnic - New Plymouth) with information<br />

supplied by Clare Wrinkes of Methanex New Zealand Ltd.<br />

VII-Energy-D-Methanol-19


15. Metanolproduktion, Nykomb<br />

Nykomb Synergetics, http://www.nykomb.se, svensk firma, som bl.a. arbejder med<br />

production <strong>af</strong> metanol <strong>og</strong> andre brændsler. Paper baseret på data fra 1997:<br />

http://www.nykomb.se/pdf/methanol.pdf, hentet d. 20/3-2007.


NYKOMB<br />

SYNERGETICS<br />

1. Introduction<br />

Biomass-Derived Alcohols<br />

for Automotive and Industrial Uses<br />

Ecotr<strong>af</strong>fic R&D AB<br />

This paper is based on a feasibility phase project report titled Biomass-derived<br />

Alcohols for Automotive and Industrial Uses. The report was conducted by<br />

Ecotr<strong>af</strong>fic R&D AB and Nykomb Synergetics AB and printed in September<br />

1997. Furthermore, the report was financed by the European Union pr<strong>og</strong>ram<br />

Altener and the Swedish National Board for Industrial and Technical<br />

Development.<br />

Ecotr<strong>af</strong>fic R&D AB has during 1996 and 1997 made studies including<br />

production of alcohol’s for Vattenfall AB, County Administrative Boards of<br />

Jämtland and of Väster Norrland and for Trollhättan Municipality. Mentioned<br />

Boards and Municipality have shown interest to go on by further studies and<br />

could be partners in the future. In addition, Nykomb Synergetics AB has<br />

indications of interest from their assignors Växjö Energi AB and Air Products<br />

and Chemicals, Inc.<br />

Thus, in the current report, technically viable routes for the conversion of<br />

biomass to transportation fuels have been documented. The report<br />

demonstrates that the primary interest based on present economics is to be<br />

focused on biomass gasification followed by conversion of the syngas produced<br />

into methanol and/or its derivatives and anal<strong>og</strong>ues.<br />

With current environmental pressures and the ageing of existing systems, the<br />

need for economically viable alternatives is crucial. Hence, advanced biomass<br />

gasification holds the promise to change the way that biomass residues are<br />

used in the generation of steam and power and in the production of chemicals.<br />

With the commercialisation of such technol<strong>og</strong>ies involved they will thus provide<br />

users with the opportunity to replace fossil fuels combustion processes with a<br />

clean, efficient, and totally renewable alternative.<br />

This documentation on technical features and conceptual economics for a<br />

methanol production plant has been developed by Nykomb Synergetics AB and<br />

Ecotr<strong>af</strong>fic R&D AB based on information given by the main technol<strong>og</strong>y suppliers<br />

Krupp Uhde GmbH, Dortmund and Haldor Topsøe A/S, Copenhagen.<br />

Nykomb Synergetics AB is well experienced in gasification technol<strong>og</strong>y and<br />

methanol production technol<strong>og</strong>y, as well as in business development. Ecotr<strong>af</strong>fic<br />

R&D AB is well experienced in l<strong>og</strong>istics and economics of motor alcohols.<br />

T<strong>og</strong>ether the two companies have a strong technical, economical and financial<br />

capability of handling a methanol project comprising production of fuel-grade<br />

engine methanol from raw forest biomass.<br />

Nykomb Synergetics AB 15 April 1999 1


NYKOMB<br />

SYNERGETICS<br />

2. Methanol Plant Performance<br />

The configured methanol production plant will produce 1,000 tonnes/day or<br />

310,000 tonnes/year (390 million litres/year) of fuel-grade methanol at a plant<br />

operation of 7,500 equivalent full load hours per year. Thus, the plant will<br />

consume about 177 - 187 tonnes/hour or about 1.3 million tonnes/year of<br />

unprocessed, wood biomass feedstock with a moisture content of 50 % by<br />

weight.<br />

Ecotr<strong>af</strong>fic R&D AB<br />

With the proposed process scheme the methanol can be produced at an<br />

energy efficiency of 57 %. When the plant is made to produce its own electric<br />

power needs the biomass to methanol efficiency decreases to 49 - 46 % at the<br />

same time as the plant will produce heat suitable for district heat system<br />

corresponding to 12 - 21 % of the fuel input.<br />

The overall conclusion is that fuel-grade methanol can be produced from<br />

biomass in a free-standing, self-sufficient plant at a net biomass-to-methanol<br />

efficiency of 49 %.This efficiency can be shown in a Sankey diagram, see<br />

Figure 1.<br />

Biomass Feedstock<br />

408 MW<br />

87 - 82 %<br />

Additional Biomass<br />

63 - 90 MW<br />

13 - 18 %<br />

Methanol - PLANT<br />

Feedstock Drying<br />

Feeding System<br />

HTW - Gasification<br />

Gas Conditioning<br />

Methanol Synthesis<br />

Auto-Thermal<br />

Reformer<br />

Methanol Dis<strong>til</strong>lation<br />

Power Boiler<br />

Steam Turbine<br />

Energy Losses<br />

184 - 162 MW<br />

39 - 32 %<br />

Produced Methanol<br />

231 MW<br />

49 - 46 %<br />

Available Heat<br />

56 -105 MW<br />

12 - 21 %<br />

Figure 1. Sankey diagram, methanol production from biomass.<br />

Nykomb Synergetics AB 15 April 1999 2


NYKOMB<br />

SYNERGETICS<br />

3. Process Configuration<br />

Ecotr<strong>af</strong>fic R&D AB<br />

The High Temperature Winkler (HTW) fluidized-bed gasification technol<strong>og</strong>y<br />

forms the basis for the synthesis gas production plant. This process, supplied<br />

by the engineering company Krupp Uhde, Germany has attained industrial<br />

maturity for the gasification of reactive feedstocks such as brown coal and peat<br />

under pressure.<br />

The methanol synthesis plant comprise a methanol synthesis unit with a purge<br />

gas stream led to an Auto-Thermal Reformer (ATR), thus making a loop. This<br />

process is supplied by the engineering company Haldor Topsøe, Denmark and<br />

is commercially available. Consequently, the methanol production plant will<br />

ensure high reliability and availability.<br />

4. Environmental Performance<br />

With gasification of biomass feedstock various unwanted compounds are<br />

formed, such as sulphur compounds, ammonia, hydr<strong>og</strong>en cyanide, nitr<strong>og</strong>en<br />

compounds and higher hydrocarbons. However, due to the gas cleaning and<br />

gas conditioning steps within the plant, these compounds are completely<br />

removed.<br />

The solid residues from the gasification step will be incinerated as additional<br />

fuels in a steam boiler in order to u<strong>til</strong>ise the energy contained. During<br />

combustion, a minor portion of the combined sulphur will be released and<br />

exhausted to the atmosphere in the form of SO2. In conclusion, the plant will<br />

exhibit good environmental performance with very little emissions.<br />

5. Plant Reliability and Availability<br />

This process plant configuration is mainly based on proven and commercially<br />

available technol<strong>og</strong>ies and equipment with guaranteed performance from<br />

competing vendors.<br />

The simple and straight-forward process configuration with a minimum of<br />

integration between plant units and heat exchange between process streams<br />

contributes to an easy and reliable operation of the facility. Thus, this methanol<br />

producing plant will exhibit good reliability and availability.<br />

Nykomb Synergetics AB 15 April 1999 3


NYKOMB<br />

SYNERGETICS<br />

6. Investment Estimate<br />

Ecotr<strong>af</strong>fic R&D AB<br />

The investment cost estimate as well as the calculated methanol production<br />

cost are based on 1 st quarter of 1997 and were based on cost information given<br />

by respective supplier or vendor. Some costs were assessed using in-house<br />

information and applying accepted factoring methods as degression exponents,<br />

scale-up factors etc.<br />

Moreover, the capital investment cost was calculated with an interest of 8 %<br />

and a project lifetime of 15 years, hence, an annuity of some 12 %. Thus, the<br />

estimated investment cost for the biomass to methanol production plant is 417<br />

MMUSD or US$1,800/kW. An investment cost break-down is illustrated below<br />

in Figure 2.<br />

Contingency<br />

11%<br />

Off-sites & U<strong>til</strong>ities<br />

5%<br />

Wood Preparation<br />

& Storage Units<br />

10%<br />

Combined Heat<br />

and Power Unit<br />

9%<br />

Methanol 8%<br />

Synthesis Plant<br />

57%<br />

Figure 2. Investment cost breakdown.<br />

Synthesis Gas Plant<br />

Nykomb Synergetics AB 15 April 1999 4


NYKOMB<br />

SYNERGETICS<br />

7. Methanol Production Cost<br />

For the production of 1,000 tonnes/day of fuel-grade methanol the calculated<br />

production cost per year is US $0.28/litre or ECU 0.25/litre. This has been<br />

calculated with a typical feedstock cost of ECU 9.5/MWh and 12 % annuity.<br />

Furthermore, in the calculated cost there has been no credit taken for the<br />

available production of heat for distant heating.<br />

Exchange rates (PostGirot, 26 September 1997):<br />

1 USD = 7.50 SEK<br />

1 DEM = 4.29 SEK<br />

1 ECU = 8.50 (set rate by Authors).<br />

8. Commercial Demonstration<br />

Ecotr<strong>af</strong>fic R&D AB<br />

For the commercial demonstration, the subsequent phase of efforts will clearly<br />

focus on selecting a raw materials base, a site, a process configuration, product<br />

slate, and a commercial investor partnership and alliances which will meet the<br />

following criteria:<br />

• Robust investment object in terms of product flexibility.<br />

• Sustainable long term operation.<br />

• Plant scale minimum to meet commercial demonstration objective.<br />

• Transport fuel produced which will be compatible with major automotive<br />

actors’ long range views.<br />

• Overall economics to provide a commercial return <strong>af</strong>ter allowing for<br />

compensation for small scale and short term market aberrations in pricing<br />

of competing fossil-based fuels.<br />

• Possibility to organise a substantial fleet demonstration for the biomass<br />

derived fuel.<br />

An overriding consideration is that the selection of project specifications shall<br />

be made in such a way that a successful commercial demonstration is as far as<br />

possible assured - i.e., a commercial return on the partnership’s risk capital<br />

shall be likely in view of the parameters at hand.<br />

Nykomb Synergetics AB 15 April 1999 5


NYKOMB<br />

SYNERGETICS<br />

9. L<strong>og</strong>istics and Site Location<br />

Ecotr<strong>af</strong>fic R&D AB<br />

Even for a fairly modest demonstration plant, the l<strong>og</strong>istic task of securing<br />

biomass feedstock is a significant one. The ideal candidate sites for a methanol<br />

production plant are sites where substantial volumes of forestry material is at<br />

hand or can be transported at low costs, i.e., in conjunction with pulp mills,<br />

preferably with integrated sawmills.<br />

At such sites the l<strong>og</strong>istic investment is largely in place and cross haul costs<br />

would be minimised on the way from the l<strong>og</strong>ging/harvesting operation to the<br />

plant. Also, the ideal site should provide a possibility of heat and u<strong>til</strong>ity<br />

integration with the commercial demonstration site. Thus, on assignment of<br />

County Administrative Boards of Jämtland and of Västernorrland and for<br />

Trollhättan Municipality site studies have been made. Furthermore, Växjö<br />

Energi AB has indicated interest to locate a methanol production plant.<br />

Man power needed for operation of the plant is estimated to 60 - 70 people and<br />

an estimated 8 trucks/hr will be needed for transport of the raw material,<br />

provided that the plant is not to be located at a site where primary fuel is<br />

already in place. The 1,000 tonnes/day or 1250 m 3 /day produced methanol will<br />

have a purity of 99.85 % and will be stored in two 5000 m 3 cisterns. These will<br />

be alternatively used for production, storage and loading.<br />

Coastal tankers and/or tank trucks with a maximum carrying volume of 53 m 3 of<br />

fuel will transport the methanol to central tank farm storage facilities for longtime<br />

storage. An estimated 2 trucks/hr will be needed for transport of the fuel.<br />

At the tank farm, fuels to be marketed (excluding methanol only fuel, which<br />

require no further upgrading and thus can be sold direct) will be produced by<br />

blending with diesel and/or gasoline. The fuel products will further be sold via<br />

the present commercial distribution line of tank trucks and gas stations.<br />

10. Engine Testing<br />

Engine testing for a 11 litre heavy duty diesel engine with 12 vol. % methanol<br />

(water-free) emulsified in diesel oil showed in comparison with pure diesel oil a<br />

considerable reduction of emissions of nitr<strong>og</strong>en oxides (NOx) and particles.<br />

However, a slight reduction (4 - 5 %) of power and torque was noted, but with<br />

an improved efficiency (2 - 3 %).<br />

Parallel tests with 15 vol. % ethanol (azeotrope) emulsified in diesel oil did not<br />

produce the reduction of NOx emissions recorded for methanol, and earlier<br />

tests elsewhere could not be reproduced.<br />

In conclusion, alcohol-only fuels are effective in reducing emissions of NOx,<br />

particles and poly-cyclic aromatic hydrocarbons (PAHs) and their biol<strong>og</strong>ical<br />

effects. In these respects, tests also show that the environmentally classified<br />

oils in Sweden (very low contents of PAHs and sulphur) are superior to<br />

European standard diesel oils.<br />

Nykomb Synergetics AB 15 April 1999 6


NYKOMB<br />

SYNERGETICS<br />

Ecotr<strong>af</strong>fic R&D AB<br />

Alcohols used to produce stable emulsions in diesel oil need not be water-free<br />

but may contain a few percent water, for instance the ethanol/water azeotrope<br />

or crude methanol. However, blended fuels must be standardised on energy<br />

content.<br />

11. Life Cycle Analysis Considerations<br />

It is quite obvious from reported studies that both methanol and ethanol can be<br />

produced by conversion from wood with use of almost only renewable energy,<br />

i.e., fuels used are by-products or part of the biomass feedstock.<br />

Energy usage in other steps in the chain from feedstock production to end use<br />

in vehicles (forestry, agriculture, transports) is today mainly based on fossil<br />

resources. In the whole chain about ten times as much transport fuel energy in<br />

form of methanol or ethanol can be obtained for each unit input of fossil energy<br />

in a properly designed system.<br />

This ratio can be considerably lower when fossil auxiliary fuels and electricity<br />

are used. Such systems should not be accepted other than during transitions to<br />

fully renewable systems.<br />

Nykomb Synergetics AB 15 April 1999 7


16. Metanolproduktion, Wikipedia<br />

Wikipedia, online <strong>og</strong> åben encyklopædi:<br />

http://en.wikipedia.org/wiki/Methanol , hentet d. 21/3-2007.


17. Des<strong>til</strong>lationskolonne. Flowsheet for anlæg 3.<br />

Metanol/vandblanding<br />

, som<br />

skal des<strong>til</strong>leres<br />

93,8 %<br />

T=100,6, 10,8 kg/s<br />

99,99 %, 31,44 kg/s<br />

99,98 %, 31,44 kg/s<br />

99,97 %, 31,44 kg/s<br />

99,94 %, 31,43 kg/s<br />

99,90 %, 31,42 kg/s<br />

99,83 %, 31,41 kg/s<br />

99,72 %, 31,39 kg/s<br />

99,54 %, 31,35 kg/s<br />

99,23 %, 31,29 kg/s<br />

98,74 %, 31,19 kg/s<br />

97,92 %, 31,02 kg/s<br />

96,51 %, 41,5 kg/s<br />

94,41 %, 40,0 kg/s<br />

91,35 %, 39,1 kg/s<br />

84,65 %, 37,4 kg/s<br />

70,30 %, 33,9 kg/s<br />

42,52 %, 27,6 kg/s<br />

13,17 %, 22,0 kg/s<br />

17. T=100,0<br />

16. T=100,0<br />

15. T=100,0<br />

14. T=100,0<br />

13. T=100,0<br />

12. T=100,0<br />

11. T=100,1<br />

10. T=100,1<br />

9. T=100,2<br />

8. T=100,4<br />

7. T=100,6<br />

6. T=101,0<br />

5. T=101,5<br />

4. T=102,7<br />

3. T=105,5<br />

2. T=111,9<br />

1. T=124,4<br />

99,99 %, 41,74 kg/s<br />

99,99 %, 41,74 kg/s<br />

99,97 %, 41,74 kg/s<br />

99,95 %, 41,73 kg/s<br />

99,92 %, 41,72 kg/s<br />

99,87 %, 41,71 kg/s<br />

99,79 %, 41,69 kg/s<br />

99,65 %, 41,65 kg/s<br />

99,42 %, 41,59 kg/s<br />

99,05 %, 41,49 kg/s<br />

98,43 %, 41,32 kg/s<br />

97,43 %, 41,05 kg/s<br />

96,01 %, 39,5 kg/s<br />

92,89 %, 38,7 kg/s<br />

86,08 %, 36,9 kg/s<br />

71,48 %, 33,4 kg/s<br />

43,16 %, 27,1kg/s<br />

13,17 %, 21,5 kg/s<br />

Flowsheet for des<strong>til</strong>lationskolonne. På venstre side <strong>af</strong> kolonnen føres en massestrøm <strong>af</strong> en<br />

metanol/vand-blanding på væskefasen fra et trin <strong>til</strong> trinet under. På højre side <strong>af</strong> kolonnen føres en<br />

massestrøm <strong>af</strong> en metanol/vand-blanding på gasfasen fra et trin <strong>til</strong> trinet over. Fordi metanol har et<br />

lavere k<strong>og</strong>epunkt end vand vil denne des<strong>til</strong>lationsproces føre <strong>til</strong>, at metanolkoncentrationen er højst i<br />

toppen <strong>af</strong> kolonnen, mens vandkoncentrationen er højest i bunden <strong>af</strong> kolonnen.<br />

Metanolkoncentrationen i mol-% er angivet for alle massestrømmene. Ligevægtstemperaturen for de<br />

fiktive trin er <strong>og</strong>så angivet (°C).


18. Flowsheet for et <strong>metanolanlæg</strong> (fra DONG<br />

Energy)<br />

MeOH-produktion. 435.000 t/år CO2 fra EtOH-anlæg samt en mængde lignin/xylose osv<br />

forgasses <strong>til</strong> en syntesegas. Der spædes op med H2 fra elektrolyse (612 MW), hvorved der<br />

produces ca 84 t/h MeOH.


19. Flowsheet for et <strong>metanolanlæg</strong> (fra kurset<br />

thermoeconomics)<br />

FV<br />

Biomasse<br />

Forgasser<br />

Aske<br />

FG<br />

O2<br />

O2<br />

Vand<br />

Vand<br />

Elektrolyseanlæg<br />

Procesdamp<br />

Damp<br />

FV<br />

H2<br />

CO2<br />

Gasrenser<br />

Metanolreformer<br />

Vand<br />

FV<br />

O2<br />

Syngas<br />

Metanol<br />

CH4<br />

Vand<br />

Kølevand<br />

Metanreformer<br />

Reformergas


20. Flowsheet for <strong>metanolanlæg</strong> – uden<br />

værdiangivelser


Ash<br />

Gasifier<br />

Steam<br />

Steam dryer<br />

Biomass (wet)<br />

DH condenser<br />

Water<br />

Water /<br />

Methanol<br />

GG<br />

Biomass (dry)<br />

DH water<br />

Dis<strong>til</strong>lation<br />

column<br />

O 2<br />

Steam<br />

1<br />

Steam<br />

Water /<br />

Methanol<br />

DH water<br />

Feed<br />

DH cooler<br />

DH water<br />

Steam<br />

DH water<br />

DH water<br />

Gas<br />

Gas cleaner<br />

Steam<br />

Heatsink<br />

Steam<br />

Steam<br />

Water<br />

Steam<br />

Methanol/<br />

water<br />

O 2<br />

Syngas<br />

Water<br />

Electrolyser<br />

Methanol<br />

converter<br />

Syngas<br />

H 2<br />

Water<br />

DH water<br />

Syngas<br />

DH water<br />

Water<br />

O 2<br />

Reformat<br />

CO2<br />

NG<br />

Water<br />

Electrical power<br />

Mechanical power<br />

Heat<br />

Steam<br />

Nomenclature:<br />

Water<br />

Steam reformer<br />

Reformat<br />

Water<br />

O 2<br />

NG


21. Flowsheet for <strong>metanolanlæg</strong> – <strong>til</strong> bestemmelse <strong>af</strong><br />

komponentpriser for dampreformer,<br />

metanolreaktor <strong>og</strong> des<strong>til</strong>lationskolonne.


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 6.0 -0 5.7 10.2<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 25.66 412 2<br />

5EX 5 Component cost flow 2 6.0 kg/s 100.1 MW 201 2 5.7 kg/s 5.7 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.191 15 C SAND 100.1 0.21 850 C 294.1 5.7 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

17.24 803 4<br />

25.5 1.0 bar<br />

Electrolyser<br />

33.09<br />

4.3<br />

0.02<br />

0 802 2<br />

25.5 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

40.95<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.888 25.5 kg/s 5.3 0.699 0.0 0.117 0.208 25.5 kg/s 5.3 4.018<br />

12 C<br />

13 C/EX<br />

SAND 1E-08 90 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

5.3 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.0 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

1.8 MW 3<br />

Reformat<br />

16.7 285.4<br />

403<br />

2<br />

10.0 bar<br />

5.3 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.0 2E-04<br />

83 1.0 bar<br />

4 0.0 kg/s<br />

14 C/M<br />

O2 0.002 7 4 0.002<br />

0.90<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.002 5 2<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

13.57 90 C<br />

Electrolyser<br />

0.0 -0<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

2.277 90 C<br />

Split-H2<br />

H2 O2 13.57 401 2<br />

5.3 1.0 bar<br />

0.698 5.3 kg/s<br />

90 C<br />

SAND 1.812<br />

14.21 402 4<br />

0.94<br />

14.21 5.3 10.0 bar<br />

2.399 5.3 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 16.7 kg/s<br />

40.95 950 C<br />

NG_reformer<br />

14.21 850 C<br />

NG_reformer<br />

1.9 32.21<br />

441 10.0 bar<br />

2 1.9 kg/s<br />

4.622 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

3E-05<br />

0.0<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

0.0 0.009<br />

1.0 bar<br />

801<br />

2<br />

0.0 4E-05<br />

1.0 bar<br />

0.0 kg/s<br />

15<br />

4<br />

0.0 1E-05<br />

1.0 bar<br />

0.0 kg/s Heatsink-H2<br />

-0 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

4.8 82.91<br />

10.0 bar<br />

4.8 kg/s<br />

2.4<br />

14.21 0.97 Heatex-O2<br />

SAND 11<br />

0.001 0.0 kg/s Heatex-GG-st 4 0.0 kg/s 0 50 C 0 60 C 0.0 MW 322 2.277 0.0 MW 9 Comp-CO2 11.9 950 C<br />

730 C SAND 7 0.00 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 2E-07 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

0<br />

Gasifier<br />

0.0 0.115<br />

0<br />

0.0<br />

0.104<br />

Gasifier<br />

10 GG2<br />

0.00 0.78<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

800 C<br />

0<br />

0.0<br />

0.104<br />

11 2<br />

1.0 bar<br />

0.0 kg/s<br />

752 C<br />

Heatex-GG-st<br />

0.00 0.99 0<br />

0.0 0.0<br />

0.099<br />

12 2 0.00 0.74<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

130 C Heatex-GG-DH<br />

0<br />

0.0<br />

0.099<br />

13 2<br />

1.0 bar<br />

0.0 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 0.0<br />

0.0 0.099<br />

14 1.0 bar<br />

0.00<br />

Heatsink 2.28<br />

2.277 511 2<br />

0.0 1.0 bar<br />

0.117 0.0 kg/s<br />

90 C<br />

Heatsink-H2<br />

42.73 503 4<br />

15.6 24.0 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 24.0 bar 0.0 1.0 bar<br />

CO2<br />

25.65 411 2<br />

NG5.7<br />

10.0 bar<br />

288 5.7 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

9.9 170.3<br />

10.0 bar<br />

11.6<br />

13 25.66 0.89<br />

0 434 Water 2<br />

0.4 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 0.0 kg/s 267.6 15.6 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 9.9 kg/s 0.021 0.4 kg/s<br />

2 0.0 kg/s 0.00 9 2 Heatex-GG-O2 0.0 0.004 0 21 4 0.0 60 C 280 C 300 C 15 C 24.44 950 C 107 C<br />

0.00 120 C 0.0 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 2.28 512 2 2.289 524 4 15.6 267.8 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

5E-04 0.0 kg/s<br />

790 C<br />

Gasifier<br />

2 0.0 kg/s<br />

2E-04 120 C<br />

Heatex-GG-st<br />

-0 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

0.0 0.216<br />

1.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.117<br />

1.0 bar<br />

0.0 kg/s<br />

90 C<br />

0.0<br />

0.227<br />

24.0 bar<br />

0.0 kg/s<br />

393 C<br />

531<br />

2<br />

45.02<br />

24.0 bar<br />

15.6 kg/s<br />

280 C<br />

0.182 422 2<br />

Water 5.7 10.0 bar<br />

0.018 5.7 kg/s<br />

23.5 Heatex-H2O<br />

0.21 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

0.0 2E-04<br />

1.0 bar<br />

2.28 76 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

0.0 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

38.9 24.06<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.7<br />

0.038<br />

10.0 bar<br />

0.7 kg/s<br />

4 0.0 kg/s 0.93<br />

SAND 0.006 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 2.286 0.0 0.015 6 38.9 kg/s SAND 21 5.0 MW 5 9.2 Heatex-H2O<br />

4.4 76.17 1.9<br />

0.0 0.007 Heatex-GG-DH<br />

0.0 0.221 563 1.0 bar 0.97 200 C 6.2 SAND 5.011 9.2 156.5 4.4 76.17 1.9 30.53<br />

0.00<br />

0.0<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.46 0.0 0.00 34 2<br />

1.0 bar Steam dryer 0.00 0.0 1.0 bar<br />

34 1.0 bar<br />

4 0.0 kg/s<br />

1E-04 730 C<br />

Split-steam2<br />

522 4.5 bar<br />

2 0.0 kg/s<br />

2.286 280 C<br />

Cooler-GG-H2<br />

2 0.0 kg/s<br />

0.00 120 C<br />

Cooler-GG-H2<br />

0.0<br />

0.00 0.85<br />

2.29 523 2<br />

0.0 4.5 bar<br />

0.94<br />

2.289<br />

Syngas-cool1<br />

561<br />

2<br />

0.962<br />

38.9 22.01<br />

1.0 bar<br />

38.9 kg/s<br />

120 C<br />

0.96 0.86<br />

0 541 4<br />

0.2 24.0 bar<br />

0.021 0.2 kg/s<br />

136 C<br />

Water<br />

Reformat<br />

42.73 462 2 42.73<br />

15.6 24.0 bar<br />

267.6 15.6 kg/s<br />

40.95 461 2<br />

0.93<br />

15.6 10.0 bar<br />

262.9 15.6 kg/s<br />

452 10.0 bar<br />

2 9.2 kg/s<br />

24.44 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 4.4 kg/s<br />

11.9 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 1.9 kg/s<br />

4.622 483 C<br />

Mixer-NG_ref<br />

0.028 0.0 kg/s 0.03 0.0 kg/s Cooler-GG-H2 0.0 0.016 0.22 0.0 kg/s Syngas-cool1 15.3 265.4 Syngas-cool1<br />

280 C 154 C<br />

120 C 0.0 0.115 271 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 24.0 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 0.0 kg/s Comp-GG-H2-2 2 15.3 kg/s<br />

2<br />

0.003<br />

0.0 kg/s<br />

15 C<br />

Steam<br />

0.00 200 C<br />

Cooler-GG-H2<br />

0.0 MW<br />

SAND<br />

13<br />

0.007<br />

45.02 136 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

0.0 0.002<br />

41 1.0 bar<br />

2 0.0 kg/s<br />

Steam<br />

0.93<br />

47.04<br />

15.3 270.7<br />

533 67.1 bar<br />

4 15.3 kg/s<br />

Syngas 47.04 280 C<br />

5.7 MW<br />

SAND<br />

15<br />

5.697<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

152<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

198<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.46<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

288 MW<br />

0 MW<br />

100 MW<br />

117 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

11 MW<br />

0 MW<br />

16 MW<br />

SAND 79 9E-05 120 C 98.5 61.02 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 0 0 0.00<br />

DH-condenser<br />

0.91 0.0 17.24 811 12<br />

DH condenser 17.24 25.5 1.0 bar<br />

581<br />

2<br />

2.46<br />

1.0 bar<br />

98.5 kg/s<br />

200 C Steam<br />

1.44 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

60% (with power for electrolyser)<br />

57% (with total power)<br />

64%<br />

0.0 1E-04 0.889 25.5 kg/s DH-cooler DH-cooler<br />

58.7 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 36.33 58.7 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 0 0 0.00<br />

4 0.0 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

413.3 14.44<br />

811 1.0 bar<br />

0.019 811 6<br />

93.7 1.0 bar<br />

3.273 93.7 kg/s<br />

0.48 15.7 0 804 2<br />

DH cooler<br />

DH water<br />

0.02 93.7 1.0 bar<br />

0.767 93.7 kg/s 1.0 0.639<br />

1.453 562 2<br />

58.7 1.0 bar<br />

200 C<br />

Syngas-cool2 9.3<br />

1.46 0.90<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

0<br />

8<br />

1<br />

0<br />

11<br />

1<br />

0.00<br />

0.02<br />

0.00 Energy<br />

Water<br />

2 413.3 kg/s<br />

17.32 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

98.5 55.8<br />

1.0 bar<br />

98.5 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.02 225 C<br />

Cond-steam-1<br />

33.23 58.7 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

13.5 267<br />

67.1 bar<br />

13.5 kg/s<br />

0 551 4<br />

1.8 67.1 bar<br />

0.177 1.8 kg/s<br />

141 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

288<br />

5<br />

9<br />

23<br />

0<br />

375<br />

6<br />

12<br />

29<br />

0<br />

0.87<br />

0.01<br />

0.03<br />

0.07<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

276 MW<br />

0 MW<br />

100 MW<br />

117 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

69 MW<br />

0 MW<br />

14 MW<br />

Energy content in DH water = 69 MW 2.46 120 C<br />

DH-cooler<br />

Steam<br />

47.04 141 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

* for electrolyser<br />

Urenhed:<br />

0.030 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.97<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

48.39 3.8 MW 17<br />

SAND 3.805<br />

13.5 270.6<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

2<br />

26<br />

0<br />

0<br />

3<br />

33<br />

0.00<br />

0.00<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

55% (with power for electrolyser)<br />

52% (with total power)<br />

73%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 4 5 0.01<br />

0.02 120 C 2 13.5 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 17 22 0.05<br />

Cond-steam-1<br />

48.39 248 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 289 376 0.87 Gas composition at specific nodes (mol-%)<br />

47.14 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 3 4 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

36.0 568.8<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4<br />

3<br />

5<br />

4<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.91<br />

4 100 C 2 36.0 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

185 40.4 907.1 Steam<br />

0 682 4<br />

107 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

290<br />

0<br />

377<br />

0<br />

0.87<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 63.47 58.41 40.38 43.35 49.84 53.73<br />

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

791 3.5 bar 16.3 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 12 16 0.04 4 CO 42.73 0.00 22.49 24.73 12.85 1.39 1.49 1.72 1.85<br />

792 40.4 kg/s 16.66 16.3 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 6 8 0.02 6 CO2 5.24 0.00 5.09 5.61 20.00 25.03 26.87 30.89 33.31<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 17 21 0.05 7 H2O-G 5.21 0.00 14.17 5.59 2.70 6.17 3.98 0.97 0.03<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.05 811 10 41.3<br />

246.7 1.0 bar 0.05 0.70<br />

0 806 2<br />

DH water<br />

246.7 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.02 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

16.3 30.6 bar<br />

30.2 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 108<br />

311<br />

Total several DISTILLATION_STAGE's 1160 1479 3.49 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.60<br />

0.00<br />

0.00<br />

5.77 7.92 8.51<br />

0.00 0.00 0.00<br />

0.28 19.10 15.80<br />

9.78 10.54<br />

0.00 0.00<br />

6.80 0.53<br />

8.618 246.7 kg/s<br />

90 C<br />

2.02 246.7 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.583 16.3 kg/s<br />

220 C 602<br />

36.0 554<br />

139.0 bar 607<br />

22.5 299.2<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

137.9<br />

Heatsourc-DH 185<br />

30.1 676 783<br />

40.4 916.6 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

108<br />

36.0 kg/s<br />

235 C<br />

2<br />

59<br />

22.5 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 40.4 kg/s 16.1 16.55 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 30.1 kg/s 4 100 C 685 30.6 bar 7.0 Preheater-sy NG 93 kr/GJ Methanol 47.1 kr/s 204 kr/GJ 230 kr/GJ 4.58 kr/kg 3.6 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 16.1 kg/s 59 606 2 59 0.84 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 19427 kr/GJ - kr/GJ 2.56 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 59 22.5 144.0 bar 32.8 496.3 DH water 0 kr/ton Syngas 3.1 kr/s 198 kr/GJ - kr/GJ 2.62 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.1 MW 19 0.90 297 22.5 kg/s 640 139.0 bar 64 10.82 3.2 55.17 Water 32 kr/ton DH water 17.3 kr/s 1200 kr/GJ 249 kr/GJ 0.04 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.138 63 C 2 32.8 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

190 0.72<br />

Feed<br />

16.1<br />

3.559<br />

30.6 bar<br />

16.1 kg/s<br />

220 C<br />

Preheater-sy 97.36 189 C<br />

Condenser-1<br />

9.9<br />

631 3.2 kg/s<br />

4 189 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.31 0.97 If methanol and DH share the plant costs<br />

Condenser-1 75.9 22.75 621 631 4 (methanol and DH are the only products from the plant) -<br />

5 705 706<br />

19 3.5 bar<br />

2 1.31 705 706<br />

5 3.5 bar<br />

6<br />

SAND 31 26.7 378<br />

643 139.0 bar<br />

2 26.7 kg/s<br />

6 139.0 bar<br />

115 6.0 kg/s<br />

145 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 57.1 kr/s 247 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

35 19.0 kg/s 9 4.7 kg/s Condenser 74.61 145 C Preheater-sy<br />

DH water 10.4 kr/s 150 kr/Gjen Mass flow<br />

135 C 135 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

47.5 1.0 bar<br />

Reboil-meoh2 8.0<br />

0.01 0.75<br />

0 805 2<br />

DH water<br />

47.5 1.0 bar Mechanical power<br />

10<br />

5.242 21.1 25.96 1.659 47.5 kg/s 0.389 47.5 kg/s 1.296 4.7 5.802<br />

707 3.5 bar Cond-steam-2 90 C 58.86 605 2 50 C 699 3.5 bar 0.25<br />

708 21.1 kg/s SAND 393 Condenser<br />

22.5 139.0 bar 1.2 15.63 Condenser<br />

700 4.7 kg/s<br />

4 135 C 296.9 22.5 kg/s 611 139.0 bar 87.0 12.65 3.1 63.79 2 135 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 2.96<br />

0 693 694<br />

2 3.5 bar<br />

2 2.0 kg/s<br />

Dis_stage_1<br />

4 3.946 695 696<br />

14 3.5 bar<br />

18 14.3 kg/s<br />

2 30.0<br />

3.982 0.68<br />

3.982 705 706<br />

14 3.5 bar<br />

26 14.3 kg/s<br />

4<br />

46.22 625 635<br />

12 3.5 bar<br />

2<br />

Methanol molar-% = 75.3<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 1.2 kg/s<br />

3.098 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 3.0 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

135 C<br />

Reboil-meoh1<br />

135 C<br />

Reboil-meoh1<br />

234 12.3 kg/s<br />

102 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


22. Flowsheet for <strong>metanolanlæg</strong> – <strong>til</strong><br />

parameterfastsættelse


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.4 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX<br />

6 EX_CH * Number of decimals<br />

5 Component cost flow<br />

Electrolyser<br />

2<br />

0.076<br />

2.4 kg/s<br />

15 C<br />

39.7 MW<br />

SAND<br />

201<br />

39.71<br />

2<br />

0.00<br />

0.0 kg/s<br />

850 C<br />

0.0<br />

0.176<br />

10.0 bar<br />

0.0 kg/s<br />

NG<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.369 803 4<br />

86.9 1.0 bar<br />

Electrolyser<br />

13.12<br />

1.7<br />

0.80<br />

0 802 2<br />

86.9 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.906 86.9 kg/s 2.1 0.277 0.3 31.05 0.711 86.9 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 55 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.1 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.445<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.113 7 4 0.113<br />

0.90<br />

2.1 1.0 bar<br />

0.277 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.113 5 2<br />

2.1 1.0 bar<br />

0.277 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.113 90 C<br />

Electrolyser<br />

0.0 -0<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

12.64 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.029<br />

5.0<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

18.1 23.26<br />

1.0 bar<br />

801<br />

2<br />

14.3 0.117<br />

1.0 bar<br />

14.3 kg/s<br />

15<br />

4<br />

4.6 2.112<br />

1.0 bar<br />

4.6 kg/s Heatsink-H2<br />

-0 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

6.416 5.0 kg/s Heatex-GG-st 4 18.1 kg/s 0 50 C 0 60 C 0.0 MW 322 12.64 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.11 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 4E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

10<br />

Gasifier<br />

11.7 255.5<br />

10<br />

18.2<br />

234.8<br />

Gasifier<br />

10 GG2<br />

0.11 0.78<br />

1.0 bar 1.5<br />

18.2 kg/s<br />

800 C<br />

10<br />

18.2<br />

233.7<br />

11 2<br />

1.0 bar<br />

18.2 kg/s<br />

761 C<br />

Heatex-GG-st<br />

0.11 0.98 10<br />

23.1 18.2<br />

220.5<br />

12 2 0.00 0.74<br />

1.0 bar 2.4<br />

18.2 kg/s<br />

130 C Heatex-GG-DH<br />

10<br />

18.2<br />

219.9<br />

13 2<br />

1.0 bar<br />

18.2 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 9.6<br />

13.6 218.8<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

12.64<br />

12.64 511 2<br />

0.3 1.0 bar<br />

31.05 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 19.8 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 19.8 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 13.6 kg/s 0.166 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 11.7 kg/s 0.11 9 2 Heatex-GG-O2 18.1 10.23 0 21 4 9.6 60 C 259 C 279 C 15 C 0.01 950 C 107 C<br />

6.99 120 C 2.1 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 12.64 512 2 27.37 524 4 13.9 261 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.127 2.1 kg/s<br />

790 C<br />

Gasifier<br />

2 18.1 kg/s<br />

0.079 120 C<br />

Heatex-GG-st<br />

4E-18 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

13.9 249.8<br />

1.0 bar<br />

13.9 kg/s<br />

0.3<br />

31.05<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

13.9<br />

260.8<br />

19.8 bar<br />

13.9 kg/s<br />

305 C<br />

531<br />

2<br />

27.39<br />

19.8 bar<br />

13.9 kg/s<br />

304 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

14.3 0.498<br />

1.0 bar<br />

22.23 63 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

8.4 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

37.6 23.31<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 14.3 kg/s 0.93<br />

SAND 8.391 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.2 37.6 21.3 6 37.6 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

13.1 16.84 Heatex-GG-DH<br />

13.9 257.6 563 1.0 bar 0.17 200 C 6.0 SAND 0.002 0.0 0.094 0.0 0.046 0.0 0.018<br />

Steam_dryer Biomass (dry)<br />

34 1.0 bar 522 6.0 bar 2 37.6 kg/s Syngas-cool1 0.17 0.82 452 10.0 bar 433 10.0 bar 442 10.0 bar<br />

0.45<br />

105.4<br />

35 4<br />

1.0 bar<br />

SAND 1<br />

0.45 29.8<br />

Steam dryer 6.99<br />

0.45<br />

94.9<br />

34 2<br />

1.0 bar<br />

4 13.1 kg/s<br />

0.077 730 C<br />

Split-steam2<br />

2 13.9 kg/s<br />

25.2 304 C<br />

Cooler-GG-H2<br />

0.16 120 C<br />

Cooler-GG-H2<br />

6.0<br />

0.17 0.82<br />

25.20 523 2<br />

13.9 6.0 bar<br />

0.93<br />

27.37<br />

561<br />

2<br />

0.164<br />

37.6 21.32<br />

1.0 bar<br />

37.6 kg/s<br />

120 C<br />

0 541 4<br />

0.0 19.8 bar<br />

6E-18 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 19.8 bar<br />

0.16 0.0 kg/s<br />

0.017 461 2<br />

0.93<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

59.71 105.4 kg/s 65.17 94.9 kg/s Cooler-GG-H2 37.6 23.29 255.2 13.9 kg/s Syngas-cool1 13.9 258.6 Syngas-cool1<br />

250 C 154 C<br />

120 C 22.2 256.3 278 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 19.8 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 37.6 kg/s Comp-GG-H2-2 2 13.9 kg/s<br />

2<br />

6.86<br />

22.2 kg/s<br />

15 C<br />

Steam<br />

0.17 200 C<br />

Cooler-GG-H2<br />

6.1 MW<br />

SAND<br />

13<br />

6.098<br />

27.39 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

5.6 3.144<br />

41 1.0 bar<br />

2 5.6 kg/s<br />

Steam<br />

0.93<br />

29.55<br />

13.9 264.2<br />

533 65.2 bar<br />

4 13.9 kg/s<br />

Syngas 29.55 304 C<br />

6.1 MW<br />

SAND<br />

15<br />

6.102<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

60<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

78<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.18<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

256 MW<br />

40 MW<br />

65 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

8 MW<br />

SAND 79 0.024 120 C 52.4 32.45 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 815 1059 2.45<br />

DH-condenser<br />

0.73 12.9 0.41 811 12<br />

DH condenser0.41<br />

86.9 1.0 bar<br />

581<br />

2<br />

0.24<br />

1.0 bar<br />

52.4 kg/s<br />

200 C Steam<br />

0.26 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

9<br />

1<br />

1<br />

12<br />

1<br />

0.00<br />

0.03<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

78%<br />

5.6 0.219 3.035 86.9 kg/s DH-cooler DH-cooler<br />

57.9 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 35.88 57.9 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 43 56 0.13<br />

4 5.6 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

439.6 15.36<br />

811 1.0 bar<br />

0.010 811 6<br />

49.8 1.0 bar<br />

1.739 49.8 kg/s<br />

0.48 8.3 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 49.8 1.0 bar<br />

0.408 49.8 kg/s 1.0 0.639<br />

0.252 562 2<br />

57.9 1.0 bar<br />

200 C<br />

Syngas-cool2 9.2<br />

0.26 0.91<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

5<br />

0<br />

0<br />

7<br />

0<br />

0<br />

0.02<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 439.6 kg/s<br />

0.48 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

52.4 29.67<br />

1.0 bar<br />

52.4 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.00 225 C<br />

Cond-steam-1<br />

32.81 57.9 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

12.4 260.7<br />

65.2 bar<br />

12.4 kg/s<br />

0 551 4<br />

1.6 65.2 bar<br />

0.138 1.6 kg/s<br />

135 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

214 MW<br />

40 MW<br />

65 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

74 MW<br />

0 MW<br />

7 MW<br />

Energy content in DH water = 74 MW 0.24 120 C<br />

DH-cooler<br />

Steam<br />

29.55 135 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

38<br />

0<br />

49<br />

0.00<br />

0.11<br />

* for electrolyser<br />

Urenhed:<br />

0.008 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.99<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

30.82 3.6 MW 17<br />

SAND 3.586<br />

12.4 264.1<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

2<br />

27<br />

2<br />

27<br />

3<br />

36<br />

3<br />

36<br />

0.01<br />

0.08<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

81% (with power for electrolyser)<br />

73% (with total power)<br />

102%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 4 5 0.01<br />

0.00 120 C 2 12.4 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 16 21 0.05<br />

Cond-steam-1<br />

30.82 248 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 254 330 0.76 Gas composition at specific nodes (mol-%)<br />

31.41 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 2 3 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

42.2 416.8<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

2<br />

4<br />

3<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.78<br />

4 100 C 2 42.2 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

127.3 41.7 936.6 Steam<br />

0 682 4<br />

51 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

254<br />

0<br />

330<br />

0<br />

0.76<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.61<br />

0.21<br />

0.00 57.70 60.67 45.40 22.81 24.39 28.19 30.00<br />

0.00 0.00 0.23 2.28 3.30 3.53 4.08 4.34<br />

791 3.5 bar 17.8 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 17 0.04 4 CO 32.23 0.00 22.49 34.03 20.51 5.24 5.60 6.47 6.89<br />

792 41.7 kg/s 18.23 17.8 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 9.40 99.97 5.09 0.03 26.44 40.34 43.14 49.87 53.07<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 17 22 0.05 7 H2O-G 12.29 0.00 14.17 4.78 2.41 1.49 0.97 0.20 0.01<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.051 811 10 42.7<br />

254.6 1.0 bar 0.051 0.70<br />

0 806 2<br />

DH water<br />

254.6 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.00 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.8 30.6 bar<br />

33.1 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 51<br />

311<br />

Total several DISTILLATION_STAGE's 1601 2055 4.82 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.15<br />

0.10<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.16<br />

0.11<br />

0.00<br />

1.58 2.30 2.46<br />

1.09 1.58 1.69<br />

0.29 22.94 18.23<br />

2.84<br />

1.96<br />

6.39<br />

3.02<br />

2.08<br />

0.59<br />

8.895 254.6 kg/s<br />

90 C<br />

2.085 254.6 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.92 17.8 kg/s<br />

220 C 602<br />

42.2 400.7<br />

139.0 bar 607<br />

29.8 150.7<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

95.88<br />

Heatsourc-DH 127.3<br />

31.4 705.5 783<br />

41.7 946.3 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

51<br />

42.2 kg/s<br />

235 C<br />

2<br />

20<br />

29.8 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 41.7 kg/s 17.7 18.12 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 31.4 kg/s 4 100 C 685 30.6 bar 6.1 Preheater-sy NG 93 kr/GJ Methanol 31.4 kr/s 136 kr/GJ 153 kr/GJ 3.05 kr/kg 2.4 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.7 kg/s 20 606 2 20 0.60 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 407 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 20 29.8 144.0 bar 39.3 336.1 DH water 0 kr/ton Syngas 1.0 kr/s 132 kr/GJ - kr/GJ 0.66 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.1 MW 19 0.90 148.9 29.8 kg/s 640 139.0 bar 91 7.937 2.9 61.49 Water 32 kr/ton DH water 0.5 kr/s 31 kr/GJ 6 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.116 63 C 2 39.3 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

142 0.78<br />

Feed<br />

17.7<br />

3.895<br />

30.6 bar<br />

17.7 kg/s<br />

220 C<br />

Preheater-sy 43.39 181 C<br />

Condenser-1<br />

8.5<br />

631 2.9 kg/s<br />

4 181 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 2.95 0.50 If methanol and DH share the plant costs<br />

Condenser-1 94.1 16.18 621 631 4 (methanol and DH are the only products from the plant) -<br />

14 705 706<br />

21 3.5 bar<br />

2 2.95 705 706<br />

4 3.5 bar<br />

6<br />

SAND 31 33.6 207.8<br />

643 139.0 bar<br />

2 33.6 kg/s<br />

6 139.0 bar<br />

124 5.7 kg/s<br />

134 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 21.8 kr/s 95 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

115 21.5 kg/s 24 4.4 kg/s Condenser 27.21 134 C Preheater-sy<br />

DH water 11.1 kr/s 150 kr/Gjen Mass flow<br />

124 C 124 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

34.0 1.0 bar<br />

Reboil-meoh2 5.7<br />

0.01 0.40<br />

0 805 2<br />

DH water<br />

34.0 1.0 bar Mechanical power<br />

10<br />

14.27 22.0 106.1 1.189 34.0 kg/s 0.279 34.0 kg/s 2.943 4.4 21.39<br />

707 3.5 bar Cond-steam-2 90 C 19.69 605 2 50 C 699 3.5 bar 0.25<br />

708 22.0 kg/s SAND 393 Condenser<br />

29.8 139.0 bar 1.6 7.83 Condenser<br />

700 4.4 kg/s<br />

4 124 C 148.8 29.8 kg/s 611 139.0 bar 96.8 6.483 2.2 48.98 2 124 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 13.17<br />

0 693 694<br />

0 3.5 bar<br />

2 0.5 kg/s<br />

Dis_stage_1<br />

4 11.33 695 696<br />

17 3.5 bar<br />

82 17.0 kg/s<br />

2 32.9<br />

11.37 0.64<br />

11.37 705 706<br />

17 3.5 bar<br />

91 17.0 kg/s<br />

4<br />

30.6 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 94<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 1.6 kg/s<br />

1.036 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 2.2 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

124 C<br />

Reboil-meoh1<br />

124 C<br />

Reboil-meoh1<br />

234 10.8 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


23. Flowsheets for <strong>metanolanlæg</strong> - <strong>til</strong> den<br />

termoøkonomiske analyse.<br />

Flowsheet 1/5:<br />

Flow-parametre: P, m& , t<br />

Komponent-parameter: ηex<br />

Flowsheet 2/5:<br />

Flow-parametre: m& , h, x<br />

Komponent-parameter: Ċi, dest<br />

Flowsheet 3/5:<br />

Flow-parametre: eex, m, eex,ch,m, eex,ph,m<br />

Komponent-parameter: Ċp, dest<br />

Flowsheet 4/5:<br />

Flow-parametre: Ėex, Ėex, ch, Ėex, ph<br />

Komponent-parameter: Ėex, dest<br />

Flowsheet 5/5:<br />

Flow-parametre: Ċ, cex, cm<br />

Komponent-parameter: Ż


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 3.4 -0 1.9 3.399<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 8.55 412 2<br />

5EX 5 Component cost flow 2 3.4 kg/s 56.3 MW 201 2 1.9 kg/s 1.9 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.107 15 C SAND 56.34 0.07 850 C 97.97 1.9 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.381 803 4<br />

78.5 1.0 bar<br />

Electrolyser<br />

18.62<br />

2.4<br />

0.80<br />

0 802 2<br />

78.5 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

9.22<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.927 78.5 kg/s 3.0 0.393 0.4 44.05 0.643 78.5 kg/s 1.8 1.339<br />

12 C<br />

13 C/EX<br />

SAND 1E-05 57 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

3.0 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.4 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.6 MW 3<br />

Reformat<br />

5.6 95.09<br />

403<br />

2<br />

10.0 bar<br />

1.8 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.3 0.252<br />

83 1.0 bar<br />

4 0.3 kg/s<br />

14 C/M<br />

O2 0.066 7 4 0.066<br />

0.90<br />

1.2 1.0 bar<br />

0.16 1.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.066 5 2<br />

1.2 1.0 bar<br />

0.16 1.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.161 90 C<br />

Electrolyser<br />

0.0 9E-36<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

18.08 90 C<br />

Electrolyser<br />

H2 O2 0.095 401 2<br />

1.8 1.0 bar<br />

0.233 1.8 kg/s<br />

90 C<br />

SAND 0.604<br />

0.309 402 4<br />

0.94<br />

0.309 1.8 10.0 bar<br />

0.799 1.8 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 5.6 kg/s<br />

9.22 950 C<br />

NG_reformer<br />

0.31 850 C<br />

NG_reformer<br />

0.6 10.73<br />

441 10.0 bar<br />

2 0.6 kg/s<br />

1.041 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.009<br />

1.3<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

8.4 10.81<br />

1.0 bar<br />

801<br />

2<br />

6.8 0.056<br />

1.0 bar<br />

6.8 kg/s<br />

15<br />

4<br />

0.0 0.016<br />

1.0 bar<br />

0.0 kg/s Heatsink-H2<br />

4E-36 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

1.6 27.62<br />

10.0 bar<br />

1.6 kg/s<br />

0.8<br />

0.31 0.97 Heatex-O2<br />

SAND 11<br />

1.707 1.3 kg/s Heatex-GG-st 4 8.4 kg/s 0 50 C 0 60 C 0.0 MW 322 18.08 0.0 MW 9 Comp-CO2 2.678 950 C<br />

730 C SAND 7 0.06 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 6E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

5<br />

Gasifier<br />

6.6 144.7<br />

5<br />

8.9<br />

131.6<br />

Gasifier<br />

10 GG2<br />

0.07 0.78<br />

1.0 bar 0.9<br />

8.9 kg/s<br />

800 C<br />

5<br />

8.9<br />

130.9<br />

11 2<br />

1.0 bar<br />

8.9 kg/s<br />

752 C<br />

Heatex-GG-st<br />

0.06 0.99 5<br />

10.8 8.9<br />

124.8<br />

12 2 0.00 0.74<br />

1.0 bar 1.1<br />

8.9 kg/s<br />

130 C Heatex-GG-DH<br />

5<br />

8.9<br />

124.6<br />

13 2<br />

1.0 bar<br />

8.9 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 5.4<br />

8.9 124.5<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

18.08<br />

18.08 511 2<br />

0.4 1.0 bar<br />

44.05 0.4 kg/s<br />

90 C<br />

Heatsink-H2<br />

9.671 503 4<br />

5.2 19.8 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 19.8 bar 0.0 1.0 bar<br />

CO2<br />

8.545 411 2<br />

NG1.9<br />

10.0 bar<br />

95.97 1.9 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

3.3 56.74<br />

10.0 bar<br />

3.9<br />

13 8.55 0.89<br />

0 434 Water 2<br />

0.1 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 8.9 kg/s 88.77 5.2 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 3.3 kg/s 0.007 0.1 kg/s<br />

2 6.6 kg/s 0.07 9 2 Heatex-GG-O2 8.4 4.755 0 21 4 5.4 60 C 250 C 279 C 15 C 5.501 950 C 107 C<br />

3.96 120 C 1.2 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 18.08 512 2 26.82 524 4 14.4 264.3 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

0.653 1.2 kg/s<br />

790 C<br />

Gasifier<br />

2 8.4 kg/s<br />

0.043 120 C<br />

Heatex-GG-st<br />

-0 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

9.2 168.4<br />

1.0 bar<br />

9.2 kg/s<br />

0.4<br />

44.05<br />

1.0 bar<br />

0.4 kg/s<br />

90 C<br />

9.2<br />

175.7<br />

19.8 bar<br />

9.2 kg/s<br />

320 C<br />

531<br />

2<br />

36.49<br />

19.8 bar<br />

14.4 kg/s<br />

294 C<br />

0.061 422 2<br />

Water 1.9 10.0 bar<br />

0.006 1.9 kg/s<br />

7.8 Heatex-H2O<br />

0.07 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

6.8 0.237<br />

1.0 bar<br />

23.50 68 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.1 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

36.2 22.42<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.2<br />

0.013<br />

10.0 bar<br />

0.2 kg/s<br />

4 6.8 kg/s 0.93<br />

SAND 5.071 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.3 22.7 12.89 6 36.2 kg/s SAND 21 1.3 MW 5 3.1 Heatex-H2O<br />

1.5 25.38 0.6<br />

7.1 9.101 Heatex-GG-DH<br />

9.2 173.1 563 1.0 bar 0.19 200 C 5.8 SAND 1.267 3.1 52.16 1.5 25.38 0.6 10.17<br />

0.31<br />

62.1<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.46 16.9 0.31 34 2<br />

1.0 bar Steam dryer 3.96 56.1 1.0 bar<br />

34 1.0 bar<br />

4 7.1 kg/s<br />

0.047 730 C<br />

Split-steam2<br />

522 5.5 bar<br />

2 9.2 kg/s<br />

25.3 294 C<br />

Cooler-GG-H2<br />

2 22.7 kg/s<br />

0.12 120 C<br />

Cooler-GG-H2<br />

3.6<br />

0.12 0.83<br />

25.30 523 2<br />

9.2 5.5 bar<br />

0.93<br />

26.82<br />

Syngas-cool1<br />

561<br />

2<br />

0.186<br />

36.2 20.51<br />

1.0 bar<br />

36.2 kg/s<br />

120 C<br />

0.19 0.83<br />

0 541 4<br />

0.0 19.8 bar<br />

-0 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

9.669 462 2 9.669<br />

5.2 19.8 bar<br />

88.77 5.2 kg/s<br />

9.22 461 2<br />

0.93<br />

5.2 10.0 bar<br />

87.59 5.2 kg/s<br />

452 10.0 bar<br />

2 3.1 kg/s<br />

5.501 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 1.5 kg/s<br />

2.678 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.6 kg/s<br />

1.041 483 C<br />

Mixer-NG_ref<br />

35.17 62.1 kg/s 38.2 56.1 kg/s Cooler-GG-H2 22.7 14.09 171.7 9.2 kg/s Syngas-cool1 14.4 262 Syngas-cool1<br />

250 C 154 C<br />

120 C 12.6 145.2 271 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 19.8 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 22.7 kg/s Comp-GG-H2-2 2 14.4 kg/s<br />

2<br />

3.886<br />

12.6 kg/s<br />

15 C<br />

Steam<br />

0.12 200 C<br />

Cooler-GG-H2<br />

4.3 MW<br />

SAND<br />

13<br />

4.28<br />

36.49 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

4.6 2.629<br />

41 1.0 bar<br />

2 4.6 kg/s<br />

Steam<br />

0.93<br />

38.57<br />

14.4 267.5<br />

533 62.2 bar<br />

4 14.4 kg/s<br />

Syngas 38.57 294 C<br />

5.9 MW<br />

SAND<br />

15<br />

5.869<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

86<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

111<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.26<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

96 MW<br />

145 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

13 MW<br />

SAND 79 0.024 120 C 53.5 33.11 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 461 600 1.39<br />

DH-condenser<br />

0.74 10.8 0.42 811 12<br />

DH condenser0.42<br />

78.5 1.0 bar<br />

581<br />

2<br />

0.28<br />

1.0 bar<br />

53.5 kg/s<br />

200 C Steam<br />

0.23 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

4<br />

0<br />

0<br />

6<br />

1<br />

0.00<br />

0.01<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

80%<br />

4.6 0.183 2.743 78.5 kg/s DH-cooler DH-cooler<br />

42.5 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 26.35 42.5 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 24 32 0.07<br />

4 4.6 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

430.0 15.02<br />

811 1.0 bar<br />

0.010 811 6<br />

50.8 1.0 bar<br />

1.776 50.8 kg/s<br />

0.48 8.5 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 50.8 1.0 bar<br />

0.416 50.8 kg/s 1.0 0.639<br />

0.219 562 2<br />

42.5 1.0 bar<br />

200 C<br />

Syngas-cool2 6.8<br />

0.23 0.87<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4<br />

3<br />

0<br />

6<br />

4<br />

0<br />

0.01<br />

0.01<br />

0.00 Energy<br />

Water<br />

2 430.0 kg/s<br />

0.49 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

53.5 30.28<br />

1.0 bar<br />

53.5 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.01 225 C<br />

Cond-steam-1<br />

24.1 42.5 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

13.9 264.9<br />

62.2 bar<br />

13.9 kg/s<br />

0 551 4<br />

0.6 62.2 bar<br />

0.049 0.6 kg/s<br />

136 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

96<br />

2<br />

3<br />

6<br />

0<br />

125<br />

2<br />

4<br />

7<br />

0<br />

0.29<br />

0.00<br />

0.01<br />

0.02<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

92 MW<br />

121 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

11 MW<br />

Energy content in DH water = 72 MW 0.28 120 C<br />

DH-cooler<br />

Steam<br />

38.57 136 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

23<br />

0<br />

30<br />

0.00<br />

0.07<br />

* for electrolyser<br />

Urenhed:<br />

0.023 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.98<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

40.01 4.1 MW 17<br />

SAND 4.068<br />

13.9 268.6<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

19<br />

2<br />

26<br />

2<br />

25<br />

3<br />

34<br />

0.00<br />

0.06<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

70% (with total power)<br />

99%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.01 120 C 2 13.9 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 24 0.06<br />

Cond-steam-1<br />

40.01 253 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 327 424 0.98 Gas composition at specific nodes (mol-%)<br />

39.74 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

59.3 519.3<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

4<br />

3<br />

5<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.67<br />

4 100 C 2 59.3 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

148 38.4 860.6 Steam<br />

0 682 4<br />

82 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

270<br />

0<br />

351<br />

0<br />

0.81<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 60.63 42.70 24.36 25.92 27.89 30.00<br />

0.00 0.00 0.12 1.00 1.32 1.40 1.51 1.62<br />

791 3.5 bar 17.1 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 16 0.04 4 CO 42.73 0.00 22.49 29.16 14.45 3.27 3.47 3.74 4.02<br />

792 38.4 kg/s 17.55 17.1 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 5.24 0.00 5.09 4.47 35.29 46.38 49.35 53.11 57.12<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 16 20 0.05 7 H2O-G 5.21 0.00 14.17 5.12 2.13 2.93 1.70 0.62 0.02<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.047 811 10 39.2<br />

234.0 1.0 bar 0.047 0.70<br />

0 806 2<br />

DH water<br />

234.0 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.01 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.1 30.6 bar<br />

31.8 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 83<br />

311<br />

Total several DISTILLATION_STAGE's 1423 1826 4.28 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.44<br />

0.06<br />

0.00<br />

3.62 4.77 5.08<br />

0.48 0.63 0.67<br />

0.33 16.33 12.39<br />

5.47<br />

0.73<br />

6.94<br />

5.88<br />

0.78<br />

0.56<br />

8.175 234.0 kg/s<br />

90 C<br />

1.916 234.0 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.774 17.1 kg/s<br />

220 C 602<br />

59.3 503.9<br />

139.0 bar 607<br />

45.4 251<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

108.3<br />

Heatsourc-DH 148<br />

28.1 629.5 783<br />

38.4 869.6 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

83<br />

59.3 kg/s<br />

235 C<br />

2<br />

42<br />

45.4 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 38.4 kg/s 17.0 17.43 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 28.1 kg/s 4 100 C 685 30.6 bar 9.5 Preheater-sy NG 93 kr/GJ Methanol 39.7 kr/s 172 kr/GJ 194 kr/GJ 3.86 kr/kg 3.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.0 kg/s 42 606 2 42 0.77 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 410 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 42 45.4 144.0 bar 55.7 431 DH water 0 kr/ton Syngas 2.2 kr/s 167 kr/GJ - kr/GJ 0.91 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.90 248.1 45.4 kg/s 640 139.0 bar 78 11.42 3.6 69.19 Water 32 kr/ton DH water 0.5 kr/s 32 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.176 63 C 2 55.7 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

155 0.73<br />

Feed<br />

17.0<br />

3.749<br />

30.6 bar<br />

17.0 kg/s<br />

220 C<br />

Preheater-sy 71.13 170 C<br />

Condenser-1<br />

6.6<br />

631 3.6 kg/s<br />

4 170 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.21 0.78 If methanol and DH share the plant costs<br />

Condenser-1 84.1 13.67 621 631 4 (methanol and DH are the only products from the plant) -<br />

7 705 706<br />

19 3.5 bar<br />

2 1.21 705 706<br />

3 3.5 bar<br />

6<br />

SAND 31 51.6 346.2<br />

643 139.0 bar<br />

2 51.6 kg/s<br />

4 139.0 bar<br />

82 4.1 kg/s<br />

142 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 31.6 kr/s 137 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

49 18.5 kg/s 9 3.2 kg/s Condenser 57.46 142 C Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Mass flow<br />

132 C 132 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

59.9 1.0 bar<br />

Reboil-meoh2 10.0<br />

0.01 0.58<br />

0 805 2<br />

DH water<br />

59.9 1.0 bar Mechanical power<br />

10<br />

6.915 19.8 40.63 2.091 59.9 kg/s 0.49 59.9 kg/s 1.2 3.2 6.628<br />

707 3.5 bar Cond-steam-2 90 C 41.48 605 2 50 C 699 3.5 bar 0.25<br />

708 19.7 kg/s SAND 393 Condenser<br />

45.4 139.0 bar 2.4 13.05 Condenser<br />

700 3.2 kg/s<br />

4 132 C 247.9 45.4 kg/s 611 139.0 bar 91.4 13.8 3.9 82.48 2 132 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 5.16<br />

0 693 694<br />

1 3.5 bar<br />

2 1.2 kg/s<br />

Dis_stage_1<br />

4 5.716 695 696<br />

15 3.5 bar<br />

32 15.4 kg/s<br />

2 31.6<br />

5.754 0.67<br />

5.754 705 706<br />

15 3.5 bar<br />

41 15.4 kg/s<br />

4<br />

38.88 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 84.5<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 2.4 kg/s<br />

2.183 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 3.9 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

132 C<br />

Reboil-meoh1<br />

132 C<br />

Reboil-meoh1<br />

234 11.5 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

2 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

3 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 4 2 3Exergy destruction cost flow - based on specific cost of input 3.4 -0 1.9 3.399<br />

4H 8 2 4Exergy destruction cost flow - based on specific cost of output 1 3.4 kg/s Electrolyser 423 1.9 kg/s 8.55 412 2<br />

5EX 5 Component cost flow 2 -15.91 MJ/kg 56.3 MW 201 2 -11.70 MJ/kg 1.9 1.9 kg/s<br />

6 EX_CH * Number of decimals Electrolyser 0.107 -10.00 SAND 56.34 0.07 10.00 97.97 -2.29 MJ/kg<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

-<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.381 803 4<br />

78.5 78.5 kg/s<br />

Electrolyser<br />

18.62<br />

2.4<br />

3.74<br />

0 802 2<br />

78.5 78.5 kg/s DH water<br />

0.66<br />

Steam reformer<br />

9.22<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.927 0.24 MJ/kg 3.0 0.393 0.4 44.05 0.643 0.21 MJ/kg 1.8 1.339<br />

12 C<br />

13 C/EX<br />

SAND 1E-05 -10.00<br />

Electro-cool<br />

3<br />

4<br />

3.0 kg/s<br />

0.06 MJ/kg<br />

2<br />

4<br />

0.4 kg/s<br />

0.93 MJ/kg<br />

-10.00<br />

Electro-cool<br />

Comp-O2-2<br />

0.6 MW 3<br />

Reformat<br />

5.6 95.09<br />

403<br />

2<br />

1.8 kg/s<br />

0.84 MJ/kg<br />

0.0<br />

0<br />

Ash<br />

0.3 0.252<br />

83 0.3 kg/s<br />

4 -4.31 MJ/kg<br />

14 C/M<br />

O2 0.066 7 4 0.066<br />

0.00<br />

1.2 1.2 kg/s<br />

0.16 0.06 MJ/kg<br />

-<br />

Comp-O2-1<br />

0.066 5 2<br />

1.2 1.2 kg/s<br />

0.16 0.06 MJ/kg<br />

-<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.161 -<br />

Electrolyser<br />

0.0 9E-36<br />

6 0.0 kg/s<br />

4 0.06 MJ/kg<br />

18.08 -<br />

Electrolyser<br />

H2 O2 0.095 401 2<br />

1.8 1.8 kg/s<br />

0.233 0.06 MJ/kg<br />

-<br />

SAND 0.604<br />

0.309 402 4<br />

0.01<br />

0.309 1.8 1.8 kg/s<br />

0.799 0.40 MJ/kg<br />

-<br />

431 5.6 kg/s<br />

4 -4.50 MJ/kg<br />

9.22 -<br />

NG_reformer<br />

0.31 -<br />

NG_reformer<br />

0.6 10.73<br />

441 0.6 kg/s<br />

2 -4.50 MJ/kg<br />

1.041 -<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 -<br />

Gasifier<br />

0.0<br />

0.009<br />

1.3<br />

33 2<br />

1.3 kg/s<br />

Steam<br />

32<br />

8.4 10.81<br />

8.4 kg/s<br />

801<br />

2<br />

6.8 0.056<br />

6.8 kg/s<br />

0.21 MJ/kg<br />

0.0 0.016<br />

15 0.0 kg/s<br />

4 -0.57 MJ/kg Heatsink-H2<br />

4E-36 -<br />

Split-O2-2<br />

O2 0.00<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

1.6 27.62<br />

432 1.6 kg/s<br />

2 -4.50 MJ/kg<br />

0.8<br />

0.31 0.01 Heatex-O2<br />

SAND 11<br />

1.707 -11.97 MJ/kg Heatex-GG-st 4 -11.97 MJ/kg 0 -10.00 0 - 0.0 MW 322 18.08 0.0 MW 9 Comp-CO2 2.678 -<br />

10.00 SAND 7 0.06 10.00 Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 6E-05 0.0 MW 7<br />

Heatex-NG<br />

0.43<br />

5<br />

Gasifier<br />

6.6 144.7<br />

Gasifier<br />

5 10 GG2<br />

0.07 0.06<br />

8.9 8.9 kg/s 0.9<br />

131.6 -3.44 MJ/kg<br />

-<br />

5 11 2<br />

8.9 8.9 kg/s<br />

130.9 -3.54 MJ/kg<br />

-<br />

Heatex-GG-st<br />

0.06 0.00 5 12 2 0.00 0.00<br />

10.8 8.9 8.9 kg/s 1.1<br />

124.8 -4.75 MJ/kg<br />

- Heatex-GG-DH<br />

5 13 2<br />

8.9 8.9 kg/s<br />

124.6 -4.88 MJ/kg<br />

-<br />

0.00<br />

Gas cleaner 5.4<br />

8.9 124.5<br />

14 8.9 kg/s<br />

0.00<br />

Heatsink<br />

18.08<br />

18.08 511 2<br />

0.4 0.4 kg/s<br />

44.05 0.93 MJ/kg<br />

-<br />

Heatsink-H2<br />

9.671 503 4<br />

5.2 5.2 kg/s<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.00<br />

0.0 0.0 kg/s 0.0 0.0 kg/s<br />

CO2<br />

8.545 411 2<br />

NG1.9<br />

1.9 kg/s<br />

95.97 -4.34 MJ/kg<br />

-<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

3.3 56.74<br />

3.3 kg/s<br />

3.9<br />

13 8.55 0.02<br />

0 434 Water 2<br />

0.1 0.1 kg/s<br />

82 6.6 kg/s Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 -4.88 MJ/kg 88.77 -5.89 MJ/kg 0.007 -8.70 MJ/kg 0.005 -8.95 MJ/kg 2 -4.50 MJ/kg 0.007 -15.52 MJ/kg<br />

2 -2.55 MJ/kg 0.07 9 2 Heatex-GG-O2 8.4 4.755 0 21 4 5.4 - - - - 5.501 - -10.00<br />

3.96 - 1.2 1.2 kg/s SAND 5 31 8.4 kg/s 0.0 0.0 kg/s Cleaner 18.08 512 2 26.82 524 4 14.4 264.3 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

0.653 0.78 MJ/kg<br />

-<br />

Gasifier<br />

2 -13.25 MJ/kg<br />

0.043 -10.00<br />

Heatex-GG-st<br />

-0 -15.72 MJ/kg 9.2 168.4<br />

-10.00 521 9.2 kg/s<br />

Heatex-GG-DH 2 -4.65 MJ/kg<br />

0.4<br />

44.05<br />

0.4 kg/s<br />

0.93 MJ/kg<br />

-<br />

9.2 9.2 kg/s<br />

175.7 -4.04 MJ/kg<br />

-<br />

531 14.4 kg/s<br />

2 -4.71 MJ/kg<br />

36.49 -<br />

0.061 422 2<br />

Water 1.9 1.9 kg/s<br />

0.006 -15.83 MJ/kg<br />

7.8 Heatex-H2O<br />

0.07 11.89 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

6.8 0.237<br />

6.8 kg/s<br />

23.50 -<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.1 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

36.2 22.42<br />

Syngas-cool1<br />

-10.00<br />

Heatex-H2O<br />

0.2 0.2 kg/s<br />

0.013 -15.51 MJ/kg<br />

4 0.38 MJ/kg 0.05<br />

SAND 5.071 571 36.2 kg/s Syngas-cool1 Comp-NG_ref -10.00<br />

0.00 -10.00 25.3 22.7 12.89 6 -13.10 MJ/kg SAND 21 1.3 MW 5 3.1 Heatex-H2O<br />

1.5 25.38 0.6<br />

7.1 9.101 Heatex-GG-DH<br />

9.2 173.1 563 22.7 kg/s 0.19 -10.00 5.8 SAND 1.267 3.1 52.16 1.5 25.38 0.6 10.17<br />

Steam_dryer Biomass (dry)<br />

34 7.1 kg/s 522 9.2 kg/s 2 -13.25 MJ/kg Syngas-cool1 0.19 0.00 452 3.1 kg/s 433 1.5 kg/s 442 0.6 kg/s<br />

0.31<br />

62.1<br />

35 4<br />

62.1 kg/s<br />

SAND 1<br />

0.03 16.9<br />

Steam dryer 3.96<br />

0.31<br />

56.1<br />

34 2<br />

56.1 kg/s<br />

4 -11.97 MJ/kg<br />

0.047 10.00<br />

Split-steam2<br />

2 -4.11 MJ/kg 0.12 -10.00<br />

25.3 - Cooler-GG-H2<br />

Cooler-GG-H2 3.6<br />

0.12 0.00<br />

25.30 523 2<br />

9.2 9.2 kg/s<br />

0.04<br />

26.82<br />

36.2 20.51<br />

561 36.2 kg/s<br />

2 -13.25 MJ/kg<br />

0.186 -10.00<br />

0 541 4<br />

0.0 0.0 kg/s<br />

-0 -15.42 MJ/kg<br />

-10.00<br />

Water<br />

Reformat<br />

9.669 462 2 9.669<br />

5.2 5.2 kg/s<br />

88.77 -5.89 MJ/kg<br />

9.22 461 2<br />

0.01<br />

5.2 5.2 kg/s<br />

87.59 -6.13 MJ/kg<br />

2 -6.21 MJ/kg<br />

5.501 -<br />

Mixer-NG_ref<br />

2 -6.10 MJ/kg<br />

2.678 -<br />

Mixer-NG_ref<br />

2 -5.77 MJ/kg<br />

1.041 -<br />

Mixer-NG_ref<br />

35.17 -13.25 MJ/kg 38.2 -12.95 MJ/kg Cooler-GG-H2 22.7 14.09 171.7 -4.50 MJ/kg Syngas-cool1 14.4 262 Syngas-cool1<br />

- -<br />

-10.00 12.6 145.2 -10.00 SAND 19 571 22.7 kg/s - Comp-GG-H2-2 532 14.4 kg/s<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 12.6 kg/s Steam_dryer<br />

4 -13.10 MJ/kg Comp-GG-H2-2 2 -5.11 MJ/kg<br />

2 -8.96 MJ/kg<br />

3.886 -<br />

Steam<br />

0.12 -10.00<br />

Cooler-GG-H2<br />

4.3 MW<br />

SAND<br />

13<br />

4.28<br />

36.49 -<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

4.6 2.629<br />

41 4.6 kg/s<br />

2 -13.25 MJ/kg<br />

Steam<br />

0.06<br />

38.57<br />

14.4 267.5<br />

533 14.4 kg/s<br />

4 -4.71 MJ/kg<br />

Syngas 38.57 -<br />

5.9 MW<br />

SAND<br />

15<br />

5.869<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

86<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

111<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.26<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

96 MW<br />

145 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

13 MW<br />

SAND 79 0.024 -10.00 53.5 33.11 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 461 600 1.39<br />

DH-condenser<br />

0.07 10.8 0.42 811 12<br />

DH condenser0.42<br />

78.5 78.5 kg/s<br />

581 53.5 kg/s<br />

2 -13.10 MJ/kg<br />

0.28 -10.00 Steam<br />

0.23 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

4<br />

0<br />

0<br />

6<br />

1<br />

0.00<br />

0.01<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

80%<br />

4.6 0.183 2.743 0.38 MJ/kg DH-cooler DH-cooler<br />

42.5 42.5 kg/s Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 4.6 kg/s -10.00 SAND 25 26.35 -13.10 MJ/kg Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 24 32 0.07<br />

4 -15.57 MJ/kg<br />

0 -10.00<br />

DH-condenser<br />

DH-condenser<br />

430.0 15.02<br />

811 430.0 kg/s<br />

0.010 811 6<br />

50.8 50.8 kg/s<br />

1.776 0.38 MJ/kg<br />

0.01 8.5 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 50.8 50.8 kg/s<br />

0.416 0.21 MJ/kg 1.0 0.639<br />

0.219 562 2<br />

42.5 42.5 kg/s<br />

-10.00<br />

Syngas-cool2 6.8<br />

0.23 0.00<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4<br />

3<br />

0<br />

6<br />

4<br />

0<br />

0.01<br />

0.01<br />

0.00 Energy<br />

Water<br />

2 0.38 MJ/kg<br />

0.49 -10.00<br />

DH<br />

DH water<br />

-10.00<br />

DH-cooler<br />

53.5 30.28<br />

35 53.5 kg/s<br />

6 -13.25 MJ/kg<br />

-10.00<br />

DH-cooler<br />

571 1.0 kg/s<br />

10 -13.05 MJ/kg<br />

0.01 -10.00<br />

Cond-steam-1<br />

24.1 -13.25 MJ/kg<br />

-10.00<br />

Syngas-cool2<br />

13.9 264.9<br />

534 13.9 kg/s<br />

2 -4.77 MJ/kg<br />

0 551 4<br />

0.6 0.6 kg/s<br />

0.049 -15.40 MJ/kg<br />

-10.00<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

96<br />

2<br />

3<br />

6<br />

0<br />

125<br />

2<br />

4<br />

7<br />

0<br />

0.29<br />

0.00<br />

0.01<br />

0.02<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

92 MW<br />

121 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

11 MW<br />

Energy content in DH water = 72 MW 0.28 -10.00<br />

DH-cooler<br />

Steam<br />

38.57 -<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

23<br />

0<br />

30<br />

0.00<br />

0.07<br />

* for electrolyser<br />

Urenhed:<br />

0.023 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.98<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 kg/s<br />

0.04<br />

Comp-syngas2<br />

40.01 4.1 MW 17<br />

SAND 4.068<br />

13.9 268.6<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

19<br />

2<br />

26<br />

2<br />

25<br />

3<br />

34<br />

0.00<br />

0.06<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

70% (with total power)<br />

99%<br />

Methanol<br />

2 -13.25 MJ/kg 535 13.9 kg/s Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.01 -10.00 2 -4.49 MJ/kg Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 24 0.06<br />

Cond-steam-1<br />

40.01 - Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 327 424 0.98 Gas composition at specific nodes (mol-%)<br />

39.74 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

10.3 kg/s<br />

-7.26 MJ/kg 601<br />

59.3 519.3<br />

59.3 kg/s<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

4<br />

3<br />

5<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.67<br />

4 0.00 2 -7.11 MJ/kg Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

148 38.4 860.6 Steam<br />

0 682 4<br />

82 -<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

270<br />

0<br />

351<br />

0<br />

0.81<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 60.63 42.70 24.36 25.92 27.89 30.00<br />

0.00 0.00 0.12 1.00 1.32 1.40 1.51 1.62<br />

791 38.4 kg/s 17.1 17.1 kg/s Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 16 0.04 4 CO 42.73 0.00 22.49 29.16 14.45 3.27 3.47 3.74 4.02<br />

792 -7.26 MJ/kg 17.55 2.80 MJ/kg DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 5.24 0.00 5.09 4.47 35.29 46.38 49.35 53.11 57.12<br />

Heatsourc-DH 4 0.00 Cond-steam-1 -10.00 Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 16 20 0.05 7 H2O-G 5.21 0.00 14.17 5.12 2.13 2.93 1.70 0.62 0.02<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.047 811 10 39.2<br />

234.0 234.0 kg/s 0.047 0.00<br />

0 806 2<br />

DH water<br />

234.0 234.0 kg/s<br />

0 683 2<br />

0.1 0.1 kg/s<br />

0.2<br />

0.01 0.00<br />

0 684 4<br />

0.1 0.1 kg/s<br />

Water<br />

0 681 2<br />

17.1 17.1 kg/s<br />

31.8 Meoh-convert<br />

Methanol 0.24 SAND<br />

converter 83<br />

311<br />

Total several DISTILLATION_STAGE's 1423 1826 4.28 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.44<br />

0.06<br />

0.00<br />

3.62 4.77 5.08<br />

0.48 0.63 0.67<br />

0.33 16.33 12.39<br />

5.47<br />

0.73<br />

6.94<br />

5.88<br />

0.78<br />

0.56<br />

8.175 0.38 MJ/kg<br />

-10.00<br />

1.916 0.21 MJ/kg<br />

-10.00<br />

0.115 2.80 MJ/kg<br />

-10.00<br />

0.025 0.94 MJ/kg<br />

-10.00<br />

3.774 0.94 MJ/kg<br />

-10.00 602<br />

59.3 503.9<br />

59.3 kg/s 607<br />

45.4 251<br />

45.4 kg/s Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

108.3<br />

Heatsourc-DH 148<br />

28.1 629.5 783<br />

38.4 869.6 Heatsourc-DH<br />

38.4 kg/s<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2 -7.64 MJ/kg<br />

