26.07.2013 Views

Time of Flight (ToF) Measurements - IRTG Heidelberg

Time of Flight (ToF) Measurements - IRTG Heidelberg

Time of Flight (ToF) Measurements - IRTG Heidelberg

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

! "<br />

#$ % !<br />

$ &! !


' "<br />

! (<br />

& " )<br />

! " )<br />

* + ,- .<br />

* /" ) " )<br />

0! " ,- ) !<br />

!<br />

- " " !/


1" 0<br />

"23 4/" " + !" "0 " 3" ) "!<br />

" 5 6<br />

54 7 8 4 7 *9<br />

/*9 4: 7 8 4 7 5<br />

5; 4 := 5;<br />

+ ! = / ≈ ? = 7 5;<br />

5; 4 : 7 / ;<br />

" ! ! ! = / ; ≈ >/ ; ≈ >>7 5;


,! !<br />

* ")! " ! @<br />

)! " ! 0 " !";<br />

" 6<br />

" ! " !" 0 !/@<br />

" " ! "@ )" " " /"<br />

)! 6 !"<br />

)! 6<br />

, " ! " !" "<br />

)! ! )! ! A<br />

! " A<br />

! )! !" B !"!<br />

" " + ! 6<br />

C " 2 B ! " ! "<br />

) "6<br />

"<br />

" ! ! @ !"<br />

@!" !<br />

!" # $ " A<br />

)! D ) !" ) "<br />

@ ! ! " 22 E- "/3<br />

F - "/3 ! ! "@0 !"<br />

6<br />

! " !" !" " )" "<br />

)! 3 +6<br />

$ " A<br />

0 "! ! )! "!+<br />

0 " 0 !0 " )<br />

" E ! 3 " BF @<br />

! ! " 22 E !" " ! ! "F<br />

! " ! ! " 0 0<br />

" +; ! 6<br />

% " 4 !/" ! ! " " A<br />

0 " ! )! D3 + !" @<br />

! ! " 6<br />

" ! "0 " @)!<br />

!" 0 0"<br />

! "6<br />

" @ " +; !<br />

" 0 " + " +<br />

! 6<br />

& & $ " A<br />

+" ! "0 " @<br />

) " !" "3 " "2) "<br />

)!<br />

" ' " A<br />

" + " !" ) " !" !<br />

E !" 0 F + 3<br />

! " !" )! ) "<br />

" $ & $ " " A<br />

" +" ! " )! !") "0<br />

)! + " " ! "@0 " "<br />

!") )! @ E ! " 0 F


* + 0 "<br />

( ) & " & $ * $ &+<br />

&<br />

( ) % $ , " " & " & % ' " $ $<br />

&<br />

( )<br />

$ $<br />

-<br />

2 : ?<br />

-./ 0<br />

G " ! "<br />

" 3 /


Log10(dE/dx)<br />

&<br />

( )<br />

$ $<br />

* + 0 "<br />

1(23 (-!<br />

2 : ?<br />

-./ 0<br />

G " ! "<br />

Log10(p)


& ""<br />

$<br />

$ ) @ ! " 0 "<br />

! !" ) ! 3" !" B<br />

& !" B<br />

$! $ )<br />

∆x<br />

v= ∆t<br />

3<br />

! "<br />

* A<br />

$ !A σ 4 * ; :<br />

" !A<br />

G σ 4 = H<br />

G σ 4> H<br />

G:σ 4>>H<br />

) &<br />

' $ σ $ * +


)<br />

+) ! )<br />

$$ ', @#&I$<br />

# $ I=><br />

$,$ J#?><br />

# 3!"! A<br />

" )! 2<br />

& !3!"! A<br />

!" ! +<br />

! $<br />

I, #I,<br />

- $ #<br />

- # -I<br />

# 3!"! A<br />

0 !<br />

- +<br />

& !3!"! A<br />

$ )! 2:


)<br />

+) ! )<br />

$$ ', @#&I$<br />

# $ I=><br />

$,$ J#?><br />

# 3!"! A<br />

" )! 2<br />

& !3!"! A<br />

!" ! +<br />

< # 5J#?> = # 5<br />

! $<br />

I, #I,<br />

- $ #<br />

- # -I<br />

# 3!"! A<br />

0 !<br />

- +<br />

& !3!"! A<br />

$ )! 2:<br />

>># 5$ #


,! K I, 2 L L<br />

J !+ ! !<br />

I; B<br />

< 5;<br />

- $ ' "25 -6 (-!<br />

$ , 2 "<br />

* M , 2 "<br />

!" -I J<br />

/ $$ $ 4<br />

" !/ "<br />

! " ! ) ; !/<br />

! ! "@" " @<br />

25 -6 (-!<br />

) ::? 0 ! ) ; !/<br />

"! H !" ! )<br />

H :: ! )


t =<br />

m = p<br />

dm<br />

m<br />

∆t<br />

=<br />

l<br />

βc<br />

=<br />

l<br />

c<br />

dp<br />

p<br />

2<br />

c t<br />

2<br />

l<br />

1<br />

2<br />

2<br />

+ γ<br />

−1<br />

1 1<br />

−<br />

β β<br />

dt<br />

t<br />

2<br />

+<br />

=<br />

dl<br />

l<br />

l<br />

c<br />

/" ! (<br />

0 ! ! " 0 "<br />

)! ! O<br />

γ =<br />

β =<br />

βγ =<br />

2<br />

1<br />

2<br />

1−<br />

β<br />

1<br />

1−<br />

2<br />

γ<br />

p = γβm<br />

E<br />

= p<br />

2<br />

γ −1<br />

2<br />

0<br />

c<br />

2<br />

+ m<br />

2<br />

c<br />

4<br />

2 2 2<br />

2 2 2 lc 2 2<br />

( 1+<br />

m1<br />

c / p − 1+<br />

m2c<br />

/ p ) ≈ ( m1<br />

− m2<br />

)<br />

2 p<br />

2<br />

<strong>ToF</strong> difference (ns)<br />

10<br />

1<br />

-1<br />

10<br />

-2<br />

10<br />

-3<br />

10<br />

e/ π<br />

π/K<br />

K/p<br />

p/d<br />

Path length 1 m<br />

P<br />

(GeV/c)<br />

2700 ps<br />

850 ps<br />

300 ps<br />

30 ps<br />

1 lab<br />

10<br />

2 / ' ' $ $A<br />

σ ;<br />

σ<br />

σ N;<br />

σ );


