17.10.2012 Views

Designing RFIC Modules For 2.4ghz Wireless Applications

Designing RFIC Modules For 2.4ghz Wireless Applications

Designing RFIC Modules For 2.4ghz Wireless Applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Designing</strong> <strong>RFIC</strong> <strong>Modules</strong><br />

<strong>For</strong> 2.4GHz<br />

<strong>Wireless</strong> <strong>Applications</strong><br />

Ride the Wave<br />

Workshop<br />

Slide 1<br />

Symphony Serenade HFSS Ensemble Spicelink<br />

Optimetrics


Agenda<br />

� Sample system: Bluetooth overview<br />

� System design and analysis<br />

� Antenna design and analysis<br />

� LTCC circuit design and analysis<br />

� <strong>RFIC</strong> design and analysis<br />

� Conclusion<br />

� References<br />

Slide 2


What is Bluetooth?<br />

Bluetooth [1]<br />

? [1]<br />

The Bluetooth system is is a universal radio interface on the<br />

globally available 2.4 GHz ISM frequency band facilitating<br />

wireless communication of of data and voice in in both stationary<br />

and mobile environments<br />

Low-cost Radio based cable replacement…(to)..Provide<br />

the basis for portable devices to communicate together<br />

…by creating a personal area (wireless)<br />

network…Bluetooth is an effort by a consortium of<br />

companies to design a royalty-free technology<br />

specification enabling this vision. (1)<br />

Low-cost Radio based cable replacement…(to)..Provide<br />

the basis for portable devices to communicate together<br />

…by creating a personal area (wireless)<br />

network…Bluetooth is an effort by a consortium of<br />

companies to design a royalty-free technology<br />

specification enabling this vision. (1)<br />

� Given the Bluetooth guidelines, how does this<br />

translate to RF specifications?<br />

Slide 3


Bluetooth Specifications Specifications [2]<br />

Specifications [2]<br />

� Operates in (U.S.) ISM band (2.400-2.4835 GHz)<br />

� Frequency hopping @1600 hops/sec(nominal)<br />

� Channel frequencies F = (2402+k) MHz, k = 0,…,78<br />

� Some countries use different ranges in this band<br />

� Channel spacing 1MHz<br />

� Guard band 2MHz lower, 3.5MHz upper.<br />

� Power classes:<br />

Power<br />

Class<br />

1<br />

2<br />

3<br />

Pmax<br />

100mW<br />

2.5mW<br />

1mW<br />

Nominal<br />

N/A<br />

1mW<br />

N/A<br />

Pmin<br />

1mW<br />

0.25mW<br />

N/A<br />

The Bluetooth<br />

system is is a narrow<br />

band system,<br />

approximately 3.5%<br />

bandwidth.<br />

Slide 4


Bluetooth Specifications<br />

� Modulation characteristic<br />

�<br />

�<br />

�<br />

GFSK with BT=0.5<br />

Modulation index : M I =<br />

Frequency deviation<br />

∆f(<br />

BW<br />

140 KHz ≤<br />

∆f(<br />

SSB) ≤ 175KHz<br />

� Data rate : 1Mb/s<br />

2 SSB)<br />

0.<br />

28<br />

0.<br />

35<br />

(+/-160KHz nominal)<br />

� Radio frequency tolerance : +/-75KHz<br />

� Actual sensitivity level of -70dBm or better<br />

@0.1% raw bit error rate<br />

=<br />

~<br />

Slide 5


Sensitivity and Dynamic Range [3]<br />

� Sensitivity<br />

� Minimum signal level that the system can detect with<br />

acceptable signal-to-noise ratio.<br />

Pin , min = − dBm / Hz<br />

� Dynamic range (SFDR)<br />

174 + NF + 10log<br />

B + SNR<br />

� Maximum input level that the circuit can tolerate to the<br />

minimum input level at which the circuit provides a<br />

reasonable signal quality.<br />

2P<br />

+ F<br />

3<br />

F =<br />

−174<br />

dBm + NF + 10log<br />

B<br />

IIP 3<br />

SFDR = − +<br />

( F SNR )<br />

min<br />

min<br />

Slide 6


Bluetooth Noise Calculation [4]<br />

4.1 4.1 ACTUAL SENSITIVITY LEVEL<br />

The actual sensitivity level is is defined as as the the input<br />

level for for which a raw raw bit bit error rate rate (BER) of of 0.1% is is<br />

met. The The requirement for for a Bluetooth receiver is is an an<br />

actual sensitivity level of of –70 –70 dBm dBmor or better. The The<br />

receiver must achieve the the –70dBm sensitivity level<br />

with any any Bluetooth transmitter compliant to to the the<br />

transmitter specification specified in in Section 3 on on<br />

page 21. 21.<br />

This sets the noise budget for the system. The bit<br />

error rate, or P{E} for Non-coherent FSK is given<br />

by (2)<br />

This sets the noise budget for the system. The bit<br />

error rate, or P{E} for Non-coherent FSK is given<br />

by<br />

Where the approximation<br />

(2)<br />

1 Eb<br />

1⎛<br />

S ⎞BT<br />

− 1 2 N 1 − ⎜ ⎟<br />

0<br />

2⎝<br />

N ⎠ k<br />

P{<br />

E}<br />

= e = e<br />

2<br />

2<br />

Where the approximation<br />

is is used.<br />

E<br />

N<br />

b<br />

0<br />

⎛ S<br />

≈ ⎜<br />

⎝ N<br />

⎞<br />

⎟<br />

⎠<br />

BT<br />

k<br />

Bit Error Rate<br />

Bit Error Rate<br />

1.E+00<br />

1.E+00<br />

1.E-01<br />

1.E-01<br />

1.E-02<br />

1.E-02<br />

1.E-03<br />

1.E-03<br />

1.E-04<br />

1.E-04<br />

1.E-05<br />

1.E-05<br />

Bit Error Rate Vs. SNR, BT = .5<br />

Bit Error Rate Vs. SNR, BT = .5<br />

Non-coherent<br />

FSK<br />

Slide 7<br />

GFSK<br />

M<br />

I I =0.28<br />

1.E-06<br />

1.E-06<br />

-5 0 5 10 15 20 25<br />

-5 0 5 10 15 20 25<br />

SNR, dB<br />

SNR, dB<br />

Thus, the the signal to to<br />

noise ratio has has to to<br />

be be a minimum of of<br />

approximately<br />

21dB.