83 -<br />

2 -7.91 MJ/kg<br />

42 -<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 28.1 kg/s 784 -6.24 MJ/kg 17.0 17.43 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 -7.26 MJ/kg 4 1.00 685 17.0 kg/s 9.5 Preheater-sy NG 93 kr/GJ Methanol 39.7 kr/s 172 kr/GJ 194 kr/GJ 3.86 kr/kg 3.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 0.00 Dis_stage_17 2 2.80 MJ/kg 42 606 2 42 0.14 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 410 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 -10.00 Comp-recirc 42 45.4 45.4 kg/s 55.7 431 DH water 0 kr/ton Syngas 2.2 kr/s 167 kr/GJ - kr/GJ 0.91 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.00 248.1 -8.12 MJ/kg 640 55.7 kg/s 78 11.42 3.6 69.19 Water 32 kr/ton DH water 0.5 kr/s 32 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.176 - 2 -7.78 MJ/kg 621 3.6 kg/s CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

155 0.38<br />

Feed<br />

17.0 17.0 kg/s<br />

3.749 0.94 MJ/kg<br />

-10.00<br />

Preheater-sy 71.13 -<br />

Condenser-1<br />

6.6<br />

631 -8.15 MJ/kg<br />

4 -10.00<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.21 0.10 If methanol and DH share the plant costs<br />

Condenser-1 84.1 13.67 621 631 4 (methanol and DH are the only products from the plant) -<br />

7 705 706<br />

19 18.5 kg/s<br />

2 1.21 705 706<br />

3 3.2 kg/s<br />

6<br />

SAND 31 51.6 346.2<br />

643 51.6 kg/s<br />

2 -7.90 MJ/kg<br />

4 4.1 kg/s<br />

82 -7.90 MJ/kg<br />

-10.00<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 31.6 kr/s 137 kr/Gjex Electrical power<br />

Node nr<br />

Mass flow<br />

Transferred heat [MW]<br />

49 -12.63 MJ/kg 9 -12.63 MJ/kg Condenser 57.46 - Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Enthalpy<br />

1.00 1.00 SAND 33 Condenser<br />

Quality<br />

Dis_stage_1 0.01 811 8<br />

59.9 59.9 kg/s<br />

Reboil-meoh2 10.0<br />

0.01 0.00<br />

0 805 2<br />

DH water<br />

59.9 59.9 kg/s Mechanical power<br />

10<br />

6.915 19.8 40.63 2.091 0.38 MJ/kg 0.49 0.21 MJ/kg 1.2 3.2 6.628<br />

707 19.7 kg/s Cond-steam-2 -10.00 41.48 605 2 -10.00 699 3.2 kg/s 0.25<br />

708 -14.69 MJ/kg SAND 393 Condenser<br />

45.4 45.4 kg/s 2.4 13.05 Condenser<br />

700 -14.69 MJ/kg<br />

4 0.00 247.9 -8.12 MJ/kg 611 2.4 kg/s 91.4 13.8 3.9 82.48 2 0.00<br />

Water /<br />

Methanol<br />

Methanol molar-% = 5.16<br />

0 693 694<br />

1 1.2 kg/s<br />

2 -14.69 MJ/kg<br />

Dis_stage_1<br />

4 5.716 695 696<br />

15 15.4 kg/s<br />

32 -14.69 MJ/kg<br />

2 31.6<br />

5.754 0.83<br />

5.754 705 706<br />

15 15.4 kg/s<br />

41 -12.63 MJ/kg<br />

4<br />

38.88 625 635<br />

11 11.5 kg/s<br />

2<br />

Methanol molar-% = 84.5<br />

-<br />

Comp-recirc<br />

Methanol/<br />

4 -8.12 MJ/kg<br />

2.183 -<br />

Syngas Split-syngas<br />

621 3.9 kg/s<br />

631 -7.79 MJ/kg<br />

4 -10.00<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy destruction cost flow - based on specific cost of input [kr/s]<br />

0.19<br />

set-x-2<br />

0.00<br />

Reboil-meoh1<br />

1.00<br />

Reboil-meoh1<br />

234 -7.94 MJ/kg<br />

0.09<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water<br />

NG


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

5 2<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

4 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 6 2 3Exergy destruction cost flow - based on specific cost of input 3.4 -0 1.9 3.399<br />

4H 7 2 4Exergy destruction cost flow - based on specific cost of output 1 0.00 MJ/kg Electrolyser 423 1.80 MJ/kg 8.55 412 2<br />

5EX<br />

6 EX_CH * Number of decimals<br />

5 Component cost flow<br />

Electrolyser<br />

2<br />

0.107<br />

0.00 MJ/kg<br />

0.00 MJ/kg<br />

56.3 MW<br />

SAND<br />

201<br />

56.34<br />

2<br />

0.07<br />

0.00 MJ/kg<br />

1.80 MJ/kg<br />

1.9 51.74 MJ/kg<br />

97.97 50.38 MJ/kg<br />

NG<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

1.36 MJ/kg<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.381 803 4<br />

78.5 0.01 MJ/kg<br />

Electrolyser<br />

18.62<br />

2.4<br />

4.77<br />

0 802 2<br />

78.5 0.01 MJ/kg DH water<br />

0.74<br />

Steam reformer<br />

9.22<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.927 0.00 MJ/kg 3.0 0.393 0.4 44.05 0.643 0.00 MJ/kg 1.8 1.339<br />

12 C<br />

13 C/EX<br />

SAND 1E-05 0.01 MJ/kg<br />

Electro-cool<br />

3<br />

4<br />

0.13 MJ/kg<br />

0.12 MJ/kg<br />

2 117.2 MJ/kg<br />

4 117.1 MJ/kg<br />

0.01 MJ/kg<br />

Electro-cool<br />

Comp-O2-2<br />

0.6 MW 3<br />

Reformat<br />

5.6 95.09<br />

403<br />

2<br />

0.76 MJ/kg<br />

0.12 MJ/kg<br />

0.0<br />

0<br />

Ash<br />

0.3 0.252<br />

83 0.78 MJ/kg<br />

4 0.00 MJ/kg<br />

14 C/M<br />

O2 0.066 7 4 0.066<br />

0.00<br />

1.2 0.13 MJ/kg<br />

0.16 0.12 MJ/kg<br />

0.01 MJ/kg<br />

Comp-O2-1<br />

0.066 5 2<br />

1.2 0.13 MJ/kg<br />

0.16 0.12 MJ/kg<br />

0.01 MJ/kg<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.161 0.01 MJ/kg<br />

Electrolyser<br />

0.0 9E-36<br />

6 0.13 MJ/kg<br />

4 0.12 MJ/kg<br />

18.08 0.12 MJ/kg<br />

Electrolyser<br />

H2 O2 0.095 401 2<br />

1.8 0.13 MJ/kg<br />

0.233 0.12 MJ/kg<br />

0.01 MJ/kg<br />

SAND 0.604<br />

0.309 402 4<br />

0.01<br />

0.309 1.8 0.45 MJ/kg<br />

0.799 0.12 MJ/kg<br />

0.33 MJ/kg<br />

431 17.13 MJ/kg<br />

4 15.32 MJ/kg<br />

9.22 1.81 MJ/kg<br />

NG_reformer<br />

0.31 0.63 MJ/kg<br />

NG_reformer<br />

0.6 10.73<br />

441 17.13 MJ/kg<br />

2 15.32 MJ/kg<br />

1.041 1.81 MJ/kg<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 0.78 MJ/kg<br />

Gasifier 0.009<br />

0.0 1.3<br />

33 2<br />

1.29 MJ/kg<br />

Steam<br />

32<br />

8.4 10.81<br />

1.29 MJ/kg<br />

801<br />

2<br />

6.8 0.056<br />

0.01 MJ/kg<br />

0.00 MJ/kg<br />

0.0 0.016<br />

15 23.83 MJ/kg<br />

4 23.83 MJ/kg Heatsink-H2<br />

4E-36 0.01 MJ/kg<br />

Split-O2-2<br />

O2 0.00<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

1.6 27.62<br />

432 17.13 MJ/kg<br />

2 15.32 MJ/kg<br />

0.8<br />

0.31 0.00 Heatex-O2<br />

SAND 11<br />

1.707 0.00 MJ/kg Heatex-GG-st 4 0.00 MJ/kg 0 0.01 MJ/kg 0 0.00 MJ/kg 0.0 MW 322 18.08 0.0 MW 9 Comp-CO2 2.678 1.81 MJ/kg<br />

1.29 MJ/kg SAND 7 0.06 1.29 MJ/kg Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 6E-05 0.0 MW 7<br />

Heatex-NG<br />

0.64<br />

5<br />

Gasifier<br />

6.6 144.7<br />

Gasifier<br />

5 10 GG2<br />

0.07 0.01<br />

8.9 14.87 MJ/kg 0.9<br />

131.6 14.07 MJ/kg<br />

0.80 MJ/kg<br />

5 11 2<br />

8.9 14.79 MJ/kg<br />

130.9 14.07 MJ/kg<br />

0.73 MJ/kg<br />

Heatex-GG-st<br />

0.06 0.00 5 12 2 0.00 0.00<br />

10.8 8.9 14.10 MJ/kg 1.1<br />

124.8 14.07 MJ/kg<br />

0.03 MJ/kg Heatex-GG-DH<br />

5 13 2<br />

8.9 14.07 MJ/kg<br />

124.6 14.07 MJ/kg<br />

0.01 MJ/kg<br />

0.00<br />

Gas cleaner 5.4<br />

8.9 124.5<br />

14 14.07 MJ/kg<br />

0.00<br />

Heatsink<br />

18.08<br />

18.08 511 2<br />

0.4 117.2 MJ/kg<br />

44.05 117.1 MJ/kg<br />

0.12 MJ/kg<br />

Heatsink-H2<br />

9.671 503 4<br />

5.2 17.10 MJ/kg<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.00<br />

0.0 0.69 MJ/kg 0.0 0.45 MJ/kg<br />

CO2<br />

8.545 411 2<br />

NG1.9<br />

50.68 MJ/kg<br />

95.97 50.38 MJ/kg<br />

0.31 MJ/kg<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

3.3 56.74<br />

17.13 MJ/kg<br />

3.9<br />

13 8.55 0.02<br />

0 434 Water 2<br />

0.1 0.05 MJ/kg<br />

82 21.83 MJ/kg Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 14.07 MJ/kg 88.77 16.36 MJ/kg 0.007 0.45 MJ/kg 0.005 0.45 MJ/kg 2 15.32 MJ/kg 0.007 0.00 MJ/kg<br />

2 21.90 MJ/kg 0.07 9 2 Heatex-GG-O2 8.4 4.755 0 21 4 5.4 0.01 MJ/kg 0.74 MJ/kg 0.24 MJ/kg 0.00 MJ/kg 5.501 1.81 MJ/kg 0.05 MJ/kg<br />

3.96 -0.07 MJ/kg 1.2 0.54 MJ/kg SAND 5 31 0.57 MJ/kg 0.0 0.01 MJ/kg Cleaner 18.08 512 2 26.82 524 4 14.4 264.3 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

0.653 0.12 MJ/kg<br />

0.41 MJ/kg<br />

Gasifier<br />

2 0.00 MJ/kg<br />

0.043 0.57 MJ/kg<br />

Heatex-GG-st<br />

-0 0.00 MJ/kg 9.2 168.4<br />

0.01 MJ/kg 521 18.25 MJ/kg<br />

Heatex-GG-DH 2 18.24 MJ/kg<br />

0.4 117.2 MJ/kg<br />

44.05 117.1 MJ/kg<br />

0.12 MJ/kg<br />

9.2 19.04 MJ/kg<br />

175.7 18.24 MJ/kg<br />

0.80 MJ/kg<br />

531 18.33 MJ/kg<br />

2 17.56 MJ/kg<br />

36.49 0.77 MJ/kg<br />

0.061 422 2<br />

Water 1.9 0.00 MJ/kg<br />

0.006 0.00 MJ/kg<br />

7.8 Heatex-H2O<br />

0.07 0.02 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

6.8 0.237<br />

0.03 MJ/kg<br />

23.50 0.01 MJ/kg<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.1 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

36.2 22.42<br />

Syngas-cool1<br />

0.00 MJ/kg<br />

Heatex-H2O<br />

0.2<br />

0.013<br />

0.05 MJ/kg<br />

0.00 MJ/kg<br />

4 0.00 MJ/kg 0.05<br />

SAND 5.071 571 0.62 MJ/kg Syngas-cool1 Comp-NG_ref 0.05 MJ/kg<br />

0.00 0.03 MJ/kg 25.3 22.7 12.89 6 0.00 MJ/kg SAND 21 1.3 MW 5 3.1 Heatex-H2O<br />

1.5 25.38 0.6<br />

7.1 9.101 Heatex-GG-DH<br />

9.2 173.1 563 0.57 MJ/kg 0.19 0.62 MJ/kg 5.8 SAND 1.267 3.1 52.16 1.5 25.38 0.6 10.17<br />

Steam_dryer Biomass (dry)<br />

34 1.29 MJ/kg 522 18.76 MJ/kg 2 0.00 MJ/kg Syngas-cool1 0.19 0.00 452 16.93 MJ/kg 433 17.20 MJ/kg 442 16.24 MJ/kg<br />

0.31<br />

62.1<br />

35 4<br />

0.57 MJ/kg<br />

SAND 1<br />

0.03 16.9<br />

Steam dryer 3.96<br />

0.31<br />

56.1<br />

34 2<br />

0.68 MJ/kg<br />

4 0.00 MJ/kg<br />

0.047 1.29 MJ/kg<br />

Split-steam2<br />

2 18.24 MJ/kg 0.12 0.57 MJ/kg<br />

25.3 0.52 MJ/kg Cooler-GG-H2<br />

Cooler-GG-H2 3.6 25.30 523 2<br />

0.12 0.00 9.2 18.61 MJ/kg<br />

0.04<br />

26.82<br />

561<br />

2<br />

0.186<br />

36.2 20.51<br />

0.57 MJ/kg<br />

0.00 MJ/kg<br />

0.57 MJ/kg<br />

0 541 4<br />

0.0 0.08 MJ/kg<br />

-0 0.00 MJ/kg<br />

0.08 MJ/kg<br />

Water<br />

Reformat<br />

9.669 462 2 9.669<br />

5.2 17.13 MJ/kg<br />

88.77 16.39 MJ/kg<br />

9.22 461 2<br />

0.01<br />

5.2 16.90 MJ/kg<br />

87.59 16.39 MJ/kg<br />

2 16.45 MJ/kg<br />

5.501 0.48 MJ/kg<br />

Mixer-NG_ref<br />

2 16.72 MJ/kg<br />

2.678 0.48 MJ/kg<br />

Mixer-NG_ref<br />

2 15.32 MJ/kg<br />

1.041 0.92 MJ/kg<br />

Mixer-NG_ref<br />

35.17 0.00 MJ/kg 38.2 0.00 MJ/kg Cooler-GG-H2 22.7 14.09 171.7 18.24 MJ/kg Syngas-cool1 14.4 262 Syngas-cool1<br />

0.74 MJ/kg 0.51 MJ/kg<br />

0.57 MJ/kg 12.6 145.2 0.68 MJ/kg SAND 19 571 0.62 MJ/kg 0.36 MJ/kg Comp-GG-H2-2 532 18.17 MJ/kg<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 11.53 MJ/kg Steam_dryer<br />

4 0.00 MJ/kg Comp-GG-H2-2 2 17.56 MJ/kg<br />

2 11.53 MJ/kg<br />

3.886 0.00 MJ/kg<br />

Steam<br />

0.12 0.62 MJ/kg<br />

Cooler-GG-H2<br />

4.3 MW<br />

SAND<br />

13<br />

4.28<br />

36.49 0.61 MJ/kg<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

4.6 2.629<br />

41 0.57 MJ/kg<br />

2 0.00 MJ/kg<br />

Steam<br />

0.06<br />

38.57<br />

14.4 267.5<br />

533 18.55 MJ/kg<br />

4 17.56 MJ/kg<br />

Syngas 38.57 0.99 MJ/kg<br />

5.9 MW<br />

SAND<br />

15<br />

5.869<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

86<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

111<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.26<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

96 MW<br />

145 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

13 MW<br />

SAND 79 0.024 0.57 MJ/kg 53.5 33.11 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 461 600 1.39<br />

DH-condenser<br />

0.09 10.8 0.42 811 12<br />

DH condenser0.42<br />

78.5 0.03 MJ/kg<br />

581<br />

2<br />

0.28<br />

0.62 MJ/kg<br />

0.00 MJ/kg<br />

0.62 MJ/kg Steam<br />

0.23 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

4<br />

0<br />

0<br />

6<br />

1<br />

0.00<br />

0.01<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

80%<br />

4.6 0.183 2.743 0.00 MJ/kg DH-cooler DH-cooler<br />

42.5 0.62 MJ/kg Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 0.04 MJ/kg 0.03 MJ/kg SAND 25 26.35 0.00 MJ/kg Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 24 32 0.07<br />

4 0.00 MJ/kg<br />

0 0.04 MJ/kg<br />

DH-condenser<br />

DH-condenser<br />

430.0 15.02<br />

811 0.03 MJ/kg<br />

0.010 811 6<br />

50.8 0.03 MJ/kg<br />

1.776 0.00 MJ/kg<br />

0.01 8.5 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 50.8 0.01 MJ/kg<br />

0.416 0.00 MJ/kg 1.0 0.639<br />

0.219 562 2<br />

42.5 0.57 MJ/kg<br />

0.62 MJ/kg<br />

Syngas-cool2 6.8<br />

0.23 0.00<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4<br />

3<br />

0<br />

6<br />

4<br />

0<br />

0.01<br />

0.01<br />

0.00 Energy<br />

Water<br />

2 0.00 MJ/kg<br />

0.49 0.03 MJ/kg<br />

DH<br />

DH water<br />

0.03 MJ/kg<br />

DH-cooler<br />

35<br />

6<br />

53.5 30.28<br />

0.57 MJ/kg<br />

0.00 MJ/kg<br />

0.01 MJ/kg<br />

DH-cooler<br />

571 0.64 MJ/kg<br />

10 0.00 MJ/kg<br />

0.01 0.64 MJ/kg<br />

Cond-steam-1<br />

24.1 0.00 MJ/kg<br />

0.57 MJ/kg<br />

Syngas-cool2<br />

13.9 264.9<br />

534 19.10 MJ/kg<br />

2 18.25 MJ/kg<br />

0 551 4<br />

0.6 0.09 MJ/kg<br />

0.049 0.00 MJ/kg<br />

0.09 MJ/kg<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

96<br />

2<br />

3<br />

6<br />

0<br />

125<br />

2<br />

4<br />

7<br />

0<br />

0.29<br />

0.00<br />

0.01<br />

0.02<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

92 MW<br />

121 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

11 MW<br />

Energy content in DH water = 72 MW 0.28 0.57 MJ/kg<br />

DH-cooler<br />

Steam<br />

38.57 0.85 MJ/kg<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

23<br />

0<br />

30<br />

0.00<br />

0.07<br />

* for electrolyser<br />

Urenhed:<br />

0.023 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.98<br />

Water /<br />

671<br />

1.0 0.566<br />

0.57 MJ/kg<br />

0.04<br />

Comp-syngas2<br />

40.01 4.1 MW 17<br />

SAND 4.068<br />

13.9 268.6<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

19<br />

2<br />

26<br />

2<br />

25<br />

3<br />

34<br />

0.00<br />

0.06<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

70% (with total power)<br />

99%<br />

Methanol<br />

2 0.00 MJ/kg 535 19.37 MJ/kg Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.01 0.57 MJ/kg 2 18.25 MJ/kg Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 24 0.06<br />

Cond-steam-1<br />

40.01 1.12 MJ/kg Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 327 424 0.98 Gas composition at specific nodes (mol-%)<br />

39.74 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

22.44 MJ/kg<br />

22.41 MJ/kg 601<br />

59.3 519.3<br />

8.76 MJ/kg<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

4<br />

3<br />

5<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.67<br />

4 0.03 MJ/kg 2 8.13 MJ/kg Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

148 38.4 860.6 Steam<br />

0 682 4<br />

82 0.63 MJ/kg<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

270<br />

0<br />

351<br />

0<br />

0.81<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 60.63 42.70 24.36 25.92 27.89 30.00<br />

0.00 0.00 0.12 1.00 1.32 1.40 1.51 1.62<br />

791 22.44 MJ/kg 17.1 1.02 MJ/kg Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 16 0.04 4 CO 42.73 0.00 22.49 29.16 14.45 3.27 3.47 3.74 4.02<br />

792 22.41 MJ/kg 17.55 0.00 MJ/kg DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 5.24 0.00 5.09 4.47 35.29 46.38 49.35 53.11 57.12<br />

Heatsourc-DH 4 0.03 MJ/kg Cond-steam-1 1.02 MJ/kg Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 16 20 0.05 7 H2O-G 5.21 0.00 14.17 5.12 2.13 2.93 1.70 0.62 0.02<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.047 811 10 39.2<br />

234.0 0.03 MJ/kg 0.047 0.02<br />

0 806 2<br />

DH water<br />

234.0 0.01 MJ/kg<br />

0 683 2<br />

0.1 1.02 MJ/kg<br />

0.2<br />

0.01 0.00<br />

0 684 4<br />

0.1 0.22 MJ/kg<br />

Water<br />

0 681 2<br />

17.1 0.22 MJ/kg<br />

31.8 Meoh-convert<br />

Methanol 0.25 SAND<br />

converter 83<br />

311<br />

Total several DISTILLATION_STAGE's 1423 1826 4.28 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.44<br />

0.06<br />

0.00<br />

3.62 4.77 5.08<br />

0.48 0.63 0.67<br />

0.33 16.33 12.39<br />

5.47<br />

0.73<br />

6.94<br />

5.88<br />

0.78<br />

0.56<br />

8.175 0.00 MJ/kg<br />

0.03 MJ/kg<br />

1.916 0.00 MJ/kg<br />

0.01 MJ/kg<br />

0.115 0.00 MJ/kg<br />

1.02 MJ/kg<br />

0.025 0.00 MJ/kg<br />

0.22 MJ/kg<br />

3.774 0.00 MJ/kg<br />

0.22 MJ/kg 602<br />

59.3 503.9<br />

8.50 MJ/kg 607<br />

45.4 251<br />

5.53 MJ/kg Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

108.3<br />

Heatsourc-DH 148 38.4 869.6 Heatsourc-DH<br />

28.1 629.5 783 22.67 MJ/kg<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

83<br />

8.02 MJ/kg<br />

0.49 MJ/kg<br />

2<br />

42<br />

5.05 MJ/kg<br />

0.48 MJ/kg<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 22.44 MJ/kg 784 22.41 MJ/kg 17.0 17.43 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 22.41 MJ/kg 4 0.26 MJ/kg 685 1.02 MJ/kg 9.5 Preheater-sy NG 93 kr/GJ Methanol 39.7 kr/s 172 kr/GJ 194 kr/GJ 3.86 kr/kg 3.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 0.03 MJ/kg Dis_stage_17 2 0.00 MJ/kg 42 606 2 42 0.14 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 410 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 1.02 MJ/kg Comp-recirc 42 45.4 5.47 MJ/kg 55.7 431 DH water 0 kr/ton Syngas 2.2 kr/s 167 kr/GJ - kr/GJ 0.91 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.00 248.1 5.05 MJ/kg 640 7.74 MJ/kg 78 11.42 3.6 69.19 Water 32 kr/ton DH water 0.5 kr/s 32 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.176 0.42 MJ/kg 2 7.29 MJ/kg 621 19.44 MJ/kg CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

155 0.39<br />

Feed<br />

17.0<br />

3.749<br />

0.22 MJ/kg<br />

0.00 MJ/kg<br />

0.22 MJ/kg<br />

Preheater-sy 71.13 0.45 MJ/kg<br />

Condenser-1<br />

6.6<br />

631 19.31 MJ/kg<br />

4 0.12 MJ/kg<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.21 0.08 If methanol and DH share the plant costs<br />

Condenser-1 84.1 13.67 621 631 4 (methanol and DH are the only products from the plant) -<br />

7 705 706<br />

19 2.65 MJ/kg<br />

2 1.21 705 706<br />

3 2.65 MJ/kg<br />

6<br />

SAND 31<br />

643<br />

2<br />

51.6 346.2<br />

6.70 MJ/kg<br />

6.27 MJ/kg<br />

4 20.34 MJ/kg<br />

82 20.25 MJ/kg<br />

0.08 MJ/kg<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 31.6 kr/s 137 kr/Gjex Electrical power<br />

Node nr<br />

Total exergy<br />

Transferred heat [MW]<br />

49 1.98 MJ/kg 9 1.98 MJ/kg Condenser 57.46 0.44 MJ/kg Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Chemical exergy<br />

0.67 MJ/kg 0.67 MJ/kg SAND 33 Condenser<br />

Physical exergy<br />

Dis_stage_1 0.01 811 8<br />

59.9 0.03 MJ/kg<br />

Reboil-meoh2 10.0<br />

0.01 0.01<br />

0 805 2<br />

DH water<br />

59.9 0.01 MJ/kg Mechanical power<br />

10<br />

6.915 19.8 40.63 2.091 0.00 MJ/kg 0.49 0.00 MJ/kg 1.2 3.2 6.628<br />

707 2.06 MJ/kg Cond-steam-2 0.03 MJ/kg 41.48 605 2 0.01 MJ/kg 699 2.06 MJ/kg 0.25<br />

708 1.98 MJ/kg SAND 393 Condenser<br />

45.4 5.46 MJ/kg 2.4 13.05 Condenser<br />

700 1.98 MJ/kg<br />

4 0.08 MJ/kg 247.9 5.05 MJ/kg 611 5.46 MJ/kg 91.4 13.8 3.9 82.48 2 0.08 MJ/kg<br />

Water /<br />

Methanol<br />

Methanol molar-% = 5.16<br />

0 693 694<br />

1 2.05 MJ/kg<br />

2 1.98 MJ/kg<br />

Dis_stage_1<br />

4 5.716 695 696<br />

15 2.06 MJ/kg<br />

32 1.98 MJ/kg<br />

2 31.6<br />

5.754 0.65<br />

5.754 705 706<br />

15 2.65 MJ/kg<br />

41 1.98 MJ/kg<br />

4<br />

38.88 625 635<br />

11 20.36 MJ/kg<br />

2<br />

Methanol molar-% = 84.5<br />

0.41 MJ/kg<br />

Comp-recirc<br />

Methanol/<br />

4 5.05 MJ/kg<br />

2.183 0.41 MJ/kg<br />

Syngas Split-syngas<br />

621 21.31 MJ/kg<br />

631 21.29 MJ/kg<br />

4 0.03 MJ/kg<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy destruction cost flow - based on specific cost of output [kr/s]<br />

0.07 MJ/kg<br />

set-x-2<br />

0.08 MJ/kg<br />

Reboil-meoh1<br />

0.67 MJ/kg<br />

Reboil-meoh1<br />

234 20.31 MJ/kg<br />

0.05 MJ/kg<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

9 2<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

2 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 10 2 3Exergy destruction cost flow - based on specific cost of input 3.4 -0 1.9 3.399<br />

4H 11 2 4Exergy destruction cost flow - based on specific cost of output 1 0.00 MW Electrolyser 423 3.40 MW 8.55 412 2<br />

5EX<br />

6 EX_CH * Number of decimals<br />

5 Component cost flow<br />

Electrolyser<br />

2<br />

0.107<br />

0.00 MW<br />

0.00 MW<br />

56.3 MW<br />

SAND<br />

201<br />

56.34<br />

2<br />

0.07<br />

0.00 MW<br />

3.40 MW<br />

1.9 97.97 MW<br />

97.97 95.39 MW<br />

NG<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

2.58 MW<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.381 803 4<br />

78.5 0.93 MW<br />

Electrolyser<br />

18.62<br />

2.4<br />

11.61<br />

0 802 2<br />

78.5 0.64 MW DH water<br />

7.62<br />

Steam reformer<br />

9.22<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.927 0.00 MW 3.0 0.393 0.4 44.05 0.643 0.00 MW 1.8 1.339<br />

12 C<br />

13 C/EX<br />

SAND 1E-05 0.93 MW<br />

Electro-cool<br />

3<br />

4<br />

0.39 MW<br />

0.37 MW<br />

2 44.05 MW<br />

4 44.00 MW<br />

0.64 MW<br />

Electro-cool<br />

Comp-O2-2<br />

0.6 MW 3<br />

Reformat<br />

5.6 95.09<br />

403<br />

2<br />

1.34 MW<br />

0.22 MW<br />

0.0<br />

0<br />

Ash<br />

0.3 0.252<br />

83 0.25 MW<br />

4 0.00 MW<br />

14 C/M<br />

O2 0.066 7 4 0.066<br />

0.00<br />

1.2 0.16 MW<br />

0.16 0.15 MW<br />

0.01 MW<br />

Comp-O2-1<br />

0.066 5 2<br />

1.2 0.16 MW<br />

0.16 0.15 MW<br />

0.01 MW<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.161 0.02 MW<br />

Electrolyser<br />

0.0 9E-36<br />

6 0.00 MW<br />

4 0.00 MW<br />

18.08 0.05 MW<br />

Electrolyser<br />

H2 O2 0.095 401 2<br />

1.8 0.23 MW<br />

0.233 0.22 MW<br />

0.01 MW<br />

SAND 0.604<br />

0.309 402 4<br />

0.04<br />

0.309 1.8 0.80 MW<br />

0.799 0.22 MW<br />

0.58 MW<br />

431 95.09 MW<br />

4 85.06 MW<br />

9.22 10.03 MW<br />

NG_reformer<br />

0.31 1.12 MW<br />

NG_reformer<br />

0.6 10.73<br />

441 10.73 MW<br />

2 9.60 MW<br />

1.041 1.13 MW<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 0.25 MW<br />

Gasifier<br />

0.0<br />

0.009<br />

1.3<br />

33 2<br />

1.71 MW<br />

Steam<br />

32<br />

8.4 10.81<br />

10.81 MW<br />

801<br />

2<br />

6.8 0.056<br />

0.06 MW<br />

0.00 MW<br />

15<br />

4<br />

0.0 0.016<br />

0.02 MW<br />

0.02 MW Heatsink-H2<br />

4E-36 0.00 MW<br />

Split-O2-2<br />

O2 0.00<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

1.6 27.62<br />

432 27.62 MW<br />

2 24.71 MW<br />

0.8<br />

0.31 0.02 Heatex-O2<br />

SAND 11<br />

1.707 0.00 MW Heatex-GG-st 4 0.00 MW 0 0.06 MW 0 0.00 MW 0.0 MW 322 18.08 0.0 MW 9 Comp-CO2 2.678 2.91 MW<br />

1.71 MW SAND 7 0.06 10.81 MW Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 6E-05 0.0 MW 7<br />

Heatex-NG<br />

15.53<br />

5<br />

Gasifier<br />

6.6 144.7<br />

Gasifier<br />

5 10 GG2<br />

0.07 0.14<br />

8.9 131.5 MW 0.9<br />

131.6 124.5 MW<br />

7.08 MW<br />

5 11 2<br />

8.9 130.9 MW<br />

130.9 124.5 MW<br />

6.44 MW<br />

Heatex-GG-st<br />

0.06 0.09 5 12 2 0.00 0.06<br />

10.8 8.9 124.8 MW 1.1<br />

124.8 124.5 MW<br />

0.30 MW Heatex-GG-DH<br />

5 13 2<br />

8.9 124.5 MW<br />

124.6 124.5 MW<br />

0.05 MW<br />

0.00<br />

Gas cleaner 5.4<br />

8.9 124.5<br />

14 124.5 MW<br />

0.00<br />

Heatsink<br />

18.08<br />

18.08 511 2<br />

0.4 44.05 MW<br />

44.05 44.00 MW<br />

0.05 MW<br />

Heatsink-H2<br />

9.671 503 4<br />

5.2 88.77 MW<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.00<br />

0.0 0.01 MW 0.0 0.00 MW<br />

CO2<br />

8.545 411 2<br />

NG1.9<br />

95.97 MW<br />

95.97 95.39 MW<br />

0.58 MW<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

3.3 56.74<br />

56.74 MW<br />

3.9<br />

13 8.55 0.24<br />

0 434 Water 2<br />

0.1 0.01 MW<br />

82 144.7 MW Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 124.4 MW 88.77 84.95 MW 0.007 0.00 MW 0.005 0.00 MW 2 50.75 MW 0.007 0.00 MW<br />

2 145.2 MW 0.07 9 2 Heatex-GG-O2 8.4 4.755 0 21 4 5.4 0.05 MW 3.82 MW 0.00 MW 0.00 MW 5.501 5.99 MW 0.01 MW<br />

3.96 -0.45 MW 1.2 0.65 MW SAND 5 31 4.75 MW 0.0 0.00 MW Cleaner 18.08 512 2 26.82 524 4 14.4 264.3 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

0.653 0.15 MW<br />

0.50 MW<br />

Gasifier<br />

2 0.00 MW<br />

0.043 4.75 MW<br />

Heatex-GG-st<br />

-0 0.00 MW 9.2 168.4<br />

0.00 MW 521 168.4 MW<br />

Heatex-GG-DH 2 168.3 MW<br />

0.4 44.05 MW<br />

44.05 44.00 MW<br />

0.05 MW<br />

9.2 175.6 MW<br />

175.7 168.3 MW<br />

7.34 MW<br />

531 264.3 MW<br />

2 253.2 MW<br />

36.49 11.14 MW<br />

0.061 422 2<br />

Water 1.9 0.01 MW<br />

0.006 0.00 MW<br />

7.8 Heatex-H2O<br />

0.07 1.17 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

6.8 0.237<br />

0.24 MW<br />

23.50 0.09 MW<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.1 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

36.2 22.42<br />

Syngas-cool1<br />

0.01 MW<br />

Heatex-H2O<br />

0.2<br />

0.013<br />

0.01 MW<br />

0.00 MW<br />

4 0.00 MW 0.36<br />

SAND 5.071 571 22.42 MW Syngas-cool1 Comp-NG_ref 0.01 MW<br />

0.00 0.24 MW 25.3 22.7 12.89 6 0.00 MW SAND 21 1.3 MW 5 3.1 Heatex-H2O<br />

1.5 25.38 0.6<br />

7.1 9.101 Heatex-GG-DH<br />

9.2 173.1 563 12.89 MW 0.19 22.42 MW 5.8 SAND 1.267 3.1 52.16 1.5 25.38 0.6 10.17<br />

Steam_dryer Biomass (dry)<br />

34 9.10 MW 522 173.1 MW 2 0.00 MW Syngas-cool1 0.19 0.39 452 52.16 MW 433 25.38 MW 442 10.17 MW<br />

0.31 35 4<br />

62.1 35.17 MW<br />

SAND 1<br />

3.48 16.9<br />

Steam dryer 3.96<br />

0.31 34 2<br />

56.1 38.20 MW<br />

4 0.00 MW<br />

0.047 9.10 MW<br />

Split-steam2<br />

2 168.3 MW<br />

25.3 4.80 MW<br />

Cooler-GG-H2<br />

0.12 12.89 MW<br />

Cooler-GG-H2<br />

3.6<br />

0.12 0.25<br />

25.30 523 2<br />

9.2 171.6 MW<br />

0.29<br />

26.82<br />

36.2 20.51<br />

561 20.51 MW<br />

2 0.00 MW<br />

0.186 20.51 MW<br />

0 541 4<br />

0.0 0.00 MW<br />

-0 0.00 MW<br />

0.00 MW<br />

Water<br />

Reformat<br />

9.669 462 2 9.669<br />

5.2 88.77 MW<br />

88.77 84.95 MW<br />

9.22 461 2<br />

0.09<br />

5.2 87.59 MW<br />

87.59 84.95 MW<br />

2 50.68 MW<br />

5.501 1.47 MW<br />

Mixer-NG_ref<br />

2 24.67 MW<br />

2.678 0.71 MW<br />

Mixer-NG_ref<br />

2 9.60 MW<br />

1.041 0.57 MW<br />

Mixer-NG_ref<br />

35.17 0.00 MW 38.2 0.00 MW Cooler-GG-H2 22.7 14.09 171.7 168.3 MW Syngas-cool1 14.4 262 Syngas-cool1<br />

3.82 MW 2.64 MW<br />

35.17 MW 12.6 145.2 38.20 MW SAND 19 571 14.09 MW 3.36 MW Comp-GG-H2-2 532 262.0 MW<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 145.2 MW Steam_dryer<br />

4 0.00 MW Comp-GG-H2-2 2 253.2 MW<br />

2 145.2 MW<br />

3.886 0.00 MW<br />

Steam<br />

0.12 14.09 MW<br />

Cooler-GG-H2<br />

4.3 MW<br />

SAND<br />

13<br />

4.28<br />

36.49 8.84 MW<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

4.6 2.629<br />

41 2.63 MW<br />

2 0.00 MW<br />

Steam<br />

0.41<br />

38.57<br />

14.4 267.5<br />

533 267.4 MW<br />

4 253.2 MW<br />

Syngas 38.57 14.29 MW<br />

5.9 MW<br />

SAND<br />

15<br />

5.869<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

86<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

111<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.26<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

96 MW<br />

145 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

13 MW<br />

SAND 79 0.024 2.63 MW 53.5 33.11 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 461 600 1.39<br />

DH-condenser<br />

0.63 10.8 0.42 811 12<br />

DH condenser0.42<br />

78.5 2.74 MW<br />

581 33.11 MW<br />

2 0.00 MW<br />

0.28 33.11 MW Steam<br />

0.23 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

4<br />

0<br />

0<br />

6<br />

1<br />

0.00<br />

0.01<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

80%<br />

4.6 0.183 2.743 0.00 MW DH-cooler DH-cooler<br />

42.5 26.35 MW Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 0.18 MW 2.74 MW SAND 25 26.35 0.00 MW Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 24 32 0.07<br />

4 0.00 MW<br />

0 0.18 MW<br />

DH-condenser<br />

DH-condenser<br />

430.0 15.02<br />

811 15.02 MW<br />

0.010 811 6<br />

50.8 1.78 MW<br />

1.776 0.00 MW<br />

1.47 8.5 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 50.8 0.42 MW<br />

0.416 0.00 MW 1.0 0.639<br />

0.219 562 2<br />

42.5 24.10 MW<br />

26.35 MW<br />

Syngas-cool2 6.8<br />

0.23 0.35<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4<br />

3<br />

0<br />

6<br />

4<br />

0<br />

0.01<br />

0.01<br />

0.00 Energy<br />

Water<br />

2 0.00 MW<br />

0.49 15.02 MW<br />

DH<br />

DH water<br />

1.78 MW<br />

DH-cooler<br />

53.5 30.28<br />

35 30.28 MW<br />

6 0.00 MW<br />

0.42 MW<br />

DH-cooler<br />

571 0.64 MW<br />

10 0.00 MW<br />

0.01 0.64 MW<br />

Cond-steam-1<br />

24.1 0.00 MW<br />

24.10 MW<br />

Syngas-cool2<br />

13.9 264.9<br />

534 264.8 MW<br />

2 253.1 MW<br />

0 551 4<br />

0.6 0.05 MW<br />

0.049 0.00 MW<br />

0.05 MW<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

96<br />

2<br />

3<br />

6<br />

0<br />

125<br />

2<br />

4<br />

7<br />

0<br />

0.29<br />

0.00<br />

0.01<br />

0.02<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

92 MW<br />

121 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

11 MW<br />

Energy content in DH water = 72 MW 0.28 30.28 MW<br />

DH-cooler<br />

Steam<br />

38.57 11.72 MW<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

23<br />

0<br />

30<br />

0.00<br />

0.07<br />

* for electrolyser<br />

Urenhed:<br />

0.023 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.98<br />

Water /<br />

671<br />

1.0 0.566<br />

0.57 MW<br />

0.30<br />

Comp-syngas2<br />

40.01 4.1 MW 17<br />

SAND 4.068<br />

13.9 268.6<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

19<br />

2<br />

26<br />

2<br />

25<br />

3<br />

34<br />

0.00<br />

0.06<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

70% (with total power)<br />

99%<br />

Methanol<br />

2 0.00 MW 535 268.6 MW Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.01 0.57 MW 2 253.1 MW Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 24 0.06<br />

Cond-steam-1<br />

40.01 15.49 MW Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 327 424 0.98 Gas composition at specific nodes (mol-%)<br />

39.74 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

231.1 MW<br />

230.8 MW 601<br />

59.3 519.3<br />

519.2 MW<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

4<br />

3<br />

5<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.67<br />

4 0.31 MW 2 481.9 MW Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

148 38.4 860.6 Steam<br />

0 682 4<br />

82 37.34 MW<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

270<br />

0<br />

351<br />

0<br />

0.81<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 60.63 42.70 24.36 25.92 27.89 30.00<br />

0.00 0.00 0.12 1.00 1.32 1.40 1.51 1.62<br />

791 860.6 MW 17.1 17.55 MW Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 16 0.04 4 CO 42.73 0.00 22.49 29.16 14.45 3.27 3.47 3.74 4.02<br />

792 859.4 MW 17.55 0.00 MW DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 5.24 0.00 5.09 4.47 35.29 46.38 49.35 53.11 57.12<br />

Heatsourc-DH 4 1.15 MW Cond-steam-1 17.55 MW Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 16 20 0.05 7 H2O-G 5.21 0.00 14.17 5.12 2.13 2.93 1.70 0.62 0.02<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.047 811 10 39.2<br />

234.0 8.18 MW 0.047 2.68<br />

0 806 2<br />

DH water<br />

234.0 1.92 MW<br />

0 683 2<br />

0.1 0.11 MW<br />

0.2<br />

0.01 0.02<br />

0 684 4<br />

0.1 0.02 MW<br />

Water<br />

0 681 2<br />

17.1 3.77 MW<br />

31.8 Meoh-convert<br />

Methanol 1.56 SAND<br />

converter 83<br />

311<br />

Total several DISTILLATION_STAGE's 1423 1826 4.28 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.44<br />

0.06<br />

0.00<br />

3.62 4.77 5.08<br />

0.48 0.63 0.67<br />

0.33 16.33 12.39<br />

5.47<br />

0.73<br />

6.94<br />

5.88<br />

0.78<br />

0.56<br />

8.175 0.00 MW<br />

8.18 MW<br />

1.916 0.00 MW<br />

1.92 MW<br />

0.115 0.00 MW<br />

0.11 MW<br />

0.025 0.00 MW<br />

0.02 MW<br />

3.774 0.00 MW<br />

3.77 MW 602<br />

59.3 503.9<br />

503.9 MW 607<br />

45.4 251<br />

250.9 MW Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

108.3<br />

Heatsourc-DH 148 38.4 869.6 Heatsourc-DH<br />

28.1 629.5 783 869.5 MW<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2 475.1 MW<br />

83 28.81 MW<br />

2 229.1 MW<br />

42 21.87 MW<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 629.5 MW 784 859.4 MW 17.0 17.43 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 628.6 MW 4 10.09 MW 685 17.43 MW 9.5 Preheater-sy NG 93 kr/GJ Methanol 39.7 kr/s 172 kr/GJ 194 kr/GJ 3.86 kr/kg 3.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 0.84 MW Dis_stage_17 2 0.00 MW 42 606 2 42 0.87 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 410 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 17.43 MW Comp-recirc 42 45.4 248.0 MW 55.7 431 DH water 0 kr/ton Syngas 2.2 kr/s 167 kr/GJ - kr/GJ 0.91 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.02 248.1 229.1 MW 640 431.0 MW 78 11.42 3.6 69.19 Water 32 kr/ton DH water 0.5 kr/s 32 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.176 18.99 MW 2 406.0 MW 621 69.19 MW CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

155 2.31<br />

Feed<br />

17.0<br />

3.749<br />

3.75 MW<br />

0.00 MW<br />

3.75 MW<br />

Preheater-sy 71.13 24.99 MW<br />

Condenser-1<br />

6.6<br />

631 68.76 MW<br />

4 0.43 MW<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.21 0.53 If methanol and DH share the plant costs<br />

Condenser-1 84.1 13.67 621 631 4 (methanol and DH are the only products from the plant) -<br />

7 705 706<br />

19 49.25 MW<br />

2 1.21 705 706<br />

3 8.54 MW<br />

6<br />

SAND 31 51.6 346.2<br />

643 346.2 MW<br />

2 323.6 MW<br />

4 82.34 MW<br />

82 81.99 MW<br />

0.35 MW<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 31.6 kr/s 137 kr/Gjex Electrical power<br />

Node nr<br />

Total exergy flow<br />

Transferred heat [MW]<br />

49 36.77 MW 9 6.38 MW Condenser 57.46 22.55 MW Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Chemical exergy flow<br />

12.48 MW 2.16 MW SAND 33 Condenser<br />

Physical exergy flow<br />

Dis_stage_1 0.01 811 8<br />

59.9 2.09 MW<br />

Reboil-meoh2 10.0<br />

0.01 1.17<br />

0 805 2<br />

DH water<br />

59.9 0.49 MW Mechanical power<br />

10<br />

6.915 19.8 40.63 2.091 0.00 MW 0.49 0.00 MW 1.2 3.2 6.628<br />

707 40.63 MW Cond-steam-2 2.09 MW 41.48 605 2 0.49 MW 699 6.63 MW 0.25<br />

708 39.11 MW SAND 393 Condenser<br />

45.4 247.9 MW 2.4 13.05 Condenser<br />

700 6.38 MW<br />

4 1.52 MW 247.9 229.1 MW 611 13.05 MW 91.4 13.8 3.9 82.48 2 0.25 MW<br />

Water /<br />

Methanol<br />

Methanol molar-% = 5.16<br />

0 693 694<br />

1 2.42 MW<br />

2 2.33 MW<br />

Dis_stage_1<br />

4 5.716 695 696<br />

15 31.58 MW<br />

32 30.39 MW<br />

2 31.6<br />

5.754 4.56<br />

5.754 705 706<br />

15 40.71 MW<br />

41 30.39 MW<br />

4<br />

38.88 625 635<br />

11 233.7 MW<br />

2<br />

Methanol molar-% = 84.5<br />

18.83 MW<br />

Comp-recirc<br />

Methanol/<br />

4 12.06 MW<br />

2.183 0.99 MW<br />

Syngas Split-syngas<br />

621 82.48 MW<br />

631 82.38 MW<br />

4 0.10 MW<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

0.08 MW<br />

set-x-2<br />

1.19 MW<br />

Reboil-meoh1<br />

10.31 MW<br />

Reboil-meoh1<br />

234 233.1 MW<br />

0.62 MW<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water<br />

Exergy destruction [MW]


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

12 2<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

5 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 13 2 3Exergy destruction cost flow - based on specific cost of input 3.4 -0 1.9 3.399<br />

4H 14 2 4Exergy destruction cost flow - based on specific cost of output 1 0.11 kr/s Electrolyser 423 0.07 kr/s 8.55 412 2<br />

5EX<br />

6 EX_CH * Number of decimals<br />

5 Component cost flow<br />

Electrolyser<br />

2<br />

0.107<br />

- kr/MJ<br />

0.03 kr/kg<br />

56.3 MW<br />

SAND<br />

201<br />

56.34<br />

2<br />

0.07<br />

0.02 kr/MJ<br />

0.04 kr/kg<br />

1.9<br />

97.97<br />

8.55 kr/s<br />

0.09 kr/MJ<br />

NG<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

4.52 kr/kg<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.381 803 4<br />

78.5 0.38 kr/s<br />

Electrolyser<br />

18.62<br />

2.4<br />

0.26<br />

0 802 2<br />

78.5 0.00 kr/s DH water<br />

0.29<br />

Steam reformer<br />

9.22<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.927 0.41 kr/MJ 3.0 0.393 0.4 44.05 0.643 0.00 kr/MJ 1.8 1.339<br />

12 C<br />

13 C/EX<br />

SAND 1E-05 0.00 kr/kg<br />

Electro-cool<br />

3<br />

4<br />

0.16 kr/s<br />

0.41 kr/MJ<br />

2 18.08 kr/s<br />

4 0.41 kr/MJ<br />

0.00 kr/kg<br />

Electro-cool<br />

Comp-O2-2<br />

0.6 MW 3<br />

Reformat<br />

5.6 95.09<br />

403<br />

2<br />

0.31 kr/s<br />

0.23 kr/MJ<br />

0.0<br />

0<br />

Ash<br />

0.3 0.252<br />

83 0.00 kr/s<br />

4 0.00 kr/MJ<br />

14 C/M<br />

O2 0.066 7 4 0.066<br />

0.00<br />

1.2 0.07 kr/s<br />

0.16 0.41 kr/MJ<br />

0.05 kr/kg<br />

Comp-O2-1<br />

0.066 5 2<br />

1.2 0.07 kr/s<br />

0.16 0.41 kr/MJ<br />

0.05 kr/kg<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.161 0.05 kr/kg<br />

Electrolyser<br />

0.0 9E-36<br />

6 0.00 kr/s<br />

4 0.41 kr/MJ<br />

18.08 48.11 kr/kg<br />

Electrolyser<br />

H2 O2 0.095 401 2<br />

1.8 0.10 kr/s<br />

0.233 0.41 kr/MJ<br />

0.05 kr/kg<br />

SAND 0.604<br />

0.309 402 4<br />

0.01<br />

0.309 1.8 0.31 kr/s<br />

0.799 0.39 kr/MJ<br />

0.18 kr/kg<br />

431 9.22 kr/s<br />

4 0.10 kr/MJ<br />

9.22 1.66 kr/kg<br />

NG_reformer<br />

0.31 0.18 kr/kg<br />

NG_reformer<br />

0.6 10.73<br />

441 1.04 kr/s<br />

2 0.10 kr/MJ<br />

1.041 1.66 kr/kg<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 0.00 kr/kg<br />

Gasifier<br />

0.0<br />

0.009<br />

1.3<br />

33 2<br />

0.01 kr/s<br />

Steam<br />

32<br />

8.4 10.81<br />

0.06 kr/s<br />

801<br />

2<br />

6.8 0.056<br />

0.00 kr/s<br />

0.00 kr/MJ<br />

15<br />

4<br />

0.0 0.016<br />

0.00 kr/s<br />

0.00 kr/MJ Heatsink-H2<br />

4E-36 0.05 kr/kg<br />

Split-O2-2<br />

O2 0.00<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

1.6 27.62<br />

2.68 kr/s<br />

0.10 kr/MJ<br />

0.8<br />

0.31 0.00 Heatex-O2<br />

SAND 11<br />

1.707 0.01 kr/MJ Heatex-GG-st 4 0.01 kr/MJ 0 0.00 kr/kg 0 0.00 kr/kg 0.0 MW 322 18.08 0.0 MW 9 Comp-CO2 2.678 1.66 kr/kg<br />

0.01 kr/kg SAND 7 0.06 0.01 kr/kg Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 6E-05 0.0 MW 7<br />

Heatex-NG<br />

1.39<br />

5<br />

Gasifier<br />

6.6 144.7<br />

5<br />

8.9<br />

131.6<br />

Gasifier<br />

10 GG2<br />

0.07 0.00<br />

5.42 kr/s 0.9<br />

0.04 kr/MJ<br />

0.61 kr/kg<br />

5<br />

8.9<br />

130.9<br />

11 2<br />

5.42 kr/s<br />

0.04 kr/MJ<br />

0.61 kr/kg<br />

Heatex-GG-st<br />

0.06 0.01 5<br />

10.8 8.9<br />

124.8<br />

12 2 0.00 0.00<br />

5.42 kr/s 1.1<br />

0.04 kr/MJ<br />

0.61 kr/kg Heatex-GG-DH<br />

5<br />

8.9<br />

124.6<br />

13 2<br />

5.42 kr/s<br />

0.04 kr/MJ<br />

0.61 kr/kg<br />

0.00<br />

Gas cleaner 5.4<br />

8.9 124.5<br />

14 5.42 kr/s<br />

0.00<br />

Heatsink<br />

18.08<br />

18.08 511 2<br />

0.4 18.08 kr/s<br />

44.05 0.41 kr/MJ<br />

48.11 kr/kg<br />

Heatsink-H2<br />

9.671 503 4<br />

5.2 9.67 kr/s<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.00<br />

0.0 0.00 kr/s 0.0 0.00 kr/s<br />

CO2<br />

8.545 411 2<br />

NG1.9<br />

8.55 kr/s<br />

95.97 0.09 kr/MJ<br />

4.51 kr/kg<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

3.3 56.74<br />

5.50 kr/s<br />

3.9<br />

13 8.55 0.00<br />

0 434 Water 2<br />

0.1 0.00 kr/s<br />

82 3.96 kr/s Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 0.04 kr/MJ 88.77 0.11 kr/MJ 0.007 0.30 kr/MJ 0.005 0.25 kr/MJ 2 0.10 kr/MJ 0.007 0.00 kr/MJ<br />

2 0.03 kr/MJ 0.07 9 2 Heatex-GG-O2 8.4 4.755 0 21 4 5.4 0.61 kr/kg 1.86 kr/kg 0.20 kr/kg 0.11 kr/kg 5.501 1.66 kr/kg 0.00 kr/kg<br />

3.96 0.60 kr/kg 1.2 0.07 kr/s SAND 5 31 0.04 kr/s 0.0 0.00 kr/s Cleaner 18.08 512 2 26.82 524 4 14.4 264.3 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

0.653 0.10 kr/MJ<br />

0.05 kr/kg<br />

Gasifier<br />

2 0.01 kr/MJ<br />

0.043 0.01 kr/kg<br />

Heatex-GG-st<br />

-0 0.00 kr/MJ 9.2 168.4<br />

0.00 kr/kg 521 23.50 kr/s<br />

Heatex-GG-DH 2 0.14 kr/MJ<br />

0.4 18.08 kr/s<br />

44.05 0.41 kr/MJ<br />

48.11 kr/kg<br />

9.2 26.82 kr/s<br />

175.7 0.15 kr/MJ<br />

2.91 kr/kg<br />

531 36.49 kr/s<br />

2 0.14 kr/MJ<br />

36.49 2.53 kr/kg<br />

0.061 422 2<br />

Water 1.9 0.06 kr/s<br />

0.006 10.14 kr/MJ<br />

7.8 Heatex-H2O<br />

0.07 0.01 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

6.8 0.237<br />

0.00 kr/s<br />

23.50 2.55 kr/kg<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.1 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

36.2 22.42<br />

Syngas-cool1<br />

0.03 kr/kg<br />

Heatex-H2O<br />

0.2<br />

0.013<br />

0.00 kr/s<br />

0.00 kr/MJ<br />

4 0.01 kr/MJ 0.07<br />

SAND 5.071 571 0.19 kr/s Syngas-cool1 Comp-NG_ref 0.00 kr/kg<br />

0.00 0.00 kr/kg 25.3 22.7 12.89 6 0.01 kr/MJ SAND 21 1.3 MW 5 3.1 Heatex-H2O<br />

1.5 25.38 0.6<br />

7.1 9.101 Heatex-GG-DH<br />

9.2 173.1 563 0.12 kr/s 0.19 0.01 kr/kg 5.8 SAND 1.267 3.1 52.16 1.5 25.38 0.6 10.17<br />

Steam_dryer Biomass (dry)<br />

34 0.05 kr/s 522 25.30 kr/s 2 0.01 kr/MJ Syngas-cool1 0.19 0.01 452 5.50 kr/s 433 2.68 kr/s 442 1.04 kr/s<br />

0.31<br />

62.1<br />

35 4<br />

0.31 kr/s<br />

SAND 1<br />

0.07 16.9<br />

Steam dryer 3.96<br />

0.31<br />

56.1<br />

34 2<br />

0.31 kr/s<br />

4 0.01 kr/MJ<br />

0.047 0.01 kr/kg<br />

Split-steam2<br />

2 0.15 kr/MJ 0.12 0.01 kr/kg<br />

25.3 2.74 kr/kg Cooler-GG-H2<br />

Cooler-GG-H2 3.6<br />

0.12 0.00<br />

25.30 523 2<br />

9.2 25.30 kr/s<br />

0.06<br />

26.82<br />

561<br />

2<br />

0.186<br />

36.2 20.51<br />

0.19 kr/s<br />

0.01 kr/MJ<br />

0.01 kr/kg<br />

0 541 4<br />

0.0 0.00 kr/s<br />

-0 0.00 kr/MJ<br />

0.00 kr/kg<br />

Water<br />

Reformat<br />

9.669 462 2 9.669<br />

5.2 9.67 kr/s<br />

88.77 0.11 kr/MJ<br />

9.22 461 2<br />

0.02<br />

5.2 9.22 kr/s<br />

87.59 0.11 kr/MJ<br />

2 0.11 kr/MJ<br />

5.501 1.79 kr/kg<br />

Mixer-NG_ref<br />

2 0.11 kr/MJ<br />

2.678 1.82 kr/kg<br />

Mixer-NG_ref<br />

2 0.10 kr/MJ<br />

1.041 1.66 kr/kg<br />

Mixer-NG_ref<br />

35.17 0.01 kr/MJ 38.2 0.01 kr/MJ Cooler-GG-H2 22.7 14.09 171.7 0.15 kr/MJ Syngas-cool1 14.4 262 Syngas-cool1<br />

1.87 kr/kg 1.78 kr/kg<br />

0.00 kr/kg 12.6 145.2 0.01 kr/kg SAND 19 571 0.12 kr/s 2.74 kr/kg Comp-GG-H2-2 532 36.49 kr/s<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 3.89 kr/s Steam_dryer<br />

4 0.01 kr/MJ Comp-GG-H2-2 2 0.14 kr/MJ<br />

2<br />

3.886<br />

0.03 kr/MJ<br />

0.31 kr/kg<br />

Steam<br />

0.12 0.01 kr/kg<br />

Cooler-GG-H2<br />

4.3 MW<br />

SAND<br />

13<br />

4.28<br />

36.49 2.53 kr/kg<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

4.6 2.629<br />

41 0.02 kr/s<br />

2 0.01 kr/MJ<br />

Steam<br />

0.08<br />

38.57<br />

14.4 267.5<br />

533 38.57 kr/s<br />

4 0.14 kr/MJ<br />

Syngas 38.57 2.67 kr/kg<br />

5.9 MW<br />

SAND<br />

15<br />

5.869<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

86<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

111<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.26<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

96 MW<br />

145 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

13 MW<br />

SAND 79 0.024 0.01 kr/kg 53.5 33.11 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 461 600 1.39<br />

DH-condenser<br />

0.01 10.8 0.42 811 12<br />

DH condenser0.42<br />

78.5 0.42 kr/s<br />

581<br />

2<br />

0.28<br />

0.28 kr/s<br />

0.01 kr/MJ<br />

0.01 kr/kg Steam<br />

0.23 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

4<br />

0<br />

0<br />

6<br />

1<br />

0.00<br />

0.01<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

80%<br />

4.6 0.183 2.743 0.15 kr/MJ DH-cooler DH-cooler<br />

42.5 0.23 kr/s Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 0.00 kr/s 0.01 kr/kg SAND 25 26.35 0.01 kr/MJ Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 24 32 0.07<br />

4 0.00 kr/MJ<br />

0 0.00 kr/kg<br />

DH-condenser<br />

DH-condenser<br />

430.0 15.02<br />

811 0.49 kr/s<br />

0.010 811 6<br />

50.8 0.01 kr/s<br />

1.776 0.01 kr/MJ<br />

0.01 8.5 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 50.8 0.00 kr/s<br />

0.416 0.00 kr/MJ 1.0 0.639<br />

0.219 562 2<br />

42.5 0.22 kr/s<br />

0.01 kr/kg<br />

Syngas-cool2 6.8<br />

0.23 0.01<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4<br />

3<br />

0<br />

6<br />

4<br />

0<br />

0.01<br />

0.01<br />

0.00 Energy<br />

Water<br />

2 0.03 kr/MJ<br />

0.49 0.00 kr/kg<br />

DH<br />

DH water<br />

0.00 kr/kg<br />

DH-cooler<br />

35<br />

6<br />

53.5 30.28<br />

0.28 kr/s<br />

0.01 kr/MJ<br />

0.00 kr/kg<br />

DH-cooler<br />

571 0.01 kr/s<br />

10 0.01 kr/MJ<br />

0.01 0.01 kr/kg<br />

Cond-steam-1<br />

24.1 0.01 kr/MJ<br />

0.01 kr/kg<br />

Syngas-cool2<br />

13.9 264.9<br />

534 38.57 kr/s<br />

2 0.15 kr/MJ<br />

0 551 4<br />

0.6 0.00 kr/s<br />

0.049 0.00 kr/MJ<br />

0.00 kr/kg<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

96<br />

2<br />

3<br />

6<br />

0<br />

125<br />

2<br />

4<br />

7<br />

0<br />

0.29<br />

0.00<br />

0.01<br />

0.02<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

92 MW<br />

121 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

11 MW<br />

Energy content in DH water = 72 MW 0.28 0.01 kr/kg<br />

DH-cooler<br />

Steam<br />

38.57 2.78 kr/kg<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

23<br />

0<br />

30<br />

0.00<br />

0.07<br />

* for electrolyser<br />

Urenhed:<br />

0.023 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.98<br />

Water /<br />

671<br />

1.0 0.566<br />

0.01 kr/s<br />

0.06<br />

Comp-syngas2<br />

40.01 4.1 MW 17<br />

SAND 4.068<br />

13.9 268.6<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

19<br />

2<br />

26<br />

2<br />

25<br />

3<br />

34<br />

0.00<br />

0.06<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

70% (with total power)<br />

99%<br />

Methanol<br />

2 0.01 kr/MJ 535 40.01 kr/s Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.01 0.01 kr/kg 2 0.15 kr/MJ Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 24 0.06<br />

Cond-steam-1<br />

40.01 2.88 kr/kg Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 327 424 0.98 Gas composition at specific nodes (mol-%)<br />

39.74 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

39.74 kr/s<br />

0.17 kr/MJ 601<br />

59.3 519.3<br />

81.56 kr/s<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

4<br />

3<br />

5<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.67<br />

4 3.86 kr/kg 2 0.16 kr/MJ Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

148 38.4 860.6 Steam<br />

0 682 4<br />

82 1.38 kr/kg<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

270<br />

0<br />

351<br />

0<br />

0.81<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 60.63 42.70 24.36 25.92 27.89 30.00<br />

0.00 0.00 0.12 1.00 1.32 1.40 1.51 1.62<br />

791 147.9 kr/s 17.1 0.00 kr/s Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 16 0.04 4 CO 42.73 0.00 22.49 29.16 14.45 3.27 3.47 3.74 4.02<br />

792 0.17 kr/MJ 17.55 0.00 kr/MJ DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 5.24 0.00 5.09 4.47 35.29 46.38 49.35 53.11 57.12<br />

Heatsourc-DH 4 3.86 kr/kg Cond-steam-1 0.00 kr/kg Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 16 20 0.05 7 H2O-G 5.21 0.00 14.17 5.12 2.13 2.93 1.70 0.62 0.02<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.047 811 10 39.2<br />

234.0 0.05 kr/s 0.047 0.05<br />

0 806 2<br />

DH water<br />

234.0 0.00 kr/s<br />

0 683 2<br />

0.1 0.00 kr/s<br />

0.2<br />

0.01 0.00<br />

0 684 4<br />

0.1 0.00 kr/s<br />

Water<br />

0 681 2<br />

17.1 0.00 kr/s<br />

31.8 Meoh-convert<br />

Methanol 0.98 SAND<br />

converter 83<br />

311<br />

Total several DISTILLATION_STAGE's 1423 1826 4.28 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.44<br />

0.06<br />

0.00<br />

3.62 4.77 5.08<br />

0.48 0.63 0.67<br />

0.33 16.33 12.39<br />

5.47<br />

0.73<br />

6.94<br />

5.88<br />

0.78<br />

0.56<br />

8.175 0.01 kr/MJ<br />

0.00 kr/kg<br />

1.916 0.00 kr/MJ<br />

0.00 kr/kg<br />

0.115 0.00 kr/MJ<br />

0.00 kr/kg<br />

0.025 0.00 kr/MJ<br />

0.00 kr/kg<br />

3.774 0.00 kr/MJ<br />

0.00 kr/kg 602<br />

59.3 503.9<br />

82.55 kr/s 607<br />

45.4 251<br />

41.55 kr/s Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

108.3<br />

Heatsourc-DH 148 38.4 869.6 Heatsourc-DH<br />

28.1 629.5 783 147.9 kr/s<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

83<br />

0.16 kr/MJ<br />

1.39 kr/kg<br />

2<br />

42<br />

0.17 kr/MJ<br />

0.92 kr/kg<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 108.2 kr/s 784 0.17 kr/MJ 17.0 17.43 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 0.17 kr/MJ 4 3.86 kr/kg 685 0.00 kr/s 9.5 Preheater-sy NG 93 kr/GJ Methanol 39.7 kr/s 172 kr/GJ 194 kr/GJ 3.86 kr/kg 3.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 3.86 kr/kg Dis_stage_17 2 0.00 kr/MJ 42 606 2 42 0.01 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 410 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 0.00 kr/kg Comp-recirc 42 45.4 41.54 kr/s 55.7 431 DH water 0 kr/ton Syngas 2.2 kr/s 167 kr/GJ - kr/GJ 0.91 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.00 248.1 0.17 kr/MJ 640 71.13 kr/s 78 11.42 3.6 69.19 Water 32 kr/ton DH water 0.5 kr/s 32 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.176 0.92 kr/kg 2 0.17 kr/MJ 621 11.42 kr/s CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

155 0.81<br />

Feed<br />

17.0<br />

3.749<br />

0.00 kr/s<br />

0.00 kr/MJ<br />

0.00 kr/kg<br />

Preheater-sy 71.13 1.28 kr/kg<br />

Condenser-1<br />

6.6<br />

631 0.17 kr/MJ<br />

4 3.21 kr/kg<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.21 0.01 If methanol and DH share the plant costs<br />

Condenser-1 84.1 13.67 621 631 4 (methanol and DH are the only products from the plant) -<br />

7 705 706<br />

19 6.96 kr/s<br />

2 1.21 705 706<br />

3 1.21 kr/s<br />

6<br />

SAND 31 51.6 346.2<br />

643 57.46 kr/s<br />

2 0.17 kr/MJ<br />

4 13.67 kr/s<br />

82 0.17 kr/MJ<br />

3.38 kr/kg<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 31.6 kr/s 137 kr/Gjex Electrical power<br />

Node nr<br />

Cost flow<br />

Transferred heat [MW]<br />

49 0.14 kr/MJ 9 0.14 kr/MJ Condenser 57.46 1.11 kr/kg Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Specific exergy cost<br />

0.37 kr/kg 0.37 kr/kg SAND 33 Condenser<br />

Specific mass cost<br />

Dis_stage_1 0.01 811 8<br />

59.9 0.01 kr/s<br />

Reboil-meoh2 10.0<br />

0.01 0.01<br />

0 805 2<br />

DH water<br />

59.9 0.00 kr/s Mechanical power<br />

10<br />

6.915 19.8 40.63 2.091 0.01 kr/MJ 0.49 0.00 kr/MJ 1.2 3.2 6.628<br />

707 6.92 kr/s Cond-steam-2 0.00 kr/kg 41.48 605 2 0.00 kr/kg 699 1.20 kr/s 0.25<br />

708 0.17 kr/MJ SAND 393 Condenser<br />

45.4 41.48 kr/s 2.4 13.05 Condenser<br />

700 0.18 kr/MJ<br />

4 0.35 kr/kg 247.9 0.17 kr/MJ 611 2.18 kr/s 91.4 13.8 3.9 82.48 2 0.37 kr/kg<br />

Water /<br />

Methanol<br />

Methanol molar-% = 5.16<br />

0 693 694<br />

1 0.00 kr/s<br />

2 0.00 kr/MJ<br />

Dis_stage_1<br />

4 5.716 695 696<br />

15 5.72 kr/s<br />

32 0.18 kr/MJ<br />

2 31.6<br />

5.754 0.04<br />

5.754 705 706<br />

15 5.75 kr/s<br />

41 0.14 kr/MJ<br />

4<br />

38.88 625 635<br />

11 38.88 kr/s<br />

2<br />

Methanol molar-% = 84.5<br />

0.91 kr/kg<br />

Comp-recirc<br />

Methanol/<br />

4 0.17 kr/MJ<br />

2.183 0.91 kr/kg<br />

Syngas Split-syngas<br />

621 13.80 kr/s<br />

631 0.17 kr/MJ<br />

4 3.57 kr/kg<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Component cost flow [kr/s]<br />

0.00 kr/kg<br />

set-x-2<br />

0.37 kr/kg<br />

Reboil-meoh1<br />

0.37 kr/kg<br />

Reboil-meoh1<br />

234 0.17 kr/MJ<br />

3.39 kr/kg<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


24. Flowsheets for <strong>metanolanlæg</strong> – for de 6<br />

forskellige anlægskonfigurationer<br />

Flowsheets sorteret efter anlægsnummer - anlæg 1 først.