M !<br />

beta vs gamma<br />

ñ<br />

1/ñ<br />

;M !<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-4<br />

10<br />

! "<br />

1 10<br />

γ<br />

1/beta vs momentum<br />

10<br />

1<br />

-3<br />

10<br />

-2<br />

10<br />

)<br />

! !<br />

e π K p d<br />

-1<br />

, 5;<br />

10 1 10<br />

P (GeV/c)<br />

!" ) ! !"<br />

! " P<br />

J 0!!+ 0 !"<br />

!"<br />

! "<br />

# $ !" "%


Q "<br />

K/pi <strong>ToF</strong> smearing<br />

Yield<br />

Normalized <strong>ToF</strong> (ns)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-1 -0.5 0 0.5 1 1.5 2<br />

Normalized <strong>ToF</strong> (ns)<br />

1<br />

-1<br />

10<br />

IB! ) A $)!! "<br />

$ & $ !" "<br />

Momenta vs <strong>ToF</strong> random<br />

7& 77& 7&<br />

0 0.2 0.4 0.6 0.8 1<br />

P (GeV/c)<br />

Q "<br />

K/pi <strong>ToF</strong> smearing<br />

Yield<br />

Normalized <strong>ToF</strong> (ns)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-1<br />

10<br />

0<br />

-1 -0.5 0 0.5 1 1.5 2<br />

Normalized <strong>ToF</strong> (ns)<br />

Momenta vs <strong>ToF</strong> random<br />

1<br />

0 0.2 0.4 0.6 0.8 1<br />

P (GeV/c)<br />

Q "<br />

K/pi <strong>ToF</strong> smearing<br />

Yield<br />

Normalized <strong>ToF</strong> (ns)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-1<br />

10<br />

0<br />

-1 -0.5 0 0.5 1 1.5 2<br />

Normalized <strong>ToF</strong> (ns)<br />

Momenta vs <strong>ToF</strong> random<br />

1<br />

0 0.2 0.4 0.6 0.8 1<br />

P (GeV/c)<br />

, 5; , 5; , 5;


, " ) / "!<br />

! "!" "<br />

, !+ "! # ) ! "O "! " & R O&#S


8 #<br />

,<br />

$ "!) )<br />

9<br />

)<br />

- !"<br />

!<br />

!


Stop<br />

Start<br />

$ " !<br />

#" !"<br />

' !"<br />

Disc<br />

Disc<br />

! " ) " )<br />

TDC<br />

450 ns<br />

100 cm<br />

300 cm<br />

Particle Trajectory<br />

20 cm<br />

400 cm


γ<br />

&<br />

) ) ) L " ! !"! "<br />

Photocathode<br />

−<br />

Electrodes<br />

Anode<br />

Dynodes<br />

Gain ~ 10 6 - 10 7


:<br />

$ " ! "<br />

C<br />

1 $<br />

I " !<br />

! !"<br />

! !+<br />

" ! "! " "<br />

I " ) !<br />

;<br />

J!@-<br />

IB " γ "<br />

M '<br />

$ 0 !+<br />

" +@ )!<br />

( & & " & ' " "*<br />

$ "σ < 7& +


Glass<br />

HV<br />

z<br />

,- 2 )<br />

&<br />

! !<br />

/ % $( ) $<br />

, , )!/<br />

,!! , ! - !<br />

3 , ! - !<br />

,,#-<br />

,-<br />

!3!!"<br />

HV cathode<br />

Y<br />

Spacers<br />

Multistrip anode<br />

, ' 2 )<br />

,,#- )


σ t~5 ns<br />

3 , ! - !<br />

+<br />

Trigger RPC developed in 1981<br />

by R.Santonico and R. Cardarelli<br />

Development <strong>of</strong> Resistive Plate Counters<br />

Nucl. Inst. and Methods 187 (1981) 377-380<br />

σ t~3-4 ns<br />

Multi Gap RPCs started<br />

by E.C. Zeballos et al<br />

A new type <strong>of</strong> Resistive Pate Chambers :<br />

The Multigap RPC<br />

Nucl. Inst. and Methods A 374 (1996) 132<br />

σ t ~50 ps<br />

Timing RPC started<br />

By P.Fonte A.Smirnitski, M.C.S. Williams<br />

A new high-resolution TOF technology<br />

Nucl. Inst. and Methods A 443 (2000) 201-204


* + ,-<br />

- " 2 +<br />

)! " !<br />

!"<br />

, , 0 σ T )<br />

# 3!"! A<br />

U V I; B<br />

$ ) +<br />

! +<br />

& !3!"! A<br />

,<br />

!" ! +<br />

! !<br />

!" ! + B) "<br />

) !"<br />

IB! ) A<br />

):-;(:)<br />

$R V<br />

- !"" V<br />

σ T )<br />

σ ϕ T<br />

25;! (:)<br />

$R V<br />

- !"" V<br />

σ T )<br />

62= 1<br />

$R V :<br />

- !"" V<br />

σ T )<br />

' T R;<br />

$ " A<br />

!<br />

+ /A<br />

,,#- σ T )<br />

, 3 σ T )<br />

,- σ T "<br />

,- σ T )


Trigger RPC<br />

Cathode<br />

Anode<br />

0 ,- 0 /.<br />

-10kV<br />

x=2mm<br />

0kV<br />

Timing MRPC<br />

-12kV<br />

-8 kV<br />

-4 kV x=0.3mm<br />

0kV


-12kV<br />

0kV<br />

0 ,- 0 /.<br />

0kV<br />

-6 kV<br />

-6 kV<br />

$" !/ " ! " & !/ " ! " "


