26.07.2013 Views

Digital Positron Lifetime @ EPOS - Positron Annihilation in Halle

Digital Positron Lifetime @ EPOS - Positron Annihilation in Halle

Digital Positron Lifetime @ EPOS - Positron Annihilation in Halle

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

<strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> @ <strong>EPOS</strong><br />

Arnold Krille 1 Wolfgang Anwand 2 Marco Jungmann 1 Nicki<br />

H<strong>in</strong>sche 1,2 Re<strong>in</strong>hard Krause-Reberg 1<br />

1 Department of Physics, Mart<strong>in</strong>-Luther-University <strong>Halle</strong>-Wittenberg, 06108 <strong>Halle</strong>, Germany<br />

2 Institut of Ion Beam Physics, Research Center Dresden-Rossendorf, 01314 Dresden, Germany<br />

University Leipzig – Oktober 22th, 2008<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Contents<br />

1 Introduction: <strong>Positron</strong>s <strong>in</strong> Material Research<br />

2 Introduction: <strong>EPOS</strong><br />

3 <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong><br />

4 The Influence of Noise<br />

5 Next Tasks<br />

6 Conclusion<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

<strong>Positron</strong>s<br />

für 22-Na:<br />

Quant<br />

(1.27 MeV)<br />

<strong>Positron</strong>ene<strong>in</strong>fang durch Kristalldefekte<br />

Quant (511 keV)<br />

• <strong>Positron</strong>en-Wellenfunktion wird im Defekt lokalisiert<br />

• <strong>Annihilation</strong>sparameter ändern sich, wenn <strong>Positron</strong> im Defekt zerstrahlt<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

<strong>Positron</strong>s: Decay Parameters<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

<strong>Positron</strong>s: Decay Parameters<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

<strong>Positron</strong>s: Decay Parameters<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Fields of Usage<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

<strong>EPOS</strong> @ ELBE<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Basic Concept<br />

Schema des <strong>EPOS</strong>-Systems<br />

<strong>EPOS</strong> Systems<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Key features of <strong>EPOS</strong><br />

<strong>Positron</strong>s by pair production<br />

Unique time structure<br />

High repetition rate (77ns)<br />

Sharp pulses (∼5ps)<br />

Mach<strong>in</strong>e pulse for start of lifetime measurements<br />

Good tim<strong>in</strong>g resolution<br />

Full digitial measurement and control<br />

Project started 2001<br />

First positrons planned for end 2008<br />

User dedicated facility<br />

User access should start 2009/2010<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Basic Setup<br />

Analog Setup:<br />

γ-quants detected by sc<strong>in</strong>tillator and<br />

photomultiplier<br />

Energy-discrim<strong>in</strong>ation with SCA<br />

Event extraction with CF<br />

Time measurement with TAC<br />

Spectrum with MCA<br />

Start Stop<br />

Detektor Detektor<br />

SCA<br />

CF<br />

Start Stop<br />

DPL @ <strong>EPOS</strong> A Krille, et al.<br />

TAC<br />

MCA<br />

PC<br />

SCA<br />

CF


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Analog vs. <strong>Digital</strong><br />

The task<br />

Replace all the (50+ years old) analog<br />

electronics with PC, digitizer and<br />

mathematics.<br />

Benefits of digital process<strong>in</strong>g:<br />

+ Cheaper<br />

+ Simplier<br />

+ Better time base<br />

+ Easy to extent/change<br />

- Less knowledge available<br />

? Better tim<strong>in</strong>g resolution<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Algorithms to Extract the Tim<strong>in</strong>g Information<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

Pulse<br />

25 30 35 40 45 50 55 60<br />

How to extract the tim<strong>in</strong>g <strong>in</strong>formation?<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Algorithms: PolyCF<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

M<strong>in</strong>imum<br />

-1.4<br />

Pulse<br />

25 30 35 40 45 50 55 60<br />

1 By simple polynom <strong>in</strong>terpolation of 3rd order.<br />

1 F<strong>in</strong>d and <strong>in</strong>terpolate the<br />

extremum 1<br />

2 Determ<strong>in</strong>e the zerol<strong>in</strong>e (and<br />

its deviation) before the<br />

extremum<br />

3 Interpolate the constant<br />

fraction po<strong>in</strong>t on the ris<strong>in</strong>g<br />

slope between zerol<strong>in</strong>e and<br />

extremum 1<br />

4 <strong>Lifetime</strong> =<br />

tChannel 1 − tChannel 2<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Algorithms: PolyCF<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