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 3.4 -0 1.9 3.399<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 8.55 412 2<br />

5EX 5 Component cost flow 2 3.4 kg/s 56.3 MW 201 2 1.9 kg/s 1.9 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.107 15 C SAND 56.34 0.07 850 C 97.97 1.9 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.381 803 4<br />

78.5 1.0 bar<br />

Electrolyser<br />

18.62<br />

2.4<br />

0.80<br />

0 802 2<br />

78.5 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

9.22<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.927 78.5 kg/s 3.0 0.393 0.4 44.05 0.643 78.5 kg/s 1.8 1.339<br />

12 C<br />

13 C/EX<br />

SAND 1E-05 57 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

3.0 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.4 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.6 MW 3<br />

Reformat<br />

5.6 95.09<br />

403<br />

2<br />

10.0 bar<br />

1.8 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.3 0.252<br />

83 1.0 bar<br />

4 0.3 kg/s<br />

14 C/M<br />

O2 0.066 7 4 0.066<br />

0.90<br />

1.2 1.0 bar<br />

0.16 1.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.066 5 2<br />

1.2 1.0 bar<br />

0.16 1.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.161 90 C<br />

Electrolyser<br />

0.0 9E-36<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

18.08 90 C<br />

Electrolyser<br />

H2 O2 0.095 401 2<br />

1.8 1.0 bar<br />

0.233 1.8 kg/s<br />

90 C<br />

SAND 0.604<br />

0.309 402 4<br />

0.94<br />

0.309 1.8 10.0 bar<br />

0.799 1.8 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 5.6 kg/s<br />

9.22 950 C<br />

NG_reformer<br />

0.31 850 C<br />

NG_reformer<br />

0.6 10.73<br />

441 10.0 bar<br />

2 0.6 kg/s<br />

1.041 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.009<br />

1.3<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

8.4 10.81<br />

1.0 bar<br />

801<br />

2<br />

6.8 0.056<br />

1.0 bar<br />

6.8 kg/s<br />

15<br />

4<br />

0.0 0.016<br />

1.0 bar<br />

0.0 kg/s Heatsink-H2<br />

4E-36 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

1.6 27.62<br />

10.0 bar<br />

1.6 kg/s<br />

0.8<br />

0.31 0.97 Heatex-O2<br />

SAND 11<br />

1.707 1.3 kg/s Heatex-GG-st 4 8.4 kg/s 0 50 C 0 60 C 0.0 MW 322 18.08 0.0 MW 9 Comp-CO2 2.678 950 C<br />

730 C SAND 7 0.06 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 6E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

5<br />

Gasifier<br />

6.6 144.7<br />

5<br />

8.9<br />

131.6<br />

Gasifier<br />

10 GG2<br />

0.07 0.78<br />

1.0 bar 0.9<br />

8.9 kg/s<br />

800 C<br />

5<br />

8.9<br />

130.9<br />

11 2<br />

1.0 bar<br />

8.9 kg/s<br />

752 C<br />

Heatex-GG-st<br />

0.06 0.99 5<br />

10.8 8.9<br />

124.8<br />

12 2 0.00 0.74<br />

1.0 bar 1.1<br />

8.9 kg/s<br />

130 C Heatex-GG-DH<br />

5<br />

8.9<br />

124.6<br />

13 2<br />

1.0 bar<br />

8.9 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 5.4<br />

8.9 124.5<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

18.08<br />

18.08 511 2<br />

0.4 1.0 bar<br />

44.05 0.4 kg/s<br />

90 C<br />

Heatsink-H2<br />

9.671 503 4<br />

5.2 19.8 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 19.8 bar 0.0 1.0 bar<br />

CO2<br />

8.545 411 2<br />

NG1.9<br />

10.0 bar<br />

95.97 1.9 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

3.3 56.74<br />

10.0 bar<br />

3.9<br />

13 8.55 0.89<br />

0 434 Water 2<br />

0.1 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 8.9 kg/s 88.77 5.2 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 3.3 kg/s 0.007 0.1 kg/s<br />

2 6.6 kg/s 0.07 9 2 Heatex-GG-O2 8.4 4.755 0 21 4 5.4 60 C 250 C 279 C 15 C 5.501 950 C 107 C<br />

3.96 120 C 1.2 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 18.08 512 2 26.82 524 4 14.4 264.3 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

0.653 1.2 kg/s<br />

790 C<br />

Gasifier<br />

2 8.4 kg/s<br />

0.043 120 C<br />

Heatex-GG-st<br />

-0 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

9.2 168.4<br />

1.0 bar<br />

9.2 kg/s<br />

0.4<br />

44.05<br />

1.0 bar<br />

0.4 kg/s<br />

90 C<br />

9.2<br />

175.7<br />

19.8 bar<br />

9.2 kg/s<br />

320 C<br />

531<br />

2<br />

36.49<br />

19.8 bar<br />

14.4 kg/s<br />

294 C<br />

0.061 422 2<br />

Water 1.9 10.0 bar<br />

0.006 1.9 kg/s<br />

7.8 Heatex-H2O<br />

0.07 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

6.8 0.237<br />

1.0 bar<br />

23.50 68 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.1 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

36.2 22.42<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.2<br />

0.013<br />

10.0 bar<br />

0.2 kg/s<br />

4 6.8 kg/s 0.93<br />

SAND 5.071 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.3 22.7 12.89 6 36.2 kg/s SAND 21 1.3 MW 5 3.1 Heatex-H2O<br />

1.5 25.38 0.6<br />

7.1 9.101 Heatex-GG-DH<br />

9.2 173.1 563 1.0 bar 0.19 200 C 5.8 SAND 1.267 3.1 52.16 1.5 25.38 0.6 10.17<br />

0.31<br />

62.1<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.46 16.9 0.31 34 2<br />

1.0 bar Steam dryer 3.96 56.1 1.0 bar<br />

34 1.0 bar<br />

4 7.1 kg/s<br />

0.047 730 C<br />

Split-steam2<br />

522 5.5 bar<br />

2 9.2 kg/s<br />

25.3 294 C<br />

Cooler-GG-H2<br />

2 22.7 kg/s<br />

0.12 120 C<br />

Cooler-GG-H2<br />

3.6<br />

0.12 0.83<br />

25.30 523 2<br />

9.2 5.5 bar<br />

0.93<br />

26.82<br />

Syngas-cool1<br />

561<br />

2<br />

0.186<br />

36.2 20.51<br />

1.0 bar<br />

36.2 kg/s<br />

120 C<br />

0.19 0.83<br />

0 541 4<br />

0.0 19.8 bar<br />

-0 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

9.669 462 2 9.669<br />

5.2 19.8 bar<br />

88.77 5.2 kg/s<br />

9.22 461 2<br />

0.93<br />

5.2 10.0 bar<br />

87.59 5.2 kg/s<br />

452 10.0 bar<br />

2 3.1 kg/s<br />

5.501 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 1.5 kg/s<br />

2.678 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.6 kg/s<br />

1.041 483 C<br />

Mixer-NG_ref<br />

35.17 62.1 kg/s 38.2 56.1 kg/s Cooler-GG-H2 22.7 14.09 171.7 9.2 kg/s Syngas-cool1 14.4 262 Syngas-cool1<br />

250 C 154 C<br />

120 C 12.6 145.2 271 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 19.8 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 22.7 kg/s Comp-GG-H2-2 2 14.4 kg/s<br />

2<br />

3.886<br />

12.6 kg/s<br />

15 C<br />

Steam<br />

0.12 200 C<br />

Cooler-GG-H2<br />

4.3 MW<br />

SAND<br />

13<br />

4.28<br />

36.49 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

4.6 2.629<br />

41 1.0 bar<br />

2 4.6 kg/s<br />

Steam<br />

0.93<br />

38.57<br />

14.4 267.5<br />

533 62.2 bar<br />

4 14.4 kg/s<br />

Syngas 38.57 294 C<br />

5.9 MW<br />

SAND<br />

15<br />

5.869<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

86<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

111<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.26<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

96 MW<br />

145 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

13 MW<br />

SAND 79 0.024 120 C 53.5 33.11 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 461 600 1.39<br />

DH-condenser<br />

0.74 10.8 0.42 811 12<br />

DH condenser0.42<br />

78.5 1.0 bar<br />

581<br />

2<br />

0.28<br />

1.0 bar<br />

53.5 kg/s<br />

200 C Steam<br />

0.23 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

4<br />

0<br />

0<br />

6<br />

1<br />

0.00<br />

0.01<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

80%<br />

4.6 0.183 2.743 78.5 kg/s DH-cooler DH-cooler<br />

42.5 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 26.35 42.5 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 24 32 0.07<br />

4 4.6 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

430.0 15.02<br />

811 1.0 bar<br />

0.010 811 6<br />

50.8 1.0 bar<br />

1.776 50.8 kg/s<br />

0.48 8.5 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 50.8 1.0 bar<br />

0.416 50.8 kg/s 1.0 0.639<br />

0.219 562 2<br />

42.5 1.0 bar<br />

200 C<br />

Syngas-cool2 6.8<br />

0.23 0.87<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4<br />

3<br />

0<br />

6<br />

4<br />

0<br />

0.01<br />

0.01<br />

0.00 Energy<br />

Water<br />

2 430.0 kg/s<br />

0.49 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

53.5 30.28<br />

1.0 bar<br />

53.5 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.01 225 C<br />

Cond-steam-1<br />

24.1 42.5 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

13.9 264.9<br />

62.2 bar<br />

13.9 kg/s<br />

0 551 4<br />

0.6 62.2 bar<br />

0.049 0.6 kg/s<br />

136 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

96<br />

2<br />

3<br />

6<br />

0<br />

125<br />

2<br />

4<br />

7<br />

0<br />

0.29<br />

0.00<br />

0.01<br />

0.02<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

92 MW<br />

121 MW<br />

56 MW<br />

79 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

11 MW<br />

Energy content in DH water = 72 MW 0.28 120 C<br />

DH-cooler<br />

Steam<br />

38.57 136 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

23<br />

0<br />

30<br />

0.00<br />

0.07<br />

* for electrolyser<br />

Urenhed:<br />

0.023 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.98<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

40.01 4.1 MW 17<br />

SAND 4.068<br />

13.9 268.6<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

19<br />

2<br />

26<br />

2<br />

25<br />

3<br />

34<br />

0.00<br />

0.06<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

70% (with total power)<br />

99%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.01 120 C 2 13.9 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 24 0.06<br />

Cond-steam-1<br />

40.01 253 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 327 424 0.98 Gas composition at specific nodes (mol-%)<br />

39.74 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

59.3 519.3<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

4<br />

3<br />

5<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.67<br />

4 100 C 2 59.3 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

148 38.4 860.6 Steam<br />

0 682 4<br />

82 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

270<br />

0<br />

351<br />

0<br />

0.81<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 60.63 42.70 24.36 25.92 27.89 30.00<br />

0.00 0.00 0.12 1.00 1.32 1.40 1.51 1.62<br />

791 3.5 bar 17.1 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 16 0.04 4 CO 42.73 0.00 22.49 29.16 14.45 3.27 3.47 3.74 4.02<br />

792 38.4 kg/s 17.55 17.1 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 5.24 0.00 5.09 4.47 35.29 46.38 49.35 53.11 57.12<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 16 20 0.05 7 H2O-G 5.21 0.00 14.17 5.12 2.13 2.93 1.70 0.62 0.02<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.047 811 10 39.2<br />

234.0 1.0 bar 0.047 0.70<br />

0 806 2<br />

DH water<br />

234.0 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.01 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.1 30.6 bar<br />

31.8 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 83<br />

311<br />

Total several DISTILLATION_STAGE's 1423 1826 4.28 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.44<br />

0.06<br />

0.00<br />

3.62 4.77 5.08<br />

0.48 0.63 0.67<br />

0.33 16.33 12.39<br />

5.47<br />

0.73<br />

6.94<br />

5.88<br />

0.78<br />

0.56<br />

8.175 234.0 kg/s<br />

90 C<br />

1.916 234.0 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.774 17.1 kg/s<br />

220 C 602<br />

59.3 503.9<br />

139.0 bar 607<br />

45.4 251<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

108.3<br />

Heatsourc-DH 148<br />

28.1 629.5 783<br />

38.4 869.6 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

83<br />

59.3 kg/s<br />

235 C<br />

2<br />

42<br />

45.4 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 38.4 kg/s 17.0 17.43 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 28.1 kg/s 4 100 C 685 30.6 bar 9.5 Preheater-sy NG 93 kr/GJ Methanol 39.7 kr/s 172 kr/GJ 194 kr/GJ 3.86 kr/kg 3.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.0 kg/s 42 606 2 42 0.77 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 410 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 42 45.4 144.0 bar 55.7 431 DH water 0 kr/ton Syngas 2.2 kr/s 167 kr/GJ - kr/GJ 0.91 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.90 248.1 45.4 kg/s 640 139.0 bar 78 11.42 3.6 69.19 Water 32 kr/ton DH water 0.5 kr/s 32 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.176 63 C 2 55.7 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

155 0.73<br />

Feed<br />

17.0<br />

3.749<br />

30.6 bar<br />

17.0 kg/s<br />

220 C<br />

Preheater-sy 71.13 170 C<br />

Condenser-1<br />

6.6<br />

631 3.6 kg/s<br />

4 170 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.21 0.78 If methanol and DH share the plant costs<br />

Condenser-1 84.1 13.67 621 631 4 (methanol and DH are the only products from the plant) -<br />

7 705 706<br />

19 3.5 bar<br />

2 1.21 705 706<br />

3 3.5 bar<br />

6<br />

SAND 31 51.6 346.2<br />

643 139.0 bar<br />

2 51.6 kg/s<br />

4 139.0 bar<br />

82 4.1 kg/s<br />

142 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 31.6 kr/s 137 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

49 18.5 kg/s 9 3.2 kg/s Condenser 57.46 142 C Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Mass flow<br />

132 C 132 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

59.9 1.0 bar<br />

Reboil-meoh2 10.0<br />

0.01 0.58<br />

0 805 2<br />

DH water<br />

59.9 1.0 bar Mechanical power<br />

10<br />

6.915 19.8 40.63 2.091 59.9 kg/s 0.49 59.9 kg/s 1.2 3.2 6.628<br />

707 3.5 bar Cond-steam-2 90 C 41.48 605 2 50 C 699 3.5 bar 0.25<br />

708 19.7 kg/s SAND 393 Condenser<br />

45.4 139.0 bar 2.4 13.05 Condenser<br />

700 3.2 kg/s<br />

4 132 C 247.9 45.4 kg/s 611 139.0 bar 91.4 13.8 3.9 82.48 2 132 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 5.16<br />

0 693 694<br />

1 3.5 bar<br />

2 1.2 kg/s<br />

Dis_stage_1<br />

4 5.716 695 696<br />

15 3.5 bar<br />

32 15.4 kg/s<br />

2 31.6<br />

5.754 0.67<br />

5.754 705 706<br />

15 3.5 bar<br />

41 15.4 kg/s<br />

4<br />

38.88 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 84.5<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 2.4 kg/s<br />

2.183 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 3.9 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

132 C<br />

Reboil-meoh1<br />

132 C<br />

Reboil-meoh1<br />

234 11.5 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 5.8 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 5.8 kg/s 96.7 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.184 15 C SAND 96.65 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.592 803 4<br />

115.3 1.0 bar<br />

Electrolyser<br />

31.94<br />

4.1<br />

0.80<br />

0 802 2<br />

115.3 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 1.439 115.3 kg/s 5.1 0.674 0.6 75.57 0.944 115.3 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 59 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

5.1 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.6 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.5 0.357<br />

83 1.0 bar<br />

4 0.5 kg/s<br />

14 C/M<br />

O2 0.093 7 4 0.093<br />

0.90<br />

1.7 1.0 bar<br />

0.227 1.7 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.093 5 2<br />

1.7 1.0 bar<br />

0.227 1.7 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.277 90 C<br />

Electrolyser<br />

3.4 0.447<br />

6 1.0 bar<br />

4 3.4 kg/s<br />

31.07 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.011<br />

1.9<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

11.9 15.28<br />

1.0 bar<br />

801<br />

2<br />

9.6 0.079<br />

1.0 bar<br />

9.6 kg/s<br />

15<br />

4<br />

0.0 0.023<br />

1.0 bar<br />

0.0 kg/s Heatsink-H2<br />

0.184 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

2.414 1.9 kg/s Heatex-GG-st 4 11.9 kg/s 0 50 C 0 60 C 0.0 MW 322 31.07 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.07 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 1E-04 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

8<br />

Gasifier<br />

9.4 204.7<br />

8<br />

12.5<br />

186.1<br />

Gasifier<br />

10 GG2<br />

0.09 0.78<br />

1.0 bar 1.2<br />

12.5 kg/s<br />

800 C<br />

8<br />

12.5<br />

185.2<br />

11 2<br />

1.0 bar<br />

12.5 kg/s<br />

752 C<br />

Heatex-GG-st<br />

0.07 0.99 8<br />

15.2 12.5<br />

176.5<br />

12 2 0.00 0.74<br />

1.0 bar 1.6<br />

12.5 kg/s<br />

130 C Heatex-GG-DH<br />

8<br />

12.5<br />

176.1<br />

13 2<br />

1.0 bar<br />

12.5 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 7.7<br />

12.5 176.1<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

31.07<br />

31.07 511 2<br />

0.6 1.0 bar<br />

75.57 0.6 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 18.5 bar<br />

SAND 0.002<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 18.5 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 12.5 kg/s 0.165 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 9.4 kg/s 0.09 9 2 Heatex-GG-O2 11.9 6.724 0 21 4 7.7 60 C 250 C 272 C 15 C 0.01 950 C 107 C<br />

5.60 120 C 1.7 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 31.07 512 2 43.56 524 4 13.2 261.9 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

0.924 1.7 kg/s<br />

790 C<br />

Gasifier<br />

2 11.9 kg/s<br />

0.051 120 C<br />

Heatex-GG-st<br />

5E-20 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

13.2 251.4<br />

1.0 bar<br />

13.2 kg/s<br />

0.6<br />

75.57<br />

1.0 bar<br />

0.6 kg/s<br />

90 C<br />

13.2<br />

261.7<br />

18.5 bar<br />

13.2 kg/s<br />

303 C<br />

531<br />

2<br />

43.58<br />

18.5 bar<br />

13.2 kg/s<br />

303 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

9.6 0.336<br />

1.0 bar<br />

38.74 69 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

7.8 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

35.7 22.12<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 9.6 kg/s 0.93<br />

SAND 7.805 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 41.51 35.7 20.21 6 35.7 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

10.0 12.87 Heatex-GG-DH<br />

13.2 258.7 563 1.0 bar 0.16 200 C 5.7 SAND 0.002 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.37<br />

87.8<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.46 23.9 0.37 34 2<br />

1.0 bar Steam dryer 5.60 79.4 1.0 bar<br />

34 1.0 bar<br />

4 10.0 kg/s<br />

0.058 730 C<br />

Split-steam2<br />

522 5.7 bar<br />

2 13.2 kg/s<br />

41.51 303 C<br />

Cooler-GG-H2<br />

2 35.7 kg/s<br />

0.15 120 C<br />

Cooler-GG-H2<br />

5.7<br />

0.16 0.82<br />

41.51 523 2<br />

13.2 5.7 bar<br />

0.93<br />

43.56<br />

Syngas-cool1<br />

561<br />

2<br />

0.153<br />

35.7 20.23<br />

1.0 bar<br />

35.7 kg/s<br />

120 C<br />

0.16 0.82<br />

0 541 4<br />

0.0 18.5 bar<br />

7E-18 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 18.5 bar<br />

0.16 0.0 kg/s<br />

0.017 461 2<br />

0.92<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

49.74 87.8 kg/s 54.02 79.4 kg/s Cooler-GG-H2 35.7 22.09 256.4 13.2 kg/s Syngas-cool1 13.2 259.6 Syngas-cool1<br />

240 C 154 C<br />

120 C 17.8 205.3 271 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 18.5 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 35.7 kg/s Comp-GG-H2-2 2 13.2 kg/s<br />

2<br />

5.495<br />

17.8 kg/s<br />

15 C<br />

Steam<br />

0.16 200 C<br />

Cooler-GG-H2<br />

5.8 MW<br />

SAND<br />

13<br />

5.785<br />

43.58 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

6.6 3.718<br />

41 1.0 bar<br />

2 6.6 kg/s<br />

Steam<br />

0.93<br />

45.63<br />

13.2 265<br />

533 60.6 bar<br />

4 13.2 kg/s<br />

Syngas 45.63 303 C<br />

5.8 MW<br />

SAND<br />

15<br />

5.789<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

147<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

191<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.44<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

205 MW<br />

97 MW<br />

121 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

11 MW<br />

SAND 79 0.028 120 C 38.7 23.99 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 653 848 1.96<br />

DH-condenser<br />

0.75 15.2 0.64 811 12<br />

DH condenser0.64<br />

115.3 1.0 bar<br />

581<br />

2<br />

0.17<br />

1.0 bar<br />

38.7 kg/s<br />

200 C Steam<br />

0.16 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

6<br />

1<br />

1<br />

8<br />

1<br />

0.00<br />

0.02<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

71% (with total power)<br />

78%<br />

6.6 0.259 4.029 115.3 kg/s DH-cooler DH-cooler<br />

35.7 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 22.12 35.7 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 35 45 0.10<br />

4 6.6 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

450.0 15.72<br />

811 1.0 bar<br />

0.007 811 6<br />

36.8 1.0 bar<br />

1.286 36.8 kg/s<br />

0.48 6.2 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 36.8 1.0 bar<br />

0.301 36.8 kg/s 1.0 0.639<br />

0.153 562 2<br />

35.7 1.0 bar<br />

200 C<br />

Syngas-cool2 5.7<br />

0.16 0.82<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

6<br />

0<br />

0<br />

8<br />

0<br />

0<br />

0.02<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 450.0 kg/s<br />

0.71 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

38.7 21.94<br />

1.0 bar<br />

38.7 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.00 225 C<br />

Cond-steam-1<br />

20.23 35.7 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

13.2 262.7<br />

60.6 bar<br />

13.2 kg/s<br />

0 551 4<br />

0.0 60.6 bar<br />

-0 0.0 kg/s<br />

130 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

172 MW<br />

97 MW<br />

121 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

76 MW<br />

0 MW<br />

9 MW<br />

Energy content in DH water = 76 MW 0.17 120 C<br />

DH-cooler<br />

Steam<br />

45.63 130 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

35<br />

0<br />

46<br />

0.00<br />

0.11<br />

* for electrolyser<br />

Urenhed:<br />

0.016 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.98<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

47.07 4.0 MW 17<br />

SAND 4.039<br />

13.2 266.4<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

2<br />

26<br />

2<br />

26<br />

3<br />

34<br />

3<br />

34<br />

0.01<br />

0.08<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

70% (with total power)<br />

99%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 2 3 0.01<br />

0.00 120 C 2 13.2 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 24 0.05<br />

Cond-steam-1<br />

47.07 251 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 295 384 0.89 Gas composition at specific nodes (mol-%)<br />

46.69 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 3 4 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

51.9 478.1<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

3<br />

4<br />

4<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.72<br />

4 100 C 2 51.9 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

177.7 39.2 879.7 Steam<br />

0 682 4<br />

88 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

262<br />

0<br />

341<br />

0<br />

0.79<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 61.87 44.20 23.87 25.43 27.98 30.00<br />

0.00 0.00 0.18 1.56 2.13 2.27 2.50 2.68<br />

791 3.5 bar 17.2 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 16 0.04 4 CO 42.73 0.00 22.49 30.14 16.13 3.88 4.13 4.54 4.87<br />

792 39.2 kg/s 17.58 17.2 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 2 3 0.01 6 CO2 5.24 0.00 5.09 3.72 32.37 44.09 46.98 51.68 55.41<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 16 21 0.05 7 H2O-G 5.21 0.00 14.17 3.68 1.65 2.30 1.39 0.42 0.01<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.048 811 10 40.1<br />

239.2 1.0 bar 0.048 0.70<br />

0 806 2<br />

DH water<br />

239.2 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.00 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.2 30.6 bar<br />

31.9 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 89<br />

311<br />

Total several DISTILLATION_STAGE's 1559 2002 4.69 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.34<br />

0.08<br />

0.00<br />

3.01 4.10 4.37<br />

0.75 1.03 1.09<br />

0.32 18.61 14.33<br />

4.81<br />

1.20<br />

6.88<br />

5.16<br />

1.29<br />

0.57<br />

8.356 239.2 kg/s<br />

90 C<br />

1.958 239.2 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.78 17.2 kg/s<br />

220 C 602<br />

51.9 462.6<br />

139.0 bar 607<br />

38.7 210.9<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

131<br />

Heatsourc-DH 177.7<br />

28.9 648.6 783<br />

39.2 888.8 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

89<br />

51.9 kg/s<br />

235 C<br />

2<br />

41<br />

38.7 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 39.2 kg/s 17.0 17.47 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 28.9 kg/s 4 100 C 685 30.6 bar 8.1 Preheater-sy NG 93 kr/GJ Methanol 46.7 kr/s 202 kr/GJ 228 kr/GJ 4.53 kr/kg 3.6 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.0 kg/s 41 606 2 41 0.70 SAND 29 Biomass 32 kr/GJ Oxygen 0.2 kr/s 411 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 41 38.7 144.0 bar 48.6 392.4 DH water 0 kr/ton Syngas 2.2 kr/s 198 kr/GJ - kr/GJ 1.06 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.90 208.5 38.7 kg/s 640 139.0 bar 84 12.96 3.3 66.71 Water 32 kr/ton DH water 0.7 kr/s 45 kr/GJ 9 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.151 63 C 2 48.6 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

189 0.75<br />

Feed<br />

17.0<br />

3.756<br />

30.6 bar<br />

17.0 kg/s<br />

220 C<br />

Preheater-sy 76.24 173 C<br />

Condenser-1<br />

7.3<br />

631 3.3 kg/s<br />

4 173 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 2.15 0.65 If methanol and DH share the plant costs<br />

Condenser-1 88.8 19.14 621 631 4 (methanol and DH are the only products from the plant) -<br />

11 705 706<br />

19 3.5 bar<br />

2 2.15 705 706<br />

4 3.5 bar<br />

6<br />

SAND 31 44.0 291.5<br />

643 139.0 bar<br />

2 44.0 kg/s<br />

5 139.0 bar<br />

98 4.6 kg/s<br />

139 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 38.4 kr/s 166 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

66 19.3 kg/s 12 3.6 kg/s Condenser 57.09 139 C Preheater-sy<br />

DH water 11.3 kr/s 150 kr/Gjen Mass flow<br />

129 C 129 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

49.1 1.0 bar<br />

Reboil-meoh2 8.2<br />

0.01 0.50<br />

0 805 2<br />

DH water<br />

49.1 1.0 bar Mechanical power<br />

10<br />

11.45 20.1 57.25 1.714 49.1 kg/s 0.402 49.1 kg/s 2.145 3.6 10.28<br />

707 3.5 bar Cond-steam-2 90 C 41.18 605 2 50 C 699 3.5 bar 0.25<br />

708 20.1 kg/s SAND 393 Condenser<br />

38.7 139.0 bar 2.0 10.97 Condenser<br />

700 3.6 kg/s<br />

4 129 C 208.4 38.7 kg/s 611 139.0 bar 94.0 13.75 3.2 69.56 2 129 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 7.35<br />

0 693 694<br />

1 3.5 bar<br />

2 0.8 kg/s<br />

Dis_stage_1<br />

4 9.301 695 696<br />

16 3.5 bar<br />

45 15.6 kg/s<br />

2 31.7<br />

9.339 0.66<br />

9.339 705 706<br />

16 3.5 bar<br />

54 15.6 kg/s<br />

4<br />

45.85 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 88.8<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 2.0 kg/s<br />

2.167 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 3.2 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

129 C<br />

Reboil-meoh1<br />

129 C<br />

Reboil-meoh1<br />

234 11.1 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.4 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.4 kg/s 39.7 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.076 15 C SAND 39.71 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.369 803 4<br />

86.9 1.0 bar<br />

Electrolyser<br />

13.12<br />

1.7<br />

0.80<br />

0 802 2<br />

86.9 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.906 86.9 kg/s 2.1 0.277 0.3 31.05 0.711 86.9 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 55 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.1 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.445<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.113 7 4 0.113<br />

0.90<br />

2.1 1.0 bar<br />

0.277 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.113 5 2<br />

2.1 1.0 bar<br />

0.277 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.113 90 C<br />

Electrolyser<br />

0.0 -0<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

12.64 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.029<br />

5.0<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

18.1 23.26<br />

1.0 bar<br />

801<br />

2<br />

14.3 0.117<br />

1.0 bar<br />

14.3 kg/s<br />

15<br />

4<br />

4.6 2.112<br />

1.0 bar<br />

4.6 kg/s Heatsink-H2<br />

-0 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

6.416 5.0 kg/s Heatex-GG-st 4 18.1 kg/s 0 50 C 0 60 C 0.0 MW 322 12.64 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.11 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 4E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

10<br />

Gasifier<br />

11.7 255.5<br />

10<br />

18.2<br />

234.8<br />

Gasifier<br />

10 GG2<br />

0.11 0.78<br />

1.0 bar 1.5<br />

18.2 kg/s<br />

800 C<br />

10<br />

18.2<br />

233.7<br />

11 2<br />

1.0 bar<br />

18.2 kg/s<br />

761 C<br />

Heatex-GG-st<br />

0.11 0.98 10<br />

23.1 18.2<br />

220.5<br />

12 2 0.00 0.74<br />

1.0 bar 2.4<br />

18.2 kg/s<br />

130 C Heatex-GG-DH<br />

10<br />

18.2<br />

219.9<br />

13 2<br />

1.0 bar<br />

18.2 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 9.6<br />

13.6 218.8<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

12.64<br />

12.64 511 2<br />

0.3 1.0 bar<br />

31.05 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 19.8 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 19.8 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 13.6 kg/s 0.166 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 11.7 kg/s 0.11 9 2 Heatex-GG-O2 18.1 10.23 0 21 4 9.6 60 C 259 C 279 C 15 C 0.01 950 C 107 C<br />

6.99 120 C 2.1 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 12.64 512 2 27.37 524 4 13.9 261 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.127 2.1 kg/s<br />

790 C<br />

Gasifier<br />

2 18.1 kg/s<br />

0.079 120 C<br />

Heatex-GG-st<br />

4E-18 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

13.9 249.8<br />

1.0 bar<br />

13.9 kg/s<br />

0.3<br />

31.05<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

13.9<br />

260.8<br />

19.8 bar<br />

13.9 kg/s<br />

305 C<br />

531<br />

2<br />

27.39<br />

19.8 bar<br />

13.9 kg/s<br />

304 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

14.3 0.498<br />

1.0 bar<br />

22.23 63 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

8.4 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

37.6 23.31<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 14.3 kg/s 0.93<br />

SAND 8.391 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.2 37.6 21.3 6 37.6 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

13.1 16.84 Heatex-GG-DH<br />

13.9 257.6 563 1.0 bar 0.17 200 C 6.0 SAND 0.002 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.45<br />

105.4<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.45 29.8 0.45 34 2<br />

1.0 bar Steam dryer 6.99 94.9 1.0 bar<br />

34 1.0 bar<br />

4 13.1 kg/s<br />

0.077 730 C<br />

Split-steam2<br />

522 6.0 bar<br />

2 13.9 kg/s<br />

25.2 304 C<br />

Cooler-GG-H2<br />

2 37.6 kg/s<br />

0.16 120 C<br />

Cooler-GG-H2<br />

6.0<br />

0.17 0.82<br />

25.20 523 2<br />

13.9 6.0 bar<br />

0.93<br />

27.37<br />

Syngas-cool1<br />

561<br />

2<br />

0.164<br />

37.6 21.32<br />

1.0 bar<br />

37.6 kg/s<br />

120 C<br />

0.17 0.82<br />

0 541 4<br />

0.0 19.8 bar<br />

6E-18 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 19.8 bar<br />

0.16 0.0 kg/s<br />

0.017 461 2<br />

0.93<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

59.71 105.4 kg/s 65.17 94.9 kg/s Cooler-GG-H2 37.6 23.29 255.2 13.9 kg/s Syngas-cool1 13.9 258.6 Syngas-cool1<br />

250 C 154 C<br />

120 C 22.2 256.3 278 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 19.8 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 37.6 kg/s Comp-GG-H2-2 2 13.9 kg/s<br />

2<br />

6.86<br />

22.2 kg/s<br />

15 C<br />

Steam<br />

0.17 200 C<br />

Cooler-GG-H2<br />

6.1 MW<br />

SAND<br />

13<br />

6.098<br />

27.39 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

5.6 3.144<br />

41 1.0 bar<br />

2 5.6 kg/s<br />

Steam<br />

0.93<br />

29.55<br />

13.9 264.2<br />

533 65.2 bar<br />

4 13.9 kg/s<br />

Syngas 29.55 304 C<br />

6.1 MW<br />

SAND<br />

15<br />

6.102<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

60<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

78<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.18<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

256 MW<br />

40 MW<br />

65 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

8 MW<br />

SAND 79 0.024 120 C 52.4 32.45 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 815 1059 2.45<br />

DH-condenser<br />

0.73 12.9 0.41 811 12<br />

DH condenser0.41<br />

86.9 1.0 bar<br />

581<br />

2<br />

0.24<br />

1.0 bar<br />

52.4 kg/s<br />

200 C Steam<br />

0.26 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

9<br />

1<br />

1<br />

12<br />

1<br />

0.00<br />

0.03<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

78%<br />

5.6 0.219 3.035 86.9 kg/s DH-cooler DH-cooler<br />

57.9 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 35.88 57.9 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 43 56 0.13<br />

4 5.6 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

439.6 15.36<br />

811 1.0 bar<br />

0.010 811 6<br />

49.8 1.0 bar<br />

1.739 49.8 kg/s<br />

0.48 8.3 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 49.8 1.0 bar<br />

0.408 49.8 kg/s 1.0 0.639<br />

0.252 562 2<br />

57.9 1.0 bar<br />

200 C<br />

Syngas-cool2 9.2<br />

0.26 0.91<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

5<br />

0<br />

0<br />

7<br />

0<br />

0<br />

0.02<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 439.6 kg/s<br />

0.48 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

52.4 29.67<br />

1.0 bar<br />

52.4 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.00 225 C<br />

Cond-steam-1<br />

32.81 57.9 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

12.4 260.7<br />

65.2 bar<br />

12.4 kg/s<br />

0 551 4<br />

1.6 65.2 bar<br />

0.138 1.6 kg/s<br />

135 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

214 MW<br />

40 MW<br />

65 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

74 MW<br />

0 MW<br />

7 MW<br />

Energy content in DH water = 74 MW 0.24 120 C<br />

DH-cooler<br />

Steam<br />

29.55 135 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

38<br />

0<br />

49<br />

0.00<br />

0.11<br />

* for electrolyser<br />

Urenhed:<br />

0.008 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.99<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

30.82 3.6 MW 17<br />

SAND 3.586<br />

12.4 264.1<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

2<br />

27<br />

2<br />

27<br />

3<br />

36<br />

3<br />

36<br />

0.01<br />

0.08<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

81% (with power for electrolyser)<br />

73% (with total power)<br />

102%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 4 5 0.01<br />

0.00 120 C 2 12.4 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 16 21 0.05<br />

Cond-steam-1<br />

30.82 248 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 254 330 0.76 Gas composition at specific nodes (mol-%)<br />

31.41 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 2 3 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

42.2 416.8<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

2<br />

4<br />

3<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.78<br />

4 100 C 2 42.2 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

127.3 41.7 936.6 Steam<br />

0 682 4<br />

51 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

254<br />

0<br />

330<br />

0<br />

0.76<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.61<br />

0.21<br />

0.00 57.70 60.67 45.40 22.81 24.39 28.19 30.00<br />

0.00 0.00 0.23 2.28 3.30 3.53 4.08 4.34<br />

791 3.5 bar 17.8 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 17 0.04 4 CO 32.23 0.00 22.49 34.03 20.51 5.24 5.60 6.47 6.89<br />

792 41.7 kg/s 18.23 17.8 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 9.40 99.97 5.09 0.03 26.44 40.34 43.14 49.87 53.07<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 17 22 0.05 7 H2O-G 12.29 0.00 14.17 4.78 2.41 1.49 0.97 0.20 0.01<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.051 811 10 42.7<br />

254.6 1.0 bar 0.051 0.70<br />

0 806 2<br />

DH water<br />

254.6 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.00 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.8 30.6 bar<br />

33.1 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 51<br />

311<br />

Total several DISTILLATION_STAGE's 1601 2055 4.82 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.15<br />

0.10<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.16<br />

0.11<br />

0.00<br />

1.58 2.30 2.46<br />

1.09 1.58 1.69<br />

0.29 22.94 18.23<br />

2.84<br />

1.96<br />

6.39<br />

3.02<br />

2.08<br />

0.59<br />

8.895 254.6 kg/s<br />

90 C<br />

2.085 254.6 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.92 17.8 kg/s<br />

220 C 602<br />

42.2 400.7<br />

139.0 bar 607<br />

29.8 150.7<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

95.88<br />

Heatsourc-DH 127.3<br />

31.4 705.5 783<br />

41.7 946.3 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

51<br />

42.2 kg/s<br />

235 C<br />

2<br />

20<br />

29.8 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 41.7 kg/s 17.7 18.12 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 31.4 kg/s 4 100 C 685 30.6 bar 6.1 Preheater-sy NG 93 kr/GJ Methanol 31.4 kr/s 136 kr/GJ 153 kr/GJ 3.05 kr/kg 2.4 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.7 kg/s 20 606 2 20 0.60 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 407 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 20 29.8 144.0 bar 39.3 336.1 DH water 0 kr/ton Syngas 1.0 kr/s 132 kr/GJ - kr/GJ 0.66 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.1 MW 19 0.90 148.9 29.8 kg/s 640 139.0 bar 91 7.937 2.9 61.49 Water 32 kr/ton DH water 0.5 kr/s 31 kr/GJ 6 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.116 63 C 2 39.3 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

142 0.78<br />

Feed<br />

17.7<br />

3.895<br />

30.6 bar<br />

17.7 kg/s<br />

220 C<br />

Preheater-sy 43.39 181 C<br />

Condenser-1<br />

8.5<br />

631 2.9 kg/s<br />

4 181 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 2.95 0.50 If methanol and DH share the plant costs<br />

Condenser-1 94.1 16.18 621 631 4 (methanol and DH are the only products from the plant) -<br />

14 705 706<br />

21 3.5 bar<br />

2 2.95 705 706<br />

4 3.5 bar<br />

6<br />

SAND 31 33.6 207.8<br />

643 139.0 bar<br />

2 33.6 kg/s<br />

6 139.0 bar<br />

124 5.7 kg/s<br />

134 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 21.8 kr/s 95 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

115 21.5 kg/s 24 4.4 kg/s Condenser 27.21 134 C Preheater-sy<br />

DH water 11.1 kr/s 150 kr/Gjen Mass flow<br />

124 C 124 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

34.0 1.0 bar<br />

Reboil-meoh2 5.7<br />

0.01 0.40<br />

0 805 2<br />

DH water<br />

34.0 1.0 bar Mechanical power<br />

10<br />

14.27 22.0 106.1 1.189 34.0 kg/s 0.279 34.0 kg/s 2.943 4.4 21.39<br />

707 3.5 bar Cond-steam-2 90 C 19.69 605 2 50 C 699 3.5 bar 0.25<br />

708 22.0 kg/s SAND 393 Condenser<br />

29.8 139.0 bar 1.6 7.83 Condenser<br />

700 4.4 kg/s<br />

4 124 C 148.8 29.8 kg/s 611 139.0 bar 96.8 6.483 2.2 48.98 2 124 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 13.17<br />

0 693 694<br />

0 3.5 bar<br />

2 0.5 kg/s<br />

Dis_stage_1<br />

4 11.33 695 696<br />

17 3.5 bar<br />

82 17.0 kg/s<br />

2 32.9<br />

11.37 0.64<br />

11.37 705 706<br />

17 3.5 bar<br />

91 17.0 kg/s<br />

4<br />

30.6 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 93.8<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 1.6 kg/s<br />

1.036 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 2.2 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

124 C<br />

Reboil-meoh1<br />

124 C<br />

Reboil-meoh1<br />

234 10.8 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 4.5 -0 4.3 7.757<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 19.51 412 2<br />

5EX 5 Component cost flow 2 4.5 kg/s 76.1 MW 201 2 4.3 kg/s 4.3 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.145 15 C SAND 76.14 0.16 850 C 223.6 4.3 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.28 803 4<br />

19.4 1.0 bar<br />

Electrolyser<br />

25.16<br />

3.2<br />

0.80<br />

0 802 2<br />

19.4 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

21.04<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.675 19.4 kg/s 4.0 0.531 0.5 59.53 0.159 19.4 kg/s 4.0 3.055<br />

12 C<br />

13 C/EX<br />

SAND 1E-08 90 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

4.0 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.5 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

1.4 MW 3<br />

Reformat<br />

12.7 217<br />

403<br />

2<br />

10.0 bar<br />

4.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.0 2E-04<br />

83 1.0 bar<br />

4 0.0 kg/s<br />

14 C/M<br />

O2 5E-05 7 4 5E-05<br />

0.90<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

5E-05 5 2<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.22 90 C<br />

Electrolyser<br />

0.0 1E-37<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

24.66 90 C<br />

Electrolyser<br />

H2 O2 0.22 401 2<br />

4.0 1.0 bar<br />

0.531 4.0 kg/s<br />

90 C<br />

SAND 1.377<br />

0.708 402 4<br />

0.94<br />

0.708 4.0 10.0 bar<br />

1.824 4.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 12.7 kg/s<br />

21.04 950 C<br />

NG_reformer<br />

0.71 850 C<br />

NG_reformer<br />

1.4 24.49<br />

441 10.0 bar<br />

2 1.4 kg/s<br />

2.375 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

5E-05<br />

0.0<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

0.0 0.009<br />

1.0 bar<br />

801<br />

2<br />

0.0 4E-05<br />

1.0 bar<br />

0.0 kg/s<br />

15<br />

4<br />

0.0 1E-05<br />

1.0 bar<br />

0.0 kg/s Heatsink-H2<br />

6E-38 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

3.7 63.04<br />

10.0 bar<br />

3.7 kg/s<br />

1.8<br />

0.71 0.97 Heatex-O2<br />

SAND 11<br />

0.001 0.0 kg/s Heatex-GG-st 4 0.0 kg/s 0 50 C 0 60 C 0.0 MW 322 24.66 0.0 MW 9 Comp-CO2 6.113 950 C<br />

730 C SAND 7 0.00 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 9E-05 1.7 MW 7<br />

Heatex-NG<br />

0.89<br />

0<br />

Gasifier<br />

0.0 0.115<br />

0<br />

0.0<br />

0.104<br />

Gasifier<br />

10 GG2<br />

0.00 0.78<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

800 C<br />

0<br />

0.0<br />

0.104<br />

11 2<br />

1.0 bar<br />

0.0 kg/s<br />

752 C<br />

Heatex-GG-st<br />

0.00 0.99 0<br />

0.0 0.0<br />

0.099<br />

12 2 0.00 0.74<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

130 C Heatex-GG-DH<br />

0<br />

0.0<br />

0.099<br />

13 2<br />

1.0 bar<br />

0.0 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 0.0<br />

0.0 0.099<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

24.66<br />

24.66 511 2<br />

0.5 1.0 bar<br />

59.53 0.5 kg/s<br />

90 C<br />

Heatsink-H2<br />

23.43 503 4<br />

18.5 19.7 bar<br />

SAND 1.703<br />

1.364 502 4 1.364 0.76 501 2<br />

0.93<br />

6.7 19.7 bar 6.7 1.0 bar<br />

CO2<br />

19.5 411 2<br />

NG4.3<br />

10.0 bar<br />

219 4.3 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

7.6 129.5<br />

10.0 bar<br />

8.8<br />

13 19.51 0.89<br />

0 434 Water 2<br />

0.3 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 0.0 kg/s 206.4 18.5 kg/s 4.589 6.7 kg/s 3.009 6.7 kg/s 2 7.6 kg/s 0.016 0.3 kg/s<br />

2 0.0 kg/s 0.00 9 2 Heatex-GG-O2 0.0 0.004 0 21 4 0.0 60 C 255 C 279 C 15 C 12.56 950 C 107 C<br />

0.00 120 C 0.0 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 24.66 512 2 25.88 524 4 19.0 268.3 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

5E-04 0.0 kg/s<br />

790 C<br />

Gasifier<br />

2 0.0 kg/s<br />

3E-04 120 C<br />

Heatex-GG-st<br />

2E-22 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

0.5 59.63<br />

1.0 bar<br />

0.5 kg/s<br />

0.5<br />

59.53<br />

1.0 bar<br />

0.5 kg/s<br />

90 C<br />

0.5<br />

62.38<br />

19.7 bar<br />

0.5 kg/s<br />

395 C<br />

531<br />

2<br />

49.3<br />

19.7 bar<br />

19.0 kg/s<br />

278 C<br />

0.138 422 2<br />

Water 4.3 10.0 bar<br />

0.014 4.3 kg/s<br />

17.9 Heatex-H2O<br />

0.16 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

0.0 2E-04<br />

1.0 bar<br />

24.67 90 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

1.4 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

40.8 25.27<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.5<br />

0.029<br />

10.0 bar<br />

0.5 kg/s<br />

4 0.0 kg/s 0.93<br />

SAND 1.416 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.17 6.9 3.9 6 40.8 kg/s SAND 21 2.9 MW 5 7.0 Heatex-H2O<br />

3.4 57.92 1.4<br />

0.0 0.007 Heatex-GG-DH<br />

0.5 60.94 563 1.0 bar 2.02 200 C 6.5 SAND 2.878 7.0 119 3.4 57.92 1.4 23.22<br />

0.00<br />

0.0<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.46 0.0 0.00 34 2<br />

1.0 bar Steam dryer 0.00 0.0 1.0 bar<br />

34 1.0 bar<br />

4 0.0 kg/s<br />

3E-04 730 C<br />

Split-steam2<br />

522 3.8 bar<br />

2 0.5 kg/s<br />

25.17 278 C<br />

Cooler-GG-H2<br />

2 6.9 kg/s<br />

0.34 120 C<br />

Cooler-GG-H2<br />

1.1<br />

0.34 0.85<br />

25.17 523 2<br />

0.5 3.8 bar<br />

0.94<br />

25.88<br />

Syngas-cool1<br />

561<br />

2<br />

2.021<br />

40.8 23.12<br />

1.0 bar<br />

40.8 kg/s<br />

120 C<br />

2.03 0.85<br />

0 541 4<br />

0.0 19.7 bar<br />

1E-17 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

22.06 462 2 22.06<br />

11.8 19.7 bar<br />

202.6 11.8 kg/s<br />

21.04 461 2<br />

0.93<br />

11.8 10.0 bar<br />

199.9 11.8 kg/s<br />

452 10.0 bar<br />

2 7.0 kg/s<br />

12.56 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 3.4 kg/s<br />

6.113 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 1.4 kg/s<br />

2.375 483 C<br />

Mixer-NG_ref<br />

0.028 0.0 kg/s 0.03 0.0 kg/s Cooler-GG-H2 6.9 4.264 60.51 0.5 kg/s Syngas-cool1 19.0 265.8 Syngas-cool1<br />

249 C 154 C<br />

120 C 0.0 0.115 271 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 19.7 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 6.9 kg/s Comp-GG-H2-2 2 19.0 kg/s<br />

2<br />

0.003<br />

0.0 kg/s<br />

15 C<br />

Steam<br />

0.34 200 C<br />

Cooler-GG-H2<br />

2.0 MW<br />

SAND<br />

13<br />

1.998<br />

49.3 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

0.0 0.002<br />

41 1.0 bar<br />

2 0.0 kg/s<br />

Steam<br />

0.93<br />

51.65<br />

19.0 271.9<br />

533 59.4 bar<br />

4 19.0 kg/s<br />

Syngas 51.65 278 C<br />

6.6 MW<br />

SAND<br />

15<br />

6.616<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

116<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

150<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.35<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

219 MW<br />

0 MW<br />

76 MW<br />

99 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

11 MW<br />

0 MW<br />

19 MW<br />

SAND 79 2E-04 120 C 100.2 62.05 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 0 0 0.00<br />

DH-condenser<br />

0.91 0.0 0.28 811 12<br />

DH condenser0.28<br />

19.4 1.0 bar<br />

581 1.0 bar<br />

2 100.2 kg/s<br />

4.97 200 C Steam<br />

2.56 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

73% (with total power)<br />

82%<br />

0.0 1E-04 0.677 19.4 kg/s DH-cooler DH-cooler<br />

51.5 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 31.9 51.5 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 0 0 0.00<br />

4 0.0 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

421.9 14.74<br />

811 1.0 bar<br />

0.019 811 6<br />

95.3 1.0 bar<br />

3.328 95.3 kg/s<br />

0.48 16.0<br />

DH cooler 0.02<br />

0 804 2<br />

DH water<br />

95.3 1.0 bar<br />

0.78 95.3 kg/s 1.0 0.639<br />

2.551 562 2<br />

51.5 1.0 bar<br />

200 C<br />

Syngas-cool2 8.2<br />

2.56 0.88<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

0<br />

6<br />

1<br />

0<br />

8<br />

1<br />

0.00<br />

0.02<br />

0.00 Energy<br />

Water<br />

2 421.9 kg/s<br />

0.36 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

100.2 56.74<br />

35 1.0 bar<br />

6 100.2 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.05 225 C<br />

Cond-steam-1<br />

29.18 51.5 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

18.0 268.8<br />

59.4 bar<br />

18.0 kg/s<br />

0 551 4<br />

1.0 59.4 bar<br />

0.095 1.0 kg/s<br />

141 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

219<br />

4<br />

7<br />

13<br />

8<br />

285<br />

5<br />

9<br />

17<br />

10<br />

0.66<br />

0.01<br />

0.02<br />

0.04<br />

0.02<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

210 MW<br />

0 MW<br />

76 MW<br />

99 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

71 MW<br />

0 MW<br />

15 MW<br />

Energy content in DH water = 71 MW 4.97 120 C<br />

DH-cooler<br />

Steam<br />

51.65 141 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

6<br />

0<br />

8<br />

0.00<br />

0.02<br />

* for electrolyser<br />

Urenhed:<br />

0.105 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.89<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

53.45 5.1 MW 17<br />

SAND 5.075<br />

18.0 273.5<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

9<br />

3<br />

30<br />

1<br />

12<br />

3<br />

39<br />

0.00<br />

0.03<br />

0.01<br />

0.09<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

72% (with power for electrolyser)<br />

66% (with total power)<br />

94%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.05 120 C 2 18.0 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 23 30 0.07<br />

Cond-steam-1<br />

53.45 260 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 475 618 1.43 Gas composition at specific nodes (mol-%)<br />

51.97 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 6 8 0.02<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

96.3 629.5<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

7<br />

3<br />

9<br />

0.01<br />

0.02<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.45<br />

4 100 C 2 96.3 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 2 0.00<br />

Species<br />

Split-meoh1<br />

168.7 33.5 750.2 Steam<br />

0 682 4<br />

131 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

327<br />

0<br />

425<br />

0<br />

0.98<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 61.60 40.52 25.25 26.87 27.93 30.00<br />

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

791 3.5 bar 14.8 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 11 14 0.03 4 CO 42.73 0.00 22.49 16.51 7.02 1.92 2.04 2.12 2.28<br />

792 33.4 kg/s 15.14 14.8 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 6 8 0.02 6 CO2 5.24 0.00 5.09 15.32 47.39 53.36 56.77 59.02 63.39<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 14 18 0.04 7 H2O-G 5.21 0.00 14.17 6.18 2.09 5.95 3.06 1.57 0.05<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.041 811 10 34.2<br />

204.2 1.0 bar 0.041 0.70<br />

0 806 2<br />

DH water<br />

204.2 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.05 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

14.8 30.6 bar<br />

27.5 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 132<br />

311<br />

Total several DISTILLATION_STAGE's 1298 1662 3.91 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.40<br />

0.00<br />

0.00<br />

2.67 3.19<br />

0.00 0.00<br />

0.32 10.32<br />

3.40<br />

0.00<br />

7.86<br />

3.53<br />

0.00<br />

5.82<br />

3.80<br />

0.00<br />

0.48<br />

7.133 204.2 kg/s<br />

90 C<br />

1.672 204.2 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.256 14.8 kg/s<br />

220 C 602<br />

96.3 616.3<br />

139.0 bar 607<br />

78.3 357.5<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

116.7<br />

Heatsourc-DH 168.7<br />

23.1 519 783<br />

33.5 757.9 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

132<br />

96.3 kg/s<br />

235 C<br />

2<br />

77<br />

78.3 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 33.4 kg/s 14.7 15.03 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 23.1 kg/s 4 100 C 685 30.6 bar 16.0 Preheater-sy NG 93 kr/GJ Methanol 52.0 kr/s 225 kr/GJ 254 kr/GJ 5.05 kr/kg 4.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 14.7 kg/s 77 606 2 77 0.86 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 414 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 77 78.3 144.0 bar 91.5 541 DH water 0 kr/ton Syngas 4.1 kr/s 219 kr/GJ - kr/GJ 0.98 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.3 MW 19 0.90 352.6 78.3 kg/s 640 139.0 bar 49 15.06 4.9 69.64 Water 32 kr/ton DH water 0.4 kr/s 24 kr/GJ 5 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.292 63 C 2 91.5 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

172 0.69<br />

Feed<br />

14.7<br />

3.232<br />

30.6 bar<br />

14.7 kg/s<br />

220 C<br />

Preheater-sy<br />

117 166 C<br />

Condenser-1<br />

6.4<br />

631 4.9 kg/s<br />

4 166 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 0.61 1.03 If methanol and DH share the plant costs<br />

Condenser-1 59.3 10.87 621 631 4 (methanol and DH are the only products from the plant) -<br />

3 705 706<br />

16 3.5 bar<br />

2 0.61 705 706<br />

3 3.5 bar<br />

6<br />

SAND 31 88.4 489<br />

643 139.0 bar<br />

2 88.4 kg/s<br />

3 139.0 bar<br />

50 3.1 kg/s<br />

146 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 45.8 kr/s 198 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

22 15.9 kg/s 4 3.0 kg/s Condenser 106.1 146 C Preheater-sy<br />

DH water 10.6 kr/s 150 kr/Gjen Mass flow<br />

136 C 136 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.02 811 8<br />

103.1 1.0 bar<br />

Reboil-meoh2 17.3<br />

0.02 0.74<br />

0 805 2<br />

DH water<br />

103.1 1.0 bar Mechanical power<br />

10<br />

3.185 19.5 14.31 3.601 103.1 kg/s 0.844 103.1 kg/s 0.605 3.0 2.217<br />

707 3.5 bar Cond-steam-2 90 C 77.04 605 2 50 C 699 3.5 bar 0.25<br />

708 19.5 kg/s SAND 393 Condenser<br />

78.3 139.0 bar 4.1 18.54 Condenser<br />

700 3.0 kg/s<br />

4 136 C 352.4 78.3 kg/s 611 139.0 bar 77.9 25.02 5.9 114.4 2 136 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 1.65<br />

0 693 694<br />

4 3.5 bar<br />

3 3.6 kg/s<br />

Dis_stage_1<br />

4 2.58 695 696<br />

13 3.5 bar<br />

9 12.9 kg/s<br />

2 27.3<br />

2.613 0.69<br />

2.613 705 706<br />

13 3.5 bar<br />

18 12.9 kg/s<br />

4<br />

50.95 625 635<br />

14 3.5 bar<br />

2<br />

Methanol molar-% = 62.7<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 4.1 kg/s<br />

4.055 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 5.9 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

136 C<br />

Reboil-meoh1<br />

136 C<br />

Reboil-meoh1<br />

234 13.9 kg/s<br />

104 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 4.6 0.228 2.0 3.73<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 11.24 412 2<br />

5EX 5 Component cost flow 2 4.6 kg/s 76.6 MW 201 2 2.0 kg/s 10.1 10.0 bar Bi<strong>og</strong>as<br />

6 EX_CH * Number of decimals Electrolyser 0.146 15 C SAND 76.58 0.07 850 C 226.6 10.1 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

891 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.281 803 4<br />

19.5 1.0 bar<br />

Electrolyser<br />

25.31<br />

3.3<br />

0.79<br />

0 802 2<br />

19.5 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

12.66<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.679 19.5 kg/s 4.1 0.534 0.5 59.87 0.16 19.5 kg/s 3.9 2.985<br />

12 C<br />

13 C/EX<br />

SAND 1E-08 90 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

4.1 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.5 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

1.3 MW 3<br />

Reformat<br />

16.1 217<br />

403<br />

2<br />

10.0 bar<br />

3.9 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.0 2E-04<br />

83 1.0 bar<br />

4 0.0 kg/s<br />

14 C/M<br />

O2 5E-05 7 4 5E-05<br />

0.90<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

5E-05 5 2<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.221 90 C<br />

Electrolyser<br />

0.1 0.015<br />

6 1.0 bar<br />

4 0.1 kg/s<br />

24.8 90 C<br />

Electrolyser<br />

H2 O2 0.215 401 2<br />

3.9 1.0 bar<br />

0.519 3.9 kg/s<br />

90 C<br />

SAND 1.346<br />

0.692 402 4<br />

0.94<br />

0.692 3.9 10.0 bar<br />

1.782 3.9 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 16.1 kg/s<br />

12.66 950 C<br />

NG_reformer<br />

0.69 850 C<br />

NG_reformer<br />

1.7 23.44<br />

441 10.0 bar<br />

2 1.7 kg/s<br />

1.367 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

5E-05<br />

0.0<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

0.0 0.009<br />

1.0 bar<br />

801<br />

2<br />

0.0 4E-05<br />

1.0 bar<br />

0.0 kg/s<br />

15<br />

4<br />

0.0 1E-05<br />

1.0 bar<br />

0.0 kg/s Heatsink-H2<br />

0.006 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

9.9 134<br />

10.0 bar<br />

9.9 kg/s<br />

1.8<br />

0.69 0.97 Heatex-O2<br />

SAND 11<br />

0.001 0.0 kg/s Heatex-GG-st 4 0.0 kg/s 0 50 C 0 60 C 0.0 MW 322 24.8 0.0 MW 9 Comp-CO2 7.818 950 C<br />

730 C SAND 7 0.00 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 9E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

0<br />

Gasifier<br />

0.0 0.115<br />

0<br />

0.0<br />

0.104<br />

Gasifier<br />

10 GG2<br />

0.00 0.78<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

800 C<br />

0<br />

0.0<br />

0.104<br />

11 2<br />

1.0 bar<br />

0.0 kg/s<br />

752 C<br />

Heatex-GG-st<br />

0.00 0.99 0<br />

0.0 0.0<br />

0.099<br />

12 2 0.00 0.74<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

130 C Heatex-GG-DH<br />

0<br />

0.0<br />

0.099<br />

13 2<br />

1.0 bar<br />

0.0 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 0.0<br />

0.0 0.099<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

24.80<br />

24.8 511 2<br />

0.5 1.0 bar<br />

59.87 0.5 kg/s<br />

90 C<br />

Heatsink-H2<br />

13.79 503 4<br />

15.4 21.2 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 21.2 bar 0.0 1.0 bar<br />

CO2<br />

11.22 411 2<br />

Bi<strong>og</strong>as 10.1 10.0 bar<br />

215.8 10.1 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

4.4 59.5<br />

10.0 bar<br />

18.6<br />

13 11.24 0.99<br />

0 434 Water 2<br />

0.5 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 0.0 kg/s 202.6 15.4 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 4.4 kg/s 0.047 0.5 kg/s<br />

2 0.0 kg/s 0.00 9 2 Heatex-GG-O2 0.0 0.004 0 21 4 0.0 60 C 254 C 286 C 15 C 3.471 950 C 107 C<br />

0.00 120 C 0.0 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 24.80 512 2 26.06 524 4 15.9 265 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

5E-04 0.0 kg/s<br />

790 C<br />

Gasifier<br />

2 0.0 kg/s<br />

3E-04 120 C<br />

Heatex-GG-st<br />

-0 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

0.5 59.97<br />

1.0 bar<br />

0.5 kg/s<br />

0.5<br />

59.87<br />

1.0 bar<br />

0.5 kg/s<br />

90 C<br />

0.5<br />

62.82<br />

21.2 bar<br />

0.5 kg/s<br />

403 C<br />

531<br />

2<br />

39.86<br />

21.2 bar<br />

15.9 kg/s<br />

283 C<br />

0.065 422 2<br />

Water 2.0 10.0 bar<br />

0.115 2.0 kg/s<br />

8.3 Heatex-H2O<br />

0.07 0.75 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

0.0 2E-04<br />

1.0 bar<br />

24.81 90 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

1.5 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

36.5 24.44<br />

Syngas-cool1<br />

45 C<br />

Heatex-H2O<br />

0.2<br />

0.02<br />

10.0 bar<br />

0.2 kg/s<br />

4 0.0 kg/s 0.93<br />

SAND 1.463 571 1.0 bar Syngas-cool1 Comp-NG_ref 107 C<br />

0.00 90 C 25.33 7.2 4.415 6 36.5 kg/s SAND 21 3.2 MW 5 4.2 Heatex-H2O<br />

9.5 123.1 1.7<br />

0.0 0.008 Heatex-GG-DH<br />

0.5 61.33 563 1.0 bar 1.59 200 C 5.8 SAND 3.205 4.2 54.64 9.5 123.1 1.7 22.19<br />

0.00<br />

0.0<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.50 0.0 0.00 34 2<br />

1.0 bar Steam dryer 0.00 0.0 1.0 bar<br />

34 1.0 bar<br />

4 0.0 kg/s<br />

2E-04 730 C<br />

Split-steam2<br />

522 4.0 bar<br />

2 0.5 kg/s<br />

25.33 283 C<br />

Cooler-GG-H2<br />

2 7.2 kg/s<br />

0.31 120 C<br />

Cooler-GG-H2<br />

1.1<br />

0.31 0.84<br />

25.33 523 2<br />

0.5 4.0 bar<br />

0.94<br />

26.06<br />

Syngas-cool1<br />

561<br />

2<br />

1.589<br />

36.5 22.51<br />

1.0 bar<br />

36.5 kg/s<br />

120 C<br />

1.59 0.84<br />

0 541 4<br />

0.0 21.2 bar<br />

-0 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

13.79 462 2 13.79<br />

15.4 21.2 bar<br />

202.6 15.4 kg/s<br />

12.66 461 2<br />

0.93<br />

15.4 10.0 bar<br />

199.6 15.4 kg/s<br />

452 10.0 bar<br />

2 4.2 kg/s<br />

3.471 107 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 9.5 kg/s<br />

7.818 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 1.7 kg/s<br />

1.367 483 C<br />

Mixer-NG_ref<br />

0.03 0.0 kg/s 0.033 0.0 kg/s Cooler-GG-H2 7.2 4.793 60.88 0.5 kg/s Syngas-cool1 15.9 262.7 Syngas-cool1<br />

254 C 151 C<br />

120 C 0.0 0.115 271 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 21.2 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 7.2 kg/s Comp-GG-H2-2 2 15.9 kg/s<br />

2<br />

0.003<br />

0.0 kg/s<br />

15 C<br />

Steam<br />

0.31 200 C<br />

Cooler-GG-H2<br />

2.1 MW<br />

SAND<br />

13<br />

2.072<br />

39.86 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

0.0 0.002<br />

41 1.0 bar<br />

2 0.0 kg/s<br />

Steam<br />

0.93<br />

41.96<br />

15.9 268.2<br />

533 63.3 bar<br />

4 15.9 kg/s<br />

Syngas 41.96 283 C<br />

5.9 MW<br />

SAND<br />

15<br />

5.921<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

116<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

151<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.35<br />

0.00<br />

0.00<br />

Input:<br />

Bi<strong>og</strong>as<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

216 MW<br />

0 MW<br />

77 MW<br />

96 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

11 MW<br />

0 MW<br />

14 MW<br />

SAND 79 2E-04 120 C 94.1 62.97 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 0 0 0.00<br />

DH-condenser<br />

0.91 0.0 0.28 811 12<br />

DH condenser0.28<br />

19.5 1.0 bar<br />

581<br />

2<br />

4.10<br />

1.0 bar<br />

94.1 kg/s<br />

200 C Steam<br />

2.16 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

79% (with power for electrolyser)<br />

74% (with total power)<br />

82%<br />

0.0 3E-04 0.681 19.5 kg/s DH-cooler DH-cooler<br />

49.4 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 33.07 49.4 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 0 0 0.00<br />

4 0.0 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

407.0 14.22<br />

811 1.0 bar<br />

0.018 811 6<br />

89.5 1.0 bar<br />

3.126 89.5 kg/s<br />

0.48 15.0 0 804 2<br />

DH cooler<br />

DH water<br />

0.02 89.5 1.0 bar<br />

0.733 89.5 kg/s 1.0 0.689<br />

2.15 562 2<br />

49.4 1.0 bar<br />

200 C<br />

Syngas-cool2 7.9<br />

2.16 0.90<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

0<br />

6<br />

1<br />

0<br />

8<br />

1<br />

0.00<br />

0.02<br />

0.00 Energy<br />

Water<br />

2 407.0 kg/s<br />

0.36 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

94.1 57.98<br />

1.0 bar<br />

94.1 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.04 225 C<br />

Cond-steam-1<br />

30.46 49.4 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

14.8 265.1<br />

63.3 bar<br />

14.8 kg/s<br />

0 551 4<br />

1.1 63.3 bar<br />

0.165 1.1 kg/s<br />

141 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

213<br />

7<br />

3<br />

14<br />

0<br />

277<br />

10<br />

4<br />

19<br />

0<br />

0.64<br />

0.02<br />

0.01<br />

0.04<br />

0.00<br />

Input:<br />

Bi<strong>og</strong>as<br />

Biomass<br />

Power*<br />

Total power<br />

204 MW<br />

0 MW<br />

77 MW<br />

96 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

68 MW<br />

0 MW<br />

12 MW<br />

Energy content in DH water = 68 MW 4.10 120 C<br />

DH-cooler<br />

Steam<br />

41.96 141 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

7<br />

0<br />

9<br />

0.00<br />

0.02<br />

* for electrolyser<br />

Urenhed:<br />

0.035 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.96<br />

Water /<br />

671<br />

1.0 0.616<br />

1.0 bar<br />

0.93<br />

43.43<br />

14.8<br />

Comp-syngas2<br />

4.2 MW 17<br />

SAND 4.157<br />

269<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

9<br />

2<br />

27<br />

1<br />

12<br />

3<br />

35<br />

0.00<br />

0.03<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

73% (with power for electrolyser)<br />

68% (with total power)<br />

95%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.04 120 C 2 14.8 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 19 24 0.06<br />

Cond-steam-1<br />

43.43 255 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 361 469 1.08 Gas composition at specific nodes (mol-%)<br />

43.01 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 6 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

68.5 531.9<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

5<br />

3<br />

6<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.60<br />

4 100 C 2 68.5 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

155.3 37.2 834.4 Steam<br />

0 682 4<br />

91 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

282<br />

0<br />

366<br />

0<br />

0.85<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 46.10 60.37 41.82 24.69 26.26 27.85 30.00<br />

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

791 3.5 bar 16.8 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 12 16 0.04 4 CO 42.73 0.00 31.87 26.62 12.44 2.80 2.98 3.16 3.41<br />

792 37.2 kg/s 17.17 16.8 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 6 8 0.02 6 CO2 5.24 0.00 8.15 6.82 40.23 50.62 53.85 57.11 61.51<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 15 20 0.05 7 H2O-G 5.21 0.00 13.43 5.81 2.28 3.78 2.10 0.88 0.03<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.046 811 10 38.0<br />

226.9 1.0 bar 0.046 0.70<br />

0 806 2<br />

DH water<br />

226.9 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.04 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

16.8 30.6 bar<br />

31.1 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 92<br />

311<br />

Total several DISTILLATION_STAGE's 1118 1426 3.36 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.45<br />

0.00<br />

0.00<br />

0.37<br />

0.00<br />

0.00<br />

2.90 3.71 3.95<br />

0.00 0.00 0.00<br />

0.33 14.40 10.85<br />

4.19<br />

0.00<br />

6.80<br />

4.51<br />

0.00<br />

0.54<br />

7.927 226.9 kg/s<br />

90 C<br />

1.858 226.9 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.691 16.8 kg/s<br />

220 C 602<br />

68.5 517<br />

139.0 bar 607<br />

53.7 264.5<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

112.3<br />

Heatsourc-DH 155.3<br />

26.9 603.3 783<br />

37.2 843.1 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

92<br />

68.5 kg/s<br />

235 C<br />

2<br />

47<br />

53.7 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 37.2 kg/s 16.6 17.05 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 26.9 kg/s 4 100 C 685 30.6 bar 11.1 Preheater-sy Bi<strong>og</strong>as 55 kr/GJ Methanol 43.0 kr/s 186 kr/GJ 210 kr/GJ 4.18 kr/kg 3.3 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 16.6 kg/s 47 606 2 47 0.87 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 414 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 47 53.7 144.0 bar 64.6 442.4 DH water 0 kr/ton Syngas 2.5 kr/s 181 kr/GJ - kr/GJ 0.88 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.90 261.2 53.7 kg/s 640 139.0 bar 70 12.66 3.9 70.75 Water 32 kr/ton DH water 0.4 kr/s 25 kr/GJ 5 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.203 63 C 2 64.6 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

161 0.71<br />

Feed<br />

16.6<br />

3.667<br />

30.6 bar<br />

16.6 kg/s<br />

220 C<br />

Preheater-sy 79.14 168 C<br />

Condenser-1<br />

6.3<br />

631 3.9 kg/s<br />

4 168 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 0.93 1.03 If methanol and DH share the plant costs<br />

Condenser-1 77.8 12.57 621 631 4 (methanol and DH are the only products from the plant) -<br />

5 705 706<br />

18 3.5 bar<br />

2 0.93 705 706<br />

3 3.5 bar<br />

6<br />

SAND 31 61.0 370.6<br />

643 139.0 bar<br />

2 61.0 kg/s<br />

4 139.0 bar<br />

70 3.6 kg/s<br />

144 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 35.6 kr/s 154 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

38 17.8 kg/s 6 3.0 kg/s Condenser 66.57 144 C Preheater-sy<br />

DH water 10.3 kr/s 150 kr/Gjen Mass flow<br />

134 C 134 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

71.2 1.0 bar<br />

Reboil-meoh2 11.9<br />

0.01 0.75<br />

0 805 2<br />

DH water<br />

71.2 1.0 bar Mechanical power<br />

10<br />

5.455 19.5 29.62 2.487 71.2 kg/s 0.583 71.2 kg/s 0.919 3.0 4.559<br />

707 3.5 bar Cond-steam-2 90 C 47.2 605 2 50 C 699 3.5 bar 0.25<br />

708 19.5 kg/s SAND 393 Condenser<br />

53.7 139.0 bar 2.8 13.74 Condenser<br />

700 3.0 kg/s<br />

4 134 C 261 53.7 kg/s 611 139.0 bar 88.0 16.89 4.5 93.4 2 134 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 3.59<br />

0 693 694<br />

2 3.5 bar<br />

3 1.7 kg/s<br />

Dis_stage_1<br />

4 4.537 695 696<br />

15 3.5 bar<br />

23 14.8 kg/s<br />

2 30.9<br />

4.574 0.67<br />

4.574 705 706<br />

15 3.5 bar<br />

32 14.8 kg/s<br />

4<br />

42.12 625 635<br />

12 3.5 bar<br />

2<br />

Methanol molar-% = 78.8<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 2.8 kg/s<br />

2.484 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 4.5 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

134 C<br />

Reboil-meoh1<br />

134 C<br />

Reboil-meoh1<br />

234 12.0 kg/s<br />

102 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 18.6 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 18.6 kg/s 311.6 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.594 15 C SAND 311.6 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

1.144 803 4<br />

79.1 1.0 bar<br />

Electrolyser<br />

103<br />

13.2<br />

0.80<br />

0 802 2<br />

79.1 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 2.762 79.1 kg/s 16.5 2.174 2.1 243.6 0.648 79.1 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 1E-08 90 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

16.5 kg/s<br />

2<br />

4<br />

1.0 bar<br />

2.1 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.0 2E-04<br />

83 1.0 bar<br />

4 0.0 kg/s<br />

14 C/M<br />

O2 5E-05 7 4 5E-05<br />

0.90<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

5E-05 5 2<br />

0.0 1.0 bar<br />

1E-04 0.0 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.901 90 C<br />

Electrolyser<br />

16.5 2.173<br />

6 1.0 bar<br />

4 16.5 kg/s<br />

100.9 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

3E-05<br />

0.0<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

0.0 0.009<br />

1.0 bar<br />

801<br />

2<br />

0.0 4E-05<br />

1.0 bar<br />

0.0 kg/s<br />

15<br />

4<br />

0.0 1E-05<br />

1.0 bar<br />

0.0 kg/s Heatsink-H2<br />

0.9 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

0.001 0.0 kg/s Heatex-GG-st 4 0.0 kg/s 0 50 C 0 60 C 0.0 MW 322 100.9 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.00 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 4E-04 4.4 MW 7<br />

Heatex-NG<br />

0.89<br />

0<br />

Gasifier<br />

0.0 0.115<br />

0<br />

0.0<br />

0.104<br />

Gasifier<br />

10 GG2<br />

0.00 0.78<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

800 C<br />

0<br />

0.0<br />

0.104<br />

11 2<br />

1.0 bar<br />

0.0 kg/s<br />

752 C<br />

Heatex-GG-st<br />

0.00 0.99 0<br />

0.0 0.0<br />

0.099<br />

12 2 0.00 0.74<br />

1.0 bar 0.0<br />

0.0 kg/s<br />

130 C Heatex-GG-DH<br />

0<br />

0.0<br />

0.099<br />

13 2<br />

1.0 bar<br />

0.0 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 0.0<br />

0.0 0.099<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

#####<br />

100.9 511 2<br />

2.1 1.0 bar<br />

243.6 2.1 kg/s<br />

90 C<br />

Heatsink-H2<br />

3.806 503 4<br />

19.6 14.6 bar<br />

SAND 4.373<br />

3.789 502 4 3.789 2.238 501 2<br />

0.92<br />

19.6 14.6 bar 19.6 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 0.0 kg/s 13.05 19.6 kg/s 12.91 19.6 kg/s 8.864 19.6 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 0.0 kg/s 0.00 9 2 Heatex-GG-O2 0.0 0.004 0 21 4 0.0 60 C 248 C 248 C 15 C 0.01 950 C 107 C<br />

0.00 120 C 0.0 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner ##### 512 2 105.2 524 4 21.7 263.9 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

5E-04 0.0 kg/s<br />

790 C<br />

Gasifier<br />

2 0.0 kg/s<br />

2E-04 120 C<br />

Heatex-GG-st<br />

1E-22 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

2.1 243.7<br />

1.0 bar<br />

2.1 kg/s<br />

2.1<br />

243.6<br />

1.0 bar<br />

2.1 kg/s<br />

90 C<br />

2.1<br />

253.1<br />

14.6 bar<br />

2.1 kg/s<br />

322 C<br />

531<br />

2<br />

109<br />

14.6 bar<br />

21.7 kg/s<br />

292 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

0.0 2E-04<br />

1.0 bar<br />

##### 90 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

6.2 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

50.9 31.51<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 0.0 kg/s 0.93<br />

SAND 6.215 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 103.1 30.8 17.44 6 50.9 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

0.0 0.007 Heatex-GG-DH<br />

2.1 249.5 563 1.0 bar 1.32 200 C 8.1 SAND 0.001 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.00<br />

0.0<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.46 0.0 0.00 34 2<br />

1.0 bar Steam dryer 0.00 0.0 1.0 bar<br />

34 1.0 bar<br />

4 0.0 kg/s<br />

1E-04 730 C<br />

Split-steam2<br />

522 4.2 bar<br />

2 2.1 kg/s<br />

103.1 292 C<br />

Cooler-GG-H2<br />

2 30.8 kg/s<br />

0.80 120 C<br />

Cooler-GG-H2<br />

4.9<br />

0.81 0.83<br />

##### 523 2<br />

2.1 4.2 bar<br />

0.93<br />

105.2<br />

Syngas-cool1<br />

561<br />

2<br />

1.322<br />

50.9 28.82<br />

1.0 bar<br />

50.9 kg/s<br />

120 C<br />

1.33 0.83<br />

0 541 4<br />

0.0 14.6 bar<br />

7E-21 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 14.6 bar<br />

0.159 0.0 kg/s<br />

0.017 461 2<br />

0.92<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

0.028 0.0 kg/s 0.03 0.0 kg/s Cooler-GG-H2 30.8 19.06 247.5 2.1 kg/s Syngas-cool1 21.7 260.7 Syngas-cool1<br />

206 C 154 C<br />

120 C 0.0 0.115 271 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 14.6 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 30.8 kg/s Comp-GG-H2-2 2 21.7 kg/s<br />

2<br />

0.003<br />

0.0 kg/s<br />

15 C<br />

Steam<br />

0.81 200 C<br />

Cooler-GG-H2<br />

5.9 MW<br />

SAND<br />

13<br />

5.922<br />

109 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

0.0 0.002<br />

41 1.0 bar<br />

2 0.0 kg/s<br />

Steam<br />

0.93<br />

112<br />

21.7 268.4<br />

533 51.1 bar<br />

4 21.7 kg/s<br />

Syngas112<br />

292 C<br />

8.2 MW<br />

SAND<br />

15<br />

8.248<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

474<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

616<br />

0<br />

0<br />

C<br />

[kr/s]<br />

1.43<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

0 MW<br />

312 MW<br />

345 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

13 MW<br />

2 MW<br />

18 MW<br />

SAND 79 1E-04 120 C 133.5 82.69 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 0 0 0.00<br />

DH-condenser<br />

0.91 0.0 1.14 811 12<br />

DH condenser1.14<br />

79.1 1.0 bar<br />

581 1.0 bar<br />

2 133.5 kg/s<br />

3.48 200 C Steam<br />

1.33 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

74% (with power for electrolyser)<br />

67% (with total power)<br />

77%<br />

0.0 1E-04 2.764 79.1 kg/s DH-cooler DH-cooler<br />

50.9 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 31.51 50.9 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 0 0 0.00<br />

4 0.0 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

500.0 17.47<br />

811 1.0 bar<br />

0.026 811 6<br />

126.9 1.0 bar<br />

4.432 126.9 kg/s<br />

0.48 21.3 0 804 2<br />

DH cooler<br />

DH water<br />

0.03 126.9 1.0 bar<br />

1.039 126.9 kg/s 1.0 0.639<br />

1.322 562 2<br />

50.9 1.0 bar<br />

200 C<br />

Syngas-cool2 8.1<br />

1.33 0.83<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 500.0 kg/s<br />

1.23 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

133.5 75.62<br />

35 1.0 bar<br />

6 133.5 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.03 225 C<br />

Cond-steam-1<br />

28.82 50.9 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

21.7 265.1<br />

51.1 bar<br />

21.7 kg/s<br />

0 551 4<br />

0.0 51.1 bar<br />

-0 0.0 kg/s<br />

130 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

20<br />

0<br />

0<br />

0<br />

0<br />

26<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.06<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

0 MW<br />

312 MW<br />

345 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

84 MW<br />

0 MW<br />

14 MW<br />

Energy content in DH water = 84 MW 3.48 120 C<br />

DH-cooler<br />

Steam<br />

112 130 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

28<br />

0<br />

36<br />

0.00<br />

0.08<br />

* for electrolyser<br />

Urenhed:<br />

0.493 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.51<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

114.3 6.6 MW 17<br />

SAND 6.637<br />

21.7 271.3<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

2<br />

27<br />

3<br />

37<br />

3<br />

35<br />

4<br />

48<br />

0.01<br />

0.08<br />

0.01<br />

0.11<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

66% (with power for electrolyser)<br />

59% (with total power)<br />

88%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 4 0.01<br />

0.03 120 C 2 21.7 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 30 39 0.09<br />

Cond-steam-1<br />

114.3 261 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 580 754 1.74 Gas composition at specific nodes (mol-%)<br />

109.1 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 8 11 0.02<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

124.5 616.7<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

9<br />

5<br />

11<br />

0.01<br />

0.03<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.31<br />

4 100 C 2 124.5 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 2 2 0.00<br />

Species<br />

Split-meoh1<br />

288.4 27.3 610.7 Steam<br />

0 682 4<br />

272 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

384<br />

0<br />

499<br />

0<br />

1.16<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.98<br />

0.25<br />

0.00 57.70 69.78 42.28 25.26 26.98 28.07 30.00<br />

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

791 3.5 bar 10.2 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 7 10 0.02 4 CO 42.73 0.00 22.49 0.02 1.26 1.53 1.63 1.70 1.82<br />

792 27.3 kg/s 10.43 10.2 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 9 11 0.03 6 CO2 5.24 0.00 5.09 30.18 56.10 57.00 60.87 63.33 67.68<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 11 14 0.03 7 H2O-G 5.21 0.00 14.17 0.01 0.04 7.99 4.02 2.00 0.06<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 ##### 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.033 811 10 27.8<br />

167.0 1.0 bar 0.033 0.70<br />

0 806 2<br />

DH water<br />

167.0 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.03 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

10.2 30.6 bar<br />

18.9 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 274<br />

311<br />

Total several DISTILLATION_STAGE's 1636 2102 4.92 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.48<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.30<br />

0.00<br />

0.00<br />

8.22<br />

0.00<br />

0.00<br />

6.48<br />

0.00<br />

0.00<br />

4.90<br />

0.00<br />

0.00<br />

0.44<br />

5.835 167.0 kg/s<br />

90 C<br />

1.368 167.0 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

2.242 10.2 kg/s<br />

220 C 602<br />

124.5 606.5<br />

139.0 bar 607<br />

102.8 346.2<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

179.2<br />

Heatsourc-DH 288.4<br />

17.0 379.6 783<br />

27.3 617 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2 124.5 kg/s<br />

274 235 C<br />

2 102.8 kg/s<br />

158 225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 27.3 kg/s 10.1 10.31 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 16.9 kg/s 4 100 C 685 30.6 bar 20.3 Preheater-sy NG 93 kr/GJ Methanol 109.1 kr/s 472 kr/GJ 532 kr/GJ 10.60 kr/kg 8.3 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 10.1 kg/s 158 606 2 158 0.84 SAND 29 Biomass 32 kr/GJ Oxygen 0.9 kr/s 414 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 158 102.8 144.0 bar 118.5 534.7 DH water 0 kr/ton Syngas 8.3 kr/s 463 kr/GJ - kr/GJ 1.53 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.4 MW 19 0.90 340.1 102.8 kg/s 640 139.0 bar 34 29.5 6.0 64.61 Water 32 kr/ton DH water 1.2 kr/s 70 kr/GJ 15 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.369 63 C 2 118.5 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

293 0.64<br />

Feed<br />

10.1<br />

2.217<br />

30.6 bar<br />

10.1 kg/s<br />

220 C<br />

Preheater-sy 244.1 169 C<br />

Condenser-1<br />

8.7<br />

631 5.9 kg/s<br />

4 169 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.33 1.00 If methanol and DH share the plant costs<br />

Condenser-1 45.7 22.79 621 631 4 (methanol and DH are the only products from the plant) -<br />

4 705 706<br />

13 3.5 bar<br />

2 1.33 705 706<br />

4 3.5 bar<br />

6<br />

SAND 31 114.8 482.4<br />

643 139.0 bar<br />

2 114.8 kg/s<br />

4 139.0 bar<br />

50 3.7 kg/s<br />

147 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 106.9 kr/s 463 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

14 12.8 kg/s 5 4.1 kg/s Condenser 221.3 147 C Preheater-sy<br />

DH water 12.6 kr/s 150 kr/Gjen Mass flow<br />

137 C 137 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.03 811 8<br />

127.0 1.0 bar<br />

Reboil-meoh2 21.3<br />

0.03 0.74<br />

0 805 2<br />

DH water<br />

127.0 1.0 bar Mechanical power<br />

10<br />

4.182 18.8 8.949 4.437 127.0 kg/s 1.04 127.0 kg/s 1.324 4.1 1.933<br />

707 3.5 bar Cond-steam-2 90 C 157.4 605 2 50 C 699 3.5 bar 0.25<br />

708 18.8 kg/s SAND 393 Condenser<br />

102.8 139.0 bar 5.4 17.88 Condenser<br />

700 4.1 kg/s<br />

4 137 C 339.8 102.8 kg/s 611 139.0 bar 69.8 55.66 6.7 120.2 2 137 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 0.98<br />

0 693 694<br />

6 3.5 bar<br />

3 6.0 kg/s<br />

Dis_stage_1<br />

4 2.858 695 696<br />

9 3.5 bar<br />

4 8.8 kg/s<br />

2 18.7<br />

2.881 0.69<br />

2.881 705 706<br />

9 3.5 bar<br />

10 8.8 kg/s<br />

4<br />

107.9 625 635<br />

16 3.5 bar<br />

2<br />

Methanol molar-% = 49.7<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 5.4 kg/s<br />

8.283 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 6.7 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

137 C<br />

Reboil-meoh1<br />

137 C<br />

Reboil-meoh1<br />

234 16.3 kg/s<br />

107 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


25. Flowsheets for <strong>metanolanlæg</strong> – for<br />

parametervariationen (metanolreaktortryk)<br />

Flowsheets for metanolreaktortryk på 40 bar, 82,7 bar <strong>og</strong> 200 bar.<br />

Sorteret efter metanolreaktortryk – anlægget på 40 bar først.