Bluetooth Noise Budget<br />

0 dBm<br />

-20 dBm<br />

-70 dBm<br />

-91 dBm<br />

-114 dBm<br />

TX power<br />

RX power @ 10cm<br />

RX power @ 10m, Reference Sensitivity Level<br />

Allotted Noise floor<br />

kTB (@1MHz)<br />

The ratio of of signal to to noise<br />

for for non-coherent GFSK<br />

was calculated to to be be a<br />

minimum of of 21dB for for the<br />

given BER specification.<br />

This allows a system<br />

noise figure of of 23dB.<br />

C/I AWGN = 21 dB<br />

(Theoretical)<br />

NF = 23 dB<br />

Slide 8


Bluetooth Intercept Point<br />

4.4 4.4 INTERMODULATION CHARACTERISTICS<br />

The reference sensitivity performance, BER = 0.1%, shall be be met met under the the following conditions.<br />

••The The wanted signal at at frequency ff 0<br />

0 with a power level 6 dB dB over the the reference sensitivity level.<br />

(Reference Sensitivity Level = -70dBm, signal @f @f<br />

0<br />

0 therefore is is –64dbm)<br />

•• A static sine wave signal at at f1 f1 with a power level of of –39 –39 dBm<br />

•• A Bluetooth modulated signal at at f2 f2 with a power level of of -39 -39 dBm Such that that ff 0<br />

0 = 2 ff 1<br />

1-f -f<br />

2<br />

2and and | | ff 2<br />

2-f -f<br />

1<br />

1 |= |= n*1 n*1<br />

MHz, where n can can be be 3, 3, 4, 4, or or 5. 5. The system must fulfill one one of of the the three alternatives.<br />

(f (f<br />

0<br />

0is is some desired signal, and and ff 1<br />

1 & ff 2<br />

2are are two two signals in in adjacent channels, as as evidenced by by the the restriction<br />

|f |f<br />

2<br />

2 –f –f<br />

1| 1| = n*1)<br />

This essentially sets the the dynamic range of of the the system by by<br />

setting the the intercept point through the the use use of of co-channel<br />

interference. In In this this case, the the third order product produced<br />

from signals in in two two adjacent channels are are at at the the same<br />

frequency as as the the desired signal. This third order product<br />

cannot cause a degradation in in BER. Since the the power in in the the<br />

“desired” channel is is –64dBm, the the third order product caused<br />

by by 2 ff 1<br />

1-f -f<br />

2<br />

2 (= (= f0) f0) has has to to be be below the the level specified for for<br />

Carrier Interference (C/I). The The C/I C/I specification is is 11dB, so so<br />

this this means that that the the third order product of of the the two two signals<br />

must be be below –75dBm.<br />

Output Power, dBm dBm<br />

Dynamic Range Chart<br />

50<br />

50<br />

40<br />

40<br />

30<br />

30<br />

20<br />

20<br />

10<br />

10<br />

0<br />

-10<br />

-10<br />

-20<br />

-20<br />

-30<br />

-30<br />

-40<br />

-40<br />

-50<br />

-50<br />

-60<br />

-60<br />

-70<br />

-70<br />

-80<br />

-80<br />

-90<br />

-90<br />

-100<br />

-100<br />

-110<br />

-110<br />

-120<br />

-120<br />

Ideal Power Output<br />

Ideal<br />

Ideal<br />

Power<br />

3rd Order<br />

Output<br />

Power Output<br />

Ideal Nois 3rd e Floor Order at Input Power Bandwidth Output<br />

Nois<br />

Compression<br />

e Floor at Input Bandwidth<br />

Compression<br />

Po, Spur-Free<br />

Po,<br />

System<br />

Spur-Free<br />

Noise Floor<br />

System Noise Floor<br />

-120<br />

-120<br />

-110<br />

-110<br />

-100<br />

-100<br />

-90<br />

-90<br />

-80<br />

-80<br />

-70<br />

-70<br />

-60<br />

-60<br />

-50<br />

-50<br />

-40<br />

-40<br />

-30<br />

-30<br />

-20<br />

-20<br />

-10<br />

-10<br />

0<br />

Input<br />

Input<br />

Power,<br />

Power,<br />

dBm<br />

dBm<br />

Slide 9


Output Power, dBm<br />

Bluetooth Intercept Point Calculations<br />

Dynamic Range Chart<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

Ideal Power Output<br />

Ideal 3rd 3rd Order Power Output<br />

Noise Floor at at Input Bandwidth<br />

Compression<br />

Po, Po, Spur-Free<br />

System Noise Floor<br />

-120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0<br />

Input Power, dBm<br />

Noise Floor = kTB<br />

Slide 10<br />

Pin Vs Pout, Fundamental<br />

Estimated Compression<br />

Curve<br />

Output power level<br />

Corresponding to the point<br />

where the third order<br />

product meets the noise<br />

floor<br />

Pin Vs Pout, Third Order<br />

System Noise Floor<br />

G + NF +kTB


Output Power, dBm<br />

40 40<br />

Minimum<br />

30 30 power point where<br />

the system must not produce<br />

a spur 20 20 higher than the (C/I),<br />

Output power = -39dBm + G<br />

10 10<br />

0<br />

-10 -10<br />

-20 -20<br />

-30 -30<br />

-40 -40<br />

Bluetooth TOI Calculation<br />

Third Order Intercept<br />

Dynamic Range Chart<br />

-50 -50<br />

-110 -110 -100 -100 -90 -90 -80 -80 -70 -70 -60 -60 -50 -50 -40 -40 -30 -30 -20 -20 -10 -10<br />

Input Power, dBm<br />

X<br />

2X<br />

Point where the third order product intercepts the<br />

noise floor, in this case the C/I ratio,<br />

Output power= –64dBm – 11dB + G = -75dBm + G<br />

X<br />

-39dBm<br />

-64dBm<br />

G<br />

-39dBm + G<br />

-64dBm + G<br />

Slide 11<br />

It It is is convenient to to refer refer to to the the both both the the output output and and<br />

the the input input of of the the device device when when calculating Third Third Order Order<br />

Intercept, even even though though the the gain gain will will drop drop out out for for<br />

input inputpoint. point. The The given given specification is is the the point point<br />

where where the the third third order order product is is equal equal to to the the “noise” “noise”<br />

level levelor or in in this this case, case, Carrier Carrier to to interference Ratio Ratio<br />

(C/I). (C/I). Once Once this this level level is is known, the the third third order order<br />

intercept can can be be calculated for for a given given gain. gain. The The<br />

slope slope of of the the fundamental is is 1, 1, and and the the slope slope of of the the<br />

third third order order product is is 3, 3, so so P<br />

out<br />

out Vs. Vs. P<br />

in<br />

inplot plot can can be be<br />

broken broken up up into into 2 regions regionsas as shown. shown. The The two two points points<br />

on on the the plot plot are are given given for for the the upper upper and and lower lower limits limits<br />

of of the the 2X 2X interval, or or at at the the output output<br />

2X= 2X= -75 -75 +G +G –(-39 –(-39 +G) +G) = 36, 36, X = 18 18<br />

And And the the Third Third order order intercept is is X dB dB above above –39dBm<br />

at at the the input, input, or or<br />

TOI TOI = -39dBm + 18dB 18dB = -21dBm<br />

Note Note that that the the input input intercept point point does does not not depend<br />

on on the the gain gain directly.<br />

Third Order Product<br />

-39dBm + G – 2X


Slide 12<br />

Bluetooth Spur Free Dynamic Range Calculations<br />

Output Power, dBm<br />

40 40<br />

Minimum<br />

30 30 power point where the<br />

system must not produce a spur<br />

higher 20 20 than the noise floor,<br />

Output power = -39dBm + G<br />

10 10<br />

0<br />

-10 -10<br />

-20 -20<br />

-30 -30<br />

-40 -40<br />

Dynamic Range Chart<br />

-50 -50<br />

-110 -110 -100 -100 -90 -90 -80 -80 -70 -70 -60 -60 -50 -50 -40 -40 -30 -30 -20 -20 -10 -10<br />