Zerol<strong>in</strong>e<br />

M<strong>in</strong>imum<br />

-1.4<br />

Pulse<br />

25 30 35 40 45 50 55 60<br />

1 By simple polynom <strong>in</strong>terpolation of 3rd order.<br />

1 F<strong>in</strong>d and <strong>in</strong>terpolate the<br />

extremum 1<br />

2 Determ<strong>in</strong>e the zerol<strong>in</strong>e (and<br />

its deviation) before the<br />

extremum<br />

3 Interpolate the constant<br />

fraction po<strong>in</strong>t on the ris<strong>in</strong>g<br />

slope between zerol<strong>in</strong>e and<br />

extremum 1<br />

4 <strong>Lifetime</strong> =<br />

tChannel 1 − tChannel 2<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Algorithms: PolyCF<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

CF 0.2<br />

-1.2<br />

Zerol<strong>in</strong>e<br />

M<strong>in</strong>imum<br />

-1.4<br />

Pulse<br />

25 30 35 40 45 50 55 60<br />

1 By simple polynom <strong>in</strong>terpolation of 3rd order.<br />

1 F<strong>in</strong>d and <strong>in</strong>terpolate the<br />

extremum 1<br />

2 Determ<strong>in</strong>e the zerol<strong>in</strong>e (and<br />

its deviation) before the<br />

extremum<br />

3 Interpolate the constant<br />

fraction po<strong>in</strong>t on the ris<strong>in</strong>g<br />

slope between zerol<strong>in</strong>e and<br />

extremum 1<br />

4 <strong>Lifetime</strong> =<br />

tChannel 1 − tChannel 2<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Algorithms: PolyCF<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

CF 0.2<br />

-1.2<br />

Zerol<strong>in</strong>e<br />

M<strong>in</strong>imum<br />

-1.4<br />

Pulse<br />

25 30 35 40 45 50 55 60<br />

1 F<strong>in</strong>d and <strong>in</strong>terpolate the<br />

extremum 1<br />

2 Determ<strong>in</strong>e the zerol<strong>in</strong>e (and<br />

its deviation) before the<br />

extremum<br />

3 Interpolate the constant<br />

fraction po<strong>in</strong>t on the ris<strong>in</strong>g<br />

slope between zerol<strong>in</strong>e and<br />

extremum 1<br />

4 <strong>Lifetime</strong> =<br />

tChannel 1 − tChannel 2<br />

Similar to analog constant fraction, called true constant fraction by<br />

[Bečváˇr, 2007].<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Algorithms: <strong>in</strong>tegral Constant Fraction (iCF)<br />

1 Integrate the pulse<br />

2 Filter on risetime of <strong>in</strong>tegrated signal<br />

rightarrow Pulse-shape of orig<strong>in</strong>al signal<br />

3 Do true constant fraction like before on <strong>in</strong>tegrated signal<br />

Seems to give better tim<strong>in</strong>g resolution of 144ps [Bečváˇr, 2007].<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Tim<strong>in</strong>g Resolutions<br />

Method Lit. / Setup Resolution (FWHM)<br />

Analog measurements our lab: >200ps<br />

Polynom-Int. [Bečváˇr et al., 2005] 150ps<br />

4GS/s 1GHz 8bit:<br />

4GS/s 1GHz 8bit ∼170ps 60 Co, 230ps Si<br />

Gauss-Int. [Aavikko et al., 2005] 200ps<br />

4GS/s 1GHz 8bit:<br />

(Smooth<strong>in</strong>g) Spl<strong>in</strong>e [Saito et al., 2002] 118ps - 144ps<br />

4GS/s 1GHz 8bit:<br />

[Bardelli et al., 2004] 100ps - 125ps<br />

100MS/s 50MHz 12bit:<br />

∼170ps 60 Co<br />

Integral CF [Bečváˇr, 2007] ∼144ps<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise: Generated Pulses<br />

Input Voltage<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

-1.6<br />

0 20 40 60 80 100<br />

Side Note<br />

Time [samples]<br />

Channel 1<br />

Channel 2<br />

Four pulse pairs generated<br />

by <strong>EPOS</strong> Software<br />

The <strong>EPOS</strong> Software is gone open-source and look<strong>in</strong>g for users!<br />

See http://positron.physik.uni-halle.de/<strong>EPOS</strong>/Software.<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise: Shape<br />

Input Voltage<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

-1.6<br />

0 20 40 60 80 100<br />

Time [samples]<br />

Channel 1<br />

Channel 2<br />

Shaped like LSO on<br />

Hamamatsu H3378-50<br />

Risetime like 4 GS/s<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise: Energy Spectrum<br />

Counts<br />

1000<br />

100<br />

10<br />

1<br />

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0<br />

Input Voltage<br />

Energy spectrum closely to 22 Na but idealistic.<br />

Shaped like LSO on<br />

Hamamatsu H3378-50<br />

Risetime like 4 GS/s<br />

Energy distribution<br />

like 22 Na<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise: Tim<strong>in</strong>g Distribution<br />