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.7 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 3.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.7 kg/s 44.8 MW 201 2 0.0 kg/s 0.0 3.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.085 15 C SAND 44.77 0.00 850 C 0.175 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

656 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.515 803 4<br />

129.3 1.0 bar<br />

Electrolyser<br />

14.8<br />

1.9<br />

0.80<br />

0 802 2<br />

129.3 1.0 bar DH water<br />

0.92<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 1.275 129.3 kg/s 2.4 0.312 0.3 35.01 1.058 129.3 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 3E-05 54 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.4 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.168<br />

403<br />

2<br />

3.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.492<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.126 7 4 0.126<br />

0.90<br />

2.4 1.0 bar<br />

0.312 2.4 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.126 5 2<br />

2.4 1.0 bar<br />

0.312 2.4 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.126 90 C<br />

Electrolyser<br />

0.0 -0<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

14.15 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 4E-04<br />

3E-04 402 4<br />

0.92<br />

3E-04 0.0 3.0 bar<br />

8E-04 0.0 kg/s<br />

231 C<br />

431 3.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.02<br />

441 3.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.014<br />

3.1<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

17.0 21.92<br />

1.0 bar<br />

801<br />

2<br />

13.7 0.112<br />

1.0 bar<br />

13.7 kg/s<br />

15<br />

4<br />

3.0 1.377<br />

1.0 bar<br />

3.0 kg/s Heatsink-H2<br />

-0 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.048<br />

3.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.95 Heatex-O2<br />

SAND 11<br />

4.007 3.1 kg/s Heatex-GG-st 4 17.0 kg/s 0 50 C 0 60 C 0.0 MW 322 14.15 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.07 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 5E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

11<br />

Gasifier<br />

12.9 282.2<br />

11<br />

17.8<br />

257<br />

Gasifier<br />

10 GG2<br />

0.13 0.78<br />

1.0 bar 1.7<br />

17.8 kg/s<br />

800 C<br />

11<br />

17.8<br />

255.8<br />

11 2<br />

1.0 bar<br />

17.8 kg/s<br />

754 C<br />

Heatex-GG-st<br />

0.07 0.98 11<br />

21.8 17.8<br />

243.3<br />

12 2 0.00 0.74<br />

1.0 bar 2.3<br />

17.8 kg/s<br />

130 C Heatex-GG-DH<br />

11<br />

17.8<br />

242.8<br />

13 2<br />

1.0 bar<br />

17.8 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 10.6<br />

14.8 242.2<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

14.15<br />

14.15 511 2<br />

0.3 1.0 bar<br />

35.01 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 7.5 bar<br />

SAND 0.002<br />

0.002 502 4 0.002 0.001 501 2<br />

0.92<br />

0.0 7.5 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

3.0 bar<br />

0.171 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.1<br />

3.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 3.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 14.8 kg/s 0.162 0.0 kg/s 0.006 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 4E-06 0.0 kg/s<br />

2 12.9 kg/s 0.13 9 2 Heatex-GG-O2 17.0 9.643 0 21 4 10.6 60 C 213 C 182 C 15 C 0.01 950 C 79 C<br />

7.72 120 C 2.4 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 14.15 512 2 28.02 524 4 15.1 284.6 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.271 2.4 kg/s<br />

790 C<br />

Gasifier<br />

2 17.0 kg/s<br />

0.049 120 C<br />

Heatex-GG-st<br />

2E-19 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

15.1 277<br />

1.0 bar<br />

15.1 kg/s<br />

0.3<br />

35.01<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

15.1<br />

284.4<br />

7.5 bar<br />

15.1 kg/s<br />

228 C<br />

531<br />

2<br />

28.04<br />

7.5 bar<br />

15.1 kg/s<br />

228 C<br />

1E-04 422 2<br />

Water 0.0 3.0 bar<br />

2E-06 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.68 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

13.7 0.479<br />

1.0 bar<br />

24.72 64 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.8 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

57.1 33.33<br />

Syngas-cool1<br />

23 C<br />

Heatex-H2O<br />

0.0<br />

7E-06<br />

3.0 bar<br />

0.0 kg/s<br />

4 13.7 kg/s 0.92<br />

SAND 5.817 571 1.0 bar Syngas-cool1 Comp-NG_ref 79 C<br />

0.00 90 C 26.79 57.0 32.29 6 57.1 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.044 0.0<br />

13.9 17.91 Heatex-GG-DH<br />

15.1 282.4 563 1.0 bar 0.17 150 C 3.4 SAND 0.003 0.0 0.092 0.0 0.044 0.0 0.019<br />

0.63<br />

219.1<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.52 32.9 0.63 34 2<br />

1.0 bar Steam dryer 7.72 207.5 1.0 bar<br />

34 1.0 bar<br />

4 13.9 kg/s<br />

0.061 730 C<br />

Split-steam2<br />

522 3.7 bar<br />

2 15.1 kg/s<br />

26.79 228 C<br />

Cooler-GG-H2<br />

2 57.0 kg/s<br />

0.16 120 C<br />

Cooler-GG-H2<br />

3.4<br />

0.17 0.81<br />

26.79 523 2<br />

15.1 3.7 bar<br />

0.92<br />

28.02<br />

Syngas-cool1<br />

561<br />

2<br />

0.163<br />

57.1 32.32<br />

1.0 bar<br />

57.1 kg/s<br />

120 C<br />

0.17 0.81<br />

0 541 4<br />

0.0 7.5 bar<br />

3E-18 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 7.5 bar<br />

0.157 0.0 kg/s<br />

0.016 461 2<br />

0.92<br />

0.0 3.0 bar<br />

0.154 0.0 kg/s<br />

452 3.0 bar<br />

2 0.0 kg/s<br />

0.01 79 C<br />

Mixer-NG_ref<br />

433 3.0 bar<br />

2 0.0 kg/s<br />

0.005 79 C<br />

Mixer-NG_ref<br />

442 3.0 bar<br />

2 0.0 kg/s<br />

0.002 303 C<br />

Mixer-NG_ref<br />

124.1 219.1 kg/s 128.5 207.5 kg/s Cooler-GG-H2 57.0 33.29 281.2 15.1 kg/s Syngas-cool1 15.1 283.3 Syngas-cool1<br />

226 C 108 C<br />

120 C 24.6 283.1 200 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 7.5 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 57.0 kg/s Comp-GG-H2-2 2 15.1 kg/s<br />

2<br />

7.577<br />

24.6 kg/s<br />

15 C<br />

Steam<br />

0.17 150 C<br />

Cooler-GG-H2<br />

3.5 MW<br />

SAND<br />

13<br />

3.49<br />

28.04 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

8.5 4.827<br />

41 1.0 bar<br />

2 8.5 kg/s<br />

Steam<br />

0.92<br />

29.28<br />

15.1 286.5<br />

533 15.2 bar<br />

4 15.1 kg/s<br />

Syngas 29.28 228 C<br />

3.5 MW<br />

SAND<br />

15<br />

3.493<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

68<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

88<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.20<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

283 MW<br />

45 MW<br />

65 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

11 MW<br />

0 MW<br />

35 MW<br />

SAND 79 0.024 120 C 1.0 0.59 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 900 1170 2.71<br />

DH-condenser<br />

0.72 19.8 0.56 811 12<br />

DH condenser0.56<br />

129.3 1.0 bar<br />

581<br />

2<br />

0.00<br />

1.0 bar<br />

1.0 kg/s<br />

159 C Steam<br />

0.17 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

9<br />

1<br />

1<br />

11<br />

1<br />

0.00<br />

0.03<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

70% (with power for electrolyser)<br />

66% (with total power)<br />

80%<br />

8.5 0.336 4.516 129.3 kg/s DH-cooler DH-cooler<br />

57.1 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 33.33 57.1 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 48 62 0.14<br />

4 8.5 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

428.0 14.95<br />

811 1.0 bar<br />

0.000 811 6<br />

0.5 1.0 bar<br />

0.016 0.5 kg/s<br />

0.53 0.1 0 804 2<br />

DH cooler<br />

DH water<br />

0.00 0.5 1.0 bar<br />

0.004 0.5 kg/s 23.4 14.99<br />

0.163 562 2<br />

57.1 1.0 bar<br />

150 C<br />

Syngas-cool2 3.4<br />

0.17 0.81<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

8<br />

0<br />

0<br />

10<br />

0<br />

0<br />

0.02<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 428.0 kg/s<br />

0.62 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

1.0 0.566<br />

1.0 bar<br />

1.0 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 23.4 kg/s<br />

0.07 225 C<br />

Cond-steam-1<br />

32.32 57.1 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

15.1 285.3<br />

15.2 bar<br />

15.1 kg/s<br />

0 551 4<br />

0.0 15.2 bar<br />

-0 0.0 kg/s<br />

130 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

237 MW<br />

45 MW<br />

65 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

33 MW<br />

Energy content in DH water = 72 MW 0.00 120 C<br />

DH-cooler<br />

Steam<br />

29.28 130 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

26<br />

0<br />

34<br />

0.00<br />

0.08<br />

* for electrolyser<br />

Urenhed:<br />

0.026 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.97<br />

Water /<br />

671<br />

23.4 13.28<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

31.04 5.0 MW 17<br />

SAND 4.957<br />

15.1 289.9<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

16<br />

1<br />

16<br />

2<br />

20<br />

2<br />

20<br />

0.00<br />

0.05<br />

0.00<br />

0.05<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

73% (with power for electrolyser)<br />

68% (with total power)<br />

103%<br />

Methanol<br />

2 23.4 kg/s 535 40.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 1 2 0.00<br />

0.06 120 C 2 15.1 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 22 29 0.07<br />

Cond-steam-1<br />

31.04 269 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 550 715 1.65 Gas composition at specific nodes (mol-%)<br />

29.63 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 7 9 0.02<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

101.6 969.3<br />

40.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

8<br />

0<br />

10<br />

0.00<br />

0.02<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.47<br />

4 100 C 2 101.6 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 6 8 0.02<br />

Species<br />

Split-meoh1<br />

80.83 28.1 630.4 Steam<br />

0 682 4<br />

115 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

249<br />

2<br />

324<br />

3<br />

0.75<br />

0.01<br />

1<br />

3<br />

H2<br />

N2<br />

46.08<br />

0.24<br />

0.00 57.09 55.57 36.59 27.41 27.41 27.41 30.00<br />

0.00 0.00 0.22 1.16 1.36 1.36 1.36 1.48<br />

791 3.5 bar 18.7 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 12 16 0.04 4 CO 40.49 0.00 22.34 37.67 30.98 26.18 26.18 26.18 28.65<br />

792 28.1 kg/s 19.14 18.7 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 0 0 0.00 6 CO2 6.19 99.94 4.97 0.02 25.64 31.56 31.56 31.56 34.54<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 11 15 0.03 7 H2O-G 6.51 0.00 15.55 6.07 1.58 0.28 0.28 0.28 0.03<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.035 811 10 28.7<br />

171.4 1.0 bar 0.035 0.70<br />

0 806 2<br />

DH water<br />

171.4 1.0 bar<br />

0 683 2<br />

2.6 30.6 bar<br />

4.9<br />

0.07 0.81<br />

0 684 4<br />

2.6 30.6 bar<br />

Water<br />

0 681 2<br />

18.7 30.6 bar<br />

34.7 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 116<br />

311<br />

Total several DISTILLATION_STAGE's 1963 2537 5.91 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.36<br />

0.12<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.05<br />

0.00<br />

0.00<br />

0.34<br />

0.11<br />

0.00<br />

1.75 2.05 2.05 2.05<br />

0.56 0.65 0.65 0.65<br />

1.74 10.51 10.51 10.51<br />

2.24<br />

0.71<br />

2.35<br />

5.989 171.4 kg/s<br />

90 C<br />

1.404 171.4 kg/s<br />

50 C<br />

2.691 2.6 kg/s<br />

235 C<br />

0.579 2.6 kg/s<br />

220 C<br />

4.116 18.7 kg/s<br />

220 C 602<br />

101.6 952.6<br />

35.0 bar 607<br />

86.4 679.7<br />

40.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

51.2<br />

Heatsourc-DH 80.83<br />

17.8 399.3 783<br />

28.1 637 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2 101.6 kg/s<br />

116 235 C<br />

2<br />

84<br />

86.4 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 28.1 kg/s 16.1 16.45 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 17.8 kg/s 4 100 C 685 30.6 bar 17.7 Preheater-sy NG 93 kr/GJ Methanol 29.6 kr/s 128 kr/GJ 145 kr/GJ 2.88 kr/kg 2.3 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 16.1 kg/s 84 606 2 84 0.89 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 404 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 84 86.4 40.0 bar 101.6 946.4 DH water 0 kr/ton Syngas 4.4 kr/s 124 kr/GJ - kr/GJ 0.96 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 1.4 MW 19 0.90 674.2 86.4 kg/s 640 35.0 bar 1 2E-28 0.0 2E-27 Water 32 kr/ton DH water 0.6 kr/s 42 kr/GJ 9 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 1.437 73 C 2 101.6 kg/s 621 35.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

99 0.80<br />

Feed<br />

16.1<br />

3.537<br />

30.6 bar<br />

16.1 kg/s<br />

220 C<br />

Preheater-sy 116.4 110 C<br />

Condenser-1<br />

0.1<br />

631 0.0 kg/s<br />

4 110 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 0.08 1.06 If methanol and DH share the plant costs<br />

Condenser-1 0.0 -0 621 631 4 (methanol and DH are the only products from the plant) -<br />

18 705 706<br />

17 3.5 bar<br />

2 0.08 705 706<br />

0 3.5 bar<br />

6<br />

SAND 31 101.6 946.3<br />

643 35.0 bar<br />

2 101.6 kg/s<br />

0<br />

0<br />

35.0 bar<br />

0.0 kg/s<br />

109 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 23.8 kr/s 103 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

151 17.1 kg/s 1 0.0 kg/s Condenser 116.4 109 C Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Mass flow<br />

118 C 118 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.02 811 8<br />

113.1 1.0 bar<br />

Reboil-meoh2 19.0<br />

0.02 0.64<br />

0 805 2<br />

DH water<br />

113.1 1.0 bar Mechanical power<br />

10<br />

18.44 17.4 145.3 3.951 113.1 kg/s 0.926 113.1 kg/s 0.084 0.1 0.652<br />

707 3.5 bar Cond-steam-2 90 C 83.21 605 2 50 C 699 3.5 bar 0.25<br />

708 17.4 kg/s SAND 393 Condenser<br />

86.4 35.0 bar 4.5 35.41 Condenser<br />

700 0.0 kg/s<br />

4 118 C 672.9 86.4 kg/s 611 35.0 bar 97.0 28.85 10.6 233.3 2 118 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 24.82<br />

0 693 694<br />

0 3.5 bar<br />

2 0.3 kg/s<br />

Dis_stage_1<br />

4 18.35 695 696<br />

17 3.5 bar<br />

142 17.0 kg/s<br />

2 29.9<br />

18.39 0.61<br />

18.39 705 706<br />

17 3.5 bar<br />

150 17.0 kg/s<br />

4<br />

28.85 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 97.0<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 4.5 kg/s<br />

4.379 60 C<br />

Syngas Split-syngas<br />

621 35.0 bar<br />

631 10.6 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

118 C<br />

Reboil-meoh1<br />

118 C<br />

Reboil-meoh1<br />

233 10.6 kg/s<br />

61 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.5 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.5 kg/s 41.4 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.079 15 C SAND 41.44 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.444 803 4<br />

109.3 1.0 bar<br />

Electrolyser<br />

13.69<br />

1.8<br />

0.80<br />

0 802 2<br />

109.3 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 1.096 109.3 kg/s 2.2 0.289 0.3 32.4 0.895 109.3 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 54 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.2 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.458<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.117 7 4 0.117<br />

0.90<br />

2.2 1.0 bar<br />

0.289 2.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.117 5 2<br />

2.2 1.0 bar<br />

0.289 2.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.117 90 C<br />

Electrolyser<br />

0.0 -0<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

13.13 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.018<br />

3.7<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

16.8 21.69<br />

1.0 bar<br />

801<br />

2<br />

13.5 0.11<br />

1.0 bar<br />

13.5 kg/s<br />

15<br />

4<br />

3.5 1.625<br />

1.0 bar<br />

3.5 kg/s Heatsink-H2<br />

-0 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

4.763 3.7 kg/s Heatex-GG-st 4 16.8 kg/s 0 50 C 0 60 C 0.0 MW 322 13.13 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.08 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 5E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

10<br />

Gasifier<br />

12.0 262.9<br />

10<br />

17.3<br />

240.2<br />

Gasifier<br />

10 GG2<br />

0.12 0.78<br />

1.0 bar 1.6<br />

17.3 kg/s<br />

800 C<br />

10<br />

17.3<br />

239<br />

11 2<br />

1.0 bar<br />

17.3 kg/s<br />

757 C<br />

Heatex-GG-st<br />

0.08 0.98 10<br />

21.6 17.3<br />

226.7<br />

12 2 0.00 0.74<br />

1.0 bar 2.3<br />

17.3 kg/s<br />

130 C Heatex-GG-DH<br />

10<br />

17.3<br />

226.2<br />

13 2<br />

1.0 bar<br />

17.3 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 9.9<br />

13.8 225.4<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

13.13<br />

13.13 511 2<br />

0.3 1.0 bar<br />

32.4 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 12.7 bar<br />

SAND 0.002<br />

0.002 502 4 0.002 0.001 501 2<br />

0.92<br />

0.0 12.7 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 13.8 kg/s 0.164 0.0 kg/s 0.006 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 12.0 kg/s 0.12 9 2 Heatex-GG-O2 16.8 9.543 0 21 4 9.9 60 C 200 C 233 C 15 C 0.01 950 C 107 C<br />

7.19 120 C 2.2 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 13.13 512 2 27.14 524 4 14.1 266.9 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.176 2.2 kg/s<br />

790 C<br />

Gasifier<br />

2 16.8 kg/s<br />

0.058 120 C<br />

Heatex-GG-st<br />

2E-18 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

14.1 257.7<br />

1.0 bar<br />

14.1 kg/s<br />

0.3<br />

32.4<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

14.1<br />

266.7<br />

12.7 bar<br />

14.1 kg/s<br />

269 C<br />

531<br />

2<br />

27.16<br />

12.7 bar<br />

14.1 kg/s<br />

269 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

13.5 0.47<br />

1.0 bar<br />

22.98 64 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

7.0 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

29.3 18.13<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 13.5 kg/s 0.93<br />

SAND 6.976 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.46 29.2 16.56 6 29.3 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

13.1 16.93 Heatex-GG-DH<br />

14.1 264.1 563 1.0 bar 0.11 200 C 4.6 SAND 7E-04 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.38<br />

110.5<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.45 30.6 0.38 34 2<br />

1.0 bar Steam dryer 7.19 99.7 1.0 bar<br />

34 1.0 bar<br />

4 13.1 kg/s<br />

0.066 730 C<br />

Split-steam2<br />

522 4.8 bar<br />

2 14.1 kg/s<br />

25.46 269 C<br />

Cooler-GG-H2<br />

2 29.2 kg/s<br />

0.10 120 C<br />

Cooler-GG-H2<br />

4.6<br />

0.11 0.86<br />

25.46 523 2<br />

14.1 4.8 bar<br />

0.93<br />

27.14<br />

Syngas-cool1<br />

561<br />

2<br />

0.101<br />

29.3 16.58<br />

1.0 bar<br />

29.3 kg/s<br />

120 C<br />

0.11 0.86<br />

0 541 4<br />

0.0 12.7 bar<br />

1E-17 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 12.7 bar<br />

0.158 0.0 kg/s<br />

0.017 461 2<br />

0.92<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

62.6 110.5 kg/s 68.17 99.7 kg/s Cooler-GG-H2 29.2 18.11 262.3 14.1 kg/s Syngas-cool1 14.1 265.1 Syngas-cool1<br />

186 C 154 C<br />

120 C 22.9 263.7 275 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 12.7 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 29.2 kg/s Comp-GG-H2-2 2 14.1 kg/s<br />

2<br />

7.057<br />

22.9 kg/s<br />

15 C<br />

Steam<br />

0.11 200 C<br />

Cooler-GG-H2<br />

4.7 MW<br />

SAND<br />

13<br />

4.742<br />

27.16 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

7.1 4.043<br />

41 1.0 bar<br />

2 7.1 kg/s<br />

Steam<br />

0.93<br />

28.84<br />

14.1 269.5<br />

533 33.5 bar<br />

4 14.1 kg/s<br />

Syngas 28.84 269 C<br />

4.7 MW<br />

SAND<br />

15<br />

4.745<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

63<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

82<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.19<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

264 MW<br />

41 MW<br />

64 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

16 MW<br />

SAND 79 0.025 120 C 2.3 1.434 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 838 1089 2.52<br />

DH-condenser<br />

0.72 16.5 0.49 811 12<br />

DH condenser0.49<br />

109.3 1.0 bar<br />

581<br />

2<br />

0.01<br />

1.0 bar<br />

2.3 kg/s<br />

200 C Steam<br />

0.11 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

9<br />

1<br />

1<br />

11<br />

1<br />

0.00<br />

0.03<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

76% (with power for electrolyser)<br />

71% (with total power)<br />

79%<br />

7.1 0.281 3.817 109.3 kg/s DH-cooler DH-cooler<br />

29.3 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 18.17 29.3 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 44 58 0.13<br />

4 7.1 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

430.0 15.02<br />

811 1.0 bar<br />

0.000 811 6<br />

2.2 1.0 bar<br />

0.077 2.2 kg/s<br />

0.48 0.4 0 804 2<br />

DH cooler<br />

DH water<br />

0.00 2.2 1.0 bar<br />

0.018 2.2 kg/s 1.0 0.639<br />

0.101 562 2<br />

29.3 1.0 bar<br />

200 C<br />

Syngas-cool2 4.7<br />

0.11 0.86<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

7<br />

0<br />

0<br />

9<br />

0<br />

0<br />

0.02<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 430.0 kg/s<br />

0.55 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

2.3 1.311<br />

1.0 bar<br />

2.3 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.00 225 C<br />

Cond-steam-1<br />

16.62 29.3 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

14.1 267.7<br />

33.5 bar<br />

14.1 kg/s<br />

0 551 4<br />

0.0 33.5 bar<br />

8E-04 0.0 kg/s<br />

130 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

221 MW<br />

41 MW<br />

64 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

72 MW<br />

0 MW<br />

14 MW<br />

Energy content in DH water = 72 MW 0.01 120 C<br />

DH-cooler<br />

Steam<br />

28.84 130 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

31<br />

0<br />

41<br />

0.00<br />

0.09<br />

* for electrolyser<br />

Urenhed:<br />

0.027 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.97<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

30.39 4.4 MW 17<br />

SAND 4.371<br />

14.1 271.7<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

2<br />

21<br />

2<br />

21<br />

2<br />

28<br />

2<br />

28<br />

0.01<br />

0.06<br />

0.01<br />

0.06<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

102%<br />

Methanol<br />

2 1.0 kg/s 535 82.7 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 2 2 0.01<br />

0.00 120 C 2 14.1 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 20 26 0.06<br />

Cond-steam-1<br />

30.39 259 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 386 502 1.16 Gas composition at specific nodes (mol-%)<br />

30.53 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 5 6 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

73.6 574.2<br />

82.7 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

7<br />

0<br />

9<br />

0.00<br />

0.02<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.58<br />

4 100 C 2 73.6 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 2 2 0.01<br />

Species<br />

Split-meoh1<br />

97.81 33.0 740.6 Steam<br />

0 682 4<br />

69 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

258<br />

0<br />

336<br />

0<br />

0.78<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

46.05<br />

0.23<br />

0.00 57.70 55.98 39.11 25.78 26.50 26.59 30.00<br />

0.00 0.00 0.22 1.54 1.93 1.99 1.99 2.25<br />

791 3.5 bar 18.5 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 14 18 0.04 4 CO 37.19 0.00 22.49 35.29 18.28 7.82 8.04 8.07 9.10<br />

792 33.0 kg/s 18.92 18.5 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 0 0 0.00 6 CO2 7.54 99.96 5.09 0.02 35.12 46.46 47.76 47.92 54.07<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 13 18 0.04 7 H2O-G 8.62 0.00 14.17 8.14 2.87 1.30 0.93 0.89 0.03<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.041 811 10 33.7<br />

201.4 1.0 bar 0.041 0.70<br />

0 806 2<br />

DH water<br />

201.4 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.00 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

18.5 30.6 bar<br />

34.3 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 70<br />

311<br />

Total several DISTILLATION_STAGE's 1747 2254 5.26 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.25<br />

0.11<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.24<br />

0.11<br />

0.00<br />

1.68 2.11 2.17 2.18<br />

0.74 0.93 0.95 0.96<br />

0.66 13.67 11.66 11.41<br />

2.46<br />

1.08<br />

1.01<br />

7.035 201.4 kg/s<br />

90 C<br />

1.649 201.4 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

4.069 18.5 kg/s<br />

220 C 602<br />

73.6 558<br />

77.7 bar 607<br />

59.5 302.6<br />

82.7 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

67.29<br />

Heatsourc-DH 97.81<br />

22.7 509.4 783<br />

33.0 748.2 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

70<br />

73.6 kg/s<br />

235 C<br />

2<br />

38<br />

59.5 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 33.0 kg/s 18.4 18.81 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 22.7 kg/s 4 100 C 685 30.6 bar 12.1 Preheater-sy NG 93 kr/GJ Methanol 30.5 kr/s 132 kr/GJ 149 kr/GJ 2.96 kr/kg 2.3 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 18.4 kg/s 38 606 2 38 0.80 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 405 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 38 59.5 82.7 bar 71.5 510.9 DH water 0 kr/ton Syngas 2.0 kr/s 128 kr/GJ - kr/GJ 0.64 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.4 MW 19 0.90 298.9 59.5 kg/s 640 77.7 bar 86 5.367 2.1 42.56 Water 32 kr/ton DH water 0.6 kr/s 37 kr/GJ 8 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.409 66 C 2 71.5 kg/s 621 77.7 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

106 0.75<br />

Feed<br />

18.4<br />

4.045<br />

30.6 bar<br />

18.4 kg/s<br />

220 C<br />

Preheater-sy 64.42 139 C<br />

Condenser-1<br />

0.4<br />

631 2.1 kg/s<br />

4 139 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 0.09 0.74 If methanol and DH share the plant costs<br />

Condenser-1 85.9 0.655 621 631 4 (methanol and DH are the only products from the plant) -<br />

8 705 706<br />

17 3.5 bar<br />

2 0.09 705 706<br />

0 3.5 bar<br />

6<br />

SAND 31<br />

643<br />

2<br />

71.3 505.5<br />

77.7 bar<br />

71.3 kg/s<br />

0<br />

5<br />

77.7 bar<br />

0.2 kg/s<br />

138 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 22.2 kr/s 96.3 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

70 17.3 kg/s 1 0.2 kg/s Condenser 63.76 138 C Preheater-sy<br />

DH water 10.8 kr/s 150 kr/Gjen Mass flow<br />

128 C 128 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.02 811 8<br />

103.7 1.0 bar<br />

Reboil-meoh2 17.4<br />

0.02 0.50<br />

0 805 2<br />

DH water<br />

103.7 1.0 bar Mechanical power<br />

10<br />

8.191 18.0 62.66 3.624 103.7 kg/s 0.849 103.7 kg/s 0.089 0.2 0.655<br />

707 3.5 bar Cond-steam-2 90 C 38.07 605 2 50 C 699 3.5 bar 0.25<br />

708 18.0 kg/s SAND 393 Condenser<br />

59.5 77.7 bar 3.1 15.71 Condenser<br />

700 0.2 kg/s<br />

4 128 C 298.5 59.5 kg/s 611 77.7 bar 92.4 23.69 8.7 185.7 2 128 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 9.16<br />

0 693 694<br />

1 3.5 bar<br />

2 0.7 kg/s<br />

Dis_stage_1<br />

4 8.102 695 696<br />

17 3.5 bar<br />

60 17.1 kg/s<br />

2 34.1<br />

8.143 0.65<br />

8.143 705 706<br />

17 3.5 bar<br />

69 17.1 kg/s<br />

4<br />

29.71 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 91.0<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 3.1 kg/s<br />

2.004 60 C<br />

Syngas Split-syngas<br />

621 77.7 bar<br />

631 8.7 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

128 C<br />

Reboil-meoh1<br />

128 C<br />

Reboil-meoh1<br />

233 11.0 kg/s<br />

81 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.3 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.3 kg/s 39.1 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.075 15 C SAND 39.13 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.339 803 4<br />

78.0 1.0 bar<br />

Electrolyser<br />

12.93<br />

1.7<br />

0.80<br />

0 802 2<br />

78.0 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.831 78.0 kg/s 2.1 0.273 0.3 30.59 0.638 78.0 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 55 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.1 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.441<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.111 7 4 0.111<br />

0.90<br />

2.1 1.0 bar<br />

0.273 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.111 5 2<br />

2.1 1.0 bar<br />

0.273 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.111 90 C<br />

Electrolyser<br />

0.0 7E-39<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

12.48 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.035<br />

5.5<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

18.6 23.96<br />

1.0 bar<br />

801<br />

2<br />

14.6 0.12<br />

1.0 bar<br />

14.6 kg/s<br />

15<br />

4<br />

5.0 2.298<br />

1.0 bar<br />

5.0 kg/s Heatsink-H2<br />

3E-39 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

7.113 5.5 kg/s Heatex-GG-st 4 18.6 kg/s 0 50 C 0 60 C 0.0 MW 322 12.48 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.12 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 4E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

10<br />

Gasifier<br />

11.6 253.3<br />

10<br />

18.6<br />

233.4<br />

Gasifier<br />

10 GG2<br />

0.11 0.78<br />

1.0 bar 1.5<br />

18.6 kg/s<br />

800 C<br />

10<br />

18.6<br />

232.3<br />

11 2<br />

1.0 bar<br />

18.6 kg/s<br />

763 C<br />

Heatex-GG-st<br />

0.12 0.98 10<br />

23.8 18.6<br />

218.6<br />

12 2 0.00 0.74<br />

1.0 bar 2.5<br />

18.6 kg/s<br />

130 C Heatex-GG-DH<br />

10<br />

18.6<br />

218.1<br />

13 2<br />

1.0 bar<br />

18.6 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 9.5<br />

13.6 216.9<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

12.48<br />

12.48 511 2<br />

0.3 1.0 bar<br />

30.59 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.02 503 4<br />

0.0 25.3 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 25.3 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 13.6 kg/s 0.167 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 11.6 kg/s 0.11 9 2 Heatex-GG-O2 18.6 10.54 0 21 4 9.5 60 C 294 C 305 C 15 C 0.01 950 C 107 C<br />

6.93 120 C 2.1 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 12.48 512 2 27.7 524 4 13.9 259.7 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.111 2.1 kg/s<br />

790 C<br />

Gasifier<br />

2 18.6 kg/s<br />

0.088 120 C<br />

Heatex-GG-st<br />

-0 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

13.9 247.4<br />

1.0 bar<br />

13.9 kg/s<br />

0.3<br />

30.59<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

13.9<br />

259.6<br />

25.3 bar<br />

13.9 kg/s<br />

325 C<br />

531<br />

2<br />

27.72<br />

25.3 bar<br />

13.9 kg/s<br />

325 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

14.6 0.511<br />

1.0 bar<br />

21.99 63 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

9.2 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

45.6 28.21<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 14.6 kg/s 0.93<br />

SAND 9.225 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.26 42.5 24.1 6 45.6 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

13.1 16.85 Heatex-GG-DH<br />

13.9 256 563 1.0 bar 0.22 200 C 7.2 SAND 0.003 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.48<br />

103.7<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.45 29.5 0.48 34 2<br />

1.0 bar Steam dryer 6.93 93.2 1.0 bar<br />

34 1.0 bar<br />

4 13.1 kg/s<br />

0.082 730 C<br />

Split-steam2<br />

522 6.8 bar<br />

2 13.9 kg/s<br />

25.26 325 C<br />

Cooler-GG-H2<br />

2 42.5 kg/s<br />

0.20 120 C<br />

Cooler-GG-H2<br />

6.8<br />

0.21 0.80<br />

25.26 523 2<br />

13.9 6.8 bar<br />

0.93<br />

27.7<br />

Syngas-cool1<br />

561<br />

2<br />

0.215<br />

45.6 25.8<br />

1.0 bar<br />

45.6 kg/s<br />

120 C<br />

0.22 0.82<br />

0 541 4<br />

0.3 25.3 bar<br />

0.025 0.3 kg/s<br />

135 C<br />

Water<br />

Reformat<br />

0.018 462 2 0.018<br />

0.0 25.3 bar<br />

0.161 0.0 kg/s<br />

0.017 461 2<br />

0.93<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

58.72 103.7 kg/s 64.17 93.2 kg/s Cooler-GG-H2 42.5 26.34 253.1 13.9 kg/s Syngas-cool1 13.6 256.8 Syngas-cool1<br />

288 C 154 C<br />

120 C 22.0 254.1 279 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 25.3 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 42.5 kg/s Comp-GG-H2-2 2 13.6 kg/s<br />

2<br />

6.801<br />

22.0 kg/s<br />

15 C<br />

Steam<br />

0.21 200 C<br />

Cooler-GG-H2<br />

6.9 MW<br />

SAND<br />

13<br />

6.897<br />

27.72 135 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

4.9 2.786<br />

41 1.0 bar<br />

2 4.9 kg/s<br />

Steam<br />

0.93<br />

30.07<br />

13.6 262.9<br />

533 89.8 bar<br />

4 13.6 kg/s<br />

Syngas 30.07 325 C<br />

6.6 MW<br />

SAND<br />

15<br />

6.618<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

59<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

77<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.18<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

254 MW<br />

39 MW<br />

67 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

5 MW<br />

SAND 79 0.023 120 C 78.0 48.32 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 808 1050 2.43<br />

DH-condenser<br />

0.73 11.4 0.38 811 12<br />

DH condenser0.38<br />

78.0 1.0 bar<br />

581<br />

2<br />

0.38<br />

1.0 bar<br />

78.0 kg/s<br />

200 C Steam<br />

0.34 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

10<br />

1<br />

1<br />

12<br />

1<br />

0.00<br />

0.03<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

79% (with power for electrolyser)<br />

72% (with total power)<br />

77%<br />

4.9 0.194 2.724 78.0 kg/s DH-cooler DH-cooler<br />

69.1 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 42.77 69.1 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 43 56 0.13<br />

4 4.9 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

448.5 15.67<br />

811 1.0 bar<br />

0.015 811 6<br />

74.1 1.0 bar<br />

2.589 74.1 kg/s<br />

0.48 12.4 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 74.1 1.0 bar<br />

0.607 74.1 kg/s 1.0 0.639<br />

0.327 562 2<br />

69.1 1.0 bar<br />

200 C<br />

Syngas-cool2 11.0<br />

0.34 0.90<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

5<br />

0<br />

0<br />

6<br />

0<br />

0<br />

0.01<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 448.5 kg/s<br />

0.45 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

78.0 44.19<br />

1.0 bar<br />

78.0 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.00 225 C<br />

Cond-steam-1<br />

39.12 69.1 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

11.6 258.7<br />

89.8 bar<br />

11.6 kg/s<br />

0 551 4<br />

2.0 89.8 bar<br />

0.168 2.0 kg/s<br />

130 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

213 MW<br />

39 MW<br />

67 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

75 MW<br />

0 MW<br />

4 MW<br />

Energy content in DH water = 75 MW 0.38 120 C<br />

DH-cooler<br />

Steam<br />

30.07 130 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

42<br />

0<br />

54<br />

0.00<br />

0.12<br />

* for electrolyser<br />

Urenhed:<br />

0.005 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.99<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.92<br />

Comp-syngas2<br />

31.31 3.5 MW 17<br />

SAND 3.497<br />

11.6 261.9<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

3<br />

31<br />

3<br />

30<br />

4<br />

40<br />

4<br />

39<br />

0.01<br />

0.09<br />

0.01<br />

0.09<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

81% (with power for electrolyser)<br />

73% (with total power)<br />

102%<br />

Methanol<br />

2 1.0 kg/s 535 200.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 4 6 0.01<br />

0.00 120 C 2 11.6 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 16 20 0.05<br />

Cond-steam-1<br />

31.31 243 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 206 268 0.62 Gas composition at specific nodes (mol-%)<br />

32.03 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 2 2 0.00<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

30.7 369.3<br />

200.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4<br />

1<br />

5<br />

2<br />

0.01<br />

0.00<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.86<br />

4 100 C 2 30.7 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 0 0 0.00<br />

Species<br />

Split-meoh1<br />

134.9 43.4 973 Steam<br />

0 682 4<br />

45 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

250<br />

0<br />

326<br />

0<br />

0.75<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.32<br />

0.21<br />

0.00 57.70 62.82 49.72 20.37 22.59 28.84 30.00<br />

0.00 0.00 0.23 2.77 4.48 4.97 6.34 6.60<br />

791 3.5 bar 17.5 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 17 0.04 4 CO 30.41 0.00 22.49 33.66 22.88 4.52 5.01 6.40 6.65<br />

792 43.4 kg/s 17.97 17.5 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 5 6 0.01 6 CO2 10.03 99.97 5.09 0.03 19.67 33.45 37.09 47.34 49.25<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 18 23 0.05 7 H2O-G 13.81 0.00 14.17 3.01 1.81 1.28 0.82 0.08 0.00<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.053 811 10 44.3<br />

264.5 1.0 bar 0.053 0.70<br />

0 806 2<br />

DH water<br />

264.5 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.00 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.5 30.6 bar<br />

32.6 Meoh-convert<br />

Methanol 0.99 SAND<br />

converter 46<br />

311<br />

Total several DISTILLATION_STAGE's 1553 1990 4.67 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.12<br />

0.10<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.14<br />

0.11<br />

0.00<br />

1.64 2.65 2.94<br />

1.33 2.15 2.39<br />

0.17 31.10 24.19<br />

3.75<br />

3.04<br />

4.22<br />

3.90<br />

3.17<br />

0.43<br />

9.241 264.5 kg/s<br />

90 C<br />

2.166 264.5 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.864 17.5 kg/s<br />

220 C 602<br />

30.7 352.9<br />

195.0 bar 607<br />

19.1 103.6<br />

200.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

102.8<br />

Heatsourc-DH 134.9<br />

33.1 741.9 783<br />

43.4 983.1 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

46<br />

30.7 kg/s<br />

235 C<br />

2<br />

14<br />

19.1 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 43.4 kg/s 17.4 17.85 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 33.1 kg/s 4 100 C 685 30.6 bar 4.0 Preheater-sy NG 93 kr/GJ Methanol 32.0 kr/s 139 kr/GJ 156 kr/GJ 3.11 kr/kg 2.4 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.4 kg/s 14 606 2 14 0.44 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 408 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 14 19.1 200.0 bar 27.5 279.3 DH water 0 kr/ton Syngas 0.7 kr/s 136 kr/GJ - kr/GJ 0.73 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.1 MW 19 0.90 102.4 19.1 kg/s 640 195.0 bar 94 9.277 3.2 70.89 Water 32 kr/ton DH water 0.5 kr/s 29 kr/GJ 6 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.054 62 C 2 27.5 kg/s 621 195.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

157 0.81<br />

Feed<br />

17.4<br />

3.839<br />

30.6 bar<br />

17.4 kg/s<br />

220 C<br />

Preheater-sy 36.55 212 C<br />

Condenser-1<br />

10.0<br />

631 3.2 kg/s<br />

4 212 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 5.16 0.39 If methanol and DH share the plant costs<br />

Condenser-1 96.5 19.19 621 631 4 (methanol and DH are the only products from the plant) -<br />

22 705 706<br />

23 3.5 bar<br />

2 5.16 705 706<br />

5 3.5 bar<br />

6<br />

SAND 31 21.0 129.4<br />

643 195.0 bar<br />

2 21.0 kg/s<br />

6 195.0 bar<br />

143 6.5 kg/s<br />

130 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 21.9 kr/s 94.8 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

169 23.2 kg/s 40 5.4 kg/s Condenser 17.36 130 C Preheater-sy<br />

DH water 11.3 kr/s 150 kr/Gjen Mass flow<br />

120 C 120 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.00 811 8<br />

17.3 1.0 bar<br />

Reboil-meoh2 2.9<br />

0.00 0.36<br />

0 805 2<br />

DH water<br />

17.3 1.0 bar Mechanical power<br />

10<br />

21.9 23.5 159.7 0.605 17.3 kg/s 0.142 17.3 kg/s 5.149 5.4 36.98<br />

707 3.5 bar Cond-steam-2 90 C 13.87 605 2 50 C 699 3.5 bar 0.25<br />

708 23.5 kg/s SAND 393 Condenser<br />

19.1 195.0 bar 1.0 5.386 Condenser<br />

700 5.4 kg/s<br />

4 120 C 102.3 19.1 kg/s 611 195.0 bar 98.1 2.762 0.9 20.38 2 120 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 19.46<br />

0 693 694<br />

0 3.5 bar<br />

2 0.3 kg/s<br />

Dis_stage_1<br />

4 16.76 695 696<br />

18 3.5 bar<br />

120 17.7 kg/s<br />

2 32.4<br />

16.79 0.62<br />

16.79 705 706<br />

18 3.5 bar<br />

129 17.7 kg/s<br />

4<br />

31.23 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 96.0<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 1.0 kg/s<br />

0.73 60 C<br />

Syngas Split-syngas<br />

621 195.0 bar<br />

631 0.9 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

120 C<br />

Reboil-meoh1<br />

120 C<br />

Reboil-meoh1<br />

234 10.6 kg/s<br />

100 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


26. Flowsheets for <strong>metanolanlæg</strong> – for<br />

parametervariationen (brint/kulstof-forholdet i<br />

syngassen)<br />

Flowsheets for brint/kulstof-forhold på M=1,55 <strong>og</strong> M=2,35.<br />

Sorteret efter brint/kulstof-forhold – anlægget på M=1,55 først.


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.4 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.4 kg/s 41.0 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.078 15 C SAND 41 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.45 803 4<br />

111.3 1.0 bar<br />

Electrolyser<br />

13.55<br />

1.7<br />

0.80<br />

0 802 2<br />

111.3 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 1.11 111.3 kg/s 2.2 0.286 0.3 32.06 0.912 111.3 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 54 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.2 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.452<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.116 7 4 0.116<br />

0.90<br />

2.2 1.0 bar<br />

0.286 2.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.116 5 2<br />

2.2 1.0 bar<br />

0.286 2.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.116 90 C<br />

Electrolyser<br />

0.0 -0<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

12.99 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.019<br />

3.4<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

16.3 21.02<br />

1.0 bar<br />

801<br />

2<br />

13.1 0.107<br />

1.0 bar<br />

13.1 kg/s<br />

15<br />

4<br />

3.2 1.501<br />

1.0 bar<br />

3.2 kg/s Heatsink-H2<br />

-0 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

4.384 3.4 kg/s Heatex-GG-st 4 16.3 kg/s 0 50 C 0 60 C 0.0 MW 322 12.99 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.09 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 5E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

10<br />

Gasifier<br />

11.9 259.5<br />

10<br />

16.9<br />

236.9<br />

Gasifier<br />

10 GG2<br />

0.12 0.78<br />

1.0 bar 1.6<br />

16.9 kg/s<br />

800 C<br />

10<br />

16.9<br />

235.7<br />

11 2<br />

1.0 bar<br />

16.9 kg/s<br />

756 C<br />

Heatex-GG-st<br />

0.09 0.98 10<br />

20.9 16.9<br />

223.8<br />

12 2 0.00 0.74<br />

1.0 bar 2.2<br />

16.9 kg/s<br />

130 C Heatex-GG-DH<br />

10<br />

16.9<br />

223.3<br />

13 2<br />

1.0 bar<br />

16.9 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 9.7<br />

13.6 222.6<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

12.99<br />

12.99 511 2<br />

0.3 1.0 bar<br />

32.06 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 19.1 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 19.1 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 13.6 kg/s 0.166 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 11.9 kg/s 0.12 9 2 Heatex-GG-O2 16.3 9.249 0 21 4 9.7 60 C 254 C 275 C 15 C 0.01 950 C 107 C<br />

7.10 120 C 2.2 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 12.99 512 2 27.6 524 4 13.9 265.2 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.164 2.2 kg/s<br />

790 C<br />

Gasifier<br />

2 16.3 kg/s<br />

0.064 120 C<br />

Heatex-GG-st<br />

2E-18 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

13.9 254.5<br />

1.0 bar<br />

13.9 kg/s<br />

0.3<br />

32.06<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

13.9<br />

265<br />

19.1 bar<br />

13.9 kg/s<br />

304 C<br />

531<br />

2<br />

27.62<br />

19.1 bar<br />

13.9 kg/s<br />

304 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

13.1 0.457<br />

1.0 bar<br />

22.71 64 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

8.0 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

35.8 22.16<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 13.1 kg/s 0.93<br />

SAND 7.98 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.54 35.7 20.25 6 35.8 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

12.9 16.64 Heatex-GG-DH<br />

13.9 261.9 563 1.0 bar 0.15 200 C 5.7 SAND 0.002 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.42<br />

109.6<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.45 30.3 0.42 34 2<br />

1.0 bar Steam dryer 7.10 98.9 1.0 bar<br />

34 1.0 bar<br />

4 12.9 kg/s<br />

0.071 730 C<br />

Split-steam2<br />

522 5.9 bar<br />

2 13.9 kg/s<br />

25.54 304 C<br />

Cooler-GG-H2<br />

2 35.7 kg/s<br />

0.14 120 C<br />

Cooler-GG-H2<br />

5.7<br />

0.15 0.82<br />

25.54 523 2<br />

13.9 5.9 bar<br />

0.93<br />

27.6<br />

Syngas-cool1<br />

561<br />

2<br />

0.14<br />

35.8 20.27<br />

1.0 bar<br />

35.8 kg/s<br />

120 C<br />

0.15 0.82<br />

0 541 4<br />

0.0 19.1 bar<br />

-0 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 19.1 bar<br />

0.16 0.0 kg/s<br />

0.017 461 2<br />

0.92<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

62.07 109.6 kg/s 67.55 98.9 kg/s Cooler-GG-H2 35.7 22.13 259.6 13.9 kg/s Syngas-cool1 13.9 262.9 Syngas-cool1<br />

245 C 154 C<br />

120 C 22.6 260.4 274 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 19.1 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 35.7 kg/s Comp-GG-H2-2 2 13.9 kg/s<br />

2<br />

6.968<br />

22.6 kg/s<br />

15 C<br />

Steam<br />

0.15 200 C<br />

Cooler-GG-H2<br />

5.8 MW<br />

SAND<br />

13<br />

5.796<br />

27.62 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

7.3 4.131<br />

41 1.0 bar<br />

2 7.3 kg/s<br />

Steam<br />

0.93<br />

29.67<br />

13.9 268.3<br />

533 62.0 bar<br />

4 13.9 kg/s<br />

Syngas 29.67 304 C<br />

5.8 MW<br />

SAND<br />

15<br />

5.8<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

62<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

81<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.19<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

260 MW<br />

41 MW<br />

66 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

13 MW<br />

SAND 79 0.029 120 C 28.6 17.72 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 827 1076 2.49<br />

DH-condenser<br />

0.72 16.9 0.50 811 12<br />

DH condenser0.50<br />

111.3 1.0 bar<br />

581<br />

2<br />

0.12<br />

1.0 bar<br />

28.6 kg/s<br />

200 C Steam<br />

0.17 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

8<br />

1<br />

1<br />

11<br />

1<br />

0.00<br />

0.03<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

77% (with power for electrolyser)<br />

71% (with total power)<br />

78%<br />

7.3 0.287 3.889 111.3 kg/s DH-cooler DH-cooler<br />

42.1 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 26.04 42.1 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 44 57 0.13<br />

4 7.3 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

443.8 15.5<br />

811 1.0 bar<br />

0.006 811 6<br />

27.2 1.0 bar<br />

0.95 27.2 kg/s<br />

0.48 4.6 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 27.2 1.0 bar<br />

0.223 27.2 kg/s 1.0 0.639<br />

0.165 562 2<br />

42.1 1.0 bar<br />

200 C<br />

Syngas-cool2 6.7<br />

0.17 0.86<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

7<br />

0<br />

0<br />

9<br />

0<br />

0<br />

0.02<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 443.8 kg/s<br />

0.57 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

28.6 16.21<br />

1.0 bar<br />

28.6 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.00 225 C<br />

Cond-steam-1<br />

23.82 42.1 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

13.4 265.6<br />

62.0 bar<br />

13.4 kg/s<br />

0 551 4<br />

0.5 62.0 bar<br />

0.046 0.5 kg/s<br />

135 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

218 MW<br />

41 MW<br />

66 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

75 MW<br />

0 MW<br />

11 MW<br />

Energy content in DH water = 75 MW 0.12 120 C<br />

DH-cooler<br />

Steam<br />

29.67 135 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

36<br />

0<br />

47<br />

0.00<br />

0.11<br />

* for electrolyser<br />

Urenhed:<br />

0.003 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = #####<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

31.05 3.9 MW 17<br />

SAND 3.891<br />

13.4 269.2<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

2<br />

26<br />

2<br />

26<br />

3<br />

34<br />

3<br />

34<br />

0.01<br />

0.08<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

79% (with power for electrolyser)<br />

72% (with total power)<br />

102%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 3 3 0.01<br />

0.00 120 C 2 13.4 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 23 0.05<br />

Cond-steam-1<br />

31.05 255 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 328 427 0.99 Gas composition at specific nodes (mol-%)<br />

31.24 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

69.0 513.8<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

3<br />

3<br />

4<br />

4<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.55<br />

4 100 C 2 69.0 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

125.1 41.2 925.5 Steam<br />

0 682 4<br />

63 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

247<br />

0<br />

320<br />

0<br />

0.74<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

46.08<br />

0.23<br />

0.00 57.70 57.39 29.76<br />

0.00 0.00 0.23 1.78<br />

9.95 10.49 11.34 11.84<br />

2.35 2.47 2.68 2.79<br />

791 3.5 bar 18.2 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 18 0.04 4 CO 38.18 0.00 22.49 36.99 28.62 19.50 20.55 22.23 23.20<br />

792 41.2 kg/s 18.68 18.2 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 2 2 0.01 6 CO2 7.14 99.95 5.09 0.02 34.50 47.77 50.34 54.45 56.85<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 17 22 0.05 7 H2O-G 7.96 0.00 14.17 4.99 1.96 0.21 0.12 0.03 0.00<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.051 811 10 42.2<br />

251.6 1.0 bar 0.051 0.70<br />

0 806 2<br />

DH water<br />

251.6 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.00 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

18.2 30.6 bar<br />

33.9 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 64<br />

311<br />

Total several DISTILLATION_STAGE's 1681 2161 5.06 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.28<br />

0.11<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.27<br />

0.11<br />

0.00<br />

2.15 2.82 2.98<br />

0.86 1.13 1.19<br />

0.37 16.27 11.87<br />

3.22<br />

1.29<br />

4.77<br />

3.36<br />

1.34<br />

0.61<br />

8.789 251.6 kg/s<br />

90 C<br />

2.06 251.6 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

4.017 18.2 kg/s<br />

220 C 602<br />

69.0 497.4<br />

139.0 bar 607<br />

55.6 244.4<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

93.87<br />

Heatsourc-DH 125.1<br />

30.9 694.4 783<br />

41.2 935.1 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

64<br />

69.0 kg/s<br />

235 C<br />

2<br />

32<br />

55.6 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 41.2 kg/s 18.1 18.57 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 30.9 kg/s 4 100 C 685 30.6 bar 9.8 Preheater-sy NG 93 kr/GJ Methanol 31.2 kr/s 135 kr/GJ 152 kr/GJ 3.03 kr/kg 2.4 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 18.1 kg/s 32 606 2 32 0.70 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 405 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 32 55.6 144.0 bar 65.7 418.8 DH water 0 kr/ton Syngas 1.7 kr/s 131 kr/GJ - kr/GJ 0.57 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.90 241.4 55.6 kg/s 640 139.0 bar 98 9.615 3.3 74.35 Water 32 kr/ton DH water 0.6 kr/s 36 kr/GJ 8 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.183 63 C 2 65.7 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

173 0.88<br />

Feed<br />

18.1<br />

3.992<br />

30.6 bar<br />

18.1 kg/s<br />

220 C<br />

Preheater-sy 54.16 158 C<br />

Condenser-1<br />

7.7<br />

631 3.3 kg/s<br />

4 158 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 8.90 0.58 If methanol and DH share the plant costs<br />

Condenser-1 98.8 13.7 621 631 4 (methanol and DH are the only products from the plant) -<br />

48 705 706<br />

27 3.5 bar<br />

2 8.90 705 706<br />

5 3.5 bar<br />

6<br />

SAND 31 61.0 310.4<br />

643 139.0 bar<br />

2 61.0 kg/s<br />

5 139.0 bar<br />

105 4.7 kg/s<br />

122 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 22.3 kr/s 96.4 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

366 27.4 kg/s 68 5.0 kg/s Condenser 40.46 122 C Preheater-sy<br />

DH water 11.2 kr/s 150 kr/Gjen Mass flow<br />

112 C 112 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

40.6 1.0 bar<br />

Reboil-meoh2 6.8<br />

0.01 0.54<br />

0 805 2<br />

DH water<br />

40.6 1.0 bar Mechanical power<br />

10<br />

47.86 27.5 357.7 1.419 40.6 kg/s 0.332 40.6 kg/s 8.895 5.1 66.05<br />

707 3.5 bar Cond-steam-2 90 C 31.66 605 2 50 C 699 3.5 bar 0.25<br />

708 27.5 kg/s SAND 393 Condenser<br />

55.6 139.0 bar 2.9 12.7 Condenser<br />

700 5.0 kg/s<br />

4 112 C 241.3 55.6 kg/s 611 139.0 bar 99.3 7.137 2.4 54.4 2 112 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 43.46<br />

0 693 694<br />

0 3.5 bar<br />

2 0.2 kg/s<br />

Dis_stage_1<br />

4 38.96 695 696<br />

22 3.5 bar<br />

289 22.3 kg/s<br />

2 33.7<br />

39.01 0.58<br />

39.01 705 706<br />

22 3.5 bar<br />

298 22.3 kg/s<br />

4<br />

30.45 625 635<br />

10 3.5 bar<br />

2<br />

Methanol molar-% = 98.7<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 2.9 kg/s<br />

1.666 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 2.4 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

112 C<br />

Reboil-meoh1<br />

112 C<br />

Reboil-meoh1<br />

234 10.5 kg/s<br />

100 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.5 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.5 kg/s 41.9 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.08 15 C SAND 41.88 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.206 803 4<br />

33.7 1.0 bar<br />

Electrolyser<br />

13.84<br />

1.8<br />

0.80<br />

0 802 2<br />

33.7 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.5 33.7 kg/s 2.2 0.292 0.3 32.75 0.276 33.7 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 63 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.2 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.487<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.12 7 4<br />

2.2 1.0 bar<br />

0.292 2.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.12<br />

0.90<br />

0.12 5 2<br />

2.2 1.0 bar<br />

0.292 2.2 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.121 90 C<br />

Electrolyser<br />

0.0 4E-36<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

13.51 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.067<br />

9.9<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

25.0 32.21<br />

1.0 bar<br />

801<br />

2<br />

19.7 0.161<br />

1.0 bar<br />

19.7 kg/s<br />

15<br />

4<br />

7.9 3.639<br />

1.0 bar<br />

7.9 kg/s Heatsink-H2<br />

2E-36 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

12.7 9.9 kg/s Heatex-GG-st 4 25.0 kg/s 0 50 C 0 62 C 0.0 MW 322 13.51 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.17 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 5E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

11<br />

Gasifier<br />

12.8 279.7<br />

11<br />

24.3<br />

261.7<br />

Gasifier<br />

10 GG2<br />

0.12 0.78<br />

1.0 bar 1.6<br />

24.3 kg/s<br />

800 C<br />

11<br />

24.3<br />

260.6<br />

11 2<br />

1.0 bar<br />

24.3 kg/s<br />

770 C<br />

Heatex-GG-st<br />

0.17 0.98 11<br />

32.1 24.3<br />

242.1<br />

12 2 0.00 0.75<br />

1.0 bar 3.3<br />

24.3 kg/s<br />

130 C Heatex-GG-DH<br />

11<br />

24.2<br />

241.4<br />

13 2<br />

1.0 bar<br />

24.2 kg/s<br />

62 C<br />

1.00<br />

Gas cleaner 10.5<br />

16.3 239.3<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

13.51<br />

13.51 511 2<br />

0.3 1.0 bar<br />

32.75 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 20.2 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 20.2 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 16.3 kg/s 0.166 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 12.8 kg/s 0.12 9 2 Heatex-GG-O2 25.0 14.17 0 21 4 10.5 62 C 262 C 281 C 15 C 0.01 950 C 107 C<br />

7.65 120 C 2.2 1.0 bar SAND 5 31 1.0 bar 0.1 1.0 bar Cleaner 13.51 512 2 30.48 524 4 16.6 285.9 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.189 2.2 kg/s<br />

790 C<br />

Gasifier<br />

2 25.0 kg/s<br />

0.133 120 C<br />

Heatex-GG-st<br />

0.001 0.1 kg/s<br />

62 C 521<br />

Heatex-GG-DH 2<br />

16.5 271.9<br />

1.0 bar<br />

16.5 kg/s<br />

0.3<br />

32.75<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

16.5<br />

285.8<br />

20.2 bar<br />

16.5 kg/s<br />

303 C<br />

531<br />

2<br />

30.5<br />

20.2 bar<br />

16.6 kg/s<br />

303 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

19.7 0.689<br />

1.0 bar<br />

24.04 65 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

10.5 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

55.0 34.04<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 19.7 kg/s 0.93<br />

SAND 10.51 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 27.76 47.2 26.75 6 55.0 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

15.2 19.51 Heatex-GG-DH<br />

16.5 281.7 563 1.0 bar 0.30 200 C 8.7 SAND 0.002 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.56<br />

109.5<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.45 32.6 0.56 34 2<br />

1.0 bar Steam dryer 7.65 98.0 1.0 bar<br />

34 1.0 bar<br />

4 15.2 kg/s<br />

0.104 730 C<br />

Split-steam2<br />

522 6.1 bar<br />

2 16.5 kg/s<br />

27.76 303 C<br />

Cooler-GG-H2<br />

2 47.2 kg/s<br />

0.25 120 C<br />

Cooler-GG-H2<br />

7.5<br />

0.26 0.82<br />

27.76 523 2<br />

16.5 6.1 bar<br />

0.93<br />

30.48<br />

Syngas-cool1<br />

561<br />

2<br />

0.291<br />

55.0 31.14<br />

1.0 bar<br />

55.0 kg/s<br />

120 C<br />

0.30 0.86<br />

0 541 4<br />

0.8 20.2 bar<br />

0.08 0.8 kg/s<br />

144 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 20.2 bar<br />

0.16 0.0 kg/s<br />

0.017 461 2<br />

0.93<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

62.04 109.5 kg/s 68.2 98.0 kg/s Cooler-GG-H2 47.2 29.24 278.6 16.5 kg/s Syngas-cool1 15.7 282.5 Syngas-cool1<br />

253 C 154 C<br />

120 C 24.3 280.5 287 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 20.2 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 47.2 kg/s Comp-GG-H2-2 2 15.7 kg/s<br />

2<br />

7.508<br />

24.3 kg/s<br />

15 C<br />

Steam<br />

0.26 200 C<br />

Cooler-GG-H2<br />

7.7 MW<br />

SAND<br />

13<br />

7.657<br />

30.5 144 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

1.7 0.943<br />

41 1.0 bar<br />

2 1.7 kg/s<br />

Steam<br />

0.93<br />

32.91<br />

15.7 288.8<br />

533 59.9 bar<br />

4 15.7 kg/s<br />

Syngas 32.91 303 C<br />

6.8 MW<br />

SAND<br />

15<br />

6.796<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

64<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

83<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.19<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

281 MW<br />

42 MW<br />

73 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

34 MW<br />

SAND 79 0.009 120 C 120.4 74.57 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 892 1159 2.68<br />

DH-condenser<br />

0.77 3.9 0.22 811 12<br />

DH condenser0.22<br />

33.7 1.0 bar<br />

581 1.0 bar<br />

2 120.4 kg/s<br />

0.66 200 C Steam<br />

0.55 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

13<br />

1<br />

1<br />

17<br />

2<br />

0.00<br />

0.04<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

72% (with power for electrolyser)<br />

65% (with total power)<br />

78%<br />

1.7 0.066 1.176 33.7 kg/s DH-cooler DH-cooler<br />

100.0 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 61.96 100.0 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 47 62 0.14<br />

4 1.7 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

461.8 16.13<br />

811 1.0 bar<br />

0.023 811 6<br />

114.3 1.0 bar<br />

3.994 114.3 kg/s<br />

0.48 19.2 0 804 2<br />

DH cooler<br />

DH water<br />

0.02 114.3 1.0 bar<br />

0.936 114.3 kg/s 1.0 0.639<br />

0.53 562 2<br />

100.0 1.0 bar<br />

200 C<br />

Syngas-cool2 15.9<br />

0.55 0.95<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

2<br />

0<br />

0<br />

2<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 461.8 kg/s<br />

0.31 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

120.4 68.2<br />

35 1.0 bar<br />

6 120.4 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.01 225 C<br />

Cond-steam-1<br />

56.67 100.0 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

11.8 282.9<br />

59.9 bar<br />

11.8 kg/s<br />

0 551 4<br />

3.9 59.9 bar<br />

0.325 3.9 kg/s<br />

130 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

235 MW<br />

42 MW<br />

73 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

78 MW<br />

0 MW<br />

29 MW<br />

Energy content in DH water = 78 MW 0.66 120 C<br />

DH-cooler<br />

Steam<br />

32.91 130 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

47<br />

0<br />

61<br />

0.00<br />

0.14<br />

* for electrolyser<br />

Urenhed:<br />

0.029 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.97<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

34.45 4.4 MW 17<br />

SAND 4.352<br />

11.8 286.9<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

3<br />

34<br />

3<br />

31<br />

4<br />

45<br />

5<br />

40<br />

0.01<br />

0.10<br />

0.01<br />

0.09<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

74% (with power for electrolyser)<br />

67% (with total power)<br />

101%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 6 8 0.02<br />

0.01 120 C 2 11.8 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 20 25 0.06<br />

Cond-steam-1<br />

34.45 255 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 424 552 1.28 Gas composition at specific nodes (mol-%)<br />

32.19 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 6 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

20.0 905.9<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

2<br />

5<br />

2<br />

7<br />

0.00<br />

0.02<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

2.35<br />

4 100 C 2 20.0 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 2 0.00<br />

Species<br />

Split-meoh1<br />

110.2 35.3 791 Steam<br />

0 682 4<br />

120 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

266<br />

0<br />

346<br />

0<br />

0.80<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

43.02<br />

0.18<br />

0.00 57.70 66.71 85.60 82.33 85.67 88.36 94.86<br />

0.00 0.00 0.23 1.49 1.83 1.91 1.97 2.11<br />

791 3.5 bar 17.2 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 17 0.04 4 CO 22.32 0.00 22.49 28.36 9.49 0.21 0.22 0.22 0.24<br />

792 35.3 kg/s 17.63 17.2 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 8 10 0.02 6 CO2 12.35 99.98 5.09 0.02 0.43 0.54 0.57 0.58 0.63<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 14 19 0.04 7 H2O-G 22.00 0.00 14.17 4.51 1.50 1.82 1.08 0.61 0.02<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.043 811 10 36.0<br />

215.1 1.0 bar 0.043 0.70<br />

0 806 2<br />

DH water<br />

215.1 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.01 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.2 30.6 bar<br />

32.0 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 121<br />

311<br />

Total several DISTILLATION_STAGE's 1902 2444 5.72 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.05<br />

0.09<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.06<br />

0.11<br />

0.00<br />

0.41 0.50<br />

0.71 0.88<br />

0.37 11.89<br />

0.52<br />

0.91<br />

9.13<br />

0.54<br />

0.94<br />

6.77<br />

0.58<br />

1.01<br />

0.56<br />

7.514 215.1 kg/s<br />

90 C<br />

1.761 215.1 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.791 17.2 kg/s<br />

220 C 602<br />

20.0 889<br />

139.0 bar 607<br />

8.3 649.2<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

77.97<br />

Heatsourc-DH 110.2<br />

25.0 559.9 783<br />

35.3 799.2 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

121<br />

20.0 kg/s<br />

235 C<br />

2<br />

85<br />

8.3 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 35.3 kg/s 17.1 17.51 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 25.0 kg/s 4 100 C 685 30.6 bar 11.1 Preheater-sy NG 93 kr/GJ Methanol 32.2 kr/s 139 kr/GJ 157 kr/GJ 3.12 kr/kg 2.5 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.1 kg/s 85 606 2 85 -4.10 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 413 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 85 8.3 144.0 bar 16.8 825.8 DH water 0 kr/ton Syngas 4.5 kr/s 132 kr/GJ - kr/GJ 10.32 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.3 MW 19 0.90 645.9 8.3 kg/s 640 139.0 bar 80 8.728 3.2 64.07 Water 32 kr/ton DH water 0.3 kr/s 19 kr/GJ 4 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.262 64 C 2 16.8 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

116 0.72<br />

Feed<br />

17.1<br />

3.766<br />

30.6 bar<br />

17.1 kg/s<br />

220 C<br />

Preheater-sy 112.5 155 C<br />

Condenser-1<br />

4.0<br />

631 3.2 kg/s<br />

4 155 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 0.67 -0.29 If methanol and DH share the plant costs<br />

Condenser-1 83.9 6.851 621 631 4 (methanol and DH are the only products from the plant) -<br />

6 705 706<br />

17 3.5 bar<br />

2 0.67 705 706<br />

2 3.5 bar<br />

6<br />

SAND 31 14.3 779.2<br />

643 139.0 bar<br />

2 14.3 kg/s<br />

2 139.0 bar<br />

51 2.4 kg/s<br />

141 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 25.3 kr/s 110 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

51 17.5 kg/s 6 2.0 kg/s Condenser 105.6 141 C Preheater-sy<br />

DH water 11.6 kr/s 150 kr/Gjen Mass flow<br />

131 C 131 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.02 811 8<br />

79.0 1.0 bar<br />

Reboil-meoh2 13.2<br />

0.02 -0.11<br />

0 805 2<br />

DH water<br />

79.0 1.0 bar Mechanical power<br />

10<br />

5.983 18.5 43.4 2.761 79.0 kg/s 0.647 79.0 kg/s 0.669 2.0 4.586<br />

707 3.5 bar Cond-steam-2 90 C 85.38 605 2 50 C 699 3.5 bar 0.25<br />

708 18.5 kg/s SAND 393 Condenser<br />

8.3 139.0 bar 0.4 33.98 Condenser<br />

700 2.0 kg/s<br />

4 131 C 645.7 8.3 kg/s 611 139.0 bar 91.3 15.76 5.6 119.2 2 131 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 5.95<br />

0 693 694<br />

1 3.5 bar<br />

2 1.0 kg/s<br />

Dis_stage_1<br />

4 5.313 695 696<br />

16 3.5 bar<br />

36 15.6 kg/s<br />

2 31.8<br />

5.352 0.66<br />

5.352 705 706<br />

16 3.5 bar<br />

46 15.6 kg/s<br />

4<br />

31.34 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 86.3<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 0.4 kg/s<br />

4.493 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 5.6 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

131 C<br />

Reboil-meoh1<br />

131 C<br />

Reboil-meoh1<br />

234 11.3 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


27. Flowsheet for <strong>metanolanlæg</strong> – for<br />

parametervariationen (tryksat forgasning)


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.2 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.2 kg/s 36.5 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.07 15 C SAND 36.5 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.344 803 4<br />

81.3 1.0 bar<br />

Electrolyser<br />

12.06<br />

1.6<br />

0.80<br />

0 802 2<br />

81.3 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.4 MW 1 0.844 81.3 kg/s 1.9 0.255 0.2 28.54 0.666 81.3 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 0.417 55 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

1.9 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.2 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.495<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.251 7 4 0.251<br />

0.93<br />

1.9 5.0 bar<br />

0.642 1.9 kg/s<br />

310 C<br />

Comp-O2-1<br />

0.103 5 2<br />

1.9 1.0 bar<br />

0.254 1.9 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.104 90 C<br />

Electrolyser<br />

0.0 3E-43<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

11.62 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.026<br />

6.5<br />

33 2<br />

5.0 bar<br />

Steam<br />

32<br />

21.4 27.54<br />

1.0 bar<br />

801<br />

2<br />

43.8 0.359<br />

1.0 bar<br />

43.8 kg/s<br />

15<br />

4<br />

5.9 3.255<br />

5.0 bar<br />

5.9 kg/s Heatsink-H2<br />

1E-43 90 C<br />

Split-O2-2<br />

O2 0.93<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

9.783 6.5 kg/s Heatex-GG-st 4 21.4 kg/s 0 50 C 0 70 C 0.9 MW 322 11.92 0.8 MW 9 Comp-CO2 0.005 950 C<br />

731 C SAND 7 0.09 730 C Heatex-GG-DH<br />

Cleaner SAND 0.9 SAND 0.844 0.0 MW 7<br />

Heatex-NG<br />

0.91<br />

11<br />

Gasifier<br />

13.0 284.4<br />

11<br />

20.8<br />

268.4<br />

Gasifier<br />

10 GG2<br />

0.25 0.88<br />

5.0 bar 1.0<br />

20.8 kg/s<br />

800 C<br />

11<br />

20.8<br />

267.7<br />

11 2<br />

5.0 bar<br />

20.8 kg/s<br />

779 C<br />

Heatex-GG-st<br />

0.09 0.97 11<br />

27.4 20.8<br />

251.8<br />

12 2 0.01 0.85<br />

5.0 bar 7.3<br />

20.8 kg/s<br />

130 C Heatex-GG-DH<br />

11<br />

18.7<br />

250.4<br />

13 2<br />

5.0 bar<br />

18.7 kg/s<br />

70 C<br />

1.00<br />

Gas cleaner 10.8<br />

12.8 248.5<br />

14 5.0 bar<br />

0.00<br />

Heatsink<br />

11.91<br />

11.92 511 2<br />

0.2 5.0 bar<br />

29.33 0.2 kg/s<br />

325 C<br />

Heatsink-H2<br />

0.02 503 4<br />

0.0 32.6 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 32.6 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 12.8 kg/s 0.168 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 13.0 kg/s 0.25 9 2 Heatex-GG-O2 21.4 12.12 0 21 4 10.8 70 C 332 C 334 C 15 C 0.01 950 C 107 C<br />

7.78 120 C 1.9 5.0 bar SAND 5 31 1.0 bar 2.1 5.0 bar Cleaner 11.91 512 2 25.61 524 4 13.0 284 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.268 1.9 kg/s<br />

790 C<br />

Gasifier<br />

2 21.4 kg/s<br />

0.053 120 C<br />

Heatex-GG-st<br />

0.042 2.1 kg/s<br />

70 C 521<br />

Heatex-GG-DH 2<br />

13.0 277.4<br />

5.0 bar<br />

13.0 kg/s<br />

0.2<br />

28.99<br />

5.0 bar<br />

0.2 kg/s<br />

60 C<br />

13.0<br />

283.9<br />

32.6 bar<br />

13.0 kg/s<br />

221 C<br />

531<br />

2<br />

25.63<br />

32.6 bar<br />

13.0 kg/s<br />

221 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

43.8 1.53<br />

1.0 bar<br />

22.70 69 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

5.1 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

19.0 11.74<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 43.8 kg/s 0.92<br />

SAND 5.126 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.01 90 C 24.52 18.9 10.73 6 19.0 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

14.9 19.16 Heatex-GG-DH<br />

13.0 282.1 563 1.0 bar 0.05 200 C 3.0 SAND 0.004 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.27<br />

107.7<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.44 33.2 0.27 34 2<br />

1.0 bar Steam dryer 7.78 96.0 1.0 bar<br />

34 1.0 bar<br />

4 14.9 kg/s<br />

0.06 730 C<br />

Split-steam2<br />

522 16.8 bar<br />

2 13.0 kg/s<br />

24.52 221 C<br />

Cooler-GG-H2<br />

2 18.9 kg/s<br />

0.05 120 C<br />

Cooler-GG-H2<br />

3.0<br />

0.05 0.94<br />

24.52 523 2<br />

13.0 16.8 bar<br />

0.92<br />

25.61<br />

Syngas-cool1<br />

561<br />

2<br />

0.047<br />

19.0 10.74<br />

1.0 bar<br />

19.0 kg/s<br />

120 C<br />

0.05 0.94<br />

0 541 4<br />

0.0 32.6 bar<br />

5E-18 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.018 462 2 0.018<br />

0.0 32.6 bar<br />

0.162 0.0 kg/s<br />

0.017 461 2<br />

0.93<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

60.99 107.7 kg/s 67.38 96.0 kg/s Cooler-GG-H2 18.9 11.73 281 13.0 kg/s Syngas-cool1 13.0 283 Syngas-cool1<br />

331 C 154 C<br />

120 C 24.8 285.3 294 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 32.6 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 18.9 kg/s Comp-GG-H2-2 2 13.0 kg/s<br />

2<br />

7.635<br />

24.8 kg/s<br />

15 C<br />

Steam<br />

0.05 200 C<br />

Cooler-GG-H2<br />

3.1 MW<br />

SAND<br />

13<br />

3.066<br />

25.63 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

5.2 2.95<br />

41 1.0 bar<br />

2 5.2 kg/s<br />

Steam<br />

0.92<br />

26.72<br />

13.0 285.8<br />

533 63.6 bar<br />

4 13.0 kg/s<br />

Syngas 26.72 221 C<br />

3.1 MW<br />

SAND<br />

15<br />

3.073<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

55<br />

4<br />

2<br />

Total<br />

price<br />

[mio. kr]<br />

72<br />

5<br />

2<br />

C<br />

[kr/s]<br />

0.17<br />

0.01<br />

0.01<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

285 MW<br />

37 MW<br />

54 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

10 MW<br />

0 MW<br />

32 MW<br />

SAND 79 0.013 120 C 1.0 0.625 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 907 1179 2.73<br />

DH-condenser<br />

0.73 12.1 0.37 811 12<br />

DH condenser0.37<br />

81.3 1.0 bar<br />

581<br />

2<br />

0.00<br />

1.0 bar<br />

1.0 kg/s<br />

208 C Steam<br />

0.05 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0<br />

11<br />

3<br />

1<br />

14<br />

4<br />

0.00<br />

0.03<br />

0.01<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

72% (with power for electrolyser)<br />

68% (with total power)<br />

81%<br />

5.2 0.205 2.841 81.3 kg/s DH-cooler DH-cooler<br />

19.5 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 12.05 19.5 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 48 63 0.14<br />

4 5.2 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

391.0 13.66<br />

811 1.0 bar<br />

0.000 811 6<br />

1.0 1.0 bar<br />

0.036 1.0 kg/s<br />

0.47 0.2 0 804 2<br />

DH cooler<br />

DH water<br />

0.00 1.0 1.0 bar<br />

0.008 1.0 kg/s 24.7 15.81<br />

0.048 562 2<br />

19.5 1.0 bar<br />

200 C<br />

Syngas-cool2 3.1<br />

0.05 0.95<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

5<br />

0<br />

0<br />

6<br />

0<br />

0<br />

0.01<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 391.0 kg/s<br />

0.43 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

1.0 0.566<br />

1.0 bar<br />

1.0 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 24.7 kg/s<br />

0.06 225 C<br />

Cond-steam-1<br />

11.02 19.5 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

12.9 284.7<br />

63.6 bar<br />

12.9 kg/s<br />

0 551 4<br />

0.2 63.6 bar<br />

0.015 0.2 kg/s<br />

138 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

239 MW<br />

37 MW<br />

54 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

66 MW<br />

0 MW<br />

30 MW<br />

Energy content in DH water = 66 MW 0.00 120 C<br />

DH-cooler<br />

Steam<br />

26.72 138 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

23<br />

0<br />

30<br />

0.00<br />

0.07<br />

* for electrolyser<br />

Urenhed:<br />

0.026 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.97<br />

Water /<br />

671<br />

24.7 14.01<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

28.1 3.9 MW 17<br />

SAND 3.903<br />

12.9 288.3<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

1<br />

14<br />

1<br />

14<br />

2<br />

18<br />

2<br />

18<br />

0.00<br />

0.04<br />

0.00<br />

0.04<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

74% (with power for electrolyser)<br />

70% (with total power)<br />

103%<br />

Methanol<br />

2 24.7 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 1 2 0.00<br />

0.05 120 C 2 12.9 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 18 23 0.05<br />

Cond-steam-1<br />

28.1 254 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 332 431 1.00 Gas composition at specific nodes (mol-%)<br />

26.43 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 4 5 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

47.8 906.7<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

2<br />

4<br />

3<br />

5<br />

0.01<br />

0.01<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.84<br />

4 100 C 2 47.8 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

86.99 33.9 760.5 Steam<br />

0 682 4<br />

96 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

259<br />

2<br />

337<br />

3<br />

0.78<br />

0.01<br />

1<br />

3<br />

H2<br />

N2<br />

42.86<br />

0.21<br />

0.00 57.70 59.43 41.77 24.84 26.28 28.03 30.00<br />

0.00 0.00 0.24 1.94 2.54 2.69 2.86 3.06<br />

791 3.5 bar 17.7 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 11 14 0.03 4 CO 28.56 0.00 22.49 32.25 15.14 3.08 3.26 3.48 3.72<br />

792 33.9 kg/s 18.16 17.7 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 0 0 0.00 6 CO2 10.91 99.97 5.09 0.02 17.57 24.24 25.65 27.35 29.27<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 14 18 0.04 7 H2O-G 15.12 0.00 14.17 5.43 2.18 1.66 0.96 0.36 0.01<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.042 811 10 34.6<br />

206.8 1.0 bar 0.042 0.70<br />

0 806 2<br />

DH water<br />

206.8 1.0 bar<br />

0 683 2<br />

2.8 30.6 bar<br />

5.2<br />

0.06 0.81<br />

0 684 4<br />

2.8 30.6 bar<br />

Water<br />

0 681 2<br />

17.7 30.6 bar<br />

32.9 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 97<br />

311<br />

Total several DISTILLATION_STAGE's 1736 2239 5.22 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

2.23<br />

0.10<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

2.52 20.13 26.40 27.93 29.79 31.88<br />

0.12 0.93 1.22 1.29 1.37 1.47<br />

0.00 0.35 16.02 11.94 6.74 0.58<br />

7.225 206.8 kg/s<br />

90 C<br />

1.693 206.8 kg/s<br />

50 C<br />

2.839 2.8 kg/s<br />

235 C<br />

0.61 2.8 kg/s<br />

220 C<br />

3.904 17.7 kg/s<br />

220 C 602<br />

47.8 890.7<br />

139.0 bar 607<br />

35.0 619.2<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

60.56<br />

Heatsourc-DH 86.99<br />

23.6 529.4 783<br />

33.9 768.4 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

97<br />

47.8 kg/s<br />

235 C<br />

2<br />

68<br />

35.0 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 33.9 kg/s 14.9 15.32 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 23.6 kg/s 4 100 C 685 30.6 bar 9.8 Preheater-sy NG 93 kr/GJ Methanol 26.4 kr/s 114 kr/GJ 129 kr/GJ 2.57 kr/kg 2.0 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 14.9 kg/s 68 606 2 68 0.81 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 407 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 68 35.0 144.0 bar 44.4 815.6 DH water 0 kr/ton Syngas 3.6 kr/s 110 kr/GJ - kr/GJ 1.94 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.2 MW 19 0.90 616.3 35.0 kg/s 640 139.0 bar 86 7.796 3.5 71.4 Water 32 kr/ton DH water 0.4 kr/s 32 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.183 63 C 2 44.4 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

94 0.75<br />

Feed<br />

14.9<br />

3.294<br />

30.6 bar<br />

14.9 kg/s<br />

220 C<br />

Preheater-sy 89.04 164 C<br />

Condenser-1<br />

6.1<br />

631 3.5 kg/s<br />

4 164 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 1.19 0.84 If methanol and DH share the plant costs<br />

Condenser-1 90.1 8.751 621 631 4 (methanol and DH are the only products from the plant) -<br />

7 705 706<br />

17 3.5 bar<br />

2 1.19 705 706<br />

3 3.5 bar<br />

6<br />

SAND 31 40.6 733.6<br />

643 139.0 bar<br />

2 40.6 kg/s<br />

4 139.0 bar<br />

80 3.8 kg/s<br />

138 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 20.6 kr/s 89 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

65 16.9 kg/s 12 3.0 kg/s Condenser 80.29 138 C Preheater-sy<br />

DH water 9.9 kr/s 150 kr/Gjen Mass flow<br />

128 C 128 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.01 811 8<br />

58.0 1.0 bar<br />

Reboil-meoh2 9.7<br />

0.01 0.62<br />

0 805 2<br />

DH water<br />

58.0 1.0 bar Mechanical power<br />

10<br />

6.588 17.6 58.2 2.027 58.0 kg/s 0.475 58.0 kg/s 1.178 3.0 9.981<br />

707 3.5 bar Cond-steam-2 90 C 67.66 605 2 50 C 699 3.5 bar 0.25<br />

708 17.6 kg/s SAND 393 Condenser<br />

35.0 139.0 bar 1.8 32.43 Condenser<br />

700 3.0 kg/s<br />

4 128 C 616.1 35.0 kg/s 611 139.0 bar 94.7 9.068 3.8 82.57 2 128 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 8.64<br />

0 693 694<br />

1 3.5 bar<br />

2 0.7 kg/s<br />

Dis_stage_1<br />

4 5.41 695 696<br />

14 3.5 bar<br />

46 13.9 kg/s<br />

2 27.8<br />

5.444 0.65<br />

5.444 705 706<br />

14 3.5 bar<br />

54 13.9 kg/s<br />

4<br />

25.61 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 90.4<br />

60 C<br />

Comp-recirc<br />

Methanol/<br />

4 1.8 kg/s<br />

3.561 60 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 3.8 kg/s<br />

4 60 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

128 C<br />

Reboil-meoh1<br />

128 C<br />

Reboil-meoh1<br />

234 11.0 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


28. Flowsheet for <strong>metanolanlæg</strong> – for<br />

parametervariationen (<strong>af</strong>kølingstemperaturen for<br />

den metanolholdige gas)


0<br />

1 1<br />

1 P<br />

2 M<br />

type NOD*<br />

1 1<br />

type NOD*<br />

1 1<br />

1 Energy flow<br />

2 Cost flow<br />

type NOD*<br />

1 2<br />

1 Exergy efficiency<br />

2 Exergy destruction<br />

Water<br />

Steam<br />

3T 2 1 3Exergy destruction cost flow - based on specific cost of input 2.4 -0 0.0 0.006<br />

4H 3 0 4Exergy destruction cost flow - based on specific cost of output 1 1.0 bar Electrolyser 423 10.0 bar 0.02 412 2<br />

5EX 5 Component cost flow 2 2.4 kg/s 39.9 MW 201 2 0.0 kg/s 0.0 10.0 bar NG<br />

6 EX_CH * Number of decimals Electrolyser 0.076 15 C SAND 39.89 0.00 850 C 0.176 0.0 kg/s<br />

7 EX_PH SAND 301 Electrolyser<br />

NG_reformer<br />

667 C<br />

8X<br />

9 EX*M<br />

10 EX_CH*M Comp-O2-1<br />

DH water<br />

0.371 803 4<br />

87.5 1.0 bar<br />

Electrolyser<br />

13.18<br />

1.7<br />

0.80<br />

0 802 2<br />

87.5 1.0 bar DH water<br />

0.93<br />

Steam reformer<br />

0.02<br />

NG_reformer<br />

O2 11 EX_PH*M 0.0 MW 1 0.911 87.5 kg/s 2.1 0.278 0.3 31.19 0.716 87.5 kg/s 0.0 0.002<br />

12 C<br />

13 C/EX<br />

SAND 2E-05 55 C<br />

Electro-cool<br />

3<br />

4<br />

1.0 bar<br />

2.1 kg/s<br />

2<br />

4<br />

1.0 bar<br />

0.3 kg/s<br />

50 C<br />

Electro-cool<br />

Comp-O2-2<br />

0.0 MW 3<br />

Reformat<br />

0.0 0.171<br />

403<br />

2<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0<br />

Ash<br />

0.6 0.447<br />

83 1.0 bar<br />

4 0.6 kg/s<br />

14 C/M<br />

O2 0.113 7 4 0.113<br />

0.90<br />

2.1 1.0 bar<br />

0.278 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

0.113 5 2<br />

2.1 1.0 bar<br />

0.278 2.1 kg/s<br />

90 C<br />

Comp-O2-1<br />

DH water<br />

Gas<br />

0.113 90 C<br />

Electrolyser<br />

0.0 9E-41<br />

6 1.0 bar<br />

4 0.0 kg/s<br />

12.7 90 C<br />

Electrolyser<br />

H2 O2 2E-04 401 2<br />

0.0 1.0 bar<br />

4E-04 0.0 kg/s<br />

90 C<br />

SAND 0.001<br />

6E-04 402 4<br />

0.94<br />

6E-04 0.0 10.0 bar<br />

0.001 0.0 kg/s<br />

431 C<br />

431 10.0 bar<br />

4 0.0 kg/s<br />

0.02 950 C<br />

NG_reformer<br />

0.00 850 C<br />

NG_reformer<br />

0.0 0.019<br />

441 10.0 bar<br />

2 0.0 kg/s<br />

0.002 950 C<br />

Heatex-O2<br />

Gasifier<br />

304 0.0 MW<br />

SAND<br />

0 800 C<br />

Gasifier<br />

0.0<br />

0.029<br />

5.0<br />

33 2<br />

1.0 bar<br />

Steam<br />

32<br />

18.1 23.33<br />

1.0 bar<br />

801<br />

2<br />

14.3 0.117<br />

1.0 bar<br />

14.3 kg/s<br />

15<br />

4<br />

4.6 2.116<br />

1.0 bar<br />

4.6 kg/s Heatsink-H2<br />

4E-41 90 C<br />

Split-O2-2<br />

O2 0.90<br />

Comp-H2<br />

Comp-O2-2<br />

Comp-O2-2<br />

432<br />

2<br />

0.0 0.05<br />

10.0 bar<br />

0.0 kg/s<br />

0.0<br />

0.00 0.97 Heatex-O2<br />

SAND 11<br />

6.423 5.0 kg/s Heatex-GG-st 4 18.1 kg/s 0 50 C 0 60 C 0.0 MW 322 12.7 0.0 MW 9 Comp-CO2 0.005 950 C<br />

730 C SAND 7 0.11 730 C Heatex-GG-DH<br />

Cleaner SAND 0.0 SAND 5E-05 0.0 MW 7<br />

Heatex-NG<br />

0.89<br />

10<br />

Gasifier<br />

11.8 256.6<br />

10<br />

18.3<br />

235.8<br />

Gasifier<br />

10 GG2<br />

0.11 0.78<br />

1.0 bar 1.5<br />

18.3 kg/s<br />

800 C<br />

10<br />

18.3<br />

234.7<br />

11 2<br />

1.0 bar<br />

18.3 kg/s<br />

761 C<br />

Heatex-GG-st<br />

0.11 0.98 10<br />

23.2 18.3<br />

221.4<br />

12 2 0.00 0.74<br />

1.0 bar 2.4<br />

18.3 kg/s<br />

130 C Heatex-GG-DH<br />

10<br />

18.3<br />

220.9<br />

13 2<br />

1.0 bar<br />

18.3 kg/s<br />

60 C<br />

1.00<br />

Gas cleaner 9.6<br />

13.7 219.8<br />

14 1.0 bar<br />

0.00<br />

Heatsink<br />

12.70<br />

12.7 511 2<br />

0.3 1.0 bar<br />

31.19 0.3 kg/s<br />

90 C<br />

Heatsink-H2<br />

0.019 503 4<br />

0.0 19.8 bar<br />

SAND 0.003<br />

0.002 502 4 0.002 0.001 501 2<br />

0.93<br />

0.0 19.8 bar 0.0 1.0 bar<br />

CO2<br />

0.015 411 2<br />

NG0.0<br />

10.0 bar<br />

0.173 0.0 kg/s<br />

25 C<br />

Heatex-NG<br />

451<br />

Heatex-NG<br />

SAND<br />

0.0 0.102<br />

10.0 bar<br />

0.0<br />

13 0.02 0.89<br />

0 434 Water 2<br />

0.0 10.0 bar<br />

82 1.0 bar Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH SAND 9 Cleaner<br />