Input Power, dBm<br />

Y<br />

2Y<br />

Third Order Intercept<br />

Y<br />

As As before, the the dynamic range spur chart is is<br />

plotted. In In this this case, the the point of of interest is is<br />

the the point where the the output power third order<br />

product is is equal to to the the noise power. This is is<br />

the the lower end end of of the the SFDR. The The upper end end<br />

will will be be the the output power of of the the first first order<br />

product at at that that point. In In this this case, the the SFDR<br />

is is just just 2Y. 2Y. The The distance 3Y 3Y is is given by by<br />

3Y 3Y =-21+G -( -( -114+G+23 ) )<br />

2Y=(2/3) (-21 +114 --23 23 )=46.7dB<br />

This difference is the Spur-Free Dynamic Range.<br />

The assumed noise figure was 23dB.<br />

Point where the third order product<br />

intercepts the noise floor,<br />

Output power = ktB+G+NF = -114dBm + G+23


Ansoft Design Environment for <strong>Wireless</strong> Design<br />

�� Ansoft design environment addresses the<br />

needs of the wireless market<br />

� Modern wireless systems are becoming more and<br />

more complex<br />

� Levels of integration are increasing<br />

� Time to market requirements are shrinking<br />

� Fast, accurate simulation is required<br />

�� Ansoft design environment provides start to<br />

finish design and analysis<br />

� Circuit simulation<br />

� System simulation<br />

� 2.5D modeling<br />

� 3D modeling<br />

� The following presentation demonstrates<br />

Ansoft’s answers to wireless design<br />

Slide 13


System Design and Analysis<br />

� Architecture considerations<br />

� System Architecture<br />

� GFSK modulation<br />

Slide 14<br />

� PLL Frequency Synthesizer design and analysis<br />

Symphony Serenade HFSS Ensemble Spicelink<br />

Optimetrics


Receiver Architectures<br />

� SuperHeterodyne receiver<br />

� Uses “dual” down-conversion<br />

� RF and LO are separated in frequency<br />

Slide 15<br />

� “Image” and other unwanted signals can be filtered (Cost)<br />

� More complex structure<br />

� Low-IF Heterodyne receiver<br />

� High level integration<br />

� Down-converts directly to a “low” IF<br />

� Image noise is a concern, medium channel selectivity<br />

� Direct Conversion(Zero-IF Homodyne) receiver<br />

� LO and RF at the “same” frequency<br />

� High level integration, no image filter<br />

� LO leakage is “in-band”, higher design challenge


Transmitter Architectures<br />

Transmitter<br />

Transmitter Architectures [5]<br />

� Direct VCO modulation<br />

� Direct VCO modulation with gaussian filtered data<br />

� Simple, low current design<br />

� Frequency drift and modulation index variation<br />

� I/Q modulation<br />

� Direct or indirect up-conversion with I/Q modulator<br />

� Gaussian filter and FSK mapping are performed in BB<br />

� No frequency drift<br />

� No modulation index variation<br />

� More circuits are involved<br />

Slide 16


Symphony<br />

System Architecture<br />

Slide 17


Signal Implications<br />

� GFSK Modulation<br />

� Gaussian Frequency Shift Keying<br />

� The information is contained in the “frequency shift” of<br />

the signal between two frequencies.<br />

� BT = .5<br />

� B bandwidth of the gaussian filter used, in this case .5MHz<br />

LPF, corresponds to a 1MHz bw at <strong>2.4ghz</strong>.<br />

� Since there is one bit/symbol, T is the bit time and the<br />

Symbol time. 1/T is the bit rate.<br />

� The goal of Bluetooth is to have a data rate of 1Mb/s<br />

� GFSK is ideally a constant envelope signal<br />

� This implies a “constant amplitude” signal<br />

� Power amplifier can be run deep into compression<br />

� This increases the efficiency of the power amplifier<br />

Slide 18


Gaussian Frequency Shift Keying (GFSK) [6]<br />

In a GFSK modulator everything is is the same as a FSK<br />

modulator except that before the baseband pulses (-1, 1) go<br />

into the FSK modulator, it it is is passed through a gaussian filter<br />

to make the pulse smoother so to limit its spectral width.<br />

Gaussian filtering is is one of the standard methods for<br />

reducing the spectral width or Pulse Shaping. If If we use “-1”<br />

for fc-fd and “1” for fc+fd, when we jump from -1 to 1 or 1 to -<br />

1, the modulated waveform changes rapidly, which<br />

introduces a large out-of-band spectrum. If If we change the<br />

pulse going from -1 to 1 as -1, -.98, -.93 ..... .96, .99, 1, and<br />

we use this smoother pulse to modulate the carrier, the outof-band<br />

spectrum will be reduced.<br />

The spectral width for FSK is is unlimited, comparatively, there<br />

is is a limitation on GFSK. fc "climbs slowly" to fd in GFSK,<br />

However, in the case of FSK, fc "jumps sharply" to fd, which<br />

greatly decreases spectral efficiency..<br />

Slide 19


Frequency Shift Keying (FSK) Vs.<br />

Gaussian Frequency Shift Keying (GFSK)<br />

FSK Modulation<br />

GFSK Modulation<br />

Symphony<br />

Addition of Gaussian<br />

Low Pass Filter<br />

Slide 20


Symphony<br />

Frequency Shift Keying (FSK) Vs.<br />

Gaussian Frequency Shift Keying (GFSK)<br />

FSK GFSK<br />

Slide 21


Symphony<br />

Frequency Shift Keying (FSK) Vs.<br />

Gaussian Frequency Shift Keying (GFSK)<br />

Slide 22


Symphony<br />

Frequency Shift Keying (FSK) Vs.<br />

Gaussian Frequency Shift Keying (GFSK)<br />

Slide 23


<strong>For</strong>ward gain:<br />

B(<br />

s)<br />

PLL Frequency Synthesizer<br />

θ i(<br />

s)<br />

K K θo(<br />

s)<br />

θ<br />

0<br />

F(s)<br />

f i<br />

G(<br />

s)<br />

=<br />

K<br />

θ<br />

s<br />

K0F(<br />

s)<br />

s<br />

Open loop Transfer Function:<br />

Closed loop Transfer Function:<br />

1<br />

N<br />

s<br />

f o =Nf i<br />

Slide 24<br />

Kθ : Phase detector gain factor (Volts/Radian)<br />

K0 : VCO gain factor (Radians per second/volt)<br />

F(s): Filter transfer function<br />

N: Frequency Division Ratio<br />

H(<br />

s)<br />

K0F(<br />

s)<br />

Ns<br />

FowardGain G(<br />

s)<br />

KθK<br />

0F(<br />

s)<br />

s<br />

=<br />

=<br />

=<br />

1−<br />

( OpenLoopGain)<br />

1+<br />

G(<br />

s)<br />

H(<br />

s)<br />

1+<br />

K K F(<br />

s)<br />

Ns<br />

=<br />

K<br />

θ<br />

θ<br />

0


PLL Design Specs<br />

� Output frequency : 2402MHz~2480MHz<br />

� Frequency step : 1MHz<br />

� Lock-up time : < 220 µS<br />

� Overshoot : < 20%<br />

� VCO sensitivity : 40MHz/V (K o)<br />

� Reference Frequency : 1MHz<br />

Slide 25


Setting Time Calculation for PLL<br />

625X5 = 3125us<br />

2871 bits<br />

Standard packet format:<br />

LSB 72 54 0 ~ 2745 MSB<br />

ACCESS CODE HEADER PAYLOAD<br />

Symbol Rate = 1Ms/s = 1Mbps → Bit Duration<br />

=<br />

1µ<br />

s<br />

∴Max<br />

number of bits of a standard packet is 72 + 54 + 2745 = 2871<br />

Therefore, the time left for 3 slot times and settling is (3125-2871) = 254 µsec<br />

