26.07.2013 Views

Deep Level Transient Spectroscopy ... - IRTG Heidelberg

Deep Level Transient Spectroscopy ... - IRTG Heidelberg

Deep Level Transient Spectroscopy ... - IRTG Heidelberg

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Deep</strong> <strong>Level</strong> <strong>Transient</strong><br />

<strong>Spectroscopy</strong>: Characterization<br />

of Radiation Damage<br />

Eduard Monakhov, UiO


Introduction<br />

Electronic levels of main vacancy<br />

related traps in Si:<br />

E c<br />

E c -0.18 eV<br />

E v<br />

VO V 2<br />

-/0<br />

=/-<br />

-/0<br />

0/+<br />

The effect of deep levels<br />

E c -0.23 eV<br />

E c -0.44 eV<br />

E v +0.20 eV<br />

V 2 is important!<br />

Leakage current as a function of the bias in silicon detector with<br />

different types of defects (SILVACO Virtual Wafer Fab).


Introduction<br />

The effect of C and O on radiation hardness of detectors<br />

standart FZ-Si: [O]~10 15 -10 16 cm -3<br />

oxygenated FZ-Si: [O]~10 17 -10 18 cm -3


Introduction<br />

The neutron puzzle<br />

No radiation hardening<br />

for neutron radiation!<br />

.


p +<br />

DLTS technique<br />

a) V=0, t0<br />

p +<br />

W R<br />

e -<br />

n<br />

E f


C<br />

C<br />

=<br />

A<br />

DLTS technique<br />

qε<br />

0ε<br />

( N D − n<br />

2(<br />

V −V<br />

)<br />

bi<br />

T<br />

)<br />

⎛ 1<br />

⎜ −<br />

⎝<br />

qε<br />

0εN<br />

if nT


C<br />

DLTS technique<br />

0<br />

t 1<br />

t 2<br />

t<br />

C(t 2 )-C(t 1 )<br />

T


U 0<br />

U R<br />

C 0<br />

C R<br />

C R0<br />

DLTS technique<br />

filling<br />

pulse<br />

Height and width of<br />

filling pulse can be<br />

varied<br />

t<br />

t


DLTS technique<br />

Typical DLTS spectrum for n-type Si with radiation-induced defects.<br />

VO, 0.18 eV<br />

V 2 (=/-)<br />

0.23 eV<br />

V 2 (-/0)<br />

0.44 eV


C<br />

DLTS technique<br />

e m<br />

e m ’<br />

0 t1 t2 t 3<br />

t<br />

DLTS signal<br />

T<br />

T m<br />

T m ’


DLTS technique<br />

DLTS signal<br />

Spectra for different measurement times (time windows)<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

100 150 200 250<br />

T, K<br />

In the analysis we determine temperatures of the peaks


DLTS technique<br />

From experiment: (e 1 ,T 1 ); (e 2 ,T 2 ); (e 3 ,T 3 ); …<br />

Expected: e~exp[-(E c -E t )/kT], more precisely: e=N Cσ n v th,n exp[-(Ec-Et)/kT]<br />

e=σ n AT 2 exp[-(Ec-Et)/kT]<br />

ln(e/T 2 )=ln(σ n A)-(Ec-Et)/kT<br />

Plot ln(e/T 2 ) vs 1/T<br />

8h at 200oC 3.5h at 250oC 7.5h at 250o X(0/-):<br />

C<br />

V 2 (0/-):<br />

8h at 200 o C<br />

3.5h at 250 o C<br />

7.5h at 250 o C


DLTS technique<br />

Alternative ways to convert transients to a spectrum<br />

S(T)=∫ C(T,t)w(t)dt<br />

In previous example (box-car):<br />

w(t)=δ(t2)-δ(t1)<br />

Mostly used (’lock-in’ weighting function):


Electron capture cross-section<br />

a) V=V R , t=0<br />

p +<br />

W R<br />

n<br />

p +<br />

b) V=0, 0


Electron capture cross-section<br />

DLTS signal<br />

DLTS signal: S=S max [1-exp(-r n t filing )]<br />

log(time of filling)