4 13.7 kg/s 0.166 0.0 kg/s 0.007 0.0 kg/s 0.005 0.0 kg/s 2 0.0 kg/s 1E-05 0.0 kg/s<br />

2 11.8 kg/s 0.11 9 2 Heatex-GG-O2 18.1 10.27 0 21 4 9.6 60 C 259 C 279 C 15 C 0.01 950 C 107 C<br />

7.02 120 C 2.1 1.0 bar SAND 5 31 1.0 bar 0.0 1.0 bar Cleaner 12.70 512 2 27.48 524 4 14.0 262.1 Mixer-CO2-NG<br />

Comp-CO2 Comp-CO2<br />

Heatex-H2O Pres-sep-3<br />

Gasifier<br />

H2O [mass-%] = 0.05<br />

Dry-wood<br />

1.132 2.1 kg/s<br />

790 C<br />

Gasifier<br />

2 18.1 kg/s<br />

0.079 120 C<br />

Heatex-GG-st<br />

-0 0.0 kg/s<br />

60 C 521<br />

Heatex-GG-DH 2<br />

13.9 250.8<br />

1.0 bar<br />

13.9 kg/s<br />

0.3<br />

31.19<br />

1.0 bar<br />

0.3 kg/s<br />

90 C<br />

13.9<br />

261.9<br />

19.8 bar<br />

13.9 kg/s<br />

304 C<br />

531<br />

2<br />

27.5<br />

19.8 bar<br />

14.0 kg/s<br />

304 C<br />

1E-04 422 2<br />

Water 0.0 10.0 bar<br />

1E-05 0.0 kg/s<br />

0.0 Heatex-H2O<br />

0.00 0.74 SAND 15<br />

0 453 Water 4<br />

Steam<br />

811<br />

14.3 0.5<br />

1.0 bar<br />

22.32 63 C<br />

Comp-GG-H2-1<br />

Comp-GG-H2-1<br />

8.4 MW 11<br />

Mixer-GG-H2 Comp-GG-H2-2<br />

37.8 23.38<br />

Syngas-cool1<br />

33 C<br />

Heatex-H2O<br />

0.0<br />

2E-05<br />

10.0 bar<br />

0.0 kg/s<br />

4 14.3 kg/s 0.93<br />

SAND 8.418 571 1.0 bar Syngas-cool1 Comp-NG_ref 109 C<br />

0.00 90 C 25.31 37.7 21.36 6 37.8 kg/s SAND 21 0.0 MW 5 0.0 Heatex-H2O<br />

0.0 0.046 0.0<br />

13.1 16.91 Heatex-GG-DH<br />

13.9 258.7 563 1.0 bar 0.17 200 C 6.0 SAND 0.002 0.0 0.094 0.0 0.046 0.0 0.018<br />

0.45<br />

105.9<br />

Steam_dryer Biomass (dry)<br />

SAND 1<br />

35 4 0.45 29.9 0.45 34 2<br />

1.0 bar Steam dryer 7.02 95.3 1.0 bar<br />

34 1.0 bar<br />

4 13.1 kg/s<br />

0.077 730 C<br />

Split-steam2<br />

522 6.0 bar<br />

2 13.9 kg/s<br />

25.31 304 C<br />

Cooler-GG-H2<br />

2 37.7 kg/s<br />

0.16 120 C<br />

Cooler-GG-H2<br />

6.0<br />

0.17 0.82<br />

25.31 523 2<br />

13.9 6.0 bar<br />

0.93<br />

27.48<br />

Syngas-cool1<br />

561<br />

2<br />

0.164<br />

37.8 21.38<br />

1.0 bar<br />

37.8 kg/s<br />

120 C<br />

0.17 0.82<br />

0 541 4<br />

0.0 19.8 bar<br />

-0 0.0 kg/s<br />

130 C<br />

Water<br />

Reformat<br />

0.017 462 2 0.017<br />

0.0 19.8 bar<br />

0.16 0.0 kg/s<br />

0.017 461 2<br />

0.93<br />

0.0 10.0 bar<br />

0.158 0.0 kg/s<br />

452 10.0 bar<br />

2 0.0 kg/s<br />

0.01 109 C<br />

Mixer-NG_ref<br />

433 10.0 bar<br />

2 0.0 kg/s<br />

0.005 107 C<br />

Mixer-NG_ref<br />

442 10.0 bar<br />

2 0.0 kg/s<br />

0.002 483 C<br />

Mixer-NG_ref<br />

59.97 105.9 kg/s 65.46 95.3 kg/s Cooler-GG-H2 37.7 23.36 256.2 13.9 kg/s Syngas-cool1 14.0 259.7 Syngas-cool1<br />

250 C 154 C<br />

120 C 22.3 257.4 278 C SAND 19 571 1.0 bar 130 C Comp-GG-H2-2 532 19.8 bar<br />

Mixer-CO2-NG<br />

Comp-NG_ref<br />

Steam_dryer<br />

81 1.0 bar Steam_dryer<br />

4 37.7 kg/s Comp-GG-H2-2 2 14.0 kg/s<br />

2<br />

6.889<br />

22.3 kg/s<br />

15 C<br />

Steam<br />

0.17 200 C<br />

Cooler-GG-H2<br />

6.1 MW<br />

SAND<br />

13<br />

6.116<br />

27.5 130 C<br />

Comp-syngas1 Comp-syngas1 Component information<br />

Technical lifetime =<br />

O&M =<br />

15 years<br />

0.02 of the componentprice per year<br />

Operating hours = 8000<br />

Exergy<br />

Steam<br />

DH-condenser<br />

Steam_dryer<br />

Biomass (wet)<br />

5.6 3.166<br />

41 1.0 bar<br />

2 5.6 kg/s<br />

Steam<br />

0.93<br />

29.67<br />

14.0 265.3<br />

533 65.1 bar<br />

4 14.0 kg/s<br />

Syngas 29.67 304 C<br />

6.1 MW<br />

SAND<br />

15<br />

6.12<br />

Electrolyser<br />

Comp-H2<br />

Comp-O2-1<br />

Node before<br />

component<br />

1<br />

2<br />

5<br />

Component<br />

type<br />

Electrolyser<br />

Compressor<br />

Compressor<br />

DNA name<br />

ELECTROLYSER<br />

COMPRE_1<br />

COMPRE_1<br />

Specific price<br />

1.52 mio. kr/MWe<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

Price<br />

[mio. kr]<br />

61<br />

0<br />

0<br />

Total<br />

price<br />

[mio. kr]<br />

79<br />

0<br />

0<br />

C<br />

[kr/s]<br />

0.18<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

* for electrolyser<br />

0 MW<br />

257 MW<br />

40 MW<br />

66 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

231 MW<br />

12 MW<br />

0 MW<br />

9 MW<br />

SAND 79 0.024 120 C 52.1 32.3 set_temp-2<br />

Gasifier<br />

9 Gasifier<br />

GASIFI_3 3.80 mio. kr/MW-biomass 818 1064 2.46<br />

DH-condenser<br />

0.73 13.0 0.41 811 12<br />

DH condenser0.41<br />

87.5 1.0 bar<br />

581<br />

2<br />

0.24<br />

1.0 bar<br />

52.1 kg/s<br />

200 C Steam<br />

0.26 571 8<br />

Heatex-GG-O2<br />

Heatex-GG-st<br />

Heatex-GG-DH<br />

10<br />

11<br />

12<br />

Heat exchanger<br />

Heat exchanger<br />

Heat exchanger<br />

HEATEX_2<br />

HEATEX_2<br />

GASCOOL2<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

1<br />

9<br />

1<br />

1<br />

12<br />

1<br />

0.00<br />

0.03<br />

0.00<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

78% (with power for electrolyser)<br />

72% (with total power)<br />

78%<br />

5.6 0.22 3.055 87.5 kg/s DH-cooler DH-cooler<br />

57.8 1.0 bar Cleaner 13 Gas cleaner GASCLE_2 0.00 mio. kr/(kg/s)-gas 0 0 0.00<br />

42 1.0 bar 90 C SAND 25 35.82 57.8 kg/s Steam_dryer<br />

34 Steam dryer DRYER_04 4.10 mio. kr/(kg/s)-evaporated 43 56 0.13<br />

4 5.6 kg/s<br />

0 95 C<br />

DH-condenser<br />

DH-condenser<br />

440.6 15.39<br />

811 1.0 bar<br />

0.010 811 6<br />

49.5 1.0 bar<br />

1.731 49.5 kg/s<br />

0.48 8.3 0 804 2<br />

DH cooler<br />

DH water<br />

0.01 49.5 1.0 bar<br />

0.406 49.5 kg/s 1.0 0.639<br />

0.251 562 2<br />

57.8 1.0 bar<br />

200 C<br />

Syngas-cool2 9.2<br />

0.26 0.91<br />

Syngas-cool2<br />

SAND 23<br />

DH-condenser<br />

Comp-O2-2<br />

Heatex-O2<br />

41<br />

401<br />

402<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

HEATEX_1<br />

COMPRE_1<br />

HEATEX_4<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

5<br />

0<br />

0<br />

7<br />

0<br />

0<br />

0.02<br />

0.00<br />

0.00 Energy<br />

Water<br />

2 440.6 kg/s<br />

0.48 90 C<br />

DH<br />

DH water<br />

90 C<br />

DH-cooler<br />

35<br />

6<br />

52.1 29.53<br />

1.0 bar<br />

52.1 kg/s<br />

50 C<br />

DH-cooler<br />

571 1.0 bar<br />

10 1.0 kg/s<br />

0.00 225 C<br />

Cond-steam-1<br />

32.76 57.8 kg/s<br />

120 C<br />

Syngas-cool2<br />

534<br />

2<br />

12.4 261.9<br />

65.1 bar<br />

12.4 kg/s<br />

0 551 4<br />

1.5 65.1 bar<br />

0.137 1.5 kg/s<br />

135 C<br />

NG_reformer<br />

Heatex-NG<br />

Water<br />

Heatex-H2O<br />

Comp-NG_ref<br />

Comp-CO2<br />

403<br />

411<br />

422<br />

461<br />

501<br />

NG reformer<br />

Heat exchanger<br />

Heat exchanger<br />

Compressor<br />

Compressor<br />

STEAM_REFORMER<br />

GASCOOL2<br />

GASCOOL2<br />

COMPRE_1<br />

COMPRE_1<br />

1.05 mio. kr/MW-NG<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

4.50 mio. kr/MW<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Input:<br />

NG<br />

Biomass<br />

Power*<br />

Total power<br />

0MW<br />

215 MW<br />

40 MW<br />

66 MW<br />

Output:<br />

Methanol<br />

DH<br />

Oxygen<br />

Syngas<br />

205 MW<br />

74 MW<br />

0 MW<br />

7 MW<br />

Energy content in DH water = 74 MW 0.24 120 C<br />

DH-cooler<br />

Steam<br />

29.67 135 C<br />

Comp-syngas2<br />

Syngas-cool2 Heatsink-H2<br />

Comp-GG-H2-1<br />

511<br />

521<br />

Heat exchanger<br />

Compressor<br />

HEATSNK0<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0<br />

38<br />

0<br />

49<br />

0.00<br />

0.11<br />

* for electrolyser<br />

Urenhed:<br />

0.006 %<br />

Methanol loss in dis<strong>til</strong>lation [%] = 1.0<br />

Methanol molar-% = 99.99<br />

Water /<br />

671<br />

1.0 0.566<br />

1.0 bar<br />

0.93<br />

Comp-syngas2<br />

30.95 3.6 MW 17<br />

SAND 3.617<br />

12.4 265.2<br />

Cooler-GG-H2<br />

Comp-GG-H2-2<br />

Syngas-cool1<br />

Comp-syngas1<br />

522<br />

523<br />

531<br />

532<br />

Heat exchanger<br />

Compressor<br />

Heat exchanger<br />

Compressor<br />

GASCOOL2<br />

COMPRE_1<br />

GASCOOL2<br />

COMPRE_1<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

0.40 mio. kr/MW-transferred<br />

4.50 mio. kr/MW<br />

2<br />

28<br />

2<br />

28<br />

3<br />

36<br />

3<br />

36<br />

0.01<br />

0.08<br />

0.01<br />

0.08<br />

Methanol-efficiency 1:<br />

Methanol-efficiency 2:<br />

Total efficiency:<br />

80% (with power for electrolyser)<br />

73% (with total power)<br />

102%<br />

Methanol<br />

2 1.0 kg/s 535 144.0 bar Syngas-cool2 533 Heat exchanger GASCOOL2 0.40 mio. kr/MW-transferred 4 5 0.01<br />

0.00 120 C 2 12.4 kg/s Comp-syngas2<br />

534 Compressor COMPRE_1 4.50 mio. kr/MW 16 21 0.05<br />

Cond-steam-1<br />

30.95 248 C Meoh-convert<br />

601 Meoh converter MEOH_CONVERTER ##### mio. kr/(kmol/s-syngas) 260 338 0.78 Gas composition at specific nodes (mol-%)<br />

31.43 10.3 231.1 set-M<br />

Preheater-sy 602 Heat exchanger GASCOOL4 0.40 mio. kr/MW-transferred 2 3 0.01<br />

793<br />

794<br />

3.5 bar<br />

10.3 kg/s 601<br />

43.5 438.2<br />

144.0 bar<br />

Condenser-1<br />

Syngas Condenser<br />

640<br />

643<br />

Heat exchanger<br />

Heat exchanger<br />

GASCOOL4<br />

GASCOOL4<br />

0.40 mio. kr/MW-transferred<br />

0.40 mio. kr/MW-transferred<br />

4<br />

1<br />

6<br />

2<br />

0.01<br />

0.00<br />

Node 10<br />

3<br />

15 431 534 601 602 640 643 605<br />

15 23 33 35 41 43 39 37<br />

M-factor<br />

1.78<br />

4 100 C 2 43.5 kg/s Comp-recirc<br />

605 Compressor COMPRE_1 4.50 mio. kr/MW 1 1 0.00<br />

Species<br />

Split-meoh1<br />

135 44.2 992.6 Steam<br />

0 682 4<br />

53 235 C<br />

Meoh-convert<br />

feed_Water<br />

Cond-steam-1<br />

625<br />

671<br />

Dis<strong>til</strong>lation column<br />

Heat exchanger<br />

DISTILLATION_STAGE*<br />

HEATEX_1<br />

23.52 mio. kr/(kg/s-feed)<br />

0.40 mio. kr/MW-transferred<br />

254<br />

0<br />

330<br />

0<br />

0.76<br />

0.00<br />

1<br />

3<br />

H2<br />

N2<br />

45.61<br />

0.21<br />

0.00 57.70 60.62 45.05 23.06 24.07 28.74 30.00<br />

0.00 0.00 0.23 2.23 3.20 3.34 3.99 4.16<br />

791 3.5 bar 17.9 30.6 bar Cond-steam-2<br />

685 Heat exchanger HEATSNK0 0.40 mio. kr/MW-transferred 13 17 0.04 4 CO 32.28 0.00 22.49 34.04 20.22 5.27 5.50 6.56 6.85<br />

792 44.2 kg/s 18.3 17.9 kg/s DH-cooler<br />

804 Heat exchanger HEATEX_1 0.40 mio. kr/MW-transferred 3 4 0.01 6 CO2 9.39 99.97 5.09 0.03 26.24 39.65 41.40 49.42 51.59<br />

Heatsourc-DH 4 100 C Cond-steam-1 235 C Heatsourc-DH<br />

806 Heat exchanger HEATSRC0 0.40 mio. kr/MW-transferred 18 24 0.05 7 H2O-G 12.25 0.00 14.17 4.82 2.39 1.47 1.13 0.20 0.04<br />

SAND 390 Cond-meoh SAND 35 Convert-cool * The dis<strong>til</strong>lation column is composed of 9 H2S 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.054 811 10 45.2<br />

269.8 1.0 bar 0.054 0.70<br />

0 806 2<br />

DH water<br />

269.8 1.0 bar<br />

0 683 2<br />

0.1 30.6 bar<br />

0.2<br />

0.00 0.81<br />

0 684 4<br />

0.1 30.6 bar<br />

Water<br />

0 681 2<br />

17.9 30.6 bar<br />

33.2 Meoh-convert<br />

Methanol 1.00 SAND<br />

converter 54<br />

311<br />

Total several DISTILLATION_STAGE's 1613 2069 4.85 11<br />

36<br />

40<br />

CH4<br />

AR<br />

CH3OH<br />

0.15<br />

0.10<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.55<br />

0.00<br />

0.00<br />

0.16<br />

0.11<br />

0.00<br />

1.56 2.24 2.33<br />

1.07 1.54 1.60<br />

1.25 23.59 20.62<br />

2.79<br />

1.91<br />

6.39<br />

2.91<br />

2.00<br />

2.45<br />

9.427 269.8 kg/s<br />

90 C<br />

2.209 269.8 kg/s<br />

50 C<br />

0.115 0.1 kg/s<br />

235 C<br />

0.025 0.1 kg/s<br />

220 C<br />

3.935 17.9 kg/s<br />

220 C 602<br />

43.5 422.2<br />

139.0 bar 607<br />

31.1 171.2<br />

144.0 bar Input prices<br />

GG<br />

H2S<br />

NG_ref-cool Syngas-loop1 Syngas-meoh- Syngas-loop2<br />

Syngas-3 Syngas-meoh Syngas-loop3<br />

103.5<br />

Heatsourc-DH 135<br />

33.9 761.5 783<br />

44.2 1003 Heatsourc-DH<br />

3.5 bar<br />

Cond-steam-1 Cond-steam-1 Convert-cool<br />

2<br />

54<br />

43.5 kg/s<br />

235 C<br />

2<br />

22<br />

31.1 kg/s<br />

225 C<br />

Input<br />

Electric power<br />

Price<br />

324 kr/GJ Output cost<br />

Comparable fuel prices<br />

781 3.5 bar 784 44.2 kg/s 17.7 18.19 Preheater-sy<br />

Mixer-syn_re<br />

Mechanical power 341 kr/GJ Output Cost flow Cost (exergy) Cost (energy) Cost (mass) Cost (volume) Fuel Price (exergy) Price (volume)<br />

782 33.9 kg/s 4 100 C 685 30.6 bar 4.9 Preheater-sy NG 93 kr/GJ Methanol 31.4 kr/s 136 kr/GJ 153 kr/GJ 3.05 kr/kg 2.4 kr/l Methanol (commercial) 142 kr/GJ 2.5 kr/l<br />

2 100 C Dis_stage_17 2 17.7 kg/s 22 606 2 22 0.70 SAND 29 Biomass 32 kr/GJ Oxygen 0.0 kr/s 407 kr/GJ - kr/GJ 0.05 kr/kg - kr/l Petrol 187 kr/GJ 6.6 kr/l<br />

Dis_stage_17 0 235 C Comp-recirc 22 31.1 144.0 bar 41.6 378.3 DH water 0 kr/ton Syngas 1.2 kr/s 132 kr/GJ - kr/GJ 0.72 kr/kg - kr/l Crude oil 58 kr/GJ 2.2 kr/l<br />

Cond-steam-2 0.1 MW 19 0.90 169.6 31.1 kg/s 640 139.0 bar 91 5.347 1.9 41.46 Water 32 kr/ton DH water 0.5 kr/s 31 kr/GJ 7 kr/GJ 0.00 kr/kg - kr/l Ethanol 100 kr/GJ 2.4 kr/l<br />

0 681 4 SAND 0.136 103 C 2 41.6 kg/s 621 139.0 bar CO2 114 kr/ton Water 0 kr/s - kr/GJ - kr/GJ - kr/kg - kr/l<br />

Dis<strong>til</strong>lation<br />

column<br />

150 0.79<br />

Feed<br />

17.7<br />

3.91<br />

30.6 bar<br />

17.7 kg/s<br />

220 C<br />

Preheater-sy 48.79 187 C<br />

Condenser-1<br />

10.7<br />

631 1.9 kg/s<br />

4 187 C<br />

Preheater-sy<br />

Nomenclature:<br />

Cond-steam-2 3.70 0.50 If methanol and DH share the plant costs<br />

Condenser-1 94.1 20.65 621 631 4 (methanol and DH are the only products from the plant) -<br />

15 705 706<br />

23 3.5 bar<br />

2 3.70 705 706<br />

6 3.5 bar<br />

6<br />

SAND 31 34.3 214.8<br />

643 139.0 bar<br />

2 34.3 kg/s<br />

7 139.0 bar<br />

158 7.2 kg/s<br />

134 C<br />

and the DH cost is fixed corresponding to the DH price:<br />

Output Cost flow Cost<br />

Methanol 22.0 kr/s 95.1 kr/Gjex Electrical power<br />

Node nr<br />

Pressure<br />

Transferred heat [MW]<br />

121 22.7 kg/s 30 5.6 kg/s Condenser 28.14 134 C Preheater-sy<br />

DH water 11.1 kr/s 150 kr/Gjen Mass flow<br />

124 C 124 C SAND 33 Condenser<br />

Temperature<br />

Dis_stage_1 0.00 811 8<br />

19.5 1.0 bar<br />

Reboil-meoh2 3.3<br />

0.00 0.35<br />

0 805 2<br />

DH water<br />

19.5 1.0 bar Mechanical power<br />

10<br />

15.01 23.2 111.5 0.68 19.5 kg/s 0.159 19.5 kg/s 3.685 5.6 26.8<br />

707 3.5 bar Cond-steam-2 90 C 22.36 605 2 50 C 699 3.5 bar 0.25<br />

708 23.2 kg/s SAND 393 Condenser<br />

31.1 139.0 bar 1.6 8.918 Condenser<br />

700 5.6 kg/s<br />

4 124 C 169.4 31.1 kg/s 611 139.0 bar 96.2 4.613 1.6 34.97 2 124 C<br />

Water /<br />

Methanol<br />

Methanol molar-% = 13.12<br />

0 693 694<br />

0 3.5 bar<br />

2 0.5 kg/s<br />

Dis_stage_1<br />

4 11.32 695 696<br />

17 3.5 bar<br />

82 17.1 kg/s<br />

2 33.0<br />

11.36 0.64<br />

11.36 705 706<br />

17 3.5 bar<br />

91 17.1 kg/s<br />

4<br />

30.61 625 635<br />

11 3.5 bar<br />

2<br />

Methanol molar-% = 93.8<br />

100 C<br />

Comp-recirc<br />

Methanol/<br />

4 1.6 kg/s<br />

1.177 100 C<br />

Syngas Split-syngas<br />

621 139.0 bar<br />

631 1.6 kg/s<br />

4 100 C<br />

Preheater-sy<br />

Reboil-meoh2<br />

Heat<br />

Exergy efficiency [-]<br />

64 C<br />

set-x-2<br />

124 C<br />

Reboil-meoh1<br />

124 C<br />

Reboil-meoh1<br />

234 10.8 kg/s<br />

101 C<br />

meas_flow<br />

Methanol mass flow = 10.4 kg/s<br />

water


29. Matlab-kode <strong>til</strong> Scenarie 1


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 1 of 12<br />

1 clear all<br />

2 clc<br />

3 format compact<br />

4<br />

5 stregfarve_{1}='-yp' ;<br />

6 farve_{1}= 'y';<br />

7 stregfarve_{2}='-k+' ;<br />

8 farve_{2}= 'k';<br />

9 stregfarve_{3}='-ro' ;<br />

10 farve_{3}= 'r';<br />

11 stregfarve_{4}='-g*' ;<br />

12 farve_{4}= 'g';<br />

13 stregfarve_{5}='-bx' ;<br />

14 farve_{5}= 'b';<br />

15 stregfarve_{6}='-cs' ;<br />

16 farve_{6}= 'c';<br />

17 stregfarve_{7}='-md' ;<br />

18 farve_{7}= 'm';<br />

19<br />

20 fil{1}='El-priser2000.txt' ;<br />

21 fil{2}='El-priser2001.txt' ;<br />

22 fil{3}='El-priser2002.txt' ;<br />

23 fil{4}='El-priser2003.txt' ;<br />

24 fil{5}='El-priser2004.txt' ;<br />

25 fil{6}='El-priser2005.txt' ;<br />

26 fil{7}='El-priser2006.txt' ;<br />

27<br />

28 elpris_gennemsnit_ref=223; % [kr/MWh]<br />

29<br />

30 kkk=1;<br />

31 while kkk


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 2 of 12<br />

53 lagerpris=lagerpris*3600; % [kr/MWh]<br />

54 forhold_lager=5; % forholdet mellem max- <strong>og</strong> min-indhold i brint- <strong>og</strong> iltlager<br />

55 lagerprisforhold=1; % forhold mellem brint- <strong>og</strong> iltlagerprisen (hvis mindre end 1<br />

er iltlageret billigst - det er ikke den specifikke pris)<br />

56 kalkulationsrente=0.05<br />

57 LHV_brint=10.78 % [MJ/Nm^3]<br />

58 maxLagertryk=100 % [bar]<br />

59 D<strong>og</strong>V=0.02;<br />

60<br />

61 % Referenceudgifterne:<br />

62 ref_eludgift=elektrolyseeffekt*time(end)/antal_aar*elpris_gennemsnit/1E6*levetid<br />

63 ref_eludgift_ref=elektrolyseeffekt*time(end)<br />

/antal_aar*elpris_gennemsnit_ref/1E6*levetid<br />

64 ref_anlagsudgift=elektrolyseanlagspris*euro*elektrolyseeffekt<br />

65 ref_D<strong>og</strong>V=ref_anlagsudgift*D<strong>og</strong>V*levetid<br />

66 ref_omkostninger=ref_anlagsudgift+ref_D<strong>og</strong>V+ref_eludgift_ref<br />

67 ref_omkostninger_aar=ref_anlagsudgift+ref_D<strong>og</strong>V+ref_eludgift<br />

68<br />

69 Driftstimer=5000*antal_aar; % Driftstimer <strong>af</strong> elektrolyseanlæg<br />

70 k=1;<br />

71<br />

72 % Undersøger hvilket antal Driftstimer der er optimalt for<br />

73 % elektrolyseanlægget<br />

74 while Driftstimer >= 900*antal_aar & k


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 3 of 12<br />

101 for ii=1:24<br />

102 driftstatus_doegn_foer(ii,k)=0;<br />

103 end<br />

104 end<br />

105 while i


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 4 of 12<br />

k))*D<strong>og</strong>V*levetid;<br />

151 D<strong>og</strong>V_samlet2(k)=D<strong>og</strong>V_samlet(iterationer,k);<br />

152 sparet(iterationer,k)=sparet_el(iterationer,k)-(ekstraanlagsudgift(k)<br />

+Lagerprisen(iterationer,k))*(1+D<strong>og</strong>V*levetid);<br />

153 sparet2(k)=sparet(iterationer,k);<br />

154 andel_sparet(k)=sparet(iterationer,k)/ref_omkostninger;<br />

155 lagerpris_andel(k)=Lagerprisen2(k)/ref_anlagsudgift;<br />

156 <strong>til</strong>bagebetalingstid_aar(k)=(ekstraanlagsudgift(k)+Lagerprisen2(k))/<br />

(sparet_el2(k)/levetid-(ekstraanlagsudgift(k)+Lagerprisen2(k))*D<strong>og</strong>V);<br />

157 forrentning(k)=1/<strong>til</strong>bagebetalingstid_aar(k);<br />

158<br />

159 sparet_sum_nutidsvardi(k)=0;<br />

160 stop_nutidsvardi=0;<br />

161 for i=1:50<br />

162 sparet_aarligt=(sparet_el2(k)/levetid-(ekstraanlagsudgift(k)<br />

+Lagerprisen2(k))*D<strong>og</strong>V)/(1+kalkulationsrente)^i;<br />

163 sparet_sum_nutidsvardi(k)=sparet_sum_nutidsvardi(k)+sparet_aarligt;<br />

164 if sparet_sum_nutidsvardi(k) >= ekstraanlagsudgift(k)+Lagerprisen2(k);<br />

165 andel_<strong>af</strong>_aar=(sparet_sum_nutidsvardi(k)-(ekstraanlagsudgift(k)<br />

+Lagerprisen2(k)))/sparet_aarligt;<br />

166 <strong>til</strong>bagebetalingstid2_aar(k)=i-andel_<strong>af</strong>_aar;<br />

167 stop_nutidsvardi=1;<br />

168 break<br />

169 end<br />

170 i=i+1;<br />

171 end<br />

172 if stop_nutidsvardi == 0<br />

173 <strong>til</strong>bagebetalingstid2_aar(k)=99;<br />

174 end<br />

175 sparet_sum_nutidsvardi(k)=0;<br />

176 for i=1:levetid<br />

177 sparet_sum_nutidsvardi(k)=sparet_sum_nutidsvardi(k)+(sparet_el2(k)<br />

/levetid-(ekstraanlagsudgift(k)+Lagerprisen2(k))*D<strong>og</strong>V)/(1+kalkulationsrente)^i;<br />

178 end<br />

179 sparet_nutidsvardi(k)=sparet_sum_nutidsvardi(k)-ekstraanlagsudgift(k)-<br />

Lagerprisen2(k);<br />

180 andel_sparet_nutidsvardi(k)=sparet_nutidsvardi(k)/ref_omkostninger;<br />

181<br />

182 % Lokaliserer "peak"- <strong>og</strong> "off-peak"-områder i lagerbeholdningen henover<br />

alle<br />

183 % timerne. Et "peak"-område er et område hvor der forekommer en stigning i<br />

lagerbeholdningen fra minimumbeholdningen <strong>til</strong> maksimumbeholdningen.<br />

184 % Omvendt er et "off-peak"-område et område hvor der forekommer et fald i<br />

lagerbeholdningen fra maksimumbeholdningen <strong>til</strong> minimumbeholdningen.<br />

185 [minlager,minnr]=min(lager(:,k));<br />

186 [maxlager,maxnr]=max(lager(:,k));<br />

187 i=1;<br />

188 s=1;<br />

189 f=1;<br />

190 lagerhistorie=1;<br />

191 while i maxlager-lagerreduktion2*3<br />

193 if lagerhistorie == 0<br />

194 stigning(s,2)=i;<br />

195 s=s+1;<br />

196 elseif lagerhistorie == 1


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 5 of 12<br />

197 start=i;<br />

198 startstatus=2;<br />

199 end<br />

200 fald(f,1)=i;<br />

201 lagerhistorie=2;<br />

202 elseif lager(i,k) < minlager+lagerreduktion2*3<br />

203 if lagerhistorie == 2<br />

204 fald(f,2)=i;<br />

205 f=f+1;<br />

206 elseif lagerhistorie == 1<br />

207 start=i;<br />

208 startstatus=0;<br />

209 end<br />

210 stigning(s,1)=i;<br />

211 lagerhistorie=0;<br />

212 end<br />

213 i=i+1;<br />

214 end<br />

215 if lagerhistorie == 2 & startstatus == 0<br />

216 fald(f,2)=start;<br />

217 f=f+1;<br />

218 elseif lagerhistorie == 0 & startstatus == 2<br />

219 stigning(s,2)=start;<br />

220 s=s+1;<br />

221 end<br />

222 f=f-1;<br />

223 s=s-1;<br />

224 if f ~= s<br />

225 stop=1<br />

226 iterationer<br />

227 warning('f forskellig fra s')<br />

228 break<br />

229 end<br />

230<br />

231 % Flytter Driftstimer fra "peak"-områder <strong>til</strong> "off-peak"-områder, ind<strong>til</strong> det<br />

ikke længere er økonomisk<br />

232 % fordelagtigt, eller <strong>til</strong> lagerbeholdningen skal opdateres<br />

233 antal_flyt=0;<br />

234 while iterer == 0<br />

235<br />

236 % Lokaliserer hvilke Driftstimer, som foregår i "peak"-områder, som<br />

skal flyttes <strong>til</strong> "off-peak"-områder<br />

237 i=1;<br />

238 while i


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 6 of 12<br />

248 if elpris_ind_1 = elpris_ud_2<br />

266 elpris_ud = elpris_ud_1;<br />

267 time_ud(i) = time_ud_1;<br />

268 else<br />

269 elpris_ud = elpris_ud_2;<br />

270 time_ud(i) = time_ud_2;<br />

271 end<br />

272 end<br />

273 i=i+1;<br />

274 end<br />

275 if time_ud(s) < time_ud(1) & s ~= 1<br />

276 time_ud=sort(time_ud);<br />

277 end<br />

278 if time_ind(s) < time_ind(1) & s ~= 1<br />

279 time_ind=sort(time_ind);<br />

280 end<br />

281<br />

282 % Finder minimumlagerbeholdningerne for de områder hvor der<br />

283 % forekommer en reduktion i lagerbeholningen pga flytningerne<br />

284 % <strong>af</strong> Driftstimer fra "peak"-områder <strong>til</strong> "off-peak"-områder. Samt<br />

285 % maksimumlagerbeholdningerne for de områder hvor der<br />

286 % forekommer en <strong>til</strong>vækst i lagerbeholningen pga flytningerne<br />

287 % <strong>af</strong> Driftstimer fra "peak"-områder <strong>til</strong> "off-peak"-områder.<br />

288 i=1;<br />

289 while i i<br />

294 [maxlager_interval(i),maxnr_interval]=max(lager(time_ind<br />

(i):time_ud(i+1)-1,k));<br />

295 maxnr_interval=maxnr_interval+time_ind(i)-1;<br />

296 else<br />

297 if time_ud(1) == 1<br />

298 [maxlager_interval(i),maxnr_interval]=max(lager<br />

(time_ind(i):end,k));


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 7 of 12<br />

299 maxnr_interval=maxnr_interval+time_ind(i)-1;<br />

300 else<br />

301 [maxlager_interval_1,maxnr_interval_1]=max(lager<br />

(time_ind(i):end,k));<br />

302 maxnr_interval_1=maxnr_interval_1+time_ind(i)-1;<br />

303 [maxlager_interval_2,maxnr_interval_2]=max(lager(1:<br />

time_ud(1)-1,k));<br />

304 if maxlager_interval_1 > maxlager_interval_2<br />

305 maxlager_interval(i)=maxlager_interval_1;<br />

306 maxnr_interval=maxnr_interval_1;<br />

307 else<br />

308 maxlager_interval(i)=maxlager_interval_2;<br />

309 maxnr_interval=maxnr_interval_2;<br />

310 end<br />

311 end<br />

312 end<br />

313 else<br />

314 [maxlager_interval(i),maxnr_interval]=max(lager(time_ind(i):<br />

time_ud(i)-1,k));<br />

315 maxnr_interval=maxnr_interval+time_ind(i)-1;<br />

316 if s > i<br />

317 [minlager_interval(i),minnr_interval]=min(lager(time_ud(i):<br />

time_ind(i+1)-1,k));<br />

318 minnr_interval=minnr_interval+time_ud(i)-1;<br />

319 else<br />

320 if time_ind(1) == 1<br />

321 [minlager_interval(i),minnr_interval]=min(lager(time_ud<br />

(i):end,k));<br />

322 minnr_interval=minnr_interval+time_ud(i)-1;<br />

323 else<br />

324 [minlager_interval_1,minnr_interval_1]=min(lager<br />

(time_ud(i):end,k));<br />

325 minnr_interval_1=minnr_interval_1+time_ud(i)-1;<br />

326 [minlager_interval_2,minnr_interval_2]=min(lager(1:<br />

time_ind(1)-1,k));<br />

327 if minlager_interval_1 < minlager_interval_2<br />

328 minlager_interval(i)=minlager_interval_1;<br />

329 minnr_interval=minnr_interval_1;<br />

330 else<br />

331 minlager_interval(i)=minlager_interval_2;<br />

332 minnr_interval=minnr_interval_2;<br />

333 end<br />

334 end<br />

335 end<br />

336 end<br />

337 i=i+1;<br />

338 end<br />

339 i=1;<br />

340 diff=0;<br />

341 while i diff_elpris<br />

346 sidste=1<br />

347 diff


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 8 of 12<br />

348 break<br />

349 end<br />

350 if max(maxlager_interval) < maxlager-lagerreduktion2*(antal_flyt+1) &<br />

min(minlager_interval)-lagerreduktion2*(antal_flyt+1) > minlager<br />

351 i=1;<br />

352 while i


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 9 of 12<br />

401 time_doegn=time_doegn+1;<br />

402 if time_doegn == 25<br />

403 time_doegn = 1;<br />

404 end<br />

405 i=i+1;<br />

406 end<br />

407 lagerfejl=min(lager(:,k));<br />

408 iii=iii+1;<br />

409 end<br />

410 timer_i_drift_=timer_i_drift(end,k)<br />

411 Driftstimer<br />

412 iterationer<br />

413 sparet_=sparet2(k)<br />

414 lagerfejl_start_stop=lager(end,k)-lager(1,k)<br />

415<br />

416 iterationer=iterationer-1;<br />

417 iterationer_list(k)=iterationer;<br />

418 andel_list(k)=andel;<br />

419 Driftstimer_list(k)=Driftstimer;<br />

420 Driftstimer=Driftstimer-timestep;<br />

421 k=k+1;<br />

422 end<br />

423 [maxxx,kk]=max(sparet2)<br />

424<br />

425 figure(3);<br />

426 bar(uge_drift(:,kk))<br />

427 axis([0 53*antal_aar 0 24*7])<br />

428 %title('Driftsfordeling på ugebasis')<br />

429 ylabel('Driftstimer per uge [h]' )<br />

430 xlabel('Uge-nr. [-]' )<br />

431<br />

432 figure(4);<br />

433 plot(lager(:,kk))<br />

434 axis tight<br />

435 %title('Variationen i lagerbeholdningen henover året')<br />

436 ylabel('Brintlagerbeholdning [MWh]' )<br />

437 xlabel('Time på året [-]' )<br />

438<br />

439 figure(19);<br />

440 plot(driftstatus_doegn_foer(:,kk),'k' )<br />

441 hold on<br />

442 plot(driftstatus_doegn_efter(:,kk),'b')<br />

443 ylabel('Antal timer [-]' )<br />

444 hold off<br />

445 legend('før' ,'efter' ,1);<br />

446<br />

447 figure(7);<br />

448 plot((ref_eludgift-sparet_el(1:iterationer_list(kk),kk))<br />

/ref_omkostninger_aar*100,'-k' )<br />

449 hold on<br />

450 plot(Lagerprisen(1:iterationer_list(kk),kk)/ref_omkostninger_aar*100, '--r')<br />

451 plot(anlagsudgift2(1:iterationer_list(kk),kk)/ref_omkostninger_aar*100,':g')<br />

452 plot(D<strong>og</strong>V_samlet(1:iterationer_list(kk),kk)/ref_omkostninger_aar*100, ':b')<br />

453 plot(sparet(1:iterationer_list(kk),kk)/ref_omkostninger_aar*100,'-.c' )<br />

454 hold off<br />

455 legend('El' ,'Gaslagre','Elektrolyseanlæg' ,'D&V','Sparede omkostninger' ,1);


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 10 of 12<br />

456 %title('Udvikling gennem optimeringen for år 2002 ved 2000 Driftstimer')<br />

457 ylabel('Omkostninger [%]' )<br />

458 xlabel('Iterationsnummer [-]' )<br />

459<br />

460 figure(8);<br />

461 plot(Driftstimer_list,(ref_eludgift-sparet_el2)/ref_omkostninger_aar*100,'k+','LineWidth'<br />

,2,...<br />

462 'MarkerEdgeColor' ,'k',...<br />

463 'MarkerFaceColor' ,'k',...<br />

464 'MarkerSize' ,10)<br />

465 hold on<br />

466 plot(Driftstimer_list,Lagerprisen2/ref_omkostninger_aar*100, '-ro','LineWidth' ,2,...<br />

467 'MarkerEdgeColor' ,'r',...<br />

468 'MarkerFaceColor' ,'r',...<br />

469 'MarkerSize' ,10)<br />

470 plot(Driftstimer_list,anlagsudgift/ref_omkostninger_aar*100, '-g*','LineWidth' ,2,...<br />

471 'MarkerEdgeColor' ,'g',...<br />

472 'MarkerFaceColor' ,'g',...<br />

473 'MarkerSize' ,10)<br />

474 plot(Driftstimer_list,D<strong>og</strong>V_samlet2/ref_omkostninger_aar*100, '-bx','LineWidth' ,2,...<br />

475 'MarkerEdgeColor' ,'b',...<br />

476 'MarkerFaceColor' ,'b',...<br />

477 'MarkerSize' ,10)<br />

478 plot(Driftstimer_list,sparet2/ref_omkostninger_aar*100,'-cs' ,'LineWidth',2, ...<br />

479 'MarkerEdgeColor' ,'c',...<br />

480 'MarkerFaceColor' ,'c',...<br />

481 'MarkerSize' ,10)<br />

482 axis([500 time(end) 0 100])<br />

483 %title('Omkostninger')<br />

484 ylabel('Omkostninger [%]' )<br />

485 xlabel('Driftstimer [timer]' )<br />

486 legend('El' ,'Gaslagre','Elektrolyseanlæg' ,'D&V','Sparede omkostninger' ,1);<br />

487 hold off<br />

488<br />

489 figure(9);<br />

490 hold on<br />

491 plot(Driftstimer_list,andel_sparet*100,stregfarve,'LineWidth' ,2,...<br />

492 'MarkerEdgeColor' ,farve,...<br />

493 'MarkerFaceColor' ,farve,...<br />

494 'MarkerSize' ,10)<br />

495 axis([500 time(end) 0 30])<br />

496 %title('Sparede omkostninger')<br />

497 ylabel('Sparede omkostninger [%]' )<br />

498 xlabel('Driftstimer [timer]' )<br />

499 legend('2000','2001' ,'2002','2003','2004','2005','2006',1);<br />

500 hold off<br />

501<br />

502 figure(10);<br />

503 hold on<br />

504 plot(Driftstimer_list,andel_sparet_nutidsvardi*100,stregfarve, 'LineWidth',2, ...<br />

505 'MarkerEdgeColor' ,farve,...<br />

506 'MarkerFaceColor' ,farve,...<br />

507 'MarkerSize' ,10)<br />

508 axis([500 time(end) 0 30])<br />

509 %title('Sparede omkostninger i nutidsværdi')<br />

510 ylabel('Sparede omkostninger i nutidsværdi [%]' )


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 11 of 12<br />

511 xlabel('Driftstimer [timer]' )<br />

512 legend('2000','2001' ,'2002','2003','2004','2005','2006',1);<br />

513 hold off<br />

514<br />

515 figure(11);<br />

516 hold on<br />

517 plot(Driftstimer_list,lagerpris_andel*100,stregfarve, 'LineWidth',2, ...<br />

518 'MarkerEdgeColor' ,farve,...<br />

519 'MarkerFaceColor' ,farve,...<br />

520 'MarkerSize' ,10)<br />

521 axis([500 time(end) 0 100])<br />

522 %title('Lagerprisen')<br />

523 ylabel('Samlet lagerpris [%]' )<br />

524 xlabel('Driftstimer [timer]' )<br />

525 legend('2000','2001' ,'2002','2003','2004','2005','2006',1);<br />

526 hold off<br />

527<br />

528 figure(12);<br />

529 hold on<br />

530 plot(Driftstimer_list,forrentning*100,stregfarve,'LineWidth' ,2,...<br />

531 'MarkerEdgeColor' ,farve,...<br />

532 'MarkerFaceColor' ,farve,...<br />

533 'MarkerSize' ,10)<br />

534 axis([500 8500 0 50])<br />

535 %title('Forrentning <strong>af</strong> investering')<br />

536 ylabel('Forrentning <strong>af</strong> investering [%]' )<br />

537 xlabel('Driftstimer [timer]' )<br />

538 legend('2000','2001' ,'2002','2003','2004','2005','2006',1);<br />

539 hold off<br />

540<br />

541 figure(13);<br />

542 hold on<br />

543 plot(Driftstimer_list,<strong>til</strong>bagebetalingstid_aar,stregfarve,'LineWidth' ,2,...<br />

544 'MarkerEdgeColor' ,farve,...<br />

545 'MarkerFaceColor' ,farve,...<br />

546 'MarkerSize' ,10)<br />

547 axis([500 8500 0 levetid])<br />

548 %title('Tilbagebetalingstider')<br />

549 ylabel('Tilbagebetalingstid [år]' )<br />

550 xlabel('Driftstimer [timer]' )<br />

551 legend('2000','2001' ,'2002','2003','2004','2005','2006',1);<br />

552 hold off<br />

553<br />

554 figure(14);<br />

555 hold on<br />

556 plot(Driftstimer_list,<strong>til</strong>bagebetalingstid2_aar,stregfarve,'LineWidth' ,2,...<br />

557 'MarkerEdgeColor' ,farve,...<br />

558 'MarkerFaceColor' ,farve,...<br />

559 'MarkerSize' ,10)<br />

560 axis([500 8500 0 levetid])<br />

561 %title('Tilbagebetalingstider regnet i nutidsværdi')<br />

562 ylabel('Tilbagebetalingstid (beregnet ud fra nutidsværdi) [år]' )<br />

563 xlabel('Driftstimer [timer]' )<br />

564 legend('2000','2001' ,'2002','2003','2004','2005','2006',1);<br />

565 hold off<br />

566


18-03-07 23:10 D:\DTU\Eksamensprojekt\bilag\elektrolysedrift.m 12 of 12<br />

567 end


30. Matlab-kode <strong>til</strong> Scenarie 2


19-03-07 19:26 D:\DTU\Eksamensprojekt\bilag\elektrolysedriftreal.m 1 of 5<br />

1 clear all<br />

2 clc<br />

3 format compact<br />

4<br />

5 stregfarve_{1}='-yp' ;<br />

6 farve_{1}= 'y';<br />

7 stregfarve_{2}='-k+' ;<br />

8 farve_{2}= 'k';<br />

9 stregfarve_{3}='-ro' ;<br />

10 farve_{3}= 'r';<br />

11 stregfarve_{4}='-g*' ;<br />

12 farve_{4}= 'g';<br />

13 stregfarve_{5}='-bx' ;<br />

14 farve_{5}= 'b';<br />

15 stregfarve_{6}='-cs' ;<br />

16 farve_{6}= 'c';<br />

17 stregfarve_{7}='-md' ;<br />

18 farve_{7}= 'm';<br />

19<br />

20 fil{1}='El-priser2000.txt' ;<br />

21 fil{2}='El-priser2001.txt' ;<br />

22 fil{3}='El-priser2002.txt' ;<br />

23 fil{4}='El-priser2003.txt' ;<br />

24 fil{5}='El-priser2004.txt' ;<br />

25 fil{6}='El-priser2005.txt' ;<br />

26 fil{7}='El-priser2006.txt' ;<br />

27<br />

28 elpris_gennemsnit_ref=223; % [kr/MWh]<br />

29<br />

30 kkk=1;<br />

31 while kkk


19-03-07 19:26 D:\DTU\Eksamensprojekt\bilag\elektrolysedriftreal.m 2 of 5<br />

teknol<strong>og</strong>ikatal<strong>og</strong>et (ENS)<br />

55 lagerpris=lagerpris*3600; % [kr/MWh]<br />

56 forhold_lager=5; % forholdet mellem max- <strong>og</strong> min-indhold i brint- <strong>og</strong> iltlager<br />

57 lagerprisforhold=1; % forhold mellem brint- <strong>og</strong> iltlagerprisen (hvis mindre end 1<br />

er iltlageret billigst - det er ikke den specifikke pris)<br />

58 faktor=300<br />

59 faktorstep=50<br />

60 lagerpris_andel=0.1 % 1/44 er en dags forbrug<br />

61<br />

62 ref_eludgift=elektrolyseeffekt*time(end)*elpris_gennemsnit/1E6*levetid<br />

63 ref_eludgift_ref=elektrolyseeffekt*time(end)*elpris_gennemsnit_ref/1E6*levetid<br />

64 ref_anlagsudgift=elektrolyseanlagspris*euro*elektrolyseeffekt<br />

65 ref_D<strong>og</strong>V=ref_anlagsudgift*D<strong>og</strong>V*levetid<br />

66 ref_omkostninger=ref_anlagsudgift+ref_D<strong>og</strong>V+ref_eludgift_ref<br />

67<br />

68 lagerprisen=ref_anlagsudgift*lagerpris_andel; % mio. kr<br />

69 lagerbeholdning=lagerprisen*1E6/(lagerpris*(lagerprisforhold+1)) % MWh<br />

70 lagerbeholdning_effektiv=lagerbeholdning*(forhold_lager-1)/forhold_lager % MWh<br />

71 andel_<strong>af</strong>_aarslager=lagerbeholdning_effektiv/(time(end)*elektrolyseeffekt*virk);<br />

72 antal_dages_forbrug=andel_<strong>af</strong>_aarslager*time(end)/24;<br />

73 lagerpris_andel=lagerprisen/ref_anlagsudgift;<br />

74<br />

75 elpris_funk=@(elpris_Driftstimer,lager,faktor)elpris_Driftstimer+((forhold_lager+1)<br />

/(2*forhold_lager)-lager/lagerbeholdning)*faktor;<br />

76<br />

77 Driftstimer=5000;<br />

78<br />

79 k=1;<br />

80 lagerstatus=lagerbeholdning/2;<br />

81 while Driftstimer >= 900 & faktor


19-03-07 19:26 D:\DTU\Eksamensprojekt\bilag\elektrolysedriftreal.m 3 of 5<br />

106 end<br />

107 time_doegn=time_doegn+1;<br />

108 if time_doegn == 25<br />

109 time_doegn = 1;<br />

110 end<br />

111 elpris_hist(i)=elpris(i);<br />

112 lagerstatus=lager(i,aar,k);<br />

113 if i > 500*antal<br />

114 elpris_hist_sort=sort(elpris_hist);<br />

115 elpris_Driftstimer=elpris_hist_sort(Driftstimer);<br />

116 antal=antal+1;<br />

117 end<br />

118 end<br />

119 lagerstatus=lager(i,aar,k);<br />

120 drift_=drift(aar)<br />

121 if drift(aar) == Driftstimer<br />

122 if abs(lager(1,aar,k)-lager(i,aar,k)) > 300<br />

123 warning('lagerstart forskellig fra lagerslut' )<br />

124 return<br />

125 end<br />

126 break<br />

127 end<br />

128 end<br />

129 if drift(aar) ~= Driftstimer<br />

130 warning('drift forskellig fra Driftstimer' )<br />

131 return<br />

132 end<br />

133 sum=aarsum(aar);<br />

134 elpris_snit(k)=sum/(elektrolyseeffekt*andel*drift(aar));<br />

135 sparet_el(k)=ref_eludgift-sum*levetid/1E6;<br />

136 anlagsudgift(k)=ref_anlagsudgift*andel;<br />

137 ekstraanlagsudgift(k)=anlagsudgift(k)-ref_anlagsudgift;<br />

138 sparet(k)=sparet_el(k)-(ekstraanlagsudgift(k)+lagerprisen)*(1+levetid*D<strong>og</strong>V);<br />

139 andel_sparet(k)=sparet(k)/ref_omkostninger;<br />

140 <strong>til</strong>bagebetalingstid_aar(k)=(ekstraanlagsudgift(k)+lagerprisen)/(sparet_el(k)<br />

/levetid-(ekstraanlagsudgift(k)+lagerprisen)*D<strong>og</strong>V);<br />

141 if <strong>til</strong>bagebetalingstid_aar(k) < 0<br />

142 <strong>til</strong>bagebetalingstid_aar(k)=99;<br />

143 end<br />

144 forrentning(k)=1/<strong>til</strong>bagebetalingstid_aar(k);<br />

145<br />

146 sparet_sum_nutidsvardi(k)=0;<br />

147 stop_nutidsvardi=0;<br />

148 for i=1:50<br />

149 sparet_aarligt=(sparet_el(k)/levetid-(ekstraanlagsudgift(k)+lagerprisen)<br />

*D<strong>og</strong>V)/(1+kalkulationsrente)^i;<br />

150 sparet_sum_nutidsvardi(k)=sparet_sum_nutidsvardi(k)+sparet_aarligt;<br />

151 if sparet_sum_nutidsvardi(k) >= ekstraanlagsudgift(k)+lagerprisen<br />

152 andel_<strong>af</strong>_aar=(sparet_sum_nutidsvardi(k)-(ekstraanlagsudgift(k)<br />

+lagerprisen))/sparet_aarligt;<br />

153 <strong>til</strong>bagebetalingstid2_aar(k)=i-andel_<strong>af</strong>_aar;<br />

154 stop_nutidsvardi=1;<br />

155 break<br />

156 end<br />

157 i=i+1;<br />

158 end


19-03-07 19:26 D:\DTU\Eksamensprojekt\bilag\elektrolysedriftreal.m 4 of 5<br />

159 if stop_nutidsvardi == 0<br />

160 <strong>til</strong>bagebetalingstid2_aar(k)=99;<br />

161 end<br />

162 sparet_sum_nutidsvardi(k)=0;<br />

163 for i=1:levetid<br />

164 sparet_sum_nutidsvardi(k)=sparet_sum_nutidsvardi(k)+(sparet_el(k)/levetid-<br />

(ekstraanlagsudgift(k)+lagerprisen)*D<strong>og</strong>V)/(1+kalkulationsrente)^i;<br />

165 end<br />

166 sparet_nutidsvardi(k)=sparet_sum_nutidsvardi(k)-ekstraanlagsudgift(k)lagerprisen;<br />

167 andel_sparet_nutidsvardi(k)=sparet_nutidsvardi(k)/ref_omkostninger;<br />

168<br />

169 Driftstimer_list(k)=Driftstimer;<br />

170 faktor_list(k)=faktor;<br />

171 Driftstimer=Driftstimer-timestep;<br />

172 %faktor=faktor+faktorstep;<br />

173 k=k+1;<br />

174 end<br />

175 [maxxx,kk]=max(sparet);<br />

176<br />

177 %faktor_optimum=faktor_list(kk)<br />

178<br />

179 figure(1);<br />

180 plot(elpris_funktion(:,kk))<br />

181 %title('Udvikling i el-pris-funktionen henover året')<br />

182 ylabel('El-pris-funktionen [kr/MWh]' )<br />

183 xlabel('Time på året [-]' )<br />

184 axis([0 time(end) 0 500])<br />

185<br />

186 figure(2);<br />

187 plot(lager(:,aar,kk))<br />

188 %title('Udviklingen i lagerbeholdningen henover året')<br />

189 ylabel('Brintlagerbeholdning [MWh]' )<br />

190 xlabel('Time på året [-]' )<br />

191 axis([0 time(end) 0 lagerbeholdning])<br />

192<br />

193 figure(3);<br />

194 hold on ;<br />

195 plot(Driftstimer_list,andel_sparet*100,stregfarve,'LineWidth' ,2,...<br />

196 'MarkerEdgeColor' ,farve,...<br />

197 'MarkerFaceColor' ,farve,...<br />

198 'MarkerSize' ,10);<br />

199 axis([500 8500 0 30]);<br />

200 %title('Sparede omkostninger')<br />

201 ylabel('Sparede omkostninger [%]' );<br />

202 xlabel('Driftstimer [timer]' );<br />

203 legend('2001','2002' ,'2003','2004','2005','2006',1);<br />

204 hold off ;<br />

205<br />

206 figure(4);<br />

207 hold on ;<br />

208 plot(Driftstimer_list,andel_sparet_nutidsvardi*100,stregfarve, 'LineWidth',2, ...<br />

209 'MarkerEdgeColor' ,farve,...<br />

210 'MarkerFaceColor' ,farve,...<br />

211 'MarkerSize' ,10);<br />

212 axis([500 8500 0 30]);


19-03-07 19:26 D:\DTU\Eksamensprojekt\bilag\elektrolysedriftreal.m 5 of 5<br />

213 %title('Sparede omkostninger i nutidsværdi')<br />

214 ylabel('Sparede omkostninger i nutidsværdi [%]' );<br />

215 xlabel('Driftstimer [timer]' );<br />

216 legend('2001','2002' ,'2003','2004','2005','2006',1);<br />

217 hold off ;<br />

218<br />

219 figure(7);<br />

220 hold on ;<br />

221 plot(Driftstimer_list,forrentning*100,stregfarve,'LineWidth' ,2,...<br />

222 'MarkerEdgeColor' ,farve,...<br />

223 'MarkerFaceColor' ,farve,...<br />

224 'MarkerSize' ,10);<br />

225 axis([500 8500 0 50]);<br />

226 %title('Forrentning <strong>af</strong> investering')<br />

227 ylabel('Forrentning <strong>af</strong> investering [%]' );<br />

228 xlabel('Driftstimer [timer]' );<br />

229 legend('2001','2002' ,'2003','2004','2005','2006',1);<br />

230 hold off ;<br />

231<br />

232 figure(9);<br />

233 hold on ;<br />

234 plot(Driftstimer_list,<strong>til</strong>bagebetalingstid_aar,stregfarve,'LineWidth' ,2,...<br />

235 'MarkerEdgeColor' ,farve,...<br />

236 'MarkerFaceColor' ,farve,...<br />

237 'MarkerSize' ,10);<br />

238 axis([500 8500 0 levetid]);<br />

239 %title('Tilbagebetalingstider')<br />

240 ylabel('Tilbagebetalingstid [år]' );<br />

241 xlabel('Driftstimer [timer]' );<br />

242 legend('2001','2002' ,'2003','2004','2005','2006',1);<br />

243 hold off ;<br />

244<br />

245 figure(10);<br />

246 hold on ;<br />

247 plot(Driftstimer_list,<strong>til</strong>bagebetalingstid2_aar,stregfarve,'LineWidth' ,2,...<br />

248 'MarkerEdgeColor' ,farve,...<br />

249 'MarkerFaceColor' ,farve,...<br />

250 'MarkerSize' ,10);<br />

251 axis([500 8500 0 levetid]);<br />

252 %title('Tilbagebetalingstider regnet i nutidsværdi')<br />

253 ylabel('Tilbagebetalingstid (beregnet ud fra nutidsværdi) [år]' );<br />

254 xlabel('Driftstimer [timer]' );<br />

255 legend('2001','2002' ,'2003','2004','2005','2006',1);<br />

256 hold off ;<br />

257<br />

258 figure(19);<br />

259 hold on<br />

260 plot(driftstatus_doegn(:,kk), 'r')<br />

261 ylabel('Antal driftstimer [timer]' )<br />

262 xlabel('Time på døgnet [-]' )<br />

263 hold off<br />

264 legend('Laveste el-priser' ,'Scenarie 1','Scenarie 2' ,1);<br />

265<br />

266 end


31. Scenarie 2: variation <strong>af</strong> cel, lager <strong>og</strong> klagerprisandel<br />

Sparede omkostninger i nutidsværdi [%]<br />

Sparede omkostninger i nutidsværdi [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 100 kr/MWh <strong>og</strong> klagerprisandel = 0,1.<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 300 kr/MWh <strong>og</strong> klagerprisandel = 0,1.


Sparede omkostninger i nutidsværdi [%]<br />

Sparede omkostninger i nutidsværdi [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 600 kr/MWh <strong>og</strong> klagerprisandel = 0,1.<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 100 kr/MWh <strong>og</strong> klagerprisandel = 1.


Sparede omkostninger i nutidsværdi [%]<br />

Sparede omkostninger i nutidsværdi [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 300 kr/MWh <strong>og</strong> klagerprisandel = 1.<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 600 kr/MWh <strong>og</strong> klagerprisandel = 1.


Sparede omkostninger i nutidsværdi [%]<br />

Sparede omkostninger i nutidsværdi [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 100 kr/MWh <strong>og</strong> klagerprisandel = 1/43.<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 300 kr/MWh <strong>og</strong> klagerprisandel = 1/43.


Sparede omkostninger i nutidsværdi [%]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Driftstimer [timer]<br />

cel, lager = 600 kr/MWh <strong>og</strong> klagerprisandel = 1/43.


32. DNA-kode for <strong>metanolanlæg</strong>


metanolanlaeg.dna<br />

d:/DTU/Eksamensprojekt/dna/<br />

TITLE Methanol plant<br />

c Vigtige addco’s<br />

addco ZC 900 0.30<br />

addco m NG_reformer 431 −0.01<br />

addco m Comp−CO2 501 0.01<br />

addco m Split−O2−2 6 0<br />

addco m Cond−steam−1 671 1<br />

addco m set_flow 794 10.3<br />

addco p 601 144<br />

addco t Condenser 604 60<br />

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C *****************************************************<br />

C ELECTROLYSIS<br />

C *****************************************************<br />

struc Electrolyser ELECTROLYSER 1 2 3 201 301 90 0.8<br />

media 2 H2 3 O2<br />

addco p 1 1 t Electrolyser 1 15<br />

struc Split−O2−1 splitter 3 4 401<br />

struc Split−O2−2 splitter 4 5 6<br />

C *****************************************************<br />

C GASIFICATION<br />

C *****************************************************<br />

struc Comp−O2−1 compre_1 5 7 302 101 0.9 0.98<br />

struc Heatsink−O2 heatsnk0 7 8 329 0<br />

addco q Heatsink−O2 329 0<br />

struc Steam_dryer DRYER_04 81 34 82 35 328 0.05 0<br />

media 81 Wood 82 Dry−wood<br />

SOLID Wood H .0305 O .1886 H2O−L .5 C .2503 S .00005<br />

+ N 0.003 36 0.00205 ASH .0255<br />

+ LHV 21722 CP 1.35<br />

addco t Steam_dryer 81 15 t Steam_dryer 82 120 p 81 1 P 82 1<br />

addco t Steam_dryer 35 120<br />

addco q Steam_dryer 328 0<br />

struc Split−steam1 splitter2 7 35 41 561 562 563 31 671<br />

struc Gasifier GASIFI_3_VENZIN 8 82 33 9 10 83 304 905 1 3 4 6 7 9 11 36 /<br />

1.0001 800 0 1.0 0<br />

media 10 GG 83 Ash<br />

addco P 83 1 T Gasifier 10 800<br />

addco Q Gasifier 304 0<br />

struc Heatex−GG−O2 heatex_2 10 11 8 9 321 10 0 0<br />

addco q Heatex−GG−O2 321 0<br />

struc Heatex−GG−st heatex_2 11 12 31 32 306 10 0 0<br />

addco q Heatex−GG−st 306 0<br />

addco t Heatex−GG−st 32 730<br />

struc Split−steam2 splitter2 3 32 34 33<br />

struc Heatex−GG−DH GASCOOL2 12 13 21 801 811 0 0 10<br />

addco t Heatex−GG−DH 801 50 t Heatex−GG−DH 811 90<br />

media 13 GG−dry<br />

struc Cleaner GASCLE_2 8 13 14 15 308 0 6 8 9 10 31 32 38 39<br />

media 14 GG−clean 15 H2S<br />

addco Q Cleaner 308 0<br />

C *****************************************************<br />

C NATURAL GAS REFORMING<br />

C *****************************************************<br />

struc Comp−O2−2 compre_1 401 402 312 101 0.9 0.98<br />

struc Heatex−O2 heatex_4 441 442 402 403 315 0.9 0 0<br />

addco q Heatex−O2 315 0<br />

addco t Heatex−O2 403 850<br />

1/5<br />

18−03−2007


metanolanlaeg.dna<br />

d:/DTU/Eksamensprojekt/dna/<br />

struc Heatex−NG GASCOOL2 432 433 434 411 412 0 0 10<br />

addco t Heatex−NG 411 25<br />

struc Heatex−H2O GASCOOL2 451 452 453 422 423 0 0 10<br />

addco t Heatex−H2O 423 850<br />

struc Pres−sep−3 PRES_SEP 434 422<br />

struc Pres−sep−2 PRES_SEP 453 422<br />

struc Water_supply ADDANODE 421 422<br />

addco t Water_supply 421 15<br />

struc NG_reformer STEAM_REFORMER 412 403 423 431 313 1<br />

media 412 NATURAL_GAS 431 NG_reformat<br />

addco t NG_reformer 431 950<br />

addco p 403 10<br />

addco q NG_reformer 313 0<br />

struc Split−NG_ref splitter2 4 431 432 441 451<br />

struc Mixer−NG_ref mixer_03 4 433 442 452 461<br />

media 433 NG_ref−cold1 452 NG_ref−cold2 461 NG_ref−cool<br />

struc Comp−NG_ref compre_1 461 462 318 101 0.9 0.98<br />

C *****************************************************<br />

C GAS MIXING AND PRESSURIZATION<br />

C *****************************************************<br />

struc Comp−CO2 compre_1 501 502 310 101 0.9 0.98<br />

addco p 501 1 t Comp−CO2 501 15<br />

struc Mixer−CO2−NG mixer_01 502 462 503<br />

media 503 NG_ref−CO2 502 CO2<br />

fluid CO2 CO2 1<br />

struc Comp−H2 compre_1 2 511 303 101 0.9 0.98<br />

struc Heatsink−H2 heatsnk0 511 512 322 0<br />

addco t Heatsink−H2 512 90<br />

struc Mixer−GG−H2 mixer_01 14 512 521<br />

media 521 GG−H2<br />

struc Comp−GG−H2−1 compre_1 521 591 335 101 0.9 0.98<br />

struc set_temp−1 SET_TEMP 591 522 971<br />

struc Cooler−GG−H2 GASCOOL2 522 523 525 563 571 0 0 10<br />

media 523 GG−H2−2<br />

addco t Cooler−GG−H2 571 200<br />

struc Comp−GG−H2−2 compre_1 523 524 320 101 0.9 0.98<br />

struc Mixer−syngas mixer_01 524 503 593<br />

media 531 Syngas−1<br />

struc set_temp−3 SET_TEMP 593 531 971<br />

struc Syngas−cool1 GASCOOL2 531 532 541 561 571 0 0 10<br />

media 532 Syngas−2<br />

addco t Syngas−cool1 571 200<br />

struc Comp−syngas1 compre_1 532 592 309 101 0.9 0.98<br />

struc set_temp−2 SET_TEMP 592 533 971<br />

struc Syngas−cool2 GASCOOL2 533 534 551 562 571 0 0 10<br />

media 534 Syngas−3<br />

addco t Syngas−cool2 571 200<br />

struc Split−steam3 splitter2 3 571 34 581<br />

struc DH−cooler heatex_1 581 35 804 811 337 0 0<br />

addco q DH−cooler 337 0<br />

addco t DH−cooler 804 50 t DH−cooler 811 90<br />

2/5<br />

18−03−2007


metanolanlaeg.dna<br />

d:/DTU/Eksamensprojekt/dna/<br />

addco t DH−cooler 35 120<br />

struc Comp−syngas2 compre_1 534 535 334 101 0.9 0.98<br />

struc set−M SET_M 535 536 980<br />

C *****************************************************<br />

C METHANOL CONVERSION<br />

C *****************************************************<br />

struc Mixer−syn_re mixer_01 536 607 601<br />

media 601 Syngas−loop1<br />

struc Meoh−convert MEOH_CONVERTER 601 602 311 5<br />

media 602 Syngas−meoh<br />

addco t Meoh−convert 601 235<br />

addco t Meoh−convert 602 235<br />

STRUC Preheater−sy GASCOOL4 602 603 621 631 606 607 902 0 0 10<br />

media 603 Syngas−meoh−<br />

struc set_temp−6 SET_TEMP2 603 640 974 975<br />

STRUC Condenser−1 GASCOOL4 640 641 621 631 663 664 902 0 0 10<br />

media 663 STANDARD_AIR 643 Syngas−loop3<br />

addco t Condenser−1 663 90 p 663 1<br />

struc set_temp−5 SET_TEMP 641 642 974<br />

struc set_temp−4 SET_TEMP2 642 643 907 973<br />

addco ZC 973 10<br />

STRUC Condenser GASCOOL4 643 604 621 631 805 811 903 0 0 10<br />

media 604 Syngas−loop2<br />

addco t Condenser 805 50 t Condenser 811 90<br />

addco ZC 902 10<br />

struc Split−syngas splitter3 604 605 611 0.95<br />

struc set−X_H2 SET_X 611 612 900 1<br />

struc set−X_CH4 SET_X 612 613 901 40<br />

struc measure−pres SET_PRES 613 614 904<br />

struc Comp−recirc compre_1 605 606 325 101 0.9 0.98<br />

struc Convert−cool heatsrc0 681 682 311 0<br />

media 681 STEAM<br />

addco tsat 681 235<br />

addco t Convert−cool 681 220 x Convert−cool 682 1<br />

struc Split−steam4 splitter2 3 682 683 685<br />

struc Cond−steam−1 heatex_1 683 684 671 571 327 0 0<br />

addco q Cond−steam−1 327 0<br />

addco t Cond−steam−1 571 225<br />

addco p 671 1<br />

struc Cond−steam−2 heatsnk0 685 681 393 0<br />

addco t Cond−steam−2 681 220<br />

struc Pres−sep−1 PRES_SEP 684 681<br />

struc set−pres−1 SET_PRES 621 622 904<br />

struc set−pres−2 SET_PRES 631 632 904<br />

struc Water−meoh−t MIXING_TANK 622 624 632 634 330 0 0<br />

addco q Water−meoh−t 330 0<br />

struc Pres−sep−6 PRES_SEP 634 635<br />

struc Pres−sep−7 PRES_SEP 624 625<br />

struc Heatsink−re heatsnk0 664 665 394 0<br />

addco t Heatsink−re 665 90<br />

3/5<br />

18−03−2007


metanolanlaeg.dna<br />

d:/DTU/Eksamensprojekt/dna/<br />

C *****************************************************<br />

C METHANOL DISTILLATION<br />

C *****************************************************<br />

struc Reboil−meoh1 heatsrc0 696 706 393 0<br />

addco x Reboil−meoh1 706 1<br />

struc Reboil−meoh2 heatsrc0 700 706 394 0<br />

addco x Reboil−meoh2 706 1<br />

struc Split−meoh2 splitter2 4 708 696 698 692<br />

struc Reboil−wat1 heatsrc0 695 705 393 0<br />

addco x Reboil−wat1 705 1<br />

struc Reboil−wat2 heatsrc0 699 705 394 0<br />

addco x Reboil−wat2 705 1<br />

struc Split−water2 splitter2 4 707 695 697 691<br />

struc set−x−2 SET_X_REALFLUID 691 693 692 694 908 0 0<br />

addco p 693 1 p 694 1<br />

struc set−x−3 SET_X_REALFLUID 697 699 698 700 908 0 0<br />

struc Dis_stage_1 DISTILLATION_STAGE 701 707 705 703 702 708 706 704 343 906 /<br />

907 908 909 0 0<br />

MEDIA 701 STEAM−HF 702 METHANOL<br />

addco q Dis_stage_1 343 0<br />

struc Dis_stage_2 DISTILLATION_STAGE 717 701 703 715 718 702 704 716 344 906 /<br />

910 911 912 0 0<br />

addco q Dis_stage_2 344 0<br />

struc Dis_stage_3 DISTILLATION_STAGE 711 717 715 713 712 718 716 714 345 906 /<br />

913 914 915 0 0<br />

addco q Dis_stage_3 345 0<br />

struc Dis_stage_4 DISTILLATION_STAGE 727 711 713 725 728 712 714 726 346 906 /<br />

916 917 918 0 0<br />

addco q Dis_stage_4 346 0<br />

struc Dis_stage_5 DISTILLATION_STAGE 721 727 725 723 722 728 726 724 347 906 /<br />

919 920 921 0 0<br />

addco q Dis_stage_5 347 0<br />

struc Dis_stage_6 DISTILLATION_STAGE 737 721 723 735 738 722 724 736 348 906 /<br />

922 923 924 0 0<br />

addco q Dis_stage_6 348 0<br />

struc Dis_stage_7 DISTILLATION_STAGE 731 737 735 733 732 738 736 734 349 906 /<br />

925 926 927 0 0<br />

addco q Dis_stage_7 349 0<br />

struc Dis_stage_8 DISTILLATION_STAGE 747 731 733 745 748 732 734 746 350 906 /<br />

928 929 930 0 0<br />

addco q Dis_stage_8 350 0<br />

struc Dis_stage_9 DISTILLATION_STAGE 741 747 745 743 742 748 746 744 351 906 /<br />

931 932 933 0 0<br />

addco q Dis_stage_9 351 0<br />

struc Dis_stage_10 DISTILLATION_STAGE 757 741 743 755 758 742 744 756 352 906 /<br />

934 935 936 0 0<br />

addco q Dis_stage_10 352 0<br />

struc Dis_stage_11 DISTILLATION_STAGE 751 757 755 753 752 758 756 754 353 906 /<br />

937 938 939 0 0<br />

addco q Dis_stage_11 353 0<br />

struc Dis_stage_12 DISTILLATION_STAGE 767 751 753 765 768 752 754 766 354 906 /<br />

940 941 942 0 0<br />

addco q Dis_stage_12 354 0<br />

struc Dis_stage_13 DISTILLATION_STAGE 761 767 765 763 762 768 766 764 355 906 /<br />

943 944 945 0 0<br />

addco q Dis_stage_13 355 0<br />

4/5<br />

18−03−2007


metanolanlaeg.dna<br />

d:/DTU/Eksamensprojekt/dna/<br />

struc Dis_stage_14 DISTILLATION_STAGE 777 761 763 775 778 762 764 776 356 906 /<br />

946 947 948 0 0<br />

addco q Dis_stage_14 356 0<br />

struc Dis_stage_15 DISTILLATION_STAGE 771 777 775 773 772 778 776 774 357 906 /<br />

949 950 951 0 0<br />

addco q Dis_stage_15 357 0<br />

struc Dis_stage_16 DISTILLATION_STAGE 787 771 773 785 788 772 774 786 358 906 /<br />

952 953 954 0 0<br />

addco q Dis_stage_16 358 0<br />

struc Dis_stage_17 DISTILLATION_STAGE 781 787 785 783 782 788 786 784 359 906 /<br />