∴<br />

1<br />

1600 hops<br />

625 s =<br />

µ<br />

/ sec<br />

Slide 26<br />

for 5 time slots


Setting Time Calculation for PLL<br />

Hopping<br />

Turn around<br />

If the hop sequence scans over the turn around region like segment1 & segment2, PLL in radio chip should<br />

be capable of switching and settling (for all of the frequency hop) before the onset point of next time slot.<br />

Assume 3-wire control takes about 34us (based on 13MHz system clock), then<br />

1. Channel switching time should be < 220us<br />

2. Tx-Rx turn around time should be < 220us for the frequency jump of 78MHz.<br />

Slide 27


Error<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

Setting Time & Loop Bandwidth for PLL<br />

e<br />

Error vs Time<br />

tζ<br />

T<br />

o<br />

=<br />

ωo<br />

t⋅ζ<br />

⋅<br />

2π<br />

0 50 100 150 200<br />

Time<br />

e<br />

It should be<br />

Dimensionless here!!<br />

if<br />

e<br />

ωo<br />

−t⋅ζ<br />

⋅<br />

2π<br />

≤<br />

Slide 28<br />

Set as<br />

⎯⎯→<br />

⎯ ε<br />

ωo<br />

⇒ t ⋅ζ<br />

⋅ ≥ −lnε<br />

2π<br />

ωo<br />

When t = ts<br />

⇒ ts<br />

⋅ζ<br />

⋅ = −lnε<br />

2π<br />

− lnε<br />

ωo<br />

= 2π<br />

⋅<br />

t ⋅ζ<br />

s<br />

f<br />

f<br />

accuracy<br />

jump( max )<br />

RADIO FREQUENCY TOLERANCE<br />

The transmitted initial center frequency accuracy must be ±75 kHz from F c . The initial frequency<br />

accuracy is defined as being the frequency accuracy before any information is transmitted. Note<br />

that the frequency drift requirements not included in the ±75 kHz.<br />

Θ<br />

f<br />

Θ t<br />

s<br />

accuracy<br />

= 75KHz,<br />

= 220µ<br />

s & let ζ =<br />

f<br />

jump(max)<br />

0.<br />

8,<br />

∴<br />

= 78MHz<br />

f<br />

o<br />

=<br />

− lnε<br />

≅<br />

t ⋅ζ<br />

s<br />

∴−<br />

lnε<br />

≈<br />

6.<br />

947<br />

39.<br />

47KHz,<br />

whereω<br />

=<br />

0<br />

2π<br />

⋅<br />

f<br />

0


Serenade<br />

2 1 sτ<br />

+<br />

F(<br />

s)<br />

=<br />

s<br />

F(<br />

s)<br />

[ ( τ + τ ) ]<br />

1<br />

1 sτ<br />

+<br />

2<br />

Loop Filters<br />

τ = R C<br />

τ<br />

1<br />

2<br />

=<br />

1<br />

R<br />

2<br />

2<br />

C<br />

τ = R C<br />

1<br />

τ<br />

=<br />

1<br />

R<br />

2<br />

C<br />

2<br />

F(<br />

s)<br />

=<br />

[ s(<br />

τ + τ ) + 1](<br />

sτ<br />

+ 1)<br />

F(<br />

s)<br />

=<br />

sτ<br />

+ 1<br />

Slide 29<br />

2<br />

2 2 2 2<br />

=<br />

sτ<br />

sτ1(<br />

sτ<br />

3 + 1)<br />

1<br />

1<br />

sτ<br />

+ 1<br />

2<br />

2<br />

τ1<br />

= R1C2<br />

τ = R C<br />

2<br />

3<br />

2<br />

2<br />

( R1<br />

R2<br />

) 3<br />

τ 3 = || C


Closed Loop Bandwidth Response<br />

Symphony<br />

Serenade<br />

Slide 30


Closed Loop Bandwidth Response<br />

Symphony<br />

Serenade<br />

35KHz<br />

Slide 31


Tx-Rx Tx Rx Turn Around & Channel Switching Time<br />

Symphony<br />

Serenade<br />

80MHz Frequency Jump<br />

10MHz Frequency Jump<br />

Slide 32


Spur Simulation for PLL<br />

• Open loop modulation when transmitting (Turn off phase detector after loop is locked, no spur problem)<br />

• Close loop for PLL when receiving (The receiver will suffer from comparing spur interferences from PLL)<br />