+) !0" 0 ! ! !<br />

/" 2<br />

$ ! !" W<br />

3 $<br />

$" " W<br />

& "! W<br />

0 ! " ,- .<br />

Glass<br />

HV<br />

z<br />

6 " $<br />

! )! 0 !" ! "<br />

# " )!<br />

! )! 0 ! )) !)<br />

HV cathode<br />

Y<br />

Spacers<br />

Multistrip anode<br />

1& " " 2 :<br />

2 $<br />

,! X?<br />

$" )<br />

) >;


#3!!" " I2<br />

2 " ! )! !<br />

" !" ) 3 "<br />

"!3!!" 2 "+!3!!" !<br />

! ! 0 "<br />

" "! " B "!<br />

I " !3!!" "<br />

J4J !B<br />

- ) 3 " " ! "<br />

! " "!3!!" 0+<br />

! ! !" !<br />

"!


λ<br />

λ=1/ α<br />

α=σ ionisationN A /V mol<br />

T-RPC α~10/mm<br />

MRPC α~100/mm<br />

!3!!"<br />

T-RPC C 2F 4H 2/isobutene/SF 6 97/2.5/0.5<br />

MRPC C 2F 4H 2/isobutene/SF 6 85/5/10<br />

J B 4J 9 αB<br />

α 4 0" " "<br />

η 4# ! " "<br />

α2η 4I 3 0" " "<br />

B 4& !"<br />

α = 13/mm<br />

η = 3.5/mm<br />

W.Legler Die Statistik der Elektronenlawine<br />

In elektronegativen Gasen bei hohen Feldstärken<br />

Und grosser Gasverstärkung, Z. Naturforschg.16a<br />

(1961) 253-261


,- " O ! +<br />

T-RPC E~50 kV/cm<br />

MRPC E~100kV/cm<br />

σ t = 1.28255/(α-η)v<br />

α= Townsend coefficient<br />

η=Attachment coefficient<br />

α-η = Effective townsend coefficient<br />

v= Drift velocity<br />

T-RPC σ t ~ 1ns<br />

MRPC σ t ~ 58ps<br />

T-RPC v~130 µm/ns<br />

MRPC v~220 µm/ns<br />

W.Riegler et al: Detector physics and simulation <strong>of</strong><br />

resistive plate chambers. NIMA 500 (2003) 144-162


Efficiency/gap<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

I "+!" !) R<br />

1<br />

0<br />

, "<br />

0 0.1 0.2 0.3 0.4<br />

Gas gap (mm)<br />

Isobutane (IB)<br />

C2H2F4 (TFE)<br />

TFE+IB+SF6<br />

Methane<br />

ε = 1− ( 1−<br />

ε<br />

total<br />

Gap<br />

/ & & ε / & ε<br />

)<br />

n<br />

Gap<br />

: < ><br />

? : < >><br />

==<br />

? >=<br />

>><br />

? ? =?<br />

? =<<br />

= ? >=<br />

? >>


! )<br />

0 " " ,-<br />

!"3! 3! +! !<br />

" A ! )! 0 ! ! < " 0 " " $-I " ! "P<br />

* " ! "P<br />

$-I ! 3 Y !( ! !" !) ! ) !<br />

!+5&& .-"=0<br />

*


! 0!


ALICE<br />

Pad-Anode<br />

MRPC<br />

σ t


Beam<br />

BARREL<br />

CDC<br />

x<br />

', ,- !<br />

+<br />

y<br />

z<br />

HELITRON<br />

MAGNET<br />

PLASTIC WALL<br />

1 m<br />

? 5;<br />

P Lab [GeV]<br />

5;<br />

, !<br />

10 -1<br />

Central Au-Au collision<br />

at 1.45 AGeV has ~60particles<br />

in the acceptance<br />

<strong>of</strong> the proposed MMRPC barrel<br />

This needs a granularity <strong>of</strong><br />

700 cells (2500 strips)<br />

1<br />

T<br />

D<br />

P<br />

K +<br />

1.93 AGeV 58 Ni+ 58 Ni<br />

π +<br />

0 5 10 15 20 25 30 35<br />

Velocity [cm/ns]<br />

5 + ;"


Glass<br />

HV<br />

z<br />

HV cathode<br />

Y<br />

Spacers<br />

Multistrip anode<br />

Global MMRPC parameters:<br />

Gas : C 2 F 4 H 2 /isobutene/SF 6 85/5/10<br />

E-Field ~ 100 kV/cm<br />

Spacing ~ 220-270 µm<br />

Glass ~ 0.25-1.1 mm<br />

)2 ,- " " )<br />

Multi-strip anode:<br />

x pos = (t 1 -t 2 )/2 • v s<br />

t m = (t 1 +t 2 )/2<br />

0 V<br />

-10000 V<br />

-10000 V<br />

Timing:<br />

σ t = 1.28255/(α-η)v<br />

α-η = Effective Townsend coefficient<br />

v = Drift velocity<br />

α- η ~ 100/mm<br />

v ~ 220 µm/ns<br />

σt ~ 58 ps


# -I ,- "!)!<br />

! " # $ % ! & ' ( ) * + $ , + -<br />

# ! "<br />

' " * $ µ - -$* ! J J M "!