955 956 957 0 0<br />

addco q Dis_stage_17 359 0<br />

addco ZC 955 100<br />

struc Cond−meoh heatsnk0 784 792 390 0<br />

addco x Cond−meoh 792 0<br />

struc Split−meoh1 splitter 792 794 782<br />

struc set_flow SET_FLOW 794 796 990 991<br />

addco ZC 991 0.99<br />

struc Cond−water heatsnk0 783 791 390 0<br />

addco x Cond−water 791 0<br />

struc Split−water1 splitter 791 793 781<br />

struc set−x−1 SET_X_REALFLUID 793 795 796 798 957 0 0<br />

struc feed_Water ADDANODE 625 737<br />

struc feed_MeOH ADDANODE 636 738<br />

struc meas_flow MEASURE_FLOW 635 636 990<br />

struc Heatsourc−DH heatsrc0 806 811 390 0<br />

MEDIA 806 STEAM<br />

addco t Heatsourc−DH 806 50 t Heatsourc−DH 811 90<br />

C *****************************************************<br />

C DISTRICT HEATING AND MOTOR<br />

C *****************************************************<br />

struc Electro−cool heatsrc0 802 803 301 0<br />

media 802 STEAM<br />

addco t Electro−cool 802 50 p 802 1<br />

struc DH−condenser heatex_1 41 42 803 811 331 0 0<br />

addco t DH−condenser 811 90 t DH−condenser 42 95<br />

addco q DH−condenser 331 0<br />

struc DH heatsnk0 811 812 338 0<br />

addco t DH 812 50<br />

struc El−motor EL−MOTOR 203 319 101 0.95<br />

XERGY t 15 p 1<br />

5/5<br />

18−03−2007


33. Dokumentation for <strong>til</strong>føjede DNA-komponenter


17.121 ELECTROLYSER<br />

Water elektrolysis with efficiency.<br />

17.121.1 Nodes<br />

Number of nodes: 5<br />

1. Water in (Internal Number: 97) : water for gas app (C)<br />

2. H2 out (Internal Number: -4) : any gas (I/V)<br />

3. O2 out (Internal Number: -4) : any gas (I/V)<br />

4. Power in (Internal Number: 200) : electrical power<br />

5. Heat loss (Internal Number: 300) : heat<br />

17.121.2 Parameters<br />

Number of parameters: 2<br />

1. Temperature: Temp [C]<br />

2. Efficiency of elektrolysis: η [–]<br />

17.121.3 Equations<br />

Number of equations: 8<br />

1. Only H2 in node 2: yj(H2, medie(2)) = 1<br />

2. Only O2 in node 3: yj(O2, medie(3)) = 1<br />

3. Mol balance: − ˙m2 = ˙m1Mmol(H2)/Mmol(H2O)<br />

4. Equal pressures: p1 = p2<br />

5. Equal pressures: p1 = p3<br />

6. Temperature of outlet gas: T emp = T2<br />

7. Equal temperature of outlet gases: T3 = T2<br />

8. Efficiency of elektrolysis: ˙ Eη = − ˙m2LHVH2<br />

436


17.121.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 < 0<br />

˙Q < 0<br />

˙E > 0<br />

17.121.5 Example<br />

struc Elyse ELECTROLYSER 1 2 3 201 301 90 0.8<br />

media 2 H2 3 O2<br />

addco p 1 1 m Elyse 1 1 t Elyse 1 15<br />

start m Elyse 2 -1 m Elyse 3 -1<br />

start t Elyse 2 90 t Elyse 3 90<br />

start e Elyse 201 100<br />

start y_j H2 H2 1 y_j O2 O2 1<br />

start p 2 1 p 3 1 q Elyse 301 -10<br />

437


17.122 DRYER_04<br />

Steam dryer for solid fuels (Steam is a real fluid).<br />

17.122.1 Nodes<br />

Number of nodes: 5<br />

1. Solid in (Internal Number: -5) : any solid (I/V)<br />

2. Steam in (Internal Number: 97) : water for gas app (C)<br />

3. Dry solid out (Internal Number: -5) : any solid (I/V)<br />

4. Steam out (Internal Number: 97) : water for gas app (C)<br />

5. Heat loss (Internal Number: 300) : heat<br />

17.122.2 Parameters<br />

Number of parameters: 2<br />

1. Moisture content of dried fuel<br />

2. Pressure loss: ∆p [bar]<br />

17.122.3 Equations<br />

Number of equations: 41<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

8. –<br />

438


9. –<br />

10. –<br />

11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

18. –<br />

19. –<br />

20. –<br />

21. –<br />

22. –<br />

23. –<br />

24. –<br />

25. –<br />

26. –<br />

27. –<br />

28. –<br />

29. –<br />

30. –<br />

31. –<br />

32. –<br />

33. –<br />

439


34. –<br />

35. –<br />

36. –<br />

37. –<br />

38. –<br />

39. –<br />

40. –<br />

41. –<br />

17.122.4 Conditions<br />

˙m1 > 0<br />

˙m2 > 0<br />

˙m3 < 0<br />

˙m4 < 0<br />

T1 < T3<br />

T2 > T4<br />

Q < 0<br />

x1,H2O > x3,H2O<br />

17.122.5 Example<br />

struc dryer DRYER_04 1 2 3 4 300 0.05 0<br />

media 1 Wood 3 dry-wood<br />

SOLID Wood H .0305 O .1886 H2O-L .5 C .2503 S .00005 ASH .0255<br />

+ N 0.003 36 0.00205<br />

+ LHV 21750 CP 1.35<br />

addco m dryer 1 2.05 t dryer 1 15 p 1 1<br />

addco t dryer 2 322 t dryer 3 150 t dryer 4 150<br />

addco p 2 1 p 3 1<br />

addco q dryer 300 0<br />

START M dryer 2 8.3 M dryer 3 -1<br />

START X_J dry-wood H2 0.057 X_J dry-wood O2 0.35<br />

START X_J dry-wood C 0.47 X_J dry-wood H2O-L 0.05<br />

440


17.123 GASIFI_3_VENZIN<br />

Gasifier with water/steam. 1 identifier: Calculated compounds. The difference<br />

between GASIFI 3 and this component is that the water to fuel ratio is<br />

defined as a control variable.<br />

17.123.1 Nodes<br />

Number of nodes: 7<br />

1. Fuel in (Internal Number: -5) : any solid (I/V)<br />

2. Steam in (Internal Number: 97) : water for gas app (C)<br />

3. Air in (Internal Number: -4) : any gas (I/V)<br />

4. Product gas out (Internal Number: -4) : any gas (I/V)<br />

5. Ash out (Internal Number: -5) : any solid (I/V)<br />

6. Heat loss (Internal Number: 300) : heat<br />

7. water to fuel ratio (DMVC) (Internal Number: 999) : control<br />

17.123.2 Parameters<br />

Number of parameters: 20<br />

1. Gasifier pressure: PGAS<br />

2. Gasifier temperature: TGAS<br />

3. Pressure loss: DELP<br />

4. Carbon conversion ratio<br />

5. Non-equilibrium methane<br />

6. –<br />

7. –<br />

8. –<br />

9. –<br />

10. –<br />

441


11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

18. –<br />

19. –<br />

20. –<br />

17.123.3 Equations<br />

Number of equations: 30<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

8. –<br />

9. –<br />

10. –<br />

11. –<br />

12. –<br />

442


13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

18. –<br />

19. –<br />

20. –<br />

21. –<br />

22. –<br />

23. –<br />

24. –<br />

25. –<br />

26. –<br />

27. –<br />

28. –<br />

29. –<br />

30. –<br />

17.123.4 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ > 0<br />

m3 ˙ > 0<br />

m4 ˙ < 0<br />

m5 ˙ < 0<br />

˙Q < 0<br />

443


17.123.5 Example<br />

STRUC Gasifier GASIFI_3_VENZIN 8 2 34 25 3 4 302 900 /<br />

1 3 4 6 7 9 11 36 2 750 0 1.0 0.0<br />

MEDIA 2 Wood 25 O2 3 FlueGas 4 Ash<br />

fluid O2 O2 1<br />

SOLID Wood H .057 O .4085 H2O-L .05 C .4750 S .0001 ASH .0092<br />

+ N 0.0001 36 0.0001<br />

+ LHV 19000 CP 1.35<br />

ADDCO Q Gasifier 302 0 P 4 1 M Gasifier 2 1.2 T Gasifier 3 700<br />

addco T Gasifier 2 150 T Gasifier 34 600 T Gasifier 25 600<br />

addco p 2 1 ZC 900 0.35<br />

START M Gasifier 34 0.0 M Gasifier 25 1.8 M Gasifier 4 -0.01<br />

START Y_J FlueGas H2 0.21 Y_J FlueGas N2 0.39 Y_J FlueGas CO 0.26<br />

START Y_J FlueGas CO2 0.07 X_J Ash ASH 1<br />

444


17.124 GASCLE_2<br />

Syngas cleaning. The syntax is struc Componentname GASCLE 2 7 1 2 3 301<br />

0 8 9 10 31 32 38 39. So the first number determines how many compounds<br />

is off-seperated. The 7 numbers from 8 to 39 is therefore compound numbers<br />

(8 is NH3).<br />

17.124.1 Nodes<br />

Number of nodes: 4<br />

1. Dirty gas in (Internal Number: -4) : any gas (I/V)<br />

2. Clean gas out (Internal Number: -4) : any gas (I/V)<br />

3. Off-separated gas (Internal Number: -4) : any gas (I/V)<br />

4. Heat loss (Internal Number: 300) : heat<br />

17.124.2 Parameters<br />

Number of parameters: 42<br />

1. Pressure loss: ∆p [bar]<br />

2. Compound number<br />

3. Compound number<br />

4. Compound number<br />

5. Compound number<br />

6. Compound number<br />

7. Compound number<br />

8. Compound number<br />

9. Compound number<br />

10. Compound number<br />

11. Compound number<br />

12. Compound number<br />

445


13. Compound number<br />

14. Compound number<br />

15. Compound number<br />

16. Compound number<br />

17. Compound number<br />

18. Compound number<br />

19. Compound number<br />

20. Compound number<br />

21. Compound number<br />

22. Compound number<br />

23. Compound number<br />

24. Compound number<br />

25. Compound number<br />

26. Compound number<br />

27. Compound number<br />

28. Compound number<br />

29. Compound number<br />

30. Compound number<br />

31. Compound number<br />

32. Compound number<br />

33. Compound number<br />

34. Compound number<br />

35. Compound number<br />

36. Compound number<br />

37. Compound number<br />

446


38. Compound number<br />

39. Compound number<br />

40. Compound number<br />

41. Compound number<br />

42. Compound number<br />

17.124.3 Equations<br />

Number of equations: 86<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

8. –<br />

9. –<br />

10. –<br />

11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

447


18. –<br />

19. –<br />

20. –<br />

21. –<br />

22. –<br />

23. –<br />

24. –<br />

25. –<br />

26. –<br />

27. –<br />

28. –<br />

29. –<br />

30. –<br />

31. –<br />

32. –<br />

33. –<br />

34. –<br />

35. –<br />

36. –<br />

37. –<br />

38. –<br />

39. –<br />

40. –<br />

41. –<br />

42. –<br />

448


43. –<br />

44. –<br />

45. –<br />

46. –<br />

47. –<br />

48. –<br />

49. –<br />

50. –<br />

51. –<br />

52. –<br />

53. –<br />

54. –<br />

55. –<br />

56. –<br />

57. –<br />

58. –<br />

59. –<br />

60. –<br />

61. –<br />

62. –<br />

63. –<br />

64. –<br />

65. –<br />

66. –<br />

67. –<br />

449


68. –<br />

69. –<br />

70. –<br />

71. –<br />

72. –<br />

73. –<br />

74. –<br />

75. –<br />

76. –<br />

77. –<br />

78. –<br />

79. –<br />

80. –<br />

81. –<br />

82. –<br />

83. –<br />

84. –<br />

85. –<br />

86. –<br />

17.124.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 < 0<br />

˙Q < 0<br />

450


17.124.5 Example<br />

struc Cleaner GASCLE_2 7 13 14 15 308 0 8 9 10 31 32 38 39<br />

media 13 GG 14 GG-clean 15 H2S<br />

fluid GG H2 0.5 CO 0.3 CO2 0.1 H2O-G 0.05 CH4 0.02 H2S 0.03<br />

addco Q Cleaner 308 0<br />

addco t Cleaner 13 70 p 13 1 m Cleaner 13 1<br />

START M Cleaner 14 -0.93 t Cleaner 14 70<br />

START Y_J GG-clean H2 0.5 Y_J GG-clean CO 0.30<br />

start Y_J GG-clean CO2 0.1 Y_J H2S H2S 1<br />

451


17.125 STEAM_REFORMER<br />

Steam reformer - with the possibillity of auto thermal reforming (oxygen as<br />

input massflow in node 2).<br />

17.125.1 Nodes<br />

Number of nodes: 5<br />

1. Inlet gas (Internal Number: -4) : any gas (I/V)<br />

2. Oxygen or another gas (Internal Number: -4) : any gas (I/V)<br />

3. Steam (Internal Number: 97) : water for gas app (C)<br />

4. Reformed gas (Internal Number: -4) : any gas (I/V)<br />

5. Heat (Internal Number: 300) : heat<br />

17.125.2 Parameters<br />

Number of parameters: 1<br />

1. Gas/steam fraction: ˙m3<br />

˙m1<br />

17.125.3 Equations<br />

Number of equations: 13<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

8. –<br />

9. –<br />

452


10. –<br />

11. –<br />

12. –<br />

13. –<br />

17.125.4 Conditions<br />

˙m1 > 0<br />

˙m2 > 0<br />

˙m3 > 0<br />

˙m4 < 0<br />

17.125.5 Example<br />

struc NG_reformer STEAM_REFORMER 412 403 423 431 313 1<br />

media 412 NATURAL_GAS 403 O2 431 NG_reformat<br />

fluid O2 O2 1<br />

addco q NG_reformer 313 0<br />

addco t NG_reformer 403 850 t NG_reformer 423 850 t NG_reformer 412<br />

667<br />

addco t NG_reformer 431 950 M NG_reformer 412 0.34 p 403 10<br />

START M NG_reformer 403 0.3 M NG_reformer 423 0.3<br />

START Y_J NG_reformat H2 0.55 Y_J NG_reformat CO 0.21 Y_J NG_reformat<br />

H2O-G 0.18<br />

453


17.126 GASCOOL2<br />

Gas cooler with outlet for condensed water. The pinch point temperature is<br />

set as a parameter. The component checks if the pinch point is at the inlet or<br />

outlet - or where the condensation starts. If the cooling medium evaporates<br />

the component also checks if the pinch point is where the evaporation starts.<br />

17.126.1 Nodes<br />

Number of nodes: 5<br />

1. Hot gas inlet (Internal Number: -4) : any gas (I/V)<br />

2. Hot gas outlet (Internal Number: -4) : any gas (I/V)<br />

3. Condensate outlet (Internal Number: 97) : water for gas app (C)<br />

4. Coolant inlet (Internal Number: -3) : any fluid (I/V)<br />

5. Coolant outlet (Internal Number: -3) : any fluid (I/V)<br />

17.126.2 Parameters<br />

Number of parameters: 3<br />

1. Pressure loss side 1: ∆p [bar]<br />

2. Pressure loss side 2: ∆p [bar]<br />

3. Pinch point temperature diffence<br />

17.126.3 Equations<br />

Number of equations: 52<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

454


7. –<br />

8. –<br />

9. –<br />

10. –<br />

11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

18. –<br />

19. –<br />

20. –<br />

21. –<br />

22. –<br />

23. –<br />

24. –<br />

25. –<br />

26. –<br />

27. –<br />

28. –<br />

29. –<br />

30. –<br />

31. –<br />

455


32. –<br />

33. –<br />

34. –<br />

35. –<br />

36. –<br />

37. –<br />

38. –<br />

39. –<br />

40. –<br />

41. –<br />

42. –<br />

43. –<br />

44. –<br />

45. –<br />

46. –<br />

47. –<br />

48. –<br />

49. –<br />

50. –<br />

51. –<br />

52. –<br />

456


17.126.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 < 0<br />

˙m4 > 0<br />

˙m5 < 0<br />

T1 > T2<br />

T1 > T5<br />

T2 > T4<br />

T5 > T4<br />

y1,H2O > y2,H2O<br />

p1 ∗ y1,H2O < psat,H2O<br />

17.126.5 Example<br />

STRUC Cooler GASCOOL2 3 5 6 10 11 0 0 10<br />

MEDIA 10 NATURAL_GAS 5 Coolgas 3 FG<br />

FLUID FG H2 0.44 CO 0.21 CO2 0.02 7 0.078 CH4 0.252<br />

addco t Cooler 3 150 m Cooler 3 1 p 3 4<br />

ADDCO P 10 20 T Cooler 11 100 T Cooler 5 51.46<br />

START M Cooler 5 -0.9 M Cooler 10 2.1 t Cooler 10 18<br />

START Y_J Coolgas H2 0.46 Y_J Coolgas CO 0.22<br />

START Y_J Coolgas CH4 0.26 Y_J Coolgas H2O-G 0.03<br />

457


17.127 MEOH_CONVERTER<br />

Methanol converter. Outlet gas is at equilibrium between H2, CO, CO2, H2O<br />

and CH3OH. One of the conditions for the component is that condensation<br />

of methanol and water does not occur.<br />

17.127.1 Nodes<br />

Number of nodes: 3<br />

1. Inlet gas (Internal Number: -4) : any gas (I/V)<br />

2. Oulet gas (Internal Number: -4) : any gas (I/V)<br />

3. Heat loss (Internal Number: 300) : heat<br />

17.127.2 Parameters<br />

Number of parameters: 1<br />

1. Pressure loss: ∆p [bar]<br />

17.127.3 Equations<br />

Number of equations: 44<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

8. –<br />

9. –<br />

10. –<br />

458


11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

18. –<br />

19. –<br />

20. –<br />

21. –<br />

22. –<br />

23. –<br />

24. –<br />

25. –<br />

26. –<br />

27. –<br />

28. –<br />

29. –<br />

30. –<br />

31. –<br />

32. –<br />

33. –<br />

34. –<br />

35. –<br />

459


36. –<br />

37. –<br />

38. –<br />

39. –<br />

40. –<br />

41. –<br />

42. –<br />

43. –<br />

44. –<br />

17.127.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙Q < 0<br />

T2 > Tcondensation<br />

17.127.5 Example<br />

struc Meoh-convert MEOH_CONVERTER 601 602 311 0.01<br />

media 601 Syngas 602 Syngas-meoh<br />

fluid Syngas H2 0.5 CO 0.3 CO2 0.2<br />

addco p 601 144<br />

addco t Meoh-convert 602 235 t Meoh-convert 601 230 m Meoh-convert<br />

601 100<br />

START Y_J Syngas-meoh H2 0.15 Y_J Syngas-meoh CO 0.16<br />

START Y_J Syngas-meoh CO2 0.33 Y_J Syngas-meoh CH3OH 0.34<br />

START ZA Meoh-convert 5 230<br />

460


17.128 SET_M<br />

U<strong>til</strong>ity component for setting the M-factor for a syngas used for production<br />

of a liquid fuel. The M-factor is defined in the equations below. If the Mfactor<br />

is 2 for methanol production it means that all the syngas in theory<br />

can be converted to methanol. The M-factor is defined as a control variable<br />

(ZC).<br />

17.128.1 Nodes<br />

Number of nodes: 3<br />

1. Gas in (Internal Number: -4) : any gas (I/V)<br />

2. Gas out (Internal Number: -4) : any gas (I/V)<br />

3. M-factor (Internal Number: 999) : control<br />

17.128.2 Equations<br />

Number of equations: 2<br />

1. Equal pressures: p1 = p2<br />

2. M-factor: ZC(1) = yH 2 −yCO 2<br />

yCO 2 +yCO<br />

17.128.3 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ < 0<br />

yCO + yCO2 > 0<br />

17.128.4 Example<br />

struc set-M SET_M 611 612 900<br />

MEDIA 611 gas<br />

fluid gas N2 0.1 H2 0.6 CO 0.1 CO2 0.2<br />

addco m set-M 611 1 t set-M 611 50 p 611 1<br />

461


17.129 GASCOOL4<br />

Gas cooler with outlet for condensed water and methanol. The pinch point<br />

temperature is set as a parameter. The component checks if the pinch point<br />

is at the inlet or outlet - or where the condensation starts. If the cooling<br />

medium evaporates the component also checks if the pinch point is where<br />

the evaporation starts.<br />

17.129.1 Nodes<br />

Number of nodes: 7<br />

1. Hot gas inlet (Internal Number: -4) : any gas (I/V)<br />

2. Hot gas outlet (Internal Number: -4) : any gas (I/V)<br />

3. Water condensate outlet (Internal Number: 97) : water for gas app<br />

(C)<br />

4. Methanol condensate outlet (Internal Number: 94) : methanol (C)<br />

5. Coolant inlet (Internal Number: -3) : any fluid (I/V)<br />

6. Coolant outlet (Internal Number: -3) : any fluid (I/V)<br />

7. Pinch point temperature diffence (Internal Number: 999) : control<br />

17.129.2 Parameters<br />

Number of parameters: 3<br />

1. Pressure loss side 1: ∆p [bar]<br />

2. Pressure loss side 2: ∆p [bar]<br />

3. Minimum pinch point temperature diffence<br />

17.129.3 Equations<br />

Number of equations: 53<br />

1. –<br />

2. –<br />

3. –<br />

462


4. –<br />

5. –<br />

6. –<br />

7. –<br />

8. –<br />

9. –<br />

10. –<br />

11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

18. –<br />

19. –<br />

20. –<br />

21. –<br />

22. –<br />

23. –<br />

24. –<br />

25. –<br />

26. –<br />

27. –<br />

28. –<br />

463


29. –<br />

30. –<br />

31. –<br />

32. –<br />

33. –<br />

34. –<br />

35. –<br />

36. –<br />

37. –<br />

38. –<br />

39. –<br />

40. –<br />

41. –<br />

42. –<br />

43. –<br />

44. –<br />

45. –<br />

46. –<br />

47. –<br />

48. –<br />

49. –<br />

50. –<br />

51. –<br />

52. –<br />

53. –<br />

464


17.129.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 < 0<br />

˙m4 < 0<br />

˙m5 > 0<br />

˙m6 < 0<br />

T1 > T2<br />

T1 > T6<br />

T2 > T5<br />

T6 > T5<br />

T1 > Tcondensation<br />

node 7 > Parameter 3<br />

17.129.5 Example<br />

STRUC Cooler GASCOOL4 3 5 6 7 10 11 901 0 0 10<br />

MEDIA 10 STEAM 5 Coolgas 3 FG<br />

FLUID FG H2 0.4844 CO2 0.2815 7 0.10 CH3OH 0.10 N2 0.0341<br />

addco p 3 144 t Cooler 3 410 m Cooler 3 22.1<br />

addco P 10 400 t Cooler 5 109 t Cooler 11 300<br />

addco ZC 901 10<br />

START M Cooler 5 -16 M Cooler 6 -1.9 M Cooler 10 19<br />

START t Cooler 6 109 t Cooler 10 50<br />

START ZA Cooler 4 207<br />

START Y_J Coolgas H2 0.59 Y_J Coolgas N2 0.04 Y_J Coolgas CO2 0.34<br />

465


17.130 MIXING_TANK<br />

Heat exchanger used as a model for a mixing tank. This means that the<br />

outlet temperatures are set equal.<br />

17.130.1 Nodes<br />

Number of nodes: 5<br />

1. Fluid 1 inlet (Internal Number: -9) : any real fluid<br />

2. Fluid 1 outlet (Internal Number: -9) : any real fluid<br />

3. Fluid 2 inlet (Internal Number: -9) : any real fluid<br />

4. Fluid 2 outlet (Internal Number: -9) : any real fluid<br />

5. Heat loss (Internal Number: 300) : heat<br />

17.130.2 Parameters<br />

Number of parameters: 2<br />

1. Pressure loss side 1, ∆p12 [bar]<br />

2. Pressure loss side 2, ∆p34 [bar]<br />

17.130.3 Equations<br />

Number of equations: 5<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

466


17.130.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 > 0<br />

˙m4 < 0<br />

˙Q < 0<br />

17.130.5 Example<br />

struc Water-meoh-t MIXING_TANK 623 624 633 634 330 0 0<br />

media 623 STEAM-HF 633 METHANOL<br />

addco q Water-meoh-t 330 0<br />

addco t Water-meoh-t 623 90 t Water-meoh-t 633 40<br />

addco p 623 1 p 633 1<br />

addco m Water-meoh-t 623 1 m Water-meoh-t 633 1<br />

start t Water-meoh-t 624 60<br />

467


17.131 DISTILLATION_STAGE<br />

Dis<strong>til</strong>lation stage for a dis<strong>til</strong>lation column. A column can consist of several<br />

stages in series. The dis<strong>til</strong>lation stage calculates VLE (vapor liquid<br />

equilibrium) between water and methanol. The component can be used for<br />

dis<strong>til</strong>lation of other media by changing 3 constants in the source code. The<br />

method is NRTL (Non Random Two Liquid). Can only be used with real<br />

fluids. The pressure is assigned in node 10 - not in the seperate nodes<br />

17.131.1 Nodes<br />

Number of nodes: 13<br />

1. Liquid water inlet (Internal Number: 97) : water for gas app (C)<br />

2. Liquid water outlet (Internal Number: 97) : water for gas app (C)<br />

3. Water vapor inlet (Internal Number: 97) : water for gas app (C)<br />

4. Water vapor outlet (Internal Number: 97) : water for gas app (C)<br />

5. Liquid methanol inlet (Internal Number: 94) : methanol (C)<br />

6. Liquid methanol outlet (Internal Number: 94) : methanol (C)<br />

7. Methanol vapor inlet (Internal Number: 94) : methanol (C)<br />

8. Methanol vapor outlet (Internal Number: 94) : methanol (C)<br />

9. Heat (Internal Number: 300) : heat<br />

10. Pressure in system (Internal Number: 999) : control<br />

11. Temperature of system (Internal Number: 999) : control<br />

12. Molar fraction of methanol in the liquid phase (Internal Number: 999)<br />

: control<br />

13. Molar fraction of methanol in the gas phase (Internal Number: 999) :<br />

control<br />

468


17.131.2 Equations<br />

Number of equations: 15<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

8. –<br />

9. –<br />

10. –<br />

11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

17.131.3 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 > 0<br />

˙m4 < 0<br />

˙m5 > 0<br />

˙m6 < 0<br />

˙m7 > 0<br />

˙m8 < 0<br />

469


17.131.4 Example<br />

struc Dis_stage_1 DISTILLATION_STAGE 701 707 705 703 702 708 /<br />

706 704 343 906 907 908 909 0 0<br />

addco q Dis_stage_1 343 0 ZC 906 1<br />

addco tsat 701 80 x Dis_stage_1 701 0 m Dis_stage_1 701 1<br />

addco tsat 705 70 x Dis_stage_1 705 1 m Dis_stage_1 705 1<br />

addco tsat 702 80 x Dis_stage_1 702 0 m Dis_stage_1 702 1<br />

addco tsat 706 70 x Dis_stage_1 706 1 m Dis_stage_1 706 1<br />

start m Dis_stage_1 707 -1 m Dis_stage_1 708 -1<br />

start x Dis_stage_1 708 0 x Dis_stage_1 703 1 x Dis_stage_1 704 1<br />

START ZC 907 83<br />

470


17.132 EL-MOTOR<br />

Motor with efficiency.<br />

17.132.1 Nodes<br />

Number of nodes: 3<br />

1. Power in (Internal Number: 200) : electrical power<br />

2. Heat loss (Internal Number: 300) : heat<br />

3. Sh<strong>af</strong>t power (Internal Number: 100) : sh<strong>af</strong>t (STATIC)<br />

17.132.2 Parameters<br />

Number of parameters: 1<br />

1. Motor efficiency, ηm [-]<br />

17.132.3 Equations<br />

Number of equations: 1<br />

1. Motor efficiency: ηm = ˙ W ˙E<br />

17.132.4 Conditions<br />

˙E > 0<br />

˙W < 0<br />

˙Q < 0<br />

17.132.5 Example<br />

struc El-motor EL-MOTOR 203 319 101 0.95<br />

addco e El-motor 203 100<br />

start q El-motor 319 -1<br />

471


17.133 SPLITTER2<br />

Flow splitter - variable number of outlets for splitting up and later re-uniting<br />

the massflow - this means that only the pressure in node 2 is set.This documentation<br />

is for 3 outlets.<br />

17.133.1 Nodes<br />

Number of nodes: 10<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

3. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

4. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

5. (Internal Number: -3) : any fluid (I/V)<br />

6. (Internal Number: -3) : any fluid (I/V)<br />

7. (Internal Number: -3) : any fluid (I/V)<br />

8. (Internal Number: -3) : any fluid (I/V)<br />

9. (Internal Number: -3) : any fluid (I/V)<br />

10. (Internal Number: -3) : any fluid (I/V)<br />

17.133.2 Equations<br />

Number of equations: 9<br />

1. Equal pressures: p1 = p2<br />

2. Equal enthalpy of outlets: h1 = h2<br />

3. Equal enthalpy of outlets: h1 = h3<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

472


8. –<br />

9. –<br />

17.133.3 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 < 0<br />

˙m4 < 0<br />

17.133.4 Example<br />

struc split splitter2 4 1 2 3 4<br />

media 1 SIMPLE_AIR<br />

addco m split 1 10 t split 1 50 p 1 1<br />

addco m split 2 -3 m split 3 -3<br />

addco p 3 1 p 4 1<br />

start t split 2 50 t split 3 50<br />

473


17.134 SPLITTER3<br />

Flow splitter. The distribution of the inlet massflow between the outlets is<br />

set by the parameter.<br />

17.134.1 Nodes<br />

Number of nodes: 3<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

3. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

17.134.2 Parameters<br />

Number of parameters: 1<br />

1. Fraction:<br />

− ˙ m2<br />

m1 ˙<br />

17.134.3 Equations<br />

Number of equations: 4<br />

1. Equal enthalpy of outlets: h2 = h3<br />

2. Equal pressures: p1 = p2<br />

3. Equal pressures: p1 = p3<br />

4. –<br />

17.134.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 < 0<br />

17.134.5 Example<br />

struc split splitter3 1 2 3 0.4<br />

media 1 SIMPLE_AIR<br />

addco m split 1 10 t split 1 50 p 1 1<br />

START M split 2 -4 t split 2 50<br />

474


17.135 MIXER_03<br />

Mixer for ideal gases with variable number of inlet massflows. The documentation<br />

is for 2 inlets.<br />

17.135.1 Nodes<br />

Number of nodes: 10<br />

1. Gas in (Internal Number: -4) : any gas (I/V)<br />

2. Gas in (Internal Number: -4) : any gas (I/V)<br />

3. Gas mix out (Internal Number: -4) : any gas (I/V)<br />

4. (Internal Number: -4) : any gas (I/V)<br />

5. (Internal Number: -4) : any gas (I/V)<br />

6. (Internal Number: -4) : any gas (I/V)<br />

7. (Internal Number: -4) : any gas (I/V)<br />

8. (Internal Number: -4) : any gas (I/V)<br />

9. (Internal Number: -4) : any gas (I/V)<br />

10. (Internal Number: -4) : any gas (I/V)<br />

17.135.2 Equations<br />

Number of equations: 47<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

7. –<br />

475


8. –<br />

9. –<br />

10. –<br />

11. –<br />

12. –<br />

13. –<br />

14. –<br />

15. –<br />

16. –<br />

17. –<br />

18. –<br />

19. –<br />

20. –<br />

21. –<br />

22. –<br />

23. –<br />

24. –<br />

25. –<br />

26. –<br />

27. –<br />

28. –<br />

29. –<br />

30. –<br />

31. –<br />

32. –<br />

476


33. –<br />

34. –<br />

35. –<br />

36. –<br />

37. –<br />

38. –<br />

39. –<br />

40. –<br />

41. –<br />

42. –<br />

43. –<br />

44. –<br />

45. –<br />

46. –<br />

47. –<br />

17.135.3 Conditions<br />

˙m1 > 0<br />

˙m2 > 0<br />

˙m3 < 0<br />

17.135.4 Example<br />

struc mixer mixer_03 3 1 2 3<br />

media 1 SIMPLE_AIR 2 METHANE 3 mix<br />

addco m mixer 1 10 t mixer 1 110 p 1 1<br />

addco m mixer 2 1 t mixer 2 60<br />

START Y_J mix O2 0.17 Y_J mix N2 0.66 Y_J mix CH4 0.15<br />

477


17.136 PRES_SEP<br />

U<strong>til</strong>ity component for seperating nodes which both have assigned the pressure.<br />

Can also be used as a throttle valve.<br />

17.136.1 Nodes<br />

Number of nodes: 2<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

17.136.2 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

17.136.3 Example<br />

struc dummy PRES_SEP 1 2<br />

media 1 STEAM<br />

addco m dummy 1 1 t dummy 1 50 p 1 1 p 2 1<br />

478


17.137 SET_X<br />

U<strong>til</strong>ity component for setting the molar fraction of a compund in a ideal gas<br />

mixture.<br />

17.137.1 Nodes<br />

Number of nodes: 3<br />

1. Gas in (Internal Number: -4) : any gas (I/V)<br />

2. Gas out (Internal Number: -4) : any gas (I/V)<br />

3. Molar fraction of compound (Internal Number: 999) : control<br />

17.137.2 Parameters<br />

Number of parameters: 1<br />

1. Compound number (H2 is 1)<br />

17.137.3 Equations<br />

Number of equations: 2<br />

1. –<br />

2. –<br />

17.137.4 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ < 0<br />

17.137.5 Example<br />

struc set-X_H2 SET_X 611 612 900 1<br />

MEDIA 611 gas<br />

fluid gas N2 0.6 H2 0.4<br />

addco m set-X_H2 611 1 t set-X_H2 611 50 p 611 1<br />

479


17.138 SET_X_REALFLUID<br />

U<strong>til</strong>lity component for setting the molar fraction of fluid 2 (fluid 1 and 2 are<br />

considered as a mixture).<br />

17.138.1 Nodes<br />

Number of nodes: 5<br />

1. Fluid 1 inlet (Internal Number: -9) : any real fluid<br />

2. Fluid 1 outlet (Internal Number: -9) : any real fluid<br />

3. Fluid 2 inlet (Internal Number: -9) : any real fluid<br />

4. Fluid 2 outlet (Internal Number: -9) : any real fluid<br />

5. molar fraction of fluid 2 (Internal Number: 999) : control<br />

17.138.2 Parameters<br />

Number of parameters: 2<br />

1. Pressure loss side 1, ∆p12 [bar]<br />

2. Pressure loss side 2, ∆p34 [bar]<br />

17.138.3 Equations<br />

Number of equations: 6<br />

1. –<br />

2. –<br />

3. –<br />

4. –<br />

5. –<br />

6. –<br />

480


17.138.4 Conditions<br />

˙m1 > 0<br />

˙m2 < 0<br />

˙m3 > 0<br />

˙m4 < 0<br />

17.138.5 Example<br />

struc set-x SET_X_REALFLUID 691 693 692 694 908 0 0<br />

MEDIA 691 STEAM-HF 692 METHANOL<br />

addco p 691 1 p 692 1<br />

addco m set-x 691 1 t set-x 691 80 t set-x 692 80<br />

addco ZC 908 0.36<br />

start t set-x 693 60 m set-x 692 1<br />

481


17.139 MEASURE_FLOW<br />

U<strong>til</strong>lity component for converting a massflow to a control signal (ZC). Could<br />

be used with the component SET FLOW<br />

17.139.1 Nodes<br />

Number of nodes: 3<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

3. Measured massflow (Internal Number: 999) : control<br />

17.139.2 Equations<br />

Number of equations: 2<br />

1. Equal pressures: p1 = p2<br />

2. Massflow: m1 ˙ = ZC(1)<br />

17.139.3 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ < 0<br />

17.139.4 Example<br />

struc meas_flow MEASURE_FLOW 635 636 990<br />

MEDIA 635 STEAM<br />

addco t meas_flow 635 50 m meas_flow 635 1 p 635 1<br />

482


17.140 SET_FLOW<br />

U<strong>til</strong>lity component for setting the massflow based on 2 control signals (ZC) -<br />

typicly one control signal for a measured massflow and the other a fraction.<br />

The component MEASURE FLOW can be used.<br />

17.140.1 Nodes<br />

Number of nodes: 4<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

3. Measured massflow (Internal Number: 999) : control<br />

4. Fraction (Internal Number: 999) : control<br />

17.140.2 Equations<br />

Number of equations: 2<br />

1. Equal pressures: p1 = p2<br />

2. Massflow: m1 ˙ = ZC(1) ∗ ZC(2)<br />

17.140.3 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ < 0<br />

17.140.4 Example<br />

STRUC Flow SET_FLOW 2 3 900 901<br />

MEDIA 2 STEAM<br />

addco t Flow 2 50 p 2 1 m Flow 2 10<br />

addco ZC 901 2<br />

START ZC 901 2<br />

483


17.141 SET_TEMP<br />

U<strong>til</strong>lity component for setting or measuring the temperature by use of a<br />

control signal (ZC).<br />

17.141.1 Nodes<br />

Number of nodes: 3<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

3. Temperature (Internal Number: 999) : control<br />

17.141.2 Equations<br />

Number of equations: 2<br />

1. Equal pressures: p1 = p2<br />

2. Temperature: T = ZC(1)<br />

17.141.3 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ < 0<br />

17.141.4 Example<br />

struc set_temp SET_TEMP 1 2 900<br />

media 1 STEAM<br />

addco p 1 1 m set_temp 1 60 t set_temp 1 60<br />

484


17.142 SET_TEMP2<br />

U<strong>til</strong>lity component for setting the temperature by use of 2 control signals<br />

(ZC).<br />

17.142.1 Nodes<br />

Number of nodes: 4<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

3. Temperature (Internal Number: 999) : control<br />

4. Temperature difference (Internal Number: 999) : control<br />

17.142.2 Equations<br />

Number of equations: 2<br />

1. Equal pressures: p1 = p2<br />

2. Temperature: T = ZC(1)+ZC(2)<br />

17.142.3 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ < 0<br />

17.142.4 Example<br />

struc set_temp SET_TEMP2 1 2 900 901<br />

media 1 STEAM<br />

addco p 1 1 m set_temp 1 60<br />

addco ZC 900 50 ZC 901 -10<br />

start t set_temp 1 60<br />

485


17.143 SET_PRES<br />

U<strong>til</strong>lity component for converting the pressure to a control signal (ZC). The<br />

component can therefore be used for measuring or setting the pressure<br />

17.143.1 Nodes<br />

Number of nodes: 3<br />

1. Fluid in (Internal Number: -3) : any fluid (I/V)<br />

2. Fluid out (Internal Number: -3) : any fluid (I/V)<br />

3. Pressure (Internal Number: 999) : control<br />

17.143.2 Equations<br />

Number of equations: 2<br />

1. Equal pressures: p1 = p2<br />

2. Pressure: p1 = ZC(1)<br />

17.143.3 Conditions<br />

m1 ˙ > 0<br />

m2 ˙ < 0<br />

17.143.4 Example<br />

struc set-pres SET_PRES 635 636 990<br />

MEDIA 635 STEAM<br />

addco t set-pres 635 50 m set-pres 635 1 p 635 1<br />

486


34. Tilføjede komponenter <strong>til</strong> DNA – Fortran-kode


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C***********************************************************************<br />

SUBROUTINE ELECTROLYSER(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,MEDIE<br />

$ ,ANTME,VARME,antel,varel,MDOT,P,H,Q,E,PAR,RES,X_J,KOMDSC<br />

$ ,K_PAR,K_lig,K_bet,KMEDDS,K_inp,ZA,ZANAM)<br />

C***********************************************************************<br />

C<br />

C ELYSE is a component that converts water to H2 and O2 by<br />

C elektrolysis. The component uses water (ideal gas) and not STEAM<br />

C (real fluid). The efficiency and the temperature are parameters to<br />

C the component.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA Q − INPUT − Exchanged heat.<br />

CA E − INPUT − Power.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA X_J − INPUT − Fluid composition.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters for the component.<br />

CA ANTLK − OUTPUT − Number of equations in the component.<br />

CA ANTEX − OUTPUT − Number of independent equations in the component.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean :<br />

CA 1 : Air.<br />

CA 27 : Oxygen rich gas.<br />

CA 28 : Nitr<strong>og</strong>en rich gas.<br />

CA 200 : Power.<br />

CA 300 : Heat.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL T2 Temperature in node 2.<br />

CL T3 Temperature in node 3.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DELP Pressure drop through the plant.<br />

CL PRO Oxygen mole ratio in oxygen rich gas.<br />

CL MNOM Nominal mass flow through the plant.<br />

CL ENOM Nominal power consumption of the plant.<br />

CL M1 Mass flow into the separation plant.<br />

CL M2 Mass flow found using PRO.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C STATES<br />

C SPLIT<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994 (Niels Emsholm 1991)<br />

CP Lab. for Energetics, DTH, Denmark.<br />

C***********************************************************************<br />

C<br />

C Including the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

1/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX,ANTKN, MEDIE(5), ANTPK, ANTM1,<br />

$ ANTME,VARME(3),varel(antst,3),antel(3)<br />

DOUBLE PRECISION X_J(MAXME,ANTST), PAR(2), RES(8), MDOT(3),<br />

: P(3),H(3),E,Q,ZA<br />

CHARACTER*80 KOMTY,ZANAM(1)<br />

C<br />

C Local variables<br />

C<br />

DOUBLE PRECISION Virk, Temp, T2, T3, S, V, X, U<br />

CHARACTER*100 K_PAR(2)<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*500 K_LIG(8), K_BET<br />

CHARACTER*100 KMEDDS(5)<br />

EXTERNAL STATES<br />

INTRINSIC DABS<br />

INCLUDE ’THERPROP.INI’<br />

C========================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’ELECTROLYSER’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’ELECTROLYSER’<br />

ANTKN = 5<br />

ANTPK = 2<br />

ANTLK = 8<br />

ANTEX = 0<br />

ANTM1 = 3<br />

MEDIE(1) = 97<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = ANYGAS$<br />

MEDIE(4) = power$<br />

MEDIE(5) = heat$<br />

ANTME = 3<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE2$<br />

antel(2) = 1<br />

VARME(3) = NODE3$<br />

antel(3) = 1<br />

varel(1,2) = H2$<br />

varel(1,3) = O2$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws, since these are treated<br />

C automatically by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

Temp = PAR(1)<br />

Virk = PAR(2)<br />

C<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(3),H(3),T3,V,S,X,U,1,2,MEDIE(3))<br />

C<br />

res(1)=x_j(medie(2),H2$)−1.0<br />

res(2)=x_j(medie(3),O2$)−1.0<br />

res(3)=mdot(2)+mdot(1)/m_mol(H2O_L$)*m_mol(H2$)<br />

res(4)=P(1)−P(2)<br />

res(5)=P(1)−P(3)<br />

res(6)=T2−Temp<br />

res(7)=T2−T3<br />

c res(8)=(E+Q)/E−Virk<br />

res(8)=E*virk+ned_H(H2$)/m_mol(H2$)*MDOT(2)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

2/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).GT.1D−10) GOTO 550<br />

IF (Q.GT.1D−10) GOTO 550<br />

IF (E.LT.−1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Water elektrolysis with efficiency.’<br />

KMEDDS(1) = ’Water in’<br />

KMEDDS(2) = ’H2 out’<br />

KMEDDS(3) = ’O2 out’<br />

KMEDDS(4) = ’Power in’<br />

KMEDDS(5) = ’Heat loss’<br />

K_PAR(1) = ’Temperature: Temp [C]’<br />

K_PAR(2) = ’Efficiency of elektrolysis: $\\eta$ [−−]’<br />

K_LIG(1) = ’Only H2 in node 2: $y_j(H2,medie(2)) = 1$’<br />

K_LIG(2) = ’Only O2 in node 3: $y_j(O2,medie(3)) = 1$’<br />

K_LIG(3) = ’Mol balance:<br />

$$−\\dot{m}_2 = \\dot{m}_1 M_{mol}(H2)/M_{mol}(H2O)$’<br />

K_LIG(4) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(5) = ’Equal pressures: $p_1 = p_3$’<br />

K_LIG(6) = ’Temperature of outlet gas: $Temp = T_2$’<br />

K_LIG(7) = ’Equal temperature of outlet gases: $T_3 = T_2$’<br />

K_LIG(8) = ’Efficiency of elektrolysis:<br />

$$\\dot{E} \\eta=−\\dot{m}_2 LHV_{H2}$’<br />

K_BET = ’$\\dot{m}_1\\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\<br />

$\\dot{m}_3 \\lt 0 \\\\ \\dot{Q} \\lt 0 \\\\ \\dot{E} \\gt 0$’<br />

k_inp=’struc Elyse ELECTROLYSER 1 2 3 201 301 90 0.8\\\\<br />

$media 2 H2 3 O2\\\\<br />

$addco p 1 1 m Elyse 1 1 t Elyse 1 15\\\\<br />

$start m Elyse 2 −1 m Elyse 3 −1\\\\<br />

$start t Elyse 2 90 t Elyse 3 90\\\\<br />

$start e Elyse 201 100\\\\<br />

$start y_j H2 H2 1 y_j O2 O2 1\\\\<br />

$start p 2 1 p 3 1 q Elyse 301 −10’<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE DRYER_04(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,MEDIE,<br />

& ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q,PAR,RES,X_J,CP,HV,HF,ZA,<br />

$ ZANAM,KOMDSC,K_PAR,K_lig,K_bet,KMEDDS,K_inp)<br />

C***********************************************************************<br />

C<br />

C DRYER_02 is a model of a steam fuel dryer.<br />

C The model does not include equations concerning the heat exchange.<br />

C 1−2 is the heat emitting fluid.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

3/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL T1,T2 Temperature in first and second node.<br />

CL T3,T4 Temperature in third and fourth node.<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DPA,DPB Pressure loss in heat exchanger.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C STATES<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmegaard 2000<br />

CP Dept. of Energy Eng., DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX,ANTKN, MEDIE(5), ANTPK,<br />

& ANTM1, ANTME, VARME(4), ANTEL(4),<br />

& VAREL(ANTST,4)<br />

DOUBLE PRECISION RES(77), MDOT(4), P(4), H(4), Q, PAR(2),ZA(1),<br />

& X_J(MAXME,ANTST),CP(MAXME),HV(MAXME),HF(MAXME)<br />

CHARACTER*80 KOMTY,ZANAM(1)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(5),I<br />

DOUBLE PRECISION V, S, U, DP, MOIIN, MOIOUT, T1,<br />

$ T2, T3, T4, X, H4<br />

CHARACTER*100 K_PAR(2),K_STAT(1)<br />

CHARACTER*500 K_LIG(77), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(5)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200,350) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’DRYER_04’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’DRYER_04’<br />

ANTKN = 5<br />

ANTPK = 2<br />

ANTLK = 40<br />

ANTEX = 1<br />

ANTM1 = 4<br />

MEDIE(1) = −5<br />

MEDIE(2) = 97<br />

MEDIE(3) = −5<br />

4/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

MEDIE(4) = 97<br />

MEDIE(5) = 300<br />

ANTME = 2<br />

VARME(1) = −1<br />

VARME(2) = −3<br />

ANTEL(1) = 0<br />

ANTEL(2) = 38<br />

DO I = 1, 36<br />

VAREL(I,2) = I<br />

ENDDO<br />

VAREL(7,2) =37<br />

VAREL(37,2) = 38<br />

VAREL(38,2) = 39<br />

ZANAM(1) = ’Trans. heat’<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Properties for outlet fuel<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

350 CONTINUE<br />

CP(MEDIE(3)) = CP(MEDIE(1))<br />

HV(MEDIE(3)) = HV(MEDIE(1))<br />

HF(MEDIE(3)) = HF(MEDIE(1))<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

MOIOUT = PAR(1)<br />

DP = PAR(2)<br />

MOIIN = X_J(MEDIE(1),7)+X_J(MEDIE(1),37)<br />

CP(MEDIE(3)) = CP(MEDIE(1))<br />

HV(MEDIE(3)) = HV(MEDIE(1))<br />

HF(MEDIE(3)) = HF(MEDIE(1))<br />

C<br />

C Pressure losses<br />

C<br />

RES(1) = P(2) − P(4) − DP<br />

C<br />

C Mass flow of dry fuel<br />

RES(2) = MDOT(3)*(1.0D0−MOIOUT) + MDOT(1)*(1.0D0−MOIIN)<br />

C<br />

C Fuel outlet composition<br />

C<br />

RES(10) = X_J(MEDIE(3),37) − MOIOUT<br />

DO I=1,6<br />

RES(I+3) = X_J(MEDIE(3),I)*MDOT(3) + X_J(MEDIE(1),I)*MDOT(1)<br />

ENDDO<br />

DO I=8,36<br />

RES(I+3) = X_J(MEDIE(3),I)*MDOT(3) + X_J(MEDIE(1),I)*MDOT(1)<br />

ENDDO<br />

RES(40) = X_J(MEDIE(3),38)*MDOT(3) + X_J(MEDIE(1),38)*MDOT(1)<br />

RES(3) = X_J(MEDIE(3),39)*MDOT(3) + X_J(MEDIE(1),39)*MDOT(1)<br />

C<br />

C Gas and fuel outlet temperature are equal<br />

C<br />

c CALL STATES(P(3),H(3),T3,V,S,X,U,1,2,MEDIE(3))<br />

c CALL STATES(P(4),H4,T3,V,S,X,U,1,3,MEDIE(4))<br />

c RES(3) = H(4) − H4<br />

C<br />

RES(41) = ZA(1) − MDOT(2)*(H(2)−H(4))<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

CALL STATES(P(1),H(1),T1,V,S,X,U,1,2,MEDIE(1))<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(3),H(3),T3,V,S,X,U,1,2,MEDIE(3))<br />

CALL STATES(P(4),H(4),T4,V,S,X,U,1,2,MEDIE(4))<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

5/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

IF (MDOT(2).LT.−1D−10) GOTO 550<br />

IF (MDOT(3).GT.1D−10) GOTO 550<br />

IF (MDOT(4).GT.1D−10) GOTO 550<br />

IF (T1.GT.T3) GOTO 550<br />

IF (T2.LT.T4) GOTO 550<br />

IF (Q.GT.1D−10) GOTO 550<br />

IF (X_J(MEDIE(1),37)−X_J(MEDIE(3),37).LT.−1D−6) GOTO 550<br />

IF (X_J(MEDIE(1),7).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Steam dryer for solid fuels (Steam is a real fluid).’<br />

K_PAR(1) = ’Moisture content of dried fuel’<br />

K_PAR(2) = ’Pressure loss: $\\Delta p$ [bar]’<br />

K_BET = ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\gt 0 \\\\<br />

$\\dot{m}_3 \\lt 0 \\\\ \\dot{m}_4 \\lt 0 \\\\<br />

$T_1 \\lt T_3 \\\\ T_2 \\gt T_4 \\\\ Q \\lt 0 \\\\<br />

$x_{1,H_2O} \\gt x_{3,H_2O}$’<br />

KMEDDS(1) = ’Solid in’<br />

KMEDDS(2) = ’Steam in’<br />

KMEDDS(3) = ’Dry solid out’<br />

KMEDDS(4) = ’Steam out’<br />

KMEDDS(5) = ’Heat loss’<br />

K_INP=’struc dryer DRYER_04 1 2 3 4 300 0.05 0\\\\<br />

$media 1 Wood 3 dry−wood\\\\<br />

$SOLID Wood H .0305 O .1886 H2O−L .5 C .2503 S .00005 ASH .0255\\\\<br />

$+ N 0.003 36 0.00205\\\\<br />

$+ LHV 21750 CP 1.35\\\\<br />

$addco m dryer 1 2.05 t dryer 1 15 p 1 1\\\\<br />

$addco t dryer 2 322 t dryer 3 150 t dryer 4 150\\\\<br />

$addco p 2 1 p 3 1\\\\<br />

$addco q dryer 300 0\\\\<br />

$START M dryer 2 8.3 M dryer 3 −1\\\\<br />

$START X_J dry−wood H2 0.057 X_J dry−wood O2 0.35\\\\<br />

$START X_J dry−wood C 0.47 X_J dry−wood H2O−L 0.05’<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE GASIFI_3_VENZIN(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,<br />

: MMVAR,PARNAM,ZANAM,MEDIE,<br />

: ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q,PAR,ZA,ZC,<br />

: RES,X_J,CP,HV,HF,KOMDSC,KMEDDS,K_LIG,k_par,K_BET,k_inp)<br />

C***********************************************************************<br />

C<br />

C GASIFI_3 is a model of a gasifier. The fuel is added<br />

C with water based on the steam table and is gasified using an<br />

C oxydant. The<br />

C gasifier works at given pressure and temperature. Through the plant<br />

C is a constant pressure drop. A heat loss representing real losses<br />

C due to radiation and convection, and also the removed high tempe−<br />

C ture ashes is modelled. Using equilibrium assumption and minimizing<br />

C Gibbs energy the composition of the raw gas is found. Pressure and<br />

C temperature are identical on all outlets.<br />

C<br />

c be 20041117 A new parameter for bypassing methane from the<br />

c equilibrium calculation has been added<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA Q − INPUT − Exchanged heat.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA X_J − INPUT − Fluid composition.<br />

CA KOMTY − OUTPUT − Component name.<br />

6/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA ANTPK − OUTPUT − Number of parameters for the component.<br />

CA ANTLK − OUTPUT − Number of equations in the component.<br />

CA ANTEX − OUTPUT − Number of independent equations in the component.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean :<br />

CA 2 : Coal.<br />

CA 8 : Water (liquid).<br />

CA 27 : Oxygen rich gas.<br />

CA 25 : Raw gas.<br />

CA 300 : Heat.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA VARME − OUTPUT − Fluid numbers (with variable composition).<br />

CA ANTEL − OUTPUT − Number of compounds in these variable fluids.<br />

CA VAREL − OUTPUT − Compound numbers in variable fluids.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL M4 Mass flow of raw gas.<br />

CL DELP Pressure drop through the plant.<br />

CL PGAS Gasifier pressure.<br />

CL TGAS Gasifier temperature.<br />

CL DMVC Amount of water relative to amount of coal.<br />

CL XRAW Composition of raw gas.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C REAC<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmegaard 2000 (Bent Lorentzen 1994, Niels Emsholm 1991)<br />

CP Dept. Energy Engr., DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

INCLUDE ’GASI.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(7), ANTPK,<br />

: ANTM1, ANTME, VARME(4), ANTEL(4),<br />

: VAREL(ANTST,4),MMVAR(MAXMM)<br />

DOUBLE PRECISION X_J(MAXME,ANTST), PAR(20), RES(30),<br />

: MDOT(5),P(5),Q(1),CP(MAXME),HV(MAXNM),HF(MAXME),<br />

: H(5),ZA(7),ZC(1)<br />

CHARACTER*80 KOMTY<br />

CHARACTER*80 ZANAM(7),PARNAM(20)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(6),I,J,CALCOM(ANTST)<br />

DOUBLE PRECISION DELP, PGAS, TGAS, DMVC,<br />

: T4,H5,V,S,X,U,CC,NIN(ANTST+1),NOUT(ANTST+1),<br />

: M_BL(5),G(15),R,METH,XEQ(ANTST)<br />

CHARACTER*100 K_PAR(5),K_STAT(1)<br />

CHARACTER*500 K_LIG(30), K_BET,K_GRAF<br />

$ ,warnstring<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(7)<br />

EXTERNAL COMINF,GIBBS,STATES<br />

INTRINSIC DABS,DLOG,NINT,EXP<br />

INCLUDE ’THERPROP.INI’<br />

INCLUDE ’GASI.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200,350,1,250) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’GASIFI_3_VENZIN’<br />

7/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

MMVAR(1) = 15<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’GASIFI_3_VENZIN’<br />

ANTKN = 7<br />

ANTPK = 5+MMVAR(1)<br />

ANTLK = 23<br />

ANTEX = 7<br />

ANTM1 = 5<br />

ZANAM(1) = ’MULTIPLIER H’<br />

ZANAM(2) = ’MULTIPLIER C’<br />

ZANAM(3) = ’MULTIPLIER N’<br />

ZANAM(4) = ’MULTIPLIER O’<br />

ZANAM(5) = ’MULTIPLIER S’<br />

ZANAM(6) = ’MULTIPL Ar’<br />

ZANAM(7) = ’GIBBS ENERGY’<br />

DO I=1,ANTM1<br />

PARNAM(I) = ’CAL COMPOUND’<br />

ENDDO<br />

PARNAM(ANTM1+1) = ’EQ PRESSURE’<br />

PARNAM(ANTM1+2) = ’EQ TEMPERAT’<br />

PARNAM(ANTM1+3) = ’PRESSURELOSS’<br />

c PARNAM(ANTM1+4) = ’STEAM FLOW’<br />

PARNAM(ANTM1+4) = ’UNCONV CARBO’<br />

PARNAM(ANTM1+5) = ’METHANE PERC’<br />

MEDIE(1) = −5<br />

MEDIE(2) = 97<br />

MEDIE(3) = −4<br />

MEDIE(4) = −4<br />

MEDIE(5) = −5<br />

MEDIE(6) = 300<br />

MEDIE(7) = 999<br />

ANTME = 4<br />

VARME(1) = −1<br />

VARME(2) = −3<br />

VARME(3) = −4<br />

VARME(4) = −5<br />

ANTEL(1) = 0<br />

ANTEL(2) = 0<br />

ANTEL(3) = 15<br />

ANTEL(4) = 2<br />

VAREL(1,3) = 1<br />

VAREL(2,3) = 2<br />

VAREL(3,3) = 3<br />

VAREL(4,3) = 4<br />

VAREL(5,3) = 5<br />

VAREL(6,3) = 6<br />

VAREL(7,3) = 7<br />

VAREL(8,3) = 8<br />

VAREL(9,3) = 9<br />

VAREL(10,3) = 10<br />

VAREL(11,3) = 11<br />

VAREL(12,3) = 30<br />

VAREL(13,3) = 31<br />

VAREL(14,3) = 32<br />

VAREL(15,3) = 36<br />

VAREL(1,4) = 28<br />

VAREL(2,4) = 38<br />

IF (FKOMP.EQ.6) GOTO 600<br />

*** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Initialization of algebraic variables.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

250 CONTINUE<br />

ZA(7) = −.1D+1<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Specific heat, heat of formation, heating value of ashes<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

350 CONTINUE<br />

CP(MEDIE(5)) = 1<br />

HF(MEDIE(5)) = −5083.0D0<br />

HV(MEDIE(5)) = X_J(MEDIE(5),28)*NED_H(28)/M_MOL(28)<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

8/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws, since these are treated<br />

C automatically by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

C Ash characteristics<br />

C<br />

CP(MEDIE(5)) = 1<br />

HF(MEDIE(5)) = −5083.0D0<br />

HV(MEDIE(5)) = X_J(MEDIE(5),28)*NED_H(28)/M_MOL(28)<br />

C<br />

CALCOM(1) = −1<br />

CALCOM(2) = −2<br />

CALCOM(3) = −3<br />

CALCOM(4) = −4<br />

CALCOM(5) = −5<br />

CALCOM(6) = −6<br />

CALCOM(7) = −7<br />

CALCOM(8) = −8<br />

CALCOM(9) = −9<br />

CALCOM(10) = −10<br />

CALCOM(11) = −11<br />

CALCOM(12) = −30<br />

CALCOM(13) = −31<br />

CALCOM(14) = −32<br />

CALCOM(15) = −36<br />

DO I=1,ANTPK−5<br />

DO J=1,15<br />

IF (CALCOM(J).EQ.−NINT(PAR(I))) THEN<br />

CALCOM(J)=−CALCOM(J)<br />

ENDIF<br />

ENDDO<br />

ENDDO<br />

PGAS = PAR(ANTPK−4)<br />

TGAS = PAR(ANTPK−3)+273.15<br />

DELP = PAR(ANTPK−2)<br />

c DMVC = PAR(ANTPK−2)<br />

CC = PAR(ANTPK−1)<br />

cbe 20041711 parameter for "non−equilibrium" methane<br />

METH = PAR(ANTPK)<br />

R = 8.314D0<br />

C<br />

C Pressure<br />

C<br />

RES(1) = P(2) − P(3)<br />

RES(2) = P(3) − P(4) − DELP<br />

RES(3) = P(4) − PGAS<br />

C<br />

C Amount of water relative to coal<br />

C<br />

c RES(4) = MDOT(2) − DMVC*MDOT(1)<br />

RES(4) = MDOT(2) − ZC(1)*MDOT(1)<br />

C<br />

C Ash<br />

C<br />

RES(5) = MDOT(5) +<br />

: MDOT(1)*(X_J(MEDIE(1),38)+X_J(MEDIE(1),28)*(1.0D0−CC))<br />

IF (MDOT(5).EQ.0D0) THEN<br />

RES(6) = X_J(MEDIE(5),38)<br />

ELSE<br />

RES(6) = X_J(MEDIE(5),38) + MDOT(1)*X_J(MEDIE(1),38)/MDOT(5)<br />

ENDIF<br />

RES(7) = X_J(MEDIE(5),28) − (1.0D0−X_J(MEDIE(5),38))<br />

CALL STATES(P(4),H(4),T4,V,S,X,U,1,2,MEDIE(4))<br />

CALL STATES(P(5),H5,T4,V,S,X,U,1,3,MEDIE(5))<br />

RES(8) = H(5) − H5<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Find the composition of the equilibrium gas<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C<br />

C Calculate mole flow of each species in<br />

C<br />

M_BL(3) = 0D0<br />

DO I=1,ANTST<br />

M_BL(3)=M_BL(3)+X_J(MEDIE(3),I)*M_MOL(I)<br />

9/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

ENDDO<br />

DO I=1,ANTST<br />

NIN(I)=MDOT(1)*X_J(MEDIE(1),I)/M_MOL(I) +<br />

+ MDOT(3)*X_J(MEDIE(3),I)/M_BL(3)<br />

ENDDO<br />

NIN(37)=NIN(37)+MDOT(2)/M_MOL(37)<br />

NIN(28)=NIN(28)*CC<br />

C<br />

C Calculate mole flow of each species out<br />

C<br />

M_BL(4) = 0D0<br />

DO I=1,ANTST<br />

M_BL(4)=M_BL(4)+X_J(MEDIE(4),I)*M_MOL(I)<br />

ENDDO<br />

NOUT(ANTST+1) = (−MDOT(4))/M_BL(4)<br />

DO I=1,ANTST<br />

NOUT(I)=NOUT(ANTST+1)*X_J(MEDIE(4),I)<br />

cbe 20041711 molar fractions excluding "non−equilibrium" methane<br />

IF (I.EQ.11) THEN<br />

XEQ(I)=(X_J(MEDIE(4),i)−METH)/(1.D0−METH)<br />

ELSE<br />

XEQ(I)=X_J(MEDIE(4),I)/(1.D0−METH)<br />

ENDIF<br />

ENDDO<br />

C<br />

C Gibbs’ free energy of each compound<br />

C<br />

DO I=1,15<br />

IF (CALCOM(I).GT.0)<br />

$ CALL GIBBS(CALCOM(I),TGAS,PGAS*(1.D0−METH)*XEQ(CALCOM(I))<br />

$ ,G(I))<br />

ENDDO<br />

C<br />

C Partial derivatives of the function to be minimized with respect to<br />

C each species molar fraction<br />

DO I=1,15<br />

IF (CALCOM(I).LT.0) THEN<br />

RES(I+8) = X_J(MEDIE(4),−CALCOM(I))<br />

ELSEIF (X_J(MEDIE(4),CALCOM(I)).GT.1.0D−5) THEN<br />

RES(I+8) = G(I)<br />

c /(R*TGAS) +<br />

c : DLOG(PGAS*NOUT(CALCOM(I))/NOUT(ANTST+1))<br />

cbe 041117 part of the fuel is not reaching equilibrium<br />

c : DLOG(PGAS*XEQ(CALCOM(I)))<br />

DO J=1,6<br />

RES(I+8) = RES(I+8) + ZA(J)*EL(CALCOM(I),J)<br />

ENDDO<br />

ELSE<br />

RES(I+8) = G(I)<br />

c /(R*TGAS) +<br />

c : DLOG(1.d−5)+<br />

c $ 1.d5*(pgas*NOUT(CALCOM(I))/NOUT(ANTST+1)−1.d−5)<br />

c RES(I+8) = X_J(MEDIE(4),CALCOM(I))−1.0D−10<br />

DO J=1,6<br />

RES(I+8) = RES(I+8) + ZA(J)*EL(CALCOM(I),J)<br />

ENDDO<br />

if (fiter) then<br />

write(warnstring,’(a,a,a,a)’) ’Warning: The compound ’,<br />

$ COMPNA(CALCOM(I)),<br />

$ ’should be removed from the ’,<br />

$ ’compound equilibrium calculation.’<br />

call printout(warnstring)<br />

endif<br />

ENDIF<br />

ENDDO<br />

C<br />

C Molar balance for each atom (H,C,N,O,S,Ar)<br />

C<br />

DO J=1,ANTEX−1<br />

RES(ANTLK+J) = 0D0<br />

DO I=1,ANTST<br />

RES(ANTLK+J)=RES(ANTLK+J)−(NIN(I)−NOUT(I))*EL(I,J)<br />

ENDDO<br />

ENDDO<br />

RES(29) = 1.0D0<br />

DO I=1,ANTST<br />

RES(29)= RES(29)−X_J(MEDIE(4),I)<br />

10/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

ENDDO<br />

C<br />

C Gibbs free energy of the mixture<br />

C<br />

RES(30) = ZA(7)<br />

DO I=1,15<br />

IF (CALCOM(I).GT.0) THEN<br />

IF (NOUT(CALCOM(I)).GT.1.D−10) THEN<br />

RES(30) = RES(30) − XEQ(CALCOM(I))*G(I)<br />

ENDIF<br />

ENDIF<br />

ENDDO<br />

c$$$ RES(30) = 0.D0<br />

c$$$ GIBTEM = ZA(7)<br />

c$$$ DO I=1,15<br />

c$$$ IF (CALCOM(I).GT.0) THEN<br />

c$$$ IF (NOUT(CALCOM(I)).GT.1.D0−10) THEN<br />

c$$$ RES(30) = RES(30) −<br />

c$$$ : (G(I)+R*TGAS*DLOG(NOUT(CALCOM(I))/NOUT(ANTST+1)*PGAS))<br />

c$$$ ENDIF<br />

c$$$ ENDIF<br />

c$$$c$$$ IF (CALCOM(I).GT.0) THEN<br />

c$$$c$$$C IF (NOUT(CALCOM(I)).NE.0.D0) THEN<br />

c$$$c$$$ GIBTEM = GIBTEM − G(I)<br />

c$$$c$$$ RES(30) = RES(30) − NOUT(CALCOM(I))/NOUT(ANTST+1)*PGAS<br />

c$$$c$$$C ELSE<br />

c$$$c$$$C RES(30) = RES(30) −<br />

c$$$c$$$C : (G(I)+R*TGAS*DLOG(1.D−15*PGAS))<br />

c$$$c$$$C ENDIF<br />

c$$$c$$$ IF ((CALCOM(I).GT.0).AND.(NOUT(CALCOM(I)).GT.1.D0−10))<br />

c$$$c$$$ $ RES(30) = RES(30) −<br />

c$$$c$$$ : (G(I)+R*TGAS*DLOG(NOUT(CALCOM(I))/NOUT(ANTST+1)*PGAS))<br />

c$$$c$$$ ENDIF<br />

c$$$ ENDDO<br />

C RES(30) = RES(30) − GIBTEM/(R*TGAS)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).LT.−1D−10) GOTO 550<br />

IF (MDOT(3).LT.−1D−10) GOTO 550<br />

IF (MDOT(4).GT.1D−10) GOTO 550<br />

IF (MDOT(5).GT.1D−10) GOTO 550<br />

IF (Q(1).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC =<br />

$’Gasifier with water/steam. 1 identifier: Calculated compounds.<br />

$The difference between GASIFI_3 and this component is that the wat<br />

$er to fuel ratio is defined as a control variable.’<br />

K_PAR(1) = ’Gasifier pressure: PGAS’<br />

K_PAR(2) = ’Gasifier temperature: TGAS’<br />

K_PAR(3) = ’Pressure loss: DELP’<br />

K_PAR(4) = ’Carbon conversion ratio’<br />

K_PAR(5) = ’Non−equilibrium methane’<br />

K_BET =<br />

$ ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\gt 0 \\\\ \\dot{m_3}<br />

$\\gt 0 \\\\ \\dot{m_4} \\lt 0 \\\\ \\dot{m_5} \\lt 0 \\\\ \\dot{Q}<br />

$\\lt 0$’<br />

KMEDDS(1) = ’Fuel in’<br />

KMEDDS(2) = ’Steam in’<br />

KMEDDS(3) = ’Air in’<br />

KMEDDS(4) = ’Product gas out’<br />

KMEDDS(5) = ’Ash out’<br />

KMEDDS(6) = ’Heat loss¨’<br />

KMEDDS(7) = ’water to fuel ratio (DMVC)’<br />

k_inp=’STRUC Gasifier GASIFI_3_VENZIN 8 2 34 25 3 4 302 900 /\\\\<br />

$1 3 4 6 7 9 11 36 2 750 0 1.0 0.0\\\\<br />

$MEDIA 2 Wood 25 O2 3 FlueGas 4 Ash\\\\<br />

11/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

$fluid O2 O2 1\\\\<br />

$SOLID Wood H .057 O .4085 H2O−L .05 C .4750 S .0001 ASH .0092\\\\<br />

$+ N 0.0001 36 0.0001\\\\<br />

$+ LHV 19000 CP 1.35\\\\<br />

$ADDCO Q Gasifier 302 0 P 4 1 M Gasifier 2 1.2 T Gasifier 3 700\\\\<br />

$addco T Gasifier 2 150 T Gasifier 34 600 T Gasifier 25 600\\\\<br />

$addco p 2 1 ZC 900 0.35\\\\<br />

$START M Gasifier 34 0.0 M Gasifier 25 1.8 M Gasifier 4 −0.01\\\\<br />

$START Y_J FlueGas H2 0.21 Y_J FlueGas N2 0.39 Y_J FlueGas CO 0.26<br />

$\\\\START Y_J FlueGas CO2 0.07 X_J Ash ASH 1’<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C***********************************************************************<br />

SUBROUTINE GASCLE_2(KOMTY,MMVAR,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE<br />

$ ,ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q,PAR,RES,X_J,komdsc,kmedds<br />

$ ,k_lig,k_bet,k_inp,K_PAR)<br />

C***********************************************************************<br />

C Copied from GASCLE_1 − the difference is that N2 and Argon is off−seperated<br />

C GASCLE_1 is a model of a gas cleaning plant. The not desired chemi−<br />

C cal compounds are cleaned out. From the gas H2O, H2S, NH3, COS,<br />

C SO2 and HCN is removed. The mass flow of removed gas is found using<br />

C M1 and X_J. Through the plant is a constant pressure drop. On the<br />

C outlets the pressure and temperature are identical. From the plant<br />

C is a heat loss.<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA Q − INPUT − Exchanged heat.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA X_J − INPUT − Fluid composition.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters for the component.<br />

CA ANTLK − OUTPUT − Number of equations in the component.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean :<br />

CA 25 : Raw gas.<br />

CA 26 : Syngas.<br />

CA 24 : Removed gas.<br />

CA 300 : Heat.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA VARME − OUTPUT − Fluid numbers (with variable composition).<br />

CA ANTEL − OUTPUT − Number of compounds in these variable fluids.<br />

CA VAREL − OUTPUT − Compound numbers in variable fluids.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL T2 Temperature in node 2.<br />

CL T3 Temperature in node 3.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DELP Pressure drop through the plant.<br />

CL M1 Mass flow of raw gas.<br />

CL M3 Mass flow 3 found using M1 and raw gas composition.<br />

CL XSYN Composition of syngas.<br />

CL XUD Composition of removed gas.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

CA X_J − INPUT − Fluid composition. The compounds are :<br />

CA 1: Hydr<strong>og</strong>en (H2)<br />

CA 2: Oxygen (O2)<br />

CA 3: Nitr<strong>og</strong>en (N2)<br />

12/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA 4: Carbon monoxide (CO)<br />

CA 5: Nitr<strong>og</strong>en oxide (NO)<br />

CA 6: Carbon dioxide (CO2)<br />

CA 7: Steam (ideal gas) (H2O)<br />

CA 8: Ammonia (NH3)<br />

CA 9: Hydr<strong>og</strong>en sulfide (H2S)<br />

CA 10: Sulfur dioxide (SO2)<br />

CA 11: Methane (CH4)<br />

CA 12: Ethane (C2H6)<br />

CA 13: Propane (C3H8)<br />

CA 14: n−Butane (C4H10)<br />

CA 15: iso−Butane (C4H10)<br />

CA 16: n−Pentane (C5H12)<br />

CA 17: n−Hexane (C6H14)<br />

CA 18: n−Heptane (C7H16)<br />

CA 19: n−Octane (C8H18)<br />

CA 20: Ethylene (C2H4)<br />

CA 21: Propylene (C3H6)<br />

CA 22: 1−Pentene (C5H10)<br />

CA 23: 1−Hexene (C6H12)<br />

CA 24: 1−Heptene (C7H14)<br />

CA 25: Acetylene (C2H2)<br />

CA 26: Benzene (C6H6)<br />

CA 27: Cyclohexane (C6H12)<br />

CA 28: Carbon (graphite, solid) (C)<br />

CA 29: Sulfur (crystal, solid) (S)<br />

CA 30: Nitr<strong>og</strong>en dioxide (NO2)<br />

CA 31: Hydr<strong>og</strong>en cyanide (HCN)<br />

CA 32: Carbonyl sulfide (COS)<br />

CA 33: Nitrous oxide (N2O)<br />

CA 34: Nitr<strong>og</strong>en trioxide (NO3)<br />

CA 35: Sulfur trioxide (SO3)<br />

CA 36: Argon (Ar)<br />

CA 37: Water (liquid, 1 bar) (H2O)<br />

CA 38: Ashes (SiO2)<br />

CA 39: Tar<br />

CA 40: Methanol (CH3OH)<br />

CA 41: Methanol (liquid, 1 bar) (CH3OH)<br />

C<br />

C Subroutines : COMINF<br />

C STATES<br />

C CLEAN<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmagaard 1997<br />

CP (Bent Lorentzen 1994, Niels Emsholm 1991<br />

CP Lab. for Energetics, DTH, Denmark.)<br />

C***********************************************************************<br />

C<br />

C Including the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN, MEDIE(4), ANTPK,<br />

: ANTM1, ANTME, VARME(3), ANTEL(3),<br />

: VAREL(ANTST,3),MMVAR(MAXMM)<br />

DOUBLE PRECISION X_J(MAXME,ANTST), PAR(1+ANTST), RES(4+ANTST*2),<br />

: MDOT(3),P(3), H(3), Q(1)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

DOUBLE PRECISION DELP, M1, M3, T2, T3, S, V, X, U,<br />

: XSYN(ANTST), XUD(ANTST),M_BL1,N(ANTST),NTOT,T_SUM<br />

INTEGER I,Compound_clean(ANTST),Nr_clean<br />

CHARACTER*100 K_PAR(1+ANTST)<br />

CHARACTER*500 K_LIG(24), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(4)<br />

EXTERNAL STATES,CLEAN1,COMINF<br />

INTRINSIC DABS<br />

INCLUDE ’THERPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

13/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’GASCLE_2’<br />

MMVAR(1) = ANTST<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’GASCLE_2’<br />

ANTKN = 4<br />

ANTPK = 1+MMVAR(1)<br />

ANTLK = 4+2*ANTST<br />

ANTM1 = 3<br />

MEDIE(1) = −4<br />

MEDIE(2) = −4<br />

MEDIE(3) = −4<br />

MEDIE(4) = 300<br />

ANTME = 3<br />

VARME(1) = −1<br />

VARME(2) = −2<br />

VARME(3) = −3<br />

ANTEL(1) = 0<br />

ANTEL(2) = ANTST<br />

ANTEL(3) = ANTST<br />

DO I = 1,ANTST<br />

VAREL(I,2) = I<br />

VAREL(I,3) = I<br />

ENDDO<br />

C<br />

IF (FKOMP.EQ.6) GOTO 600<br />

*** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws, since these are treated<br />

C automatically by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

DELP = PAR(1)<br />

Nr_clean=ANTPK−1<br />

C<br />

DO I = 1,Nr_clean<br />

Compound_clean(I)=PAR(I+1)<br />

ENDDO<br />

C<br />

M_BL1 = 0.D0<br />

DO I=1, ANTST<br />

M_BL1 = M_BL1 + X_J(MEDIE(1),I)*M_MOL(I)<br />

XUD(I) = 0.D0<br />

ENDDO<br />

C<br />

DO I=1, ANTST<br />

N(I) = X_J(MEDIE(1),I)*MDOT(1)/M_BL1<br />

ENDDO<br />

C<br />

NTOT=0D0<br />

M3=0D0<br />

DO I=1, Nr_clean<br />

NTOT = NTOT+N(Compound_clean(I))<br />

M3=M3+N(Compound_clean(I))*M_MOL(Compound_clean(I))<br />

ENDDO<br />

C<br />

DO I=1, Nr_clean<br />

XUD(Compound_clean(I)) = N(Compound_clean(I))/NTOT<br />

N(Compound_clean(I)) = 0D0<br />

ENDDO<br />

C<br />

T_SUM = 0D0<br />

DO I=1, ANTST<br />

T_SUM = T_SUM + N(I)<br />

ENDDO<br />

C<br />

C Find mole ratios in syngas<br />

C<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

14/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CALL STATES(P(3),H(3),T3,V,S,X,U,1,2,MEDIE(3))<br />

C<br />

C Pressure<br />

C<br />

RES(1) = P(3) − P(2)<br />

RES(2) = P(1) − P(2) − DELP<br />

C<br />

C Outlet temperatures are identical<br />

C<br />

RES(3) = T2 − T3<br />

C<br />

C Mass flow of removed gas found using M1 and X_J<br />

C<br />

RES(4) = MDOT(3) + M3<br />

C<br />

C Variable mole ratios (first removed gas, then syngas)<br />

C<br />

DO I = 1,ANTST<br />

RES(4+I)=X_J(MEDIE(3),I)−XUD(I)<br />

RES(4+ANTST+I)=X_J(MEDIE(2),I)−N(I)/T_SUM<br />

ENDDO<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).GT.1D−10) GOTO 550<br />

IF (Q(1).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Syngas cleaning. The syntax is struc Componentname<br />

$ GASCLE_2 7 1 2 3 301 0 8 9 10 31 32 38 39. So the first<br />

$ number determines how many compounds is off−seperated. The<br />

$ 7 numbers from 8 to 39 is therefore compound numbers (8<br />

$ is $NH_3$).’<br />

K_PAR(1) = ’Pressure loss: $\\Delta p$ [bar]’<br />

DO I = 2,ANTST+1<br />

K_PAR(I) = ’Compound number’<br />

ENDDO<br />

K_BET = ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0<br />

$\\\\ \\dot{m}_3 \\lt 0 \\\\ \\dot{Q} \\lt 0$’<br />

KMEDDS(1) = ’Dirty gas in’<br />

KMEDDS(2) = ’Clean gas out’<br />

KMEDDS(3) = ’Off−separated gas’<br />

KMEDDS(4) = ’Heat loss’<br />

k_inp=’struc Cleaner GASCLE_2 7 13 14 15 308 0 8 9 10 31 32 38 39<br />

$\\\\media 13 GG 14 GG−clean 15 H2S\\\\<br />

$fluid GG H2 0.5 CO 0.3 CO2 0.1 H2O−G 0.05 CH4 0.02 H2S 0.03\\\\<br />

$addco Q Cleaner 308 0\\\\<br />

$addco t Cleaner 13 70 p 13 1 m Cleaner 13 1\\\\<br />

$START M Cleaner 14 −0.93 t Cleaner 14 70\\\\<br />

$START Y_J GG−clean H2 0.5 Y_J GG−clean CO 0.30\\\\<br />

$start Y_J GG−clean CO2 0.1 Y_J H2S H2S 1’<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE STEAM_REFORMER(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,<br />

$ MMVAR,PARNAM,ZANAM,MEDIE, ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q<br />

$ ,PAR,ZA, RES,X_J,KOMDSC,KMEDDS,K_PAR,K_LIG ,K_BET,k_inp)<br />

C***********************************************************************<br />

C<br />

C STEREF_0 is a model of a steam reformer. The outlet composition is<br />

C based on an assumption of chemical equilibrium.<br />

C<br />

C***********************************************************************<br />

C<br />

15/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA Q − INPUT − Exchanged heat.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA X_J − INPUT − Fluid composition.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters for the component.<br />

CA ANTLK − OUTPUT − Number of equations in the component.<br />

CA ANTEX − OUTPUT − Number of independent equations in the component.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean :<br />

CA 2 : Coal.<br />

CA 8 : Water (liquid).<br />

CA 27 : Oxygen rich gas.<br />

CA 25 : Raw gas.<br />

CA 300 : Heat.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA VARME − OUTPUT − Fluid numbers (with variable composition).<br />

CA ANTEL − OUTPUT − Number of compounds in these variable fluids.<br />

CA VAREL − OUTPUT − Compound numbers in variable fluids.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

C Subroutines : COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmegaard, MEK, DTU, 2000<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

INCLUDE ’GASI.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(5), ANTPK,<br />

: ANTM1, ANTME, VARME(4), ANTEL(4),<br />

: VAREL(ANTST,4),MMVAR(MAXMM)<br />

DOUBLE PRECISION X_J(MAXME,ANTST), PAR(2), RES(30),<br />

: MDOT(4),P(4),Q(1),H(4),ZA(20)<br />

CHARACTER*80 KOMTY<br />

CHARACTER*80 ZANAM(20),PARNAM(1)<br />

C<br />

C Local variables<br />

C<br />

LOGICAL CON<br />

INTEGER I,J,RES_NR<br />

DOUBLE PRECISION DELP, PGAS, TGAS, T_sat, Ratio,<br />

: V,S,X,U,H1,Psat_meoh,Psat_water,NIN(ANTST+1),NOUT(ANTST+1),<br />

: M_BL(6),G(7),R,G_met<br />

CHARACTER*100 KMEDDS(6)<br />

CHARACTER*100 K_PAR(4)<br />

CHARACTER*500 K_LIG(29), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

EXTERNAL COMINF,GIBBS,STATES<br />

INTRINSIC DABS,DLOG,NINT,EXP<br />

INCLUDE ’THERPROP.INI’<br />

INCLUDE ’GASI.INI’<br />

CON=.false.<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200,1) FKOMP<br />

1 RETURN<br />

16/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’STEAM_REFORMER’<br />

MMVAR(1) = 0<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’STEAM_REFORMER’<br />

ANTKN = 5<br />

ANTPK = 1<br />

ANTEX = 4<br />

ANTM1 = 4<br />

ZANAM(1) = ’MULTIPLIER H’<br />

ZANAM(2) = ’MULTIPLIER C’<br />

ZANAM(3) = ’MULTIPLIER O’<br />

ZANAM(4) = ’GIBBS ENERGY’<br />

MEDIE(1) = ANYGAS$<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = 97<br />

MEDIE(4) = ANYGAS$<br />

MEDIE(5) = HEAT$<br />

ANTME = 4<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE2$<br />

VARME(3) = NODE3$<br />

VARME(4) = NODE4$<br />

C<br />

204 ANTEL(4) = 5<br />

ANTLK = 4+ANTEL(4)<br />

VAREL(1,4) = H2$<br />

VAREL(2,4) = CO$<br />

VAREL(3,4) = CO2$<br />

VAREL(4,4) = H2O_G$<br />

VAREL(5,4) = CH4$<br />

C<br />

IF (FKOMP.EQ.6) GOTO 600<br />

IF (CON) GOTO 404<br />

*** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws, since these are treated<br />

C automatically by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

CON=.true.<br />

GOTO 204<br />

404 Continue<br />

C<br />

C Pressure<br />

C<br />

RES(1) = P(1) − P(2)<br />

RES(2) = P(1) − P(3)<br />

RES(3) = P(1) − P(4)<br />

RES(4) = MDOT(1)*PAR(1)−MDOT(3)<br />

C<br />

RES_NR=4<br />

C<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Find the composition of the equilibrium gas<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C<br />

C Calculate mole flow of each species in<br />

C<br />

M_BL(1)=0.D0<br />

M_BL(2)=0.D0<br />

DO I=1,ANTST<br />

M_BL(1)=X_J(MEDIE(1),I)*M_MOL(I)+M_BL(1)<br />

M_BL(2)=X_J(MEDIE(2),I)*M_MOL(I)+M_BL(2)<br />

ENDDO<br />

DO I=1,ANTST<br />

NIN(I)= MDOT(1)/M_BL(1)*X_J(MEDIE(1),I)+<br />

$ MDOT(2)/M_BL(2)*X_J(MEDIE(2),I)<br />

17/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

ENDDO<br />

NIN(H2O_G$)=NIN(H2O_G$)+MDOT(3)/M_MOL(H2O_G$)<br />

C<br />

C Calculate mole flow of each species out<br />

C<br />

M_BL(4)=0.D0<br />

DO I=1,ANTST<br />

M_BL(4)=X_J(MEDIE(4),I)*M_MOL(I)+M_BL(4)<br />

ENDDO<br />

C<br />

NOUT(ANTST+1)=0.D0<br />

DO I=1,ANTST<br />

NOUT(I)=(−MDOT(4))*X_J(MEDIE(4),I)/M_BL(4)<br />

NOUT(ANTST+1)=NOUT(ANTST+1)+NOUT(I)<br />

ENDDO<br />

C<br />

C Molar balance for each atom (H,C,O)<br />

C<br />

DO J=1,2<br />

RES(RES_NR+J) = 0.D0<br />

DO I=1,ANTST<br />

RES(RES_NR+J)=RES(RES_NR+J)−(NIN(I)−NOUT(I))*EL(I,J)<br />

ENDDO<br />

ENDDO<br />

RES_NR=RES_NR+3<br />

C<br />

RES(RES_NR)=1.D0<br />

DO I=1,ANTST<br />

RES(RES_NR)= RES(RES_NR)−X_J(MEDIE(4),I)<br />

ENDDO<br />

RES_NR=RES_NR+1<br />

C<br />

C Gibbs’ free energy of each compound<br />

C<br />

CALL STATES(P(4),H(4),TGAS,V,S,X,U,1,2,MEDIE(4))<br />

TGAS = TGAS+273.15D0<br />

DO I=1,ANTEL(4)<br />

CALL GIBBS(VAREL(I,4),TGAS,P(4)*X_J(MEDIE(4),VAREL(I,4)),G(I))<br />

ENDDO<br />

C<br />

C Gibbs free energy of the mixture<br />

C<br />

RES(RES_NR) = ZA(4)<br />

DO I=1,ANTEL(4)<br />

RES(RES_NR) = RES(RES_NR) − X_J(MEDIE(4),VAREL(I,4))*G(I)<br />

ENDDO<br />

C<br />

C Partial derivatives of the function to be minimized with respect to<br />

C each species molar fraction<br />

C<br />

DO I=1,ANTEL(4)<br />

RES(I+RES_NR)=G(I)<br />

DO J=1,2<br />

RES(I+RES_NR) = RES(I+RES_NR) + ZA(J)*EL(VAREL(I,4),J)<br />

ENDDO<br />

RES(I+RES_NR) = RES(I+RES_NR) + ZA(3)*EL(VAREL(I,4),4)<br />

ENDDO<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).LT.−1D−10) GOTO 550<br />