Symphony<br />

R<br />

out<br />

(to emulate the curent leakage)<br />

=<br />

Settling Voltage<br />

Leakage Current<br />

Slide 33<br />

1v<br />

5<br />

≈ = 5⋅10<br />

Ω<br />

2µ<br />

A


The case for<br />

in1 lag in2<br />

Symphony<br />

Phase Frequency Detector<br />

The case for in1 lead in2<br />

Slide 34


Interference<br />

(On purpose)<br />

Symphony<br />

Spur Simulation for PLL<br />

???<br />

Interference<br />

(generated by PLL when receiving)<br />

Slide 35


If finterference≥3MHz<br />

If finterference=2MHz<br />

If finterference=1MHz<br />

40dB<br />

30dB<br />

Spur Simulation for PLL<br />

-67<br />

dBm<br />

-60<br />

dBm<br />

-60<br />

dBm<br />

-27dBm<br />

-30dBm<br />

-67dBm<br />

X dBc<br />

X dBc<br />

X dBc<br />

Slide 36<br />

- 67dBm - (-27dBm + X) ≥ 11dB ⇒ X ≤ −51dBc<br />

The tightest spec. for PLL<br />

comparing spur suppression!!<br />

- 60dBm - (-30dBm + X) ≥ 11dB ⇒ X ≤ −41dBc<br />

- 60dBm - (-60dBm + X) ≥ 11dB ⇒ X ≤ −11dBc


Antenna Design<br />

� Antenna in a Bluetooth-enabled<br />

device is a vital part of the whole<br />

solution<br />

� Product power consumption<br />

� BER<br />

� Inverted-F antenna<br />

� Allows for embedded design<br />

� Low-profile and small (~λ/4)<br />

� Inductive tuning stub<br />

� Good BW and gain due to use of board<br />

ground plane<br />

HFSS Ensemble<br />

Optimetrics<br />

Slide 37


� Typical PDA board<br />

size(100mmx60mm)<br />

Model and Results<br />

� 3D-modeling with HFSS<br />

� Finite ground and dielectrics<br />

simulated<br />

� Gap source used<br />

� PML (Perfectly Matched<br />

Layer) absorbing boundary<br />

condition used<br />

� -14dB at 2.44GHz<br />

� BW > 0.8GHz<br />

� VSWR < 2 over entire band<br />

HFSS<br />

Slide 38


z<br />

x y<br />

HFSS<br />

Radiation Patterns<br />

Slide 39


LTCC Circuit Design and Analysis<br />

� Tx & Rx Baluns<br />

� Power Amplifier mounted on<br />

substrate<br />

Slide 40


RF Module for bluetooth [7]<br />

� Size requirements of <strong>RFIC</strong> require flip-chip assembly<br />

� LTCC selected for high frequency performance and<br />

dense integration of antenna filter and Rx/Tx baluns<br />

� Single-side assembly allows for one soldering<br />

operation.<br />

� Package is self-shielding due to ground plane in<br />

substrate and BGA balls.<br />

Slide 41


What is LTCC? [8]<br />

� Low Temperature Co-fired Ceramic (LTCC)<br />

technology meets the requirements for MCM-C<br />

design<br />

� Benefits/Features of LTCC<br />

• Hi Q/ Low Loss / Low T<br />

• Allows direct attachment<br />

of Si and GaAs IC’s<br />

• Ag & Au based conductors<br />

• Enhances performance,<br />

decreases cost, reduces size<br />

and improves reliability<br />

Slide 42


� 8-layer LTCC 951 Green Tape TM by DuPont<br />

� parallel processing<br />

� excellent dielectric isolation<br />

� high layer count circuitry<br />

� high conductivity metallization<br />

� 951A2 properties:<br />

LTCC<br />

• Layer thickness (fired) = 0.1397mm<br />

• Dielectric constant = 7.8<br />

• Loss Tangent = 0.0015<br />

• Metal type = Silver (Ag)<br />

Slide 43


Balun Model on LTCC<br />

Rx and Tx baluns<br />

LTCC<br />

Substrate<br />

PCB<br />

Serenade HFSS Ensemble Spicelink<br />

Optimetrics<br />

balun layers<br />

g2<br />

stripline: routing<br />

g1<br />

microstrip: soldering and interconnects<br />

<strong>RFIC</strong><br />

Slide 44


Baluns<br />

� Baluns provide a “balanced” output from a<br />

single input<br />

� Outputs are 180º out of phase<br />

� Ports are “isolated”<br />

� Baluns are difficult to simulate<br />

� “Conductive” silicon substrate<br />

� Multiple layers<br />

� Ensemble can simulate the structures on<br />

both LTCC and for “on chip” applications<br />

using a 2.5D approach<br />

� HFSS Can be used to provide a full 3D<br />

simulation<br />

Slide 45


Baluns<br />

� Baluns can be realized with either<br />

active or passive components<br />

� Active baluns require additional DC<br />

current<br />

� Passive Baluns are typically bulky<br />

and difficult to realize<br />

� Passive Baluns can be located on-chip<br />

or “off chip”<br />

Slide 46


Balun configurations<br />

1. 180° hybrids / ring resonators –<br />

impractical due to large size<br />

2. Lumped-element filter type – poor<br />

balance and complicated layout<br />

3. Marchand type – excellent balance over<br />

wide frequency band<br />

� Coupled microstrip, Lange-coupler:<br />

� large geometry<br />

� Spiral type:<br />

� compact layout due to<br />

geometry and mutual coupling<br />

� lower series resistance due to less metal<br />

Slide 47


Balun layout [9]<br />

� Upper conducter centered<br />

above gap in the lower<br />

conducter and rotated 180°.<br />

� Allows for independent variation of center-to-center<br />

spacing (mutual L) and overlaid degree (mutual C).<br />

� <strong>For</strong>ces close to coplanar structure (Zo nearly<br />

independent of substrate thickness).<br />

� Direction of current flow in coils is same (better<br />

mutual L).<br />

� Layout symmetric to ground connections (minimized<br />

imbalance).<br />

� Coplanar ground ring provides shielding<br />

� fo of balun tuned by changing<br />

N or Rinner .<br />

� Optimal performance when<br />

W/(W+S) = 0.4~0.6.<br />

Slide 48


Balun stackup<br />

� M2, M4, M8 : solid ground layers<br />

Slide 49<br />

� M3 : stripline layer used for routing between<br />

embedded components, discrete components and<br />

board<br />

� M5, M6, M7 : balun layers<br />

� Dielectric thickness = 0.1397mm per layer<br />

� Metallization thickness = 0.009mm<br />

M8<br />

M7<br />

M6<br />

M5<br />

M4<br />

M3<br />

M2


Baluns coil size approximation<br />

� Required 90° length derived from<br />

transmission line utility in Power<br />

Plug-Ins<br />

� L = 10.99mm<br />

� Physically,<br />

L<br />

Ri<br />

+ W + S 2 2<br />

( θ , θ , R , W , S)<br />

= R ( θ −θ<br />

) + ( θ −θ<br />

)<br />

1<br />

2<br />

i<br />

i<br />

2<br />

1<br />

� Single coil modeled initially to get<br />

close to 90° phase lag, where:<br />

� W=S=0.15mm<br />

� R i =0.15mm<br />

� N=2.5→ θ 1=0°, θ 2=90°<br />

4π<br />

0.<br />

45<br />

L 19<br />

4π<br />

2 ( 0,<br />

5π<br />

, 0.<br />

15,<br />