Multi-pin connector<br />

Capacitor block<br />

MRPC glass stack<br />

Mounting table<br />

,- )!<br />

Multi-strip anode<br />

FOPIs MMRPC parameters:<br />

90 x 4.6 cm 2 active area<br />

1.1 & 0.5 mm 10 glass plates<br />

8 x 220 µm gaps (fishing rope)<br />

16 strips<br />

1.94/0.6 mm strip/gap<br />

~10 kV applied voltage<br />

/<br />

! ) > 6 % 1) 7<br />

Stesalit support<br />

Glass stack 8 gaps


- )!<br />

Gas box<br />

Gas<br />

in/outlets<br />

End-flange<br />

1 MMRPC<br />

HV-connector<br />

Interface between MMRPC & Electronics<br />

SAMTEC 50 multi-coaxial cable<br />

0.8 mm pitch. In total 80 connections<br />

(16 used).<br />

5 MMRPCs in a Super Module (SM)<br />

30 SMs within FOPI<br />

N& " !"<br />

N<br />

ZU !"<br />

[8N


I "


' Output ) 3 Voltage ! (mV) 5<br />

I " !"<br />

Gain<br />

II2 !"O ,-2 !<br />

400<br />

350<br />

300<br />

250<br />

200<br />

1 !4:< 5<br />

150<br />

100<br />

50<br />

1 4= 5<br />

0<br />

0 2 4 6 8 10 12<br />

")<br />

Input<br />

3<br />

Voltage<br />

!<br />

(mV)<br />

5<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4<br />


GSI+HD+I3HP<br />

M.Ciobanu<br />

Upper limit for FEE<br />

electronic resolution<br />

FOPI-threshold<br />

FOPI-combined<br />

"noise level"<br />

U n ~50-60 mV<br />

II2 ! "<br />

GAIN=25<br />

GAIN=100<br />

GAIN=50<br />

INPUT NOISE =24uV<br />

σ )<br />

GAIN=200<br />

RPC RPC RPC RPC<br />

100<br />

100<br />

100<br />

100<br />

10<br />

10<br />

10<br />

10<br />

SIGMA [ps]<br />

THRESHOLD<br />

-100mV<br />

-80mV<br />

-60mV<br />

-40mV<br />

-20mV<br />

1<br />

1<br />

1<br />

1<br />

1 10 100<br />

UINP [mV]<br />

1 10 100<br />

UINP [mV]<br />

1 10 100<br />

UINP [mV]<br />

1 10 100<br />

UINP [mV]<br />

") 3 ! 5 ") 3 ! 5 ") 3 ! 5 ") 3 ! 5<br />

Electronic gain for MRPCs in avalanche mode is between 130-180


Internal pulser<br />

', "2I"2I "2 !<br />

Multipin connector<br />

Preamplifier part<br />

QDC-out<br />

LE<br />

Power-stabilization<br />

FEE4:<br />

9.5 • 14.5 cm 2<br />

6 layer PCB<br />

16 ch. T/Q<br />

Gain 160<br />

T/Q ~ 2<br />

0.55 W/ch<br />

σ E


GSI-ELEX<br />

R.Schulze.R.Hardel<br />

K.Koch,E.Badura<br />

', R #-S1 #<br />

TAC ASIC<br />

# 1 ch.<br />

σ t


! +<br />

Free running common stop system at 40 MHz.<br />

Individual TAC resets 0.2-2.0 µs.<br />

FEE + TAC/QDC-Digitizer<br />

16 ch.<br />

G ~ 50-250 TAC ~10 ps/ch<br />

δf ~ 1.5 GHz Zero-suppression<br />

time (ns)<br />

time (ns)<br />

yield<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

0.03<br />

0.02<br />

0.01<br />

4000<br />

2000<br />

FOPI<br />

timediff (ns) vs time (ns)<br />

2004/09/30 17.22<br />

ENTRIES 14307<br />

0.00 13.0 0.00<br />

0.00 0.143E+05 0.00<br />

0.00 0.00 0.00<br />

0 5 10 15 20 25 30<br />

time diff. (ns)<br />

sigma (ns) vs time (ns)<br />

Entries<br />

Mean<br />

RMS<br />

500<br />

12.58<br />

7.157<br />

0<br />

0 5 10 15 20 25 30<br />

sigma (ns)<br />

0<br />

108.PROY<br />

Entries<br />

Mean<br />

RMS<br />

25000<br />

-0.3962<br />

0.2135E-01<br />

45.99 / 7<br />

Constant 5391.<br />

Mean -0.3962<br />

Sigma 0.2109E-01<br />

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1<br />

time diff. (ns)<br />

P F ~ 0.56 W/ch P T ~ 0.5 W/ch Full system electronic resolution<br />

σ E < 25 ps


! +<br />

Free running common stop system at 40 MHz.<br />

Individual TAC resets 0.2-2.0 µs.<br />

FEE + TAC/QDC-Digitizer<br />

16 ch.<br />

G ~ 50-250 TAC ~10 ps/ch<br />

δf ~ 1.5 GHz Zero-suppression<br />

Electronic resolution<br />

FEE ~ 18 ps<br />

TAC ~ 10 ps<br />

δt ~ 15 ps<br />

TAC < 2 ps<br />

+ FEE < 3 ps<br />

+ Card 10 ps<br />

+ Clock 10 ps<br />

Σ δt ~ 15 ps<br />

P F ~ 0.56 W/ch P T ~ 0.5 W/ch Full system electronic resolution<br />

σ E < 25 ps


# -I2 II J J'<br />

1 " \ - '$ M " +<br />

"!= "0<br />

0)0 ? *;<br />

" 0σ T )<br />

, 8! "<br />

N "!<br />

-$ * !


# -I2 R &-<br />

#"<br />

HPTDC is fed by a 40 MHz clock giving<br />

us a basic 25 ns period (coarse count).<br />

A PLL (Phase Locked Loop) device<br />

inside the chip does<br />

clock multiplication by a factor 8 (3 bits)<br />

to 320 MHz (3.125 ns period) .<br />

A DLL (Delay Locked Loop) done by<br />

32 cells fed by the PLL clock acts a<br />

5 bits hit register for each PLL clock (98<br />

ps width LSB = 3.125 ns/32).<br />

4 R-C delay lines divides each DLL bin<br />

in 4 parts (R-C interpolation)


# -I " !+<br />

σ 2 = σ 2 FEE + σ2 T0 + 2σ2 TDC + σ2 clock + σ2 clockTRM<br />

3 *<br />

.(=3 $$ $ 0<br />

II )<br />

)<br />

&- )<br />

-'-N )<br />

- )<br />

!A )<br />

: )<br />

-$ * !<br />

#"<br />

From board to board<br />

Within board<br />

With refined INL treatment


& ) !"