Electron capture cross-section<br />

fast capture kinetics slow capture kinetics<br />

a) b)<br />

9.6x10 -15 cm 2<br />

3.1x10 -15 cm 2<br />

E.V. Monakhov, B.S. Avset, A. Hallen, B.G. Svensson, Phys. Rev. B 65, 233207 (2002)<br />

1.3x10 -16 cm 2


Laplace DLTS<br />

The technique is based on solving the following integral equation:<br />

y ( t)<br />

= ∫ F(<br />

λ , t)<br />

s(<br />

λ)<br />

dλ<br />

+ A + ε<br />

If one chooses F(λ,t)=exp(-λt)<br />

the solution s(λ) in case of DLTS is<br />

a sum of delta functions<br />

C<br />

s<br />

t<br />

λ


Laplace DLTS<br />

BioRad<br />

Boonton bridge<br />

capacitance meter<br />

Analog<br />

output<br />

National<br />

Instruments<br />

analog-digital<br />

converter<br />

(PCI card, 12-bit<br />

resolution, 5 MHz<br />

sampling rate)<br />

Laplace-DLTS setup<br />

SemiLab bath type cryostat<br />

with a silicon diode<br />

temperature sensor<br />

Digitized transient<br />

(normally ~10 6 points)<br />

* S. W. Provencher, Computer Physics Communications, 27 (1982) 213<br />

averaging to<br />

10 3 points<br />

LakeShore<br />

temperature<br />

controller<br />

(temperature<br />

stability ~0.02 K)<br />

<strong>Transient</strong> analysis<br />

(program CONTIN*)


DLTS technique<br />

Typical DLTS spectrum for n-type Si with radiation-induced defects.<br />

VO, 0.18 eV<br />

V 2 (=/-)<br />

0.23 eV<br />

V 2 (-/0)<br />

0.44 eV


Interaction of V 2 with defects and impurities<br />

X<br />

V 2<br />

15min at 220 o C<br />

15min at 300 o C<br />

1h at 300 o C<br />

15at 325 o C<br />

E.V. Monakhov, B.S. Avset, A. Hallen, B.G. Svensson, Phys. Rev. B 65, 233207 (2002)<br />

V 2<br />

X<br />

Tentative<br />

identification of X:<br />

X=V 2 O<br />

V 2 +OV 2 O


DLTS signal<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

Laplace DLTS<br />

Typical Laplace-DLTS spectrum for the overlapping V 2 and X peaks.<br />

100 150 200 250<br />

T, K<br />

V 2 (-/=)<br />

X(-/=)<br />

6 8 10 20 40


Laplace DLTS<br />

DLTS signal (pF)<br />

0.1<br />

Transformation of V 2 to X at 250 o C.<br />

sample A sample C<br />

V 2 (=/-) V 2 (=/-)<br />

X(=/-) X(=/-)<br />

0 1000 2000 3000 4000 5000 6000<br />

Annealing time (min)<br />

A: [O]~(2-3)x10 17 cm -3<br />

C: [O]~(1-2)x10 16 cm -3<br />

Transformation rate<br />

is proportional to [O].<br />

Proves that<br />

X=V 2 O<br />

V 2 +OV 2 O


U 0<br />

U R<br />

Minority carrier DLTS (MCTS)<br />

filling<br />

pulse<br />

if U 0 >0?<br />

Injection of holes to n-type region will occur<br />

Height and width of<br />

filling pulse can be<br />

varied<br />

t


p +<br />

Minority carrier DLTS (MCTS)<br />

a) V=0, t0, t~0<br />

+ p n<br />

0<br />

t<br />

c) V=V R , t>0<br />

p +<br />

h<br />

W R<br />

h<br />

h<br />

e<br />

n<br />

E f


Minority carrier DLTS (MCTS)<br />

VO<br />

V 2 (=)<br />

V 2 (-)<br />

C i O i


SUMMARY<br />

DLTS is a powerful technique for studies of radiation induced defects<br />

Capabilities:<br />

- position of defect levels in the band gap<br />

- concentration of specific defects<br />

- capture cross-sections<br />

- depth distribution<br />

Limitations:<br />

- problems with accurate measurements on minority carriers<br />

- concentration of the defects should be

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!