0.<br />

15,<br />

0.<br />

15)<br />

= 0.<br />

15(<br />

5π<br />

) + ( 5π<br />

) = 11.<br />

mm<br />

� L=11.19mm →φ=91.63° in TRL utility,<br />

which is close enough to start.<br />

Serenade<br />

2<br />

1<br />

Slide 50


� Gap sources on<br />

input and output of<br />

both coils.<br />

� Solid coplanar<br />

ground ring used to<br />

reduce model<br />

complexity in initial<br />

design.<br />

∠<br />

� d<br />

S<br />

∠S<br />

21<br />

43<br />

ο<br />

( 2.<br />

44Ghz)<br />

= 97.<br />

7<br />

ο<br />

( 2.<br />

44Ghz)<br />

= 90.<br />

5<br />

� Absolute phase and<br />

phase imbalance<br />

addressed during<br />

optimization.<br />

HFSS Optimetrics<br />

Single coil model<br />

port3<br />

port1<br />

port2<br />

port4<br />

Slide 51


Full 3-port 3 port model<br />

� Coil mirrored around z-axis to generate baluns.<br />

� Ground provided by solid coplanar ring, and top and bottom of<br />

bounding box.<br />

� Model creation programmed in macro language to allow for<br />

parametric analysis on W, S, Ri, and N.<br />

HFSS Optimetrics<br />

port3<br />

open<br />

port1<br />

port2<br />

Slide 52


Balun analysis and performance<br />

� Solution space defined as:<br />

� Ro=[0.15, 0.55] mm<br />

� S=[0.15, 0.55] mm<br />

� W=[0.15, 0.55] mm<br />

� N=2.5<br />

� IL, phase imbalance, and amplitude imbalance calculated<br />

within Optimetrics:<br />

2 2<br />

( )<br />

2 2 ⎛ S12<br />

S13<br />

2 S12<br />

S13<br />

cos ⎞<br />

IL 10log<br />

S12<br />

S13<br />

10log⎜<br />

+ +<br />

θ<br />

= − + −<br />

⎟<br />

2 2<br />

⎜ S12<br />

S13<br />

2 S12<br />

S ⎟<br />

⎝ + + 13 ⎠<br />

≈ −10log<br />

S<br />

2<br />

+ S<br />

2<br />

( )<br />

12<br />

13<br />

phase imbalance = 180°<br />

− tan<br />

−1<br />

⎛ S<br />

Im⎜<br />

⎝ S<br />

⎛ S<br />

Re⎜<br />

⎝ S<br />

12<br />

13<br />

12<br />

13<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

⎛ S<br />

amplitude<br />

imbalance = 20log<br />

⎜<br />

⎝ S<br />

Slide 53<br />

12<br />

13<br />

⎞<br />

⎟<br />


Balun parametric sweep vs Ri<br />

HFSS Optimetrics<br />

•Ri=0.25; W=S=0.15<br />

•Low IL, AmpImb<br />

•PhsImb corrected in layout<br />

Slide 54


HFSS Optimetrics<br />

Parameters vs S<br />

Slide 55


HFSS Optimetrics<br />

Parameters vs W<br />

Slide 56


Detailed balun model<br />

� Optimal design chosen:<br />

� Ri=0.25mm; W=S=0.15mm<br />

� IL=0.122dB; AmpImb=0.217dB; PhsImb=171°<br />

� Solid ground ring replaced by coplanar<br />

ground rings on each layer.<br />

� Via transitions, through LTCC substrate,<br />

to stripline mode included.<br />

HFSS Optimetrics<br />

Slide 57


� AmpImb≈0.355dB<br />

� PhsImb≈174°<br />

� IL≈0.508dB<br />

� Imperfect phase<br />

balance compensated<br />

for in layout.<br />

HFSS Optimetrics<br />

Balun 1 Results<br />

Slide 58


Final balun results<br />

� AmpImb≈0.0897dB<br />

� PhsImb≈179°<br />

� IL≈0.476dB<br />

� Use this balun in circuit/system<br />

simulation<br />

HFSS Optimetrics<br />

0.774mm<br />

Slide 59


Power Amp Specs<br />

� Device: BFP450 (Infineon)<br />

� Frequency: 2400Mhz ~ 2483MHz<br />

� Gain: ~10dB<br />

� Max. output power: > 0dBm<br />

� Substrate: LTCC<br />

� ε r = 7.8<br />

� Dielectric thickness : 139 µm<br />

� Metal thickness : 8 µm<br />

Symphony Serenade Ensemble<br />

Slide 60


Power Amp Design Procedure<br />

� Optimize bias network<br />

� Check stability K<br />

� Design matching network using Smith Tool<br />

� Optimize the output power<br />

� Nyquist stability analysis<br />

� Single-tone HB analysis<br />

� Two-tone HB intermodulation analysis<br />

� Digital modulation analysis<br />

Symphony Serenade Ensemble<br />

Slide 61


Bias circuit<br />

Serenade<br />

Input matching<br />

SmithTool Utility<br />

Input stability<br />

Power gain Circle(L)<br />

SmithTool environment<br />

Power gain Circle(S)<br />

Output matching<br />

Slide 62<br />

Output(L) stability


Serenade<br />

Nyqiust Stability Analysis<br />

Slide 63


Actual Circuit and Layout<br />

Serenade S2A Layout<br />

Ensemble<br />

Input<br />

Bias<br />

Output<br />

Slide 64<br />

4.4×4.9 mm


Serenade<br />

Single-Tone Single Tone HB Analysis<br />

Lumped in blue<br />

Distributed in red<br />

Slide 65


Serenade<br />

Two-Tone Two Tone HB Analysis<br />

Slide 66


Serenade<br />

Third Order Intercept<br />

Slide 67


Digital Modulation (Spectrum)<br />

Serenade<br />

Slide 68


Serenade<br />

Digital Modulation (ACPR )<br />

Slide 69


<strong>RFIC</strong> Design and Analysis<br />

� Spiral inductor design<br />

� Baluns on chip<br />

� LNA design<br />

� Mixer<br />

Slide 70<br />

Symphony Serenade HFSS Ensemble Spicelink<br />

Optimetrics


Spiral Inductors<br />

� High Q is very important for VCO<br />

Bluetooth design<br />

� stable resonance frequency<br />

� low phase noise<br />

� Physical models<br />

� inductor performance relative to model<br />

� model extraction methods<br />

� Design curve generation for IC design<br />

� High Performance Spirals<br />

� approaches to increase Q<br />

� Examples<br />

Slide 71


Physical Model of Spiral on Si [10], [11]<br />

� Ls: Spiral inductance.<br />

� Rs: Series metal resistance. Symbolizes<br />

energy lost due to skin effect and<br />

induced eddy current in conductive<br />

media close to inductor.<br />

� Cs: Capacitance due to overlaps<br />

between spiral and underpass.<br />

� Cox: Oxide capacitance between the<br />

spiral and substrate.<br />

� Csi: Silicon substrate capacitance.<br />

� Rsi: Silicon substrate resistance.<br />

Other Measures of Performance<br />

� Q: Quality factor = 2π (energy<br />

stored)/(energy loss in one oscillation<br />

cycle)<br />

� fo: Self resonance frequency.<br />

Slide 72


ωLs<br />

Q = ⋅<br />

R<br />

R<br />

R<br />

p<br />

2 ( ωL<br />

R ) + 1)<br />

( C + C )<br />

Inductor Performance<br />

ground Port 2<br />

⎡ Rs<br />

⋅ ⎢1<br />

−<br />

⎣<br />

s<br />

Ls<br />

p 2<br />

−ω<br />

Ls<br />

( Cs<br />

⎤<br />

+ C p ) ⎥<br />

⎦<br />

ωLs<br />

= ⋅ substrate _ loss _ factor ⋅ self _ resonance _<br />

R<br />

s<br />

s<br />

p<br />

+<br />

s<br />

s<br />

R<br />

s<br />

factor<br />

Slide 73


� W = width<br />

� S = spacing<br />

Square Spiral Model<br />