! R<br />

Rate (Hz)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

&!/! ,-<br />

~ 1 Hz/cm 2<br />

:<br />

Darkrate 90cm-4gap RPC<br />

0<br />

2 3 4 5 6 7 8<br />

Voltage (kV)<br />

5 ! /5<br />

3 days under high voltage to get optimal<br />

conditions.<br />

! R;<br />

Rate (Hz/cm2)<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

$<br />

0<br />

4 5 6 7 8 9 10 11<br />

Voltage (kV)<br />

5 ! /5<br />

$ 0 "& !/!<br />

0 0 R; ! "


! R;<br />

&!/! 3 I2<br />

I /5;<br />

,- I2 !"<br />

* $?2&&+ / &<br />

IB)A<br />

?B 4 ==<br />

= = /5 /5;<br />

( &<br />

J !T R; = R; "<br />

+) !+ II L #S ? R; "<br />

J ) + $


TOF (ns)<br />

TOF (ns)<br />

TOF norm. (ns)<br />

10.4<br />

10.2<br />

10<br />

9.8<br />

9.6<br />

10.4<br />

10.2<br />

10<br />

9.8<br />

9.6<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

$ 0" "<br />

Slewing correction (walk)<br />

0 200 400 600 800 1000<br />

Charge (ch)<br />

0 200 400 600 800 1000<br />

Charge (ch)<br />

0 200 400 600 800 1000<br />

Charge (ch)<br />

10<br />

1<br />

10 -1<br />

10 2<br />

10<br />

1<br />

Uncorrected TOF spectra<br />

for all strips.<br />

Determined walk correction<br />

T walk < 100 ps<br />

Corrected and normalized TOF


yield<br />

<strong>Time</strong> Reference<br />

Slope<br />

lower limit<br />

" !""2 "! +D<br />

Differential<br />

non−linearity<br />

Back Bend<br />

25 ns<br />

(clock)<br />

TAC<br />

C1 (3 %) C2 (0.5 %)<br />

TAC−yield<br />

Principle <strong>of</strong> calibration<br />

upper limit<br />

TAC (ns)<br />

Tdif Left (ns)<br />

Tdif Left (ns)<br />

0.1<br />

0.075<br />

0.05<br />

0.025<br />

0<br />

-0.025<br />

-0.05<br />

-0.075<br />

-0.1<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

Entries 2100<br />

500 1000 1500 2000<br />

’Clock cycle (bins)strip=’3<br />

Entries 2100<br />

500 1000 1500 2000<br />

’Clock cycle (bins)strip=’4<br />

TACQUILA 1<br />

Wiggle Lookup<br />

Tdif right (ns)<br />

Tdif right (ns)<br />

0.075<br />

0.05<br />

0.025<br />

0<br />

-0.025<br />

-0.05<br />

-0.075<br />

-0.1<br />

-0.125<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

2004/09/28 16.10<br />

Entries 2100<br />

500 1000 1500 2000<br />

’Clock cycle (bins) strip=’3<br />

Entries 2100<br />

500 1000 1500 2000<br />

’Clock cycle (bins) strip=’4<br />

TACQUIQA 2<br />

Left Right


<strong>Time</strong> difference (ns)<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

*!/@0 !" !<br />

RPC 90cm-8Gaps-16Strips<br />

300 350 400 450 500 550 600 650 700 750 800<br />

t<strong>of</strong> vs amp<br />

10 3<br />

10 2<br />

10<br />

1<br />

Charge (ch)<br />

-1 -0.75 -0.5 -0.25 0<br />

521.PROY<br />

0.25 0.5 0.75 1<br />

<strong>Time</strong> difference (ns)<br />

148.6 / 42<br />

Constant 658.0<br />

Mean 0.2227E-02<br />

Sigma 0.9912E-01<br />

10<br />

1<br />

10 -1<br />

After combined corrections<br />

for MMRPC B at 108 kV/cm<br />

(9.5 kV).<br />

Final resolution plot below<br />

90 ps with a tail < 1%.<br />

Rest tail is from non-perfect<br />

wiggle and walk corrections<br />

not from the detector itself.<br />

When the counter is in<br />

avalanche mode.


* ! ) !" ) "<br />

! ) ,-.<br />

( σ < 77&<br />

* ε @ A<br />

= % " & %<br />

$ ! !3!!" R " !"<br />

0 ") ! + ') !! ) " W<br />

$ ! !/ )@! M 0 H<br />

1.96 mm strip<br />

0.6 mm gap


* ! ) R 0 ! .<br />

/ & " #<br />

!" & " #<br />

Glass<br />

" ! "<br />

!" $ ) R"<br />

HV<br />

z<br />

HV cathode<br />

Y<br />

Spacers<br />

Multistrip anode<br />

/ & !"<br />

B % * & *<br />

!" " $ %


PMT 2<br />

PMT 3<br />

Top View<br />

RPC<br />

PMT 1<br />

) !<br />

Front View<br />

Trigger PMT1 & PMT2<br />

Efficiency PMT1 & PMT2 & PMT3<br />

Side View<br />

PMT 2 PMT 1<br />

PMT 3<br />

RPC<br />

M! π@)@


Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Eff 250 mu<br />

Eff 220 mu<br />

Eff 270 mu<br />

σ t 250 mu<br />

σ t 220 mu<br />

σ t 270 mu<br />

!) R "3 ! +<br />

" !" "+<br />

Deuteron Beam 2 AGeV<br />

Illuminated Area ✗ ❃❍ ✒<br />

Total Rate 150 Hz/cm 2<br />

FEE-Gain 77<br />

0<br />

0<br />

80 85 90 95 100 105 110 115 120 125<br />

Field (kV/cm)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps)<br />

- )! " " !" "+<br />

7, 7!" 7C !) =<br />

3<br />

+ " ] < /5; >= H<br />

M " ] /5; < )<br />

" !" "+ )"<br />

" !3!!" "+ "<br />

I2 M ! +<br />

!