Counts<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

-0.01 -0.005 0 0.005 0.01<br />

Time [samples]<br />

Shift between pulses is Gaussian distributed.<br />

Shift of pulses to sampl<strong>in</strong>g clock is box distributed.<br />

Shaped like LSO on<br />

Hamamatsu H3378-50<br />

Risetime like 4 GS/s<br />

Energy distribution<br />

like 22 Na<br />

Gaussian distributed<br />

tim<strong>in</strong>g<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise: Bit-depth<br />

Input Voltage<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

-1.6<br />

0 20 40 60 80 100<br />

Time [samples]<br />

Channel 1<br />

Channel 2<br />

Possible bit-depths: 1-32 bits<br />

Native double resolution also possible<br />

Shaped like LSO on<br />

Hamamatsu H3378-50<br />

Risetime like 4 GS/s<br />

Energy distribution<br />

like 22 Na<br />

Gaussian distributed<br />

tim<strong>in</strong>g<br />

Variable bit-depth<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise: Add<strong>in</strong>g Noise<br />

Input Voltage<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

-1.6<br />

0 20 40 60 80 100<br />

Time [samples]<br />

Channel 1<br />

Channel 2<br />

Shaped like LSO on<br />

Hamamatsu H3378-50<br />

Risetime like 4 GS/s<br />

Energy distribution<br />

like 22 Na<br />

Gaussian distributed<br />

tim<strong>in</strong>g<br />

Variable bit-depth<br />

White noise added as<br />

wanted<br />

White noise to simulate the uncerta<strong>in</strong>ties of the analog electronics.<br />

Level can be adjusted as wanted.<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Double Resolution without Noise<br />

Counts<br />

1000<br />

100<br />

10<br />

Tim<strong>in</strong>g distribution (double resolution, no noise)<br />

1<br />

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02<br />

Time [samples]<br />

Determ<strong>in</strong>ed<br />

Given<br />

No noise, native double resolution<br />

Given tim<strong>in</strong>g distribution: FWHM = 0.0023582 samples ≡ 0.589 ps<br />

Given distribution (−) ≡ determ<strong>in</strong>ed resolution (×)<br />

⇒ Method works<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Reduc<strong>in</strong>g the Bit-depth<br />

FWHM [samples]<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

Reduced bit-depth, no noise<br />

6 8 10 12 14 16<br />

Bit-depth<br />

Tim<strong>in</strong>g resolution at 8-bit: 0.202 samples ≡ 50 ps<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Noise of Effective Bits<br />

FWHM [samples]<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001 0.001 0.01 0.1<br />

Noise-Level<br />

Native double resolution, noise accord<strong>in</strong>g to effective bits added<br />

Strong log-log dependency of tim<strong>in</strong>g resolution and noise level.<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Noise and Reduced Bit-depth<br />

FWHM [samples]<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

6 8 10 12 14 16<br />

Bit-depth<br />

Reduced bit-depth and noise from effective bits<br />

Tim<strong>in</strong>g resolution at 8-bit: 0.612 samples ≡ 153 ps<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

F<strong>in</strong>ally Compar<strong>in</strong>g the results<br />

FWHM [samples]<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

given tim<strong>in</strong>g fwhm (0.00235 samples)<br />

bits + noise<br />

bits<br />

noise (bits-1.5 = effective bits)<br />

6 8 10 12 14 16<br />

Bit-depth<br />

Noise from effective bits has most <strong>in</strong>fluence<br />

Result<strong>in</strong>g tim<strong>in</strong>g resolutions: 8-bit: 153 ps, 10-bit: 41 ps<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise<br />

Level [dB]<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

Filter<strong>in</strong>g Noise with the Butterworth-Filter<br />

-100<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Frequency relative of the sampl<strong>in</strong>g rate<br />

N = 1<br />

N = 2<br />

N = 3<br />

N = 5<br />

N = 10<br />

f = 0.1<br />

f = 0.2<br />

f = 0.3<br />

f = 0.4<br />

Butterworth lowpass (implementation taken from literature<br />

[Stearns, 1975])<br />

Order and cutoff frequency can be set<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