� N = number of turns<br />

� Ri = inner radius<br />

� Coplanar ground ring<br />

used<br />

� Zero_Order=1<br />

� “Solve in” metal<br />

� Skin-depth seeding<br />

� 2 nd order absorbing<br />

boundary condition<br />

used<br />

HFSS Ensemble<br />

Optimetrics<br />

Slide 74


generated using macro language<br />

high matrix convergence required<br />

for accurate Q calculation<br />

automatically calculated and<br />

exported to a serenade circuit<br />

random and gradient optimization<br />

used to match S-parameters.<br />

HFSS/Serenade co-optimization<br />

co optimization<br />

Serenade HFSS Optimetrics<br />

3D Model(S,W,Ri,N)<br />

HFSS Solve<br />

S, Y parameter<br />

Serenade Optimization<br />

Optimetrics<br />

Equivalent Circuit Extraction<br />

Cost(Q, fself, Ls)<br />

Slide 75<br />

Equivalent circuit parameters<br />

and derived quantities can be fed<br />

back into Optimetrics for physical<br />

optimization of the spiral inductor


Design curve generation using Optimetrics<br />

and Serenade<br />

HFSS Optimetrics<br />

Slide 76


High Performance Inductors<br />

� 2 approaches to increasing Q<br />

� Without alteration of fabrication process:<br />

� multilevel spirals – reduce Rs, reduce Csi<br />

� patterned ground shields – reduce Rsi, Csi<br />

� With alteration of fabrication process:<br />

� high conductivity metal layers: decrease Rs<br />

� multimetal layers: increase thickness to decrease Rs<br />

� low-loss substrates (SOI, SOS, HRS, glass):<br />

decrease Rsi<br />

� thick oxide layer: isolate inductor from Si to decrease<br />

Csi, Rsi<br />

� micromachining techniques: descrease Rsi, Csi<br />

Slide 77


Serenade HFSS Optimetrics<br />

Spiral Layout [12]<br />

� Symmetric spiral inductor design<br />

� Test fixture included in HFSS<br />

simulation<br />

Slide 78


Open Test Fixture Model<br />

� Spiral inductor removed for open standard<br />

simulation<br />

� Single shunt impedance assumed for test<br />

fixture error network<br />

Serenade HFSS Optimetrics<br />

Slide 79


Test-Fixture Test Fixture de-embedding<br />

de embedding<br />

� Fixture introduces parasitics in measurements (these can<br />

drastically reduce the observed Q in measurements)<br />

� Fixtures need to be characterized with an error model<br />

� Many error models and calibration procedures – 12-term<br />

error model, TRL, TSD, etc…<br />

error network A DUT error network B<br />

A B<br />

A’ B’<br />

� Calibration procedures typically use multiple standards to<br />

advance measurement plane past fixture discontinuities:<br />

� Similar standards and de-embedding procedures can be<br />

used within when modeling and/or matching measurements<br />

Slide 80


Y-matrix matrix de-embedding<br />

de embedding<br />

� Simple error network assumption → not as<br />

accurate as other de-embedding procedures<br />

2-port:<br />

1-port:<br />

Y A<br />

DUT<br />

A A’ B’<br />

B<br />

Y A<br />

DUT<br />

Y B<br />

A A’ B’<br />

B<br />

Y B<br />

Y<br />

Y<br />

tot<br />

'<br />

tot<br />

Y<br />

Y<br />

= Y<br />

= Y<br />

tot<br />

'<br />

tot<br />

A<br />

tot<br />

= Y<br />

= Y<br />

+ Y<br />

−Y<br />

A<br />

tot<br />

DUT<br />

A<br />

+ Y<br />

Slide 81<br />

− Y<br />

+ Y<br />

−Y<br />

A<br />

B<br />

DUT<br />

B


Spiral Q-factor Q factor Results<br />

� Peak Q (post-deembedding) of 7.73<br />

� Calibration of test fixture changed Q by 3.03%<br />

� Self-resonant frequency increases due to<br />

removal of parasitic capacitances in fixture<br />

Serenade HFSS Optimetrics<br />

Slide 82


Modified Spiral Inductor<br />

� 100um Si removed from beneath spiral to<br />

increase Q<br />

air<br />

Serenade HFSS Optimetrics<br />

Slide 83


Spiral with Si etched Results<br />

� Peak Q (post-deembedding) of 10.51<br />

� Calibration of test fixture changed Q by 7.5%<br />

� 36% improvement in Q with etching<br />

Serenade HFSS Optimetrics<br />

Slide 84


� Gummel Poon<br />

� Materka<br />

� TOM3<br />

� BSIM3<br />

Serenade<br />

FET Modeling<br />

Slide 85


MOSFET Characteristics<br />

�<br />

� 250µm 250µm geometry<br />

�<br />

� 5µm 5µm gate gate length length<br />

�<br />

� .2µm .2µm gate gate width width<br />

Serenade<br />

Slide 86


Typical Baluns: Baluns:<br />

Active and Passive<br />

Slide 87


Typical Baluns: Baluns:<br />

Active and Passive<br />

Slide 88


Baluns Calculation<br />

� Set variables in Serenade for a generic<br />

hybrid<br />

1<br />

ωL<br />

= =<br />

ωC<br />

� Set R = 50Ω<br />

2R<br />

� Frequency = f = <strong>2.4ghz</strong><br />

C =<br />

ω<br />

1<br />

2R<br />

L = 2πf<br />

2R<br />

Slide 89


Serenade<br />

Passive Balun Example<br />

Slide 90


Serenade<br />

Passive Balun Loss<br />

Slide 91


Serenade<br />

Passive Balun Phase Match<br />

Slide 92


Serenade<br />

Active Balun Example<br />

Slide 93


Active Balun Output Voltage<br />

Serenade<br />

Slide 94


Active Balun Output Spectrum<br />

Serenade<br />

Slide 95


LNA<br />

� Lowest possible noise<br />

� Low power consumption<br />

� CMOS technology (.2µm Gate width)<br />

� Critical Parameters<br />

� Gain<br />

� Noise Figure<br />

� Third order intercept<br />

Slide 96


LNA Design Procedure<br />

� Choose Geometry such that<br />

1<br />

gm<br />

≈ 50Ω<br />

� Choose Topology<br />

� Cascode with Inductive Degeneration<br />

� Choose Ls Such That<br />

L<br />

S<br />

≈<br />

50Ω<br />

2πf<br />

� Choose Lg to “match” Cgs<br />

t<br />

L g<br />

L s<br />

Slide 97


LNA Design<br />

� Gate Degeneration<br />

� (Series Feedback!)<br />

� Cascode Design<br />

� Better output match<br />

� Input noise match inductance<br />

� Ideal Circuitry<br />

Slide 98


Serenade<br />

LNA Ideal Schematic<br />

Slide 99


LNA Small Signal Performance<br />

Serenade<br />

Slide 100


LNA Large Signal Performance<br />

Fundamental<br />

Serenade<br />

Third Order Product<br />

Slide 101


Serenade<br />

LNA Third Order Intercept<br />

Slide 102


Serenade<br />

Modulation Spectrum<br />

Slide 103


Mixer Characteristics<br />

� Optimal LO power<br />

� Third Order Intercept Point<br />

� Conversion Loss (Gain)<br />

� Noise Figure<br />

� DC Power Consumption<br />

� Input Match<br />

� Spurious Response<br />

� Image Rejection<br />