[<br />

[<br />

[<br />

* ! ! .<br />

J )<br />

) $D 7#<br />

7C<br />

7C<br />

7C<br />

: )<br />

: )<br />

: )<br />

$ )<br />

TS;S !B]<br />

TS;S !B]<br />

TS;S !B]


instr m<br />


TJ ]<br />

instr m<br />

instr rms<br />

$<br />

1.75<br />

1.5<br />

2<br />

2.75<br />

2.5<br />

2.25<br />

3<br />

3.75<br />

3.5<br />

3.25<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

220mu<br />

250mu<br />

270mu<br />

RPC 90cm-8Gaps-16Strips<br />

100 150 200 250 300 350 400 450 500 550 600<br />

Charge (ch.)<br />

220mu<br />

250mu<br />

270mu<br />

- R "3 ! +<br />

100 150 200 250 300 350 400 450 500 550 600<br />

Charge (ch.)<br />

TS]<br />

- R<br />

"3 ! @<br />

!<br />

)" "<br />

Charge m<br />

Charge rms<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

instr m<br />

instr rms<br />

220mu<br />

250mu<br />

270mu<br />

RPC 90cm-8Gaps-16Strips<br />

85 90 95 100 105 110 115 120<br />

E-field (kV/cm)<br />

220mu<br />

250mu<br />

270mu<br />

85 90 95 100 105 110 115 120<br />

E-field (kV/cm)<br />

1.75<br />

1.5<br />

2<br />

2.75<br />

2.5<br />

2.25<br />

3<br />

3.75<br />

3.5<br />

3.25<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

220mu<br />

250mu<br />

270mu<br />

RPC 90cm-8Gaps-16Strips<br />

85 90 95 100 105 110 115 120<br />

E-field (kV/cm)<br />

220mu<br />

250mu<br />

270mu<br />

85 90 95 100 105 110 115 120<br />

E-field (kV/cm)


Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

II2 !" )" "<br />

" " O "+<br />

MRPC 19b 90cm-8Gaps-16Strips<br />

Single Hits<br />

0<br />

85 90 95 100 105 110 115 120 125 130 0<br />

E-Field (kV/cm)<br />

FEE-Gain 220<br />

FEE-Gain 160<br />

FEE-Gain 130<br />

FEE-Gain 77<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps)<br />

" !" "+<br />

)" " I2<br />

0! 0<br />

" !"<br />

* ! ! 0 I2<br />

! "<br />

) !"<br />

:& 7 7<br />

8" 77FFF


TJ ]<br />

Instr m<br />

Instr rms<br />

$<br />

2.75<br />

2.5<br />

3<br />

3.5<br />

3.25<br />

2.25<br />

1.75<br />

1.5<br />

1.25<br />

1<br />

2<br />

II2 !"<br />

)" " " R<br />

MRPC 19b 90cm-8Gaps-16Strips<br />

FEE-Gain 220<br />

FEE-Gain 160<br />

FEE-Gain 130<br />

FEE-Gain 77<br />

95 100 105 110 115 120 125<br />

E-Field (kV/cm)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

FEE-Gain 220<br />

FEE-Gain 160<br />

FEE-Gain 130<br />

FEE-Gain 77<br />

95 100 105 110 115 120 125<br />

E-Field (kV/cm)<br />

R 0 ! 0<br />

! " " II2 !"<br />

! 0 !<br />

0 ! 0 I2<br />

" !" "+<br />

!(0 +0 0 " !" P


Efficiency (%)<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

! )" " "<br />

" O "+<br />

Efficiency<br />

R ∼ 1 kHz / cm 2<br />

R ∼ 0.1 kHz / cm 2<br />

Pion Beam 2 AGeV<br />

Illuminated Area 7 cm 2<br />

Total Rate 100-1000 Hz/cm 2<br />

FEE-Gain 150<br />

0<br />

100 105 110 115 120 125 0<br />

E-Field (kV/cm)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps)<br />

Yield<br />

10 3<br />

10 2<br />

10<br />

1<br />

MMRPC resolution<br />

Single hits<br />

Gap 220 µm (8)<br />

σ t < 60 ps 0.1 kHz/cm 2<br />

σ t < 85 ps 1.0 kHz/cm 2<br />

ε > 98 %<br />

Tail < 3 %<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

<strong>Time</strong> difference (ns)


1 " O& " ! "<br />

!) R =B \ " !" ! R<br />

I " !" ! ! "! < 5<br />

: ! )! "! ! " ! " !"<br />

? ') ! " ! "+! " /5;


I "+ H<br />

Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

FEE-Gain 160<br />

100 Hz/cm 2<br />

,- M 3 ! )!<br />

RPC 20b 90cm-8Gaps-16Strips 220 mu<br />

90 92.5 95 97.5 100 102.5 105 107.5 110 112.5 115<br />

200<br />

Proton Beam 2 AGeV<br />

0<br />

90 92.5 95 97.5 100 102.5 105 107.5 110 112.5 115 0<br />

Field (kV/cm)<br />

I2 /5;<br />

Eff.<br />

σ t (All)<br />

σ t (RPC)<br />

σ t (Start)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps) )<br />

We need a start counter with<br />

50 ps or even better.<br />

Single hit 78 ps<br />

Start 50 ps<br />

RPCb + Start t < 96 ps<br />

Start ts < 78 ps<br />

RPC RPC < 56 ps


I "+ H<br />

Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

,- - 3 ! )!<br />

RPC 20c 90cm-8Gaps-16Strips 220 mu<br />

90 92.5 95 97.5 100 102.5 105 107.5 110 112.5 115<br />

200<br />

Proton Beam 2 AGeV<br />

0<br />

90 92.5 95 97.5 100 102.5 105 107.5 110 112.5 115 0<br />

Field (kV/cm)<br />

I2 /5;<br />

Eff.<br />

σ t (All)<br />

σ t (RPC)<br />

σ t (Start)<br />

σ t (1kHz)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps) )<br />

Stable scan with a<br />

stable start. The start<br />

is very important.<br />

saturation above 105 kV/cm<br />

At higher rates ~ 1kHz<br />

we see a decrease <strong>of</strong><br />

the timing 10-15 ps.