IF (MDOT(3).LT.−1D−10) GOTO 550<br />

IF (MDOT(4).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC =’Steam reformer − with the possibillity of auto thermal<br />

$ reforming (oxygen as input massflow in node 2).’<br />

K_PAR(1) = ’Gas/steam fraction: $\\frac{\\dot{m}_3}{\\dot{m}_1}$’<br />

18/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

K_BET =<br />

$ ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\gt 0 \\\\ \\dot{m}_3 \\<br />

$gt 0 \\\\ \\dot{m}_4 \\lt 0 $’<br />

KMEDDS(1) =’Inlet gas’<br />

KMEDDS(2) =’Oxygen or another gas’<br />

KMEDDS(3) =’Steam’<br />

KMEDDS(4) =’Reformed gas’<br />

KMEDDS(5) =’Heat’<br />

k_inp=’struc NG_reformer STEAM_REFORMER 412 403 423 431 313 1\\\\<br />

$media 412 NATURAL_GAS 403 O2 431 NG_reformat\\\\<br />

$fluid O2 O2 1\\\\<br />

$addco q NG_reformer 313 0\\\\<br />

$addco t NG_reformer 403 850 t NG_reformer 423 850 t NG_reformer<br />

$ 412 667\\\\<br />

$addco t NG_reformer 431 950 M NG_reformer 412 0.34 p 403 10\\\\<br />

$START M NG_reformer 403 0.3 M NG_reformer 423 0.3\\\\<br />

$START Y_J NG_reformat H2 0.55 Y_J NG_reformat CO 0.21 Y_J<br />

$ NG_reformat H2O−G 0.18’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE GASCOOL2(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,ANTM2,MEDIE,<br />

$ ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q,PAR,RES,X_J,ZA,ZANAM,<br />

$ ANTEX,KOMDSC,K_PAR,K_lig,K_bet,KMEDDS,K_inp)<br />

C***********************************************************************<br />

C<br />

C GASCOOL1 is a model of a gas cooler with steam condensation.<br />

C The model does not include equations concerning the heat exchange.<br />

C 1−2 is the heat emitting fluid.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL T1,T2 Temperature in first and second node.<br />

CL T3,T4 Temperature in third and fourth node.<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DPA,DPB Pressure loss in heat exchanger.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

19/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C Subroutines : STATES<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmegaard 2000<br />

CP Dept. of Energy Eng., DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN, MEDIE(6), ANTPK, ANTEX,<br />

& ANTM1, ANTM2, ANTME, VARME(4), ANTEL(4),<br />

& VAREL(ANTST,4)<br />

DOUBLE PRECISION RES(52), MDOT(5), P(5), H(5), Q, PAR(3),<br />

& X_J(MAXME,ANTST),ZA(10)<br />

CHARACTER*80 KOMTY,ZANAM(10)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(6),I<br />

DOUBLE PRECISION V, S, U,M_BL1,M_BL2, T1, T2, T3, T4, T5, X,<br />

: NIN,NOUT,NSTIN,NSTOUT,NCOND,PSTOUT,X0,HD,XSTOUT,H2,<br />

: X1,HPH,TPH,HSAT0,TPL,TPL1,TPH1,DTP,E1,E2,XST,HPHST,Ntotal,N<br />

$ ,PST,NCONDST,HST,HX(ANTST),Htotal,H_water,H_water2,H1,P3<br />

CHARACTER*100 K_PAR(3),K_STAT(1)<br />

CHARACTER*500 K_LIG(50), K_BET<br />

CHARACTER*1000 KOMDSC, K_INP<br />

CHARACTER*100 KMEDDS(6)<br />

l<strong>og</strong>ical EVAP<br />

EXTERNAL STATES<br />

INCLUDE ’THERPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200,1) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’GASCOOL2’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’GASCOOL2’<br />

ANTKN = 5<br />

ANTPK = 3<br />

ANTLK = 47<br />

ANTEX = 5<br />

ANTM1 = 3<br />

ANTM2 = 2<br />

MEDIE(1) = ANYGAS$<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = 97<br />

MEDIE(4) = ANYFLU$<br />

MEDIE(5) = ANYFLU$<br />

ANTME = 4<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE2$<br />

VARME(3) = NODE4$<br />

VARME(4) = NODE4$<br />

ANTEL(1) = 0<br />

ANTEL(2) = ANTST<br />

ANTEL(3) = 0<br />

ANTEL(4) = 0<br />

DO I=1,ANTST<br />

VAREL(I,2) = I<br />

ENDDO<br />

ZANAM(1) = ’T−diff boil’<br />

ZANAM(2) = ’T−boil’<br />

ZANAM(3) = ’T−diff cond’<br />

ZANAM(4) = ’T−cond’<br />

ZANAM(5) = ’Trans. heat’<br />

C<br />

IF (FKOMP.EQ.6) GOTO 600<br />

20/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

C Calculate mole flow in<br />

C<br />

M_BL1 = 0.D0<br />

DO I=1,ANTST<br />

M_BL1=M_BL1+X_J(MEDIE(1),I)*M_MOL(I)<br />

ENDDO<br />

NIN = MDOT(1)/M_BL1<br />

NSTIN = X_J(MEDIE(1),7)*NIN<br />

N = NIN−NSTIN<br />

C<br />

C Calculate mole flow out<br />

C<br />

M_BL2 = 0.D0<br />

DO I=1,ANTST<br />

M_BL2=M_BL2+X_J(MEDIE(2),I)*M_MOL(I)<br />

ENDDO<br />

NOUT = (−MDOT(2))/M_BL2<br />

C<br />

C Same temperature out<br />

C<br />

X0 = 0.D0<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

X0 = 0.D0<br />

CALL STATES(PSTOUT,HD,T2,V,S,X0,U,3,6,MEDIE(3))<br />

CALL STATES(P(3),H2,T2,V,S,X,U,1,3,MEDIE(3))<br />

RES(1) = H2 − H(3)<br />

C<br />

C Molar flow and ratio of steam out<br />

C<br />

XSTOUT = PSTOUT/P(2)<br />

IF (XSTOUT.GT.X_J(MEDIE(1),7)) XSTOUT = X_J(MEDIE(1),7)<br />

NSTOUT = XSTOUT*(NIN−NSTIN)/(1−XSTOUT)<br />

C<br />

C Molar flow of condensate<br />

C<br />

NCOND = NSTIN − NSTOUT<br />

c if (NCOND.lt.2D−7) NCOND=1D−7<br />

RES(2) = MDOT(3) + NCOND*M_MOL(7)<br />

C<br />

C Pressure out<br />

C<br />

RES(3) = P(1) − P(2) − PAR(1)<br />

RES(4) = P(2) − P(3)<br />

RES(5) = P(4) − P(5) − PAR(2)<br />

C<br />

C Outlet composition of gas<br />

C<br />

DO I = 1,6<br />

RES(I+5) = X_J(MEDIE(2),I)*NOUT − X_J(MEDIE(1),I)*NIN<br />

ENDDO<br />

RES(7+5) = X_J(MEDIE(2),7) − XSTOUT<br />

DO I = 8,ANTST<br />

RES(I+5) = X_J(MEDIE(2),I)*NOUT − X_J(MEDIE(1),I)*NIN<br />

ENDDO<br />

C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Pinch point analysis<br />

C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C<br />

C Check if pinch point is where the water condenses<br />

C<br />

DTP = PAR(3)<br />

EVAP=.false.<br />

if (MDOT(3).lt.−1d−5) then<br />

EVAP=.true.<br />

X0 = 0.0D0<br />

CALL STATES(P(1)*X_J(MEDIE(1),7),HD,TPH,V,S,X0,U,1,6,<br />

$ MEDIE(3))<br />

CALL STATES(P(1),HSAT0,TPH,V,S,X,U,1,3,MEDIE(1))<br />

HPH = H(5) − MDOT(1)*(H(1)−HSAT0)/MDOT(4)<br />

21/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CALL STATES(P(4),HPH,TPL,V,S,X,U,1,2,MEDIE(4))<br />

RES(50) = TPH − TPL − ZA(3)<br />

HPHST=HPH<br />

RES(51)=ZA(4)−TPH<br />

else<br />

RES(50) = ZA(3)<br />

RES(51)=ZA(4)<br />

TPH=99999<br />

TPL=0<br />

endif<br />

C<br />

C Check if pinch point is where the water starts evaporating<br />

C (if the cold medium is water)<br />

C<br />

IF (MEDIE(4).GE.80) THEN<br />

CALL STATES(P(4),H(4),T4,V,S,X0,U,1,2,MEDIE(4))<br />

CALL STATES(P(5),H(5),T5,V,S,X1,U,1,2,MEDIE(5))<br />

IF ((X1.GT.(1.D−12)).AND.(X0.LT.1.D−12)) THEN<br />

X0 = 0.0D0<br />

CALL STATES(P(4),HSAT0,TPL1,V,S,X0,U,1,6,MEDIE(4))<br />

CALL STATES(P(1),HPH,TPL1+ZA(1),V,S,X,U,1,3,MEDIE(1))<br />

E1=MDOT(4)*(H(5)−HSAT0)<br />

if ((EVAP).and.(HPHST.gt.HSAT0)) then<br />

X0 = 0.D0<br />

CALL STATES(PST,HD,TPL1+ZA(1),V,S,X0,U,3,6,MEDIE(3))<br />

XST = PST/P(2)<br />

Ntotal=N/(1−XST)<br />

NCONDST=NSTIN−Ntotal*XST<br />

CALL ENTHALPY(7,TPL1+ZA(1),H_water)<br />

HPH=(HPH*MDOT(1)−H_water*NCONDST*M_MOL(7))/(MDOT(1)<br />

$ −NCONDST*M_MOL(7))<br />

CALL STATES(P(3),HST,TPL1+ZA(1),V,S,X0,U,1,3,MEDIE(3))<br />

E2=H(1)*MDOT(1)−(HPH*(MDOT(1)−NCONDST*M_MOL(7))<br />

$ +HST*NCONDST*M_MOL(7))<br />

else<br />

E2=H(1)*MDOT(1)−HPH*MDOT(1)<br />

endif<br />

RES(48)=E2−E1<br />

RES(49)=ZA(2)−(TPL1+ZA(1))<br />

EVAP=.true.<br />

if (ZA(1).lt.(TPH−TPL)) then<br />

TPH=TPL1+ZA(1)<br />

TPL=TPL1<br />

endif<br />

ELSE<br />

RES(48) = ZA(1)<br />

RES(49)=ZA(2)<br />

ENDIF<br />

ELSE<br />

RES(48) = ZA(1)<br />

RES(49)=ZA(2)<br />

ENDIF<br />

C<br />

C Check if pinch point is at the beginning or the end of the component<br />

C<br />

CALL STATES(P(1),H(1),T1,V,S,X,U,1,2,MEDIE(1))<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(4),H(4),T4,V,S,X,U,1,2,MEDIE(4))<br />

CALL STATES(P(5),H(5),T5,V,S,X,U,1,2,MEDIE(5))<br />

if ((.not.EVAP).or.(EVAP.and.<br />

$ (((T2−T4).lt.(TPH−TPL)).or.((T1−T5).lt.(TPH−TPL))))) then<br />

IF ((T1−T5).LT.(T2−T4)) THEN<br />

TPH = T1<br />

TPL = T5<br />

ELSE<br />

TPH = T2<br />

TPL = T4<br />

ENDIF<br />

ENDIF<br />

C<br />

C At the pinch point DTP is used<br />

C<br />

RES(47) = TPH − TPL − DTP<br />

C<br />

RES(52) = ZA(5) − MDOT(4)*(H(5)−H(4))<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

22/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

CALL STATES(P(1),H(1),T1,V,S,X,U,1,2,MEDIE(1))<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(4),H(4),T4,V,S,X,U,1,2,MEDIE(4))<br />

CALL STATES(P(5),H(5),T5,V,S,X,U,1,2,MEDIE(5))<br />

IF (MDOT(3).LT.−1D−5) then<br />

X0 = 0.0D0<br />

CALL STATES(P(1)*X_J(MEDIE(1),7),HSAT0,TPH,V,S,X0,U,1,6,<br />

$ MEDIE(3))<br />

IF (T1−TPH.LT.−1.D−1) GOTO 550<br />

ENDIF<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).GT.1D−10) GOTO 550<br />

IF (MDOT(4).LT.−1D−10) GOTO 550<br />

IF (MDOT(5).GT.1D−10) GOTO 550<br />

IF (T1−T2.LT.−1.D−10) GOTO 550<br />

IF (T1−T5.LT.−1.D−10) GOTO 550<br />

IF (T5−T4.LT.−1.D−10) GOTO 550<br />

IF (T2−T4.LT.−1.D−10) GOTO 550<br />

IF (X_J(MEDIE(1),7)−X_J(MEDIE(2),7).LT.−1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Gas cooler with outlet for condensed water. The pinch<br />

$ point temperature is set as a parameter. The component checks<br />

$ if the pinch point is at the inlet or outlet − or where the<br />

$ condensation starts. If the cooling medium evaporates the<br />

$ component also checks if the pinch point is where the<br />

$ evaporation starts.’<br />

K_PAR(1) = ’Pressure loss side 1: $\\Delta p$ [bar]’<br />

K_PAR(2) = ’Pressure loss side 2: $\\Delta p$ [bar]’<br />

K_PAR(3) = ’Pinch point temperature diffence’<br />

K_BET =<br />

$ ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\ \\dot{m}_3<br />

$\\lt 0 \\\\ \\dot{m}_4 \\gt 0 \\\\ \\dot{m}_5 \\lt 0 \\\\ T_1<br />

$\\gt T_2 \\\\ T_1 \\gt T_5 \\\\ T_2 \\gt T_4 \\\\ T_5 \\gt T_4 \\\<br />

$\ y_{1,H_2O} \\gt y_{2,H_2O} \\\\ p_1*y_{1,H_2O} \\lt p_{sat,H_2O}<br />

$$’<br />

KMEDDS(1) = ’Hot gas inlet’<br />

KMEDDS(2) = ’Hot gas outlet’<br />

KMEDDS(3) = ’Condensate outlet’<br />

KMEDDS(4) = ’Coolant inlet’<br />

KMEDDS(5) = ’Coolant outlet’<br />

K_INP=’STRUC Cooler GASCOOL2 3 5 6 10 11 0 0 10\\\\<br />

$MEDIA 10 NATURAL_GAS 5 Coolgas 3 FG\\\\<br />

$FLUID FG H2 0.44 CO 0.21 CO2 0.02 7 0.078 CH4 0.252\\\\<br />

$addco t Cooler 3 150 m Cooler 3 1 p 3 4\\\\<br />

$ADDCO P 10 20 T Cooler 11 100 T Cooler 5 51.46\\\\<br />

$START M Cooler 5 −0.9 M Cooler 10 2.1 t Cooler 10 18\\\\<br />

$START Y_J Coolgas H2 0.46 Y_J Coolgas CO 0.22\\\\<br />

$START Y_J Coolgas CH4 0.26 Y_J Coolgas H2O−G 0.03’<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE MEOH_CONVERTER(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,<br />

$ MMVAR,PARNAM,ZANAM,MEDIE, ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q<br />

$ ,PAR,ZA, RES,X_J,KOMDSC,KMEDDS,K_PAR,K_LIG ,K_BET,k_inp)<br />

C***********************************************************************<br />

C<br />

C STEREF_0 is a model of a steam reformer. The outlet composition is<br />

C based on an assumption of chemical equilibrium.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

23/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA Q − INPUT − Exchanged heat.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA X_J − INPUT − Fluid composition.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters for the component.<br />

CA ANTLK − OUTPUT − Number of equations in the component.<br />

CA ANTEX − OUTPUT − Number of independent equations in the component.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean :<br />

CA 2 : Coal.<br />

CA 8 : Water (liquid).<br />

CA 27 : Oxygen rich gas.<br />

CA 25 : Raw gas.<br />

CA 300 : Heat.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA VARME − OUTPUT − Fluid numbers (with variable composition).<br />

CA ANTEL − OUTPUT − Number of compounds in these variable fluids.<br />

CA VAREL − OUTPUT − Compound numbers in variable fluids.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

C Subroutines : COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmegaard, MEK, DTU, 2000<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

INCLUDE ’GASI.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(5), ANTPK,<br />

: ANTM1, ANTME, VARME(3), ANTEL(3),<br />

: VAREL(ANTST,3),MMVAR(MAXMM)<br />

DOUBLE PRECISION X_J(MAXME,ANTST), PAR(2), RES(50),<br />

: MDOT(4),P(4),Q(1),H(4),ZA(10)<br />

CHARACTER*80 KOMTY<br />

CHARACTER*80 ZANAM(10),PARNAM(1)<br />

C<br />

C Local variables<br />

C<br />

LOGICAL CON<br />

INTEGER I,J,RES_NR,ANTGIBBS<br />

DOUBLE PRECISION DELP, PGAS, TGAS, T_sat, Ratio,<br />

: V,S,X,U,H1,Psat_meoh,Psat_water,NIN(ANTST+1),NOUT(ANTST+1),<br />

: M_BL(6),G(7),R,G_met,b_2_1,b_1_2,alpha,R_u<br />

$ ,T_K,tau_2_1,tau_1_2,gamma_2,gamma_1,y_ME,y_ST,x_ME,x_ST,P_ME<br />

$ ,P_ST,T,P_SAT_ME,P_SAT_ST,x_ME_2,x_ME_3,x_ST_3,P_ME_IN,NOUTME<br />

$ ,NOUTST,P_ST_IN,X0,HD,P_ST_2,T2<br />

CHARACTER*100 KMEDDS(6)<br />

CHARACTER*100 K_PAR(4)<br />

CHARACTER*500 K_LIG(29), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

EXTERNAL COMINF,GIBBS,STATES<br />

INTRINSIC DABS,DLOG,NINT,EXP<br />

INCLUDE ’THERPROP.INI’<br />

INCLUDE ’GASI.INI’<br />

CON=.false.<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200,1) FKOMP<br />

1 RETURN<br />

24/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’MEOH_CONVERTER’<br />

MMVAR(1) = 0<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’MEOH_CONVERTER’<br />

ANTKN = 3<br />

ANTPK = 1<br />

ANTEX = 6<br />

ANTM1 = 2<br />

ZANAM(1) = ’MULTIPLIER H’<br />

ZANAM(2) = ’MULTIPLIER C’<br />

ZANAM(3) = ’MULTIPLIER O’<br />

ZANAM(4) = ’GIBBS ENERGY’<br />

ZANAM(5) = ’T−COND’<br />

MEDIE(1) = ANYGAS$<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = HEAT$<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE2$<br />

C<br />

204 ANTEL(2) = 37<br />

ANTLK = 1+ANTEL(2)<br />

VAREL(1,2) = H2$<br />

VAREL(2,2) = CO$<br />

VAREL(3,2) = CO2$<br />

VAREL(4,2) = H2O_G$<br />

VAREL(5,2) = CH3OH$<br />

VAREL(6,2) = 2<br />

VAREL(7,2) = 3<br />

VAREL(8,2) = 5<br />

DO I=8,36<br />

VAREL(I+1,2) = I<br />

ENDDO<br />

C<br />

IF (FKOMP.EQ.6) GOTO 600<br />

IF (CON) GOTO 404<br />

*** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws, since these are treated<br />

C automatically by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

CON=.true.<br />

GOTO 204<br />

404 Continue<br />

C<br />

C Pressure<br />

C<br />

ANTGIBBS=5<br />

RES(1) = P(1) − P(2) − PAR(1)<br />

RES_NR=1<br />

C<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Find the composition of the equilibrium gas<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C<br />

C Calculate mole flow of each species in<br />

C<br />

M_BL(1)=0.D0<br />

DO I=1,ANTST<br />

M_BL(1)=X_J(MEDIE(1),I)*M_MOL(I)+M_BL(1)<br />

ENDDO<br />

DO I=1,ANTST<br />

NIN(I)= MDOT(1)/M_BL(1)*X_J(MEDIE(1),I)<br />

ENDDO<br />

C<br />

C Calculate mole flow of each species out<br />

25/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

C<br />

C<br />

M_BL(2)=0.D0<br />

DO I=1,ANTST<br />

M_BL(2)=X_J(MEDIE(2),I)*M_MOL(I)+M_BL(2)<br />

ENDDO<br />

NOUT(ANTST+1)=0.D0<br />

DO I=1,ANTST<br />

NOUT(I)=(−MDOT(2))*X_J(MEDIE(2),I)/M_BL(2)<br />

NOUT(ANTST+1)=NOUT(ANTST+1)+NOUT(I)<br />

ENDDO<br />

DO J=ANTGIBBS+1,ANTEL(2)<br />

RES(RES_NR+J−ANTGIBBS)=NOUT(VAREL(J,2))−NIN(VAREL(J,2))<br />

ENDDO<br />

RES_NR=RES_NR+ANTEL(2)−ANTGIBBS<br />

C<br />

C Molar balance for each atom (H,C,O)<br />

C<br />

DO J=1,2<br />

RES(RES_NR+J) = 0.D0<br />

DO I=1,ANTST<br />

RES(RES_NR+J)=RES(RES_NR+J)−(NIN(I)−NOUT(I))*EL(I,J)<br />

ENDDO<br />

ENDDO<br />

RES_NR=RES_NR+3<br />

C<br />

RES(RES_NR)=1.D0<br />

DO I=1,ANTST<br />

RES(RES_NR)= RES(RES_NR)−X_J(MEDIE(2),I)<br />

ENDDO<br />

RES_NR=RES_NR+1<br />

C<br />

C Gibbs’ free energy of each compound<br />

C<br />

CALL STATES(P(2),H(2),TGAS,V,S,X,U,1,2,MEDIE(2))<br />

TGAS = TGAS+273.15D0<br />

C<br />

DO I=1,ANTGIBBS<br />

CALL GIBBS(VAREL(I,2),TGAS,P(2)*X_J(MEDIE(2),VAREL(I,2)),G(I))<br />

ENDDO<br />

C<br />

C Gibbs free energy of the mixture<br />

C<br />

RES(RES_NR)=ZA(4)<br />

DO I=1,ANTGIBBS<br />

RES(RES_NR)=RES(RES_NR)−X_J(MEDIE(2),VAREL(I,2))*G(I)<br />

ENDDO<br />

C<br />

C Partial derivatives of the function to be minimized with respect to<br />

C each species molar fraction<br />

C<br />

DO I=1,ANTGIBBS<br />

RES(I+RES_NR)=G(I)<br />

DO J=1,2<br />

RES(I+RES_NR) = RES(I+RES_NR) + ZA(J)*EL(VAREL(I,2),J)<br />

ENDDO<br />

RES(I+RES_NR) = RES(I+RES_NR) + ZA(3)*EL(VAREL(I,2),4)<br />

ENDDO<br />

RES_NR=RES_NR+ANTGIBBS+1<br />

C<br />

C Check if condensation of water and methanol occurs at equllibrium<br />

C<br />

b_2_1=−1062.945621D0<br />

b_1_2=3538.709318D0<br />

c J/mol<br />

alpha=0.2994D0<br />

R_u=8.314D0<br />

c J/(mol*K)<br />

c<br />

T=ZA(5)<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ST,HD,T,V,S,X0,U,3,6,WATHF$)<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ME,HD,T,V,S,X0,U,3,6,MEOH$)<br />

T_K=T+273.15D0<br />

c<br />

tau_2_1=b_2_1/(R_u*T_K)<br />

26/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

tau_1_2=b_1_2/(R_u*T_K)<br />

c<br />

x_ME_3=ZA(6)<br />

x_ST_3=1D0−x_ME_3<br />

gamma_2=exp((x_ST_3**2*(tau_1_2*((exp(−(alpha<br />

$ *tau_1_2))/(x_ME_3+x_ST_3*exp(−(alpha*tau_1_2))))<br />

$ )**2+(tau_2_1*(exp(−(alpha*tau_2_1))/(x_ST_3+x_ME_3<br />

$ *exp(−(alpha*tau_2_1)))**2)))))<br />

gamma_1=exp((x_ME_3**2*(tau_2_1*((exp(−(alpha<br />

$ *tau_2_1))/(x_ST_3+x_ME_3*exp(−(alpha*tau_2_1))))<br />

$ )**2+(tau_1_2*(exp(−(alpha*tau_1_2))/(x_ME_3+x_ST_3<br />

$ *exp(−(alpha*tau_1_2)))**2)))))<br />

c<br />

P_ST_IN=X_J(MEDIE(2),H2O_G$)*P(2)<br />

P_ME_IN=X_J(MEDIE(2),CH3OH$)*P(2)<br />

c<br />

P_ME=P_ME_IN*0.999d0<br />

x_ME=P_ME/(gamma_2*P_SAT_ME)<br />

x_ST=1D0−x_ME<br />

P_ST_2=gamma_1*P_SAT_ST*x_ST<br />

P_ST=(P_ME_IN−P_ME+P_ST_IN)−(P_ME_IN−P_ME)/x_ME<br />

if (T.gt.239.1) then<br />

RES(RES_NR)=T−238<br />

else<br />

RES(RES_NR)=P_ST−P_ST_2<br />

endif<br />

c<br />

RES(RES_NR+1)=x_ME−x_ME_3<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (Q(1).GT.1D−10) GOTO 550<br />

IF (T2.LT.T) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Methanol converter. Outlet gas is at equilibrium<br />

$ between $ H_2$, CO, $CO_2$, $H_2O$ and $CH_3OH$. One of the<br />

$ conditions for the component is that condensation of methanol<br />

$ and water does not occur.’<br />

K_PAR(1) = ’Pressure loss: $\\Delta p$ [bar]’<br />

K_BET =<br />

$ ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\ \\dot{Q} \\lt<br />

$0 \\\\ T_2 \\gt T_{condensation} $’<br />

KMEDDS(1) =’Inlet gas’<br />

KMEDDS(2) =’Oulet gas’<br />

KMEDDS(3) =’Heat loss’<br />

k_inp=’struc Meoh−convert MEOH_CONVERTER 601 602 311 0.01\\\\<br />

$media 601 Syngas 602 Syngas−meoh\\\\<br />

$fluid Syngas H2 0.5 CO 0.3 CO2 0.2\\\\<br />

$addco p 601 144\\\\<br />

$addco t Meoh−convert 602 235 t Meoh−convert 601 230 m Meoh−convert<br />

$ 601 100\\\\<br />

$START Y_J Syngas−meoh H2 0.15 Y_J Syngas−meoh CO 0.16\\\\<br />

$START Y_J Syngas−meoh CO2 0.33 Y_J Syngas−meoh CH3OH 0.34\\\\<br />

$START ZA Meoh−convert 5 230’<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE SET_M(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,MDOT,P,H,ZC,PAR,RES,X_J,KOMDSC,K_PAR,K_lig,K_bet<br />

$ ,KMEDDS,K_inp)<br />

C***********************************************************************<br />

27/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

C SETFLOW1 is a model of a control valve. The valve controls massflow<br />

C using an error input from a controller.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA ZC − INPUT − Control variables.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA 999 : Control.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL CV Valve friction coefficient.<br />

CL V1 Specific volume for water entering the valve.<br />

CL T Temperature.<br />

CL S Entropy.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(3), ANTPK,<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION MDOT(2), P(2), H(2), RES(3), ZC(1),PAR(2)<br />

$ ,X_J(MAXME,ANTST)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3)<br />

DOUBLE PRECISION MAXF,maxp<br />

CHARACTER*100 K_PAR(1),K_STAT(2)<br />

CHARACTER*500 K_LIG(2), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(3)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

28/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

KOMTY = ’SET_M’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SET_M’<br />

ANTKN = 3<br />

ANTPK = 0<br />

ANTLK = 2<br />

ANTM1 = 2<br />

MEDIE(1) = ANYGAS$<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = 999<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

RES(1) = P(1) − P(2)<br />

RES(2) = ZC(1)−(X_J(MEDIE(1),H2$)−X_J(MEDIE(1),CO2$))/<br />

$ (X_J(MEDIE(1),CO2$)+X_J(MEDIE(1),CO$))<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (X_J(MEDIE(1),CO$)+X_J(MEDIE(1),CO2$).LT.1D−3) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>ity component for setting the M−factor for a syngas<br />

$ used for production of a liquid fuel. The M−factor is defined<br />

$ in the equations below. If the M−factor is 2 for methanol<br />

$ production it means that all the syngas in theory can be<br />

$ converted to methanol. The M−factor is defined as a control<br />

$ variable (ZC).’<br />

K_LIG(1) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(2) =<br />

$ ’M−factor: $ZC(1)=\\frac{y_{H_2}−y_{CO_2}}{y_{CO_2}+y_{CO}}$’<br />

K_BET = ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\lt 0 \\\\<br />

$y_{CO}+y_{CO_2} \\gt 0$’<br />

KMEDDS(1) = ’Gas in’<br />

KMEDDS(2) = ’Gas out’<br />

KMEDDS(3) = ’M−factor’<br />

K_INP=’struc set−M SET_M 611 612 900\\\\<br />

$MEDIA 611 gas\\\\<br />

$fluid gas N2 0.1 H2 0.6 CO 0.1 CO2 0.2\\\\<br />

$addco m set−M 611 1 t set−M 611 50 p 611 1’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE GASCOOL4(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,ANTM2,MEDIE,<br />

$ ANTME,VARME,ANTEL,VAREL,MDOT,P,H,Q,PAR,RES,X_J,ZA,ZANAM,ZC,<br />

$ ANTEX,KOMDSC,K_PAR,K_lig,K_bet,KMEDDS,K_inp)<br />

C***********************************************************************<br />

29/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

C GASCOOL1 is a model of a gas cooler with steam condensation.<br />

C The model does not include equations concerning the heat exchange.<br />

C 1−2 is the heat emitting fluid.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL T1,T2 Temperature in first and second node.<br />

CL T3,T4 Temperature in third and fourth node.<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DPA,DPB Pressure loss in heat exchanger.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C<br />

CP Pr<strong>og</strong>rammer : Brian Elmegaard 2000<br />

CP Dept. of Energy Eng., DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN, MEDIE(8), ANTPK, ANTEX,<br />

& ANTM1, ANTM2, ANTME, VARME(4), ANTEL(4),<br />

& VAREL(ANTST,4)<br />

DOUBLE PRECISION RES(60), MDOT(6), P(6), H(6), Q, PAR(3),<br />

& X_J(MAXME,ANTST),ZA(12),ZC(1)<br />

CHARACTER*80 KOMTY,ZANAM(12)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(6),I<br />

DOUBLE PRECISION V, S, U,M_BL1,M_BL2, T1, T2, T3, T4, T5,T6, X,<br />

: NIN,NOUT,NINST,NSTOUT,NCOND,PSTOUT,X0,HD,XSTOUT,H3,H4<br />

$ ,X1,HPH,TPH,HSAT0,TPL,TPL1,TPH1,DTP,PMEOUT,XMEOUT,NCOND_MEOH<br />

$ ,NINME,NMEOUT,HPH_min,NCONDST,NCONDME,XST,XME,N,E1,E2,Ntotal<br />

$ ,HPHME,HPHST,PST,PME,HST,HME,HPH2,MPH,HSTV,HMEV,HPLST,HPLME<br />

$ ,TPHST,TPHME,TPLST,TPLME,TPHME2,TPHST2,b_2_1,b_1_2,alpha,R_u<br />

$ ,T_K,tau_2_1,tau_1_2,gamma_2,gamma_1,y_ME,y_ST,x_ME,x_ST,P_ME<br />

30/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

$ ,P_ST,T,P_SAT_ME,P_SAT_ST,x_ME_2,x_ME_3,x_ST_3,P_ME_IN,NOUTME<br />

$ ,NOUTST,P_ST_IN,HPL,P_ST_2<br />

CHARACTER*100 K_PAR(3),K_STAT(1)<br />

CHARACTER*500 K_LIG(47), K_BET<br />

CHARACTER*1000 KOMDSC, K_INP<br />

CHARACTER*100 KMEDDS(7)<br />

l<strong>og</strong>ical EVAP,EVAPST,EVAPME<br />

EXTERNAL STATES<br />

INCLUDE ’THERPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200,1) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’GASCOOL4’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’GASCOOL4’<br />

ANTKN = 7<br />

ANTPK = 3<br />

ANTLK = 44<br />

ANTEX = 9<br />

ANTM1 = 4<br />

ANTM2 = 2<br />

MEDIE(1) = ANYGAS$<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = WATHF$<br />

MEDIE(4) = MEOH$<br />

MEDIE(5) = ANYFLU$<br />

MEDIE(6) = ANYFLU$<br />

MEDIE(7) = CONTROL$<br />

ANTME = 4<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE2$<br />

VARME(3) = NODE5$<br />

VARME(4) = NODE5$<br />

ANTEL(1) = 0<br />

ANTEL(2) = 37<br />

ANTEL(3) = 0<br />

ANTEL(4) = 0<br />

DO I=1,36<br />

VAREL(I,2) = I<br />

ENDDO<br />

VAREL(37,2) = CH3OH$<br />

ZANAM(1) = ’t−diff boil’<br />

ZANAM(2) = ’t−diff cond’<br />

ZANAM(3) = ’T−boil’<br />

ZANAM(4) = ’T−condense’<br />

ZANAM(5) = ’CH3OH mass−%’<br />

ZANAM(6) = ’CH3OH vol−%’<br />

ZANAM(7) = ’Transferred’<br />

C<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

RES(1) = P(1) − P(2) − PAR(1)<br />

c RES(2) = P(2) − P(3)<br />

c RES(3) = P(2) − P(4)<br />

RES(4) = P(5) − P(6) − PAR(2)<br />

C<br />

C Same temperature out<br />

C<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(3),H3,T2,V,S,X,U,1,3,MEDIE(3))<br />

CALL STATES(P(4),H4,T2,V,S,X,U,1,3,MEDIE(4))<br />

C<br />

31/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

RES(5) = H3 − H(3)<br />

RES(6) = H4 − H(4)<br />

C<br />

C Calculate mole flow in<br />

C<br />

M_BL1 = 0.D0<br />

DO I=1,ANTST<br />

M_BL1=M_BL1+X_J(MEDIE(1),I)*M_MOL(I)<br />

ENDDO<br />

NIN = MDOT(1)/M_BL1<br />

NINST=NIN*X_J(MEDIE(1),7)<br />

NINME=NIN*X_J(MEDIE(1),CH3OH$)<br />

N=NIN−NINST−NINME<br />

C<br />

C Calculate mole flow out<br />

C<br />

M_BL2 = 0.D0<br />

DO I=1,ANTST<br />

M_BL2=M_BL2+X_J(MEDIE(2),I)*M_MOL(I)<br />

ENDDO<br />

NOUT = (−MDOT(2))/M_BL2<br />

C<br />

C Outlet composition of gas<br />

C<br />

DO I = 1,6<br />

RES(I+6) = X_J(MEDIE(2),I)*NOUT − X_J(MEDIE(1),I)*NIN<br />

ENDDO<br />

DO I = 8,35<br />

RES(I+5) = X_J(MEDIE(2),I)*NOUT − X_J(MEDIE(1),I)*NIN<br />

ENDDO<br />

C<br />

RES(41)=1.0D0<br />

DO I = 1,ANTST<br />

RES(41) = RES(41)−X_J(MEDIE(2),I)<br />

ENDDO<br />

C<br />

C Check for condensing water or methanol<br />

C<br />

b_2_1=−1062.945621D0<br />

b_1_2=3538.709318D0<br />

c J/mol<br />

alpha=0.2994D0<br />

R_u=8.314D0<br />

c J/(mol*K)<br />

c<br />

T=ZA(4)<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ST,HD,T,V,S,X0,U,3,6,MEDIE(3))<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ME,HD,T,V,S,X0,U,3,6,MEDIE(4))<br />

T_K=T+273.15D0<br />

c<br />

tau_2_1=b_2_1/(R_u*T_K)<br />

tau_1_2=b_1_2/(R_u*T_K)<br />

c<br />

x_ME_3=ZA(8)<br />

x_ST_3=1D0−x_ME_3<br />

gamma_2=exp((x_ST_3**2*(tau_1_2*((exp(−(alpha<br />

$ *tau_1_2))/(x_ME_3+x_ST_3*exp(−(alpha*tau_1_2))))<br />

$ )**2+(tau_2_1*(exp(−(alpha*tau_2_1))/(x_ST_3+x_ME_3<br />

$ *exp(−(alpha*tau_2_1)))**2)))))<br />

gamma_1=exp((x_ME_3**2*(tau_2_1*((exp(−(alpha<br />

$ *tau_2_1))/(x_ST_3+x_ME_3*exp(−(alpha*tau_2_1))))<br />

$ )**2+(tau_1_2*(exp(−(alpha*tau_1_2))/(x_ME_3+x_ST_3<br />

$ *exp(−(alpha*tau_1_2)))**2)))))<br />

c<br />

P_ST_IN=X_J(MEDIE(1),7)*P(1)<br />

P_ME_IN=X_J(MEDIE(1),CH3OH$)*P(1)<br />

c<br />

P_ME=P_ME_IN*0.999d0<br />

x_ME=P_ME/(gamma_2*P_SAT_ME)<br />

x_ST=1D0−x_ME<br />

P_ST_2=gamma_1*P_SAT_ST*x_ST<br />

P_ST=(P_ME_IN−P_ME+P_ST_IN)−(P_ME_IN−P_ME)/x_ME<br />

if (T.gt.239.1) then<br />

RES(52)=T−238<br />

else<br />

RES(52)=P_ST−P_ST_2<br />

32/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

c<br />

c<br />

c<br />

c<br />

c<br />

endif<br />

RES(53)=x_ME−x_ME_3<br />

if (T.gt.(T2)) then<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ST,HD,T2,V,S,X0,U,3,6,MEDIE(3))<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ME,HD,T2,V,S,X0,U,3,6,MEDIE(4))<br />

T_K=T2+273.15D0<br />

tau_2_1=b_2_1/(R_u*T_K)<br />

tau_1_2=b_1_2/(R_u*T_K)<br />

x_ME_3=ZA(6)<br />

x_ST_3=1D0−x_ME_3<br />

gamma_2=exp((x_ST_3**2*(tau_1_2*((exp(−(alpha<br />

$ *tau_1_2))/(x_ME_3+x_ST_3*exp(−(alpha*tau_1_2))))<br />

$ )**2+(tau_2_1*(exp(−(alpha*tau_2_1))/(x_ST_3+x_ME_3<br />

$ *exp(−(alpha*tau_2_1)))**2)))))<br />

gamma_1=exp((x_ME_3**2*(tau_2_1*((exp(−(alpha<br />

$ *tau_2_1))/(x_ST_3+x_ME_3*exp(−(alpha*tau_2_1))))<br />

$ )**2+(tau_1_2*(exp(−(alpha*tau_1_2))/(x_ME_3+x_ST_3<br />

$ *exp(−(alpha*tau_1_2)))**2)))))<br />

P_ME=gamma_2*P_SAT_ME*x_ME_3<br />

x_ST=1D0−x_ME_3<br />

P_ST=gamma_1*P_SAT_ST*x_ST<br />

NOUTME=P_ME/P(2)*NOUT<br />

NOUTST=P_ST/P(2)*NOUT<br />

NCONDST=NINST−NOUTST<br />

NCONDME=NINME−NOUTME<br />

x_ME_2=NCONDME/(NCONDME+NCONDST)<br />

RES(51)=x_ME_3−x_ME_2<br />

RES(42) = MDOT(3) + NCONDST*M_MOL(7)<br />

RES(43) = X_J(MEDIE(2),7) − P_ST/P(2)<br />

RES(44) = MDOT(4) + NCONDME*M_MOL(CH3OH$)<br />

RES(45) = X_J(MEDIE(2),CH3OH$) − P_ME/P(2)<br />

RES(50) = MDOT(4)/(MDOT(4)+MDOT(3))−ZA(5)<br />

else<br />

RES(42) = MDOT(3)<br />

RES(43) = X_J(MEDIE(2),7) − X_J(MEDIE(1),7)*NIN/NOUT<br />

RES(44) = MDOT(4)<br />

RES(45) = X_J(MEDIE(2),CH3OH$) − X_J(MEDIE(1),CH3OH$)*NIN/NOUT<br />

RES(50) = 0−ZA(5)<br />

RES(51) = ZA(6)−x_ME<br />

endif<br />

C<br />

C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Pinch point analysis<br />

C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C<br />

C Check if pinch point is where water and methanol condenses<br />

C<br />

if (MDOT(3).lt.−1d−10) then<br />

CALL STATES(P(1),HPH,T,V,S,X,U,1,3,MEDIE(1))<br />

HPL=H(6)−(H(1)−HPH)*MDOT(1)/MDOT(5)<br />

CALL STATES(P(6),HPL,TPL,V,S,X,U,1,2,MEDIE(6))<br />

TPH=T<br />

RES(47)=(TPH−TPL)−ZA(2)<br />

else<br />

TPH=99999<br />

TPL=0<br />

RES(47) = 0−ZA(2)<br />

endif<br />

C<br />

C Check if pinch point is where the water starts evaporating<br />

C (if the cold medium is water)<br />

C<br />

IF (MEDIE(5).GE.80) THEN<br />

CALL STATES(P(5),H(5),T5,V,S,X0,U,1,2,MEDIE(5))<br />

CALL STATES(P(6),H(6),T6,V,S,X1,U,1,2,MEDIE(6))<br />

IF ((X1.GT.(1.D−12)).AND.(X0.LT.1.D−12)) THEN<br />

X0 = 0.0D0<br />

CALL STATES(P(5),HSAT0,TPL1,V,S,X0,U,1,6,MEDIE(5))<br />

E1=MDOT(5)*(H(6)−HSAT0)<br />

CALL STATES(P(1),HPH,TPL1+ZA(1),V,S,X,U,1,3,MEDIE(1))<br />

if ((TPL1+ZA(1)).gt.T) then<br />

33/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

c<br />

c<br />

c<br />

E2=(H(1)−HPH)*MDOT(1)<br />

RES(46) = ZA(9)<br />

else<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ST,HD,TPL1+ZA(1),V,S,X0,U,3,6,MEDIE(3))<br />

X0 = 0.D0<br />

CALL STATES(P_SAT_ME,HD,TPL1+ZA(1),V,S,X0,U,3,6,MEDIE(4))<br />

T_K=TPL1+ZA(1)+273.15D0<br />

tau_2_1=b_2_1/(R_u*T_K)<br />

tau_1_2=b_1_2/(R_u*T_K)<br />

x_ME_3=ZA(9)<br />

x_ST_3=1D0−x_ME_3<br />

gamma_2=exp((x_ST_3**2*(tau_1_2*((exp(−(alpha<br />

$ *tau_1_2))/(x_ME_3+x_ST_3*exp(−(alpha*tau_1_2))))<br />

$ )**2+(tau_2_1*(exp(−(alpha*tau_2_1))/(x_ST_3+x_ME_3<br />

$ *exp(−(alpha*tau_2_1)))**2)))))<br />

gamma_1=exp((x_ME_3**2*(tau_2_1*((exp(−(alpha<br />

$ *tau_2_1))/(x_ST_3+x_ME_3*exp(−(alpha*tau_2_1))))<br />

$ )**2+(tau_1_2*(exp(−(alpha*tau_1_2))/(x_ME_3+x_ST_3<br />

$ *exp(−(alpha*tau_1_2)))**2)))))<br />

P_ME=gamma_2*P_SAT_ME*x_ME_3<br />

x_ST=1D0−x_ME_3<br />

P_ST=gamma_1*P_SAT_ST*x_ST<br />

NOUTME=P_ME/P(2)*NOUT<br />

NOUTST=P_ST/P(2)*NOUT<br />

NCONDST=NINST−NOUTST<br />

NCONDME=NINME−NOUTME<br />

x_ME_2=NCONDME/(NCONDME+NCONDST)<br />

RES(46)=x_ME_3−x_ME_2<br />

MPH=MDOT(1)−NCONDST*M_MOL(7)−NCONDME*M_MOL(CH3OH$)<br />

CALL STATES(P(3),HST,TPL1+ZA(1),V,S,X0,U,1,3,MEDIE(3))<br />

CALL STATES(P(4),HME,TPL1+ZA(1),V,S,X0,U,1,3,MEDIE(4))<br />

CALL ENTHALPY(7,TPL1+ZA(1),HSTV)<br />

CALL ENTHALPY(CH3OH$,TPL1+ZA(1),HMEV)<br />

HPH=(HPH*MDOT(1)−HSTV*NCONDST*M_MOL(7)−HMEV*NCONDME<br />

$ *M_MOL(CH3OH$))/MPH<br />

E2=H(1)*MDOT(1)−(HPH*MPH+HST*NCONDST*M_MOL(7)+HME<br />

$ *NCONDME*M_MOL(CH3OH$))<br />

endif<br />

RES(48)=E2−E1<br />

RES(2) = (TPL1+ZA(1)) − ZA(3)<br />

if (ZA(1).lt.(TPH−TPL)) then<br />

TPH=TPL1+ZA(1)<br />

TPL=TPL1<br />

endif<br />

ELSE<br />

RES(46) = ZA(9)<br />

RES(48) = ZA(1)<br />

RES(2) = ZA(3)<br />

ENDIF<br />

ELSE<br />

RES(46) = ZA(9)<br />

RES(48) = ZA(1)<br />

RES(2) = ZA(3)<br />

ENDIF<br />

C<br />

C Check if pinch point is at the beginning or the end of the component<br />

C<br />

CALL STATES(P(1),H(1),T1,V,S,X,U,1,2,MEDIE(1))<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(5),H(5),T5,V,S,X,U,1,2,MEDIE(5))<br />

CALL STATES(P(6),H(6),T6,V,S,X,U,1,2,MEDIE(6))<br />

C<br />

if (((T2−T5).lt.(TPH−TPL)).or.((T1−T6).lt.(TPH−TPL))) then<br />

IF ((T1−T6).LT.(T2−T5)) THEN<br />

TPH = T1<br />

TPL = T6<br />

ELSE<br />

TPH = T2<br />

TPL = T5<br />

ENDIF<br />

ENDIF<br />

C<br />

C At the pinch point DTP is used<br />

34/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

RES(49) = TPH − TPL − ZC(1)<br />

C<br />

RES(3) = ZA(7) − MDOT(5)*(H(6)−H(5))<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

CALL STATES(P(1),H(1),T1,V,S,X,U,1,2,MEDIE(1))<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(5),H(5),T5,V,S,X,U,1,2,MEDIE(5))<br />

CALL STATES(P(6),H(6),T6,V,S,X,U,1,2,MEDIE(6))<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).GT.1D−10) GOTO 550<br />

IF (MDOT(4).GT.1D−10) GOTO 550<br />

IF (MDOT(5).LT.−1D−10) GOTO 550<br />

IF (MDOT(6).GT.1D−10) GOTO 550<br />

IF (T1−T2.LT.−1.D−10) GOTO 550<br />

IF (T1−T6.LT.−1.D−10) GOTO 550<br />

IF (T6−T5.LT.−1.D−10) GOTO 550<br />

IF (T2−T5.LT.−1.D−10) GOTO 550<br />

IF (T.GT.T1) GOTO 550<br />

IF (ZC(1).LT.PAR(3)−1D−2) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Gas cooler with outlet for condensed water and<br />

$ methanol. The pinch point temperature is set as a parameter.<br />

$ The component checks if the pinch point is at the inlet or<br />

$ outlet − or where the condensation starts. If the cooling<br />

$ medium evaporates the component also checks if the pinch<br />

$ point is where the evaporation starts.’<br />

K_PAR(1) = ’Pressure loss side 1: $\\Delta p$ [bar]’<br />

K_PAR(2) = ’Pressure loss side 2: $\\Delta p$ [bar]’<br />

K_PAR(3) = ’Minimum pinch point temperature diffence’<br />

K_BET = ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\<br />

$\\dot{m}_3 \\lt 0 \\\\ \\dot{m}_4 \\lt 0 \\\\ \\dot{m}_5 \\gt 0<br />

$\\\\ \\dot{m}_6 \\lt 0 \\\\ T_1 \\gt T_2 \\\\ T_1 \\gt T_6 \\\\ T_<br />

$2 \\gt T_5 \\\\ T_6 \\gt T_5 \\\\ T_1 \\gt T_{condensation} \\\\$<br />

$node 7 $\\gt$ Parameter 3’<br />

KMEDDS(1) = ’Hot gas inlet’<br />

KMEDDS(2) = ’Hot gas outlet’<br />

KMEDDS(3) = ’Water condensate outlet’<br />

KMEDDS(4) = ’Methanol condensate outlet’<br />

KMEDDS(5) = ’Coolant inlet’<br />

KMEDDS(6) = ’Coolant outlet’<br />

KMEDDS(7) = ’Pinch point temperature diffence’<br />

K_INP=’STRUC Cooler GASCOOL4 3 5 6 7 10 11 901 0 0 10\\\\<br />

$MEDIA 10 STEAM 5 Coolgas 3 FG\\\\<br />

$FLUID FG H2 0.4844 CO2 0.2815 7 0.10 CH3OH 0.10 N2 0.0341\\\\<br />

$addco p 3 144 t Cooler 3 410 m Cooler 3 22.1\\\\<br />

$addco P 10 400 t Cooler 5 109 t Cooler 11 300\\\\<br />

$addco ZC 901 10\\\\<br />

$START M Cooler 5 −16 M Cooler 6 −1.9 M Cooler 10 19\\\\<br />

$START t Cooler 6 109 t Cooler 10 50\\\\<br />

$START ZA Cooler 4 207\\\\<br />

$START Y_J Coolgas H2 0.59 Y_J Coolgas N2 0.04 Y_J Coolgas CO2 0.34<br />

$’<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE MIXING_TANK(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,<br />

& ANTM2,MEDIE,ANTME,VARME,<br />

& MDOT,P,H,Q,ZA,PAR,RES,PARNAM,ZANAM,<br />

$ KOMDSC,KMEDDS,K_PAR,K_LIG,K_STAT,K_BET,k_inp)<br />

C***********************************************************************<br />

35/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

C HEATEX_1 is a model of a heat exchanger.<br />

C The model does not include equations concerning the heat exchange.<br />

C 1−2 is the heat emitting fluid.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL T1,T2 Temperature in first and second node.<br />

CL T3,T4 Temperature in third and fourth node.<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DPA,DPB Pressure loss in heat exchanger.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C STATES<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’REALPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(5), ANTPK,<br />

& ANTM1, ANTM2, ANTME, VARME(4)<br />

DOUBLE PRECISION RES(5), MDOT(4), P(4), H(4), PAR(2), Q,ZA(2)<br />

CHARACTER*80 KOMTY,PARNAM(2),ZANAM(2)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(5)<br />

DOUBLE PRECISION T1, T2, T3, T4, V, X, S, U, DPA, DPB<br />

CHARACTER*100 K_PAR(2),K_STAT(1)<br />

CHARACTER*500 K_LIG(3), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(5)<br />

EXTERNAL STATES<br />

INCLUDE ’REALPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

36/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’MIXING_TANK’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’MIXING_TANK’<br />

ANTKN = 5<br />

ANTPK = 2<br />

ANTLK = 3<br />

ANTEX = 2<br />

ANTM1 = 2<br />

ANTM2 = 2<br />

MEDIE(1) = REALFL$<br />

MEDIE(2) = REALFL$<br />

MEDIE(3) = REALFL$<br />

MEDIE(4) = REALFL$<br />

MEDIE(5) = HEAT$<br />

ANTME = 4<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

VARME(3) = NODE3$<br />

VARME(4) = NODE3$<br />

PARNAM(1) = ’Pressure loss side 1’<br />

PARNAM(2) = ’Pressure loss side 2’<br />

ZANAM(1) = ’Flu 2 mass−%’<br />

ZANAM(2) = ’Flu 2 vol−%’<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

DPA = PAR(1)<br />

DPB = PAR(2)<br />

C<br />

C Pressure losses<br />

C<br />

RES(1) = P(1) − P(2) − DPA<br />

RES(2) = P(3) − P(4) − DPB<br />

C<br />

CALL STATES(P(2),H(2),T2,V,S,X,U,1,2,MEDIE(2))<br />

CALL STATES(P(4),H(4),T4,V,S,X,U,1,2,MEDIE(4))<br />

RES(3) = T2−T4<br />

C<br />

RES(4) = ZA(1) − MDOT(3)/(MDOT(3)+MDOT(1))<br />

RES(5) = ZA(2) − (MDOT(3)/RM_MOL(MEDIE(3)))/(MDOT(3)<br />

$ /RM_MOL(MEDIE(3))+MDOT(1)/RM_MOL(MEDIE(1)))<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).LT.−1D−10) GOTO 550<br />

IF (MDOT(4).GT.1D−10) GOTO 550<br />

IF (Q.GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Heat exchanger used as a model for a mixing tank. This<br />

$ means that the outlet temperatures are set equal.’<br />

K_PAR(1) = ’Pressure loss side 1, $\\Delta p_{12}$ [bar]’<br />

K_PAR(2) = ’Pressure loss side 2, $\\Delta p_{34}$ [bar]’<br />

K_BET =<br />

37/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

$ ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\ \\dot{m}_3<br />

$\\gt 0 \\\\ \\dot{m}_4 \\lt 0 \\\\ \\dot{Q} \\lt 0$’<br />

KMEDDS(1) = ’Fluid 1 inlet’<br />

KMEDDS(2) = ’Fluid 1 outlet’<br />

KMEDDS(3) = ’Fluid 2 inlet’<br />

KMEDDS(4) = ’Fluid 2 outlet’<br />

KMEDDS(5) = ’Heat loss’<br />

K_INP= ’struc Water−meoh−t MIXING_TANK 623 624 633 634 330 0 0<br />

$\\\\media 623 STEAM−HF 633 METHANOL\\\\<br />

$addco q Water−meoh−t 330 0\\\\<br />

$addco t Water−meoh−t 623 90 t Water−meoh−t 633 40\\\\<br />

$addco p 623 1 p 633 1\\\\<br />

$addco m Water−meoh−t 623 1 m Water−meoh−t 633 1\\\\<br />

$start t Water−meoh−t 624 60’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE DISTILLATION_STAGE(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,<br />

& ANTM2,MEDIE,ANTME,VARME,<br />

& MDOT,P,H,Q,ZA,ZC,PAR,RES,PARNAM,ZANAM,<br />

$ KOMDSC,KMEDDS,K_PAR,K_LIG,K_STAT,K_BET,k_inp)<br />

C***********************************************************************<br />

C<br />

C HEATEX_1 is a model of a heat exchanger.<br />

C The model does not include equations concerning the heat exchange.<br />

C 1−2 is the heat emitting fluid.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL T1,T2 Temperature in first and second node.<br />

CL T3,T4 Temperature in third and fourth node.<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DPA,DPB Pressure loss in heat exchanger.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C STATES<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

38/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’REALPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(13), ANTPK,<br />

& ANTM1, ANTM2, ANTME, VARME(8)<br />

DOUBLE PRECISION RES(25), MDOT(8), P(8), H(8), PAR(2), Q,ZA(3)<br />

$ ,ZC(4)<br />

CHARACTER*80 KOMTY,PARNAM(2),ZANAM(3),ZCNAM(4)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(5),I,I_liq,I_vap<br />

DOUBLE PRECISION T, V, X, S, U,P_sat(8),H_sat(8),x_1,x_2,X0,X1<br />

$ ,M_MOL1,M_MOL2,y_1,y_2,P_system,R_u,alpha,tau_1_2,tau_2_1<br />

$ ,b_1_2,b_2_1,gamma_1,gamma_2,y_1_new,y_2_new,T_K,P_sat_1<br />

$ ,P_sat_2,a_2_1,K_1,K_2<br />

CHARACTER*100 K_PAR(2),K_STAT(1)<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*500 K_LIG(3), K_BET<br />

CHARACTER*100 KMEDDS(13)<br />

EXTERNAL STATES<br />

INCLUDE ’REALPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’DISTILLATION_STAGE’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’DISTILLATION_STAGE’<br />

ANTKN = 13<br />

ANTPK = 0<br />

ANTLK = 12<br />

ANTEX = 3<br />

ANTM1 = 4<br />

ANTM2 = 4<br />

MEDIE(1) = WATHF$<br />

MEDIE(2) = WATHF$<br />

MEDIE(3) = WATHF$<br />

MEDIE(4) = WATHF$<br />

MEDIE(5) = MEOH$<br />

MEDIE(6) = MEOH$<br />

MEDIE(7) = MEOH$<br />

MEDIE(8) = MEOH$<br />

MEDIE(9) = HEAT$<br />

MEDIE(10) = 999<br />

MEDIE(11) = 999<br />

MEDIE(12) = 999<br />

MEDIE(13) = 999<br />

ANTME = 0<br />

ZANAM(1) = ’x_Methanol’<br />

ZANAM(2) = ’y_Methanol’<br />

ZANAM(3) = ’alpha’<br />

ZCNAM(1) = ’Pressure’<br />

ZCNAM(2) = ’Temperature’<br />

ZCNAM(3) = ’x_Methanol’<br />

ZCNAM(4) = ’y_Methanol’<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

39/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

c 1 = Water<br />

c 2 = Methanol<br />

c<br />

c Constants<br />

c<br />

M_MOL1=RM_MOL(MEDIE(1))<br />

M_MOL2=RM_MOL(MEDIE(5))<br />

b_2_1=−1062.945621D0<br />

b_1_2=3538.709318D0<br />

c J/mol<br />

alpha=0.2994D0<br />

R_u=8.314D0<br />

c J/(mol*K)<br />

P_system=ZC(1)<br />

c<br />

c Boling temperature of stage mixture<br />

c<br />

T=ZC(2)<br />

c CALL STATES(P(4),H(4),T,V,S,X,U,1,2,MEDIE(4))<br />

X0=0.D0<br />

X1=1.D0<br />

CALL STATES(P_sat(2),H_sat(2),T,V,S,X0,U,3,6,MEDIE(2))<br />

CALL STATES(P_sat(4),H_sat(4),T,V,S,X1,U,3,6,MEDIE(4))<br />

X0=0.D0<br />

X1=1.D0<br />

CALL STATES(P_sat(6),H_sat(6),T,V,S,X0,U,3,6,MEDIE(6))<br />

CALL STATES(P_sat(8),H_sat(8),T,V,S,X1,U,3,6,MEDIE(8))<br />

c<br />

RES(1)=P(2)−P_sat(2)<br />

RES(2)=P(4)−P_sat(4)<br />

RES(3)=P(6)−P_sat(6)<br />

RES(4)=P(8)−P_sat(8)<br />

RES(5)=H(2)−H_sat(2)<br />

RES(6)=H(4)−H_sat(4)<br />

RES(7)=H(6)−H_sat(6)<br />

RES(8)=H(8)−H_sat(8)<br />

c<br />

c x_1,x_2,y_1 and y_2 is molar fractions in respectively liquid and<br />

c gas phase.<br />

c<br />

x_2=(MDOT(6)/M_MOL2)/(MDOT(2)/M_MOL1+MDOT(6)/M_MOL2)<br />

x_1=1−x_2<br />

y_2=(MDOT(8)/M_MOL2)/(MDOT(4)/M_MOL1+MDOT(8)/M_MOL2)<br />

y_1=1−y_2<br />

c<br />

K_1=y_1/x_1<br />

K_2=y_2/x_2<br />

a_2_1=K_2/K_1<br />

c<br />

c Calculation of y_1_new and y_2_new<br />

c<br />

T_K=T+273.15D0<br />

tau_2_1=b_2_1/(R_u*T_K)<br />

tau_1_2=b_1_2/(R_u*T_K)<br />

gamma_2=exp((x_1**2*(tau_1_2*((exp(−(alpha<br />

$ *tau_1_2))/(x_2+x_1*exp(−(alpha*tau_1_2))))<br />

$ )**2+(tau_2_1*(exp(−(alpha*tau_2_1))/(x_1+x_2<br />

$ *exp(−(alpha*tau_2_1)))**2)))))<br />

gamma_1=exp((x_2**2*(tau_2_1*((exp(−(alpha<br />

$ *tau_2_1))/(x_1+x_2*exp(−(alpha*tau_2_1))))<br />

$ )**2+(tau_1_2*(exp(−(alpha*tau_1_2))/(x_2+x_1<br />

$ *exp(−(alpha*tau_1_2)))**2)))))<br />

c<br />

P_sat_1=P_sat(4)<br />

P_sat_2=P_sat(8)<br />

c<br />

y_2_new=gamma_2*P_sat_2*x_2/P_system<br />

y_1_new=gamma_1*P_sat_1*x_1/P_system<br />

C<br />

RES(9)=y_2−y_2_new<br />

RES(10)=y_1−y_1_new<br />

c<br />

RES(11)=x_2−ZA(1)<br />

RES(12)=y_2−ZA(2)<br />

RES(13)=a_2_1−ZA(3)<br />

RES(14)=x_2−ZC(3)<br />

RES(15)=y_2−ZC(4)<br />

c<br />

40/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).LT.−1D−10) GOTO 550<br />

IF (MDOT(4).GT.1D−10) GOTO 550<br />

IF (MDOT(5).LT.−1D−10) GOTO 550<br />

IF (MDOT(6).GT.1D−10) GOTO 550<br />

IF (MDOT(7).LT.−1D−10) GOTO 550<br />

IF (MDOT(8).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Dis<strong>til</strong>lation stage for a dis<strong>til</strong>lation column. A column<br />

$ can consist of several stages in series. The dis<strong>til</strong>lation<br />

$ stage calculates VLE (vapor liquid equilibrium) between water<br />

$ and methanol. The component can be used for dis<strong>til</strong>lation of<br />

$ other media by changing 3 constants in the source code. The<br />

$ method is NRTL (Non Random Two Liquid). Can only be used with<br />

$ real fluids. The pressure is assigned in node 10 − not in the<br />

$ seperate nodes’<br />

K_BET =’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\<br />

$\\dot{m}_3 \\gt 0 \\\\ \\dot{m}_4 \\lt 0 \\\\ \\dot{m}_5 \\gt 0 \\<br />

$\\ \\dot{m}_6 \\lt 0 \\\\ \\dot{m}_7 \\gt 0 \\\\ \\dot{m}_8 \\lt 0<br />

$$’<br />

KMEDDS(1) = ’Liquid water inlet’<br />

KMEDDS(2) = ’Liquid water outlet’<br />

KMEDDS(3) = ’Water vapor inlet’<br />

KMEDDS(4) = ’Water vapor outlet’<br />

KMEDDS(5) = ’Liquid methanol inlet’<br />

KMEDDS(6) = ’Liquid methanol outlet’<br />

KMEDDS(7) = ’Methanol vapor inlet’<br />

KMEDDS(8) = ’Methanol vapor outlet’<br />

KMEDDS(9) = ’Heat’<br />

KMEDDS(10) = ’Pressure in system’<br />

KMEDDS(11) = ’Temperature of system’<br />

KMEDDS(12) = ’Molar fraction of methanol in the liquid phase’<br />

KMEDDS(13) = ’Molar fraction of methanol in the gas phase’<br />

K_INP= ’struc Dis_stage_1 DISTILLATION_STAGE 701 707 705 703 702<br />

$708 /\\\\ 706 704 343 906 907 908 909 0 0\\\\<br />

$addco q Dis_stage_1 343 0 ZC 906 1\\\\<br />

$addco tsat 701 80 x Dis_stage_1 701 0 m Dis_stage_1 701 1\\\\<br />

$addco tsat 705 70 x Dis_stage_1 705 1 m Dis_stage_1 705 1\\\\<br />

$addco tsat 702 80 x Dis_stage_1 702 0 m Dis_stage_1 702 1\\\\<br />

$addco tsat 706 70 x Dis_stage_1 706 1 m Dis_stage_1 706 1\\\\<br />

$start m Dis_stage_1 707 −1 m Dis_stage_1 708 −1\\\\<br />

$start x Dis_stage_1 708 0 x Dis_stage_1 703 1 x Dis_stage_1 704 1<br />

$\\\\START ZC 907 83’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE EL_MOTOR(KOMTY,ANTLK,ANTKN,ANTPK,<br />

& MEDIE,PAR,Q,E,WK,<br />

& RES,komdsc,k_par,kmedds,k_lig,k_bet,k_inp)<br />

C***********************************************************************<br />

C<br />

C EL−MOTOR is a component that converts electrical power to mechanical<br />

C power and a heat loss. The efficiency is a parameter to the component.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

41/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN,ANTPK, MEDIE(3)<br />

DOUBLE PRECISION RES(1), PAR(1),Q,E,WK<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

DOUBLE PRECISION virk<br />

CHARACTER*100 K_PAR(1)<br />

CHARACTER*500 K_LIG(1), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(3)<br />

EXTERNAL COMINF<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’EL−MOTOR’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’EL−MOTOR’<br />

ANTKN = 3<br />

ANTPK = 1<br />

ANTLK = 1<br />

MEDIE(1) = power$<br />

MEDIE(2) = HEAT$<br />

MEDIE(3) = SHAFT$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

42/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

Virk = PAR(1)<br />

RES(1) = WK/E + virk<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (E.LT.−1D−10) GOTO 450<br />

IF (WK.GT.1D−10) GOTO 450<br />

GOTO 9999<br />

450 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Motor with efficiency.’<br />

K_PAR(1) = ’Motor efficiency, $\\eta_{m}$ [−]’<br />

K_LIG(1) = ’Motor efficiency:<br />

$$\\eta_m=\\frac{\\dot{W}}{\\dot{E}}$’<br />

K_BET = ’$\\dot{E}\\gt 0 \\\\ \\dot{W} \\lt 0 \\\\<br />

$\\dot{Q} \\lt 0 $’<br />

KMEDDS(1) = ’Power in’<br />

KMEDDS(2) = ’Heat loss’<br />

KMEDDS(3) = ’Sh<strong>af</strong>t power’<br />

k_inp=’struc El−motor EL−MOTOR 203 319 101 0.95\\\\<br />

$addco e El−motor 203 100\\\\<br />

$start q El−motor 319 −1’<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE SPLITTER2(KOMTY,ANTLK,ANTKN,ANTM1,MEDIE,ANTME,<br />

$ VARME,MDOT,P,H,RES,MMVAR,komdsc,kmedds,k_lig,k_bet,<br />

$ k_inp)<br />

C***********************************************************************<br />

C<br />

C SPLITTER2 is splitting one mass flow in to a variable number of<br />

C flows. The outlets have the same enthalpy. Only the pressure in node<br />

C 2 is set. This is done so the seperated flows can be mixed again<br />

C (gathered in one node) without having pressure seperaters (like compressors).<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

43/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN, MEDIE(30),<br />

& ANTM1, ANTME, VARME(30), MMVAR(MAXMM)<br />

DOUBLE PRECISION RES(30), H(30), MDOT(30), P(30)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER I,M_nr,RES_nr<br />

DOUBLE PRECISION M<br />

CHARACTER*100 K_PAR(1)<br />

CHARACTER*500 K_LIG(3), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(4)<br />

EXTERNAL COMINF<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SPLITTER2’<br />

MMVAR(1) = 10<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SPLITTER2’<br />

ANTKN = MMVAR(1)<br />

ANTLK = MMVAR(1)−1<br />

ANTM1 = MMVAR(1)<br />

DO I=1,MMVAR(1)<br />

MEDIE(I) = ANYFLU$<br />

ENDDO<br />

ANTME = MMVAR(1)<br />

DO I=1,ANTME<br />

VARME(I) = NODE1$<br />

ENDDO<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

C Pressure balance<br />

C<br />

RES(1) = P(1) − P(2)<br />

C<br />

C Same enthalpies on the outlets<br />

C<br />

M=0D0<br />

DO I=2,ANTKN<br />

if (MDOT(I).lt.M) then<br />

M_nr=I<br />

M=MDOT(I)<br />

endif<br />

ENDDO<br />

C<br />

RES_nr=2<br />

44/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

DO I=2,ANTKN<br />

if (I.ne.M_nr) then<br />

RES(RES_nr) = H(1) − H(I)<br />

RES_nr=RES_nr+1<br />

endif<br />

ENDDO<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

C<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

DO I=1,ANTKN−1<br />

IF (MDOT(I+1).GT.1D−10) GOTO 550<br />

ENDDO<br />

IF (abs(H(M_nr)−H(1)).GT.1D−1) GOTO 550<br />

C<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Flow splitter − variable number of outlets<br />

$ for splitting up and later re−uniting the massflow − this<br />

$ means that only the pressure in node 2 is set.This<br />

$ documentation is for 3 outlets.’<br />

K_LIG(1) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(2) = ’Equal enthalpy of outlets: $h_1 = h_2$’<br />

K_LIG(3) = ’Equal enthalpy of outlets: $h_1 = h_3$’<br />

K_BET = ’$\\dot{m}_1\\gt 0 \\\\ \\dot{m}_2\\lt 0<br />

$\\\\ \\dot{m}_3\\lt 0 \\\\ \\dot{m}_4\\lt 0$’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

KMEDDS(3) = ’Fluid out’<br />

KMEDDS(4) = ’Fluid out’<br />

k_inp= ’struc split splitter2 4 1 2 3 4\\\\<br />

$media 1 SIMPLE_AIR\\\\<br />

$addco m split 1 10 t split 1 50 p 1 1\\\\<br />

$addco m split 2 −3 m split 3 −3\\\\<br />

$addco p 3 1 p 4 1\\\\<br />

$start t split 2 50 t split 3 50’<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE SPLITTER3(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,PAR,MDOT,P,H,RES,komdsc,k_par,kmedds,k_lig,k_bet,k_inp<br />

$ )<br />

C***********************************************************************<br />

C<br />

C SPLITTER is splitting one mass flow in two. The two outlets have the<br />

C same enthalpy.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

45/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN,ANTPK, MEDIE(3),<br />

& ANTM1, ANTME, VARME(3)<br />

DOUBLE PRECISION RES(4), H(3), MDOT(3), P(3),PAR(1)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3),I<br />

CHARACTER*100 K_PAR(1),K_STAT(1)<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*500 K_LIG(3), K_BET<br />

CHARACTER*100 KMEDDS(3)<br />

EXTERNAL COMINF<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SPLITTER3’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SPLITTER3’<br />

ANTKN = 3<br />

ANTPK = 1<br />

ANTLK = 4<br />

ANTM1 = 3<br />

MEDIE(1) = ANYFLU$<br />

MEDIE(2) = ANYFLU$<br />

MEDIE(3) = ANYFLU$<br />

ANTME = 3<br />

DO I=1,ANTME<br />

VARME(I) = NODE1$<br />

ENDDO<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

C Same enthalpies on the two outlets<br />

C<br />

RES(1) = H(1) − H(3)<br />

C<br />

C Pressure balance<br />

C<br />

RES(2) = P(1) − P(2)<br />

46/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

RES(3) = P(1) − P(3)<br />

RES(4) = MDOT(1)*PAR(1) + MDOT(2)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Flow splitter. The distribution of the inlet massflow<br />

$ between the outlets is set by the parameter.’<br />

K_PAR(1) = ’Fraction: $\\frac{−\\dot{m_2}}{\\dot{m_1}}$’<br />

K_LIG(1) = ’Equal enthalpy of outlets: $h_2 = h_3$’<br />

K_LIG(2) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(3) = ’Equal pressures: $p_1 = p_3$’<br />

K_BET =<br />

$ ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\ \\dot{m}_3<br />

$\\lt 0 $’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

KMEDDS(3) = ’Fluid out’<br />

k_inp= ’struc split splitter3 1 2 3 0.4\\\\<br />

$media 1 SIMPLE_AIR\\\\<br />

$addco m split 1 10 t split 1 50 p 1 1\\\\<br />

$START M split 2 −4 t split 2 50’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C<br />

C=======================================================================<br />

C**********************************************************************<br />

SUBROUTINE MIXER_03(KOMTY,ANTLK,ANTKN,ANTM1, MEDIE,ANTME,VARME<br />

$ ,ANTEL, VAREL,MDOT,P,RES,X_J,komdsc,k_lig,k_bet,kmedds,k_inp<br />

$ ,MMVAR)<br />

C**********************************************************************<br />

C<br />

C MIXER_01 mixes two gasses. Same pressure in all nodes.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA X_J − INPUT − Fluid composition.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters for the component.<br />

CA ANTLK − OUTPUT − Number of equations in the component.<br />

CA ANTEX − OUTPUT − Number of independent equations in the component.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean :<br />

47/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA −4 : Any gas<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA VARME − OUTPUT − Pointer to fluid numbers (with variable composition).<br />

CA ANTEL − OUTPUT − Number of computed compounds in these variable fluids.<br />

CA VAREL − OUTPUT − Compound numbers in variable fluids.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL XMIX Composition of the mixture.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

C<br />

48/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C MIXER<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994 (Niels Emsholm 1991)<br />

CP Lab. for Energetics, DTH, Denmark.<br />

C***********************************************************************<br />

C<br />

C Including the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN, MEDIE(10),<br />

: ANTM1, ANTME, VARME(1), ANTEL(1),<br />

: VAREL(ANTST,1),MMVAR(MAXMM)<br />

DOUBLE PRECISION X_J(MAXME,ANTST), RES(60), MDOT(10), P(10)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER I,J,MAXKN<br />

DOUBLE PRECISION XMIX(ANTST),T_SUM,M_BL(10),N(ANTST,10)<br />

$ ,N_total(ANTST)<br />

CHARACTER*500 K_LIG(40), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(3)<br />

EXTERNAL COMINF,MIXER<br />

INCLUDE ’THERPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’MIXER_03’<br />

MMVAR(1) = 10<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’MIXER_03’<br />

ANTKN = MMVAR(1)<br />

ANTLK = MMVAR(1)+37<br />

ANTM1 = MMVAR(1)<br />

DO I=1,MMVAR(1)<br />

MEDIE(I) = ANYGAS$<br />

ENDDO<br />

ANTME = 1<br />

VARME(1) = −MMVAR(1)<br />

ANTEL(1) = 38<br />

DO I=1,36<br />

VAREL(I,1) = I<br />

ENDDO<br />

VAREL(37,1) = 38<br />

VAREL(38,1) = 39<br />

IF (FKOMP.EQ.6) GOTO 600<br />

*** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws, since these are treated<br />

C automatically by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

DO J=1, ANTKN−1<br />

M_BL(J) = 0.D0<br />

ENDDO<br />

DO J=1, ANTKN−1<br />

DO I=1, ANTST<br />

M_BL(J) = M_BL(J) + X_J(MEDIE(J),I)*M_MOL(I)<br />

N_total(I)=0<br />

49/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

ENDDO<br />

ENDDO<br />

T_SUM = 0D0<br />

DO J=1, ANTKN−1<br />

DO I=1, ANTST<br />

N(I,J) = X_J(MEDIE(J),I)*MDOT(J)/M_BL(J)<br />

N_total(I)=N_total(I)+N(I,J)<br />

T_SUM = T_SUM + N(I,J)<br />

ENDDO<br />

ENDDO<br />

C<br />

C Find mole ratios in mixture<br />

C<br />

DO I=1, ANTST<br />

XMIX(I) = N_total(I)/T_SUM<br />

ENDDO<br />

C<br />

C Pressure balance<br />

C<br />

DO J=1, ANTKN−1<br />

RES(J) = P(1) − P(J+1)<br />

ENDDO<br />

C<br />

C Variable mole ratios<br />

C<br />

DO I=1,36<br />

RES(ANTKN−1+I) = X_J(MEDIE(ANTKN),I) − XMIX(I)<br />

ENDDO<br />

RES(ANTKN+36) = X_J(MEDIE(ANTKN),38) − XMIX(38)<br />

RES(ANTKN+37) = X_J(MEDIE(ANTKN),39) − XMIX(39)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

DO J=1, ANTKN−1<br />

IF (MDOT(J).LT.−1D−10) GOTO 550<br />

ENDDO<br />

IF (MDOT(ANTKN).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’Mixer for ideal gases with variable number of inlet<br />

$ massflows. The documentation is for 2 inlets.’<br />

K_BET =<br />

$ ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\gt 0 \\\\<br />

$\\dot{m}_3 \\lt 0$’<br />

KMEDDS(1) = ’Gas in’<br />

KMEDDS(2) = ’Gas in’<br />

KMEDDS(3) = ’Gas mix out’<br />

K_INP = ’struc mixer mixer_03 3 1 2 3\\\\<br />

$media 1 SIMPLE_AIR 2 METHANE 3 mix\\\\<br />

$addco m mixer 1 10 t mixer 1 110 p 1 1\\\\<br />

$addco m mixer 2 1 t mixer 2 60\\\\<br />

$START Y_J mix O2 0.17 Y_J mix N2 0.66 Y_J mix CH4 0.15’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE PRES_SEP(KOMTY,ANTLK,ANTKN,ANTM1,<br />

& MEDIE,ANTME,VARME,<br />

& MDOT,P,RES,komdsc,kmedds,k_lig,k_bet,k_inp)<br />

C***********************************************************************<br />

C<br />

C ADDANODE is used when a component otherwise would get the same node<br />

C connected to two different branches. This model puts on an extra<br />

C mass, pressure, and energy balance so that an extra node is added.<br />

50/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTED − OUTPUT − Number of differential independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA DYCOM − OUTPUT − Type of conservation equations (static or dynamic<br />

CA mass and internal energy on side 1 and 2 respectively;<br />

CA and dynamic solid internal energy).<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTKN, MEDIE(2),<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION RES(1), P(2), MDOT(2)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(2)<br />

CHARACTER*100 K_PAR(1),K_STAT(1)<br />

CHARACTER*500 K_LIG(1), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(2)<br />

EXTERNAL COMINF<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’PRES_SEP’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’PRES_SEP’<br />

ANTKN = 2<br />

ANTLK = 0<br />

ANTM1 = 2<br />

MEDIE(1) = ANYFLU$<br />

51/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

MEDIE(2) = ANYFLU$<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

C Pressure balance<br />

C<br />

c RES(1) = P(1) − P(2)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 450<br />

IF (MDOT(2).GT.1D−10) GOTO 450<br />

GOTO 9999<br />

450 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>ity component for seperating nodes which both have<br />

$ assigned the pressure. Can also be used as a throttle valve.’<br />

K_BET = ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0$’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

k_INP=’struc dummy PRES_SEP 1 2\\\\<br />

$media 1 STEAM\\\\<br />

$addco m dummy 1 1 t dummy 1 50 p 1 1 p 2 1’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE SET_X(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,MDOT,P,H,ZC,PAR,RES,X_J,KOMDSC,K_PAR,K_lig,K_bet<br />

$ ,KMEDDS,K_inp)<br />

C***********************************************************************<br />

C<br />

C SETFLOW1 is a model of a control valve. The valve controls massflow<br />

C using an error input from a controller.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA ZC − INPUT − Control variables.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

52/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA MEDIE − IN/OUT − Media of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA 999 : Control.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL CV Valve friction coefficient.<br />

CL V1 Specific volume for water entering the valve.<br />

CL T Temperature.<br />

CL S Entropy.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(3), ANTPK,<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION MDOT(2), P(2), H(2), RES(3), ZC(1),PAR(2)<br />

$ ,X_J(MAXME,ANTST)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3),temp<br />

DOUBLE PRECISION MAXF,maxp<br />

CHARACTER*100 K_PAR(1),K_STAT(2)<br />

CHARACTER*500 K_LIG(2), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(3)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SET_X’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SET_X’<br />

ANTKN = 3<br />

ANTPK = 1<br />

ANTLK = 2<br />

ANTM1 = 2<br />

MEDIE(1) = ANYGAS$<br />

MEDIE(2) = ANYGAS$<br />

MEDIE(3) = 999<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

53/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

C<br />

400 CONTINUE<br />

temp=PAR(1)<br />

RES(1) = P(1) − P(2)<br />

RES(2) = X_J(MEDIE(1),temp)−ZC(1)<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>ity component for setting the molar fraction of a<br />

$ compund in a ideal gas mixture.’<br />

K_BET = ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\lt 0 $’<br />

K_PAR(1) = ’Compound number ($H_2$ is 1)’<br />

KMEDDS(1) = ’Gas in’<br />

KMEDDS(2) = ’Gas out’<br />

KMEDDS(3) = ’Molar fraction of compound’<br />

K_INP=’struc set−X_H2 SET_X 611 612 900 1\\\\<br />

$MEDIA 611 gas\\\\<br />

$fluid gas N2 0.6 H2 0.4\\\\<br />

$addco m set−X_H2 611 1 t set−X_H2 611 50 p 611 1’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE SET_X_REALFLUID(KOMTY,ANTLK,ANTEX,ANTKN,ANTPK,ANTM1,<br />