Unfiltered<br />

0 20 40 60 80 100<br />

f=0.1 N=1<br />

0 20 40 60 80 100<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

Upper row Orig<strong>in</strong>al signals as generated<br />

Lower row Filtered by lowpass<br />

Unfiltered<br />

0 20 40 60 80 100<br />

f=0.1 N=2<br />

0 20 40 60 80 100<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

Unfilter<br />

0 20 40 6<br />

f=0.2 N<br />

0 20 40 6<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

The Influence of Noise: Results<br />

Determ<strong>in</strong>ed tim<strong>in</strong>g FWHM [samples]<br />

(Should be 0.00235)<br />

0.44<br />

0.42<br />

0.4<br />

0.38<br />

0.36<br />

0.34<br />

0.32<br />

0.3<br />

Best Tim<strong>in</strong>g Resolution<br />

0.05 0.1 0.15 0.2<br />

Cutoff Frequency [sampl<strong>in</strong>grate]<br />

N=1<br />

N=2<br />

N=3<br />

N=4<br />

N = 1 and f = 0.05 has FWHM of 0.31 samples ≡ 75 ps.<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Comparison of the Results<br />

Method Relative Tim<strong>in</strong>g 4-GS/s “real”<br />

FWHM [samples] FWHM [ps]<br />

Vertical quantization (8-bit) 0.202 samples 50 ps<br />

Noise of effective 6.5 bit 0.612 samples 153 ps<br />

Butterworth-Lowpass 0.314 samples 75 ps<br />

f=0.05 N=1<br />

Compar<strong>in</strong>g the results.<br />

Lowpass filter<strong>in</strong>g can almost remove the effect of the noise added from<br />

the analog electronics.<br />

⇒ All with simple polynom <strong>in</strong>terpolation for energy and constant fraction.<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Next Task: Compar<strong>in</strong>g Photomultipliers<br />

Compar<strong>in</strong>g Photomultipliers<br />

Hamamatsu H3378-50<br />

Photonis XP20Z8<br />

Measurement Program:<br />

Energy resolution (same sc<strong>in</strong>tillators!)<br />

Tim<strong>in</strong>g resolution (same sc<strong>in</strong>tillators and source/sample)<br />

– currently runn<strong>in</strong>g<br />

Risetime, Pile-up, Pulse-Shape (DFT, etc...)<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Next Task: Compar<strong>in</strong>g Sc<strong>in</strong>tillators<br />

Compare Sc<strong>in</strong>tillators<br />

BaF2<br />

LSO<br />

ZnO<br />

LaBr3(Ce)<br />

Measurement Program:<br />

Energy Spectrum/Resolution<br />

Risetime / Pulse-shape<br />

Relative Effectivity (through 1<br />

r 2 )<br />

Optical Spectrum<br />

DPL @ <strong>EPOS</strong> A Krille, et al.


<strong>Positron</strong>s <strong>EPOS</strong> <strong>Digital</strong> <strong>Positron</strong> <strong>Lifetime</strong> The Influence of Noise Next Tasks Conclusion<br />

Thanks for your attention!<br />

Get the slides from http://positron.physik.uni-halle.de.<br />

[Aavikko et al., 2005] Aavikko, R., Rytsölä, K., Nissilä, J., and Saar<strong>in</strong>en, K. (2005).<br />

Stability and performance characteristics of a digital positron lifetime spectrometer.<br />

ACTA PHYSICA POLONICA A, 107.<br />

[Bardelli et al., 2004] Bardelli, L., Poggi, G., B<strong>in</strong>i, M., Pasquali, G., and Taccetti, N. (2004).<br />

Time measurements by means of digital sampl<strong>in</strong>g techniques: a study case of 100 ps fwhm time resolution with a 100msample/s, 12<br />

bit digitizer.<br />

Nuclear Instruments and Methods <strong>in</strong> Physics Research A, 521:480–492.<br />

[Bečváˇr, 2007] Bečváˇr, F. (2007).<br />

Methodology of positron lifetime spectroscopy: Present status and perspectives.<br />

Nuclear Instruments and Methods <strong>in</strong> Physics Research B, 261:871–874.<br />

[Bečváˇr et al., 2005] Bečváˇr, F., Ĉíˇzek, J., Procházka, I., and Janotová, J. (2005).<br />

The asset of ultra-fast digitizers for positron-lifetime spectroscopy.<br />

Nuclear Instruments and Methods <strong>in</strong> Physics Research A, 539:372–385.<br />

[Saito et al., 2002] Saito, H., Nagashima, Y., Kurihara, T., and Hyodo, T. (2002).<br />

A new positron lifetime spectrometer us<strong>in</strong>g a fast digital oscilloscope and baf 2 sc<strong>in</strong>tillators.<br />

Nuclear Instruments and Methods <strong>in</strong> Physics Research A, 487:612–617.<br />

[Stearns, 1975] Stearns, S. D. (1975).<br />

<strong>Digital</strong> Signal Analysis.<br />

Hayden Book Company Inc.<br />

DPL @ <strong>EPOS</strong> A Krille, et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!