RPC<br />

IB) "! )<br />

CDC<br />

RPC<br />

Scint+PMT<br />

Super Module<br />

Mini<br />

RPC1 13a<br />

RPC2 11a<br />

U+Au 900 AMeV<br />

2 MMRPCs + Mini


Single Hit<br />

Clean<br />

Double Hit Clean<br />

! ! "<br />

Both signals arrive first 101<br />

Both signals arrive second 202<br />

1<br />

90 cm<br />

1.96 mm strip<br />

0.6 mm gap<br />

2 1<br />

Mixed<br />

One signal arrives second 102<br />

One signal arrives second 201<br />

2


Momentum (GeV/c)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Matched RPC 13a-90cm-6gaps-14strips CDC-MRPC hits<br />

U+Au 900 AMeV<br />

0<br />

0 5 10 15 20 25 30 35<br />

0.2<br />

Velocity (cm/ns)<br />

P-v plot for fast pions<br />

Small momentum<br />

" O "+ RPC<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

I Efficiency "+ H(%)<br />

0.3<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t < 75 ps<br />

ε > 95 %<br />

RPC 13a 90cm-6Gaps-14Strips<br />

0<br />

50 60 70 80 90 100 110 120 130 140 150 0<br />

HTYP<br />

Full-RPC<br />

Mini+RPC<br />

Fast pions<br />

Eff.<br />

σt-σts Eff.<br />

σt-σts 175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

Yield<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

σσ t (ps) )<br />

U+Au 900 AMeV<br />

-1 0 1<br />

13a-90cm-6gaps-14strips<br />

Entries 422<br />

59.39 / 45<br />

Constant 19.12<br />

Mean -0.1338<br />

Sigma 0.1064<br />

<strong>Time</strong> Diff. (ns)<br />

Yield<br />

10<br />

1<br />

U+Au 900 AMeV<br />

σ t < 75 ps<br />

Tail < 3 %<br />

dependence. Single Hit Case<br />

Entries 422<br />

59.39 / 45<br />

Constant 19.12<br />

Mean -0.1338<br />

Sigma 0.1064<br />

-1 0 1<br />

<strong>Time</strong> Diff. (ns)


I "+ H<br />

Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

" O "+<br />

RPC 13a 90cm-6Gaps-14Strips<br />

0<br />

150 160 170 180 190 200 210 220 230 240 250 0<br />

HTYP<br />

Full-RPC<br />

Mini+RPC<br />

Fast pions<br />

MRPC resolution<br />

Double hits<br />

σ t < 100 ps<br />

ε > 85 %<br />

Eff.<br />

σt-σts Eff.<br />

σt-σts Double Hit Case<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

σ )<br />

σ t (ps)<br />

" 5;<br />

5 + ;"<br />

P-v plot with MRPC<br />

Protons<br />

Kaons<br />

1GeV/c 2<br />

Pions


E.Cordier<br />

Pions<br />

M!/ "<br />

Protons<br />

Pions<br />

Protons<br />

Mass cuted (GeV/c 2 )


IB " )


!)!+ -I J<br />

Barrel: 30 RPCs in 2 layers<br />

• Length: 2 m<br />

• Width: 150 mm<br />

• Thickness: 10 mm<br />

positive tracks<br />

+ negative tracks


Beta<br />

e<br />

!)<br />

+8.9 GeV/c 0.05 λ Be target – pad ring 5 (average σ t )<br />

Momentum (GeV/c)<br />

p<br />

positive tracks<br />

e<br />

p<br />

negative tracks<br />

Momentum (GeV/c)


electrons<br />

,! K - L#<br />

Kaons<br />

pions<br />

protons<br />

- $ ' "1(23<br />

! !"MJ<br />

* !"" MJ<br />

-I


# -I ,-) !"<br />

-* !<br />

& !R ! ,- :<br />

96 readout pads<br />

per strip<br />

120 cm


#&I$ ,-) !"<br />

Consistent with<br />

empty space<br />

between cells<br />

Gas admixture: 98.5% C 2 H 2 F 4 + 1% SF 6 + 0.5 iso-C 4 H 10<br />

& "R! R ,- :


$ !+@- " "O' /


Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Eff 250 mu<br />

Eff 220 mu<br />

Eff 270 mu<br />

σ t 250 mu<br />

σ t 220 mu<br />

σ t 270 mu<br />

- " " "<br />

!) R@ II2 !"!" !<br />

Deuteron Beam 2 AGeV<br />

Illuminated Area ✗ ❃❍ ✒<br />

Total Rate 150 Hz/cm 2<br />

FEE-Gain 77<br />

0<br />

80 85 90 95<br />

0<br />

100 105 110 115 120 125<br />

Field (kV/cm)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

MMRPC resolution<br />

Single hits<br />

σ t < 50 ps FEE (200)<br />

σ t < 60 ps FEE (150)<br />

σ t < 75 ps FEE (77)<br />

ε > 99 %<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps)<br />

Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

MRPC 19b 90cm-8Gaps-16Strips<br />

Single Hits<br />

FEE-Gain 220<br />

FEE-Gain 160<br />

FEE-Gain 130<br />

FEE-Gain 77<br />

0<br />

85 90 95 100 105 110 115 120 125 130 0<br />

E-Field (kV/cm)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps)<br />

Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

1"3 ! !3<br />

" !" "+@<br />

"+ )" " "I2<br />

RPC 20c 90cm-8Gaps-16Strips 220 mu<br />

90 92.5 95 97.5 100 102.5 105 107.5 110 112.5 115<br />

200<br />

Proton Beam 2 AGeV<br />

0<br />

90 92.5 95 97.5 100 102.5 105 107.5 110 112.5 115 0<br />

Field (kV/cm)<br />

Eff.<br />

σ t (All)<br />

σ t (RPC)<br />

σ t (Start)<br />

σ t (1kHz)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

σ t (ps)