& ANTM2,MEDIE,ANTME,VARME,<br />

& MDOT,P,H,Q,ZA,ZC,PAR,RES,PARNAM,ZANAM,<br />

$ KOMDSC,KMEDDS,K_PAR,K_LIG,K_STAT,K_BET,k_inp)<br />

C***********************************************************************<br />

C<br />

C HEATEX_1 is a model of a heat exchanger.<br />

C The model does not include equations concerning the heat exchange.<br />

C 1−2 is the heat emitting fluid.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA ANTM2 − OUTPUT − Number of massflows in the second.<br />

CA MEDIE − IN/OUT − Media (fluid) of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

54/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C<br />

CL T1,T2 Temperature in first and second node.<br />

CL T3,T4 Temperature in third and fourth node.<br />

CL S Entropy.<br />

CL V Specific volume.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL DPA,DPB Pressure loss in heat exchanger.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C STATES<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

INCLUDE ’REALPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(5), ANTPK,<br />

& ANTM1, ANTM2, ANTME, VARME(4)<br />

DOUBLE PRECISION RES(6),MDOT(4),P(4),H(4),PAR(2),Q,ZA(2),ZC(2)<br />

CHARACTER*80 KOMTY,PARNAM(2),ZANAM(2)<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(5)<br />

DOUBLE PRECISION T1, T2, T3, T4, V, X, S, U, DPA, DPB<br />

CHARACTER*100 K_PAR(2),K_STAT(1)<br />

CHARACTER*500 K_LIG(3), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(5)<br />

EXTERNAL STATES<br />

INCLUDE ’REALPROP.INI’<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SET_X_REALFLUID’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SET_X_REALFLUID’<br />

ANTKN = 5<br />

ANTPK = 2<br />

ANTLK = 4<br />

ANTEX = 2<br />

ANTM1 = 2<br />

ANTM2 = 2<br />

MEDIE(1) = REALFL$<br />

MEDIE(2) = REALFL$<br />

MEDIE(3) = REALFL$<br />

MEDIE(4) = REALFL$<br />

MEDIE(5) = 999<br />

ANTME = 4<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

VARME(3) = NODE3$<br />

VARME(4) = NODE3$<br />

PARNAM(1) = ’Pressure loss side 1’<br />

PARNAM(2) = ’Pressure loss side 2’<br />

ZANAM(1) = ’Flu 2 mass−%’<br />

ZANAM(2) = ’Flu 2 vol−%’<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

55/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

DPA = PAR(1)<br />

DPB = PAR(2)<br />

C<br />

C Pressure losses<br />

C<br />

RES(1) = P(1) − P(2) − DPA<br />

RES(2) = P(3) − P(4) − DPB<br />

C<br />

RES(3) = ZA(1) − MDOT(3)/(MDOT(3)+MDOT(1))<br />

RES(4) = ZA(2) − (MDOT(3)/RM_MOL(MEDIE(3)))/(MDOT(3)<br />

$ /RM_MOL(MEDIE(3))+MDOT(1)/RM_MOL(MEDIE(1)))<br />

RES(5) = ZA(2)−ZC(1)<br />

C<br />

RES(6) = H(1) − H(2)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

IF (MDOT(3).LT.−1D−10) GOTO 550<br />

IF (MDOT(4).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>lity component for setting the molar fraction of<br />

$ fluid 2 (fluid 1 and 2 are considered as a mixture).’<br />

K_PAR(1) = ’Pressure loss side 1, $\\Delta p_{12}$ [bar]’<br />

K_PAR(2) = ’Pressure loss side 2, $\\Delta p_{34}$ [bar]’<br />

K_BET = ’$\\dot{m}_1 \\gt 0 \\\\ \\dot{m}_2 \\lt 0 \\\\<br />

$\\dot{m}_3 \\gt 0 \\\\ \\dot{m}_4 \\lt 0 $’<br />

KMEDDS(1) = ’Fluid 1 inlet’<br />

KMEDDS(2) = ’Fluid 1 outlet’<br />

KMEDDS(3) = ’Fluid 2 inlet’<br />

KMEDDS(4) = ’Fluid 2 outlet’<br />

KMEDDS(5) = ’molar fraction of fluid 2’<br />

K_INP= ’struc set−x SET_X_REALFLUID 691 693 692 694 908 0 0\\\\<br />

$MEDIA 691 STEAM−HF 692 METHANOL\\\\<br />

$addco p 691 1 p 692 1\\\\<br />

$addco m set−x 691 1 t set−x 691 80 t set−x 692 80\\\\<br />

$addco ZC 908 0.36\\\\<br />

$start t set−x 693 60 m set−x 692 1’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C=======================================================================<br />

C***********************************************************************<br />

SUBROUTINE MEASURE_FLOW(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,MDOT,P,H,ZC,PAR,RES,KOMDSC,KMEDDS,K_LIG,K_BET,k_inp)<br />

C***********************************************************************<br />

C<br />

C SETFLOW1 is a model of a control valve. The valve controls massflow<br />

C using an error input from a controller.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

56/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA ZC − INPUT − Control variables.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA 999 : Control.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL CV Valve friction coefficient.<br />

CL V1 Specific volume for water entering the valve.<br />

CL T Temperature.<br />

CL S Entropy.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(3), ANTPK,<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION MDOT(2), P(2), H(2), RES(3), ZC(1), PAR(2)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3)<br />

DOUBLE PRECISION MAXF,maxp<br />

CHARACTER*100 K_PAR(1),K_STAT(2)<br />

CHARACTER*500 K_LIG(2), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(3)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’MEASURE_FLOW’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’MEASURE_FLOW’<br />

ANTKN = 3<br />

ANTPK = 0<br />

ANTLK = 2<br />

ANTM1 = 2<br />

57/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

MEDIE(1) = ANYFLU$<br />

MEDIE(2) = ANYFLU$<br />

MEDIE(3) = 999<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

RES(1) = P(1) − P(2)<br />

RES(2) = ZC(1) − MDOT(1)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>lity component for converting a massflow to a<br />

$ control signal (ZC). Could be used with the component<br />

$ SET_FLOW’<br />

K_LIG(1) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(2) = ’Massflow: $\\dot{m_1} = ZC(1)$’<br />

K_BET = ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\lt 0 $’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

KMEDDS(3) = ’Measured massflow’<br />

K_INP=’struc meas_flow MEASURE_FLOW 635 636 990\\\\<br />

$MEDIA 635 STEAM\\\\<br />

$addco t meas_flow 635 50 m meas_flow 635 1 p 635 1’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C***********************************************************************<br />

SUBROUTINE SET_FLOW(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,MDOT,P,H,ZC,PAR,RES,KOMDSC,K_PAR,K_lig,K_bet,KMEDDS<br />

$ ,K_inp)<br />

C***********************************************************************<br />

C<br />

C SETFLOW1 is a model of a control valve. The valve controls massflow<br />

C using an error input from a controller.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA ZC − INPUT − Control variables.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

58/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA 999 : Control.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL CV Valve friction coefficient.<br />

CL V1 Specific volume for water entering the valve.<br />

CL T Temperature.<br />

CL S Entropy.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(4), ANTPK,<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION MDOT(2), P(2), H(2), RES(3), ZC(2), PAR(2)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3)<br />

DOUBLE PRECISION MAXF,maxp<br />

CHARACTER*100 K_PAR(1),K_STAT(2)<br />

CHARACTER*500 K_LIG(2), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(4)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SET_FLOW’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SET_FLOW’<br />

ANTKN = 4<br />

ANTPK = 0<br />

ANTLK = 2<br />

ANTM1 = 2<br />

MEDIE(1) = ANYFLU$<br />

MEDIE(2) = ANYFLU$<br />

MEDIE(3) = 999<br />

MEDIE(4) = 999<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

59/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

RES(1) = P(1) − P(2)<br />

RES(2) = ZC(1)*ZC(2) − MDOT(1)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>lity component for setting the massflow based on 2<br />

$ control signals (ZC) − typicly one control signal for a<br />

$ measured massflow and the other a fraction. The component<br />

$ MEASURE_FLOW can be used.’<br />

K_LIG(1) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(2) = ’Massflow: $\\dot{m_1} = ZC(1)*ZC(2)$’<br />

K_BET = ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\lt 0 $’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

KMEDDS(3) = ’Measured massflow’<br />

KMEDDS(4) = ’Fraction’<br />

K_INP=’STRUC Flow SET_FLOW 2 3 900 901\\\\<br />

$MEDIA 2 STEAM\\\\<br />

$addco t Flow 2 50 p 2 1 m Flow 2 10\\\\<br />

$addco ZC 901 2\\\\<br />

$START ZC 901 2’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C***********************************************************************<br />

SUBROUTINE SET_TEMP(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,MDOT,P,H,ZC,PAR,RES,KOMDSC,K_PAR,K_lig,K_bet,KMEDDS<br />

$ ,K_inp)<br />

C***********************************************************************<br />

C<br />

C SETFLOW1 is a model of a control valve. The valve controls massflow<br />

C using an error input from a controller.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA ZC − INPUT − Control variables.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media of the connected nodes.<br />

60/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA 999 : Control.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL CV Valve friction coefficient.<br />

CL V1 Specific volume for water entering the valve.<br />

CL T Temperature.<br />

CL S Entropy.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(4), ANTPK,<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION MDOT(2), P(2), H(2), RES(3), ZC(2), PAR(2)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3)<br />

DOUBLE PRECISION MAXF,maxp,T,V,S,X,U<br />

CHARACTER*100 K_PAR(1),K_STAT(2)<br />

CHARACTER*500 K_LIG(2), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(4)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SET_TEMP’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SET_TEMP’<br />

ANTKN = 3<br />

ANTPK = 0<br />

ANTLK = 2<br />

ANTM1 = 2<br />

MEDIE(1) = ANYFLU$<br />

MEDIE(2) = ANYFLU$<br />

MEDIE(3) = 999<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

61/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

RES(1) = P(1) − P(2)<br />

C<br />

CALL STATES(P(1),H(1),T,V,S,X,U,1,2,MEDIE(1))<br />

C<br />

RES(2) = ZC(1) − T<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>lity component for setting or measuring the<br />

$ temperature by use of a control signal (ZC).’<br />

K_LIG(1) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(2) = ’Temperature: T = ZC(1)’<br />

K_BET = ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\lt 0 $’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

KMEDDS(3) = ’Temperature’<br />

K_INP=’struc set_temp SET_TEMP 1 2 900\\\\<br />

$media 1 STEAM\\\\<br />

$addco p 1 1 m set_temp 1 60 t set_temp 1 60’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C***********************************************************************<br />

SUBROUTINE SET_TEMP2(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,MDOT,P,H,ZC,PAR,RES,KOMDSC,K_PAR,K_lig,K_bet,KMEDDS<br />

$ ,K_inp)<br />

C***********************************************************************<br />

C<br />

C SETFLOW1 is a model of a control valve. The valve controls massflow<br />

C using an error input from a controller.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA ZC − INPUT − Control variables.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA 999 : Control.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL CV Valve friction coefficient.<br />

CL V1 Specific volume for water entering the valve.<br />

CL T Temperature.<br />

62/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CL S Entropy.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(4), ANTPK,<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION MDOT(2), P(2), H(2), RES(3), ZC(2), PAR(2)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3)<br />

DOUBLE PRECISION MAXF,maxp,T,V,S,X,U<br />

CHARACTER*100 K_PAR(1),K_STAT(2)<br />

CHARACTER*500 K_LIG(2), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(4)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SET_TEMP2’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SET_TEMP2’<br />

ANTKN = 4<br />

ANTPK = 0<br />

ANTLK = 2<br />

ANTM1 = 2<br />

MEDIE(1) = ANYFLU$<br />

MEDIE(2) = ANYFLU$<br />

MEDIE(3) = 999<br />

MEDIE(4) = 999<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

RES(1) = P(1) − P(2)<br />

C<br />

CALL STATES(P(1),H(1),T,V,S,X,U,1,2,MEDIE(1))<br />

C<br />

RES(2) = ZC(1)+ZC(2) − T<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

63/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>lity component for setting the<br />

$ temperature by use of 2 control signals (ZC).’<br />

K_LIG(1) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(2) = ’Temperature: T = ZC(1)+ZC(2)’<br />

K_BET = ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\lt 0 $’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

KMEDDS(3) = ’Temperature’<br />

KMEDDS(4) = ’Temperature difference’<br />

K_INP=’struc set_temp SET_TEMP2 1 2 900 901\\\\<br />

$media 1 STEAM\\\\<br />

$addco p 1 1 m set_temp 1 60\\\\<br />

$addco ZC 900 50 ZC 901 −10\\\\<br />

$start t set_temp 1 60’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C***********************************************************************<br />

SUBROUTINE SET_PRES(KOMTY,ANTLK,ANTKN,ANTPK,ANTM1,MEDIE,ANTME<br />

$ ,VARME,MDOT,P,H,ZC,PAR,RES,KOMDSC,KMEDDS,K_LIG,K_BET,k_inp)<br />

C***********************************************************************<br />

C<br />

C SETFLOW1 is a model of a control valve. The valve controls massflow<br />

C using an error input from a controller.<br />

C<br />

C***********************************************************************<br />

C<br />

CA FKOMP − INPUT − Flag with the value:<br />

CA 1: Initialize the component.<br />

CA 2: Initialize with actual system.<br />

CA 3: Fluid composition calculation (constant).<br />

CA 4: Find residuals.<br />

CA 5: Find residuals and check variables.<br />

CA 6: Output information about component.<br />

CA MDOT − INPUT − Massflows from nodes.<br />

CA P − INPUT − Pressure in nodes.<br />

CA H − INPUT − Enthalpy of massflows.<br />

CA ZC − INPUT − Control variables.<br />

CA PAR − INPUT − Parameters of the component.<br />

CA KOMTY − OUTPUT − Component name.<br />

CA ANTPK − OUTPUT − Number of parameters.<br />

CA ANTLK − OUTPUT − Number of equations.<br />

CA ANTEX − OUTPUT − Number of algebraic independent equations.<br />

CA ANTKN − OUTPUT − Number of nodes connected to the component.<br />

CA ANTM1 − OUTPUT − Number of massflows in the first conservation of<br />

CA mass equation.<br />

CA MEDIE − IN/OUT − Media of the connected nodes.<br />

CA The values mean:<br />

CA 99 : Water.<br />

CA 999 : Control.<br />

CA ANTME − OUTPUT − Number of fluids with variable composition.<br />

CA RES − OUTPUT − Residuals for the component.<br />

C<br />

CL CV Valve friction coefficient.<br />

CL V1 Specific volume for water entering the valve.<br />

CL T Temperature.<br />

CL S Entropy.<br />

CL X Quality.<br />

CL U Internal energy.<br />

CL K_PAR Parameter description.<br />

CL K_LIG Equation description.<br />

64/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

CL K_BET Condition description.<br />

CL K_MED Media description.<br />

C<br />

C Subroutines : STATES<br />

C COMINF<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTU, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment"<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER ANTLK, ANTEX, ANTKN, MEDIE(3), ANTPK,<br />

& ANTM1, ANTME, VARME(2)<br />

DOUBLE PRECISION MDOT(2), P(2), H(2), RES(3), ZC(1), PAR(2)<br />

CHARACTER*80 KOMTY<br />

C<br />

C Local variables<br />

C<br />

INTEGER K_MED(3)<br />

DOUBLE PRECISION MAXF,maxp<br />

CHARACTER*100 K_PAR(1),K_STAT(2)<br />

CHARACTER*500 K_LIG(2), K_BET<br />

CHARACTER*1000 KOMDSC,K_INP<br />

CHARACTER*100 KMEDDS(3)<br />

EXTERNAL COMINF,STATES<br />

C=======================================================================<br />

GOTO (100,200,1,400,400,200) FKOMP<br />

1 RETURN<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component name<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

100 CONTINUE<br />

KOMTY = ’SET_PRES’<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component characteristics<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

200 CONTINUE<br />

KOMTY = ’SET_PRES’<br />

ANTKN = 3<br />

ANTPK = 0<br />

ANTLK = 2<br />

ANTM1 = 2<br />

MEDIE(1) = ANYFLU$<br />

MEDIE(2) = ANYFLU$<br />

MEDIE(3) = 999<br />

ANTME = 2<br />

VARME(1) = NODE1$<br />

VARME(2) = NODE1$<br />

IF (FKOMP.EQ.6) GOTO 600<br />

** FKOMP = 3<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Component equations. All in residual form.<br />

C Do not include the conservation laws. These are treated automatically<br />

C by DNA.<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

400 CONTINUE<br />

C<br />

RES(1) = P(1) − P(2)<br />

RES(2) = ZC(1) − P(1)<br />

C<br />

IF (FKOMP.EQ.5) GOTO 500<br />

GOTO 9999<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Solution check<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

500 CONTINUE<br />

IF (MDOT(1).LT.−1D−10) GOTO 550<br />

IF (MDOT(2).GT.1D−10) GOTO 550<br />

GOTO 9999<br />

550 FBETI = .FALSE.<br />

GOTO 9999<br />

65/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Write component information<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

600 CONTINUE<br />

KOMDSC = ’U<strong>til</strong>lity component for converting the pressure to a<br />

$ control signal (ZC). The component can therefore be used for<br />

$ measuring or setting the pressure’<br />

K_LIG(1) = ’Equal pressures: $p_1 = p_2$’<br />

K_LIG(2) = ’Pressure: $p_1 = ZC(1)$’<br />

K_BET = ’$\\dot{m_1} \\gt 0 \\\\ \\dot{m_2} \\lt 0 $’<br />

KMEDDS(1) = ’Fluid in’<br />

KMEDDS(2) = ’Fluid out’<br />

KMEDDS(3) = ’Pressure’<br />

K_INP=’struc set−pres SET_PRES 635 636 990\\\\<br />

$MEDIA 635 STEAM\\\\<br />

$addco t set−pres 635 50 m set−pres 635 1 p 635 1’<br />

C<br />

GOTO 9999<br />

C<br />

9999 CONTINUE<br />

RETURN<br />

END<br />

C***********************************************************************<br />

SUBROUTINE ENTHALPY(J,T,H)<br />

C***********************************************************************<br />

C<br />

C GIBBS finds Gibbs energy at pressure PRES and tempera−<br />

C ture T. The calculation is based on values for enthalpy and entropy.<br />

C<br />

C***********************************************************************<br />

C<br />

CA J − INPUT − For which compound should Gibbs energy be found.<br />

CA TEMP − INPUT − Temperature used finding Gibbs energy.<br />

CA PRES − INPUT − Pressure<br />

CA G − OUTPUT − Gibbs energy.<br />

C<br />

CL T0 Reference temperature (25 C).<br />

CL T Temperature [K].<br />

CL H_MOL Enthalpy [J/mol].<br />

CL S_MOL Entropy [J/(mol K)].<br />

C<br />

CP Pr<strong>og</strong>rammer : Bent Lorentzen 1994<br />

CP Lab. for Energetics, DTH, Denmark.<br />

C***********************************************************************<br />

C<br />

C Include the common "environment" and thermodynamic properties<br />

C<br />

INCLUDE ’ENVIRO.INI’<br />

CBE INCLUDE ’THERPROP.INI’<br />

INCLUDE ’THERPROP.DEC’<br />

C<br />

C Parameter variables<br />

C<br />

INTEGER J<br />

DOUBLE PRECISION H,T<br />

C<br />

C Local variables<br />

C<br />

DOUBLE PRECISION H_MOL,T0,T00<br />

INTRINSIC DLOG<br />

C<br />

INCLUDE ’THERPROP.INI’<br />

C=======================================================================<br />

T0 = 298.15D0<br />

T00 = 273.15D0<br />

T=T+T00<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

C Find enthalpy using Cp−polynomia<br />

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<br />

H_MOL = AH(J) +<br />

: T*(A(1,J)+T*(A(2,J)/2D0+T*(A(3,J)/3D0+T*(A(4,J)/4D0+T*<br />

: (A(5,J)/5D0+T*(A(6,J)/6D0+T*A(7,J)/7D0)))))) −<br />

: T0*(A(1,J)+T0*(A(2,J)/2D0+T0*(A(3,J)/3D0+T0*(A(4,J)/4D0+<br />

: T0*(A(5,J)/5D0+T0*(A(6,J)/6D0+T0*A(7,J)/7D0))))))<br />

H=H_MOL/m_mol(J)<br />

C<br />

66/67<br />

19−03−2007


<strong>VEnzin</strong>.for<br />

c:/dna/source/<br />

T=T−T00<br />

RETURN<br />

END<br />

C=======================================================================<br />

67/67<br />

19−03−2007


35. Metanol (fluid) <strong>til</strong> DNA – Fortran-kode


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

subroutine METTAB(P,h,t,v,s,X,u,IN1,IN2,EPSVA,IVMAX,fiter,fiter0)<br />

implicit none<br />

integer in1,in2,IVMAX,error,i,in(2),KODE,IMAX,k,file_size,rec_nr<br />

double precision p,h,t,v,s,x,u,T_ref,rho,rho_ref,omega,tau,EPSVA<br />

$ ,omega_g,omega_l,M,rho_start,T_start,f(2),par_file(7,100)<br />

$ ,value_old,value,EPSV,R,P_c,T_c,s_ref,h_formation,rho_star<br />

$ ,T_0C,x_start<br />

l<strong>og</strong>ical fiter,fiter0,fiters,exist_file,equal,iterate_rho_l,con<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

CHARACTER filename*20<br />

R=8.31448d0<br />

s_ref=239.81d0<br />

c J/(K*mol)<br />

P_c=8.1035d0<br />

c MPa<br />

T_c=512.60d0<br />

T_ref=513.380d0<br />

T_0C=273.15d0<br />

c K<br />

rho_ref=0.00878517d0<br />

rho_star=0.00871d0<br />

c mol/cm^3<br />

M=0.03204216d0<br />

c kg/mol<br />

h_formation=−2.013d5<br />

c J/mol<br />

fiters=fiter<br />

EPSV=EPSVA<br />

IMAX=IVMAX<br />

error=0<br />

file_size=40<br />

i=1<br />

if ((in1.eq.1).or.(in2.eq.1)) then<br />

f(i)=p<br />

in(i)=1<br />

i=i+1<br />

p=1.d5*p<br />

endif<br />

if ((in1.eq.2).or.(in2.eq.2)) then<br />

if (abs(h).lt.0.01) h=0.01d0<br />

f(i)=h<br />

in(i)=2<br />

i=i+1<br />

h=1.d3*h*M−h_formation<br />

endif<br />

if ((in1.eq.3).or.(in2.eq.3)) then<br />

f(i)=t<br />

in(i)=3<br />

i=i+1<br />

T=t+T_0C<br />

tau=T_ref/T<br />

endif<br />

if ((in1.eq.4).or.(in2.eq.4)) then<br />

f(i)=v<br />

in(i)=4<br />

i=i+1<br />

rho=1/(v*M)*1.d−6<br />

endif<br />

if ((in1.eq.5).or.(in2.eq.5)) then<br />

if (abs(s).lt.0.001) s=0.001d0<br />

f(i)=s<br />

in(i)=5<br />

i=i+1<br />

s=1.d3*s*M−s_ref<br />

endif<br />

if ((in1.eq.6).or.(in2.eq.6)) then<br />

if (abs(x).lt.1.d−7) x=1.d−7<br />

f(i)=x<br />

in(i)=6<br />

i=i+1<br />

endif<br />

if ((in1.eq.7).or.(in2.eq.7)) then<br />

if (abs(u).lt.0.01) u=0.01d0<br />

f(i)=u<br />

in(i)=7<br />

1/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

u=1.d3*u*M−h_formation<br />

endif<br />

rho_start=rho_star<br />

T_start=T_c−1<br />

value_old=99999<br />

filename=’start_guesses’<br />

INQUIRE(FILE=filename,exist=exist_file)<br />

if (exist_file) then<br />

OPEN(UNIT=2, FILE=filename, STATUS=’old’,ACCESS=’DIRECT’, RECL<br />

$ =8*7)<br />

i=1<br />

1 READ(UNIT=2,REC=i,IOSTAT=KODE) par_file(1,i),par_file(2,i),<br />

$ par_file(3,i),par_file(4,i),par_file(5,i),par_file(6,i)<br />

$ ,par_file(7,i)<br />

if (KODE.eq.0) then<br />

c if (fiters) print*,’ny’,i,’ p=’,par_file(1,i),’ h=’<br />

c $ ,par_file(2,i),’ t=’,par_file(3,i),’ v=’,par_file(4,i),<br />

c $ ’s=’,par_file(5,i),’ x=’,par_file(6,i),’ u=’,par_file(7<br />

c $ ,i),’\n’<br />

con=.true.<br />

if (f(1).eq.0) then<br />

if (par_file(in(1),i).eq.0) then<br />

value=abs(par_file(in(2),i)/f(2)−1)<br />

else<br />

value=abs(par_file(in(1),i)/0.1−1)+<br />

$ abs(par_file(in(2),i)/f(2)−1)<br />

con=.false.<br />

endif<br />

elseif (f(2).eq.0) then<br />

if (par_file(in(2),i).eq.0) then<br />

value=abs(par_file(in(1),i)/f(1)−1)<br />

else<br />

value=abs(par_file(in(1),i)/f(1)−1)+<br />

$ abs(par_file(in(2),i)/0.1−1)<br />

con=.false.<br />

endif<br />

else<br />

value=abs(par_file(in(1),i)/f(1)−1)+<br />

$ abs(par_file(in(2),i)/f(2)−1)<br />

if (in(2).eq.2) then<br />

if (in(1).eq.1) then<br />

value=abs(par_file(in(1),i)/f(1)−1)+<br />

$ abs((par_file(in(2),i)/f(2)−1)*10)<br />

else<br />

value=abs(par_file(in(1),i)/f(1)−1)+<br />

$ abs((par_file(in(2),i)/f(2)−1)*5)<br />

endif<br />

endif<br />

endif<br />

if (((f(1).eq.par_file(in(1),i)).and.(f(2).eq.<br />

$ par_file(in(2),i))).or.((value.lt.1.d−13).and.con))<br />

$ then<br />

p=par_file(1,i)<br />

h=par_file(2,i)<br />

t=par_file(3,i)<br />

v=par_file(4,i)<br />

s=par_file(5,i)<br />

x=par_file(6,i)<br />

u=par_file(7,i)<br />

c print*,’identisk’,i,’ p=’,par_file(1,i),’ h=’,par_file(2<br />

c $ ,i),’ t=’,par_file(3,i),’ v=’,par_file(4,i),’ s=’<br />

c $ ,par_file(5,i),’ x=’,par_file(6,i),’ u=’,par_file(7<br />

c $ ,i),’\n’<br />

goto 3<br />

elseif (value.lt.value_old) then<br />

rho_start=1/(par_file(4,i)*M)*1.d−6<br />

T_start=par_file(3,i)+T_0C<br />

x_start=par_file(6,i)<br />

value_old=value<br />

c if (fiters) print*,’bedre’,i,’ p=’,par_file(1,i),’ h=’<br />

c $ ,par_file(2,i),’ t=’,par_file(3,i),’ v=’,par_file(4<br />

c $ ,i),’ s=’,par_file(5,i),’ x=’,par_file(6,i),’ u=’<br />

c $ ,par_file(7,i),’\n’<br />

endif<br />

if (i.lt.file_size) then<br />

i=i+1<br />

2/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

goto 1<br />

endif<br />

else<br />

i=i−1<br />

endif<br />

else<br />

OPEN(UNIT=2, FILE=filename, STATUS=’new’,ACCESS=’DIRECT’, RECL<br />

$ =8*7)<br />

i=0<br />

endif<br />

omega=rho_start/rho_ref<br />

tau=T_ref/T_start<br />

c if (fiters) print*,’guess’,T_start−T_0C,1/(rho_start*M)*1.d−6<br />

c $ ,value_old<br />

if ((in1.eq.1).and.(in2.eq.2).or.(in1.eq.2).and.(in2.eq.1))<br />

$then<br />

c if (x_start.eq.1.d−7) then<br />

c print*,’x=0’<br />

c omega=rho_star/rho_ref<br />

c call iterer_tau(P,tau,omega,1,error)<br />

c T=T_ref/tau<br />

c x=1.d−7<br />

c call calculate_v(rho,T,x)<br />

c omega=rho/rho_ref<br />

c endif<br />

call iterer_omega_tau(P,h,tau,omega,1,2,error)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.1).and.(in2.eq.3).or.(in1.eq.3).and.(in2.eq.1))<br />

$then<br />

tau=T_ref/T<br />

call iterer_omega(P,tau,omega,1,error)<br />

call calculate_h(h,tau,omega)<br />

rho=omega*rho_ref<br />

call calculate_s(s,tau,omega)<br />

x=100<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.1).and.(in2.eq.4).or.(in1.eq.4).and.(in2.eq.1))<br />

$then<br />

omega=rho/rho_ref<br />

call iterer_tau(P,tau,omega,1,error)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.1).and.(in2.eq.5).or.(in1.eq.5).and.(in2.eq.1))<br />

$then<br />

call iterer_omega_tau(P,s,tau,omega,1,5,error)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.1).and.(in2.eq.6).or.(in1.eq.6).and.(in2.eq.1))<br />

$then<br />

omega=rho_star/rho_ref<br />

call iterer_tau(P,tau,omega,1,error)<br />

T=T_ref/tau<br />

call calculate_v(rho,T,x)<br />

omega=rho/rho_ref<br />

call calculate_h(h,tau,omega)<br />

call calculate_s(s,tau,omega)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.1).and.(in2.eq.7).or.(in1.eq.7).and.(in2.eq.1))<br />

$then<br />

call iterer_omega_tau(P,u,tau,omega,1,7,error)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

3/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

elseif ((in1.eq.2).and.(in2.eq.3).or.(in1.eq.3).and.(in2.eq.2))<br />

$then<br />

tau=T_ref/T<br />

call iterer_omega(h,tau,omega,2,error)<br />

call calculate_P(P,tau,omega)<br />

rho=omega*rho_ref<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.2).and.(in2.eq.4).or.(in1.eq.4).and.(in2.eq.2))<br />

$then<br />

omega=rho/rho_ref<br />

call iterer_tau(h,tau,omega,2,error)<br />

call calculate_P(P,tau,omega)<br />

T=T_ref/tau<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.2).and.(in2.eq.5).or.(in1.eq.5).and.(in2.eq.2))<br />

$then<br />

call iterer_omega_tau(h,s,tau,omega,2,5,error)<br />

call calculate_P(P,tau,omega)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.2).and.(in2.eq.6).or.(in1.eq.6).and.(in2.eq.2))<br />

$then<br />

call iterer_omega_tau(h,x,tau,omega,2,6,error)<br />

call calculate_P(P,tau,omega)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

call calculate_s(s,tau,omega)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.2).and.(in2.eq.7).or.(in1.eq.7).and.(in2.eq.2))<br />

$then<br />

call iterer_omega_tau(h,u,tau,omega,2,7,error)<br />

call calculate_P(P,tau,omega)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

elseif ((in1.eq.3).and.(in2.eq.4).or.(in1.eq.4).and.(in2.eq.3))<br />

$then<br />

omega=rho/rho_ref<br />

tau=T_ref/T<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.3).and.(in2.eq.5).or.(in1.eq.5).and.(in2.eq.3))<br />

$then<br />

tau=T_ref/T<br />

call iterer_omega(s,tau,omega,5,error)<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

rho=omega*rho_ref<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.3).and.(in2.eq.6).or.(in1.eq.6).and.(in2.eq.3))<br />

$then<br />

tau=T_ref/T<br />

call calculate_v(rho,T,x)<br />

omega=rho/rho_ref<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

call calculate_s(s,tau,omega)<br />

call calculate_u(u,tau,omega)<br />

4/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

elseif ((in1.eq.3).and.(in2.eq.7).or.(in1.eq.7).and.(in2.eq.3))<br />

$then<br />

tau=T_ref/T<br />

call iterer_omega(u,tau,omega,7,error)<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

rho=omega*rho_ref<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

elseif ((in1.eq.4).and.(in2.eq.5).or.(in1.eq.5).and.(in2.eq.4))<br />

$then<br />

omega=rho/rho_ref<br />

call iterer_tau(s,tau,omega,5,error)<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.4).and.(in2.eq.6).or.(in1.eq.6).and.(in2.eq.4))<br />

$then<br />

omega=rho/rho_ref<br />

call iterer_tau(x,tau,omega,6,error)<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

call calculate_s(s,tau,omega)<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.4).and.(in2.eq.7).or.(in1.eq.7).and.(in2.eq.4))<br />

$then<br />

omega=rho/rho_ref<br />

call iterer_tau(u,tau,omega,7,error)<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

call calculate_s(s,tau,omega)<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

elseif ((in1.eq.5).and.(in2.eq.6).or.(in1.eq.6).and.(in2.eq.5))<br />

$then<br />

call iterer_omega_tau(s,x,tau,omega,5,6,error)<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

call calculate_u(u,tau,omega)<br />

elseif ((in1.eq.5).and.(in2.eq.7).or.(in1.eq.7).and.(in2.eq.5))<br />

$then<br />

call iterer_omega_tau(s,u,tau,omega,5,7,error)<br />

call calculate_P(P,tau,omega)<br />

call calculate_h(h,tau,omega)<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

iterate_rho_l=.true.<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

elseif (fiter0) then<br />

print*,’METTAB called with wrong inputs’,in1,in2<br />

endif<br />

p=p*1.d−5<br />

h=1.d−3*(h+h_formation)/M<br />

t=T−T_0C<br />

v=1/(rho*M)*1.d−6<br />

s=1.d−3*(s+s_ref)/M<br />

u=1.d−3*(u+h_formation)/M<br />

if (error.eq.5) then<br />

if (fiter0) print*<br />

$ ,’*********No convergence in METTAB***********’<br />

$ ,in(1),f(1),in(2),f(2)<br />

goto 3<br />

endif<br />

call test_tau_omega(tau,omega,error)<br />

if (error.eq.0) then<br />

k=0<br />

5/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

equal=.false.<br />

2 if (k.lt.i) then<br />

k=k+1<br />

if ((abs((p−par_file(1,k))/p).lt.1.d−1).and.<br />

$ (abs((h−par_file(2,k))/h).lt.1.d−2)) then<br />

equal=.true.<br />

endif<br />

goto 2<br />

endif<br />

if ((.not.equal).and.(p.lt.500)) then<br />

if (i.eq.(file_size−1)) then<br />

write(UNIT=2, REC=file_size+1) file_size<br />

rec_nr=i+1<br />

elseif (i.eq.file_size) then<br />

read(UNIT=2, REC=file_size+1) rec_nr<br />

if (rec_nr.eq.file_size) then<br />

rec_nr=1<br />

else<br />

rec_nr=rec_nr+1<br />

endif<br />

write(UNIT=2, REC=file_size+1) rec_nr<br />

else<br />

rec_nr=i+1<br />

endif<br />

c if (fiters) print*,’rec_nr: ’,rec_nr<br />

write(UNIT=2,REC=rec_nr)P,h,t,v,s,x,u<br />

endif<br />

endif<br />

3 continue<br />

c if (fiters) print*,in(1),f(1),in(2),f(2)<br />

c if (fiters) print*,’result’,t,v<br />

return<br />

end<br />

subroutine iterer_omega_tau(f1,f2,tau,omega,in1,in2,<br />

$ error)<br />

integer in1,in2,i,error,IMAX,phase,step<br />

double precision f1,f1_old,f1_new,f2,f2_old,f2_new,tau,tau_old,<br />

$ tau_new,omega,omega_old,omega_new,dtau,domega,df1,df2,df<br />

$ ,f1_new_omega,f1_new_tau,f2_new_omega,f2_new_tau,df1domega<br />

$ ,df2domega,df1dtau,df2dtau,factor,rho_star<br />

$ ,omega_l,omega_g,EPSV,R,P_c,T_c,T_ref,rho_ref,M,T_0C,const<br />

l<strong>og</strong>ical found,fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

omega_old=omega<br />

tau_old=tau<br />

call calculate(f1_old,tau_old,omega_old,in1)<br />

call calculate(f2_old,tau_old,omega_old,in2)<br />

omega_new=omega_old*(1.d0+1d−11)<br />

tau_new=tau_old*(1.d0+1d−11)<br />

call calculate(f1_new_omega,tau_old,omega_new,in1)<br />

call calculate(f1_new_tau,tau_new,omega_old,in1)<br />

call calculate(f2_new_omega,tau_old,omega_new,in2)<br />

call calculate(f2_new_tau,tau_new,omega_old,in2)<br />

i=0<br />

factor=1<br />

phase=0<br />

step=3<br />

found=.false.<br />

5 if ((i .lt. IMAX) .and.(.not.found)) then<br />

call calculate(f1_new,tau_new,omega_new,in1)<br />

call calculate(f2_new,tau_new,omega_new,in2)<br />

df1=f1_new−f1<br />

df2=f2_new−f2<br />

df=df1*df1+df2*df2<br />

if ((abs(df1/f1).le.EPSV).and.(abs(df2/f2).le.EPSV)) then<br />

found=.true.<br />

goto 10<br />

endif<br />

if ((tau_new.eq.tau_old).and.(omega_new.eq.omega_old)) then<br />

c if (fiters) print*<br />

c $ ,’tau_new=tau_old and omega_new=omega_old ’,abs(df1/f1)<br />

c $ ,abs(df2/f2),factor,f1,f2,phase<br />

if ((abs(df1/f1).le.1.d−8).and.(abs(df2/f2).le.<br />

$ 1.d−8)) then<br />

found=.true.<br />

6/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

c if (fiters) print*,’acceptable precision’<br />

endif<br />

goto 10<br />

endif<br />

if (tau_new.ne.tau_old) then<br />

df1dtau=(f1_new_tau−f1_old)/(tau_new−tau_old)<br />

df2dtau=(f2_new_tau−f2_old)/(tau_new−tau_old)<br />

endif<br />

if (omega_new.ne.omega_old) then<br />

df1domega=(f1_new_omega−f1_old)/(omega_new−omega_old)<br />

df2domega=(f2_new_omega−f2_old)/(omega_new−omega_old)<br />

endif<br />

if (omega_new.eq.omega_old) then<br />

if (df1dtau.eq.0) then<br />

dtau=0.5d0*(−(df2/df2dtau))<br />

elseif (df2dtau.eq.0) then<br />

dtau=0.5d0*(−(df1/df1dtau))<br />

else<br />

dtau=0.5d0*((−(df1/df1dtau))−(df2/df2dtau))<br />

endif<br />

domega=0.d0<br />

elseif (tau_new.eq.tau_old) then<br />

if (df1domega.eq.0) then<br />

domega=0.5d0*(−(df2/df2domega))<br />

elseif (df2domega.eq.0) then<br />

domega=0.5d0*(−(df1/df1domega))<br />

else<br />

domega=0.5d0*((−(df1/df1domega))−(df2/df2domega))<br />

endif<br />

dtau=0.d0<br />

else<br />

dtau=df1dtau*df2domega−df1domega*df2dtau<br />

domega=dtau<br />

dtau=(−(df1*df2domega)+df1domega*df2)/dtau<br />

domega=(−(df1dtau*df2)+df1*df2dtau)/domega<br />

endif<br />

c if (fiters) print*<br />

c $ ,in1,f1,f1_new,abs(df1/f1),’\n’,in2,f2,f2_new,abs(df2/f2)<br />

c $ ,’\n’,1/(omega_old*rho_ref*M)*1.d−6,1/(omega_new*rho_ref*M<br />

c $ )*1.d−6,omega_old,omega_new,omega_l,’\n’,T_ref/tau_old<br />

c $ −T_0C,T_ref/tau_new−T_0C,tau_old,tau_new,’\n’,factor,phase<br />

c $ ,i,’\n’<br />

tau_old=tau_new<br />

omega_old=omega_new<br />

if ((i*1.0/IMAX.gt.step*1.d−1).and.(factor.lt.10)) then<br />

factor=factor*1.6<br />

step=step+1<br />

endif<br />

if (T_ref/tau_old.lt.T_C) then<br />

call rho_l__rho_g(tau_old,omega_l,omega_g)<br />

if (omega_old.gt.omega_l*.9) then<br />

if ((phase.eq.2).and.(factor.lt.10)) factor=factor*1.3<br />

phase=1<br />

else<br />

if ((phase.eq.1).and.(factor.lt.10)) factor=factor*1.3<br />

phase=2<br />

endif<br />

else<br />

if ((phase.eq.1).and.(factor.lt.10)) factor=factor*1.3<br />

phase=2<br />

endif<br />

tau_new=tau_old+dtau<br />

omega_new=omega_old+domega<br />

if (phase.eq.1) then<br />

if ((abs(df1/f1).lt.2).and.(abs(df2/f2).lt.0.01)) then<br />

if (abs(df1/f1)/2.gt.abs(df2/f2)/0.01) then<br />

const=abs(df1/f1)/2<br />

else<br />

const=abs(df2/f2)/0.01<br />

endif<br />

if ((abs(1.d0−tau_new/tau_old).gt.abs(1.d0−omega_new<br />

$ /omega_old)).and.(abs(dtau).gt.abs(tau_old*.0025<br />

$ ))) then<br />

if(abs(domega).gt.abs(omega_old*.0025)) omega_new<br />

$ =omega_old+domega/abs(domega)*omega_old*.0025<br />

$ *abs(1.d0−omega_new/omega_old)/abs(1.d0<br />

$ −tau_new/tau_old)/factor<br />

tau_new=tau_old+dtau/abs(dtau)*tau_old*.0025/factor<br />

7/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

elseif(abs(domega).gt.abs(omega_old*.0025)) then<br />

if(abs(dtau).gt.abs(tau_old*.0025)) tau_new=tau_old<br />

$ +dtau/abs(dtau)*tau_old*.0025*abs(1.d0<br />

$ −tau_new/tau_old)/abs(1.d0−tau_new/tau_old)<br />

$ /factor<br />

omega_new=omega_old+domega/abs(domega)*omega_old<br />

$ *.0025/factor<br />

endif<br />

else<br />

if ((abs(dtau)).gt.(abs(tau_old*.05))) tau_new<br />

$ =tau_old+dtau/abs(dtau)*tau_old*.05<br />

if ((abs(domega)).gt.(abs(omega_old*.05)))<br />

$ omega_new=omega_old+domega/abs(domega)*omega_old*.05<br />

endif<br />

else<br />

if ((abs(dtau)).gt.(abs(tau_old*.2/factor))) tau_new<br />

$ =tau_old+dtau/abs(dtau)*tau_old*.2/factor<br />

if (domega.lt.(−(omega_old*.9/factor))) then<br />

omega_new=omega_old−omega_old*.9/factor<br />

elseif (domega.gt.(omega_old*9/factor)) then<br />

omega_new=omega_old+omega_old*9/factor<br />

else<br />

omega_new=omega_old+domega<br />

endif<br />

endif<br />

call calculate(f1_new_omega,tau_old,omega_new,in1)<br />

call calculate(f1_new_tau,tau_new,omega_old,in1)<br />

call calculate(f2_new_omega,tau_old,omega_new,in2)<br />

call calculate(f2_new_tau,tau_new,omega_old,in2)<br />

f1_old=f1_new<br />

f2_old=f2_new<br />

i=i+1<br />

goto 5<br />

else<br />

goto 10<br />

endif<br />

10 if (.not.found) then<br />

error=5<br />

c if (fiters) print*<br />

c $ ,’Warning: No convergence in iterer_omega_tau’,in1,f1<br />

c $ ,f1_new,abs(df1/f1),in2,f2,f2_new,abs(df2/f2),1/(omega_old<br />

c $ *rho_ref*M)*1.d−6,1/(omega_new*rho_ref*M)*1.d−6,T_ref<br />

c $ /tau_old−T_0C,T_ref/tau_new−T_0C,factor,i<br />

if ((abs(df1/f1).gt.0.01).or.(abs(df2/f2).gt.0.01)) print*<br />

$ ,’Warning: No convergence in iterer_omega_tau’,abs(df1/f1)<br />

$ ,abs(df2/f2)<br />

endif<br />

tau=tau_new<br />

omega=omega_new<br />

c if (fiters) print*,’iterer_omega_tau. Antal iterationer=’,i<br />

return<br />

end<br />

subroutine iterer_omega(f,tau,omega,in,error)<br />

integer in,i,error,IMAX<br />

double precision f,tau,omega,omega_old,omega_new,domega,f_new<br />

$ ,f_old,df,dfdomega,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M<br />

$ ,T_0C<br />

l<strong>og</strong>ical found,saturation,fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

c omega_old=omega<br />

omega_old=0.032148/rho_ref<br />

call calculate(f_old,tau,omega_old,in)<br />

omega_new=omega_old*(1d0+1d−3)<br />

if (in.eq.1) then<br />

saturation=.true.<br />

else<br />

saturation=.false.<br />

endif<br />

i=0<br />

found=.false.<br />

5 if ((i .lt. IMAX) .and.(.not.found)) then<br />

if (saturation) call test_saturation(tau,omega_new,error,f)<br />

call calculate(f_new,tau,omega_new,in)<br />

if (error.eq.2) then<br />

8/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

if (omega_new*rho_ref.lt.rho_star) then<br />

omega_old=omega_new*0.999<br />

else<br />

omega_old=omega_new*1.001<br />

endif<br />

call calculate(f_old,tau,omega_old,in)<br />

error=0<br />

endif<br />

df=f_new−f<br />

if ((abs(df/f).le.EPSV).or.(abs(df/f).le.1.d−6.and.<br />

$ omega_old.eq.omega_new)) then<br />

found=.true.<br />

goto 10<br />

end if<br />

if ((f_new−f_old).eq.0) then<br />

dfdomega=(1D−12)/(omega_new−omega_old)<br />

else<br />

dfdomega=(f_new−f_old)/(omega_new−omega_old)<br />

endif<br />

c if (fiters) print*,in<br />

c $ ,f,f_new,f_old,abs(df/f),1/(omega_old*rho_ref*M)*1.d−6,1<br />

c $ /(omega_new*rho_ref*M)*1.d−6,T_ref/tau−T_0C,i<br />

omega_old=omega_new<br />

domega=−(df/dfdomega)<br />

omega_new=omega_old+domega<br />

if (omega_old.lt.1) then<br />

if (domega.lt.(−(omega_old*.9))) then<br />

omega_new=omega_old−omega_old*.9<br />

elseif (domega.gt.(omega_old*9)) then<br />

omega_new=omega_old+omega_old*9<br />

endif<br />

else<br />

if ((abs(domega)).gt.(abs(omega_old*.05)))<br />

$ omega_new=omega_old+domega/abs(domega)*omega_old*.05<br />

endif<br />

f_old=f_new<br />

i=i+1<br />

goto 5<br />

else<br />

goto 10<br />

endif<br />

10 if (.not.found) then<br />

error=5<br />

if (fiters) print*,’Warning: No convergence in iterer_omega’,in<br />

$ ,f,f_new,abs(df/f),1/(omega_old*rho_ref*M)*1.d−6,1<br />

$ /(omega_new*rho_ref*M)*1.d−6,T_ref/tau−T_0C,i<br />

end if<br />

omega=omega_new<br />

c if (fiters) print*,’iterer_omega. Antal iterationer=’,i<br />

return<br />

end<br />

subroutine iterer_tau(f,tau,omega,in,error)<br />

integer in,i,error,IMAX<br />

double precision f,tau,omega,tau_old,tau_new,dtau,f_new<br />

$ ,f_old,df,dfdtau,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical found,fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

tau_old=tau<br />

call calculate(f_old,tau_old,omega,in)<br />

tau_new=tau_old*1.01<br />

i=0<br />

found=.false.<br />

5 if ((i.lt.IMAX).and.(.not.found)) then<br />

call calculate(f_new,tau_new,omega,in)<br />

df=f_new−f<br />

if (abs(df/f).le.EPSV) then<br />

found=.true.<br />

goto 10<br />

end if<br />

dfdtau=(f_new−f_old)/(tau_new−tau_old)<br />

tau_old=tau_new<br />

dtau=−(df/dfdtau)<br />

tau_new=tau_old+dtau<br />

if ((abs(dtau)).gt.(abs(tau_old*.2))) tau_new=tau_old+dtau<br />

$ /abs(dtau)*tau_old*.2<br />

9/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

f_old=f_new<br />

i=i+1<br />

goto 5<br />

else<br />

goto 10<br />

endif<br />

10 if (.not.found) then<br />

error=5<br />

if (fiters) print*,’Warning: No convergence in iterer_tau’,in,f<br />

$ ,f_new,abs(df/f),T_ref/tau_old−T_0C,T_ref/tau_new−T_0C,1<br />

$ /(omega_new*rho_ref*M)*1.d−6,i<br />

end if<br />

tau=tau_new<br />

c if (fiters) print*,’iterer_tau. Antal iterationer=’,i<br />

return<br />

end<br />

subroutine test_tau_omega(tau,omega,error)<br />

integer error,IMAX<br />

double precision tau,omega,T,rho,T_trip,theta,P,T_t,P_t,a(3),EPSV<br />

$ ,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

T_trip=175.61d0<br />

c K<br />

T=T_ref/tau<br />

if (T.gt.620) then<br />

if (fiters) print*<br />

$ ,’Temperature too high: higher than 346.85 C, T=’<br />

$ ,T−T_0C,’ C’<br />

error=4<br />

elseif (T.lt.T_trip) then<br />

if (fiters) print*<br />

$ ,’Temperature too low: lower than triple point’<br />

$ ,’ (−97.54 C), T=’,T−T_0C,’ C’<br />

error=4<br />

endif<br />

rho=omega*rho_ref<br />

if (rho.gt.0.032248) then<br />

if (fiters) print*<br />

$ ,’Specific volume too low: lower than 0.00097 m^3/kg, v=’<br />

$ ,1/(rho*M)*1.d−6,’ m^3/kg’<br />

error=4<br />

elseif (rho.lt.0) then<br />

if (fiters) print*,’Negative specific volume: v=’,<br />

$ 1/(rho*M)*1.d−6,’ m^3/kg’<br />

error=4<br />

endif<br />

call calculate_P(P,tau,omega)<br />

P=1.d−5*P<br />

if (P.gt.8000) then<br />

if (fiters) print*<br />

$ ,’Pressure too high: higher than 8000 bar, P=’,P,’ bar’<br />

error=4<br />

elseif ((T.lt.300).and.(P.gt.2500)) then<br />

if (fiters) print*<br />

$ ,’Pressure too high when temperature is this low:’<br />

$ ,’ Pressure higher than 2500 bar and temperature lower’<br />

$ ,’ than 26.85 C, T=’,T−T_0C,’ C’,’, P=’,P,’ bar’<br />

error=4<br />

elseif ((T.gt.570).and.(P.gt.2)) then<br />

if (fiters) print*<br />

$ ,’Pressure too high when temperature is this high:’<br />

$ ,’ Pressure higher than 2 bar and temperature higher than’<br />

$ ,’ 296.85 C, T=’,T−T_0C,’ C’,’, P=’,P,’ bar’<br />

error=4<br />

elseif ((T.lt.207).and.(P.lt.2500)) then<br />

T_t=175.61d0<br />

theta=(T/T_t)−1<br />

P_t=0.187*1.d−5<br />

a(1)=5.320770*1.d9<br />

a(2)=4.524780*1.d9<br />

a(3)=3.888861*1.d10<br />

P_melt=P_t*(1+a(1)*theta+a(2)*theta**(3./2)+a(3)*theta**(4))<br />

if (P.gt.P_melt) then<br />

10/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

if (fiters) print*,’Below melting curve, T=’,T−T_0C,’ C’,<br />

$ ’, P_melt=’,P_melt,’ bar’,’, P=’,P,’ bar’<br />

error=4<br />

endif<br />

endif<br />

10 return<br />

end<br />

subroutine test_saturation(tau,omega,error,P)<br />

integer error,IMAX<br />

double precision tau,omega,omega_l,omega_g,T,rho,n(13),rho_star<br />

$ ,rho_g,rho_l,theta,P,P_vap,EPSV,R,P_c,T_c,T_ref,rho_ref,M<br />

$ ,T_0C<br />

l<strong>og</strong>ical fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

rho=rho_ref*omega<br />

T=T_ref/tau<br />

if (T.lt.T_c) then<br />

call rho_l__rho_g(tau,omega_l,omega_g)<br />

rho_l=rho_ref*omega_l<br />

rho_g=rho_ref*omega_g<br />

if ((rho.lt.rho_l).and.(rho.gt.rho_g)) then<br />

call sub_n(n,2)<br />

theta=(T_c/T)−1<br />

P_vap=P_c*1.d6*exp((T/T_c)*(n(1)*theta+n(2)*theta**1.5+<br />

$ n(3)*theta**2+n(4)*theta**2.5))<br />

if ((P.gt.P_vap).and.(rho.lt.rho_l*0.99)) then<br />

rho=rho_l<br />

omega=rho/rho_ref<br />

error=2<br />

elseif ((P.lt.P_vap).and.(rho.gt.rho_g)) then<br />

rho=rho_g<br />

omega=rho/rho_ref<br />

error=2<br />

endif<br />

endif<br />

endif<br />

return<br />

end<br />

subroutine calculate(f,tau,omega,in)<br />

integer in<br />

double precision f,tau,omega,omega_g,omega_l<br />

l<strong>og</strong>ical iterate_rho_l<br />

common/switches/iterate_rho_l<br />

if (in.eq.1) then<br />

call calculate_p(f,tau,omega)<br />

elseif (in.eq.2) then<br />

call calculate_h(f,tau,omega)<br />

elseif (in.eq.5) then<br />

call calculate_s(f,tau,omega)<br />

elseif (in.eq.6) then<br />

iterate_rho_l=.true.<br />

call calculate_x(f,tau,omega,omega_g,omega_l)<br />

elseif (in.eq.7) then<br />

call calculate_u(f,tau,omega)<br />

endif<br />

return<br />

end<br />

subroutine calculate_P(P,tau,omega)<br />

integer IMAX<br />

double precision P,Z,tau,omega,T,v,omega_g,omega_l,x,EPSV,R,P_c<br />

$ ,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical iterate_rho_l<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

iterate_rho_l=.true.<br />

T=T_ref/tau<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

if (x.gt.0.and.x.lt.1) then<br />

v=1/(rho_ref*omega_g)<br />

call calculate_Z(Z,tau,omega_g)<br />

11/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

P=Z*R*T/(v*1.d−6)<br />

else<br />

v=1/(rho_ref*omega)<br />

call calculate_Z(Z,tau,omega)<br />

P=Z*R*T/(v*1.d−6)<br />

endif<br />

return<br />

end<br />

subroutine calculate_h(h,tau,omega)<br />

integer IMAX<br />

double precision h,Z,u,tau,omega,T,omega_g,omega_l,h_l,h_g<br />

$ ,x,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical fiters,iterate_rho_l<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

iterate_rho_l=.false.<br />

T=T_ref/tau<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

if ((x.gt.0).and.(x.lt.1)) then<br />

call calculate_Z(Z,tau,omega_l)<br />

call calculate_u(u,tau,omega_l)<br />

h_l=u+Z*R*T<br />

call calculate_Z(Z,tau,omega_g)<br />

call calculate_u(u,tau,omega_g)<br />

h_g=u+Z*R*T<br />

h=(1−x)*h_l+h_g*x<br />

else<br />

call calculate_Z(Z,tau,omega)<br />

call calculate_u(u,tau,omega)<br />

h=u+Z*R*T<br />

endif<br />

return<br />

end<br />

subroutine calculate_s(s,tau,omega)<br />

integer r_i(44),s_i(44),k_i(44),j_i(44),b_i(44),IMAX<br />

double precision s,tau,omega,N_i(44),c_i(44),f_i(10),g_i(10),sigma<br />

$ ,vv,omega_a,dalpha_dtau_omega,dalpha_id_dtau,alpha,alpha_id<br />

$ ,omega_l,omega_g,s_l,s_g,x,EPSV,R,P_c,T_c,T_ref,rho_ref<br />

$ ,rho_star,M,T_0C<br />

l<strong>og</strong>ical fiters,iterate_rho_l<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

common/constants2/sigma,vv,omega_a<br />

iterate_rho_l=.false.<br />

call IUPAC_constants(N_i,r_i,s_i,k_i,j_i,b_i,c_i,f_i,g_i)<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

if ((x.gt.0).and.(x.lt.1)) then<br />

call sub_dalpha_id_dtau(dalpha_id_dtau,tau,omega_l,f_i,g_i)<br />

call sub_dalpha_dtau_omega(dalpha_dtau_omega,tau,omega_l,N_i<br />

$ ,r_i,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

call sub_alpha(alpha,tau,omega_l,N_i,r_i,s_i,k_i,j_i,b_i,c_i,<br />

$ sigma,vv)<br />

call sub_alpha_id(alpha_id,tau,omega_l,f_i,g_i)<br />

s_l=R*(tau*(dalpha_id_dtau+dalpha_dtau_omega)−alpha−l<strong>og</strong>(omega_l<br />

$ /omega_a)−alpha_id)<br />

call sub_dalpha_id_dtau(dalpha_id_dtau,tau,omega_g,f_i,g_i)<br />

call sub_dalpha_dtau_omega(dalpha_dtau_omega,tau,omega_g,N_i<br />

$ ,r_i,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

call sub_alpha(alpha,tau,omega_g,N_i,r_i,s_i,k_i,j_i,b_i,c_i,<br />

$ sigma,vv)<br />

call sub_alpha_id(alpha_id,tau,omega_g,f_i,g_i)<br />

s_g=R*(tau*(dalpha_id_dtau+dalpha_dtau_omega)−alpha−l<strong>og</strong>(omega_g<br />

$ /omega_a)−alpha_id)<br />

s=(1−x)*s_l+s_g*x<br />

else<br />

call sub_dalpha_id_dtau(dalpha_id_dtau,tau,omega,f_i,g_i)<br />

call sub_dalpha_dtau_omega(dalpha_dtau_omega,tau,omega,N_i,r_i<br />

$ ,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

call sub_alpha(alpha,tau,omega,N_i,r_i,s_i,k_i,j_i,b_i,c_i,<br />

12/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

$ sigma,vv)<br />

call sub_alpha_id(alpha_id,tau,omega,f_i,g_i)<br />

s=R*(tau*(dalpha_id_dtau+dalpha_dtau_omega)−alpha−l<strong>og</strong>(omega/<br />

$ omega_a)−alpha_id)<br />

endif<br />

return<br />

end<br />

subroutine calculate_x(x,tau,omega,omega_g,omega_l)<br />

integer IMAX<br />

double precision x,tau,omega,T,rho,rho_l,rho_g,omega_g,omega_l,Z<br />

$ ,P_g,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical fiters,iterate_rho_l<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

T=T_ref/tau<br />

rho=omega*rho_ref<br />

if (T.lt.T_c) then<br />

call rho_l__rho_g(tau,omega_l,omega_g)<br />

rho_l=rho_ref*omega_l<br />

rho_g=rho_ref*omega_g<br />

if ((rho.gt.rho_l*.99).and.(rho.lt.rho_l*1.01).and<br />

$ .iterate_rho_l)then<br />

call calculate_Z(Z,tau,omega_g)<br />

P_g=Z*R*T/(1/rho_g*1.d−6)<br />

call iterer_omega_l(P_g,tau,omega_l)<br />

rho_l=omega_l*rho_ref<br />

endif<br />

if ((rho.gt.rho_g).and.(rho.lt.rho_l)) then<br />

x=rho_g*((rho_l/rho)−1)/(rho_l−rho_g)<br />

elseif (rho.lt.rho_g) then<br />

x=1.0+rho_g−rho<br />

elseif (rho.gt.rho_l) then<br />

x=rho_l−rho*10<br />

else<br />

x=rho_g*((rho_l/rho)−1)/(rho_l−rho_g)<br />

endif<br />

if (x.eq.0) x=1.d−12<br />

else<br />

x=10*T/T_c+1<br />

endif<br />

return<br />

end<br />

subroutine calculate_u(u,tau,omega)<br />

integer r_i(44),s_i(44),k_i(44),j_i(44),b_i(44),IMAX<br />

double precision u,tau,omega,T,dalpha_id_dtau,N_i(44),omega_a,<br />

$ c_i(44),f_i(10),g_i(10),sigma,vv,dalpha_dtau_omega,x,omega_g<br />

$ ,omega_l,u_g,u_l,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical fiters,iterate_rho_l<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

common/switches/iterate_rho_l<br />

common/constants2/sigma,vv,omega_a<br />

iterate_rho_l=.false.<br />

T=T_ref/tau<br />

call IUPAC_constants(N_i,r_i,s_i,k_i,j_i,b_i,c_i,f_i,g_i)<br />

call calculate_x(x,tau,omega,omega_g,omega_l)<br />

if ((x.gt.0).and.(x.lt.1)) then<br />

call sub_dalpha_id_dtau(dalpha_id_dtau,tau,omega_l,f_i,g_i)<br />

call sub_dalpha_dtau_omega(dalpha_dtau_omega,tau,omega_l,N_i<br />

$ ,r_i,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

u_l=R*T*tau*(dalpha_id_dtau+dalpha_dtau_omega)<br />

call sub_dalpha_id_dtau(dalpha_id_dtau,tau,omega_g,f_i,g_i)<br />

call sub_dalpha_dtau_omega(dalpha_dtau_omega,tau,omega_g,N_i<br />

$ ,r_i,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

u_g=R*T*tau*(dalpha_id_dtau+dalpha_dtau_omega)<br />

u=u_g*x+(1−x)*u_l<br />

else<br />

call sub_dalpha_id_dtau(dalpha_id_dtau,tau,omega,f_i,g_i)<br />

call sub_dalpha_dtau_omega(dalpha_dtau_omega,tau,omega,N_i,r_i<br />

$ ,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

13/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

u=R*T*tau*(dalpha_id_dtau+dalpha_dtau_omega)<br />

endif<br />

return<br />

end<br />

subroutine calculate_Z(Z,tau,omega)<br />

integer r_i(44),s_i(44),k_i(44),j_i(44),b_i(44)<br />

double precision Z,tau,omega,N_i(44),omega_a,<br />

$ c_i(44),f_i(10),g_i(10),sigma,vv,dalpha_domega_tau<br />

common/constants2/sigma,vv,omega_a<br />

call IUPAC_constants(N_i,r_i,s_i,k_i,j_i,b_i,c_i,f_i,g_i)<br />

call sub_dalpha_domega_tau(dalpha_domega_tau,tau,omega,N_i,<br />

$ r_i,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

Z=1+omega*dalpha_domega_tau<br />

return<br />

end<br />

subroutine calculate_v(rho,T,x)<br />

integer IMAX<br />

double precision x,T,rho,rho_l,rho_g,omega_g,omega_l,tau,Z,P_g<br />

$ ,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

tau=T_ref/T<br />

call rho_l__rho_g (tau,omega_l,omega_g)<br />

rho_l=rho_ref*omega_l<br />

rho_g=rho_ref*omega_g<br />

if (T.lt.T_c) then<br />

if (x.lt.1.d−5) then<br />

call calculate_Z(Z,tau,omega_g)<br />

P_g=Z*R*T/(1/rho_g*1.d−6)<br />

call iterer_omega_l(P_g,tau,omega_l)<br />

rho_l=omega_l*rho_ref<br />

endif<br />

rho=rho_l/(1+x*(rho_l−rho_g)/rho_g)<br />

elseif (fiters) then<br />

print*,<br />

$ ’Temperature higher than T_c (239.45 C) in calculate_v’<br />

$ ,’, T=’,T−T_0C,’ C, x=’,x<br />

if (x.lt.0.5) then<br />

rho=rho_star*T/T_c<br />

else<br />

rho=rho_star*T_c/T<br />

endif<br />

endif<br />

return<br />

end<br />

subroutine iterer_omega_l(f,tau,omega)<br />

integer i,IMAX<br />

double precision f,tau,omega,omega_old,omega_new,domega,f_new<br />

$ ,f_old,df,dfdomega,Z,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M<br />

$ ,T_0C<br />

l<strong>og</strong>ical found,fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

omega_old=omega<br />

call calculate_Z(Z,tau,omega_old)<br />

f_old=Z*R*(T_ref/tau)/(1/(omega_old*rho_ref)*1.d−6)<br />

omega_new=omega_old*1.01<br />

i=0<br />

found=.false.<br />

5 if ((i .lt. IMAX) .and.(.not.found)) then<br />

call calculate_Z(Z,tau,omega_new)<br />

f_new=Z*R*(T_ref/tau)/(1/(omega_new*rho_ref)*1.d−6)<br />

df=f_new−f<br />

if ((abs(df/f).le.EPSV).or.(abs(df/f).le.1.d−6.and.<br />

$ omega_old.eq.omega_new)) then<br />

found=.true.<br />

goto 10<br />

end if<br />

dfdomega=(f_new−f_old)/(omega_new−omega_old)<br />

omega_old=omega_new<br />

14/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

domega=−(df/dfdomega)<br />

if (domega.lt.(−(omega_old*.9))) then<br />

omega_new=omega_old−omega_old*.9<br />

elseif (domega.gt.(omega_old*9)) then<br />

omega_new=omega_old+omega_old*9<br />

else<br />

omega_new=omega_old+domega<br />

endif<br />

f_old=f_new<br />

i=i+1<br />

goto 5<br />

else<br />

goto 10<br />

endif<br />

10 if (.not.found) then<br />

c if (fiters) print*,’Warning: No convergence in iterer_omega_l’<br />

c $ ,f,f_new,abs(df/f),1/(omega_old*rho_ref*M)*1.d−6,1<br />

c $ /(omega_new*rho_ref*M)*1.d−6,T_ref/tau−T_0C,i<br />

end if<br />

omega=omega_new<br />

return<br />

end<br />

subroutine rho_l__rho_g(tau,omega_l,omega_g)<br />

integer IMAX<br />

double precision T,rho_l,rho_g,omega_g,omega_l,tau,n(13)<br />

$ ,theta,EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C<br />

l<strong>og</strong>ical fiters<br />

common/constants/EPSV,R,P_c,T_c,T_ref,rho_ref,rho_star,M,T_0C,IMAX<br />

$ ,fiters<br />

T=T_ref/tau<br />

call sub_n(n,3)<br />

theta=1−(T/T_c)<br />

rho_g=rho_star*exp(n(1)*theta**(1./6)+n(2)*theta**(1./3)+<br />

$ n(3)*theta**(2./3)+n(4)*theta**(7./6)+n(5)*theta**(3./2<br />

$ )+n(6)*theta**(5./2)+n(7)*theta**(8./3)+n(8)*theta**(7.<br />

$ /2)+n(9)*theta**5+n(10)*theta**6+n(11)*theta**15+n(12)<br />

$ *theta**21+n(13)*l<strong>og</strong>(T/T_c))<br />

call sub_n(n,4)<br />

rho_l=rho_star*(1+n(1)*theta**(1./3)+n(2)*theta**(2./3)+n(3)<br />

$ *theta**(4./3)+n(4)*theta**(11./3)+n(5)*theta**(13./3))<br />

omega_l=rho_l/rho_ref<br />

omega_g=rho_g/rho_ref<br />

return<br />

end<br />

subroutine sub_dalpha_id_dtau(dalpha_id_dtau,tau,omega,f_i,g_i)<br />

implicit none<br />

integer I<br />

double precision dalpha_id_dtau,tau,omega,f_i(10),g_i(10)<br />

dalpha_id_dtau=f_i(2)*1/tau+f_i(3)<br />

DO I=4,10<br />

dalpha_id_dtau=dalpha_id_dtau+f_i(I)*g_i(I)*exp(g_i(I)*tau)<br />

$ /(exp(g_i(I)*tau)−1)<br />

ENDDO<br />

return<br />

end<br />

subroutine sub_alpha_id(alpha_id,tau,omega,f_i,g_i)<br />

implicit none<br />

integer I<br />

double precision alpha_id,tau,omega,f_i(10),g_i(10)<br />

alpha_id=f_i(1)+f_i(2)*l<strong>og</strong>(tau)+f_i(3)*tau<br />

DO I=4,10<br />

alpha_id=alpha_id+f_i(I)*l<strong>og</strong>(exp(g_i(I)*tau)−1)<br />

ENDDO<br />

return<br />

end<br />

subroutine sub_dalpha_dtau_omega(dalpha_dtau_omega,tau,omega,N_i,<br />

$r_i,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

implicit none<br />

integer r_i(44),s_i(44),k_i(44),j_i(44),b_i(44),I<br />

double precision N_i(44),c_i(44),sigma,vv,dalpha_dtau_omega,tau,<br />

$omega<br />

15/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

dalpha_dtau_omega=0.0d0<br />

DO I=1,17<br />

dalpha_dtau_omega=dalpha_dtau_omega+N_i(I)*s_i(I)*omega**<br />

$ r_i(I)*tau**(s_i(I)−1)<br />

ENDDO<br />

DO I = 18,36<br />

dalpha_dtau_omega=dalpha_dtau_omega+N_i(I)*s_i(I)*omega**<br />

$ r_i(I)*tau**(s_i(I)−1)*exp(−((sigma*omega)**k_i(I)))<br />

ENDDO<br />

DO I = 37,44<br />

dalpha_dtau_omega=dalpha_dtau_omega+N_i(I)*c_i(I)*vv*omega**<br />

$ r_i(I)*exp(c_i(I)*vv*tau−b_i(I)−(j_i(I)*sigma*omega)**<br />

$ k_i(I))<br />

ENDDO<br />

return<br />

end<br />

subroutine sub_alpha(alpha,tau,omega,N_i,r_i,s_i,k_i,j_i,b_i,c_i,<br />

$sigma,vv)<br />

implicit none<br />

integer r_i(44),s_i(44),k_i(44),j_i(44),b_i(44),I<br />

double precision N_i(44),c_i(44),sigma,vv,alpha,tau,<br />

$omega<br />

alpha=0.0d0<br />

DO I = 1,17<br />

alpha=alpha+N_i(I)*omega**r_i(I)*tau**s_i(I)<br />

ENDDO<br />

DO I = 18,36<br />

alpha=alpha+N_i(I)*omega**r_i(I)*tau**s_i(I)*exp(−((sigma*omega<br />

$ )**k_i(I)))<br />

ENDDO<br />

DO I = 37,44<br />

alpha=alpha+N_i(I)*omega**r_i(I)*exp(c_i(I)*vv*tau−b_i(I)−<br />

$ (j_i(I)*sigma*omega)**k_i(I))<br />

ENDDO<br />

return<br />

end<br />

subroutine sub_dalpha_domega_tau(dalpha_domega_tau,tau,omega,N_i,<br />

$r_i,s_i,k_i,j_i,b_i,c_i,sigma,vv)<br />

implicit none<br />

integer r_i(44),s_i(44),k_i(44),j_i(44),b_i(44),I<br />

double precision N_i(44),c_i(44),sigma,vv,dalpha_domega_tau,tau,<br />

$omega<br />

dalpha_domega_tau=0.0d0<br />

DO I = 1,17<br />

dalpha_domega_tau=dalpha_domega_tau+N_i(I)*r_i(I)*omega**<br />

$ (r_i(I)−1)*tau**s_i(I)<br />

ENDDO<br />

DO I = 18,36<br />

dalpha_domega_tau=dalpha_domega_tau+N_i(I)*omega**(r_i(I)−1)<br />

$ *tau**s_i(I)*(r_i(I)−k_i(I)*(sigma*omega)**k_i(I))*<br />

$ exp(−((sigma*omega)**k_i(I)))<br />

ENDDO<br />

DO I = 37,44<br />

dalpha_domega_tau=dalpha_domega_tau+N_i(I)*omega**(r_i(I)−1)<br />

$ *(r_i(I)−k_i(I)*(j_i(I)*sigma*omega)**k_i(I))*<br />

$ exp(c_i(I)*vv*tau−b_i(I)−((j_i(I)*sigma*omega)**k_i(I)))<br />

ENDDO<br />

return<br />

end<br />

subroutine IUPAC_constants(N_i,r_i,s_i,k_i,j_i,b_i,c_i,f_i,g_i)<br />

implicit none<br />

integer r_i(44),s_i(44),k_i(44),j_i(44),b_i(44)<br />

double precision N_i(44),c_i(44),f_i(10),g_i(10),sigma,vv,omega_a<br />

common/constants2/sigma,vv,omega_a<br />

sigma=1.00863030999d0<br />

vv=0.998480657603d0<br />

omega_a=0.0045917679d0<br />

N_i(1)=−2.80062505988d0<br />

N_i(2)=12.5636372418d0<br />

N_i(3)=−13.0310563173d0<br />

16/19<br />

19−03−2007


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

17/19<br />

19−03−2007<br />

N_i(4)=3.26593134060d0<br />

N_i(5)=−4.11425343805d0<br />

N_i(6)=3.46397741254d0<br />

N_i(7)=−0.0836443967590d0<br />

N_i(8)=−0.369240098923d0<br />

N_i(9)=0.00313180842152d0<br />

N_i(10)=0.603201474111d0<br />

N_i(11)=−0.231158593638d0<br />

N_i(12)=0.106114844945d0<br />

N_i(13)=−0.0792228164995d0<br />

N_i(14)=−0.0000422419150975d0<br />

N_i(15)=0.00758196739214d0<br />

N_i(16)=−0.0000244617434701d0<br />

N_i(17)=0.00000115080328802d0<br />

N_i(18)=−12.5099747447d0<br />

N_i(19)=27.0392835391d0<br />

N_i(20)=−21.2070717086d0<br />

N_i(21)=6.32799472270d0<br />

N_i(22)=14.3687921636d0<br />

N_i(23)=−28.7450766617d0<br />

N_i(24)=18.5397216068d0<br />

N_i(25)=−3.88720372879d0<br />

N_i(26)=−4.16602487963d0<br />

N_i(27)=5.29665875982d0<br />

N_i(28)=0.509360272812d0<br />

N_i(29)=−3.30257604839d0<br />

N_i(30)=−0.311045210826d0<br />

N_i(31)=0.273460830583d0<br />

N_i(32)=0.518916583979d0<br />

N_i(33)=−0.00227570803104d0<br />

N_i(34)=0.0211658196182d0<br />

N_i(35)=−0.0114335123221d0<br />

N_i(36)=0.00249860798459d0<br />

N_i(37)=−8.19291988442d0<br />

N_i(38)=0.478601004557d0<br />

N_i(39)=−0.444161392885d0<br />

N_i(40)=0.179621810410d0<br />

N_i(41)=−0.687602278259d0<br />

N_i(42)=2.40459848295d0<br />

N_i(43)=−6.88463987466d0<br />

N_i(44)=1.13992982501d0<br />

r_i(1)=1<br />

r_i(2)=1<br />

r_i(3)=1<br />

r_i(4)=1<br />

r_i(5)=2<br />

r_i(6)=2<br />

r_i(7)=2<br />

r_i(8)=2<br />

r_i(9)=2<br />

r_i(10)=3<br />

r_i(11)=3<br />

r_i(12)=3<br />

r_i(13)=4<br />

r_i(14)=4<br />

r_i(15)=5<br />

r_i(16)=6<br />

r_i(17)=7<br />

r_i(18)=1<br />

r_i(19)=1<br />

r_i(20)=1<br />

r_i(21)=1<br />

r_i(22)=2<br />

r_i(23)=2<br />

r_i(24)=2<br />

r_i(25)=2<br />

r_i(26)=3<br />

r_i(27)=4<br />

r_i(28)=5<br />

r_i(29)=5<br />

r_i(30)=5<br />

r_i(31)=5<br />

r_i(32)=6<br />

r_i(33)=9<br />

r_i(34)=6<br />

r_i(35)=6<br />

r_i(36)=4


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

18/19<br />

19−03−2007<br />

r_i(37)=1<br />

r_i(38)=1<br />

r_i(39)=1<br />

r_i(40)=1<br />

r_i(41)=1<br />

r_i(42)=3<br />

r_i(43)=3<br />

r_i(44)=3<br />

s_i(1)=0<br />

s_i(2)=1<br />

s_i(3)=2<br />

s_i(4)=3<br />

s_i(5)=1<br />

s_i(6)=2<br />

s_i(7)=3<br />

s_i(8)=4<br />

s_i(9)=6<br />

s_i(10)=0<br />

s_i(11)=3<br />

s_i(12)=4<br />

s_i(13)=0<br />

s_i(14)=7<br />

s_i(15)=1<br />

s_i(16)=6<br />

s_i(17)=7<br />

s_i(18)=1<br />

s_i(19)=2<br />

s_i(20)=3<br />

s_i(21)=4<br />

s_i(22)=1<br />

s_i(23)=2<br />

s_i(24)=3<br />

s_i(25)=5<br />

s_i(26)=1<br />

s_i(27)=2<br />

s_i(28)=1<br />

s_i(29)=2<br />

s_i(30)=4<br />

s_i(31)=5<br />

s_i(32)=2<br />

s_i(33)=5<br />

s_i(34)=9<br />

s_i(35)=14<br />

s_i(36)=19<br />

k_i(18)=2<br />

k_i(19)=2<br />

k_i(20)=2<br />

k_i(21)=2<br />

k_i(22)=2<br />

k_i(23)=2<br />

k_i(24)=2<br />

k_i(25)=2<br />

k_i(26)=2<br />

k_i(27)=2<br />

k_i(28)=2<br />

k_i(29)=2<br />

k_i(30)=2<br />

k_i(31)=2<br />

k_i(32)=2<br />

k_i(33)=2<br />

k_i(34)=4<br />

k_i(35)=4<br />

k_i(36)=6<br />

k_i(37)=2<br />

k_i(38)=3<br />

k_i(39)=2<br />

k_i(40)=4<br />

k_i(41)=2<br />

k_i(42)=3<br />

k_i(43)=2<br />

k_i(44)=4<br />

j_i(37)=2<br />

j_i(38)=2<br />

j_i(39)=3<br />

j_i(40)=3


methanol.for<br />

d:/DTU/Eksamensprojekt/bilag/<br />

j_i(41)=4<br />

j_i(42)=3<br />

j_i(43)=4<br />

j_i(44)=4<br />

b_i(37)=6<br />

b_i(38)=6<br />

b_i(39)=6<br />

b_i(40)=6<br />

b_i(41)=6<br />

b_i(42)=25<br />

b_i(43)=25<br />

b_i(44)=25<br />

c_i(37)=3.9d0<br />

c_i(38)=3.9d0<br />

c_i(39)=3.9d0<br />

c_i(40)=3.9d0<br />

c_i(41)=3.9d0<br />

c_i(42)=23.1d0<br />

c_i(43)=23.1d0<br />

c_i(44)=23.1d0<br />

f_i(1)=2.49667488720d0<br />

f_i(2)=2.90079118498d0<br />

f_i(3)=−62.5713535015d0<br />

f_i(4)=10.9926773951d0<br />

f_i(5)=18.3368299465d0<br />

f_i(6)=−16.3660043791d0<br />

f_i(7)=−6.22323476219d0<br />

f_i(8)=2.80353628228d0<br />

f_i(9)=1.07780989422d0<br />

f_i(10)=0.969656970177d0<br />

g_i(4)=4.11978538315d0<br />

g_i(5)=3.26499998052d0<br />

g_i(6)=3.76946349682d0<br />

g_i(7)=2.93149354474d0<br />

g_i(8)=8.22555789084d0<br />

g_i(9)=10.3162789084d0<br />

g_i(10)=0.532489267209d0<br />

return<br />

end<br />

subroutine sub_n(n,eq_nr)<br />

integer eq_nr<br />

double precision n(13)<br />

if (eq_nr.eq.2) then<br />

n(1)=−8.8738823d0<br />

n(2)=2.3698322d0<br />

n(3)=−10.852598d0<br />

n(4)=−0.12446396d0<br />

elseif (eq_nr.eq.3) then<br />

n(1)=−9.74320519d0<br />

n(2)=6.27207077d1<br />

n(3)=−(7.11162934d2)<br />

n(4)=−(1.28732378d4)<br />

n(5)=9.54090636d3<br />

n(6)=−(8.06229292d4)<br />

n(7)=8.90380974d4<br />

n(8)=−(2.68827787d4)<br />

n(9)=1.53392797d4<br />

n(10)=−(1.39186128d4)<br />

n(11)=−(8.77428382d3)<br />

n(12)=9.25853159d3<br />

n(13)=−(7.36156195d3)<br />

elseif (eq_nr.eq.4) then<br />

n(1)=1.8145364d0<br />

n(2)=1.2703194d0<br />

n(3)=−1.0182657d0<br />

n(4)=2.7562720d0<br />

n(5)=−1.8958692d0<br />

endif<br />

return<br />

end<br />

19/19<br />

19−03−2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!