Slide 104


An An LO LO signal is is applied to to the the gate of of a<br />

FET, which is is enough to to turn the the drain-<br />

Source channel “on” and and “off.” Even<br />

though the the LO LO signal is is sinusoidal in in<br />

nature, the the characteristics of of the the FET<br />

junction is is such that that the the channel is is<br />

“square wave” modulated. The FET<br />

acts as as a switch.<br />

LO<br />

-1<br />

-3<br />

-5<br />

FET Mixer Operation<br />

RF<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

Time Time domain representation<br />

of of Drain-Source Channel<br />

Time<br />

Slide 105<br />

RF Input.<br />

D-S Channel<br />

“modulation”<br />

or the results<br />

of the LO on<br />

the Gate<br />

Resultant<br />

Product of<br />

the two<br />

signals


LO<br />

In In the the frequency domain, the the<br />

signals on on the the FET can can be be<br />

represented as as shown.<br />

FET Mixer Operation<br />

RF<br />

Frequency domain representation<br />

of of Drain-Source Channel<br />

0.01<br />

0.1 0.2 0.02 0.3<br />

0.4<br />

0.5<br />

2.4<br />

2.41<br />

4.82<br />

7.23<br />

0.01 0.1 10<br />

0.1 1 10<br />

Frequency<br />

9.64<br />

Slide 106<br />

RF Input.<br />

D-S Channel<br />

“modulation”<br />

or the results<br />

of the LO on<br />

the Gate<br />

(partial)<br />

Resultant<br />

Product of the<br />

two signals<br />

(partial)


Rx Input<br />

From Balun<br />

Image Reject Mixer<br />

90º<br />

LO Input<br />

From PLL<br />

90º<br />

IF<br />

Output<br />

Slide 107


Mixer Topologies: Image Rejection<br />

<strong>For</strong> Baseband downconversion,<br />

signal and noise from the upper<br />

and lower “sidebands” will be<br />

converted to the IF. Some form<br />

of image rejection is necessary<br />

Typical “Homodyne” System<br />

<strong>For</strong> dual downconversion, this<br />

sideband can be filtered<br />

Requires 2 mixer functions and<br />

filtering<br />

RF u -LO<br />

LO - RF L<br />

RF u -LO<br />

LO - RF L<br />

Filter<br />

Typical “Heterodyne” System<br />

LO<br />

LO<br />

RF L<br />

LO<br />

LO<br />

RF L<br />

Slide 108<br />

RF U<br />

RF U


Mixer Phase<br />

� Mixer “IF” phase is the sum of the<br />

phases of each frequency component.<br />

� This is a relative phase and will be used<br />

for image rejection calculations.<br />

RF ∠ ∠ ∠ φ<br />

φ<br />

LO ∠ ∠ θ<br />

θ<br />

Other Components<br />

Frequency: mRF ± nLO<br />

Phase: mφ φ φ φ ± nθ<br />

Slide 109<br />

∠IF (= ∠LO – ∠RF) = = θ θ - φ<br />

φ


LO ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ 0º<br />

Image Reject Mixer Operation<br />

LO ∠ ∠ 0º<br />

In Phase<br />

Divider<br />

LO ∠ ∠ 90º<br />

LO - RFL ∠ ∠ 0º<br />

RFU -LO ∠ ∠ 0º<br />

90° 90°<br />

RF U ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ 0º<br />

RF L ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ 0º<br />

LO - RFL ∠ ∠ 90º<br />

RFU -LO ∠ ∠ -90º Slide 110<br />

RFU -LO ∠ ∠ ∠ 0º<br />

RFU -LO ∠ ∠ 0º<br />

RF U - LO<br />

LO - RFL ∠ ∠ ∠ 0º<br />

LO - RFL ∠180º<br />

0<br />

RFU -LO ∠ ∠ 90º<br />

RFU - LO ∠ ∠ -90º<br />

0<br />

LO - RFL ∠ ∠ 90º<br />

LO - RFL ∠ ∠ 90º<br />

LO - RF L


Typically, RF buffer<br />

FETs would be placed<br />

at the source of the<br />

mixer FETS.<br />

Replacing these FETs<br />

with Resistors will allow<br />

a lower voltage<br />

operation, and provide<br />

self-bias and feedback<br />

to reduce the effects of<br />

device mismatch on RF<br />

and LO operation. [3]<br />

Gilbert Cell FET Mixer<br />

+ LO<br />

+ IF -IF<br />

+ RF<br />

-LO<br />

-RF<br />

Slide 111<br />

-LO


Serenade<br />

Gilbert Cell FET Mixer<br />

Slide 112


IF Output Power Vs. LO Power<br />

Serenade<br />

Slide 113


Serenade<br />

IF Output Spectrum<br />

Slide 114


Conversion Gain Vs. RF Input Power<br />

Serenade<br />

Slide 115


Large Signal Mixer Performance<br />

Fundamental<br />

Serenade<br />

Third Order Product<br />

Slide 116


Large Signal Mixer Performance<br />

Serenade<br />

Third Order Intercept<br />

Slide 117


Conclusion<br />

� A “typical” wireless system has been defined and<br />

explained<br />

� System level analyses have been performed<br />

using Symphony<br />

� System specifications have been broken down<br />

into component requirements<br />

� Passive and multi-layer structures have been<br />

analyzed using HFSS and Ensemble<br />

� Active circuitry has been designed and analyzed<br />

using Serenade<br />

� Solutions to wireless design problems<br />

have been addressed using Ansoft design<br />

environment<br />

Slide 118


Any Question?<br />

Slide 119


References<br />

1. Haarsten, Jaap C. “The Bluetooth Radio System” IEEE Personal<br />

Communications, Feb. 2000<br />

2. Specification of the Bluetooth System, Version 1.1, February, 2001<br />

3. Behzad Razavi, “RF Microelectronics”, Prentice Hall, pp48-50, 1998.<br />

4. Sklar, Bernard, “Digital Communications, Fundamentals and<br />

<strong>Applications</strong>,” 1988<br />

5. Marshall Wang, “Design Consideration for Low Cost Bluetooth<br />

Transceiver/Modem”, Bridging the Gap with Blutooth, IEEE MTT Santa<br />

Clara Valley Chapter Workshop, April, 2001.<br />

6. http://www.palowireless.com/infotooth/knowbase/radio/109.asp<br />

7. Arfwedson, Sneddon, “Ericsson’s Bluetooth <strong>Modules</strong>”, Ericsson Review<br />

No. 4, 1999.<br />

8. DuPont Green Tape Design and Layout Guideline,<br />

http://www.dupont.com/mcm/gtapesys/part1.html.<br />

9. Yoon, et al., “Design and Characterization of Multilayer Spiral<br />

Transmission-Line Baluns”, IEEE Trans. on Microwave Theory and<br />

Techniques, vol. 47, no. 9, September 1999, pp1841-1847.<br />

Slide 120


References<br />

10. Yue, “Physical Modeling of Spiral Inductors on Silicon”, IEEE Trans. on<br />

Electron Devices, vol.47, no. 3, March 2000, pp560-568.<br />

11. Yue, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-<br />

Based RF IC’s”, IEEE Journal of Solid-State Circuits, vol. 33, no. 5, May<br />

1998, pp743-752<br />

12. Niknejad, “Analysis, Simulation, and <strong>Applications</strong> of Passive Devices on<br />

Conductive Substrates,” PhD Thesis, Univ. of California at Berkeley,<br />

Spring 2000<br />

Slide 121

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!