σ t (RPC) (ps)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

σ t (RPC) = σ t - σ ts<br />

σ ts =120 ps<br />

- " " "<br />

40<br />

20<br />

MRPC > 0<br />

MRPC =1<br />

MRPC =2 (P1 or P2)<br />

Al-Beam 1.9 AGeV<br />

Illuminated Area 414 cm<br />

0<br />

102 104 106 108 110 112 114 116 118<br />

E-Field (kV/cm)<br />

2<br />

Total Rate 4-5 kHz/MMRPC<br />

Coincidence Rate 10-15 Hz/cm 2<br />

FEE-Gain 77<br />

MMRPC resolution<br />

Double hits<br />

σ t < 100 ps<br />

ε > 85 %<br />

Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

RPC 13a 90cm-6Gaps-14Strips<br />

0<br />

150 160 170 180 190 200 210 220 230 240 250 0<br />

HTYP<br />

Full-RPC<br />

Mini+RPC<br />

:<br />

Eff.<br />

σt-σts Eff.<br />

σt-σts 175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

σ t (ps)


instr m<br />

instr rms<br />

1.75<br />

1.5<br />

2<br />

2.75<br />

2.5<br />

2.25<br />

3<br />

3.75<br />

3.5<br />

3.25<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

220mu<br />

250mu<br />

270mu<br />

- " " "<br />

RPC 90cm-8Gaps-16Strips<br />

100 150 200 250 300 350 400 450 500 550 600<br />

Charge (ch.)<br />

220mu<br />

250mu<br />

270mu<br />

100 150 200 250 300 350 400 450 500 550 600<br />

Charge (ch.)<br />

R<br />

- R )"<br />

"+ " !<br />

* " \ !"<br />

II2 !"<br />

Instr m<br />

Instr rms<br />

2.75<br />

2.5<br />

3<br />

3.5<br />

3.25<br />

2.25<br />

1.75<br />

1.5<br />

1.25<br />

1<br />

2<br />

MRPC 19b 90cm-8Gaps-16Strips<br />

FEE-Gain 220<br />

FEE-Gain 160<br />

FEE-Gain 130<br />

FEE-Gain 77<br />

95 100 105 110 115 120 125<br />

E-Field (kV/cm)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

FEE-Gain 220<br />

FEE-Gain 160<br />

FEE-Gain 130<br />

FEE-Gain 77<br />

95 100 105 110 115 120 125<br />

E-Field (kV/cm)<br />

& !" I@ 3<br />

I " !"


M!/ " O "<br />

$"<br />

&<br />

E.Cordier


- " " " ! "<br />

330 ps<br />

40 ps<br />

60 ps<br />

25 ps<br />

Yield<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

ID<br />

Entries<br />

Mean<br />

RMS<br />

100<br />

27948<br />

0.4971<br />

3.031<br />

505.0 / 42<br />

Constant 3974.<br />

Mean 0.5036<br />

Sigma 2.755<br />

0<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

dt rate 10e6<br />

<strong>Time</strong> diff. (ch)<br />

#) !" ! ! !<br />

" + ! ! " 0<br />

! ts < 7& !- ! ! R<br />

total = 452 + 352 + ts 2 ps<br />

total = 75 ps ts = 50 ps


" ! " ! 76 H " ! "<br />

V 777 #<br />

!)) ! "<br />

,- -M<br />

TOF<br />

' 0! ! ! :^


Rate (dN/cm 2 /s)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

1<br />

URQMD AU+AU 25AGeV, MinB<br />

!" ! + -M<br />

dist=1500cm (TOF)<br />

2000Hz<br />

0 10 20 30 40 50<br />

Θ (deg)<br />

Concepts:<br />

Different detectors types<br />

in low and the high rate<br />

environment.<br />

Low rate 2 kHz<br />

Pad anode<br />

Single cells<br />

Problem:<br />

Different counters may need<br />

different electronics.


,!) " " ,-<br />

Doctoral Thesis, C. Lippmann, May 2003 (CERN, University <strong>of</strong> Frankfurt)<br />

NIMA 500 (2003) 144-162, W. Riegler, C. Lippmann, R. Veenh<strong>of</strong><br />

NIMA 491 (2002) 258-271, W. Riegler<br />

NIMA 481 (2002) 130-143, W. Riegler, D. Burgarth<br />

Proceedings <strong>of</strong> IEEE NSS/MIC (2002), C. Lippmann, W. Riegler<br />

NIMA 489 (2002) 439-443, CERN-OPEN-2001-074, T. Heubrandtner, B. Schnizer, C. Lippmann, W. Riegler<br />

G. Carboni et al. NIM A 498(2003)135 [2 mm RPC]<br />

G. Aielli et al. NIM A 508(2001)6, RPC 2001 [2 mm RPC]<br />

P. Colrain et al. NIM A 456(2000)62<br />

A. Mangiarotti et al. NIM A 533(2004)16 RPC 2003<br />

D.Gozalez Diaz et al. Nucl. Phy. B (Proc.Suppl.) 158 (2006) 111-117<br />

V.Ammosov et al. Nucl. Phy. B (Proc.Suppl.) 158 (2006) 56-59<br />

A.Schüttauf et al. Nucl. Phy. B (Proc.Suppl.) 158 (2006) 52-53<br />

A.Schüttauf et al. NIM A 553 (2004) 65-68<br />

H. Alvarez-Pol et al. NIM A 535 (2004)277<br />

M.C.S. Williams et al. NIM A 478 (2002) 183-186<br />

M.Petrovici et al. NIM A 508 (2000) 75-78

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!